The Stability of the Isoperimetric Inequality

Nicola Fusco

1 Introduction

These lecture notes contain the material that I presented in two summer courses in
2013, one at the Carnegie Mellon University and the other one in a CIME school at
Cetraro. The aim of both courses was to give a quick but comprehensive introduction
to some recent results on the stability of the isoperimetric inequality.

The starting point is the De Giorgi’s proof of the isoperimetric inequality. Many
other proofs of this inequality are now available. Some of them are classical, like the
one based on the Brunn-Minkowski inequality, see for instance [15, Theorem 8.1.1],
or the one based on the Alexandrov rigidity theorem [2]. More recent proofs are the
one based on mass transportation due to Gromov, see Sect. 6, and the PDE proof
due to Cabré [16]. Among all these proofs the one by De Giorgi still stands as the
most intuitive from a geometric point of view and at the same time the most general
one since his isoperimetric inequality (17) applies to any measurable set of finite
measure.

In order to explain this proof a few basic properties of sets of finite perimeter are
required. They are presented in Sect. 2, while Sect. 3 contains a slightly modified
version of the original proof of De Giorgi.

The remaining part of these notes are devoted to the stability of the isoperimetric
inequality. In fact, once we know that for a given volume balls are the unique area
minimizers the next natural question is to understand what happens when a set E has
the same volume of a ball B and a slightly bigger surface area. Precisely, one would
like to show that in this case E must be close in a proper sense to a translation of B.
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Already a few years after the Hurwitz proof [49] of the isoperimetric inequality in
the plane, this problem was studied by Bernstein [8] and later on by Bonnesen [11]
for planar convex sets. The case of convex sets in any dimension was settled much
later by Fuglede in [39]. Section 4 contains the complete proof of the Fuglede’s
Theorem 26.

The stability of the isoperimetric inequality for general sets of finite perimeter
is a different story, see the discussion at the beginning of Sect. 5. The first result in
this direction was proved by Hall [47] in 1992 with a not optimal estimate of the
distance between E and the closest ball, while the estimate with the sharp exponent
was obtained by Maggi, Pratelli and myself in [44], see Theorem 34. Section 5
contains a fairly detailed discussion of this result, whose proof is based on a suitable
symmetrization argument aimed to reduce from a general set of finite perimeter to
an axially symmetric bounded set with a center of symmetry.

Other proofs and generalizations of the quantitative isoperimetric inequality (35)
were later on obtained by Figalli, Maggi and Pratelli in [34] and by Cicalese and
Leonardi in [23], see also [42] and [1]. These alternative proofs are presented in
Sect. 6.

The aforementioned papers were the starting point for an intensive study of the
stability of other geometric and functional inequalities such as other inequalities of
isoperimetric type [3, 5, 6,9, 10, 22,24,25,31,41, 46, 56, 58], the Sobolev inequality
[21, 35, 36, 43], the Brunn-Minkowski inequality [33], the Faber-Krahn inequality
[12, 45] and several others [7, 13, 18, 20, 32, 52]. We shall not discuss here these
further developments. The interested reader may have a look at a the survey paper
[40] which contains a detailed account of all the recent results, updated to Spring
2015.

Finally, I would like to thank Ryan Murray who typed the notes of the course I
gave in Pittsburgh, Matteo Rinaldi who added some extra material from some hand
written notes of mine and Laura Bufford and Andrea Fusco for all the pictures.

2 A Quick Review of Sets of Finite Perimeter

We start by reviewing the definition and the main properties of sets of finite
perimeter which are the objects for which the isoperimetric inequality will be proved
in the next section. A good reference for the results stated here are the books
[4,29, 51] and the original papers of De Giorgi collected in [28]. Note, however that
the definition below is equivalent, but different from the one originally proposed by
De Giorgi.

In the following we denote by B, (x) the ball with radius » > 0 and center x and
we use the following simplified notation

B, :=B,(0), B(x):=Bi(x) B:=B0).



The Stability of the Isoperimetric Inequality 75

The measure of the unit ball B will be denoted by w,. As a starting point we consider
the classical divergence theorem stating that if E is a smooth bounded open set in
R", and ¢ is a smooth vector field in R” with compact support, then

/diwpdx:/ @ -vdH" L. (1)
E oE

Here, if k is a nonnegative integer, by H* we denote the k-dimensional Hausdor(f
measure in R". Observe that from the previous formula, by taking the supremum
over all vector fields ¢ € C(R"; R"), with ||¢||sc < 1, we get

H"Y(OE) = sup{/diwp dx: ¢ € CHR";R"),||¢]loo < 1} . 2)
E

Since the first integral in (1) makes sense for any measurable set, equality (2)
suggests how to extend the notion of boundary measure to any measurable set
ECR

Definition 1 Let 2 be an open set in R”". The perimeter of E in 2 is defined as

P(E;Q) = sup{/diwpdx: @ € CHQURY), ||l < 17 .
E

An important feature of this definition is that the perimeter is not affected by
modifications on sets of measure zero. Thus the two sets shown in Fig. 1 have the
same perimeter. Note also that P(E; Q) = P(R" \ E; ).

Observe that if P(E; 2) < oo, then the map

¢ € CHQ;R") > /diwpdx
E

is linear and continuous with respect to the uniform convergence on C!(Q;R").
Therefore Riesz’s theorem yields that there exists a vector valued Radon measure

Fig. 1 Two sets with the
same perimeter (

R
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w=(1,...,Hy) in Q such that

/)(Edivqodx:/divqodx:/(p'd,u:Z/qo,-d,u,-
Q E Q - /e

forall ¢ € C(Q,R"). Thus & = —Dy, where Dy is the distributional derivative
of yr and the above formula can be rewritten as

/divqux = —/ ¢ -dDyE. 3)
E Q

In conclusion, E has finite perimeter in 2 if and only if Dyg is a Radon measure
with values in R” and finite total variation. In fact, from Definition 1 we immediately
get that

P(E: Q) = |Dyel().
If @ = R” we simply write P(E) in place of P(E;R") and if P(E) < oo we say
that E is a set of finite perimeter. If P(E; 2) < oo for every bounded open set, then

we say that E has locally finite perimeter. The following properties are immediate
consequences of Definition 1. For any measurable set £

P(AE) = A" 'P(E) forall A > 0; 4)
moreover, for any open set €2,
P(E:ENQ) =PEQ\E)=0

Therefore the measure D yg is concentrated on dE N Q and (3) can be rewritten as

/diwpdx: —/ ¢ -Dyg, forall ¢ € C1(Q; (R"). (5)
E JENQ

Observe also that from Besicovitch derivation theorem [4, Theorem 2.22] we have
that for |Dyg|-a.e. x € supp|D x| there exists the derivative of Dy with respect to
its total variation |D yg| and that it is a vector of length 1. For such points we have

Dye , . Dye(B,(x))
(x)

. E E(| —
0761 = B Dl B,y =W and M@I=1 ©

Definition 2 We shall denote by 9*E the set of all points in supp|Dyg| where (6)
holds. The set 0*E is called the reduced boundary of E, while the vector vE(x) is
the generalized exterior normal at x.
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From (6) it follows that the measure Dyx can be represented by integrating —vZ

with respect to |[Dyg|, i.e.,
Dyg = —v*|Dygl.

Thus (5) can be rewritten as
/diwpdx = / @ -vEd|Dyg|, Yo e Cl(Q,R"). (7
E I*ENQ

Since 0*E C supp|Dyg| C OE, the reduced boundary of E is a subset of
the topological boundary. Moreover, as a consequence of De Giorgi structure
Theorem 6, if E has finite perimeter, then H"~!(3*E) = P(E) < oo. Next example
shows that in general 0*E can be much smaller than JE.

o0
Example 3 Let us take a sequence {g;} dense in R” and set E := UBz—i(ql‘).

i=1
Observe that |[0E| = oo. Nevertheless E is a set of finite perimeter. To see this
take ¢ € C!(R",R"), ||¢||so < 1, and note that

/ divp dx = lim divp dx = lim @-vdH"™!
E N=00 JUL: By—i(a) N=00 JaUiL By-i(ai)
N N
< 1 n—l( ( Bo—i ; )) < 1 n—1 B —i ;
< lim #'~'(d L_jl 2-i(a) _Nggo;% (0B,-1(q)

o0
= nw, 22_i("_1) < 00.

i=1

In dimension 1, sets of finite perimeter are easily characterized (see [4, Proposi-
tion 3.52]).

Theorem 4 Let E C R be a measurable set. Then E has finite perimeter in R if and
only if there exist —00 < a; < by < a; < by < ... < b, < +00 such that

E= O(Cli, bi)
i=1

up to a set of zero Lebesgue measure. Moreover, if Q2 C R is an open set,
P(E; 2) = #({a;, b; € 2}).
Remark 5 Thus, if for instance E = (0, 1)U(1, 2), then P(E) = 2 and 0*E = {0, 2}.

In fact, as we already observed, the measure Dy does not change if we modify E
by a set of measure zero and thus E and (0, 2) have the same reduced boundary.
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The characterization of sets of finite perimeter in R” is more complicate and is
contained in the next theorem due to De Giorgi. For a proof see [29, Sect.5.7.3] or
[4, Theorem 3.59].

Theorem 6 (De Giorgi) Let E C R" be a measurable set of finite perimeter. Then
the following hold:

(i) 0*E is (n — 1)-countably rectifiable, i.e., 3*E = |J2,Ki U Ny, where
H"Y(No) = 0 and K; are compact subsets of C' manifolds M; of dimension
n—1;

(i) [Dye| =H""" O°E;

(iii) for H" '-a.e. x € K, the generalized exterior normal vE(x) is orthogonal to

the tangent plane T,M; to the manifold M; at x;
ENB, 1
(iv) forall x € 0*E, | )] — asr—0;
B,(x) 2
H ' (O*ENB.(x)) _

wn—lrn_l

(v) forallx € 0*E, lin(l) 1.

As a consequence of the equality (ii) above we have that (7) can we rewritten as
/diwp dx = / @ - vEdH"!, Y e C(R",R").
E IE

Example 7 Let Q be a square in R?. The reduced boundary is given by
*Q =00\ U?=1{vi}, where v; are the vertices of Q. In fact, for any sufficiently
small ball B,(v;) we have that |Q N B.(v;)|/|B;| = }1. Therefore from the property
(iv) in Theorem 6 it follows that the v; do not belong to the reduced boundary 9* Q,
see Fig. 2.

Property (v) tells us that if x € 0*E then the reduced boundary 9* E looks flatter and
flatter at small scales. Observe in fact that if we rescale 9*E around x, we have, see
Fig. 3,
O*E — H1(*ENB,
g1 ( XA B) _ ( «) _ o 1.

r rn—l

Fig. 2 The density of the PR il &
vertices is 1/4 ® :’ e !
Al ’

~ -l *
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Bi(x)

- =

o*E

Fig. 3 Rescaling around x

Definition 8 Given a measurable set £ and x € R", the density of E at x, D(x; E),
is defined as

ENB,
D(x; E) := lim | (x)l.
r—0 wy 1"

If 0 < a < 1 we denote by E the set of all points where the density of E is equal
toa.

Observe that from the above definition it follows immediately that

E0 Q0| _

1, 8
o ®)

x € EY if and only if lim

where Q,(x) is the cube with center at x with edge length equal to 2r and faces
parallel to the coordinate planes. A similar characterization holds also for the points
in EO,

Using densities, part (iv) of De Giorgi’s Theorem 6 can be written as 0*E C
E(/? . We recall also that if E is a measurable set in R” its measure theoretic
boundary 3E is defined by setting

ME :=R"\ (EQ UED). )

The next result gives a precise description of what is going on with sets of finite
perimeter. For the proof see for instance [4, Theorem 3.61].

Theorem 9 (Federer) Let E be a set of finite perimeter in R". Then
PECEY?) co™E  and  H"'(IME\O*E) =0.

Note that if E is a set of finite perimeter in €2 Theorems 6 and 9 hold in local form.
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Example 10 Let U C R"! be a bounded open setand = U x R. Letf : U —

R be a Lipschitz function. Let us denote by Sy := {(x,1) € Q : ¢ < f(x)} the

subgraph of f. Then it may be easily checked that Sy has finite perimeter in €2 and

that 9*S; coincides with I := {(x,f(x)) : x € U} up to a set of zero H"~! measure.

Moreover, the generalized normal v (x) coincides 7" !-a.e. on I'; with the usual
(=Vf. 1)

VI+IVfP

Example 11 Letf : R — R be the function f(x) = x? sin )1( and let E := &; be the
subgraph of f. Using the fact that f(0) = 0 we get easily that

exterior normal

|E N B, 1
- .
|B; | 2
However (0, 0) ¢ 0*E since it can be checked that

. H'(O*EN B,)
lim sup >
r—>0 2r

1.

Thus property (v) stated in Theorem 6 does not hold.

Approximating sets of finite perimeter with nicer sets is very useful to deduce
various properties from the corresponding ones of smooth sets. To this aim we
introduce the following notion of convergence.

Definition 12 Given a sequence of measurable sets E; and a measurable set E, we
say that E; — E in measure in Q if yg, — xg in LY(Q),i.e., [(EJAE) N Q| — 0, as
Jj —> oo.

An important property of the perimeters is the lower semicontinuity with respect to
the convergence in measure. This is a straightforward consequence of Definition 1.
Precisely, if E; is a sequence of measurable sets converging in measure in €2 to E,
then

P(E; 2) < liminf P(E}; Q).
J—>00

For the proof of the next approximation result see for instance [4, Theorem 3.42].

Theorem 13 Let E be a set of finite perimeter. Then there exists a sequence of
smooth, bounded open sets E; such that E; — E in measure in R" and P(E;) —
P(E).

In view of this theorem and of the lower semicontinuity of the perimeter we have
that E is a set of finite perimeter in R” if and only if there exists a sequence of
smooth open sets £; C R”, such that

E; —» Einmeasure in R" and supP(E)) < oco.
J
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Note also that in Theorem 13 one may replace the smooth sets E; with polyhedra,
i.e., bounded open sets obtained as the intersection of finitely many half—spaces. A
local version of Theorem 13 is also true (see [4, Remark 3.43]). As a consequence
of Theorem 13 observe that if £ and F are sets of finite perimeter, the same is true
for EUF,EN F and E \ F and that

P(ENF)+P(EUF) < P(E) + P(F).

Simple examples show that the above inequality may be strict. In general the precise
expression of the reduced boundaries of E N F or E U F in terms of the reduced
boundaries of E and F is a little involved. The next statement provides the precise
picture. For a proof see for instance [34, (2.8), (2.9) and Lemma 2.2].

Proposition 14 Let E, F C R” be sets of finite perimeter. Then, up to a set of zero
H"™! measure

PENF)={yeENIF: vEy) =vF)U*ENFO U [8*F N EW]
and for H"'-a.e. x € 3*(ENF)

vE@) = vf(x) ifxe{y e d*ENI*F: vE@y) =vF(y)},
vEOF(x) = $ vE(x) ifxe *ENFO,
vF (%) ifxe d*FNEW .

Moreover, if |[E N F| = 0, then, up to a set of zero H"~'-measure, 3*(E U F) =
0*EAOJ*F and

VEVF () = vE(x) ifx € 0*E\ 0*F,
vi(x) ifxe€ d*F\ 0*E.
The next result, is just the Rellich-Kondrachov compactness theorem stated in
the framework of sets of finite perimeter (see [4, Theorem 3.39]).

Theorem 15 Given a bounded open set Q2 C R" and a sequence of measurable sets
E; such that sup; P(Ej; Q) < oo, there exists a set E of finite perimeter in 2 such
that, up to a subsequence, E; — E in measure in 2.

The theory of sets of finite perimeter can be viewed as a special part of the theory of
functions of bounded variation. Recall that if © is an open set a function u € L' ()
is said to be of bounded variation if the distributional gradient Du is a vector-valued
measure in 2 with finite total variation. Observe that by definition of distributional

gradient
/ udive dx = —/ ¢ dDu,
Q Q
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for all C' vector fields ¢ with compact support in Q. From this formula it follows
immediately that the total variation |Du|(€2) of Du in 2 is given by

|Du|(R2) = sup{/ udivpdx : ¢ € Ci(Q;]R”), [lolloo < 17 .
Q

We shall denote by BV (£2) the space of all functions of bounded variation in €2.

We conclude by recalling the coarea formula for sets of finite perimeter. For our
purposes it will be enough to consider only C! maps, though these formulas may
easily generalized to Lipschitz and even less regular maps, see [4, Chap. 2] and [30,
Sect.3.2]. Thus, let f : R" — R¥ be a C! map, ] <k <n-—1,andE a set of
finite perimeter. By Definition 2 at every point x of the reduced boundary 0*E we
have a generalized exterior normal v (x), hence a generalized tangent plane, that
we denote by T,0*E. Therefore, we can consider the tangential differential of f at
x, that is the map df (x) : T,0*E — R given by

df (x)(t) = VF(x)(7), for all T € T,0*E. (10)
Furthermore, we define the coarea factor at x as

Crdf (x) = v/det(df (x) o (df (x))7),

where (df(x))T is the transpose of the matrix df(x). It can be shown that Cydf(x)
is the square root of the sum of the squares of the k—order minors of the matrix
representing df (x) with respect to a base in 7,0*F and a base in R¥ (see [4, 2.71)]).

Theorem 16 (Coarea Formula for Sets of Finite Perimeter) Ler E C R” be a set
of finite perimeter andf : R" — R a C' map, | <k <n—1.Ifg: R" — [0, +q]
is a Borel function, then

/ () Crdf (x) dH" ' (x) = / dz / g(x) dH"™ " (x).
O*E RK =Y 2)N*E

Observe that if 7 : R” — RF is the projection over the first k components, i.e.
7(x,y) = x forall (x,y) € R* x R"™*, then Cydrm(x,y) = v} (x,y)|, for all (x,y) €
9*E, where vE = (VE, v;‘:) € R¥ x R"*, To prove this consider an orthonormal
base {r1,...,7,—1} for T(,,)0*E, such that the frame {t1, ..., o1, VE(x, )} is
positively oriented. Then the matrix representing dm(x,y) with respect to the
given orthonormal base of T, ,,d*E and the standard base {ey, ..., ¢} in R* has
coefficients ¢; - tp, for i = 1,...,k, £ = 1,...,n — 1. Therefore, the matrix
representing det(d7 (x) o (dm(x))T) has coefficients

n—1

aj = Z(e,- ~Te)(ej - Te) = 8j — viEvf fori,j=1,...,k.
=1
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Recall that if a, b € R¥ and I denotes the identity matrix, then
det +a®b)y=1+4a-b. (11)

Thus Cydr(x,y) = /det(ay) = /1 — [vE|2 = |vyE | and the coarea formula reduces
to

[ swobteylanon = [ [ genanrto. a2
0*E R Jarp,
where

(E)y = {y e R"™ 1 (x,) € "E},

see Fig. 4. If we apply (12) to the particular case of the projection over the first n — 1
components, recalling that #° is the counting measure, we have that for every Borel
function g : R” — [0, +00].

[ sobtemaren = [ (X dwp)a. a3

YE(I*E)x

From this formula we deduce that the vertical part of the reduced boundary 0*E “is
not seen from below”.

To be precise, let us define the vertical part of the reduced boundary by setting
V = {(x,y) € 0*E : vf(x, y) = 0}. If we apply (13) with g = yy we get
Syep xv @ MECx, y)[dH " (x,y) = 0. Therefore, the right hand side of (13) is

Fig. 4 Section of 0*E A

Y

Rn-l
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Fig. 5 The set V A

\j

Rn—l

also zero, i.e.,
/ #({yeR:(x,y) e V})dx=0.
Rn—l

This implies that for %"~ '-a.e. x € R"™!, the section V, is empty, see Fig. 5.

3 De Giorgi’s Proof of the Isoperimetric Inequality

In the framework of sets of finite perimeter the isoperimetric inequality takes the
following very general form.

Theorem 17 Let E C R" be a measurable set with |E| = |B,|. Then
P(B,) = P(E) (14)

with the equality holding if and only if E is a ball.

De Giorgi’s proof follows an idea that Steiner had one century before [59]. Actually,
the proof of the isoperimetric property of the ball was the original motivation for
Steiner to introduce the symmetrization that nowadays bears his name.

Definition 18 Let £ C R" be a measurable set. For x € R" ! set E, := {y € R :
(x,y) € E} and £(x) := H'(E,). Then the Steiner symmetrization of E with respect
to the hyperplane {x, = 0} is given by E* = {(x,y) € R xR : —{(x)/2 <y <
£(x)/2}.

The previous definition can be extended in an obvious way to any hyperplane m,
passing through the origin and orthogonal to a unit vector v. The resulting Steiner



The Stability of the Isoperimetric Inequality 85

_\Es
X
Rr\-l

ik

Fig. 6 Steiner symmetral of a measurable set. (a) Symmetrization wrt the plane {x, = 0}.
(b) Symmetrization wrt a plane with normal v # e,

symmetrization of E with respect to m, will be denoted by E*", see Fig.6. The
symmetrization of E with respect to {x, = 0} will be denoted by E*.

From Fubini’s theorem we have immediately that |E| = |E*"|, while it is not
too difficult to show, see for instance [29, Lemma 2, Sect. 2.2], that diam(E*") <
diam(E). If E is a measurable set, then £ is a measurable function. Instead, if E is a
set of finite perimeter it can be proved that £ is a function of bounded variation in
R"~! and even a Sobolev function if 8* E has no vertical part. However, for the proof
of the isoperimetric inequality the relevant fact is that the Steiner symmetrization of
a set keeps the volume and decreases the perimeter.

Theorem 19 Let E be a set of finite perimeter with |E| < oo. Then the following
properties hold:

(i) £ € BV(R™™);
(i) £ € WHY(R™Y) ifand only if H''({z € 0*E : vE(z) = 0}) = 0;
(i) P(E%) < P(E);
(iv) if P(E®) = P(E) then for H" '-a.e. x € R"™', E, coincides up to a set of zero
H' measure with a line segment.

Inequality (iii) is classical and is proved for smooth sets in the beautiful book of
Polya—Szego [57]. Property (iv) appears in a weaker form in De Giorgi’s original
paper on the isoperimetric property of balls [27]. The above statement of (iv) as well
as (i) and (ii) are proved in [19, Theorem 1.1, Lemma 3.1, Proposition 1.2].

Note that if P(E) = P(E®), then E and E* are not necessarily equal up to a
translation, as shown in Fig. 7. In both pictures P(E) = P(E®), conclusion (iv) of the
theorem holds but E # E* up to a translation. However, it is possible to characterize
the cases when the equality P(E) = P(E®) implies that E and E* coincide up to a
translations, see [19] and [17], where a deeper analysis is carried on. We now turn
to the proof of the isoperimetric inequality via Steiner symmetrization.
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W Rr‘l-l

Fig. 7 In general, symmetrals are not translated of the original sets

Proof From the rescaling property (4) it follows that in order to prove (14) it is
enough to show that P(E) > P(B) for all sets E such that |E| = |B| = w,, with the
equality holding if and only if E is a ball.

Step 1. We first fix Bg, with R > 1 and consider the minimum problem
inf{P(E) : E C Bg, |E| = wy}.

Observe that the above infimum is always attained. In fact, let E; C B, with |Ej;| =
w,, be a minimizing sequence, i.e., lim; P(E;) = inf{P(E) : E C Bg, |E| = w,}. By
the compactness Theorem 15 we may assume, up to a not relabelled subsequence,
that E; converge in measure to some set ' C Br with |F| = w,. By the lower
semicontinuity of the perimeter we have P(F) < liminfP(E;) and thus F is a
minimizer.

We claim that F coincides, up to a set of measure zero, with a convex set. To
prove this, fix v € $"7! and consider the Steiner symmetrization F*" of F with
respect to the hyperplane m, passing through the origin and orthogonal to v. Observe
that |F*'| = |F| = w, and that F*" C Bg. Moreover, from part (iii) of Theorem 19
we have that P(F*V) < P(F) and thus, by the minimality of F, we may conclude
that P(F*") = P(F). Thus, recalling the property (iv) stated in Theorem 19, we
have that for H"'-a.e. x € m,, the section { € R : x + tv € F} coincides up
to a set of 1! measure zero with an open interval. By the arbitrariness of v this
property clearly holds for all directions v € S"~!. Notice that if we knew that each
section {t € R : x + tv € F} is an open interval for any v € S"~! and any x € 7,
then we could conclude at once that F is a convex set. Although this may be not
true, Lemma 20 guarantees that there exists a set equivalent to F up to a set of zero
Lebesgue measure which has this property. This set is precisely F(1, the set of all
points where F has density 1. Hence, F(! is an open convex set.

To simplify the notation let us set F = F!). Our goal now is to show that F is
a ball. Denote by U the projection of F on R"~!. Then there exist two functions
y1,¥2 : U = R, y; convex and y, concave, such that F = {(x,y) : x € U, y1(x) <
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Fig. 8 Projection of F A

Rn-l

y < y2(x)}, see Fig.8. Moreover, F* = {(x,y) : x € U, (y1 —y»2)(x)/2 <y <
(y2 — y1)(x)/2}. We have:

Py = [ i+ ne [ iemae ey =2 [ Vievea-mse

Since F'is a minimizer, P(F)) = P(F*) and thus by the strict convexity of the function
1 /1 4 12 we get that Vy, = —Vy;, hence y, = —y; + ¢, thus proving that F =
F? up to a translation. Repeating this argument for all the Steiner symmetrizations
F*, with v € $"!, we finally conclude that F must be a ball. This proves the
isoperimetric inequality for a bounded set E.

Step 2. Let us now consider the case of an unbounded set E with |E| = w,. From
Theorem 13 we get a sequence of smooth bounded sets E; such that E; converge
in measure to £ in R"” and P(E;) — P(E) as j — oo. From Step 1 we then have
that P(E;) > P(B,,) where |E;| = |B,,|. From this inequality and using the fact that
|Ej| — |E|, letting j — oo, we have that P(E) > P(B). Finally, if P(E) = P(B) we
may repeat the same argument used in Step 1 to conclude first that EV) is an open
convex set and then that it is a ball. O

Let us now give the proof of the technical lemma used before. Note that this
lemma was not explicitly stated in the original paper [27]. For the proof below I
thank Giovanni Alberti with whom I discussed the issue a few years ago. To this
aim, given a measurable set E, we denote by 7(E)™ the essential projection of E
over the first n — 1 coordinates plane, that is

7(E)T = {xeR": HYE,) > 0}.

Lemma 20 Let E be a measurable set in R" such that for H' '-a.e. x € R"™! the
section Ey = {y € R : (x,y) € E} is equivalent to a segment up to a set of zero H'
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measure. Then, denoting by F the set of points of density 1 with respect to E, Fy is a
segment for every x € R"™!,

Proof Letzy = (x,y1), 22 = (x,y2) be two points in F, with y; < y,. Let us
fix y € (y1,y2). We claim that z = (x,y) € F,. Since E has density 1 at x; and
x, the same is true also for F. Therefore, given ¢ > 0, there exists r, such that, if
0 < r < r, then, see (8),

FnN r\&i
Fno@Il for i=1,2.
ann
By Fubini’s theorem we have that
2" (1—¢) < |FNQ(z)| = / H (FNQAz))y) dx < 27H" (e (FNQr(z)) )
7(FNQ, @)+
and thus
H N @(FNQz)T) > 2" (1 —e) fori=1,2. (15)

Since the essential projections of F N Q,(z;) and F' N Q,(z2) are both contained in
the same (n — 1)-dimensional cube of edge length 2r, from (15) we get that

H (2(F N Q)T Na(FNQx))T) > 2717711 - 2¢). (16)

Now, recall that by assumption for H" '-a.e.x € m(FN Q,(z1))* N (FN Q.(z2)) "
the set F, is equivalent to a segment such that H'(F, N Q,(z;)) > 0 fori = 1,2.

Therefore, if we take r, < 5 min{y — y;, y» — y}, we get that
HI(FX N Q0:(z)) =2r.
This inequality, together with (16) implies that
|F N QOr(x)| > 2" (1 —2e¢), forall r < rg.

Therefore, letting first » — 0 and then ¢ — 0, we immediately get that F has density
1 at z and thus z € F. Hence the result follows. O

An equivalent way of stating the isoperimetric inequality can be obtained noting that
if |E| = |B,| for some r > 0, then |E| = w, 7" and P(B,) = nw,"~". Therefore (14)
becomes

P(E) = nw)/"|E|""V/", (17)
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Fig. 9 The level sets of f A

Observe that since P(E) = [Dyg|(R") and || xgl|, ®) = |E|'~1/" this inequality
can be viewed as a particular case of the Sobolev inequality for W'!(R") or BV (R").
To understand better this connection we need to introduce an important formula, first
proved by Fleming and Rishel in [37]. As shown in the picture below, it is a sort of
curvilinear version of the familiar Fubini theorem, Fig. 9.

Theorem 21 (Coarea Formula for Lipschitz Function) Ler Q@ C R” be an open
set and f 1 Q — R a Lipschitz function. Then { f > t} is a set of finite perimeter for
H'-a.e.t € R. Moreover, if g : Q — [0, +00] is a Borel function,

— n—1
[ewresiae= [ar| - swanico (18)

The next result shows that the isoperimetric inequality (17) is equivalent to the
Sobolev inequality (with the same constant).

Theorem 22 The following statements are equivalent:

(1) for all measurable set E with finite measure P(E) > Cy|E| s
(2) forallf € WM(R") we have that |V || 1 gy > Gl fIl, (&’

Proof To show that the Sobolev inequality (2) implies the isoperimetric inequality
(1), we use mollifiers. For ¢ > 0 set f := p. * yg, where p.(x) = ¢"p(x/¢) is a
standard mollifier. Note that f, € W!!(R") and that f, — yr a.e. in R”". Then, fix
¢ € CH(R",R") with ||¢||ls < 1. Using the definition of f;, performing a change
of variable and recalling Definition 1, we easily get

—/ Ve -pdx = / fedivpdx = / dx[ 0 (2) xE(x — 2) divp(x)dz
Rll R” R” R”

= /Rn pe(2)dz /Rn X g dive(y + 2)dy < P(E) /Rn pe(z)dz = P(E).
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Taking the supremum over all such ¢, from (2) we get

PE) = [ 19512 GlfL,

Hence (1) follows, letting ¢ — 0 and recalling that f, (x) — yxg(x) fora.e. x € R".

To prove that the isoperimetric inequality implies the Sobolev inequality we are
going to use the coarea formula (18). Note that by density it is enough to prove (2)
for a function f € C!(R"). Moreover, splitting f in its positive and negative part, we
may always assume without loss of generality that f > 0. Then, for any ¢t > 0 we
truncate f from below by setting f; := min{f, ¢}. We set also ¢(7) := || fil| = . Note
that ¢ is an increasing function and that for 4 > 0

S+ h) =) < | fiwn —fill o, <HILF > 137"
Thus ¢ is Lipschitz and ¢'(r) < [{f > t}|'"!/" for H'-a.e. t € R. Furthermore,
using the isoperimetric inequality (14), we have

+oo +o0
Ifll,z, = tim ¢() = /(; ¢’ (s)ds 5/0 1> st~ Vnds

+o0 +o00
st [ rwssan=cpt [ Casf ottt [
—00 * >5 n

where the last equality follows from (18) with g = 1. O

4 Stability of the Isoperimetric Inequality: Convex
and Nearly Spherical Sets

After having proved the isoperimetric inequality we now turn to the next issue,
namely the stability of this inequality. In other words, if E is a set such that |E| =
|B;| and P(E) = P(B,) + é for some small §, can we say that E is somehow close
to a ball? And how can we measure the distance from a ball in terms of §?

The first results in this direction were proven for planar convex sets by Bernstein
[8] in 1905 and Bonnesen [11] in 1924. As we shall see in this section, it took some
time before the problem was completely solved for convex sets in any dimension.

Theorem 23 (Bonnesen) Given a convex set E C R?, with |E| = |B|, there exist
two concentric disks B, (xo) C E C B,,(xo) such that

201y _ p2
(rr— 1) < PA(E) — P*(B) (19)
47
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Fig. 10 Bonnesen’s theorem

-

-
N ———

Figure 10 illustrates the statement of the theorem. A remarkable feature of inequal-
ity (19) is that the constant appearing on the right hand side is optimal. However,
we cannot expect to prove also in higher dimension such a precise inequality. Thus,
it may be useful to restate it in a weaker form that we may hope to extend to the
general n-dimensional case. To this aim, observe that from (19) it follows that if
P(E) — P(B) < 1 there exists xo € R? such that

dy(E, B(x)) < C(P(E) — P(B))
for some positive constant C. Here and in the following we denote by
dy(E,F):=inf{e >0: ECF+B,, FCE+ B}

the Hausdorff distance between any two sets E, F C R".

Remark 24 Let 2 C R” be a bounded open set. Set C(R2) = {K C Q

K compact}. Then the set C(2), endowed with the Hausdorff distance is a compact
metric space, see for instance [4, Theorem 6.1]. Moreover the convergence of K to
K in the metric space (C(2), dy) is equivalent to the two following conditions

(i) forallx € K there exist x; € Kj such that x; — x;
(ii) if x; € Kj, then any limit point of the sequence {x;} belongs to K.

The convergence defined by (i) and (ii) is also known as convergence in the sense of
Kuratowski.

Throughout all this section we shall only deal with sets E of the same volume as B.
This is not a restriction at all since all the statements that we shall prove under this
assumption also apply to sets of any measure, up to a suitable rescaling.
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Definition 25 Let E C R” be a convex set with |E| = |B|. We define the
isoperimetric deficit and the asymmetry index of E by setting

D(E) := P(E) = P(B). A(E) := min dyy(E.B(x)),

respectively.

The extension of Bonnesen result Theorem 23 to high dimension was obtained
by Fuglede in 1989, see [39].

Theorem 26 (Fuglede) Letn > 2. There exist §, C, depending only on n, such that
if E is convex, |E| = |B|, and D(E) < 4, then:

C/D(E), n=2
A(E) < C\/D(E) log (D(IE)), n=3 (20)
C(D(E)) 1, n> 4.

As we already observed, for n = 2 the above estimate is just a weaker version
of the more precise inequality (19). As shown in [39, Sect. 3] also when n > 3 the
estimates above are optimal. In fact if n > 4 one cannot replace the power n-|2—1 by a
bigger one and if n = 3 one cannot remove the logarithm of 1/D(E) from the right
hand side of (20).

Fuglede’s theorem is based on the following result for nearly spherical sets, that
is sets which are very close to the unit ball, see Fig. 11. It turns out that for such sets
one may estimate very precisely the distance from the ball by writing up the Taylor
expansion of the perimeter. As we shall see, the next result will be also useful to
prove the stability of the isoperimetric inequality for general sets of finite perimeter.

Theorem 27 Let u: ™' — (=1, 1) be a Lipschitz function and let

E:={rz(1+u@):zeS"Lo<r<1}. (21)

Fig. 11 A nearly spherical
set
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There exists e(n) > 0 such that if ||ullyi.co—1) < &, |E| = |B| and the barycenter
of E is the origin, then

1
DE) = IVeulfrgr) = %o |EAB|2. (22)

)
4
Note that in (22) we have denoted by V, u the tangential gradient of # on S"~!. In

the sequel we shall refer to a set E C R” satisfying (21) as to a nearly spherical set.
In order to prove Theorem 27 we need the formulas stated in the next lemma.

Lemma 28 Let E be as in (21), with ||u||y1.co—1) < 1. Then

PE = [ 02D 4 (e Ve 03
Sn—l
Moreover,

1 1
IE| = / (1 +u(@)" dH"™", / xdx = / A1+ u@@)™ aH
n Jen—1 E n+l gn—1
(24)

Proof We start by proving (24). To this aim we extend u to R"\{0} by setting
u(x) := u(x/|x|) for all x # 0. In this way we have that E = ®(B), where ® : R" —
R” is the map ®(x) := x(1 + u(x)), x € B. Note that D®(x) = (1 + u(x))] +x® Du
and that since u is homogeneous of degree zero, then x - Du(x) = 0 for all x # 0.
Thus, recalling (11) we conclude that the Jacobian J® of @ is given by (1 + u(x))".
Therefore

1
|E| = /BJQD dx = /19(1 + u(x))" dx = /0 i dr/sn_l(l + u(x))" dH"" .

Hence the first equality in (24) follows. The second one is obtained similarly.

Since E is a bounded open set with Lipschitz boundary, P(E) = H"~'(3E), see
Example 10 or [4, Proposition 3.62]. Then, recalling that dE = @(S”_l), from the
area formula, see for instance [4, Theorem 2.92], we have

P(E) = H"™ Y (3E) = / Jy ®dH"!, (25)
Sn—l

where the (n — 1)-dimensional Jacobian J,— ® of the map P is given by
o1 ® = \/det((dQD(x))T 0 d®(x)) .
Here the linear map d®(z) : 7.S"~' + R" is the tangential differential of ® defined

in (10) and (d®(z))" is its adjoint. Note that for any t € T,S"~! we have d®(z)(1) =
(1 + u(z)) + zD.u(z), where D,u(z) = Vu(z) - t. Therefore the coefficients of
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the matrix d®(z) relative to an orthonormal base {zi,...,7,—1} of 7,S""! and to
the standard base {ei, ..., e,} are given by t; - e,(1 + u(z)) + z,Dyu(z), for i =
I,...,n—=1,h=1,...,n Thus, foralli,j € {I,...,n— 1}, the coefficients a;; of
the matrix (d®(z))7 o d®(z) are given by

n
aj = Z (‘Ei-eh(l + u) +thtiu) (‘Cj-eh(l + u) +thT_/.u) = §;(1+ u)2 + DyuDyu,
h=1

where in the last equality we have used the fact that 7; - 7; = §;; and 7; - z = 0 for all
i,j=1,...,n—1.Hence, recalling (11) we have

J1® = \/det(aij) = \/(1 + u)20=D 4 (1 4 u)2n=2D |V, u|?

and thus (23) follows immediately from (25). O

We are now in position to give the proof of Theorem 27. The proof below follows
closely the one given in [40] which has the advantage of avoiding some heavy
computations of the original proof by Fuglede.

Proof of Theorem 27 Step 1. From (23) we have

|Vr’4|2

n—1
a+we |

P(E) — P(B) :/S”_l (1+u)”_1\/1 +

:/ [(1 4w = 1]an!
=1

— |Vr’4|2 —1
1 -l 1 —1|dH" .
+ SH( +u) \/ +(1+u)2 H

From the Taylor expansion of the square root it follows that for # > 0 sufficiently
2 . . .

small /1 +¢> 1+ 5— ’7 . Hence, if ¢ is small, from the assumption ||| y1.00 g1y <

& we get

P(E)—P(B)z/ [(1+uw) ' —1]dH"

sn—1

+ A+w! [

1 |Veul? 1 |Voul* J
Sn—l

2(14+u?  7(1+u)?*

1
z/ [(1+ )" —1]an" " + (2 —Cs)/ |Veu?dH"",
sn—1 sn—1
(26)
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where C is a constant depending only on n. From the first equality in (24) it follows
that the assumption |E| = |B| is equivalent to

/ [A+w"—1]dH"" =0, 27)
S”71

that is

/ (nu +y (”) u")d’;’-[,”_l —0. (28)
e 2 \n

From this identity, recalling again that |[u|| o g—1) < €, we have

—1
/ udH ' > =" / 2™ — Ce / W2dH
Sn—l 2 Sn—l Sn—l

Therefore, using this last inequality and the smallness assumption, we may estimate

n—1
n—1 n—1 __ _ n—1 n—1 h n—1
/SH[(HM) —1)dH" = I)Lnilud?{ +;< B )/Snlud’}-l
> (n—l)/ warr—t + P D=2 WPdH"!

2 sn—1
—Ce / wrdH"!
Sn—l

> _n- ! / wdH ! — CS/ w2dH" L.
2 Jgn—t sn—1

In conclusion, recalling (26), we have proved that if [[u||y1.00g—1) < &, then

1 —1
P(E) — P(B) > (2 - CS) /SH Vou2dH" ™! — (" , + Ce) /SM W2,

(29)
for some constant C depending only on the dimension n.

Step 2. Now, for any integer k > 0, let us denote by yi;, i = 1,...,G(n, k), the
spherical harmonics of order k, i.e., the restriction to S"~! of the homogeneous
harmonic polynomials of degree k, normalized so that ||y ||;2g—1) = 1, for all
k and for i € {1,...,G(n, k)}. Taking into account the normalization, we have that
yo = 1/ /nw, and y1; = z;/ \/w,, fori = 1,...,n. Recall that the polynomials yy ;
are eigenfunctions of the Laplace-Beltrami operator on S"~! and that for all k and i

—Asn—lyk’[ = k(k +n— Z)yk,i .
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Therefore if we write

oo G(nk)
w=Y Y ayi. where ai;= / uydH"",
k=0 i=1 s
we have
oo G(nk) %) G(n,k)
2 2 2 2
Nl oy = > D @l | VetllZagmry = 3 k(k+n=2) Y at,.  (30)
k=0 i=1 k=1 i=1

Observe that from formula (28) we have

1 1 &n
= d’]—[”_l — hdHn_l,
o /Ny /Sn—l " n./nwy, h2=:2 (h) /Sn—l "

hence
lao| < Cllull3 < Cellull>.

From the assumption that the barycenter of E is at the origin and from the second
equality in (24) we have

/ 2(1 +u(@)™ M dH"! = 0.
S”*l

Then, using the equality [.,—; z = 0 and arguing as before, we immediately get that
foralli=1,...,n,

1 _
layi| = ‘\/a) /S IMZidHn ' < cel|ull».
n i
Therefore, from (30) we get
oo G(nk) 1 oo G(nk)
el < CEllll3 + 0 Y lawil? =l < | D0 > lawil
k=2 i=1 k=2 i=1

But since for k > 2, k(k + n — 2) > 2n, from (30) we have

2 < \vj 2
PN 27
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and thus, recalling (29) and choosing ¢ sufficiently small, in dependence on n, we
get

P(E) — P(B) > (; - Cs)/

—1 1
Voul2ann—t — (" Vull2
[ VeuPan (") +C8>2n(1—03)” o3

1 2 gam—1 o M 2 1 2
O e N PP €10

This proves the first inequality in (22). To get the second inequality we observe that,
choosing again ¢ sufficiently small

1 _ +1 _
|[EAB| = / 11+ u()) — 1] ax= <" ‘/ lu| dH" .
n sn—1 n sn—1

Therefore, from the last inequality of (31) we conclude that

2

1 n
P(E) — P(B) > 2y >
(E) ()_MJMMS”_SM+D%n

1
|EAm228 |[EAB)?.
Wy

|

The theorem we have just proved allows us to estimate the distance in W'? of
a nearly spherical set E from the unit ball with the isoperimetric deficit. Now, an
interpolation result will tell us that indeed we may also control the L* distance,
hence the Hausdorff distance, between E and B. For the proof see [39, Lemma 1.4].

Lemma 29 (Interpolation Lemma) Ifv € W' (S" ") and [y, v = 0, then

ﬂHVrUHZv n=2
8e||V:v||oo
I[P ety < 3 411 Vev] 3 log ,
e I1Vv]2
C”VTU”%HVrUVéf, n>4,

where the constant C depends only on the dimension.

Combining Lemma 29 with Theorem 27 we immediately get the estimate of the L*°
distance between a nearly spherical set E and the unit ball.

Theorem 30 Under the assumptions of Theorem 27, there exist ¢, C > 0 depending
only on n such that if | [u||y1.c0 sn—1) < &, then

C/D(E), n=2

1
n—1
||u||L°°(S”71) f CD(E) 10g (D(E)) 5
COE)IVallis®,  n =4,
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A14+w"—1 .
Proof Set v = . From the volume constraint |[E| = |B| we have,

n
see (27),

1
/ vdH"™ = / [(1+w)"—1]aH"" = 0.
sn—1 n Jsp—1

Moreover, since

if & > 0 is small enough we have
1 1
Hlul = ol =2ful. |Veu] < [Vev] < 2|Veu].

Then the result follows immediately from Theorem 27 and the interpolation
Lemma 29. O

Let us now consider the case of a convex set with small isoperimetric deficit and
let us indicate the main steps in the proof of Fuglede’s Theorem 26. The first step,
see Lemma 32, is to show that a convex set with small isoperimetric deficit is close in
the Hausdorff distance to a ball with the same volume. At this stage, however, we are
not yet able to quantify how close is the set to the ball in terms of the isoperimetric
deficit. Next, we observe that if a convex set is close in the Hausdorff sense to a ball
of the same volume, then it is also close to the same ball in W', see Lemma 33.
Then, the final step of the proof consists in combining these observations with the
precise estimate provided by Theorem 30.

Let us start with a simple lemma relating the diameter diam(E) of a convex set E
with its volume and perimeter. To this aim, let us recall that

P(E) < P(F) if E, F are convex and E C F'. (32)
Lemma 31 Let E C R" be a bounded open convex set. Then

. [PE)]"!
diam(E) < c¢(n) |2
Proof First observe that if n = 2 we trivially have diam(E) < éP(E).

So let us assume n > 3. Letx, y € 0F be such that diam(E) := d = |x—y|. Then,
rotate and translate E so to reduce to the situation shown in Fig. 12.

By Fubini’s Theorem, |E| = fod H"~V(E,)dt, where E; = E N {x, = t}. Observe
that there exists s € (0, d) such that H""'(E,) > |E|/d. Note that we may always
assume that 0 < s < d/2 (otherwise we just rotate E upside down). Let C be the
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Fig. 12 The construction in P
the proof of Lemma 31 R
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cone in Fig. 12 with base E; and vertex x. Using the coarea formula (12) and (32)
we may estimate

d
P(E) > P(C) > H" ' (3C \ E,) = / dt / dH"™? > / H'2(DC,)dt

aCy |v1‘

dod—t\n—2_ d—s)H'"2(IE,)  d H'2(IE,)
[ (d— ) AT OE)dr = n—1 Z2 a1

From the isoperimetric inequality (17) we get

n—2
n— n—1
Hn—Z(aES) > (}’l 1)&)1/(" 1y [Hn_l(Ey)] n—% > (n 1) 1/(" D (IS|) .

Thus,

n—2
n—1

E
P(E) > cn)d ( | d') ,
whence the result follows. O

Let us now prove that a convex set with small isoperimetric deficit is close in the
Hasudorff distance to a ball.

Lemma 32 For all ¢ > 0, there exists 8, > 0 such that if E is convex, |E| = |B|,
the barycenter of E is the origin and D(E) < §,, then there exists a function u €
whee (s, with [[ul|poo -1y < & and such that

E:={tz(1+u@):zeS" " 0<t<1}.
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Proof We argue by contradiction. Assume that there exist &g > 0 and a sequence
of closed convex sets E; such that |E;j| = |B|, the barycenter of E; is the origin,
D(Ej) — 0, but |[u;|| o0 sn—1) > €0, where u; is the Lipschitz function representing
E; as in (21). From Lemma 31 it follows that the sets E; are equibounded and so,
recalling Remark 24, we may assume that they converge in the Hausdorff distance
to a closed set E. Note that E is convex and that the sequence E; converge to E also
in measure. In particular |E| = |B|. Since D(E;) — 0, we have that P(E;) — P(B).
Therefore, from the isoperimetric inequality and the lower semicontinuity of the
perimeter we get that

P(B) < P(E) < lim P(E)) = P(B).

Thus E is a ball, actually the unit ball centered at the origin, since all the E; have
barycenter at the origin. This gives a contradiction, since the E; are converging in
the Hausdorff sense to the unit ball B, while ||u;|| 00 (s—1) > & for all j. O

The following lemma shows that the Hausdorff distance of a convex set from a
ball controls indeed also its distance in W,

Lemma 33 Let E is a convex set such that
E:={tz(1+u@):zeS" " 0<r<1}.
for some Lipschitz function u : S"~' — (—1/2,1/2). Then

1+ Jullze
1 —[luflzeo

IVeullzoo < 2+/|lul|zo0

Proof Let us fix P, € OF and let z € $"~! be such that P, = z(1 + u(z)) and u
is differentiable at z. Recall that the tangent plane 7, 0E is spanned by the vectors
(1 4+ u(z))7i + zVu(z) - 7;, where {t1, ..., T,—1} is an orthonormal base for 7,S""!.
Therefore the exterior normal to E at P, is given by

z(1 + u(z)) — Vou(z)

. 33
V(4 u(2)? + |Vou(z))? Gy

VE(PZ) =

Since z - V;u(z) = 0, we have

1+ u(z)

DEP) = .
VI ) + V)P

Then, denoting by H the projection of the origin on the tangent plane to E at P,, we

have, see Fig. 13, g;{ = z-vE(P,). Observe that

OP, <1+ ||u|leo, OH =1 —||u||oos
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Fig. 13 The construction in
the proof of Lemma 33

where the second inequality follows by the convexity of E. Thus,

1+ u(z)

U= llulloo _ .y
=2 = @R+ Ve

1+ [lulloo —

from which we get

Veu(2)? <(1+||u||oo)2_1= 4 lulloo
(1+u(@)* = \ 1= |lulleo (1= ulloo)*”

thus concluding

1 —[fulleo

1+ ||lu 2
|vfu<z>|zs4||u||oo( ; "°°) ,

whence the assertion follows. O
Let us conclude this section by giving the

Proof of Theorem 26 Let as assume n > 4, since otherwise the proof is similar and
even easier.

From Lemmas 32 and 33 it follows that if E is a convex set with |E| = |B| and
D(E) is sufficiently small, then, up to a translation, E is a nearly spherical set as
in (21) with barycenter at the origin, satisfying |ju|lwi.o < &, where ¢ > 0 is the
one provided by Theorem 30. Therefore, using this theorem and Lemma 33 again,
we get

n—3
lullss" < D(E)|Veullss® < cllullos DIE).
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n+1
hence, ||u||oa < ¢D(E). Thus we may conclude that

A(E) < dy(E. B) = ||ul|oo < c[D(E)] . .

5 Stability of the Isoperimetric Inequality: Proof
by Symmetrization

We now discuss the quantitative isoperimetric inequality for general sets of finite
perimeter. In this case it is clear that we cannot use the Hausdorff distance to
measure the distance of a set E from a ball, since a set with the same volume of
the ball B and a slightly larger perimeter may have small far away pieces or tiny
long tentacles. Taking into account these examples it is then reasonable to introduce
the so called Fraenkel asymmetry which is defined, for any measurable set E of finite
measure, as

a(E) := inf

x€R”

{|EAi,(X)I C|E| = |B,|}.

Note that the above infimum is always attained. In the following we shall refer to a
minimizer of the right hand side as to an optimal ball for E. Clearly, optimal balls do
not need to be unique. Observe also that, since |[EAB,(x)| is exactly the L' distance
between yr and yg, (), @(E) can be regarded as the normalized L' distance of E
from its optimal ball. It is convenient to normalize also the isoperimetric deficit by
setting

P(E) — P(By)

rn—l

D(E) := ,
where |B,| = |E|.

In 1992 Hall [47], using some previous results proved in collaboration with by
Hayman and Weitsman [48], showed that there exists a constant c¢(r) such that for
all measurable sets of finite measure

a(E)* < c(n)D(E) . (34)

Note that the power on the left hand side of (34) is independent of the dimension
of the ambient space. Note also that an inequality of this kind becomes critical only
when the set E is a small perturbation of the ball. As an example consider for any
n > 2 the ellipsoid

2

x
E, = 1_¢8+x%(1+8)+x§+...+x5§1 .
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with ¢ > 0. Then «(E;) = |E.AB|, see [6, Lemma 5.9] and it is not difficult to show
that

D(E;
(Ec) -y >0, ase — 0T,

o?(E;)
This example led Hall to conjecture in [47] that inequality (34) should hold in any
dimension with the (optimal) exponent 2. This was proved by Maggi, Pratelli and
the author in [44]. The precise statement goes as follows.

Theorem 34 (Quantitative Isoperimetric Inequality) There exists a constant
Kk (n) such that for any measurable set E of finite measure

a(E)? < k(n)D(E). (35)

In this section we are going to discuss the proof of this result originally given in
[44], which relies mostly on symmetrization arguments.

Note that inequality (35) can be rewritten in the following equivalent way: if
|E| = |B,|, then

PE) =PBI(1+ alE)?).

1
wyk (n)
Thus the asymmetry index «(E) estimates from below the second order term in the
Taylor expression of P(E) in terms of P(B,).

Before going into the proof of (35) let us make some preliminary remarks.

First, observe that since both «(E) and D(E) are scale invariant, to prove
Theorem 34 we may always assume |E| = |B|. Note also that if one proves (35)

for a set with small isoperimetric gap, i.e., D(E) < &, then the general case follows.
As a matter of fact, if D(E) > &y and |E| = |B,|, then

|[EAB

ol 2wy
E) < < 2w, < D(E).
aE) < <20 JSO‘/()

The strategy of the proof consists in reducing the general case to more and more
special classes of sets. Precisely, in the first step one reduces to sets contained in
a sufficiently large square, see Lemma 35. Then one wants to reduce to bounded
n-symmetric sets, i.e., sets which are symmetric with respect to n orthogonal
hyperplanes, Theorem 40. These sets have the nice property that the ball centered
at their center of symmetry is “almost optimal” in the sense stated in Lemma 38.
The last reduction consists in passing from n-symmetric to axially symmetric sets
whose profile is obtained by rotating a one-dimensional graph. Note that the proof of
the quantitative isoperimetric inequality (35) for axially symmetric sets was already
contained in Hall’s paper [47, Theorem 2]. Different proofs are given in [44, Sect. 4]
and in [50, Sect. 7]. The approach to stability issues via symmetrization has been
used also used to deal with the Sobolev inequality, the isoperimetric inequality in
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Gauss space and with other relevant geometric and functional inequalities, see for
instance [6, 7, 13, 21, 22, 32, 33, 35, 43, 45, 46], and also [41, 52, 58].
The first reduction step is provided by the next result, see [44, Lemma 5.1]).

Lemma 35 There exist positive constants L, C, § depending only on n such that if
|E| = |B| and D(E) < § one can find a set F C [—L, L]", with |F| = |B|, such that

@(E) < a(F) + CD(F) and D(F) < CD(E).

We will not give the detailed proof of this lemma, which consists in cutting the far
away parts of E and rescaling the remaining part of the set. The main ingredients
of the proof are the isoperimetric inequality and the strict concavity of the function
" fort > 0, which allows to estimate in a quantitative way the asymmetry created
by splitting a set in two parts. To understand how this estimate works observe that
forall A € (0,1)

A";l +(1- A)n;l — 1> c(n)min{A, 1 — A}, (36)

Let E = B,(x) UB,(y) the union of two disjoint balls such that |E| = |B| and r > p.
Then

er + pn — 1
and from (36) we may estimate the isoperimetric deficit of E by
D(E) = P(Br(x)) + P(B,(y)) — P(B) = c(n) min{r", p"} > c(n)p".

Hence the estimate on the Fraenkel asymmetry of £ immediately follows:
1
5 #(E) = [BO)\ B,()| = wn(1 —1") = onp" < wne(m)D(E).

It is clear how to use Lemma 35. Indeed if the quantitative isoperimetric inequal-
ity (35) holds for a bounded set, then, given any set E with |E| = |B| and D(E) < 1,
denoting by F the set provided by Lemma 35, we have

®(E) < a(F) + CD(F) < /k(n)D(F) + CD(F) < C'\/D(E).

for a constant C" depending only on 7.

Thus, from now one we may assume without loss of generality that the set E has
volume w,, that E C [—L, L]", for some given L > 0, and that D(E) < § for some
conveniently small 6.

The advantage of working with bounded sets is that in this case the compactness
theorem for sets of finite perimeter Theorem 13 implies that «(E) depends continu-
ously on D(E).
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Lemma 36 Let L > 0. For any ¢ > 0 there exists § > 0 such that if E C [-L,L]",
|E| = |B|, and D(E) < 6 then a(E) < ¢.

Proof The proof is by contradiction. Assume that there exist ¢ > 0 and a sequence
of sets E; C [-L,L]", with |E;| = |B|, D(E;) — 0 and «(E;) > ¢ > 0 for all
J € N. Since the sets E; are equibounded, by Theorem 15 we may assume that up
to a not relabeled subsequence the E; converge in measure to some set Eq, of finite
perimeter. Thus |Eo,| = |B|, and by the lower semicontinuity of the perimeters
P(Ex) < P(B), so E is a ball. However the convergence in measure of E; to E
immediately implies that |E;AE.| — 0, against the assumption «(E;) > ¢. The
contradiction concludes the proof. O

Next step in the proof of the quantitative isoperimetric inequality is to reduce to
the simpler case of an n-symmetric set.

Definition 37 We say that E C R” is n-symmetric if, up to a translation and a
rotation, E is symmetric about each coordinate plane.

Note that even if E is n-symmetric it is not true in general that the optimal ball is the
one centered at the center of symmetry of E, as shown in Fig. 14. However, the next
lemma shows that for n-symmetric sets this ball is optimal “up to a constant”.

Lemma 38 Let E be n-symmetric with centre of symmetry at the origin, |E| = |B|.
Then

a(E) < |[EAB| < 3a(E)

Proof Let B(xp) be an optimal ball for E, i.e. ®(E) = |EAB(xp)|.- Then by the
triangular inequality we have

|[EAB| < |[EAB(xg)| + |B(x0)AB].

Fig. 14 An optimal ball not
centered at the origin
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Note that since E is n-symmetric B(—xp) is optimal as well, ie., a(E) =
|EAB(—x)|. Therefore from the inequality above we have

a(E) < |[EAB| < a(E) + |B(xo) AB| < a(E) + |B(xo) AB(—xo)|
< «(E) + |[EAB(x0)| + |EAB(—xo)| = 3a(E).

O

The next step is to reduce the proof of the quantitative isoperimetric inequal-
ity (35) to n-symmetric bounded sets. But before discussing how this can be done
let us first introduce a few definitions.

Given a direction v € $"! and a measurable set E of finite measure, let us
consider the affine hyperplane m, orthogonal to v splitting E into two parts of equal
measure. We denote by E’ the part of E contained in the open half space H;F with
inner normal v and by E” the part of E contained in the open half space H, with
inner normal —v. Then, we set E;L := E'Ur, (E"), where r, is the reflection about the
hyperplane 7, and E := E” U r,(E"”). See Fig. 15 where, to simplify the notation,
we dropped the subscript v. We claim that

P(Ef) + P(E;) < 2P(E) (37)

with the inequality being possibly strict. To see this observe that from the definition
of density we easily have that

[EQUVEV]nm, c [EHOUENHV]N[EHPUE)HD] N, .

Therefore, from the definition of measure theoretic boundary given in (9) we
deduce in particular that oM Ef Nm, € ME N 7, and thus, recalling Theorem 9,
H'YO*EE Nwr,) < H'N(9*E N m,). Hence, (37) follows, since

P(EY) + P(E)) =2P(ENHS) + H""(0*Ef Nm,) +2P(ENH)
+H"NI*E; Nmy)
<2P(ENHI) +2P(ENH,)+ 21" (0*ENm,) = 2P(E).

Fig. 15 The sets Et and E~ E
are obtained by reflecting the
upper and lower half of E
with respect to the horizontal
plane

Et B
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Observe that inequality (37) implies that
D(E)) + D(E;) < 2D(E). (38)
Therefore if we could prove that for some positive constant Cy depending only on n
«(E) < Cola(E)) + a(E))], (39)
we would conclude that, setting F either equal to E} or E;, then
a(E) <2Cou(F), D(F) <2D(E).

Then by applying this argument to all coordinate directions we would find a
n-symmetric set G with the same volume of E such that

«(E) <2'Cla(G).  D(G) < 2"D(E)

and from these inequalities we would conclude that in order to prove (35) for E it is
enough to prove it for the n-symmetric set G.

Inequality (39) is not true in general as we can see looking at the set E in Fig. 16.
In fact, by reflecting the upper and lower halves of E with respect to the horizontal
plane we get that E* are both balls, hence a(E*) = 0. However, if we symmetrize
the same set with respect to the vertical direction the asymmetry index may even
increase, as one can see in Fig. 17.

The following lemma shows that the phenomenon illustrated by this example is a
general fact. Indeed, if for some v the asymmetry of E and E; is much lower than
the one of E, then given any other orthogonal direction v’, at least one of the two
sets EjE has a larger asymmetry than E, up to a multiplicative constant depending
only on the dimension.

Lemma 39 There exist §, C, depending only on n, such that if E C [-L,L]", |E| =
|B| and D(E) < §, given any two orthogonal direction vy, v, and the four sets

Fig. 16 A set for which (39)
is not true
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Fig. 17 A different

symmetrization may give a — —+—_E-
. p ~. E P i

bigger asymmetry / N 74 N

EY E; E' E,, we have that D(Ei[) < 2D(E), for i = 1,2. Moreover, at least

vy vy v? vy’
one of them, call it F, satisfies the estimate

«(E) < Ca(F).

We are not giving the proof of this lemma, for which we refer to (see [44,
Lemma 2.5]). Instead we show how to use it in order to reduce the proof of (35)
to n-symmetric sets.

Theorem 40 There exist § and C; depending only on n such that if E C
[-L,L]", |E| = |B|, 8(E) < &), then there exists an n-symmetric set F such that
F C [-2L,2L)",|F| = |B| and

a(E) < Cia(F), D(F) < 2"D(E). (40)

Proof Take §; = 2~"=D§, where § is the constant of Lemma 39. By applying the
lemma n — 1 times to different pairs of orthogonal directions we find a set E C
[—L, L]" with n — 1 symmetries, |E| = |B| and such that

«(E) < C"'a(E), D(E) <2"'D(E),

where C is the constant given by Lemma 39. Without loss of generality we may
assume that E is symmetric with respect to the first n — 1 directions ey, ..., e,—;. Let
us consider a hyperplane r,, orthogonal to ¢, and dividing E into two parts of equal
measure, £/, E”, and the corresponding sets ief From (38) we have that

D(E¥) < 2D(E) < 2"D(E).

To control the asymmetry of Eein observe that since E is symmetric with respect to
the first n — 1 directions, the sets Eein are both n-symmetric. Moreover, by suitably

translating Eif necessary, we may also assume that they are both symmetric around
the origin. Thus we may apply Lemma 38 to estimate

~ ~ 1.~ ~ 3 ~ ~
a(E) < |EAB| = 2[|E:;AB| +|E, AB|] < Z[a(E:;) +a(E,)].
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~ 1 ~
Thus, at least one of the sets E;'IE[ has asymmetry index greater than 3o:(E).
Therefore, denoting by F this set, we have

D(F) < 2D(E) < 2"D(E)
and
a(E) < C"'a(E) < 3C"a(F). O

Having proved Theorem 40, from now on we may assume that E is an n-symmetric
set such that E C [—L, L]" for some L depending only on n, |E| = |B|. We now want
to pass from n-symmetric sets to axially symmetric sets, i.e., sets E having an axis
of symmetry such that every non-empty cross-section of E perpendicular to this axis
is a (n — 1)-dimensional ball.

In order to perform this further simplification, let us recall the definition of
Schwartz symmetrization of a set E (Fig. 18). To this aim, given a measurable set
E, forall t € R we set

E ={xeR"': (x,1) € E}.
A result due to Vol’pert states that if E is a set of finite perimeter then E; is a set of

finite perimeter in R"~! for a.e. ¢ € R. For a proof of this important property see for
instance [6, Theorem 2.4].

Definition 41 Given a measurable set £ C R", its Schwartz symmetrization is
defined as

E*={(x,n) e R" ' xR:reR, |x| <rgt)}

where w,—1 75 1 (1) = H"(E)).

Fig. 18 The Schwartz symmetrization of the set E
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Note that |[E*| = |E|. Moreover, as for Steiner symmetrization, also Schwartz
symmetrization decreases the perimeter. The next result (see [44, Lemma 3.3])
provides a useful formula for the perimeter of an axially symmetric set whose
boundary has no horizontal flat parts. To this aim, given a measurable set E C R”,
for H'-a.e.t € R we set

ve(t) :=H""N(E).  pe(t) == Pui(Ey),

where P, (-) denotes the perimeter of a subset of R"~!. Observe that this definition
makes sense since for H'-a.e. r € R the slice E; is a set of finite perimeter in R""!,
Note also that from Definition 41 we have vg(f) = vg=(¢) for all £. Moreover, the
isoperimetric inequality in R"™! yields that pg«(f) < pg(f), since (E*); is a ball with
the same measure of E;.

Theorem 42 Let E C R”" be a set of finite perimeter and let E* be its Steiner
symmetrization. Then

P(E™) < P(E). (41)
Moreover, if

H™U@*EN {vf = £1}) =0, (42)

then vg belongs to W' (R) and the following formulas hold:

P(E)>/\/UE + p2.dt, P(E*)—/ \/vE + pL. dt

The next step in the proof of the quantitative isoperimetric inequality is given by the
following theorem, which states that we may eventually reduce to the case of axially
symmetric sets.

Theorem 43 Let E C [—L,L]" be an n-symmetric set satisfying (42) such that
|E| = |B| and D(E) < 1. If n = 2 orif n > 3 and the quantitative isoperimetric
inequality (35) holds true in R"™\, there exists a constant C depending only on n
such that

a(E) < a(E*) + Cy/D(E), and D(E*) < D(E). (43)

We shall give the proof of this theorem at the end of this section. First, we show how
to conclude the proof of the quantitative isoperimetric inequality (35) by combining
this result with a final estimate for axially symmetric sets. This estimate is provided
by the next theorem, which is a particular case of a more general one proved by Hall
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in [47, Theorem 2] for general axially symmetric sets. As we already mentioned,
two different proofs of Theorem 44 below are given in [44, Sect.4] and in [50,
Sect. 7].

Theorem 44 Let E C [—L,L]" be an axially and n-symmetric set with center of
symmetry at the origin, such that |E| = |B|. Then

|EAB(x)| < C'/D(E), (44)

for some constant C' depending only on the dimension n.
The two previous theorems immediately yield the proof of (35).

Proof of Theorem 34 We argue by induction on the dimension n assuming that
either n = 2 or n > 3 and the isoperimetric inequality (35) holds in R"~!.

As we already observed, in order to prove (35) it is enough to consider a set E C
[—L, L]", such that |E| = |B| and that D(E) < § for some conveniently small § €
(0, 1). Moreover, since the set of directions v € S"~! such that H"'(3*E N {vE =
+1}) > 0 is at most countable, by rotating E if necessary we may always assume
that (42) holds. Recall that Theorem 40 allows us to replace E by a n-symmetric
set F C [—-2L,2L]" satisfying (40). And observe that from the proof of Theorem 40
and the statement of Lemma 39 it is clear that also F satisfies (42). Therefore, by
replacing E with the n-symmetric set F if necessary, we may always reduce the
proof of (35) to the case of a set E satisfying all the assumptions of Theorem 41.

Thus, recalling (43) and applying (44) to E* we conclude, assuming without loss
of generality that the center of symmetry of E* is at the origin,

a(E) < a(E*) + C/D(E) < |E*AB| + C+/D(E)
< C'\/D(E*) + Cy/D(E) < C"\/D(E).

where the constant C” depends only on the dimension n. O
We now turn to the proof of Theorem 43.

Proof of Theorem 43 Denoting by B(xo) an optimal ball for E*, we have
a(E) < |[EAB(xp)| < |E*AB(xo)| + |[EAE*| = a(E*) + |[EAE™|.
Hence, in order to prove the first inequality in (43) it is enough to show that

|EAE*| < c(n)y/D(E), (45)
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for some positive constant ¢ depending only on n. The second inequality in (43)
follows immediately from (41). To prove (45) we use again Theorem 42 to estimate

D(E) = P(E) — P(B) > P(E) — P(E*) > / VR +pi— \JoE +phedi
R

/ B~ P dt
\/ Z+pE+ \/ + Pp
> (/ \/Pé—l’,z;* dt) !
R f]R 72 2 72 +p§* dt

Vg +pE+\/vE

()
=\ VPETPE D) p(Ey + Py

where the inequality before the last one follows from Hoélder’s inequality. Since
D(E) < 1, we have P(E*) < P(E) < P(B) + 1. Therefore from the above estimate
we get, recalling that pg > pg=,

\/D(E) = Cn/ \/PE PE* (46)
=y /R VPE + PE* A/DE* V(pe — pe+)/pe- dt

> V2¢, | pee/(pe — pe)/pe- dt.
R

Now assume that n > 3 and observe that since (E*), is an (n — 1)—dimensional ball
of radius rg () with wn_lrg_l (1) = H""V(E,), the ratio

Pe(t) — pex (1)
rE(n)

is precisely the isoperimetric gap of E, in R"~!. Since by assumption, the quantita-
tive isoperimetric inequality (35) holds true in R"~!, we have

x(n—l)\/”(’) )

where o,—1 (E;) is the (n — 1)-dimensional Fraenkel asymmetry of E,. But E; is an
(n—1)-symmetric setin R~ and (E*);, is the ball centered at the center of symmetry
of E;. Therefore from Lemma 38 we get

_ - n—1 tA *t
K(”_l)\/pE(t,);g—;()S o _ > a1 (E) > ;H (EEl(t()E )
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Inserting this inequality in (46) we then get

Vo= [ i \/pE(r)—pE*(r) w=e | WUEAED |
R R

rg (1) re(f)

c (* ¢
> / H"N(E,AE")dt = _|E,AE}|,
L), L
where the inequality before the last one follows from the inclusion £ C [—L,L]"
and the last equality is just Fubini’s theorem. This proves (45). Hence the assertion
follows when n > 3.

If n = 2, since E is 2-symmetric, either E; is a symmetric interval (and thus E; =
E}) or E; is the union of at least two essentially disjoint intervals and thus pg(r) > 4,
while pg=(f) = 2. Note also that since E C [—L, L]*, then H!(E,AE}) < 2L for all
t € R. Therefore, from (46) we easily get

VD(E) > N2¢5 | pee/(pe — pex) /pe- dt = 262/ /PE — pE* dt
R {rE#E}}

2 2
> 2cz/ V2dt > v Cz/ H' (E,AE")dt = v C2|EAE*|,
{r E:#E]} {rE,#E'} L
thus concluding the proof also in this case. O

6 Alternative Proofs of the Quantitative Isoperimetric
Inequality

In this section we discuss two different approaches to the quantitative isoperimetric
inequality, the first one via the regularity theory of sets of finite perimeter and the
second one via mass transportation. The latter approach will provide us with the
extension of (35) to the anisotropic perimeter, a result that cannot be achieved via
symmetrization techniques. In the final part of this section we shall give an account
of a stronger version of (35) which is very much in the spirit of the estimate (22)
proved for nearly spherical sets.

We start by presenting the approach to the quantitative isoperimetric inequalities
introduced by Cicalese and Leonardi in [23] with some further simplifications due
to Acerbi, Morini and the author, see [1]. In comparing this new proof with the one
that we have seen in the previous section one can see two main differences. The
proof by symmetrization is more elementary since it relies on some geometric ideas
that do not require the use of deep previous results. But that proof is quite long. The
approach of Cicalese and Leonardi to the quantitative isoperimetric inequality is
based on the deep results of De Giorgi’s regularity theory for area minimizing sets of
finite perimeter, but it has the advantage of providing a quicker proof. Moreover this
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approach has proved to be useful in the study of the stability of other inequalities,
see [1,9, 10, 12, 25].

As we said before we need a regularity result on area minimizing sets of finite
perimeter or, more generally, of area almost minimizers.

Definition 45 Let w, r be positive numbers. A set E of finite perimeter is an (w, r)-
area almost minimizer if, for all balls B,(x) with 0 < r and all measurable sets F'
such that EAF CC B,(x)), we have

P(E) < P(F) + wo".

So, an almost minimizer minimizes the perimeter with respect to local variations of
the set up to a higher order volume term. De Giorgi’s regularity theory, originally
established only for minimizers, readily extends to almost minimizers, see [60,
Sects. 1.9 and 1.10] and [51, Theorems 26.5 and 26.6].

Theorem 46 IfE is an (w, r)-area almost minimizer, then 0* E is a manifold of class
CU1/2 QE \ 9*E is relatively closed in OE and H*(JE \ 0*E) = 0 for all s > n — 8.

Moreover, if E; is a sequence of equibounded (w, r)-area almost minimizers
converging in measure to an open set E of class C?, then for j large each E; is
of class C"\/? and the sequence E;j converges to E in C'¥ forall 0 < o < 1/2.

Next lemma is a simple consequence of the isoperimetric inequality.

Lemma 47 If A > n, the unique solution up to translations of the problem
min {P(F) + A||F| - |B|| : F CR"} 47

is the unit ball.

Proof By the isoperimetric inequality it follows that in order to minimize the
functional in (47), we may restrict to the balls B,. Thus the above problem becomes

min {na)nr”_1 + Aw,|r" — 1]},
r>0

which has a unique minimum for r = 1, if A > n. O

Lets us now describe how the new proof of the isoperimetric inequality works.
The main idea in Cicalese and Leonardi approach was to reduce the proof of (35) to
nearly spherical sets via a contradiction argument. They start by assuming that there
exists a sequence of sets E; with infinitesimal isoperimetric deficits for which the
quantitative inequality does not hold. Then they replace it with a different sequence
of sets F, still not satisfying the quantitative inequality and converging to B in C',
thus contradicting Fuglede’s Theorem 27 for nearly spherical sets. The sets F; are
constructed as the solutions of certain minimum problems and their convergence in
C' to the unit ball is a consequence of Theorem 46.
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In the following we shall set for any measurable set of finite measure

A(E) := )1(2]% {|IEAB(x)|}.

Clearly A(E) = «(E) if |E| = |B|.

Proof of (35) by regularity Step 1. Fix R > 0 so that the ball Bg contains the cube
[—L, L]" given by Lemma 35. As we observed in the previous section, it is enough
to prove (35) for a set E C Bg, with |E| = |B| and with D(E) < § for some fixed
8 > 0. Thus, let us argue by contradiction assuming that there exists a sequence
E; C Bg, |Ej| = |B|, with D(E;) — 0 and

D(E)) < Coa(E))?, (48)

for some constant Cy to be chosen later. Observe that Lemma 36 implies that
A(E;)) = a(E;) — 0. Let us now introduce a new sequence Fj, where for each j
the set F; is a minimizer of the following problem

min {P(F) + |A(F) — A(E))| + A||F| — |B|| : F C Bg},

where A > n is a fixed constant. Note that the penalization term A ||F| — |B|| forces
the minimizers F; to have almost the same volume of the unit ball, while the presence
of |A(F) — A(E))| has the effect that the asymmetry of F; is very close to the one of
E;, hence converges to zero.

Since the perimeters of the F; are equibounded, the compactness Theorem 15
implies that, up to a not relabeled subsequence, they converge in measure to some
set Foo. Moreover, the lower semicontinuity of the perimeter immediately yields that
Foo is @ minimizer of the problem: min {P(E) + A(E) + A||E|—|B]| : E C BR}.
Therefore, for every set E of finite perimeter, from Lemma 47 we have

P(Foo) + A(Feo) + Al|Foo| — |Bl| < P(B) < P(E) + A||E| — [B]].

In particular, F is a minimizer of the problem in (47), hence Lemma 47 implies
that Fo is a ball and thus that the F; converge in measure to some ball By (xo).

We now want to show that the there exists @ > 0 such that all sets are F; are
(w, R)-area almost minimizers. This fact, thanks to Theorem 46, will imply the
convergence to Bj(xo) in C'. To prove the almost minimality of the Fj, let us fix
a set F such that F;AF CC B,(x) for some ball B,(x) with radius r < R and let us
consider two cases.

First. let us assume that /' C Bg. Then, by the minimality of F; we get

P(F)) < P(F) + |A(F) — A(E)| — |A(F)) — A(E))| + A[IIF| — |BI| = ||F;| — |BI|]

< P(F) + |A(F) — A(F))| + A ||F| — |Fl|
< P(F) + (A + D|FAF;| < P(F) + (A + Dour".
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If instead |F \ Bg| > 0, we split F in two parts, one inside and the other one outside
Bg. Hence,

P(F)) = P(F) = [P(Fj) — P(F N Bg)] + [P(F N Bg) — P(F)].
Since F N Bg C Bg, as before we have
P(F}) — P(F N Bg) < (A + Dy,
while
P(F N Bg) — P(F) = P(Bg) — P(F U Bg) <0

by the isoperimetric inequality. Therefore we may conclude that the sets F; are all
((A + 1wy, R)—almost minimizers and that the sequence F; converges to B (xp) in
C' foralla < 1/2.

Step 2. By the minimality of the Fj, recalling (48) and using Lemma 47, we get

P(Fj) + Al|Fj| = |BI| + |A(F)) — A(E))| < P(E)) (49)
< P(B) + CoA(E;)’ < P(F)) + A|IF}| = BI| + CoA(E)”.
Therefore, |A(Fj)) — A(E;)| < CyA(E;)?. Since A(E;)) — 0, we get that
A(F)/AE) — 1.
To conclude the proof we need only to rescale the sets Fj to the same volume of
the unit ball by setting F; = A;F; + x;, where A7|F;| = |B| and x; is chosen so that
Fj has the baricenter at the origin. Note that A; — 1 since the F; converge in C' to

a unit ball. Observe also that, since P(F;) — P(B) and A > n, for j large we have
P(F;) < A|F;|. Thus for j large we have also

|P(F) — P(F))| = P(F)|AT" =1] < P(F)|AI—1] < A]MI—1[|F}| = A|[Fj|—|F}|.
From this estimate, recalling (49) we get that
P(F)) < P(F)+A|[Fj|—|Fjl| = P(F))+A||F;|=|BI| < P(B)+ CoA(E))*.  (50)

However, since A(F;)/A(E;) — 1 as j — oo, we have A(E))? < 2A(i:j)2 for j large.
Therefore, from (50) we obtain

P(Fj) — P(B) < 2CoA(F))?,

which leads to contradiction to (22) if Cp < 1/(16w,), since the fj are converging
in C! to B, This contradiction concludes the proof. O
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In the remaining part of this section we will present two extensions of the
isoperimetric inequality (35). The first one deals with the anisotropic perimeter.
We recall thatif y : R* — [0, 00) is a positively 1-homogeneous function such that
y(x) > 0 for all x # O the anisotropic perimeter associated with y is defined for
any set E of locally finite perimeter by setting

P,(E) := /3 , yWE(x)dH" " (x).

It is well known that the isoperimetric sets with respect to this perimeter are the
homothetic and translated of the so called Wulff shape set associated to y, see [38]
and also [26] for two-dimensional case, which is given by

W, :={xeR": (x,v) —y(v) <0 forallv € $"'}.
Then, the anisotropic isoperimetric inequality states that
Py(E) = P,(W,)

for all sets of finite perimeter such that |[E| = |W, |, with equality holding if and
only if E is a translated of the Wulff shape set W,,.

The quantitative version of the anisotropic isoperimetric inequality was proved
by Figalli, Maggi and Pratelli in [34]. It states that there exists a constant C,
depending only on n, such that for any set of finite perimeter E such that |E| =
PIW,|

a,(E)* < CD,(E), (51)

where

P,(E)—P,(rW,)

rn—l

{ |EA(x + rW,) },

oy, (E) := min
rn

x€R”

D,(E) :=

denote the anisotropic asymmetry index and the anisotropic isoperimetric deficit,
respectively.

Since the Wulff shape W, can be any bounded open convex set, it is clear that
no symmetrization argument can be used to prove the anisotropic isoperimetric
inequality or its quantitative counterpart (51). An extra difficulty is also due to
the extreme rigidity of the anisotropic perimeter which is not invariant by rotation.
Moreover, even the equality P, (E) = P, (R" \ E) holds true only if y is symmetric
with respect to the origin. Observe also that since the Wulff shape set W, is
in general a non smooth convex set, no strategy based on regularity may ever
work. And in fact a completely different strategy was devised in [34] to prove
inequality (51), based on optimal mass transportation and on the proof of the
isoperimetric inequality given by Gromov in [55].
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The idea of this proof, that we present in the simpler case of the standard
perimeter, is to use a transport map from the set E to the an isoperimetric set of the
same volume. Though the original proof of Gromov used the Knothe map, which has
the advantage of being defined by an explicit construction, it is more convenient to
use the so called Brenier map whose properties are stated in the following theorem,
see [14], and also [53] and [54].

Theorem 48 Let E be a set of finite perimeter with |E| = |B|. There exists a convex
function ¢ : R" — R such that if we set T = Vg, then T(x) € B for a.e. x € R" and
detVT(x) = 1 fora.e. x € E.

Let us now give the

Gromov’s proof of the isoperimetric inequality Being the gradient of a convex
function, T is a BV map, see [29, Sect. 6.3, Theorem 2]. However, in order to avoid
unnecessary technical difficulties, let us assume that 7 is Lipschitz. For every x € E
let us denote by A;(x), i = 1,...,n, the eingenvalues of the symmetric matrix
VT(x). Using the arithmetic—geometric mean inequality, we have

P(B) = nw, = n/

By

dy = n/(detvr)l/"dx=n/(xl...xn)1/"dx
E E
5/(xl+---+xn)dx:/divmx=/ T-vEaH"™' < P(E).
E E oE

Moreover, since det VT'(x) = 1, if P(E) = P(B) we have that A(x) = A,(x) =
... = Ay(x) = 1 for a.e. x € E. Therefore, T is a translation and E is a ball. O

Beside being extremely simple, this argument gives some non trivial quantitative
information. In fact, by subtracting the last and the first terms in the above chain of
inequalities we get that

/[(M + A /n— (A A < ID(E), (52)
E n
/ (1 =T -vEYdH" ' < D(E). (53)
JE

The first inequality (52) is telling us that if the isoperimetric deficit D(E) is small
the eigenvalues of T'(x) are almost equal, at least in an integral sense. From this
inequality one can deduce, see [34, Corollary 2.4]), that there exists a constant ¢
depending only on 7 such that

/|VT—I| < c¢y/D(E). (54)
E
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Let us assume, without loss of generality, that B is the optimal ball for E and let
us observe, as proved in [34, Lemma 3.5], that

|[EAB| < C(n)/ |1 —|x|| dH" "
0*E

Then, in order to prove (51) one should control the right hand side of the previous
inequality with \/D(E). To this aim, using (53) we have

fa*E 1= el an ™" < /H*E[I1 —1T@I] + [T = || a#" !
< /Z;*E [ (1 — T(X) . VE(X)) + |T(X) —x|] d’HVl—l < D(E) + /E;*E |T(x) _x| den—l.

The difficult part of the proof of Figalli, Maggi and Pratelli consists in showing
that if the isoperimetric deficit D(E) is small one may always reduce to the case
when a Poincaré type inequality for the boundary traces holds with a constant c¢(n)
depending only on n. If this is true, recalling (54), one gets

/ |T(x) — x| dH"! fc(n)/ VT — 1| < cy/D(E).
0*E E

Beside providing an alternative proof of the quantitative isoperimetric inequality
in the wider framework of anisotropic perimeter, the paper by Figalli, Maggi and
Pratelli contains several interesting results. In particular, Theorem 3.4 in [34] states
that given any set of finite perimeter £ with small deficit one may always extract
from E a maximal set for which a trace inequality holds with a universal constant.
This is a new and deep result that may have several applications. Moreover, the mass
transportation approach used in [34] has been also successfully used to obtain the
quantitative versions of other important inequalities (see [21, 33, 35]).

At the beginning of this section we observed how the proof of the isoperimetric
inequality of Cicalese and Leonardi shows that one may always reduce to the case
of a nearly spherical set and thus to Fuglede’s Theorem 27. However, the two sets E
and F in Fig. 19 have the same measure, the same asymmetry index, but D(E) << 1,
while D(F) >> 1. Therefore the quantitative isoperimetric inequality (35) gives a
sharp information on the set £ while gives no information at all on the set F. The
reason is that while the asymmetry index looks only at the distance in measure of a
set from a ball, the isoperimetric gap encodes also an information on the oscillation
of the boundary of the set.

This suggests that we should introduce a more precise index which takes into
account also the oscillation of the normals to the boundary of the set E. To this aim,
given a set of finite perimeter E and a ball B,(y) with the same volume of E, we are
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Fig. 19 E and F have the same measure and the same Fraenkel asymmetry

B,

Fig. 20 The construction of the asymmetry index B(E)

going to measure the distance from E to the ball in the following way (see Fig. 20).
For every point x € 0*E we take the projection 7y ,(x) of x on the boundary of
0B,(y) and consider the distance [vE(x) — v (rr, ,(x))| between the exterior normal
to E at the point x and the exterior normal to B,(y) at the projection point 7, ,(x).
Then, we take the L? norm of this distance and minimize the resulting norm among
all possible balls, thus getting

1 . vz
pe) = minf 0y [ 1F@ = e w) .

We shall refer to B(E) as to the oscillation index of E. Observe that Fuglede’s
Theorem 27 provides an estimate for both the asymmetry and the oscillation index.
In fact, if E is a nearly spherical set satisfying (21) with a sufficiently small ¢, recall,
see (33), that for every point x € 0*E the exterior normal to E is given by

z(1 + u(z)) — Vou(z)

E(y) — ’
V0= @) + V)R
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where z = x/|x| and thus x = z(1 + u(z)). Thus, from (22) we have

1 2
a(EP+©° < EABE + [ b= " [
2 Joxg |x|
- |EAB|2+/ (1—1}E(x)- * )d”H”_l
*E |x|
1
§c/ uPdH! +c/ (1— +ul2) )dH"—‘
g1 g1 VA + u)? + |Vul?
14+ u)2 + Va2 — (1
:C/ |Lt|2dHn_l+C \/( +M) +| M| ( +M) dHn_l
S s VL 4+ u)? + |Vul?
<

c/ |u|dH"! +c/ |Vu|?>dH"™" < cD(E).
Sn—l Sn—l

Next result, proved by Julin and the author in [42], is an improved version of the
quantitative isoperimetric inequality.

Theorem 49 There exists a constant y (n) such that for any set of finite perimeter E

B(E)* < yD(E).

Note that the inequality above is stronger than the quantitative isoperimetric
inequality (35) since it can be shown (see [42, Proposition 1.2]) that there exists
a constant C(n) such that

a(E) + /D(E) < CB(E).
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