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Abstract. Computed tomography (CT)-based metrics of airway pheno-
types, wall-thickness, and other morphological features are increasingly
being used in large multi-center lung studies involving many hundreds
or thousands of image datasets. There is an unmet need for a fully reli-
able, automated algorithm for CT-based segmentation of airways. State-
of-the-art methods require a post-editing step, which is time consum-
ing when several thousands of image data sets need to be reviewed and
edited. In this paper, we present a novel iterative algorithm for CT-based
segmentation of airway trees. Early testing suggests that the method
requires no editing to extract a set of airway segments along a standard-
ized set of bronchial paths extending two generations beyond the segmen-
tal airways. It uses simple intensity-based connectivity and new leakage
detection and volume freezing algorithms to iteratively grow an airway
tree. It starts with an initial, automatically determined seed inside the
trachea and a conservative threshold; applies region growing and gener-
ates a leakage-corrected segmentation; freezes the segmented volume; and
shifts the threshold toward a more generous value for the next iteration
until a convergence occurs. The method was applied on chest CT scans of
fifteen normal non-smoking subjects. Airway segmentation results were
compared with manually edited results, and branch level accuracy of the
new segmentation method was examined along five standardized segmen-
tal airway paths and continuing to two generations beyond the segmental
paths. The method successfully detected all branches up to two genera-
tions beyond the five segmental airway paths with no visual leakages.

1 Introduction

There is a growing use of quantitative computed tomography (QCT) to assess the
lung both in terms of parenchymal characteristics as well as characteristics of the
bronchial tree [1–5]. With the labeling of the extracted airway tree [6,7] allowing
for the comparison of spatially matched airway segments across individuals, it
has been demonstrated that new insights into airway phenotypes can emerge.
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This is evidenced by the recent observation that, on average, the airway walls
of smokers with chronic obstructive pulmonary disease (COPD) actually have
thinner rather than thicker airways [8]. There are numerous large multi-center
studies incorporating lung imaging as a study component including SPIROMICS
[9], COPDGene [10], MESA Lung [11], Severe Asthma Research Project (SARP)
[2], CANCOLD [12], and more. To our knowledge, there have been no fully
automated methods developed for airway tree segmentation, free of the need for
user review to assure that the airway tree has been extracted so as to include a
standardized set of bronchial segments. When there is a failure of even a fraction
of the segmentations, the airway tree masks must be manually reviewed for all
subjects which is extremely cumbersome when evaluating many thousands of
image data sets. To simplify the review process and the subsequent use of the
many resulting metrics, the radiology center of the SARP has standardized on
the airway paths passing through 6 segmental bronchial segments (RB1, RB4,
RB10, LB1, LB4, LB10) and continuing two generations beyond these segmental
bronchi [1]. This has more recently been reduced to 5 segments as LB4 is often
subject to cardiogenic oscillation-derived blurring. In this paper, we present a
new airway tree segmentation method which has, in a preliminary evaluation,
been shown to reliably extract the bronchial segments along these 5 standardized
paths up to two generations beyond the segmental level without the requirement
of manual intervention.

Several methods for segmentation of airway trees have been reported in the
literature. For example, Sonka et al. [13] used a rule-based approach for segmen-
tation of airway trees using the underlying information of its anatomy; others
have applied intensity-based classification and fuzzy logic, where voxels undergo
a competitive process determining the regions of their belonging [14,15]. Other
image processing techniques such as region growing using intensity-based voxel
connectivity [16–19], mathematical morphology [20,21], gradient vector flow [22],
central-axis analysis [23–26], energy minimization [27], graph-based approaches
[28], etc. have been applied for airway segmentation. Also, there are several
hybrid methods [29,30] combining multiple approaches listed above. Key per-
formance metrics of an airway segmentation algorithm are primarily related to
answering the following questions—(1) on an average, how much manual post-
correction time is needed to generate acceptable airway segmentation results,
(2) how many airway branches at segmental, children, and grandchildren levels
are correctly identified, and (3) performance on lower radiation dose CT scans.

Major challenges with chest CT airway tree segmentation emerge from the
following facts. Although airway lumen and wall voxels are expected to receive
the values of −1,000 HU and −450 HU [31], respectively, due to noise and par-
tial voxel volume effects, reduced contrast appears at several locations on the
airway wall creating possible sites for leakages during segmentation (see Fig. 1).
Generally, a simple thresholding method [32] fails to work for airway segmenta-
tion up to the target level of segmental bronchi and two generations beyond [6].
Also, the CT values of an airway wall along a branch decrease (become more
negative) in the proximal-to-distal direction (see Fig. 2) adding further challenges
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Fig. 1. Illustration of challenges with CT-based segmentation of airway trees. Reduced
contrast of airway walls (indicated by white arrows) between airway and lung
parenchyma due to noise and partial voxel volume. These low contrast airway walls
are possible sites of leakages during segmentation. (Contrast settings: level =−450 HU,
window= 1200 HU).

Fig. 2. CT values of airway walls at proximal and distal locations. Airway wall intensity
values were reduced from −332 HU at a proximal location to as low as −829 HU at a
distal location. (Contrast settings: level =−450 HU, window= 1200 HU).
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to a simple threshold-based approach of airway segmentation. Moreover, limited
spatial resolution and image reconstruction artifacts, especially using sharp ker-
nels, often cause thin airway walls to appear perforated and discontinuous result-
ing in leakages or early termination of airway lumen growth [15].

In this paper, we present a novel iterative algorithm for airway segmentation
using multi-scale leakage detection and volume freezing techniques. The method
is fully automated requiring no manual inputs or post-editing steps. It uses sim-
ple intensity-based connectivity and iteratively grows an airway tree starting
with an initial seed inside the trachea and a conservative threshold value. Dur-
ing an iteration it executes the following sequential steps—apply region growing
and generate a leakage-corrected segmentation; freeze the segmented volume;
and shift the threshold toward a more generous value for the next iteration. This
iterative strategy of airway tree growing continues until a convergence occurs.
Several leakage detection methods have been applied for CT-based airway seg-
mentation [6,33]. Tschirren et al. [6] used topological features [34] for leakage
detection; specifically, they used the criterion that a leaked volume includes
complex topological features, e.g., tunnels. Others have used geometric rule-
based approaches for leakage detection for airway tree segmentation [33]. In
this paper, we present a new approach of leakage detection using scale analysis
along an airway branch and a measure of distance metric based tortuosity [35]
to detect spongy leakages. Moreover, the iterative airway segmentation algo-
rithm introduces a unique notion of volume freezing and active seed selection
strategy to progressively shift the segmentation strategy from a conservative to
a generous thresholding scheme. The algorithm requires no threshold-related
parameter. During an iteration, the CT intensity threshold used for region
growing is automatically computed that barely causes a leakage in the airway
segmentation.

2 Methods and Algorithms

The basic principle of the overall method is described in Sect. 2.1. The major
steps in the algorithm, namely, crude segmentation, leakage detection, setup
for next iteration and termination criterion are discussed in Sects. 2.2 to 2.4,
respectively.

2.1 Basic Principle

The airway segmentation algorithm presented in this paper uses simple intensity-
based connectivity together with new methods of leakage detection and volume
freezing to iteratively grow an airway tree in a chest CT image starting with
an initial seed inside the trachea. The method is fully automated requiring no
manual post correction steps. A block diagram of major steps of the algorithm
is presented in Fig. 3. Also, schematic illustrations of results after different inter-
mediate steps are shown in Fig. 4.
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Fig. 3. A block-diagram of major steps of the iterative algorithm of airway segmenta-
tion from human chest CT scans presented in this paper.

The initial seed selection inside the trachea is automatically performed using
the algorithm by Mori et al. [16]. The method applies compactness and size
analysis of connected air-space in the upper quartile of axial slices in an acquired
chest CT scan to locate the trachea. Finally, the seed is located at the cen-
troid of the trachea. After locating the seed point, the method applies a simple
threshold-based connectivity analysis to compute the initial segmentation. The
threshold value is automatically selected as the lowest CT intensity triggering an
airway segmentation leakage. The results of initial segmentation are illustrated
in Fig. 4(a), which includes apparent leakages together with several valid airway
branches.

The next and crucial step is to locate and correct for leakages in the ini-
tial rough segmentation. This step is based on analysis of scale and a geodesic
distance-based measure of tortuosity along centerline paths of the initial airway
tree segmentation. The centerline of the segmented region is computed using
a centered minimum-cost path approach recently developed by Jin et al. [36].
In Fig. 4(b), the centerline is shown using green lines. A scale analysis [37] is
performed along the centerline to detect a leakage. Normally the scale, i.e., local
diameter of an airway branch follows a quasi-non-increasing pattern along its
centerline path in the proximal-to-distal direction. Thus, a leakage in an airway
segmentation can be characterized as a rapid inflation in scale values along a cen-
terline path of the segmented region. Although, this scale analysis method suc-
cessfully detects solid leakages, it often fails to locate a spongy leakage because
the scale is small everywhere inside a spongy region. To detect a spongy leakage,
we use distance metric tortuosity, defined as the ratio between its geodesic length
[38] and the Euclidean distance between its end points. Normally, the Euclidean
distance between the end points of the centerline of an airway branch is simi-
lar in value to its geodesic length. However, inside a spongy leakage region, a
centerline path grows in an uncontrolled manner. Therefore, the geodesic length
of a centerline segment inside a spongy region increases rapidly as compared to
the Euclidean distance between its end points. This simple strategy successfully



A Novel Iterative Method for Airway Tree Segmentation from CT Imaging 51

Fig. 4. Schematic description of intermediate results of the new airway segmentation
algorithm. (a) Initial segmentation using intensity-based region growing. (b) Centerline
Extraction (Green) of (a) and leakage detection and correction using branch pruning.
(c) Frozen airway segmentation volume after leakage-correction. In subsequent iter-
ations, connectivity paths are prohibited to enter inside the frozen region. (d) New
active seeds (yellow dots) at every new branch not pruned for leakage-correction. (e)
The segmentation result after the next iteration. (Color figure online)

detects all complex and spongy leaks in airway segmentation. The results of
leakage detection are schematically shown in Fig. 4(b).

After leakage detection, the leakage-correction step works as follows. First,
each centerline branch associated with a leakage is pruned, and the leakage-
corrected centerline representation of the airway tree is computed. Subsequently,
the leakage-corrected airway volume is obtained by dilating individual centerline
branches with local scales (Fig. 4(c)). This segmentation volume after the current
iteration is considered as a frozen region, and no connectivity paths in subse-
quent iterations are allowed to enter into it. This step is crucial for developing
an iterative-threshold-shift strategy starting with a conservative threshold and
progressing toward more generous values. The end point of an airway centerline
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branch that is not associated with a leak is used as an active seed for further
airway growth in following iterations (Fig. 4(d)). Here, it is necessary to ensure
that an active seed at the end of a valid branch is not buried inside the frozen
volume, which would arrest any further airway segmentation growth. An efficient
solution using distance analysis in the dilation process is developed analytically
guaranteeing that an active seed is never buried inside the frozen volume. After
computing the frozen airway segmentation volume and active seeds, the process
enters in to the next iteration. This iterative process continues until convergence,
i.e., no new active seed can be detected after an iteration. Individual steps of
our airway segmentation algorithm are presented in following sections.

2.2 Initial Rough Segmentation

The algorithm presented here uses simple intensity-based region growing to com-
pute an initial rough segmentation of the airway tree volume. Such an initial
segmentation is only a rough estimation, which may include one or more leak-
ages. Two major requisites in this step are—(1) identification of seed points and
(2) determination of the intensity threshold value. As discussed in the previous
section, only one seed is used in the first iteration, which is automatically located
inside the trachea using the algorithm by Mori et al. [16]. In a subsequent iter-
ation, active seed(s) located during the previous iteration are used; the method
of locating active seeds is described in Sect. 2.4.

During an iteration, airway segmentation volume is independently grown
from each seed point. Let s denote a seed point and let ts denote the intensity
value of the seed point. The threshold value for airway region growing from s
is automatically selected as the lowest intensity value triggering a segmentation
leakage. For efficient computation of the optimum threshold, a binary search
process between ts and ts + Δmax is performed. For all experiments presented
in this paper, a value of 200 HU is used as Δmax. It should be noted that the
final threshold value is independent of the choice of Δmax.

It was noted that, often, the intensity-based region growing algorithm leaves
small tunnels and cavities inside the segmented region. These cavities and tunnels
are filled using a mathematical morphological closing operation with a structure
element of 5 × 5 × 5. This step is imperative to ensure that an initial segmented
volume does not contain small holes which would add significant errors in cen-
terline computation, scale analysis, and tortuosity estimation. After filling small
tunnels and cavities, the initial rough segmentation is passed to the next module
for leakage detection.

2.3 Leakage Detection

The leakage detection method presented in this paper is based on analysis of scale
and distance metric tortuosity along airway centerline branches. As described in
the previous section, during an iteration, initial rough segmentation of an airway
subtree volume is computed from a seed point; let s denote the seed point and
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V be the initial subtree volume computed from s. First, a centerline tree is com-
puted for V with s as the root using a robust and efficient centerline detection
algorithm recently developed by Jin et al. [36]. The centerline detection method
uses fuzzy distance transform (FDT) [39] and collision-impact [40] based cen-
tered minimum cost paths to locate individual centerline branches. It generates
a partially ordered representation of centerline branches. Let 〈π1, π2, . . . , πn〉
be the breadth-first traversal of the partially ordered centerline tree, where πi is
a centerline branch, and

⋃N
i=1 πi represents the entire centerline tree. Individual

centerline branches are examined for leakages in the order of their breadth-first
traversal. If a leakage is detected on a centerline branch πi, the exact leakage
point p on the branch is located and it is pruned up to that point. Moreover,
the centerline branches descendant to point p are removed from the center tree.
Centerline branches are examined for two types of leakages—(1) solid leakages
and (2) spongy leakages. The methods for detecting these two specific types of
leakages are described in the following.

Solid leakages are characterized by the rapid scale inflation along an air-
way centerline branch. In general, local scales along an airway tree branch are
quasi-non-increasing in the proximal-to-distal direction. Thus, a solid leakage
can be detected by locating sudden increase in scale values along an airway
centerline branch. This process is illustrated in Fig. 5. The scale at a centerline
voxel on a skeletal branch is computed using a star-line approach which deter-
mines the length of the shortest object intercept through the centerline voxel [41].

Fig. 5. Detection of a solid leakage using scale analysis along an airway centerline path.
(a) Initial rough segmentation of an airway tree with a solid leakage. The centerline
path for current checking of leakages is shown in red. (b) Computed scale profile along
the centerline path. (c) Leakage detection on the median filtered scale profile. See text
for detail. (d) Leakage-corrected airway tree. (Color figure online)
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Computed scale profile along a centerline branch of Fig. 5(a) is shown in Fig. 5(b).
This computed scale profile is passed through a median filtering (window
size = 5) to smooth small noisy dents and protrusions; the scale profile after
smoothing is shown in Fig. 5(c). The leakage detection algorithm is applied on
the smoothened scale profile, and it works as follows. Let pc be a voxel on a
centerline branch p0, p1, . . . , pc−1, pc, pc+1, . . . . The ratio between the scale at
pc and that at each of its predecessors pi ∈ p0, p1, . . . , pc−1 is checked in the
proximal-to-distal direction. A leakage on the branch is confirmed on the target
branch at or prior to pc, if a voxel pl (l < c) is found whose scale ratio with pc
exceeds a predefined threshold value of 2. Finally, the exact location of leakage
is detected by finding the minimum scale voxel pmin on the centerline branch
between pc to pl (see Fig. 5(c)), and the branch is pruned up to pmin. Final
results after leakage detection and correction are shown in Fig. 5(d).

After a centerline path is checked for solid leakages, it is further checked for
spongy leakages. Such leakage regions contain tunnels and cavities which are not
completely filled by the morphological closing operation on initial rough segmen-
tation discussed in Sect. 2.2. Inside these regions, the centerline path propagates
in an aimless and uncontrolled manner and the scale-analysis of solid leakage
detection fails to detect such spongy leakages due to holes. To detect such leak-
ages, we use distance metric toruosity, defined as the ratio between its geodesic
length and the Euclidean distance between its end points. Normally, the Euclid-
ean distance between the end points of the centerline of an airway branch is
similar in value to its geodesic length. Due to meandering nature of centerline
path in a spongy leakage, the geodesic length of a centerline segment increases
rapidly as compared to the Euclidean distance between its end points. By apply-
ing a predefined threshold of 2 to the tortuosity of a centerline path, it can be
discerned if it is part of a spongy region and pruned. This process is schematically
described in Fig. 6.

Fig. 6. Detection of a spongy leakage using tortuosity of an airway centerline branch.
(a) The tortuosity of each centerline path (between black points) is checked in a
breadth-first manner. A centerline branch with a high tortuosity is located (geodesic
length: red, euclidean distance: blue). (b) The centerline paths and their descendants
are removed during leakage correction. (Color figure online)
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2.4 Setup for Next Iteration

During each iteration of the new airway segmentation algorithm, it augments
the airway tree, and adds active seeds at the end of each newly added airway
branch without a leakage. The leakage detection and correction step, described
in the previous section, produces a centerline representation of the newly added
leakage-free region of the airway tree. The purpose of the current step is to use the
verified centerline to—(1) dilate each centerline to fill the augmented airway tree
volume and (2) freeze the newly augmented airway tree volume while preserving
the active seed voxel at the end of each augmented centerline branch without
a leakage. The purpose of volume freezing is to avoid any new leakage while
segmenting forward tree branches at a more generous threshold. Preservation of
active seed is essential to ensure new growth for forward airway tree volume.

Using the scale information determined as part of the thickness analysis in
the leakage detection step, the volume representation of the airway tree can
be reconstructed by dilating along the verified centerline using local scale. The
reconstructed airway segmentation volume after the current iteration is dilated
by a 3× 3× 3 structure element, marked as frozen, and no connectivity paths in
subsequent iterations are allowed to enter inside the frozen volume. This step is
crucial to design a strategy of iteratively shifting the threshold intensity value
starting with a conservative one and then progressing towards more generous
threshold values. The dilation step is needed to stop connectivity paths from
entering into the narrow region (mostly including partial-volume voxels) between
the segmented airway volume and the surrounding airway wall.

The end point of an airway centerline branch without a leakage is used as
an active seed for further airway tree growth in the next iteration. Here, it is
necessary to ensure that active seeds at the end of valid branches are not buried
during the dilation process which would disable any further airway segmentation
growth in subsequent iterations. Here, an efficient solution using distance analy-
sis is presented that analytically guarantees that an active seed is never buried
during the dilation process. Essentially, the method adds a simple constraint on
the dilation process during airway tree volume reconstruction from corrected the
centerline tree.

Vairway = {p|∃q ∈ Scenterline s.t.D(p, q) < scale(q) andD(p, q) < D(p, pend)},
(1)

where p is any voxel; Scenterline is the airway centerline branch being recon-
structed; scale(·) is the scale function at centerline voxels; and pend is the end
voxel of Scenterline. After reconstructing segmented airway volume, computing
and marking the frozen volume, and identifying the active seeds, the process
enters in to the next iteration. Finally, the process terminates when no new
active seed is detected in an iteration.

3 Experimental and Results

The experiments were aimed to examine the branch-level accuracy of the new
airway segmentation method at segmental, sub-segmental, and one level beyond.
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The method was applied on chest CT scans of fifteen normal non-smoking sub-
jects (previously acquired under IRB approval; age: 21–48 Yrs, mean: 28.5 Yrs;
7 female) at total lung capacity (TLC: 90% vital capacity) using a volume-
controlled breath-hold maneuver. CT scans were acquired on a Siemens Defini-
tion Flash 128 (at 120 kV with effective mAs of 200), with images reconstructed
at 0.5 mm slice thickness using a standard B35 kernel. Airway segmentation
results on a CT image using the new method after different iterations are shown
in Fig. 7.

Fig. 7. Results of airway tree segmentation using the new iterative multi-scale leakage
detection algorithm after the first (a), second (b), third (c), and the final (d) iterations.

For quantitative experiment, we examined the branch level accuracy of the
new segmentation method along five standardized airway paths passing through
segmental bronchial segments (RB1, RB4, RB10, LB1, LB10) and continuing two
generations beyond these segmental bronchi [1]. An airway tree up to segmental
level and two-generations beyond is shown in Fig. 8(a). Branches at segmental
level and two-generations beyond along the five anatomic airway paths, used in
our experiments, are shown in Fig. 8(b).

To examine the branch-level accuracy of the new method, its segmentation
results were compared with the matching airway segmentation results obtained
by an expert user’s manual editing (both removal of leakage volumes and addi-
tion of missing branches) on the airway segmentation results computed using the
algorithm [6] provided within the Apollo pulmonary workstation software (VIDA
Diagnostics, Coralville, IA). During comparative examination, a blinded expert
user compared every branch at the segmental level and two-generations beyond
along each of the five anatomic paths on 3-D visual representations of two airway
segmentation results—one using the new method and the other being the man-
ually edited one. No leakage was observed in the automatic segmentation results
using the new method on any of the fifteen data sets used in this experiment.
Numbers of branches observed at segmental, subsegmental, and one-generation
beyond levels were 5 ± 0 (mean ± std.), 10 ± 0, and 15.6 ± 1.5776, respectively
compared to the reference method which were 5 ± 0, 10 ± 0, and 15.4 ± 1.3499.
The new automatic method successfully detected all branches at the segmental
level and two-generations beyond, which were detected in the manually edited
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Fig. 8. (a) An airway tree representation including segmental (red), sub-segmental
(green), and one level beyond (pink). (b) The five anatomic airway paths used in our
experiments. (Color figure online)

results. Moreover, in one data set, the new method detected an additional valid
branch at the second generation beyond the segmental level, which was not
detected in the manually edited results.

4 Conclusions

An iterative airway segmentation algorithm using new methods of multi-scale
leakage detection and volume freezing has been presented, which is suitable for
airway analysis in CT-based large cross-sectional and longitudinal studies. The
method is fully automated requiring no intensity threshold parameter, manual
interaction or post editing enhancing its suitability across different CT scanners
and imaging protocols. It was observed in a pilot study that the new method
matches the performance of manually edited airway segmentation or excels in
terms of branch-level accuracy on chest CT data of fifteen normal non-smoking
subjects at total lung capacity at the segmental level and two generations beyond
when focusing on a standardized set of paths within the airway tree. Addition-
ally, no leakage was observed in the segmentation results by the new algorithm.
Accuracy and reproducibility of the method is currently being examined on
larger data sets from two on-going multi-center NIH studies.
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