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Abstract. Computed tomography (CT) is the preferred method for
non-invasive lung cancer screening. Early detection of potentially malig-
nant lung nodules will greatly improve patient outcome, where an effec-
tive computer-aided diagnosis (CAD) system may play an important
role. Two-dimensional convolutional neural network (CNN) based CAD
methods have been proposed and well-studied to extract hierarchical and
discriminative features for classifying lung nodules. It is often questioned
if the transition to 3D will be a key to major step forward in performance.
In this paper, we propose a novel 3D CNN on the 1018-patient Lung
Image Database Consortium collection (LIDC-IDRI). To the best of our
knowledge, this is the first time to directly compare three different strate-
gies: slice-level 2D CNN, nodule-level 2D CNN and nodule-level 3D CNN.
Using comparable network architectures, we achieved nodule malignancy
risk classification accuracies of 86.7%, 87.3% and 87.4% against the per-
sonal opinion of four radiologists, respectively. In the experiments, our
results and analyses demonstrates that the nodule-level 2D CNN can bet-
ter capture the z-direction features of lung nodule than a slice-level 2D
approach, whereas nodule-level 3D CNN can further integrate nodule-
level features as well as context features from all three directions in a 3D
patch in a limited extent, resulting in a slightly better performance than
the other two strategies.

1 Introduction

Lung cancer is the deadliest type of cancer worldwide. It is estimated that lung
cancer caused 158, 040 deaths in the US in 2015, which accounts for nearly 40%
of all cancer deaths in the country [1]. Worldwide, it caused 1.69 million deaths
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in 2012, nearly 20% of the total cancer deaths in the world [2]. The prognosis of
lung cancer depends critically on the stage at which it is diagnosed. The five-year
survival rate of early-stage disease is over 50%, whereas that of advanced stage
is less than 5%. Currently, more than half of the diagnosed lung cancer cases
are in advanced stage [1]. Therefore, effective screening of lung cancer is crucial
for detecting the disease in an early and more treatable stage, consequently
improving patient survival rates.

Computed tomography (CT) is the current preferred method for non-invasive
lung cancer screening due to its high sensitivity. The National Lung Screening
Trial, which enrolled more than 50,000 high-risk subjects, demonstrated that low
dose CT screening reduced lung cancer mortality by more than 20% compared
with chest radiography screening [3]. Despite its promise, the current lung cancer
screening method by CT bears several limitations:

1. Interpretation of the CT images requires analyzing hundreds of images at a
time, considerably increasing the workload of radiologists;

2. Significant interobserver and intraobserver variations make the screening
result subjective and less reliable [4];

3. The false positive rate remains high, limiting the utility of CT as a early
screening modality [5].

In this work, we implemented a self-contained artificial neural network for
classifying malignant and benign lung nodules, and tested three strategies for
feeding the 3D nodule volume into the network: independent 2D slices with
nodule-level voting, simultaneous multi-slice input, and full 3D volumetric input.
All nodules were extracted from the annotated images in the publicly available
Lung Image Database Consortium (LIDC) [6].

1.1 Related Work

Considerable efforts have been devoted to developing efficient, observer-
independent computer aided diagnosis (CAD) methods for differentiating malig-
nant from benign nodules [7–14]. The general scheme usually includes first
designing and extracting features (e.g. geometry, texture, opacity, etc.) from
image patches, and then training a classifier (e.g. linear discriminant analysis,
support vector machine, artificial neural network, etc.) to categorize nodules.
The performance is usually evaluated by the receiver operating characteristics
(ROC).

In contrast to handcrafted features, deep learning methods learn a represen-
tation of data via training end-to-end and are capable of automatically extracting
features specific to the learning task at hand. The image data is fed directly into
a multi-layer convolutional neural network (CNN) that includes convolutional,
pooling, and fully connected layers. Leveraging the availability of large training
datasets, advances in training algorithms, and increasingly accessible compu-
tational power, such methods have achieved impressive performance in various
tasks in computer vision (e.g. [15,16]). Several deep learning based approaches
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for CT lung nodule classification have also been proposed, with differences in
network configuration, nodule extraction strategies, and whether the network
is self-contained or requires a separate classifier (i.e. network is used for fea-
ture extraction only) [17–19]. The major limitation of these works is the use
of individual 2D patches as the network input and the subsequent patch-level
classifications. Certain information from the nodule-level, e.g. texture and con-
text features in the z-direction, are ignored, which is a sub-optimal setup as the
nodules are intrinsically 3D objects.

1.2 Contributions

Our work made the following three contributions:

1. We proposed a 3D convolutional neural network method for lung nodule
malignancy risk classification.

2. We compared three neural network input strategies: 2D slice level CNN, 2D
nodule level CNN, and 3D nodule level CNN.

3. Using 3D CNN approach, we achieved the best classification accuracy rep-
orted (87.4%) on LIDC-IDRI dataset.

2 Data and Method

We implemented three convolutional neural network (CNN) input strategies
(slice-level 2D CNN, nodule-level 2D CNN, and 3D CNN) and evaluated their
performance on lung nodule malignancy risk classification. All nodules were
extracted from the annotated images in the publicly available Lung Image Data-
base Consortium (LIDC) [6] and the reference standard of nodule malignancy
risk were obtained using a reader opinion voting procedure described below.

2.1 Data

Both locations and malignancy risk scores of the lung nodules in each CT scan
are annotated in 1018 CT images from the LIDC database. The scores range
from 1 (not suspicious to be malignant) to 5 (highly suspicious to be malignant)
and are given by panels of up to four radiologists. To extract a single score
from the panels’ readings, majority voting was conducted to account for the
subjectivity of each expert’s experience. a score of less than 3 was considered
one vote for benign, and one above 3 was one vote for malignant, while a score
of 3 was discarded. The final classification of a nodule was then determined
by the majority vote. If there were equal votes for both classes, the nodule
would be removed from the study. A similar voting approach was also used in
[17]. Note that the binary label for each nodule was based on the subjective
opinions of the readers, therefore was not equivalent to a biopsy or outcome
proved ground truth. In the 1882 nodules used in our experiment, the number
of nodules voted benign was roughly twice that of nodules voted as malignant.
Simple data augmentations were performed (e.g. rotation) to increase the size of
the training set and also balance the number of benign and malignant nodules.
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2.2 Slice-Level 2D Convolutional Neural Network

A typical self-contained CNN image classifier is a function that takes an image
as an input and outputs a c× 1 vector, where c is the number of classes and the
i-th element of the vector is the probability of the input image belonging to the
i-th class.

Fig. 1. The network architecture of slice-level 2D CNN.

The configuration of our slice-level 2D CNN is illustrated in Fig. 1. The
images are first fed into four sets of 2D convolution-ReLU-pooling layers with
20, 40, 80, and 80 filters of size 5 × 5, 5 × 5, 4 × 4, and 4 × 4 respectively. The
activation function is set as rectified linear unit (ReLU) [20]. The output feature
map from each convolution filter all feed into max pooling layers with kernel
size 2 × 2. To maximize the complexity of the model on such input with small
size in each direction (64 × 64), the kernel of the three consecutive convolution-
activation-maxpooling layers is set such that the dimension of the last output
feature map is 1 × 1. Finally, we compose a fully connected layer with 64 neu-
rons (with batch-normalization and 50% dropout [21]) and a softmax layer with
two outputs. The entire network, as well as for the following two networks, is
trained from scratch with randomly initialized weights. To accommodate the
large dataset size, the optimization method was chosen to be stochastic gradient
descent with 100 noduels per batch (same of the following two models), following
the heuristic proposed in [16] to control the learning rate.

The nodule patches are automatically extracted using the labeled center-of-
mass, contour, and diameter information. As shown in Fig. 2, the distribution of
lung nodule sizes varies from 1.5 to 35 mm, with a mean of 8 mm and standard
deviation of 6 mm. Since the neural network requires a fixed size of input patches,
for each nodule, we cropped out 5 patches of of size 64 × 64 pixels in the x− y
plane (approximately 40 mm field of view), with the middle patch’s center being
the center of mass of the nodule. During testing, we choose the majority vote of
the output from the network of the five patches to be the final result.

2.3 Nodule-Level 2D Convolutional Neural Network

The slice-level strategy treats all 2D slices as independent examples. Essen-
tially, it “shuffles” nodules in the training examples and discards all information
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Fig. 2. (a) and (b) are examples of axial slices of two different lung nodules with size
of 20 mm and 3 mm. (c) shows the distribution of the nodules’ size in the x direction.
The horizontal axis is the size range, and the vertical axis is the probability of the total
nodules in different size intervals.

along z direction, including texture features and correlations between slices that
belonged to the same nodule. To address these shortcomings, we proposed a
modified configuration that classified the nodules using multiple 2D slices simul-
taneously.

The simultaneous multi-slice network took a 3D patch and internally inter-
preted it as an image with multiple channels. The network has exactly the same
architecture as that of the Slice-level 2D CNN as shown in Fig. 1.

The pipeline takes a 3D patch with size 64 × 64 × 5, obtained the same way
as in the Slice-level case, and consider it as one image with five channels. The
nodule level 2D CNN architecture allows the network to be trained and tested
on a nodule by nodule basis and eliminates the need for voting in the slice-level
classification approach described above.

2.4 3D Convolutional Neural Network

Given the two configurations above, the intuitive next step is to extract features
from all three dimensions at the same time, i.e. building a 3D CNN models that
takes the advantages of all 3D information provided by the images. Our imple-
mentation is based on [22]. Each convolutional layer contains a number of 3D
filters, where each has a size of w×h×z, where w, h, and z are the width, height,
and depth, respectively. Such 3D filters are more powerful than 2D filters [22,23]
in the sense that they not only capture spatial relationships between different
axial slices, but also are capable to detect the volumetric differences between
nodules.

An illustrated in Fig. 3, the 3D CNN network has a similar structure to
nodule-level 2D CNN. The network has four sets of 3D convolution-ReLU-
pooling layers, followed by two fully connected layers with 50% dropout. The
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Fig. 3. Illustration of network architecture for 3D CNN.

last layer of the network is a softmax fully connected layer. Each convolutional
layer consists of 20, 40, 80, and 80 filters and kernels of size 5× 5× 2, 5× 5× 2,
4×4×2, and 4×4×2, respectively. 2×2 max-pooling in the x and y dimension
is applied in the pooling layers. The two fully connected layers have 64 and 2
nodes, respectively (with batch normalization as well as 50% dropout). The the
convolution kernels of each layer of the 3D network has one times more weights
than the above 2D models. With increased complexity, the 3D network should
theoretically produce at least as good result as the 2D networks. Stochastic
gradient descent was uses to train the 3D network. For comparison, the same
64 × 64 × 5 patch is used to train the 3D CNN.

3 Experiment Results

3.1 Implementation Details

First, 300 nodules were randomly selected as the testing set with balanced num-
ber of begin and malignant nodules, while the remaining over 1500 nodules were
selected as training set. Note that the number of benign nodules in the original
train set was almost double that of malignant nodules. Thus, for the purpose
of balancing the dataset, we doubled the number of malignant nodules in the
training set by adding a copy of them with small random translation. Then, we
augmented the training set by rotating the nodules 90◦ four times along the
z axis with respect to the center of each patch and flipping to generate over
25000 nodules. Such a setting helped capture a range of translation and rotation
invariant features. We split the training set equally into 5 sets and used them
to perform a 5-fold cross validation for evaluating classification performance of
the three types of CNN we have trained. In each fold, there were 5000 nodules
and the number of benign and malignant nodules were very close due to aug-
mentation and shuffling as described above. Each fold of cross validation of the
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three models was trained for 20 epochs, and the loss generally converges after
10 epochs. The CNN implementation used in this work was the deep learning
toolkit Torch [24].

3.2 Results

The three models each with five set of weights produced from cross validation
is tested with the testing set of nodules. The five individual accuracies for each
network in the 5-fold cross-validation phase are very close (within 3%). The
averaged classification accuracy on the testing set achieved by the Slice-level 2D
CNN, Nodule-level 2D CNN, and 3D CNN are 86.7%, 87.3% and 87.4% respec-
tively. Table 1 shows the performance metrics, including accuracy, sensitivity,
and specificity, averaged over five outcomes of cross validation.

We picked weights of the three models that performed best in testing and
drew their testing results as ROC curve as shown in Fig. 4. The area under the
ROC curves (ROC AUC) are listed in Table 1. The overall performance of three
classifiers suggested that our method can achieve promising results. The 3D
approach slightly outperformed the other two in global accuracy and Sensitivity.
The advantages of 3D approach in classification performance is limited. It can
be ascribed to a factor that although 3D convolutional neural networks can
produce useful dimensional reduction without losing the information from the
third dimension that is very helpful for lung nodule classification tasks, the low
spacial resolution of CT images in z direction (compared to the resolution in x-y
directions) limited this capability of 3D CNN.

Table 1. Accuracy measure of three different models

Models Accuracy Sensitivity Specificity ROC AUC

2D CNN slice-level 86.7% 78.6% 91.2% 0.926 ± 0.014

2D CNN nodule-level 87.3% 88.5% 86.0% 0.937 ± 0.014

3D CNN 87.4% 89.4% 85.2% 0.947 ± 0.014

4 Discussion

Several previous works also utilized the LIDC dataset and proposed CNN based
methods for lung nodule malignancy risk classification. Shen et al. [17] pro-
posed to use a multi-scale CNN for feature extraction from center 2D nodule
patches, and support vector machine or random forest for classification. The
highest achieved accuracy was 86.8%. Kumar et al. [18] proposed to use a five-
layer autoencoder to extract features from 2D patches and a decision tree for
classification. The mean achieved accuracy was 75.01%. Hua et al. [19] proposed
to use a deep belief network (DBN) or CNN for both feature extraction and clas-
sification from independent 2D patches. The achieved sensitivity and specificity
for the DBN/CNN approach were 73.4/73.3% and 82.2/78.7%, respectively.
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Fig. 4. Receiver operating characteristic comparison of three different models. Plot (1),
(2), and (3) are ROC responses of 3D CNN, 2D CNN Nodule Level, and 2D CNN Slice
Level respectively. The dashed lines indicate the 95% confidence interval. Plot (4) is a
comparison of the ROC responses.

Considering these previous attempts, the major contributions of our work
included: (1) implementation of a voting procedure to integrate classification
results from multiple 2D patches to provide a nodule-level prediction; (2) imple-
mentation of a 3D input strategy to utilize the additional information from
the additional dimension; and (3) direct comparison between the 3D approach
and 2D approaches for lung nodule malignancy risk classification. Intuitively,
lung nodules are 3D objects, therefore it is suboptimal to only extract 2D fea-
tures from independent slices since all texture and context features in the third
dimension are ignored. By constructing the CNN to take 3D volumes directly, it
is now possible to extract the object-level features and improve the diagnostic
performance over the 2D approaches. For example, for a 2D model, it is not
possible to classify a patch that does not intersect or just intersect by a very
small area with the nodule itself, while for a 3D implementation such “empty”
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patches may be included for extracting context features in the third dimension.
Although “empty” patches can be avoided on a research dataset where nodules
are carefully segmented and boundaries are perfectly defined, in most real world
situations only weak labels, e.g. a rough nodule bounding box, are available,
and a full 3D model may be superior than the 2D approaches in handling this
situation.

Future efforts are warranted to address the limitations of the presented
work to further improve and validate the performance. First, our networks were
trained and evaluated using the malignancy risk scores given by a panel of radiol-
ogists. Such reference standard is subjective and depends on the reader’s training
and experience. Therefore, it is desirable to use a more objective reference stan-
dard such as a biopsy-based malignancy rating. A direct comparison between the
performance of the proposed method and a human reader will also become pos-
sible. Second, a network with larger feature maps and more layers may further
improve the classification performance, as suggested by previous experiences in
the general image classification tasks. A larger training set will also be benefi-
cial. Lastly, the locations and sizes of the nodules are given in the LIDC dataset,
which is not necessarily provided in a real-world scenario. Hence, it is desirable
to integrate a nodule detection module to the current work flow in order to
provide a complete solution towards clinical feasibility.

5 Conclusion

In this work, we implemented a 3D CNN based method for lung nodule malig-
nancy classification, trained and tested using the LIDC images. We compared
three strategies: 2D slice-level, 2D nodule-level, and full 3D nodule-level. Using
the malignancy risk score from a panel of readers as the reference labels, the
accuracies of the three input methods were 86.7%, 87.3% and 87.4%, respec-
tively. With comparable network architectures, it was found that incorporating
3D context can only slightly improve the risk prediction performance of the CNN
based classifier. But 3D CNN model may be superior than the 2D approaches
in handling the situation that only weakly labeled or rough nodule region is
available.
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