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Abstract. This paper discusses the efficient optimization of iterative
closest points (ICP) algorithms. While many algorithms formulate the
optimization problem in terms of quadratic error functionals, the discon-
tinuities introduced by varying changing correspondences usually moti-
vate the optimization by quasi-Newton or Gauss-Newton methods. These
disregard the fact that the Hessian matrix in these cases is constant, and
can thus be precomputed analytically and inverted a-priori. We demon-
strate on the example of Allen et al.’s seminal paper “The space of human
body shapes”, that all relevant quantities for a full Newton method can
be derived easily, and lead to an optimization process that reduces com-
putation time by around 98% while achieving results of almost equal
quality (about 1% difference). Along the way, the paper proposes minor
improvements to the original problem formulation by Allen et al., aimed
at making the results more reproducible.

1 Introduction

ICP (iterative closest point) algorithms are simple, locally optimal algorithms
that, given a distance measure, compute correspondences between two sets of
points (registration). By establishing this correspondence, it is possible to esti-
mate a rigid or non-rigid transformation, that will align the points. This app-
roach has been successfully applied to morph a known shape towards an unknown
shape, for example moving a labeled mesh of a generic face onto a stereo depth
surface showing the face of a person, to detect face parts and expressions.
Another common application is morphing a labeled mesh of a human body onto
a laser scan to detect body parts, assign animations, or estimate pose or body
shape. ICP is also used to register 2D (retinal images [1]) as well as 3D (CT,
ultrasound [2]) medical image data. Registrations can produce a large image
by stitching separate snapshots, reveal connections between images of different
modalities and help in diagnosis by exposing change in images taken over time.

[3] gives an overview of various registration methods and categorizes them by
different properties, among others by techniques chosen for optimization. Among
these, many relevant ICP approaches (such as [4–8]) express the matching error
between two shapes (which is to be minimized) exclusively in terms of quadratic
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differences, which means that the optimization problem has a constant Hessian
matrix. This could be exploited by optimizing via Newton’s method, using gradi-
ents and the inverted Hessian directly. Instead however, the common optimiza-
tion approach is to approximate the relevant quantities (such as the Hessian)
numerically at each iteration, for example through the L-BFGS method. This
introduces an extreme computational overhead; whether it is justified has (to the
knowledge of the authors) not been studied conclusively. [7] remarks “Because
the cost function is evaluated based on the control points in the test scan and
their closest counterparts in the deformable model, and the closest counterparts
may change due to the adjustment [...], the optimization problem is highly non-
linear”, which is true: The problem is a discontinuous piecewise combination of
parabolae of identical shape but different offset. It is, however, not evaluated,
whether approximation algorithms such as BFGS necessarily perform better in
this case. [6] computes correspondences in faces by minimizing an objective func-
tion built from squares of distances and squares of scalar products of vectors.
A minimum is found via L-BFGS by performing at most 1000 iterations. [9]
prefers Newton’s method over BFGS for its more analytic and transparent formu-
lation, and notes improvements in solution quality for face registration; however
there is no acknowledgment of the fact that the Hessian is constant and need not
be recomputed in the process, and no record of any significant improvement in
computation speed. A simplification step is considered to produce a minimizable
quadratic function. We will show, however, that the original function is already
locally quadratic almost everywhere with a constant Hessian, so that the pro-
posed repeated solution of a linear system [9] is unnecessary and can be reduced
to a matrix multiplication. This leads to a speed-up that can be motivated by
the problem understanding alone.

This paper will demonstrate on the example of [5], that the analytic deriva-
tion of gradients and of the constant Hessian can dramatically reduce compu-
tational effort in applicable ICP algorithms, while at the same time achieving
results of very similar quality, despite the fact that the optimization problem
is highly discontinuous. To do so, Sect. 2 will introduce the original problem
formulation in [5]; Sect. 3 will discuss the resulting problem structure from an
optimizational perspective, and derive the relevant analytic quantities to perform
Newton’s method. Section 4 compares the proposed analytic solution to several
variants of the original BFGS solution, to determine their respective performance
in terms of result quality and computation time.

2 Problem Statement

This section introduces the notation used to describe the problem, as well as
the formulae that define the optimization goals. As previously stated, the goal
is to transform vertices of a mesh M (here considered to be a generic low-poly
model of a human body) by a vector of unknown homogeneous transformation
matrices x to fit it to a surface S (here a finite high-resolution 3D point cloud
from a laser scanner, without a specific topology but including normals).
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Definition 1 (Surface, s, S). The surface is considered to be a set1 of points
S, whose elements s ∈ S are assigned the following quantities:

– ψs, an R
4 vector of homogeneous coordinates that describe where s lies on

the surface.
– νs, the R

3 normal vector of the surface at s.

Definition 2 (Mesh, m, M). The mesh is considered to be a set of points M ,
whose elements m ∈ M are assigned the following quantities:

– pm, an R
4 vector of homogeneous coordinates of m in the input mesh.

– Xm, an R
4×4 homogeneous transformation matrix; Xmpm is the position of

m in the deformed mesh. These matrices are the optimization variables.
– N m ⊂ M , the neighborhood of m in the mesh’s topology. It holds that

n ∈ N m ⇔ m ∈ N n, but m /∈ N m.
– nm, the R3 mesh normal at m after the transformation. It must be recomputed

several times during an optimization from the current Xnpn, n ∈ N m.

Definition 3 (Vector of all unknowns, x, xm). The concatenation of all
Xm into a vector x ∈ R

12|M | is referred to as vector of all unknowns (the actual
ordering of the indices is of no concern here). xm denotes the part of x containing
exactly the elements of Xm.

2.1 Optimization Goal

A given vector x ∈ R
12|M | is evaluated by an energy function of the form

Etotal(x) = δ · Edata(x) + μ · Emarker(x) + σ · Esmooth(x), (1)

using weights δ, μ, σ ∈ [0,∞), with the goal of finding x∗ ∈ arg minx Etotal(x).
The corresponding energy terms will be defined in this section, along with a brief
discussion of their relevant properties.

Data Error. The similarity between the transformed mesh M and the surface
S is determined via

Edata(x) =
∑

m∈M

∥
∥Xmpm − ψs(m)

∥
∥2

2
, (2)

where s(m) picks the closest compatible surface point to m out of S.

Definition 4 (Closest Compatible Point, s(m)). A point s(m)) ∈ S is called
the closest compatible point of m, if it is the closest to m among all surface points
S(m) whose normal νs is within an angle of π/2 of the transformed mesh normal
nm. Formally

S(m) = {s ∈ S|νT
s n

m � 0} and s(m) = arg min
s∈S(m)

‖Xmpm − ψs‖2 . (3)

Edata thus accumulates the squared distances between all mesh points and
their closest partners on the surface.
1 While [5] allows for an infinite |S|, all known practical applications (including the

ones in [5]) use a finite |S|. For this reason, we focus on the finite case, which brings
about peculiar effects (discussed in Sect. 3) absent in an infinitely fine S.
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Marker Error. To stabilize the optimization by use of limited manual pre-
processing, a (usually small) number of markers can be specified, which are
assigned fixed corresponding surface points (in lieu of the closest compatible
point function s(m)), for example for the head, hands and feet.

Definition 5 (Markers, M ′, š(m)). A subset M ′ ⊂ M is called markers, for
which there exists an a-priori function š : M ′ → S which assigns marker points
m′ ∈ M ′ definite correspondence š(m′) in the surface.

The distance of marker points to their corresponding (according to š) surface
points is evaluated by the marker error:

Emarker(x) =
∑

m′∈M ′
∥
∥Xm′

pm′ − ψš(m′)
∥
∥2

2
. (4)

In the formulation in [5], markers are thus evaluated twice, once in (4) and once
in (2), which does not exclude M ′, but possibly with respect to different points.
This formulation is optional; (2) may include or exclude M ′.

Smoothness Error. The use of homogeneous matrices for transformation,
instead of mere translations, means that transformations such as scaling or rota-
tion can be described as a uniform transformation of several points (such as an
arm), as opposed to a diverse variety of individual translations. By asking that
the matrices be as uniform as possible over the entire mesh (thus for the first
time using the mesh’s topology N ), it is possible to express that the original
mesh shape should be locally preserved as well as possible. This is achieved by
stating that the matrices Xm and Xn of neighboring points should be as similar
as possible. The term given in [5] as a smoothness error2 is

Esmooth(x) =
∑

m∈M

∑
n∈Nm

∥
∥Xm − Xn

∥
∥2

fro
, (5)

using the Frobenius norm
∥
∥M

∥
∥2

fro
=

∑
i,j M2

ij as a measure of similarity.
Although not the main focus of this paper, (5) as proposed in [5] leaves two
potential pitfalls, which may be worth resolving:

– Unit Invariance. First, it is risky to sum over all (squared) matrix elements
regardless of their unit: While all Xi,j with i, j ∈ {1, 3} are ratios and thus
dimensionless, the translation components Xi,4 with i ∈ {1, 3} represent units
of length. Therefore, two identical models in different units (e.g. inches and
centimeters) optimized with the same parameters could have different optima.
For this reason we propose to include another ratio weight ρ in addition to

2 It should be noted that “smoothness” here refers to the matrix elements, not the
mesh: Each matrix element should change smoothly between neighboring points. The
resulting mesh need not be smooth in shape at all, but neighboring points should
be transformed similarly.
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(a) complete mesh (b) black nodes’ N (c) white nodes’ N

Fig. 1. Unevenly distributed neighbor counts on an isotropic 3D model: (a) shows
a triangulated cube, which has two types of vertices (shown black and white) with
different numbers of neighbors: The black vertices (b) have 6 neighbors each, the white
vertices (c) only three. Depending on the smoothness error formulation, black and white
vertices behave very differently, even though in the untriangulated cube, all corners are
equal.

σ, that turns units into dimensionless values, e.g. ρ = 2.3/mm. Equation (5)
thus becomes

Esmooth =
∑

m∈M

∑
n∈Nm

∥
∥

[
1 1 1

√
ρ

1 1 1
√

ρ

1 1 1
√

ρ
· · · ·

]

︸ ︷︷ ︸
P

◦ (Xm − Xn)
∥
∥2

fro
, (6)

where (M ◦N)ij = mij · nij defines the element-wise (or Hadamard) product.
The last row of the weighting matrix is irrelevant because it is identical for all
Xm. The square roots represent the fact that all other weights are applied to
squared values.

– Triangulation Invariance. In the original definition a node with many
neighbors will generally be affected more strongly by smoothness than a node
with few neighbors, because the errors are summed over the entire neighbor-
hood. This means that the result of the optimization may depend heavily on
the topology, but the topology of triangulation does not necessarily reflect the
topology of the underlying shape. Figure 1 gives an example: A regular cube
is triangulated, but the number of neighbors is very unevenly distributed and
varies by a factor of 2. In general this is not avoidable, and thus not a mark
of a bad triangulation. For the cube it means that even though a cube in the-
ory has no preferred vertices, its triangulated representation does, and so if
this cube is fit to a given surface, its points will have to satisfy very different
smoothness requirements and the transformation will likely not be uniform.
This can be countered in various ways; the one proposed here is normalizing
the smoothness term over the number of neighbors, to obtain (along with the
previously introduced weighting of (6))

Esmooth =
∑

m∈M
1

|Nm|
∑

n∈Nm

∥
∥P ◦ (Xm − Xn)

∥
∥2

fro
. (7)
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In this paper, Eq. (7) was used as a smoothness error, and all following
derivations rely on this instead of the original error (5) as given in [5]. The
changes necessary to adapt the following considerations to the original formula-
tion are, however, straightforward.

3 Optimization

To (approximately) minimize (1) for x∗, [5] proposes using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method, an approximation of
Newton’s method. We will provide a very brief overview of the key ideas behind
both methods in this section, to motivate why for the particular problem struc-
ture proposed in [5] (as described in Sect. 2) Newton’s method is both sim-
pler and better suited. The reader is referred to [10] for detailed yet accessible
accounts of all methods mentioned here.

3.1 Newton’s Method and L-BFGS

In optimization, Newton’s method takes an objective function E(x) (often
assumed to be at least twice continuously differentiable) and an “initial guess”
xi, and improves xi 	→ x1 to minimize E(x1) by only considering local deriva-
tives of E up to second order. The process is usually iterated over xi 	→ xi+1. It
approximates E(x) based on its second-order Taylor expansion

E(xi + s) ≈ Ẽxi
(s) = E(xi) + s · E′(xi) + s2 · 1/2 · E′′(xi), (8)

where E′ = dE/dx and E′′ = d2E/(dx)2. The optimum of the parabola Ẽxi
(s)

lies at ŝ = −E′(xi)/E′′(xi). If E′′ > 0, this optimum is a minimum, and the
update x1 = xi − ŝ can be assumed to approximate the (or a) minimum of
E. When applied iteratively, the process is repeated until, for example, E(xi),
|E(xi) − E(xi−1)| or E′(xi) are sufficiently small, or i becomes too large. In n
dimensions, Newton’s method chooses steps ŝ according to

Hŝ = −g, (9)

where H is the local Hessian Hij = d2/dxidxjE and g = ∇E is the local
gradient gi = dE/dxi.

Line Search, Wolfe Conditions and BFGS. Optimization using a line sea-
rch method departs from Newton’s method in that it does not compute the step
length along with the step direction (as ŝ), but in a second step and by potentially
separate criteria. It is common to use the direction of ŝ as determined in (9),
and then search along the line Λ(α) = E(x + αŝ) for a step scale α.

In practice, it is often considered inefficient to attempt to locally or globally
minimize even the one-dimensional Λ for α (in particular due to E usually being
not well-understood); instead, Wolfe conditions are used which provide criteria
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for so-called sufficient decrease. A step that satisfies these conditions is proven
to exist, and within these bounds assures progress in minimization. To find the
optimal scale α, Λ(α) and thereby E usually has to be evaluated several times.

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method can be applied
when the Hessian is not available or too difficult to compute. It approximates
the Hessian in this process by starting as a line search along the gradient from a
given point (assuming the Hessian e.g. as an identity matrix) and estimating a
new Hessian from the change in gradients encountered after each iteration. Since
the underlying Newton model of quadratic approximation can be used to predict
the gradient at the next step, any deviation in the actually computed gradient
hints at a defect in the approximated Hessian (either because the approximation
was insufficient, or because the Hessian has changed between steps). In this case,
the true gradient provides a one-dimensional information to perform a rank-one
update on the approximated Hessian. This process is well defined if BFGS is
used in combination with line search and Wolfe conditions.

L-BFGS. In cases where the Hessian is further very large3, it may be considered
inefficient to store and update the full approximation. Therefore, limited-memory
BFGS (L-BFGS) stores just a fixed number of previous rank-one updates and
expresses the approximated Hessian exclusively in terms of these.

We conclude that the aptness of the three approaches depends on properties
of the optimization problem, namely whether the Hessian can and should be
computed analytically, and whether function evaluation is so computationally
inexpensive that line search and Wolfe conditions should be applied.

Furthermore, the actual performance of an optimization method cannot be
predicted exclusively from these metrics; therefore the considerations in the fol-
lowing Sect. 3.2 merely provide a theoretical basis to be validated in Sect. 4.

3.2 Optimizational Properties of the Error Functional

This section will illustrate the properties of Etotal in terms of optimization, and
motivate the choice of Newton’s method over L-BFGS. Analytical representa-
tions of the gradient and the Hessian will be given. Due to the sum rule, it holds
for the gradient that ∇Etotal = ∇Edata +∇Emarker +∇Esmooth and respectively
for the Hessian that

∇∇TEtotal︸ ︷︷ ︸
H

= ∇∇TEdata︸ ︷︷ ︸
Hdata

+∇∇TEmarker︸ ︷︷ ︸
Hmarker

+∇∇TEsmooth︸ ︷︷ ︸
Hsmooth

, (10)

so that the gradients and Hessians can be considered for each error term Edata,
Emarker and Esmooth independently. It will be shown that the Hessian matrix
H = ∇∇TEtotal is constant over the optimization process for a given application,
and depends exclusively on the topology of the input mesh. The reason for this
lies in the fact that the energy function Etotal is piecewise quadratic in the
3 In the present example, there are O(|M |2) entries in H, which can be considerable.
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variables xij , and any quadratic function has a constant H. There are, however,
discontinuities in g that propagate into H, when the association between a mesh
point and its closest surface point changes. In these places H is not defined.4

Data Error. The term Edata of (2) is not everywhere continuously differen-
tiable due to the fact that ψs(m) is not continuous. The associated closest points
may jump at infinitesimally small changes in Xm. It is, however, continuously
differentiable almost everywhere, since the space of parameters where a mesh
point switches the closest surface point has measure zero. Furthermore the term
is everywhere continuous as even if ψs(m) jumps from ψa to ψb when Xm is
changed infinitesimally, the jump occurs just when both ψa and ψb have the
same distance to Xmpm, so the limits from both sides match.

Also, using a homogeneous matrix with 12 real parameters instead of an R
3

translation vector to transform individual points means that Edata has a huge
overhead of redundant parameters. Therefore there is no single minimum but a
space of minima with |M |·9 parameters. In general there are |S||M | disconnected
minima, since any point in M can be located directly at any surface point.

Data Gradient. From Eq. (2) it follows that the derivative of Edata by the m-th
unknown transformation matrix Xm is:

dEdata

dXm
= d

dXm

∑
m̄∈M

∥
∥Xm̄pm̄ − ψs(m̄)

∥
∥2

2
(11)

= d
dXm

∥
∥Xmpm − ψs(m)

∥
∥2

2
= 2

(
Xmpm − ψs(m)

)
pmT, (12)

where step (11)–(12) makes use of the fact that each matrix is independent of
all others in the sum.5 As previously discussed, the gradient is not defined where
s(m) is not uniquely defined, i.e. when two different surface points are equally
close to Xmpm. These discontinuities lead to a non-convex problem.

Data Hessian. The derivation of Eq. (12) by another matrix Xo (because “n” is
still reserved for neighbors in the smoothness error) gives

d2Edata

dXodXm
=

d
dXo

2
(
Xmpm − ψs(m)

)
pmT =

{
2 pmpmT for m = o

0 else,
(13)

which is, as can be seen, independent of all variable properties, and exclusively
depends on the untransformed coordinates of the initial mesh. Nevertheless the
Hessian is not formally defined at those x where the closest point associations
4 In the theoretical limit of a continuous surface, this happens almost permanently.

In this case, g is almost always continuous and H cannot be given as shown here
(i.e. in terms of a polygon topology). In general, H is not constant then. As initially
stated, this case is not considered.

5 The aforementioned overhead in parameters (Sect. 2.1) is mirrored here in the fact
that the gradient is of the form uvT, which means it has rank 1 (dimension 3),
corresponding to the expected 3◦ of freedom out of 12 parameters.
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s(m) change, because the gradient is not defined there—in spite of the fact that
these places constitute a removable singularity on behalf of the Hessian, due to
the fact that the Hessian is the same everywhere.

Marker Error. The term Emarker of (4) is continuous, convex (but not strictly
convex), quadratic and has a global minimum value of zero, attained when all Xm

(where m ∈ M ′) place their corresponding pm exactly at their markers ψš(m).
Again there is no single minimum, once due to the homogeneous coordinates as
for the data error, but additionally because once all points in M ′ are set, all
other points M \ M ′ can be assigned arbitrary matrices. This leads to a single
connected space of minima with |M \ M ′| · 12 + |M ′| · 9 parameters.

Marker Gradient and Hessian. The marker gradient and Hessian are identical
to the data gradient and Hessian, only that the corresponding surface points
are fixed. This also includes that the marker gradient and Hessian are defined
everywhere without exception.

Smoothness Error. The term Esmooth of (5) or (7) is continuous and has a
global minimum value of zero, attained when all Xm are identical. It is no single
minimum either: X1 = · · · = X|M | can be arbitrary. Thus the space of minima
has 12 free parameters. This is, by the way, independent of which error metric
(of the three alternatives given in Sect. 2) is used.

Smoothness Gradient. The derivation of Eq. (7) gives

dEsmooth

dXm
=

d
dXm

∑
m̄∈M

1
|N m̄|

∑
n̄∈N m̄ ‖P ◦ (Xm̄ − Xn̄)‖2fro (14)

= P2 ◦
(

2
|Nm|

∑
n̄∈Nm(Xm − Xn̄) +

∑
n̄∈Nm

2
|N n̄| (X

n̄ − Xm)
)

,

(15)

where the first addend of Eq. (15) represents the case where Xm is “here” (in
the role of m in Eq. (7)), the second addend is where Xm is one of the neighbors
(in the role of n in Eq. (7)), and P2 = P ◦ P, not PP.

Smoothness Hessian. The smoothness Hessian is the derivation of Eq. (15) by
another matrix Xo

d2Esmooth

dXodXm
=

d
dXo

P2 ◦
(

2
|N m|

∑

n̄∈Nm

(Xm − Xn̄) +
∑

n̄∈Nm

2
|N n̄| (X

n̄ − Xm)

)

,

(16)
which can be simplified as all Xm

ij in one Xm share the same smoothness Hessian
entries. These entries can be denoted by a scale factor ηom, which depends only
on the mesh points o and m (namely their topology), but not indices i and j. It
can be defined via the formula

P 2
ij · ηom = d2

dXo
ijdXm

ij
Esmooth, (17)
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where P 2
ij is either 1 or ρ (cf. Eq. (7)). If, as above, this is factored out, ηom is

fully independent of ij.
The above equation only differentiates twice by the index ij. It must also be

considered that the gradient ij could be differentiated by different indices kl.
However in this case it holds that

d2

dXo
ijdXm

kl
Esmooth = 0 for ij �= kl, (18)

because in Esmooth each matrix entry ij only depends on the entries ij of its
neighbors, not on any other indices kl. Also, if o and m are not identical or
neighbors, ηom will always be 0, because distinct, non-neighboring matrices do
not depend on each other in terms of smoothness.

Using these considerations, Eq. (16) can be solved for ηom to obtain

ηom =

⎧
⎪⎨

⎪⎩

2 − ∑
n∈Nm

2
|Nn| if o = m

2
|No| − 2

|Nm| if o ∈ N m

0 else,

(19)

which in turn can be used to set up the smoothness Hessian (using D, which is
a R

12×12 diagonal matrix whose diagonal elements consist of the Pij ∈ {1, ρ} in
the order fitting how xm is obtained from Xm):

Hsmooth =

[
η11D · · · η1nD

...
. . .

...
ηn1D · · · ηnnD

]

. (20)

Again it can be found that, as with the data Hessian, the smoothness Hessian
does not depend on any variables, just on the topology of the input mesh. Taken
together this proves the expected result that the complete H be independent of x,
and thus constant throughout the process, because Etotal is piecewise quadratic.

Combined Error Term. The combined error term Etotal is the sum of the
previously described individual errors (as given in Eq. (1)). Unless some weights
are set to zero, it is influenced by all previously described properties. The first
important property is that while none of the previous terms defined exact local
minima (each had a whole space of minima due to an overhead of parameters) the
total error in general requires the full set of parameters, and thus local minima
are points, not spaces. The smoothness error makes use of the full homogeneous
matrices, and the data and marker errors assure that smoothness is related to
an optimal data fit, and thus prefers some transformation matrices over others.
Furthermore due to the fact that Edata (2) is not continuously differentiable (due
to reassignment of closest surface points), while both other errors are, the sum
of them must have a discontinuous derivative as well.

3.3 Summary of Optimization Considerations

The previous sections have shown not only that for a given problem the ana-
lytic prerequisites for Newton’s method, the gradient and the Hessian, can be
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computed analytically—but that they can be computed easily and efficiently,
particularly due to the constant Hessian which need not be recomputed dur-
ing iterations. The repeated numerical approximation of these values via BFGS
is not necessary: The simple problem formulation makes it ideally suited for
Newton’s method using analytic gradients and Hessians.

Furthermore, it was seen that an evaluation of E requires a considerable
number of processing steps for large M and S, due to the effect of normals and
point associations. Therefore, line search must be regarded sceptically, since the
assumption that function evaluations are less costly than the computation of an
exact Newton step is not necessarily satisfied.

However, as initially stated, L-BFGS could still outperform the results of
Newton’s method, depending on the actual shape of M , S and thus E. To shed
light on this, the following Sect. 4 will compare both approaches based on their
practical performance on realistic data.

4 Practical Application

To evaluate the practical performance of the proposed analytic optimiza-
tion, we compare it to the original algorithm in [5] on realistic data. We
match three human body meshes of equal topology but different pose,
|M1| = |M2| = |M3| = 1002 to three laser-scanned human body surfaces, |S1| =
347 644, |S2| = 361 026, |S3| = 367 093. This provides 9 combinations, for each
of which we compare Newton’s method and different variants of L-BFGS.

[5] proposes a two-pass approach: First minimizing the error using only mark-
ers and smoothness, with weights δ = 0, σ = 1, μ = 10, then including the data
term with δ = 1, σ = 1, μ = 10.6 This is meant to place the mesh in a roughly
correct position before transforming separate mesh points. We test this method
with BFGS, and additionally the “one-pass” approach of using data error right
from the start. For BFGS, testing both approaches is valid because (as seen in
Fig. 3), the one-pass approach takes only about 2/3 of the computation time, but
provides results with about 200% the error. Therefore, quality and speed could
be traded off. For Newton’s method, omitting the marker-only pass is unneces-
sary: As for δ = 0 point associations do not change, Newton’s method converges
after only one iteration, so that the additional effort is negligible.

Additionally, in Newton’s method, knowing the Hessian to be constant pro-
vides another choice: It is possible to invert the Hessian completely after comput-
ing it, and using it to solve (9) via ŝ = −H−1g, or applying Cholesky decomposi-
tion to separate it into two triangular matrices H = CCT, and using substitution
in each iteration steps to solve (9) for ŝ. The former option, which we will denote
Newton-INV, features a slower inversion step, but a faster iteration step only
involving matrix multiplication; the latter option, denoted Newton-CD, features
6 It should be noted at this point that here the issues discussed in Sect. 2 become

apparent, where a lack of specified units will lead to different optimization goals for
models in meters, feet or inches, for example. In this case, the unit is considered to
be meters.
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a faster initial decomposition step, but requires slower substitution operations at
each iteration. In general it can be assumed that Newton-INV is faster in cases
where many iterations are required, such that H−1 can be reused many times,
while Newton-CD is faster for fewer iterations.

Figure 2 shows the comparison between Newton-CD and Newton-INV. In all
evaluated cases, Newton-INV is faster, suggesting that already at 13 iterations

time
in
s

200

100

14 14 14 15 19 19 15 13 16

Fig. 2. Comparison of computation times for Newton-INV (black) and Newton-CD
(white) on the 9 examples; the required iteration steps until convergence are given
below the bars. In all cases, Newton-INV outperforms Newton-CD, at an average 62%
of the latter’s computation time.
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Fig. 3. Performance of Newton’s method with Cholesky decomposition and on-the-fly
substitution, and different variants of BFGS, computation time vs. result optimality (in
error points normalized per mesh/shape combination such that the result of Newton’s
method is exactly 1. It can be seen that the two-pass BFGS methods usually achieve
slightly better results, however at approximately 31× the computation time. One-
pass method can match neither the speed nor the quality of Newton’s method. Line
search almost always reduces computation time considerably. A further acceleration
with respect to the Cholesky decomposition, the full a-priori inversion of the Hessian,
is given in Fig. 2.
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the effort of once inverting H outweighs the effort of repeatedly substituting
via the Cholesky-decomposed H (although implementation details may affect
this). In all cases, the same minimum was found in the same number of steps
by Newton-CD and Newton-INV, which appears obvious analytically, but indi-
cates that numerical stability is not an issue when choosing between the two
approaches.

Figure 3 shows the evaluation of L-BFGS with/without line search, and with
one-pass and two-pass, while for Newton’s method we only depict the slower
Newton-CD and only differentiate between with and without line search. It
can be seen that even Newton-CD vastly outperforms the L-BFGS methods
in terms of computational effort, which are on average 31 times slower than the
Newton-CD approach (and 50 times slower than the Newton-INV approach).
The result quality varies; one-pass approaches perform poorly, while the two-
pass approaches suggested in [5] usually slightly outperform Newton’s method

BFGS iteration step
Newton iteration step

start point closeup of
end points

full view of descent in pca space

BFGS
end point

Newton
end point

Fig. 4. To visually compare the paths that L-BFGS and Newton’s method take, the
respective paths of a given transformation optimization were reduced from R

12·|M| =
R

12 024 to R
2. It can be seen that the original L-BFGS approach takes a considerable

detour involving many iteration steps, before even reaching the proximity of the first
Newton step. L-BFGS terminates approximately there for lack of progress, while New-
ton’s method descends several steps further after this, reaching a lower minimum after
just 7 steps.
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by an average of 1.06%7. Figure 4 visualizes the fundamentally different descent
approaches by showing the paths taken by L-BFGS and Newton’s method for one
of the examples in a projection onto an abstract 2-dimensional space, achieved
by computing a PCA on the paths and plotting the two most significant axes. It
can be seen that L-BFGS requires many iterations before reaching the vicinity
of the optimum; Newton’s method on the other hand reaches this region after
only one step, but settles in a different local optimum.

5 Conclusion and Outlook

In this paper, we have proposed an analytic solution to ICP algorithms with
quadratic error terms, and demonstrated the approach on the example of [5].
It was shown that in such cases, the Hessian matrix is constant and can eas-
ily be computed analytically, instead of numerically approximating it during
each optimization step, for example via L-BFGS, as is commonly done in ICP
methods.

In the given example, an optimization descent with Newton’s method using
precomputed Hessians was able to reduce computation times on average to (not
by) 2% of the computation times of BFGS when applied to the same problem.
The quality of the optimization result of BFGS was on average slightly better, by
around 1.06%, depending on the choice of parameters. Still it can be concluded
that Newton’s method can achieve very similar result qualities at a fraction
of the computation time, rendering quadratic ICP approaches fit for real-time
settings or to run on simpler hardware.

On the example of [5], all necessary parameters to adapt the original algo-
rithm to the proposed analytic version were derived comprehensibly and can
be readily implemented. Optimizational properties of the problem formulation
were analyzed in detail to provide an understanding of the original and the newly
proposed optimization process, and facilitate potential further adjustments.

In addition to the improvements in solution efficiency, we have proposed
minor improvements to the original problem formulation of Allen et al. that
make the formulation more mathematically sound, and allow to reuse weight
parameters for models with different mesh triangulation or different units of
measurement, without affecting the optimization goal. The original algorithm
implicitly required to redetermine weights for different mesh triangulations, and
for a different unit system.

7 The approximative algorithm outperforming the exact one in terms of result qual-
ity may seem counter-intuitive, but is immanent to the problem structure: New-
ton’s method is exact at finding the closest local optimum where point associations
do not change. L-BFGS instead is more likely to miss this “direct” minimum. As
its approximation combines information across different point associations, it can
thereby “learn” the overall shape of the surface, which is, for high-density surface
points, more accurate than the purely local quadratic view. In turn, for sparse sur-
face models, Newtons method is more accurate, as it better captures the dominant
structure.
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The vast reduction of computation times in quadratic ICPs opens up new
optimizational possibilities. As was noted in Sect. 4, Newton’s method usually
achieves a local minimum that is analytically exact, but slightly greater than
the minimum found by the L-BFGS approach. However, as Newton’s method
required only 1/50 of the computation time, there is plenty of time to search the
vicinity and match the result quality of BFGS, and still outperform it in terms
of computation time.
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5. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction
and parameterization from range scans. ACM Trans. Graph. (TOG) 22, 587–594
(2003)

6. Salazar, A., Wuhrer, S., Shu, C., Prieto, F.: Fully automatic expression-invariant
face correspondence. Mach. Vis. Appl. 25, 859–879 (2014)

7. Lu, X., Jain, A.: Deformation modeling for robust 3D face matching. IEEE Trans.
Pattern Anal. Mach. Intell. 30, 1346–1357 (2008)
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