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Preface

We are proud to introduce, as the scientific organisers, the 2013 CIME Course
Vector-valued Partial Differential Equations and Applications, which took place at
Cetraro (Cosenza, Italy) from July 8 to 12, 2013, with the following speakers and
courses of lectures:

Bernard Dacorogna (École Polytechnique Fédérale de Lausanne, Switzerland), The
pullback equation.

Nicola Fusco (Università degli Studi di Napoli Federico II, Italy), The stability of
the isoperimetric inequality.

Stefan Müller (Universität Bonn, Germany), Mathematical problems in thin elastic
sheets: scaling limits, packing, crumpling and singularities.

Vladimir Šverák (University of Minnesota, USA), Aspects of PDEs related to fluid
flows.

The programme included a special session to celebrate the 60th birthday of
Bernard Dacorogna, with lectures by Gianni Dal Maso, Carlo Sbordone, Giovanni
Cupini, Emanuele Paolini and Giovanni Pisante.

That the meeting was such a success was a consequence of the distinction of the
speakers and the high level of their lectures, as evidenced by the quality of the notes
in this volume, as well as the participation and active involvement of the participants,
who numbered well over 100.

We now briefly describe the course notes included in this set of Lecture Notes,
starting with the course of Bernard Dacorogna on the pullback equation. A map
' W R

n ! R
n solves the pullback equation '� .g/ D f if it is a diffeomorphism

which satisfies the equation with f ; g differential k-forms with 0 � k � n. For
instance, in the case k D n, the equation takes the form g .' .x// det r' .x/ D f .x/.
Local existence is analysed, as well as global existence in the Hölder space Cr;˛ .

In his course, Nicola Fusco considered the stability of the isoperimetric inequal-
ity. Once we know that, for a given volume, balls are the unique area minimisers,

v



vi Preface

the next natural question is to understand what happens when a set E has the same
volume of a ball B and a slightly bigger surface area. Precisely, one would like
to show that in this case E must be close in a proper sense to a translation of B.
The stability of the isoperimetric inequality for general sets of finite perimeter is
analysed in detail, the proof being based on a suitable symmetrisation argument
aimed at reducing a general set of finite perimeter to an axially symmetric bounded
set with a centre of symmetry.

Stefan Müller presented in his course an outline of the theory of thin elastic
sheets; in particular, he considers the limiting behaviour of thin elastic objects as the
thickness h goes to zero. Mathematically one can distinguish two types of problems:
either where the solution has a well-defined limit as h ! 0, when the natural goal is
to characterise the limit, or where the solution develops increasing complexity.

The course of Vladimir Šverák concerned two main themes. The first deals with
the long-time behaviour of solutions of the 2D incompressible Euler equations
and other Hamiltonian equations. The second theme is related to the problem of
uniqueness of the Leray–Hopf weak solutions with L2 initial data.

We are pleased to express our appreciation to the speakers for their excellent
lectures and to the participants for contributing to the success of the CIME Course.
We had in Cetraro an interesting, rich and friendly atmosphere, created by the
speakers, by the participants and by the CIME Organisers, in particular Pietro Zecca
(CIME Director) and Elvira Mascolo (CIME Secretary). At the date of publication,
Elvira now has the role of CIME Director, while the CIME Secretary is Paolo
Salani. We thank all of them warmly.

Acknowledgements CIME activity is carried out with the collaboration and financial sup-
port of: INdAM (Istituto Nazionale di Alta Matematica)—MIUR (Ministero dell’Istruzione,
dell’Università e della Ricerca)—Ente Cassa di Risparmio di Firenze.

Oxford, UK John Ball
Firenze, Italy Paolo Marcellini
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The Pullback Equation

Bernard Dacorogna

1 Introduction

The aim of this course is the study of the pullback equation

'� .g/ D f : (1)

More precisely we want to find a map ' W Rn ! R
n; preferably we want this map

to be a diffeomorphism, that satisfies the above equation, where f ; g are differential
k-forms, 0 � k � n: Most of the time we will require these two forms to be closed.
Before going further let us examine the exact meaning of (1). We write

g .x/ D
X

1�i1<���<ik�n

gi1���ik .x/ dxi1 ^ � � � ^ dxik

and similarly for f : The meaning of (1) is that

X

1�i1<���<ik�n

gi1���ik .'/ d' i1 ^ � � � ^ d' ik D
X

1�i1<���<ik�n

fi1���ikdxi1 ^ � � � ^ dxik

where

d' i D
nX

jD1

@' i

@xj
dxj:

B. Dacorogna (�)
Section de Mathématiques, EPFL 1015 Lausanne, Switzerland
e-mail: bernard.dacorogna@epfl.ch

© Springer International Publishing AG 2017
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and Applications, Lecture Notes in Mathematics 2179,
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2 B. Dacorogna

This turns out to be a non-linear (if 2 � k � n) homogeneous of degree k (in the
derivatives) first order system of

�n
k

�
partial differential equations. Let us see the

form that the equation takes when k D 0; 1; 2; n:

Case: k D 0: The Eq. (1) reads as

g .' .x// D f .x/

while

dg D 0 , grad g D 0:

We will be, only marginally, interested in this elementary case, which is trivial for
closed forms. In any case (1) is not, when k D 0; a differential equation.

Case: k D 1: The form g; and analogously for f ; can be written as

g .x/ D
nX

iD1
gi .x/ dx

i:

The Eq. (1) becomes then

nX

iD1
gi .' .x// d'

i D
nX

iD1
fi .x/ dx

i

while

dg D 0 , curl g D 0 , @gi
@xj

� @gj
@xi

D 0; 1 � i < j � n:

Writing

d' i D
nX

jD1

@' i

@xj
dxj

and substituting into the equation, we find that (1) is equivalent to

nX

jD1
gj .' .x//

@' j

@xi
.x/ D fi .x/ ; 1 � i � n:

This is a system of
�n
1

� D n first order linear (in the first derivatives) partial
differential equations.
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Case: k D 2: The form g; and analogously for f ; can be written as

g D
X

1�i<j�n

gij .x/ dx
i ^ dxj

while

dg D 0 , @gij
@xk

� @gik
@xj

C @gjk
@xi

D 0; 1 � i < j < k � n:

The equation '� .g/ D f becomes

X

1�p<q�n

gpq .' .x// d'
p ^ d'q D

X

1�i<j�n

fij .x/ dx
i ^ dxj:

We get, as before, that (1) is equivalent, for every 1 � i < j � n; to

X

1�p<q�n

gpq .' .x//

�
@'p

@xi

@'q

@xj
� @'p

@xj

@'q

@xi

�
D fij .x/

which is a non-linear homogeneous of degree 2 (in the derivatives) system of
�n
2

� D
n.n�1/
2

first order partial differential equations.

Case: k D n: In this case we always have df D dg D 0: By abuse of notations,
if we identify volume forms and functions, we get that the equation '� .g/ D f
becomes

g .' .x// det r' .x/ D f .x/ :

It is then a non-linear homogeneous of degree n (in the derivatives) first order partial
differential equation.

The main questions that we will discuss are the following.

(1) Algebraic case. When the forms are constants, it is natural to seek for solutions
' of the form ' .x/ D Ax where A is an invertible n � n matrix. Therefore the
problem turns out to be of linear algebraic nature. For example when k D 2 we
can associate, in a unique way, to any 2-form

g D
X

1�i<j�n

gijdx
i ^ dxj



4 B. Dacorogna

a skew symmetric matrix G 2 R
n�n (i.e. Gt D �G)

G D

0
BBBBB@

0 g12 g13 � � � g1n
�g12 0 g23 � � � g2n
�g13 �g23 0 � � � g3n
:::

:::
:::

: : :
:::

�g1n �g2n �g3n � � � 0

1
CCCCCA
:

We therefore have

'� .g/ D f , AGAt D F:

Since any skew symmetric matrix has even rank, we have that if

rankG D rankF D 2m � n

then it is always possible to find an invertible matrix A: The canonical form is
then

Jm D

0
BBBBBBBBBBBBB@

�
0 1

�1 0
�

� � � 0 0 � � � 0
:::

: : :
:::

::: � � � :::
0 � � �

�
0 1

�1 0
�
0 � � � 0

0 � � � 0 0 � � � 0
::: � � � :::

:::
: : :

:::

0 � � � 0 0 � � � 0

1
CCCCCCCCCCCCCA

:

(2) Local existence. This is the easiest question. We will handle fairly completely
the case of closed 2-forms, which is the case of Darboux theorem. The cases
of 1 and .n � 1/-forms as well as the case of n-forms will also be dealt with. It
will turn out that the case 3 � k � n � 2 is much more difficult and we will be
able to handle only closed k-forms with special structure.

(3) Existence of canonical forms. It will turn out that (for closed forms):

– when k D 1; then the canonical form is g D dx1

– when k D 2; then the canonical form is, depending of the rank of the form,

g D
mX

iD1
dx2i�1 ^ dx2i
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– when k D n � 1; then the canonical form is

g D dx1 ^ � � � ^ dxn�1

– when k D n; then the canonical form is

g D dx1 ^ � � � ^ dxn:

(4) Global existence. This is a much more difficult problem. We will obtain results
in the case of volume forms and of closed 2-forms.

(5) Regularity. A special emphasis will be given on getting sharp regularity results.
For this reason we will have to work with Hölder spaces Cr;q; 0 < q < 1;

and not with spaces Cr: We will not deal with Sobolev spaces, apart for some
linear problems. In the present context the reason is that Hölder spaces form an
algebra contrary to Sobolev spaces (with low exponents).

(6) Selection principle. In all cases discussed here, once the existence part has been
settled, it turns out that there are, in general, infinitely many solutions. Therefore
the problem of selecting a solution with further properties becomes an important
one. We will discuss very briefly this difficult problem in the cases k D 2 and
k D n:

(7) Invariants. Finally the question of the invariants will be discussed. We will see
that the rank and the closedness are two invariants. They are the only one (at
least for the local problem) when k D 1; 2; n � 1; n; but there are others when
3 � k � n � 2:

The course is based on the recent book [16], to which we refer for all missing
proofs.

2 Algebraic Preliminaries

We now gather some algebraic results about exterior forms that are used throughout
the course. Let 1 � k � n be an integer (if k > n; we set f D 0). An exterior k-form
will be denoted by

f D
X

1�i1<���<ik�n

fi1 ���ik ei1 ^ � � � ^ eik :

The set of exterior k-forms over Rn is a vector space and is denoted ƒk.Rn/ and its
dimension is

dim.ƒk.Rn// D �n
k

�
:
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If k D 0; we set

ƒ0.Rn/ D R:

By abuse of notations, we will, when convenient and in order not to burden the
notations, identify k-forms with vectors in R.

n
k/:

(i) The exterior product of f 2 ƒk.Rn/ with g 2 ƒl.Rn/; denoted by f ^ g; is
defined as usual and it belongs to ƒkCl.Rn/: For example if k D l D 1;

f D
X

1�i�n

fie
i and g D

X

1�i�n

gje
j

then

f ^ g D
X

1�i;j�n

figje
i ^ e j D

X

1�i<j�n

�
figj � fjgi

�
ei ^ e j:

If k D 2 and l D 1;

f D
X

1�i<j�n

fije
i ^ e j and g D

X

1�l�n

gle
l

then

f ^ g D
X

1�i<j<l�n

�
fijgl � filgj C fjlgi

�
ei ^ e j ^ el:

(ii) The scalar product between two k-forms f and g is denoted by

hgI f i D
X

1�i1<���<ik�n

gi1���ik fi1 ���ik :

(iii) The Hodge star operator associates to f 2 ƒk.Rn/ a form .�f / 2 ƒn�k.Rn/

defined by

f ^ g D h�f I gi e1 ^ � � � ^ en

for every g 2 ƒn�k.Rn/: For example if k D 1; n D 3 and

f D
X

1�i�3
fie

i D f1e
1 C f2e

2 C f3e
3
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then

�f D f3e
1 ^ e2 � f2e

1 ^ e3 C f1e
2 ^ e3:

(iv) We define, for 0 � l � k � n; the interior product of f 2 ƒk.Rn/ with
g 2 ƒl.Rn/ by

g y f D .�1/n.k�l/ � .g ^ .�f // 2 ƒk�l.Rn/:

For example if k D l; then

g y f D hgI f i

or if k D 1 and l D 2; then

g y f D
nX

jD1

"
nX

iD1
fij gi

#
e j 2 ƒ1 .Rn/ :

These definitions are linked through the following elementary facts. For
every f 2 ƒk.Rn/; g 2 ƒkC1.Rn/ and h 2 ƒ1.Rn/

jhj2 f D h y .h ^ f /C h ^ .h y f /

hh ^ f I gi D h f I h y gi :

(v) Let A 2 R
n�n be a matrix and f 2 ƒk.Rn/ be given by

f D
X

1�i1<���<ik�n

fi1���ik ei1 ^ � � � ^ eik :

We define the pullback of f by A; denoted A�. f /; by

A�. f / D
X

1�i1<���<ik�n

fi1���ikAi1 ^ � � � ^ Aik 2 ƒk.Rn/

where Aj is the j-th row of A and is identified with

Aj D
nX

kD1
Aj
ke

k 2 ƒ1.Rn/:

If k D 0; we then let

A�. f / D f :



8 B. Dacorogna

The present definition is consistent with the one given in the introduction; just
set ' .x/ D Ax in (1).

(vi) We next define the notion of rank of f 2 ƒk .Rn/ : We first associate to the
linear map

g 2 ƒ1 .Rn/ ! g y f 2 ƒk�1 .Rn/

a matrix f 2 R

� n
k�1
�

�n such that, by abuse of notations,

g y f D f g for every g 2 ƒ1 .Rn/ :

In this case, we have

g y f

D
X

1�j1<���<jk�1�n

0

@
kX

�D1
.�1/��1 X

j��1<i<j�

fj1���j��1ij� ���jk�1 gi

1

A e j1 ^ � � � ^ e jk�1 :

More explicitly, using the lexicographical order for the columns (index below) and
the rows (index above) of the matrix f ; we have

. f /j1 ���jk�1i D fi j1 ���jk�1

for 1 � i � n and 1 � j1 < � � � < jk�1 � n: The rank of the k-form f is then the rank
of the

� n
k�1
� � n matrix f : We then write

rank Œ f � D rank
�
f
�
:

Example 1 For example if k D 2; then

. f /ji D fi j

i.e. when n D 4

f D

0

BB@

0 f12 f13 f14
f21 D �f12 0 f23 f24
f31 D �f13 f32 D �f23 0 f34
f41 D �f14 f42 D �f24 f43 D �f34 0

1

CCA :

Since fi j D �fji ; we have that f 2 R
n�n is skew symmetric and therefore can never

be invertible if n is odd. The canonical form when n D 4 is the standard symplectic



The Pullback Equation 9

matrix

J D

0

BB@

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

1

CCA :

Example 2 When k D n; then, identifying the form with its component, we have
that f 2 R

n�n and, up to a sign,

f D

0

BBB@

f 0 � � � 0

0 �f � � � 0
:::
:::
: : :

:::

0 0 � � � .�1/n�1 f

1

CCCA :

Note that only when k D 2 or k D n the matrix f is a square matrix. Our best
results are obtained precisely in these cases and when the matrix f is invertible.

We then have the following elementary result.

Proposition 3 Let f 2 ƒk .Rn/ ; f ¤ 0:

(i) If k D 1; then the rank of f is always 1:
(ii) If k D 2; then the rank of f is even. The forms

!m D
mX

iD1
e2i�1 ^ e2i

are such that rank Œ!m� D 2m:Moreover rank Œ f � D 2m if and only if

f m ¤ 0 and f mC1 D 0

where f m D f ^ � � � ^ f„ ƒ‚ …
m�times

:

(iii) If 3 � k � n; then

rank Œ f � 2 fk; k C 2; � � � ; ng

and any of the values in fk; k C 2; � � � ; ng can be achieved by the rank of a
k-form. In particular if k D n � 1; then rank Œ f � D n � 1; while if k D n; then
rank Œ f � D n:

(iv) If rank Œ f � D k; then there exist f1; � � � ; fk 2 ƒ1 .Rn/ such that

f D f1 ^ � � � ^ fk :



10 B. Dacorogna

Remark 4 The rank is an invariant for the pullback equation. More precisely if there
exists A 2 GL .n/ ; i.e. A is an invertible n � n matrix, such that

A�.g/ D f

(or equivalently if ' .x/ D Ax; then the above equation is equivalent to '�.g/ D f )
then (cf. Theorem 64)

rank Œg� D rank Œ f � :

Conversely, when k D 1; 2; n � 1; n; if rank Œg� D rank Œ f � ; then there exists A 2
GL .n/ such that

A�.g/ D f :

However the converse is not anymore true, in general, if 3 � k � n � 2 (cf.
Examples 60 and 61).

3 Harmonic Fields and Poincaré Lemma

3.1 Preliminaries

Definition 5 Let � � R
n be open and f 2 C1

�
�Iƒk

�
; namely

f D
X

1�i1<���<ik�n

f i1 ���ik .x/ dxi1 ^ � � � ^ dxik :

(i) The exterior derivative of f denoted df belongs to C0.�IƒkC1/ and is defined
by

df D
X

1�i1<���<ik�n

nX

mD1

@fi1 ���ik
@xm

dxm ^ dxi1 ^ � � � ^ dxik :

If k D n; then df D 0:

(ii) The interior derivative or codifferential of f denoted ıf belongs to C0.�Iƒk�1/
and is defined by

ıf D .�1/n.k�1/ � .d .�f // :
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By abuse of notations one can write

df D r ^ f and ıf D r y f :

Note that, for example, when k D 2

df D
X

1�i<j<l�n

�
@fij
@xl

� @fil
@xj

C @fjl
@xi

�
dxi ^ dxj ^ dxl:

Remark 6

(i) If k D 0; then the operator d can be identified with the gradient operator, while
ıf D 0 for any f :

(ii) If k D 1; then the operator d can be identified with the curl operator, while the
operator ı is the divergence operator.

We next gather some well known properties of the operators d and ı:

Theorem 7 Let f 2 C2
�
�Iƒk

�
and g 2 C2.�Iƒl/: Then

d. f ^ g/ D df ^ g C .�1/kf ^ dg

ı. f y g/ D .�1/kCldf y g � f y ıg:
ddf D 0; ııf D 0 and dıf C ıdf D �f :

We also need the following definition. In the sequel we will denote the exterior
unit normal of @� by �:

Definition 8 The tangential component of a k-form f on @� is the .k C 1/-form

� ^ f 2 ƒkC1:

The normal component of a k-form f on @� is the .k � 1/-form

� y f 2 ƒk�1:

Example 9 If f is a 1-form and

� D fx 2 R
n W xn > 0g

then � D �en and

� ^ f D 0 , f1 D � � � D fn�1 D 0

� y f D 0 , fn D 0

We easily deduce the following properties.
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Proposition 10 Let 0 � k � n and f 2 C1
�
�Iƒk

�
; then

� ^ f D 0 on @� ) � ^ df D 0 on @�

� y f D 0 on @� ) � y ıf D 0 on @�:

We will constantly use the integration by parts formula.

Theorem 11 (Integration by Parts Formula) Let 1 � k � n; f 2 C1.�Iƒk�1/
and g 2 C1

�
�Iƒk

�
: Then

Z

�

hdf I gi C
Z

�

h f I ıgi D
Z

@�

h� ^ f I gi D
Z

@�

h f I � y gi:

We will adopt the following notations.

Notation 12 Let � � R
n be open, r � 0 be an integer and 0 � q � 1 � p �

1: Spaces with vanishing tangential or normal component will be denoted in the
following way

Cr;q
T

�
�Iƒk

� D f f 2 Cr;q
�
�Iƒk

� W � ^ f D 0 on @�g
Cr;q
N

�
�Iƒk

� D f f 2 Cr;q
�
�Iƒk

� W � y f D 0 on @�g
WrC1;p

T

�
�Iƒk

� D f f 2 WrC1;p ��Iƒk
� W � ^ f D 0 on @�g

WrC1;p
N

�
�Iƒk

� D f f 2 WrC1;p ��Iƒk
� W � y f D 0 on @�g:

The different sets of harmonic fields will be denoted by

H �
�Iƒk

� D f f 2 W1;2
�
�Iƒk

� W df D 0 and ıf D 0 in �g
HT

�
�Iƒk

� D f f 2 H �
�Iƒk

� W � ^ f D 0 on @�g
HN

�
�Iƒk

� D f f 2 H �
�Iƒk

� W � y f D 0 on @�g:

We now list some properties of the harmonic fields.

Theorem 13 Let � � R
n be an open set. Then

H �
�Iƒk

� � C1 �
�Iƒk

�
:

Moreover if � is bounded and smooth, then the next statements are valid.

(i) The following inclusion holds

HT
�
�Iƒk

� [ HN
�
�Iƒk

� � C1 �
�Iƒk

�
:



The Pullback Equation 13

Furthermore if r � 0 is an integer and 0 � q � 1; then there exists C D C.r; �/
such that, for every f 2 HT

�
�Iƒk

� [ HN
�
�Iƒk

�
;

k fkWr;2 � Ck fkL2 and k fkCr;q � Ck fkC0 :

(ii) The spaces HT
�
�Iƒk

�
and HN

�
�Iƒk

�
are finite dimensional and closed in

L2
�
�Iƒk

�
:

(iii) Furthermore if � is contractible, then

HT
�
�Iƒk

� D f0g if 0 � k � n � 1

HN
�
�Iƒk

� D f0g if 1 � k � n:

(iv) If k D 0 or k D n and h 2 H �
�Iƒk

�
; then h is constant on each connected

component of�: In particularHT
�
�Iƒ0

� D f0g andHN .�Iƒn/ D f0g:
Remark 14 If k D 1 and assuming that � is smooth, then the sets HT and HN can
be rewritten, as usual by abuse of notations, as

HT
�
�Iƒ1

� D
�
f 2 C1 �

�IRn
� W
�

curl f D 0 and div f D 0

fi�j � fj�i D 0; 8 1 � i < j � n

�

HN
�
�Iƒ1

� D
�
f 2 C1 �

�IRn
� W
�

curl f D 0 and div f D 0Pn
iD1 fi�i D 0

�
:

Moreover if � is simply connected, then

HT
�
�Iƒ1

� D HN
�
�Iƒ1

� D f0g:

In particular if n D 2 and � D B1Ÿ f.0; 0/g ; then

f D �x2
x21 C x22

dx1 C x1
x21 C x22

dx2 2 HN
�
�Iƒ1

�
:

Proof We only prove the inclusion

H �
�Iƒk

� � C1 �
�Iƒk

�

which follows from Weyl Lemma (cf. for example [22]). Indeed let � 2 C1
0

�
�Iƒk

�

Z

�

h!I��i D
Z

�

h!I dı� C ıd�i D
Z

�

hd!I d�i C
Z

�

hı!I ı�i D 0

Choose � D ' dxI; ' 2 C1
0 .�/ and thus !I 2 C1.�/: �
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3.2 The Hodge-Morrey Decomposition

We now turn to the celebrated Hodge-Morrey (see [43–45]) decomposition and an
equivalent formulation (see [16] for details).

Theorem 15 (Hodge-Morrey Decomposition) Let � � R
n be a bounded open

smooth set and � be the exterior unit normal. Let 0 � k � n and f 2 L2
�
�Iƒk

�
:

Then there exist

˛ 2 W1;2
T

�
�Iƒk�1� ; ˇ 2 W1;2

T

�
�IƒkC1� ;

h 2 HT
�
�Iƒk

�
and ! 2 W2;2

T

�
�Iƒk

�

such that, in �;

f D d˛ C ıˇ C h; ˛ D ı! and ˇ D d!:

Moreover the decomposition is an orthogonal one, i.e.

Z

�

hd˛I ıˇi D
Z

�

hd˛I hi D
Z

�

hıˇI hi D 0:

Remark 16

(i) We have quoted only one of the three decompositions. Another one, completely
similar, is by replacing T by N and the other one mixing both T and N:

(ii) If k � n � 1 and if the domain� is contractible, then h D 0:

(iii) If k D 0; then the theorem reads as

f D ıˇ D ıd! D �! in � with ! D 0 on @�:

(iv) When k D 1 and n D 3; the decomposition reads as follows. For any f 2
L2.�IR3/; there exist

! 2 W2;2
�
�IR3� with !i�j � !j�i D 0 on @�; 8 1 � i < j � 3

˛ 2 W1;2
0 .�/ and ˛ D div!

ˇ 2 W1;2
�
�IR3� with ˇ D � curl! and h�Iˇi D 0 on @�

h 2
�
h 2 C1 �

�IR3� W
�

curl h D 0 and div h D 0

hi�j � hj�i D 0; 8 1 � i < j � 3

�

such that

f D grad˛ C curlˇ C h in �:

Furthermore if � is simply connected, then h D 0:
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(v) If f is more regular than in L2; then ˛; ˇ and ! are in the corresponding class of
regularity (see [7, 16, 44]). More precisely if, for example, r � 0 is an integer,
0 < q < 1 and f 2 Cr;q

�
�Iƒk

�
; then

˛ 2 CrC1;q ��Iƒk�1� ; ˇ 2 CrC1;q ��IƒkC1� and ! 2 CrC2;q ��Iƒk
�
:

(vi) The proof of Morrey uses the direct methods of the calculus of variations. One
minimizes

Df .!/ D
Z

�

�
1

2
jd!j2 C 1

2
jı!j2 C h f I!i

�

in an appropriate space, Gaffney inequality (see, for example, [14]) giving the
coercivity of the integral.

It turns out that the Hodge-Morrey decomposition is in fact equivalent to solving
the first order system

�
d! D f and ı! D g in �

� ^ ! D � ^ !0 on @�

or the similar one

�
d! D f and ı! D g in �

� y! D � y!0 on @�:

We here state a simplified version for the first system (see also [38, 54–56]).

Theorem 17 Let r � 0 and 1 � k � n � 2 be integers, 0 < q < 1 and � � R
n

be a bounded contractible open smooth set and with exterior unit normal �: The
following statements are then equivalent.

(i) Let g 2 Cr;q
�
�Iƒk�1� and f 2 Cr;q

�
�IƒkC1� be such that

ıg D 0 in �; df D 0 in � and � ^ f D 0 on @�:

(ii) There exists ! 2 CrC1;q ��Iƒk
�
; such that

�
d! D f and ı! D g in �

� ^ ! D 0 on @�:

Remark 18

(i) When k D n � 1; the result is valid provided

Z

�

f D 0:
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Note that in this case the conditions df D 0 and � ^ f D 0 are automatically
fulfilled.

(ii) Completely analogous results can be given for Sobolev spaces.
(iii) If the domain � is not contractible or if !0 ¤ 0; then additional necessary

conditions have to be added, namely � ^ !0 2 CrC1;q �@�IƒkC1� ;

� ^ d!0 D � ^ f on @�

and, for every � 2 HT
�
�IƒkC1� and  2 HT

�
�Iƒk�1� ;

Z

�

h f I�i �
Z

@�

h� ^ !0I�i D 0 and
Z

�

hgI i D 0:

(iv) When k D 1 and n D 3; the theorem reads as follows. Let � � R
3 be a

bounded contractible smooth open set, g 2 Cr;q
�
�
�

and f 2 Cr;q
�
�IR3� be

such that

div f D 0 in � and h f I �i D 0 on @�:

Then there exists ! 2 CrC1;q ��IR3� ; such that

�
curl! D f and div! D g in �
!i�j � !j�i D 0 8 1 � i < j � 3 on @�:

3.3 Poincaré Lemma

We now have a global version of Poincaré lemma with optimal regularity.

Theorem 19 Let r � 0 and 0 � k � n � 1 be integers, 0 < q < 1 and � � R
n be

a bounded open smooth set. The following statements are equivalent.

(i) Let f 2 Cr;q
�
�IƒkC1� ; be such that

df D 0 in � and
Z

�

h f I i D 0 for every  2 HN
�
�IƒkC1� :

(ii) There exists ! 2 CrC1;q ��Iƒk
�
; such that

d! D f in �:
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Moreover there exists a constant C D C .r; q; �/ such that

k!kCrC1;q � Ck fkCr;q :

Remark 20

(i) When k D n � 1 in Theorem 19, there is no restriction on the solvability of
d! D f (since df D 0 automatically and HN.�Iƒn/ D f0g).

(ii) If r D 0; then the conditions df D 0 have to be understood in the sense of
distributions.

(iii) The above results remain valid if � is CrC3;q:
(iv) The same result holds true for Sobolev spaces.
(v) The construction is linear and universal.

Proof (ii) ) (i). Suppose first that there exists ! 2 CrC1;q ��Iƒk
�

such that f D
d!: Clearly df D 0 and the other assertion follows by partial integration, since, for
every  2 HN ;

Z

�

h f I i D
Z

�

hd!I i D �
Z

�

h!I ı i C
Z

@�

h!I � y i D 0:

(i) ) (ii). Suppose now that

df D 0 in � and
Z

�

h f I i D 0 for every  2 HN.�IƒkC1/:

We then appeal to the dual version of Theorem 17 to solve the problem

�
d! D f and ı! D 0 in �

� y! D 0 on @�:

This concludes the proof. �

A much more elementary proof can be obtained in a star shaped domain if we
are ready to give up the gain of regularity. The formula is standard and the proof is
done by straightforward differentiation (see Dacorogna (unpublished, 2016)).

Theorem 21 Let 0 � k � n � 1; � � R
n be a star shaped (with respect to the

origin) open set and f 2 C1
�
�IƒkC1� be such that df D 0: Then F 2 C1

�
�Iƒk

�

defined by

F .x/ D
Z 1

0

Œx y f .t x/� tkdt

verifies dF D f :
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Remark 22

(i) The case k D 0 is the most classical and reads as

F .x/ D
nX

jD1

Z 1

0

	
xj fj .t x/



dt ) Fxi D fi (i.e. gradF D f ):

When k D 1 the formula becomes

Fj .x/ D
nX

iD1

Z 1

0

	
xi fij .t x/



t dt ) Fj

xi � Fi
xj D fij (i.e. curlF D f ).

(ii) Using the Hodge � operator, we have the dual version, namely if 1 � k � n and
' 2 C1

�
�Iƒk�1� is such that ı' D 0; then ˆ 2 C1

�
�Iƒk

�
defined by

ˆ.x/ D
Z 1

0

Œx ^ ' .t x/� tn�kdt

verifies ıˆ D ': In particular when k D 1 the formula reads as

ˆ.x/ D x
Z 1

0

Œ' .t x/� tn�1 dt ) divˆ D ':

3.4 Poincaré Lemma on the Boundary

We start with a slight improvement of a lemma proved in Dacorogna-Moser [30].

Lemma 23 Let r � 0 be an integer, 0 � q � 1 and � � R
n be a bounded open

CrC1;q set with exterior unit normal �: Let c 2 Cr;q .@�/ : Then there exists

b 2 CrC1;q ��
�

satisfying all over @�

grad b D c � and b D 0:

Furthermore there exists a constant C D C .r; �/ > 0 such that

kbkCrC1;q.�/ � C kckCr;q.@�/ :
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Proof If one is not interested in the sharp regularity result a solution of the problem
is given by

b .x/ D �c .x/ 	 .d .x; @�//

where c has been extended to � and d .x; @�/ stands for the distance from
x to the boundary (recalling that the distance function is as regular as the set
� near the boundary, see for example [34]) and 	 is a smooth function so that
	 .0/ D 0; 	 0 .0/ D 1 and 	 	 0 outside a small neighborhood of 0:

We give here a proof that uses elliptic regularity and hence only works whenever
0 < q < 1 (and also works in Lp for 1 < p < 1) in this case the constant
obtained depends also on q: Another proof exists which is valid also when q D 0; 1

(cf. [16]).
The desired solution b is obtained by solving

�
�2b D 0 in �

b D 0 and @b
@�

D c on @�:

The solution b is in C1 .�/\ CrC1;q ��
�

and satisfies the estimate

kbkCrC1;q.�/ � C kckCr;q.@�/ :

Clearly b solves on @�

grad b D c � and b D 0:

This concludes the proof. �

We now need a generalization of the above lemma to differential forms, as
achieved in [20].

Lemma 24 Let r � 0 and 1 � k � n � 1 be integers, 0 � q � 1 and � � R
n be a

bounded open CrC1;q set with exterior unit normal �:

(i) If c 2 Cr;q
�
@�Iƒk

�
is such that

� ^ c D 0 on @�;

then there exists b 2 CrC1;q ��Iƒk�1� satisfying all over @�

db D c; ıb D 0 and b D 0:

Moreover there exists a constant C D C .r; �/ > 0 such that

kbkCrC1;q.�/ � C kckCr;q.@�/ :
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(ii) If c 2 Cr;q.@�Iƒk/ is such that

� y c D 0 on @�;

then there exists b 2 CrC1;q ��IƒkC1� satisfying all over @�

ıb D c; db D 0 and b D 0:

Furthermore there exists a constant C D C .r; �/ > 0 such that

kbkCrC1;q.�/ � C kckCr;q.@�/ :

Remark 25

(i) If k D 0 in Statement (ii) (and analogously if k D n in Statement (i)) and
0 < q < 1; then it is easy to find b such that (and without any restriction on c)

ıb D c and db D 0 in �

where c has been extended to � with the appropriate regularity. Indeed choose
b D gradB where B solves

�
�B D c in �
B D 0 on @�:

(ii) The above result remains valid, with the same proof, in the Sobolev setting.
More precisely Statement (i) (and similarly for Statement (ii)) reads as follows.
Let r � 1 be an integer, 1 < p < 1 and � � R

n be a bounded open CrC1 set
with exterior unit normal �: Let c 2 Wr;p

�
�Iƒk

�
; then there exists

b 2 WrC1;p ��Iƒk�1�

satisfying all over @�

db D c; ıb D 0 and b D 0:

Moreover there exists a constant C D C.r; p; �/ > 0 such that

kbkWrC1;p.�/ � C kckWr�1=p;p.@�/ :

Proof Step 1. We start with the case (i). First solve with Lemma 23 the problem,
on @�;

grad bi1���ik�1 D .� y c/i1���ik�1 � and bi1���ik�1 D 0
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for every multiindex 1 � i1 < : : : < ik�1 � n and set

b D
X

1�i1<:::<ik�1�n

bi1���ik�1dxi1 ^ � � � ^ dxik�1 :

The classical formulas immediately imply that, on @�;

db D � ^ .� y c/ and ıb D � y .� y c/ D 0:

We combine the first equation with the hypothesis �^ c D 0 and use the fact that

c D � y .� ^ c/C � ^ .� y c/ D � ^ .� y c/

to get

db D � ^ .� y c/ D � ^ .� y c/C � y .� ^ c/ D c on @�

We have therefore proved the assertion.
Step 2. For (ii) we first solve, on @�;

grad bi1:::ikC1
D .� ^ c/i1:::ikC1

� and bi1���ikC1
D 0

and then proceed exactly as in Step 1. This concludes the proof of the lemma.
�

3.5 Poincaré Lemma with Dirichlet Boundary Data

We now consider the boundary value problems

�
d! D f in �
! D !0 on @�

and

�
ı! D g in �
! D !0 on @�:

In contrast to the problems studied in the previous sections ı! (respectively d!) is
not prescribed, but however both the tangential and normal components of ! are
given on the boundary. It turns out that the problems can be solved under exactly
the same hypotheses on f ; g and !0 as above. We follow exactly the construction
in Dacorogna [20] for Hölder spaces; a very similar method is used in Schwarz [51]
for Sobolev spaces.

Theorem 26 Let r � 0 and 0 � k � n�1 be integers, 0 < q < 1 and� � R
n be a

bounded connected open smooth set with exterior unit normal �: Let f W � ! ƒkC1:
Then the following statements are equivalent.
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(i) Let f 2 Cr;q
�
�IƒkC1� satisfy

df D 0 in �; � ^ f D 0 on @� (A1)

and, for every � 2 HT
�
�IƒkC1� ;

Z

�

h f I�i D 0: (A2)

(ii) There exists ! 2 CrC1;q ��Iƒk
�
such that

�
d! D f in �
! D 0 on @�

and there exists a constant C D C .r; q; �/ such that

k!kCrC1;q.�/ � Ck fkCr;q.�/ :

Remark 27

(i) Instead of imposing the boundary data to be 0 we can have any boundary data
!0 satisfying, in addition to df D 0;

� ^ d!0 D � ^ f on @�

and, for every � 2 HT
�
�IƒkC1� ;
Z

�

h f I�i D
Z

@�

h� ^ !0I�i :

(ii) In the case k D n � 1; the conditions (A1) are trivially satisfied, while (A2)
reads as

Z

�

f D 0:

(iii) When k D 0; then the result is still valid for q D 0; 1:

(iv) If r D 0; then the condition df D 0 is understood in the sense of distributions.
(v) The above results remain valid if the set � is CrC3;q:

(vi) If � is contractible, then HT
�
�Iƒk

� D f0g:
(vii) The construction is linear and universal.

(viii) Analogous results hold in Sobolev spaces.
(ix) If f has compact support, one can find (see Takahashi [52], following the

earlier work of Bogovski [6]) a solution ! with compact support and optimal
regularity.
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Proof The implication (ii) ) (i) is straightforward using partial integration,
cf. Theorem 11. To show the other implication, we first use Theorem 17 to find a
solution u 2 CrC1;q ��Iƒk

�
of the problem

�
du D f and ıu D 0 in �

� ^ u D 0 on @�:

Since � ^ u D 0; we can apply Lemma 24 Part (i) to find v 2 CrC2;q.�Iƒk�1/ such
that

dv D �u on @�:

We finally set ! D u C dv to obtain the result. �

We have now the dual version.

Theorem 28 Let r � 0 and 1 � k � n be integers, 0 < q < 1 and � � R
n be a

bounded connected open smooth set with exterior unit normal �: Let g W � ! ƒk�1:
Then the following claims are equivalent.

(i) Let g 2 Cr;q
�
�Iƒk�1� satisfy

ıg D 0 in �; � y g D 0 on @� (C1)

and, for every � 2 HN
�
�Iƒk�1� ;

Z

�

hgI�i D 0: (C2)

(ii) There exists ! 2 CrC1;q ��Iƒk
�
such that

�
ı! D g in �
! D 0 on @�

and there exists a constant C D C .r; q; �/ such that

k!kCrC1;q.�/ � CkgkCr;q.�/ :

Remark 29

(i) Instead of imposing the boundary data to be 0 we can have any boundary data
!0 satisfying, in addition to ıg D 0;

� y ı!0 D � y g on @�
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and, for every � 2 HN
�
�Iƒk�1� ;
Z

�

hgI�i D
Z

@�

h� y!0I�i :

(ii) In the case k D 1 (cf. Theorem 30 below), then ı! D div! and the
conditions (C1) are trivially satisfied, while (C2) reads as

Z

�

g D 0:

(iii) When k D n; then the result is still valid for q D 0; 1 with a simple argument.
(iv) If r D 0; then the condition ıg D 0 is understood in the sense of distributions.
(v) The above results remains valid if � is CrC3;q:

(vi) If � is contractible, then HN
�
�Iƒk

� D f0g:
(vii) The construction is linear and universal.

(viii) Analogous results hold in Sobolev spaces.

As a corollary, but it can be proved in a more direct way, we have the following.

Theorem 30 Let r � 0 be an integer and 0 < q < 1: Let � � R
n be a bounded

connected open CrC2;q set. The following conditions are then equivalent.

(i) f 2 Cr;q
�
�
�
satisfies

Z

�

f D 0:

(ii) There exists u 2 CrC1;q ��IRn
�
verifying

�
div u D f in �
u D 0 on @�:

(2)

Furthermore the correspondence f ! u can be chosen linear and there exists C D
C .r; q; �/ > 0 such that

kukCrC1;q � C k fkCr;q :

Remark 31

(i) The above theorem has been proved by several authors independently of the
general Poincaré lemma, see [6, 8, 20, 21, 30, 32, 33, 35, 36, 39, 40, 47, 53].

(ii) The result is false when r D q D 0; as established in [9, 24, 42] and [48].
(iii) Similar results (see [15]) can be obtained for the inhomogeneous problem

�
div u C haI ui D f in �

u D 0 on @�
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where a is a vector field and h:I :i stands for the scalar product in R
n: As a matter of

curiosity this last result has applications to nonlinear problems (cf. [23]) of the form

�
det r' .x/ D f .x; ' .x// x 2 �

' .x/ D x x 2 @�:

4 The Flow Method

We start by recalling a well known result of differential geometry. In the sequel we
will write

u D u .t; x/ D ut .x/ and ' D ' .t; x/ D 't .x/ :

Theorem 32 Let �1;�2 � R
n be open sets, T > 0 and 1 � k � n be an integer.

Let

u 2 C1 .Œ0;T� ��2IRn/ and ' 2 C1 .Œ0;T� ��1I�2/

be such that, in �1 ;

d

dt
't D ut ı 't D ut .t; 't .t; x// ; for every 0 � t � T: (3)

Then, for every f 2 C1
�
Œ0;T� ��2Iƒk

�
; the following equality holds in�1 and for

0 � t � T

d

dt
Œ'�

t . ft/� D '�
t

�
d

dt
ft C d.ut y ft/C ut y .dft/

�
(4)

where ut has been identified with a 1-form.

Remark 33

(i) The right-hand side of (4) is related to the so called Lie derivative which we
define now. Let u 2 C1.UIRn/ and f 2 C1.UIƒk/: The Lie derivative Lu . f / is
defined by

Lu . f / D d

dt

ˇ̌
ˇ̌
tD0

'�
t . f /
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where ' D ' .t; x/ D 't .x/ is the flow associated to the vector field u; that is

�
d
dt't D u ı 't
'0 D id

for t small enough. Cartan formula gives that

Lu . f / D d.u y f /C u y df :

(ii) When k D n the formula reads as

d

dt
Œ ft.'t/ det r't� D

�
.
d

dt
ft/.'t/C div. ftut/.'t/

�
det r't :

Proof We prove this result only for k D n: Note that when k D n; then necessarily
dft D 0 and (identifying as usual the .n � 1/-form ut y ft with a vector field whose
components have the appropriate sign)

d.ut y ft/ D div. ftut/:

Step 1. First recall the well known Abel formula. Any solution of

F0 .t/ D A .t/F .t/

satisfies

detF .t/ D ŒdetF .0/� exp

�Z t

0

traceA .s/ ds

�
:

It follows that in the nonlinear case (cf., for example, Theorem 7.2 in Chap. 1 of
Coddington-Levinson [13]) the solution of (3) satisfies

det r't .x/ D Œdet r'0 .x/� exp

�Z t

0

.div us/ .'s .x// ds

�
:

Since the right hand side of the above identity is C1 in t; we get

d

dt
Œdet r't .x/� D det r't .x/ � .div ut/ .'t .x// : (5)
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Step 2. Using (3), we obtain

d

dt
Œ'�

t . ft/� D d

dt
Œdet r't � ft.'t/�

D d

dt
Œdet r't� ft.'t/C det r't

�
.
d

dt
ft/.'t/C hrft.'t/I d

dt
'ti
�

and thus, appealing to (5), we find

d

dt
Œ'�

t . ft/� D det r't
�
.div ut/.'t/ � ft.'t/C .

d

dt
ft/.'t/C hrft.'t/I ut.'t/i

�

D det r't
�
.
d

dt
ft/.'t/C div. ftut/.'t/

�
D '�

t

�
d

dt
ft C div. ftut/

�

which concludes the proof. �

As a consequence we have the following result essentially established by Moser
[46].

Theorem 34 Let r � 1 and 1 � k � n be integers, 0 � q � 1; T > 0 and � � R
n

be a bounded open Lipschitz set. Let

u 2 Cr;q
�
Œ0;T� ��IRn

�
and f 2 Cr;q

�
Œ0;T� ��Iƒk

�

be such that, for every t 2 Œ0;T�;

ut D 0 on @�; dft D 0 in �

d.ut y ft/ D � d

dt
ft in �:

Then, for every t 2 Œ0;T�; the solution 't of
�

d
dt't D ut ı 't 0 � t � T
'0 D id

(6)

belongs to Diffr;q
�
�I�� ; satisfies 't D id on @� and

'�
t . ft/ D f0 in �:

Proof Standard results show that, for every 0 � t � T; the solution 't of (6) belongs
to Diffr;q.�I�/ and verifies 't D id on @�:Moreover, defining ' W Œ0;T��� ! �

by '.t; x/ D 't .x/ ; we have

' 2 Cr;q.Œ0;T� ��I�/:
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Using Theorem 32 and the hypotheses on ut and ft; we find that, in �;

d

dt
Œ'�

t . ft/� D '�
t

�
d

dt
ft C d.ut y ft/C ut y .dft/

�
D 0;

which implies the result since '0 D id : �

5 The Case of Volume Forms

5.1 Statement of the Problem

We start with the case k D n: We first observe that the local problem is here
elementary. Indeed if we want to solve (if g 	 1; the general case being treated
similarly)

'� .1/ D f , det r' D f

we just choose ' .x/ D �
'1 .x/ ; x2; � � � xn

�
where

'1 .x1; x2; � � � xn/ D
Z x1

f .t; x2; � � � xn/ dt:

Note however that this does not give the optimal regularity for ': A less trivial
problem, discussed in Theorem 39, concerns the case where several equations are
considered, namely for 1 � i � n

'� .gi/ D fi , gi .'/ det r' D fi :

In the case k D n we will therefore (apart from Theorem 39) discuss only the
global case which takes the following form. Given � a bounded open set in R

n and
f ; g W Rn ! R; we want to find ' W � ! R

n verifying

�
g.' .x// det r' .x/ D f .x/ x 2 �

' .x/ D x x 2 @�: (7)

Writing the functions f and g as volume forms through the straightforward
identification

g D g .x/ dx1 ^ � � � ^ dxn and f D f .x/ dx1 ^ � � � ^ dxn;
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the problem (7) can be written as

�
'�.g/ D f in �
' D id on @�

where '�.g/ is the pullback of g by ':
The following preliminary remarks are in order.

(i) The case n D 1 is completely elementary and is discussed in the section
below.

(ii) When n � 2; the equation in (7) is a non-linear first order partial differential
equation homogeneous of degree n in the derivatives. It is underdetermined,
in the sense that we have n unknowns (the components of ') and only one
equation. Related to this observation, we have that if there exists a solution
to our problem then there are infinitely many ones. Indeed, for example, if
n D 2;� is the unit ball and f D g D 1; the maps 'm (written in polar and in
Cartesian coordinates) defined by

'm .x/ D 'm .x1; x2/ D
�
r cos

�

 C 2m�r2

�

r sin
�

 C 2m�r2

�
�

D
�
x1 cos

�
2m�

�
x21 C x22

�� � x2 sin
�
2m�

�
x21 C x22

��

x2 cos
�
2m�

�
x21 C x22

��C x1 sin
�
2m�

�
x21 C x22

��
�

satisfy (7) for every m 2 Z:

(iii) An integration by parts, or, what amounts to the same thing, an elementary
topological degree argument immediately gives the necessary condition
(independently of the fact that ' is a diffeomorphism or not and of the fact
that ' .�/ contains strictly or not the domain�)

Z

�

f D
Z

�

g: (8)

In most of our analysis, it will turn out that this condition is also sufficient.
(iv) We will always assume that g > 0: If g is not strictly positive, then other

hypotheses than (8) are necessary; for example f cannot be strictly positive.
Indeed if for example f 	 1 and g is allowed to vanish even at a single point,
then no C1 solution of our problem exists. However in some very special
cases, one can deal with functions f and g that both change sign.

(v) We will however allow f to change sign, but the analysis is very different if
f > 0 or if f vanishes, even at a single point, let alone if it becomes negative.
The first problem will be discussed below, while the second is discussed in
[16] and [18]. One of the main differences is that in the first case any solution
of (7) is necessarily a diffeomorphism, while this is never true in the second
case.
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(vi) It is easy to see that any solution of (7) satisfies

'.�/ 
 � and '.�/ 
 �: (9)

If f > 0; we have, since ' is a diffeomorphism, that

'.�/ D � and '.�/ D �:

If this is not the case, then, in general the inclusions can be strict. This matter
is discussed in details in [16].

(vii) Problem (7) admits a weak formulation. Indeed if ' is a diffeomorphism, we
can write the equation g.'/ det r' D f as

Z

'.E/
g D

Z

E
f for every open set E � �

or equivalently

Z

�

g 	
�
'�1� D

Z

�

f 	 for every 	 2 C1
0 .�/ :

We observe that both new writings make sense if ' is only a homeomorphism.
(viii) The problem can be seen as a question of mass transportation. Indeed we

want to transport the mass distribution g to the mass distribution f ; without
moving the points of the boundary of�: In this context the equation is usually
written as

Z

E
g D

Z

'�1.E/
f for every open set E � �:

The problem of optimal mass transportation has received considerable attention. We
should point out that our analysis is not in this framework (except in an indirect way
in Sect. 5.6.4). The two main strong points of our analysis are that we are able to
find smooth solutions, sometimes with the optimal regularity, and to deal with fixed
boundary data.

5.2 The One Dimensional Case

As already said the case n D 1 is completely elementary, but it exhibits some
striking differences with the case n � 2: However it may shed some light on some
issues that we will discuss in the higher dimensional case. Let � D .a; b/ ;

F .x/ D
Z x

a
f .t/ dt and G .x/ D

Z x

a
g .t/ dt:
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Then Problem (7) becomes

�
G .' .x// D F .x/ if x 2 .a; b/
' .a/ D a and ' .b/ D b:

If G is invertible, and this happens if, for example, g > 0 and if

F .Œa; b�/ � G .R/ ; (10)

and this happens if, for example, g � g0 > 0; then the problem has the solution

' .x/ D G�1 .F .x// :

The necessary condition (8)

Z b

a
f D

Z b

a
g

ensures that

' .a/ D a and ' .b/ D b:

This very elementary analysis leads to the following conclusions.

(1) Contrary to the case n � 2; the necessary condition (8) is not sufficient. We
need the extra condition (10).

(2) The problem has a unique solution, contrary to the case n � 2:

(3) If f and g are in the space Cr; then the solution ' is in CrC1:
(4) If f > 0; then ' is a diffeomorphism from Œa; b� onto itself.
(5) If f is allowed to change sign, then, in general,

Œa; b� �
¤
' .Œa; b�/ :

For example, this always happens if f .a/ < 0 or f .b/ < 0:

5.3 The Case f � g > 0

We now discuss the problem (7) when f � g > 0: It will be seen that (8) is sufficient
to solve (7) and that any solution is in fact a diffeomorphism from� to �: This last
observation implies, in particular, a symmetry in f and g and allows us to restrict
ourselves, without loss of generality, to the case g 	 1: Our main result will be the
following.
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Theorem 35 (Dacorogna-Moser Theorem) Let r � 0 be an integer and 0 < q <
1: Let � � R

n be a bounded connected open CrC2;q set. Then the two following
statements are equivalent.

(i) The function f 2 Cr;q
�
�
�
; f > 0 in � and satisfies

Z

�

f D meas�:

(ii) There exists ' 2 DiffrC1;q
�
�I�� satisfying

�
det r' .x/ D f .x/ x 2 �

' .x/ D x x 2 @�:

Furthermore if c > 0 is such that

����
1

f

����
C0
; k fkC0;q � c;

then there exists a constant C D C .c; r; q; �/ > 0 such that

k' � idkCrC1;q � C k f � 1kCr;q :

The study of this problem originated in the seminal work of Moser [46].
This result has generated a considerable amount of work, notably by Banyaga
[3], Dacorogna [19], Reimann [49], Tartar (unpublished, 1978), Zehnder [58].
The above optimal theorem was obtained by Dacorogna-Moser [30], the estimate
is however in [16]. Posterior contributions can be found in Carlier-Dacorogna
[12], Rivière-Ye [50] and Ye [57]. Burago-Kleiner [10] and Mc Mullen [42],
independently, proved that the result is false if r D q D 0; suggesting that the
gain of regularity is to be expected only when 0 < q < 1:

Corollary 36 Let r � 0 be an integer and 0 < q < 1: Let � � R
n be a bounded

connected open CrC2;q set. Let f ; g 2 Cr;q
�
�
�
be such that f � g > 0 in � and

Z

�

f D
Z

�

g: (11)

Then there exists ' 2 DiffrC1;q
�
�I�� satisfying

�
g.' .x// det r' .x/ D f .x/ x 2 �

' .x/ D x x 2 @�: (12)
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Remark 37

(i) Recall that Diffr;q
�
�I�� denotes the set of diffeomorphisms ' so that

'
�
�
� D �;' 2 Cr;q

�
�IRn

�
and '�1 2 Cr;q

�
�IRn

�
:

(ii) If the domain is not connected, then the condition (11) has to hold on each
connected component.

(iii) The sufficient conditions are also necessary. More precisely if ' satisfies (12),
then necessarily, for non-vanishing f and g; we have f � g > 0 in � and (11)
holds. Moreover the function

f

g ı ' 2 Cr;q
�
�
�
;

hence, if one of the functions f or g is in Cr;q; then so is the other one.

Proof (Corollary 36) First find, by Theorem 35,

 1; 2 2 DiffrC1;q.�I�/

satisfying

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

det r 2 .x/ D f .x/meas�Z

�

f .x/ dx
x 2 �

det r 1 .x/ D g .x/meas�Z

�

g .x/ dx
x 2 �

 1 .x/ D  2 .x/ D x x 2 @�:

It is then easy to see that ' D  �1
1 ı  2 satisfies (12). �

There are other more constructive methods to solve the equation, cf. for example
Dacorogna-Moser [30]. These methods do not use the regularity of elliptic differen-
tial operators; in this sense they are more elementary. The drawback is that they do
not provide any gain of regularity, which is the strong point of the above theorem.
However the advantage is that they are much more flexible. For example, if we
assume in (7) that

supp. f � g/ � �

then we are able to find ' such that

supp.' � id/ � �:

In this last case see also [37].
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5.4 The Case with no Sign Hypothesis on f

We start by observing that if f vanishes even at a single point, then the solution '
cannot be anymore a diffeomorphism, though it can be a homeomorphism. In any
case if f is negative somewhere, it can never be a homeomorphism. Furthermore if
f is negative in some parts of the boundary, then any solution ' must go out of the
domain, more precisely

� �
¤
'.�/:

A special case of the theorem proved by Cupini-Dacorogna-Kneuss [18] is the
following.

Theorem 38 Let n � 2 and r � 1 be integers. Let B1 � R
n be the open unit ball.

Let f 2 Cr.B1/ be such that
Z

B1

f D measB1 :

Then there exists ' 2 Cr.B1IRn/ satisfying
�

det r' .x/ D f .x/ x 2 B1
' .x/ D x x 2 @B1 :

Furthermore the following conclusions also hold.

(i) If either f > 0 on @B1 or f � 0 in B1 ; then ' can be chosen so that

'.B1/ D B1 :

(ii) If f � 0 in B1 and f�1.0/ \ B1 is countable, then ' can be chosen as a

homeomorphism from B1 onto B1 :

5.5 Multiple Jacobian Equations

When dealing with several equations we have the following local result established
in [28].

Theorem 39 Let n; r � 2 be integers, x0 2 R
n and gi; fi 2 Cr .Rn/ ; 1 � i � n; be

such that gi .x0/ ; fi .x0/ ¤ 0 for every 1 � i � n;

rank

2

64

0

B@
r .g2=g1/

:::

r .gn=g1/

1

CA .x0/

3

75 D rank

2

64

0

B@
r . f2=f1/

:::

r . fn=f1/

1

CA .x0/

3

75 D n � 1 (13)
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and

gi
g1
.x0/ D fi

f1
.x0/ for every 2 � i � n: (14)

Part 1 (Existence and regularity). There exist a neighborhood U of x0 and ' 2
Diffr�1.UI'.U// such that ' .x0/ D x0 and

gi .'/ det r' D fi in U for every 1 � i � n: (15)

The regularity is, in general, optimal.

Part 2 (Uniqueness). Let h 2 Cr�1 .Rn/ be such that h .x0/ D 0 and

det

2
6664

0
BBB@

rh
r. f2=f1/

:::

r. fn=f1/

1
CCCA .x0/

3
7775 ¤ 0:

Let U be a neighborhood of x0 ; ' 2 Diffr�1.UI'.U// and  2 Diffr�1.UI .U//
be two solutions of (15) verifying

' D  on fx 2 U W h .x/ D 0g :

Then, up to further restricting U;

' 	  on U:

Remark 40

(i) The fact that the regularity that we obtain is optimal (even in Hölder spaces),
is, at first glance, surprising.

(ii) The hypothesis (14) is obviously necessary to have ' .x0/ D x0: The
hypothesis (13) (although not necessary in general) is very reasonable: for
example if n D 2 and g1 D g2 near x0 (and thus r.g2=g1/ D 0), then obviously
f2 has to be equal to f1 near x0 to be able to solve (15) and vice versa.

(iii) The solution in Part 1 of the previous theorem is easily seen not to be unique.
However (cf. Part 2) it becomes unique as soon as the value of the solution is
prescribed not only at the point x0 but on a .n � 1/ surface (near x0) compatible
with the data.

(iv) It is to be noted that the equivalent problem for 1 and 2 forms has already been
considered in Chap. 15 of [16] (for a particular case see Theorem 63).

Proof We discuss here only the existence part, for the other statements we refer to
[28]. With no loss of generality we can assume throughout the proof that x0 D 0:
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Obviously (15) is equivalent to ' .0/ D 0;

g1 .'/ det r' D f1 and
gi
g1
.'/ D fi

f1
if 2 � i � n:

For a 2 R
n we set va .x/ D haI xi : We claim that ' D G�1 ı F has all the desired

properties where

G D
�
va ;

g2
g1
; � � � ; gn

g1

�
and F D

�
u;

f2
f1
; � � � ; fn

f1

�

where a 2 R
n and u W R

n ! R are determined as follows. Using (13) we
can select a 2 R

n such that det rG .0/ ¤ 0 which immediately implies that
G 2 Diffr .B�IG .B�// for � > 0 small enough (B� being the ball centered at 0
and of radius �). Then, for any u 2 Cr�1 with u .0/ D 0; we have that ' D G�1 ı F
satisfies, using (14), ' .0/ D 0 and

gi
g1
.'/ D fi

f1
near 0; for every 2 � i � n:

In view of the previous considerations, it only remains to find u 2 Cr�1 such that
u .0/ D 0 and

g1 .'/ det r' D f1 near 0 (16)

(note that the above equation implies, in particular, that ' is a local diffeomorphism)
or equivalently

g1
�
G�1 ı F

� � �det r �G�1�� .F/ � det rF D f1 :

Let us investigate the terms in the left hand side of the last equation. Note that

g1.G
�1 ı F/ .x/ and

�
det r �

G�1�� .F .x//

have, respectively, the form

˛ .x; u .x// and ˇ .x; u .x//

where ˛ 2 Cr with ˛ .0; 0/ ¤ 0 and ˇ 2 Cr�1 with ˇ .0; 0/ ¤ 0: Finally, using (13),
we obtain that

det rF D hruIHi
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for some H 2 Cr�1 .RnIRn/ with H .0/ ¤ 0: We hence deduce that (16) can be
written, near 0; as

hru .x/ IH .x/i D � .x; u .x// D f1 .x/

˛ .x; u .x// ˇ .x; u .x//

where � 2 Cr�1: Using the method of characteristics, we can find, near 0; u 2 Cr�1
verifying the last equation as well as u .0/ D 0: This concludes the proof of the
existence part. �

5.6 Proof of the Main Theorem

Before proving Theorem 35 (without the estimates) we prove two intermediate
results.

5.6.1 The Flow Method

We first present the flow method introduced by Moser [46] (cf. also Sect. 4), who
did not however consider the boundary condition. Note that the theorem does not
provide the optimal regularity.

Theorem 41 Let r � 1 be a integer, 0 � q � 1 and � � R
n be a bounded

connected open CrC2;q set. Let also f 2 Cr;q
�
�
�
be such that f > 0 in � and

Z

�

f D meas�:

Then there exists ' 2 Diffr;q
�
�I�� satisfying

�
det r' .x/ D f .x/ x 2 �

' .x/ D x x 2 @�: (17)

Proof Define, for 0 � t � 1; x 2 �;

ft .x/ D .1 � t/f .x/C t

and

ut .x/ D u .x/

ft .x/
(18)
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where u 2 Cr;q
�
�IRn

�
(if 0 < q < 1; then u 2 CrC1;q ��IRn

�
) satisfies

�
div u D f � 1 in �

u D 0 on @�:
(19)

Such a u exists by Theorem 30 (cf. in particular the remark following the theorem)
or Theorem 30. Note however that ut (see (18)) is only in Cr;q (even if 0 < q < 1),
since f is only in Cr;q: Since (18) and (19) hold, we have

�
div.ut ft/ D � d

dt ft D f � 1 in �
ut D 0 on @�:

(20)

We can then apply Theorem 34 and have, defining �t W � ! R
n for every t 2 Œ0; 1�

as the solution of
8
<

:

d

dt
�t D ut ı �t 0 � t � 1

�0 D id;

that

' D �1

has all the desired properties. �

5.6.2 The Fixed Point Method

We now prove Theorem 36 when g 	 1 and under a smallness assumption on the
C0;s norm of f � 1: The following result is in Dacorogna-Moser [30] and follows
earlier considerations by Zehnder [58].

Theorem 42 Let r � 0 be an integer and 0 < s � q < 1: Let� � R
n be a bounded

connected open CrC2;q set. Let f 2 Cr;q
�
�
�
; f > 0 in � and

Z

�

f D meas�:

Then there exists � D � .r; q; s; �/ > 0 such that if k f � 1kC0;s � �; then there exists
' 2 DiffrC1;q

�
�I�� satisfying

�
det r' .x/ D f .x/ x 2 �

' .x/ D x x 2 @�: (21)
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Moreover there exists a constant c D c .r; q; s; �/ > 0 such that if k f � 1kC0;s � �;

then ' satisfies

k' � idkCrC1;q � c k f � 1kCr;q and k' � idkC1;s � c k f � 1kC0;s :

Proof For the convenience of the reader we will not use the abstract fixed point
theorem (cf. Theorem 81) but we will redo the proof. We divide the proof into two
steps.

Step1. We start by introducing some notations.

(i) Let

X D ˚
a 2 CrC1;q ��IRn

� W a D 0 on @�



Y D ˚
b 2 Cr;q

�
�
� W R�b D 0



:

Define L W X ! Y by La D div a: Note that L is well defined by the
divergence theorem. As seen in Theorem 30, there exist a bounded linear
operator L�1 W Y ! X and a constant K1 > 0; such that

LL�1 D id; in Y

��L�1b
��
C1;s

� K1 kbkC0;s (22)

��L�1b
��
CrC1;q � K1 kbkCr;q : (23)

(ii) Let for 
; any n � n matrix,

Q .
/ D det .I C 
/ � 1 � trace .
/ (24)

where I stands for the identity matrix. Note that Q is a sum of monomials of
degree t; 2 � t � n: Hence there exists a constant k > 0 such that, for every

; � 2 R

n�n;

jQ .
/ � Q .�/j � k
�
j
j C j�j C j
jn�1 C j�jn�1� j
 � �j :

With the same method, we can find (cf. Theorem 75) a constant K2 > 0 such
that if v;w 2 CrC1;q with kvkC1;s ; kwkC1;s � 1; then

kQ .rv/ � Q .rw/kC0;s � K2 .kvkC1;s C kwkC1;s/ kv � wkC1;s
kQ .rv/kCr;q � K2 kvkC1 kvkCrC1;q :

(25)
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Step 2. In order to solve (21) we set v .x/ D ' .x/ � x and we rewrite it as

�
div v D f � 1 � Q .rv/ in �

v D 0 on @�:
(26)

If we set

N .v/ D f � 1 � Q .rv/

then (26) is satisfied for any v 2 X with

v D L�1N .v/ : (27)

Note first that the equation is well defined (i.e. N W X ! Y), since if v D 0 on
@� then

R
�
N .v .x// dx D 0: Indeed from (24) we have that

Z

�

N .v .x// dx D
Z

�

Œ f .x/� 1 � Q .rv .x//� dx

D
Z

�

Œ f .x/C div v .x/ � det .I C rv .x//� dxI

since v D 0 on @� and
R
� f D meas�; it follows immediately that the right

hand side of the above identity is 0:
We now solve (27) by the contraction principle. We first let

B D
8
<

:u 2 CrC1;q ��IRn
� W

u D 0 on @�
kukC1;s � 2K1 k f � 1kC0;s

kukCrC1;q � 2K1 k f � 1kCr;q

9
=

; :

We endow B with the C1;s norm. We observe that B is complete and we will show
that by choosing k f � 1kC0;s small enough, then L�1N W B ! B is a contraction
mapping. The contraction principle will then immediately lead to a solution v 2
B and hence in CrC1;q of (27). Indeed let

k f � 1kC0;s � min

�
1

8K21K2
;
1

2K1

�
: (28)

If v;w 2 B (note that by construction 2K1 k f � 1kC0;s � 1), we will show that

��L�1N .v/� L�1N .w/
��
C1;s � 1

2
kv � wkC1;s (29)

��L�1N .v/
��
C1;s

� 2K1 k f � 1kC0;s ;
��L�1N .v/

��
CrC1;q � 2K1 k f � 1kCr;q :

(30)
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The inequality (29) follows from (22), (25) and (28) through

��L�1N .v/ � L�1N .w/
��
C1;s � K1 kN .v/ � N .w/kC0;s

D K1 kQ .rv/ � Q .rw/kC0;s
� K1K2 .kvkC1;s C kwkC1;s/ kv � wkC1;s
� 4K21K2 k f � 1kC0;s kv � wkC1;s

� 1

2
kv � wkC1;s :

To obtain the first inequality in (30) we observe that

��L�1N .0/
��
C1;s

� K1 kN .0/kC0;s D K1 k f � 1kC0;s

and hence combining (29) with the above inequality we have immediately the
first inequality in (30). To obtain the second one we just have to observe that

��L�1N .v/
��
CrC1;q � K1 kN .v/kCr;q � K1 k f � 1kCr;q CK1 kQ .rv/kCr;q (31)

and use the second inequality in (25) to get, recalling that v 2 B;

kQ .rv/kCr;q � K2 kvkC1 kvkCrC1;q � K2 kvkC1;s kvkCrC1;q

� 2K1K2 k f � 1kC0;s kvkCrC1;q :

The above inequality combined with (28) gives

kQ .rv/kCr;q � 1

4K1
kvkCrC1;q :

Combining this last inequality, (31) and the fact that v 2 B we deduce that

��L�1N .v/
��
CrC1;q � 2K1 k f � 1kCr;q :

Thus the contraction principle gives immediately the existence of a CrC1;q
solution.

It now remains to show that ' .x/ D v .x/C x is a diffeomorphism. This is a
consequence of the fact that det r' D f > 0 and ' .x/ D x on @�: The estimate
in the statement of the theorem follows by construction, since v 2 B: �

5.6.3 Proof of the Main Theorem

We prove Theorem 35, following the original proof of Dacorogna-Moser [30].
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Proof We divide the proof into three steps. The first step is to prove that .ii/ ) .i/
and the two others to prove the reverse implication.

Step 1. Assume that ' 2 DiffrC1;q
�
�I�� satisfies

�
det r' .x/ D f .x/ x 2 �

' .x/ D x x 2 @�:

Then clearly f 2 Cr;q
�
�
�
: We easily have that f > 0 in � and

Z

�

f D meas�:

Step 2 (approximation). We first approximate f 2 Cr;q by a function h 2 C1 �
�
�

with h > 0 in � so that
Z

�

f

h
D meas�

����
f

h
� 1

����
C0;q=2

� � (32)

where � is as in the statement of Theorem 42.
Step 3 (conclusion). Using (32) and Theorem 42 we can find '1 2
DiffrC1;q

�
�I�� a solution of

8
<

:
det r'1 .x/ D f .x/

h .x/
x 2 �

'1 .x/ D x x 2 @�:

We further let '2 2 DiffrC1;q
�
�I�� to be a solution of

�
det r'2 .y/ D h

�
'�1
1 .y/

�
y 2 �

'2 .y/ D y y 2 @�:

Such a solution exists by Theorem 41, since h ı '�1
1 2 CrC1;q ��

�
and

Z

�

h
�
'�1
1 .y/

�
dy D

Z

�

h .x/ det r'1 .x/ dx D
Z

�

f .x/ dx D meas�:

Finally observe that the function ' D '2 ı '1 has all the claimed properties. �
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5.6.4 An Alternative Proof

We here outline the approach of Carlier-Dacorogna [12] using known results on
Monge-Ampère equation. The proof that we briefly discuss below is the nonlinear
analogue of the solution (for zero mean f ) of

div' D f in � and ' D 0 on @�:

Indeed, the “optimal” way to solve this linear problem (cf. Theorem 30) is to look
for solutions of the form ' D rˆC s:

(i) We first solve the Neumann problem

�ˆ D f in � and
@ˆ

@�
D 0 on @�:

(ii) We next seek s so that div s D 0 (cf. Lemma 24) and

s D �rˆ on @�:

We proceed similarly for the nonlinear problem. We look for solutions of the
form ' D s ı rˆ:
(i) We first solve, using Caffarelli result [11],

det r2ˆ D f in �; ˆ convex and rˆ.�/ D �:

(ii) We then find s such that

det rs D 1 in � and s D rˆ�1 D rˆ� on @� (33)

where ˆ� is the Legendre transform of ˆ: This last construction goes as
follows.

– We first solve, using again [11],

det r2‰t D .1 � t/C t det rˆ� in �; ‰t convex and r‰t.�/ D �:

Note that r‰0 D I while r‰1 D rˆ�:
– We next find wt through

wt .r‰t/ D d

dt
r‰t :

It is easy to see that hwtI �i D 0 on @�:
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– We then solve (cf. Theorem 30)

div vt D � divwt in � and vt D 0 on @�:

This is possible since hwtI �i D 0 on @�:
– Letting ut D vt C wt ; we define st by the flow method (cf. Theorem 41)

d

dt
st D ut .st/ and s0 D id :

By construction det rst 	 1 and, by uniqueness, st D r‰t on @�: The map
s D s1 therefore solves (33).

6 The Case k D 2

Our best results besides the ones for volume forms are in the case k D 2:

6.1 The Case of Constant Forms

Recall what we have seen in the introduction. To any 2-form g

g D
X

1�i<j�n

gij dx
i ^ dxj

we can associate, in a unique way, a skew symmetric matrix G D �
gij
� 2 R

n�n (i.e.
Gt D �G). We therefore have, if we choose ' .x/ D Ax;

'� .g/ D f , AGAt D F:

The following theorem is standard in linear algebra (cf. Theorem 65 for a sharper
version).

Theorem 43 Let F;G 2 R
n�n be two skew symmetric matrices with

rankG D rankF D 2m � n:

Then there exists an invertible matrix A 2 R
n�n such that AGAt D F:
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The theorem says, in particular, that any skew symmetric matrix of rank 2m is
equivalent to the canonical matrix Jm given by

Jm D

0
BBBBBBBBBBBBB@

�
0 1

�1 0
�

� � � 0 0 � � � 0
:::

: : :
:::

::: � � � :::
0 � � �

�
0 1

�1 0
�
0 � � � 0

0 � � � 0 0 � � � 0
::: � � � :::

:::
: : :

:::

0 � � � 0 0 � � � 0

1
CCCCCCCCCCCCCA

:

6.2 Darboux Theorem with Optimal Regularity

The following result is the classical Darboux theorem [31] (for the importance of
this problem in symplectic geometry see, for example, [41]) for closed 2-forms
but with optimal regularity. This is a delicate point and it has been obtained by
Bandyopadhyay-Dacorogna [1]. The other existing results provide solutions that
are, at best, only in Cr;q; while in the theorem below we find a solution which
belongs to CrC1;q:

Theorem 44 (Darboux Theorem with Optimal Regularity) Let r � 0 and n D
2m � 4 be integers. Let 0 < q < 1 and x0 2 R

n: Let !m be the standard symplectic
form

!m D
mX

iD1
dx2i�1 ^ dx2i:

Let ! be a 2-form. The two following statements are then equivalent.

(i) The 2-form ! is closed, is in Cr;q in a neighborhood of x0 and verifies

rank Œ! .x0/� D n:

(ii) There exist a neighborhood U of x0 and ' 2 DiffrC1;q.UI' .U// such that

'� .!m/ D ! in U and ' .x0/ D x0 :
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Remark 45

(i) When r D 0; the hypothesis d! D 0 is to be understood in the sense of
distributions.

(ii) The theorem is still valid when n D 2; but it is then the result of Dacorogna-
Moser [30] (cf. Theorem 36).

(iii) One possible proof of the theorem could be to use Theorem 56 with n D 2m;
i.e. the result for 1-forms. We however will go the other way around and prove
Theorem 56 using Theorem 44.

Proof The necessary part is obvious and we discuss only the sufficient part. We
divide the proof into four steps.

Step 1. Without loss of generality we can always assume (cf. Theorem 43) that

x0 D 0 and ! .0/ D !m :

Step 2. Our theorem will follow from Theorem 81. So we need to define the
spaces and the operators and then check all the hypotheses.

1) We choose V a sufficiently small ball centered at 0 and we define the sets

X1 D C1;q.VIRn/ and Y1 D C0;q.VIƒ2/

X2 D CrC1;q.VIRn/ and Y2 D fb 2 Cr;q.VIƒ2/ W db D 0 in Vg:

It is easy to see that .HXY/ of Theorem 81 is fulfilled.
2) Define L W X2 ! Y2 by

La D dŒay!m� D b:

We will show that there exists L�1 W Y2 ! X2 a linear right inverse of L and
a constant C1 D C1.r; q;V/ such that

kL�1bkXi � C1kbkYi for every b 2 Y2 and i D 1; 2:

Once shown this, .HL/ of Theorem 81 will be satisfied. First, using
Theorem 19, find w 2 CrC1;q.VIƒ1/ and C1 D C1 .r; q;V/ > 0 such that

dw D b in V

kwkCrC1;q � C1 kbkCr;q and kwkC1;q � C1 kbkC0;q :

Moreover the correspondence b ! w can be chosen to be linear. Next,
define a 2 CrC1;q.VIRn/ by

a2i�1 D w2i and a2i D �w2i�1; 1 � i � m
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and note that

a y!m D w:

Finally, defining L�1 W Y2 ! X2 by L�1.b/ D a; we easily check that L�1 is
linear,

L L�1 D id on Y2

and

kL�1bkXi � C1kbkYi for every b 2 Y2 and i D 1; 2:

So that .HL/ of Theorem 81 is satisfied.
3) We then let Q be defined by

Q.u/ D !m � .id Cu/�!m C d Œu y!m� :

Since

d Œu y!m� D
mX

iD1

	
du2i�1 ^ dx2i C dx2i�1 ^ du2i




!m�.id Cu/�!m D
mX

iD1

	
dx2i�1 ^ dx2i� �dx2i�1 C du2i�1

� ^ �dx2i C du2i
�


we get

Q.u/ D �
mX

iD1
du2i�1 ^ du2i:

4) Note that Q .0/ D 0 and dQ.u/ D 0 in V: Appealing to Theorem 75, there
exists a constant C2 D C2 .r;V/ such that, for every u; v 2 CrC1;q.�IRn/;

the following estimates hold

kQ.u/ � Q.v/kC0;q �
mX

iD1
kdu2i�1 ^ du2i � dv2i�1 ^ dv2ikC0;q

�
mX

iD1
kdu2i�1 ^ �du2i � dv2i

� kC0;q

C
mX

iD1
k �dv2i�1 � du2i�1

� ^ dv2ikC0;q

� C2.kukC1;q C kvkC1;q/ku � vkC1;q
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and

kQ.u/kCr;q �
mX

iD1
kdu2i�1 ^ du2ikCr;q

� C
mX

iD1

	kdu2i�1kCr;qkdu2ikC0 C kdu2ikCr;qkdu2i�1kC0



� C2kukC1;qkukCrC1;q :

We therefore see that property
�
HQ
�

is valid for every � and we choose
� D 1= .2n/ ; where c D C2 :

5) Setting ' D id Cu; we can rewrite the equation '� .!m/ D ! as

Lu D d Œu y!m� D ! � .id Cu/�!m C d Œu y!m�

D ! � !m C Œ!m � .id Cu/�!m C d Œu y!m��

D ! � !m C Q.u/:

Step 3. We may now apply Theorem 81 and get that there exists  2
DiffrC1;q.VI �V�/ such that

 � .!m/ D ! in V and kr � IkC0 � 1= .2n/ ;

provided

k! � !mkC0;q � 1

2C1 maxf4C1C2 ; 2ng : (34)

Setting ' .x/ D  .x/ �  .0/ ; we have indeed proved that there exists ' 2
DiffrC1;q.VI' �V�/ satisfying

'� .!m/ D ! in V; kr' � IkC0 � 1= .2n/ and ' .0/ D 0 :

Step 4. We may now conclude the proof of the theorem.
Step 4.1. Let 0 < � < 1 and define

!� .x/ D ! .�x/ :

Observe that !� 2 Cr;q.VIƒ2/; d!� D 0; !� .0/ D !m and

k!� � !mkC0;q.V/ ! 0 as � ! 0:
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Choose � sufficiently small so that

k!� � !mkC0;q.V/ � 1

2C1 maxf4C1C2 ; 2ng :

Apply Step 3 to find  � 2 DiffrC1;q.VI �
�
V
�
/ satisfying

 �
� .!m/ D !� in V; kr � � IkC0 � 1= .2n/ and  � .0/ D 0 :

Step 4.2. Let

�� .x/ D x

�

and define

' D �  � ı �� :

Define U D �V: It is easily seen that ' 2 CrC1;q.UI' .U//

'� .!m/ D ! in U and ' .0/ D 0:

Note in particular that

kr' � IkC0.U/ D kr � � IkC0.V/ � 1= .2n/

and therefore det r' > 0 in U:Hence, restricting U; if necessary, we can assume
that ' 2 DiffrC1;q.UI' .U//: This concludes the proof of the theorem. �

6.3 Darboux Theorem for Lower Rank Forms

We next discuss the case of forms of lower rank. This is also well known in the
literature. However our theorem (proved in [2] by Bandyopadhyay-Dacorogna-
Kneuss) provides, as the previous theorem, one class higher degree of regularity
than the other results. Indeed in all other theorems it is proved that if ! 2 Cr;q;

then, at best, ' 2 Cr�1;q: It may appear that the theorem below is still not optimal,
since it only shows that ' 2 Cr;q when ! 2 Cr;q: But since there are some missing
variables, it is probably the best possible regularity (in [17], we can allow in the
theorem below q D 0; 1).



50 B. Dacorogna

Theorem 46 Let n � 3; r;m � 1 be integers and 0 < q < 1: Let x0 2 R
n and !m

be the standard symplectic form with rank Œ!m� D 2m < n; namely

!m D
mX

iD1
dx2i�1 ^ dx2i:

Let ! be a Cr;q closed 2-form such that

rank Œ!� D 2m in a neighborhood of x0 :

Then there exist a neighborhood U of x0 and ' 2 Diffr;q.UI' .U// such that

'� .!m/ D ! in U and ' .x0/ D x0 :

Proof Step 1. Without loss of generality, we can assume x0 D 0: We first
find, appealing to Theorem 47 below, a neighborhood V � R

n of 0 and  2
Diffr;q.VI .V// with  .0/ D 0 and

 � .!/ .x1; � � � ; xn/ D e! .x1; � � � ; x2m/ D
X

1�i<j�2m
e!ij .x1; � � � ; x2m/ dxi ^ dxj:

Therefore  � .!/ D e! 2 Cr�1;q in a neighborhood of 0 in R
2m and rank Œe!� D

2m in a neighborhood of 0:
Step 2. We then apply Theorem 44 to e! and find a neighborhood W � R

2m of 0
and � 2 Diffr;q.WI� .W//; with � .0/ D 0; such that

�� .!m/ D e! in W:

We set

e� .x/ De� .x1; � � � ; x2m; x2mC1; � � � ; xn/ D .� .x1; � � � ; x2m/ ; x2mC1; � � � ; xn/

We then choose V smaller, if necessary, so that

V � W � R
n�2m:

We finally have that U D  .V/ and ' De�ı �1 have all the desired properties.
�
In the above theorem we used a very useful result (cf. Theorem 4.5 in [16]).

Theorem 47 (Reduction of Dimension) Let r � 1; 1 � k � l � n�1 be integers
and x0 2 R

n: Let g be a Cr k-form verifying

dg D 0 and rank Œg� D l in a neighborhood of x0 :
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Then, there exist a neighborhood U of x0 and ' 2 Diffr.UI'.U// with ' .x0/ D x0
and such that, for every x D .x1; � � � ; xn/ 2 U;

'� .g/ .x1; � � � ; xn/ D f .x1; � � � ; xl/
D

X

1�i1<���<ik�l

fi1���ik .x1; � � � ; xl/ dxi1 ^ � � � ^ dxik :

Thus f D '� .g/ can be seen as a k-form with maximal rank (i.e. rank Œ f � D l) on
R

l:

Remark 48

(i) The result is still valid in Hölder spaces.
(ii) Note that '�.g/ is only in Cr�1 although g 2 Cr:

6.4 A Global Result

6.4.1 The Main Result

We now state our main theorem. It has been obtained under slightly more restrictive
hypotheses by Bandyopadhyay-Dacorogna [1]; as stated it is due to Dacorogna-
Kneuss [27]. We will only outline the main steps of the proof (for complete details
see [16]).

Theorem 49 Let n > 2 be even and � � R
n be a bounded open smooth set with

exterior unit normal �: Let 0 < q < 1 and r � 1 be an integer. Let f ; g 2 Cr;q.�Iƒ2/

satisfying df D dg D 0 in �;

� ^ f ; � ^ g 2 CrC1;q �@�Iƒ3
�

and � ^ f D � ^ g on @�

Z

�

h f I i dx D
Z

�

hgI i dx; for every  2 HT.�Iƒ2/ (35)

and, for every t 2 Œ0; 1� ;

rank Œtg C .1 � t/ f � D n; in �:

Then there exists ' 2 DiffrC1;q
�
�I�� such that

'� .g/ D f in � and ' D id on @�:
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Remark 50

(i) We can consider, in a similar way, a general homotopy ft with f0 D f ; f1 D g;

dft D 0; � ^ ft D � ^ f0 on @� and rank Œ ft� D n in �

Z

�

h ftI i dx D
Z

�

h f0I i dx; for every  2 HT.�Iƒ2/:

Note that the non-degeneracy condition rank Œ ft � D n implies (identifying, as usual,
volume forms with functions)

f n=2 � gn=2 > 0 in �:

(ii) The non-degeneracy condition

rank Œtg C .1 � t/ f � D n; for every t 2 Œ0; 1�

is equivalent to the condition that the matrix .g/
�
f
��1

has no negative
eigenvalues.

(iii) If� is contractible, then HT.�Iƒ2/ D f0g and therefore (35) is automatically
satisfied.

(iv) Note that the extra regularity on f and g holds only on the boundary and only
for their tangential parts. More precisely recall that, for x 2 @�; we denote by
� D � .x/ the exterior unit normal to �: By

� ^ f 2 CrC1;q.@�Iƒ3/

we mean that the tangential part of f is in CrC1;q; namely the 3-form F defined
by

F .x/ D � .x/ ^ f .x/

is such that

F 2 CrC1;q.@�Iƒ3/:

(v) If the support of . f � g/ is compact in �; then one can find a diffeomorphism
' such that the support of .' � id/ is also compact in �; see [37].

The proof of Theorem 49 follows the same pattern as that of the case k D n
(cf. Theorem 35). In the first step (cf. Theorem 51) we establish the result, through
the flow method, but without the optimal regularity. We next (cf. Theorem 52) prove
the result under a smallness assumption. We finally combine the two intermediate
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theorems to get the claim. The technical details are however more delicate than those
for the case k D n and we prove only the first step and refer for details to [16].

6.4.2 The Flow Method

We now state and prove a weaker version, from the point of view of regularity, of
Theorem 49. It has, however, the advantage of having a simple proof. It has been
obtained by Bandyopadhyay-Dacorogna [1].

Theorem 51 Let n > 2 be even and� � R
n be a bounded smooth set with exterior

unit normal �: Let r � 1 be an integer, 0 < q < 1 and let f ; g 2 Cr;q.�Iƒ2/ satisfy

df D dg D 0 in �; � ^ f D � ^ g on @�
Z

�

h f I i dx D
Z

�

hgI i dx; for every  2 HT.�Iƒ2/

rank Œtg C .1 � t/ f � D n; in � and for every t 2 Œ0; 1� :

Then there exists ' 2 Diffr;q
�
�I�� such that

'� .g/ D f in � and ' D id on @�:

Proof We first find w 2 CrC1;q.�Iƒ1/ (cf. Theorem 26) such that

�
dw D f � g in �

w D 0 on @�:

Since rank Œ tg C .1 � t/ f � D n; we can find ut 2 Cr;q.�IRn/ so that

ut y Œ tg C .1 � t/ f � D w , ut D 	
tg C .1 � t/ f


�1
w:

We then apply Theorem 34 to ut and ft D tg C .1 � t/ f to find ' satisfying

'� .g/ D f in � and ' D id on @�:

The proof is therefore complete. �

6.4.3 The Fixed Point Method

As for the case of volume forms k D n; the second step in the proof is to obtain the
theorem under a smallness condition on g and f : The case k D 2 is however more
delicate and we refer to [16] for details of the proof of next theorem.
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Theorem 52 Let n > 2 be even and � � R
n be a bounded open smooth set. Let

r � 1 be an integer and 0 < s � q < 1: Let g 2 CrC1;q.�Iƒ2/ and f 2 Cr;q.�Iƒ2/

be such that

df D dg D 0 in �; � ^ f D � ^ g on @�
Z

�

h f I i dx D
Z

�

hgI i dx for every  2 HT.�Iƒ2/

rank Œg� D n in �:

Let c > 0 be such that

kgkC0 ;
����

1

Œ g �n=2

����
C0

� c

and define


 .g/ D 1

kgk2
C1;s

min

�
kgkC1;s ; 1

kgkC2;s
;

1

kgkCrC1;q

�
:

There exists C D C.c; r; q; s; �/ > 0 such that if

k f � gkC0;s � C
 .g/ and k f � gkC0;s � C
k f � gkCr;q

kgkC1;s kgkCrC1;q

(36)

then there exists ' 2 DiffrC1;q
�
�I�� verifying

'� .g/ D f in � and ' D id on @�: (37)

Furthermore there exists eC D eC.c; r; q; s; �/ > 0 such that

k' � id kCrC1;q � eCkgkCrC1;qk f � gkCr;q :

Remark 53 Note that since g 2 CrC1;q.�Iƒ2/ and � ^ f D � ^ g on @�; then
� ^ f 2 CrC1;q.@�Iƒ3/:

7 The Other Cases and Necessary Conditions

7.1 The Cases k D 0 and k D 1

We start with the case k D 0 which is particularly elementary. The first theorem is
of a local nature.
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Theorem 54 Let r � 1 be an integer, x0 2 R
n and f ; g 2 Cr in a neighborhood of

x0 and such that f .x0/ D g .x0/ ;

rf .x0/ ¤ 0 and rg .x0/ ¤ 0:

Then there exists a neighborhood U of x0 and ' 2 Diffr .UI' .U// such that

'� .g/ D f in U and ' .x0/ D x0 :

We now have the following global result.

Theorem 55 Let � � R
n be a bounded open Lipschitz set. Let r � 1 be an integer

and f ; g 2 Cr
�
�
�
with f D g on @� and

@f

@xi
� @g
@xi

> 0 in �

for a certain 1 � i � n: Then there exists a diffeomorphism ' 2 Diffr
�
�I��

satisfying

'� .g/ D f in � and ' D id on @�:

Both results extend in a straightforward way to the case of closed 1-forms.
We now give a theorem for non-closed 1-forms. It can be considered as the 1-

form version of Darboux theorem. It is easy to see that it leads to Darboux theorem
for closed 2-forms.

Theorem 56 Let 2 � 2m � n be integers, x0 2 R
n and ! be a C1 1-form such

that !.x0/ ¤ 0 and

rankŒd!� D 2m in a neighborhood of x0 ;

Then there exist an open set U and ' 2 Diff1.UI' .U// such that ' .U/ is a
neighborhood of x0 and

'�.!/ D
�

�m .x/ if ! ^ .d!/m D 0 in a neighborhood of x0
�m .x/C dx2mC1 if ! ^ .d!/m ¤ 0 in a neighborhood of x0

where

�m .x/ D
mX

iD1
x2i�1dx2i:
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Remark 57

(i) We recall that

.d!/m D d! ^ � � � ^ d!„ ƒ‚ …
m times

:

(ii) Note that if n D 2m; then ! ^ .d!/m 	 0:

(iii) Without further hypothesis it is, in general, impossible to guarantee that
' .x0/ D x0 :

(iv) Of particular interest is the case of contact forms where n D 2m C 1 and
! ^ .d!/m ¤ 0; see [29] for some improvements on the result.

7.2 The Case k D n � 1

We have the following result (cf. Bandyopadhyay-Dacorogna-Kneuss [2]).

Theorem 58 Let x0 2 R
n and f be a .n � 1/-form such that f 2 C1 in a

neighborhood of x0 and f .x0/ ¤ 0: Then there exist an open set U and

' 2 Diff1.UI' .U//

such that ' .U/ is a neighborhood of x0 and

f D
� r'1 ^ � � � ^ r'n�1 if df D 0 in a neighborhood of x0
'n
�r'1 ^ � � � ^ r'n�1� if df ¤ 0 in a neighborhood of x0 :

Remark 59

(i) The statement can be rewritten as follows

f D
�
'� �dx1 ^ � � � ^ dxn�1� if df D 0

'� �xn dx1 ^ � � � ^ dxn�1� if df ¤ 0:

The present theorem, when df D 0; is a consequence of a theorem which is
valid for k-forms of rank k:

(ii) With our usual abuse of notations, identifying a .n � 1/-form with a vector
field and observing that the d operator can then be essentially identified with
the divergence operator, we can rewrite the theorem as follows (compare with
Barbarosie [4]). For any C1 vector field f such that f .x0/ ¤ 0; there exist an
open set U and

' 2 Diff1.UI' .U//
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such that ' .U/ is a neighborhood of x0 and

f D
� � �r'1 ^ � � � ^ r'n�1� if div f D 0

� �'n
�r'1 ^ � � � ^ r'n�1�� if div f ¤ 0

where � denotes the Hodge � operator.
(iii) When df D 0 we can also ensure that '.x0/ D x0 I but not, in general, when

df ¤ 0:

7.3 The Case 3 � k � n � 2

We now turn to the case 3 � k � n � 2 which is, as previously said, much more
difficult. This is so already at the algebraic level, since there are no known canonical
forms. In particular the rank is not the only invariant (cf. Remark 4). And even when
the algebraic setting is simple, the analytical situation is more complicated than in
the cases k D 0; 1; 2; n � 1; n: We give three examples; the first two are purely
algebraic and the third one is more analytic.

Example 60 (Example 2.36 in [16]) When k D 3; the forms

f D e1 ^ e2 ^ e3 C e4 ^ e5 ^ e6

g D e1 ^ e2 ^ e3 C e1 ^ e4 ^ e5 C e2 ^ e4 ^ e6 C e3 ^ e5 ^ e6

have both rank D 6; but there is no A 2 GL.6/ so that

A� .g/ D f :

Example 61 (Example 2.35 in [16]) Similarly and more strikingly, when k D 4

and

f D e1 ^ e2 ^ e3 ^ e4 C e1 ^ e2 ^ e5 ^ e6 C e3 ^ e4 ^ e5 ^ e6

there is no A 2 GL.6/ such that

A�. f / D �f

although

rank Œ f � D rank Œ�f � D 6:
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Example 62 (Proposition 15.14 in [16]) Although every constant 3-form of rank D
5 is a linear pullback of

f D dx1 ^ dx2 ^ dx5 C dx3 ^ dx4 ^ dx5

we have the following result. There exists g 2 C1.R5Iƒ3/ with

dg D 0 and rankŒg� D 5 in R
5

namely

g D �dx1 ^ dx2 ^ dx5 C
�
.x3/

2 C 1
�
dx1 ^ dx3 ^ dx4 C

�
.x3/

4 C 1
�
dx2 ^ dx3 ^ dx4

which cannot be pulled back locally by a diffeomorphism to f :

The only cases that we are able to study are those that are combinations of 1 and
2-forms that we can handle separately. For 1-forms, we easily obtain local as well as
global results. We now give a simple theorem (more general statements can be found
in [16]) that deals with 3-forms obtained by product of a 1-form and a 2-form (in
the same spirit, we can deal with some k-forms that are product of 1 and 2-forms).

Theorem 63 Let n D 2m � 4 be integers, x0 2 R
n and f be a C1 symplectic (i.e.

closed and with rankŒ f � D n) 2-form and a be a non-zero closed C11-form. Then
there exist a neighborhood U of x0 and ' 2 Diff1.UI'.U// such that '.x0/ D x0
and

'�.!m/ D f and '�.dxn/ D a; in U

where

!m D
mX

iD1
dx2i�1 ^ dx2i:

In particular if

G D
"
m�1X

iD1
dx2i�1 ^ dx2i

#
^ dxn D !m ^ dxn

then

'�.G/ D f ^ a; in U:
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7.4 Necessary Conditions

We point out the following necessary conditions.

Theorem 64 Let� � R
n be a bounded open smooth set and ' 2 Diff1

�
�I' ���� :

Let 1 � k � n; f 2 C1
�
�Iƒk

�
and g 2 C1.'

�
�
� Iƒk/ be such that

'� .g/ D f in �:

(i) For every x 2 �; then

rank Œg .' .x//� D rank Œ f .x/� and rank Œdg .' .x//� D rank Œdf .x/� :

In particular

dg D 0 in ' .�/ , df D 0 in �:

(ii) If ' .x/ D x for x 2 @�; then

� ^ f D � ^ g on @�

where � is the exterior unit normal to �:

8 Selection Principle Via Ellipticity

We now very briefly discuss the question of selecting one specific solution of the
pullback equation. The problem for k D n has been intensively studied in the context
of optimal mass transportation, but very little for general forms (see [25]). We here
discuss (following [26]) the choice that can be made by considering appropriate
elliptic systems in the cases k D n and k D 2:

8.1 The Case k D n

When k D n a natural choice, which is the one obtained via optimal mass
transportation, is ' D rˆ transforming the pullback equation '� .g/ D f to the
celebrated Monge-Ampère equation

g .rˆ.x// det r2ˆ .x/ D f .x/ :
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This equation, when coupled with appropriate boundary conditions, leads to
uniqueness as well as regularity. In order to understand better the case k D 2; we
rephrase the earlier considerations in the following way. For the sake of simplicity
we assume that g 	 1; transforming the pullback equation to the single equation
det r' D f :We then couple this equation to the Œn .n � 1/ =2� equations curl' D 0:

It turns out that this system, when restricted to maps such that r' C .r'/t > 0; is
elliptic (see [26] for a general definition of ellipticity).

8.2 The Case k D 2

It was essentially equivalent, in the case k D n; to choose ' D rˆ or to add the
equations curl' D 0 in order to find an appropriate elliptic system. This is not any
more true when k D 2:

8.2.1 The Gradient Case

It has been proved in [17] that for constant forms the choice ' D rˆ (here requiring
that ' .x/ D rˆ.x/ D Ax amounts to say that A is symmetric) is appropriate.

Theorem 65 Let n be even and g; f 2 ƒ2 .Rn/ be such that rankŒg� D rankŒ f � D n:
Then there exists A 2 GL.n/ such that

A�.g/ D f and At D A:

However as soon as the forms are non-constant, the above theorem is, in general,
false.

Proposition 66 Let f 2 C1.R4Iƒ2/ be defined by

f D .1C x3/ dx
1 ^ dx2 C x2 dx

1 ^ dx3 C 2 dx3 ^ dx4:

Then there exists no ˆ 2 C3.R4/ such that near 0

.rˆ/� �dx1 ^ dx2 C dx3 ^ dx4
� D f

although there exists a local C1 diffeomorphism ' such that

'� �dx1 ^ dx2 C dx3 ^ dx4
� D f :
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8.2.2 The Ellipticity Criterion

A better choice is as follows (cf. [26] for details and proofs). We couple the pullback
equation '� .g/ D f ; which is a first order system of Œn .n � 1/ =2� equations, to the
single equation hd'I gi D 0; i.e.

X

1�i<j�n

�
' j
xi � ' i

xj

�
gij D 0:

It turns out that the new system, when restricted to maps such that r'C .r'/t > 0;
is elliptic. In fact one can prove the following theorem. We let r � 0 and n D 2m be
integers, 0 < q < 1 and !m be the standard symplectic form, namely

!m D
mX

iD1
dx2i�1 ^ dx2i:

We also let � � R
n be a bounded contractible open smooth set with exterior unit

normal �:

Theorem 67 Let f 2 Cr;q
�
�Iƒ2

�
be closed. Then there exist �; �; c > 0 depending

only on .r; q; �/ such that if

k f � !mkC0;q=2 � �;

then there exists a unique ' 2 DiffrC1;q
�
�I' ���� satisfying

�
'� .!m/ D f and d' y!m D hd'I!mi D 0 in �

� y ..' � id/ y!m/ D 0 on @�
(38)

and such that

� k' � idkCrC1;q � c k f � !mkCr;q

jhŒr' .x/� 
I 
ij � � j
j2 ; 8 
 2 R
n and 8 x 2 �: (39)

Furthermore the system (38) is elliptic when restricted to maps satisfying the second
inequality in (39).

Remark 68 The comparison between the volume form case and the symplectic case
becomes now striking. In the first one we have

�
det r' D f 1 equation
curl' D 0 Œn .n � 1/ =2� equations
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while in the second one we get

(
'� .!m/ D f Œn .n � 1/ =2� equations

d' y!m D Pm
jD1

�
'2jx2j�1 � '2j�1x2j

�
D 0 1 equation.

The above theorem can be written as a second order system, which is the
counterpart of Monge-Ampère equation when n D 2 and therefore f is a volume
form.

Corollary 69 (Second Order Darboux Theorem) Let f 2 Cr;q
�
�Iƒ2

�
be closed.

Then there exists � D � .r; q; �/ such that if

k f � !mkC0;q=2 � �;

then there exists a uniqueˆ 2 CrC2;q ��Iƒ2
�
satisfying the elliptic system

8
<

:

.ıˆ y!m/
� .!m/ D f and dˆ D 0

r .ıˆ y!m/C .r .ıˆ y!m//
t > 0

in �

� yˆ D �� yH on @�:

Here H is such that ıH D id y!m :

Remark 70

(i) Writing

ˆ D
X

i<j

ˆijdxi ^ dxj

and similarly for f we have that .ıˆ y!m/
� .!m/ D f reads as (recalling that

ˆij D �ˆji)

mX

lD1

2mX

s;tD1

h
ˆs.2l�1/

xsxi
ˆt.2l/

xtxj
�ˆs.2l�1/

xsxj
ˆt.2l/

xtxi

i
D fij; 1 � i < j � n (40)

while dˆ D 0 means that

ˆij
xk �ˆik

xj Cˆjk
xi D 0; 1 � i < j < k � n:

Note that when n D 2 the equation dˆ D 0 is trivially fulfilled, while (40) is
exactly Monge-Ampère equation.
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(ii) The form H can be taken, for example, as

H D
mX

iD1

.x2i�1/2 C .x2i/
2

2
dx2i�1 ^ dx2i:

9 Hölder Spaces

We now present fine properties of Hölder continuous functions. Most of the results
are “standard”, but they are scattered in the literature. There does not exist such a
huge literature as the one for Sobolev spaces. The most complete reference for this
chapter is [16]

9.1 Definition and Extension of Hölder Functions

We give here the definition of Hölder continuous functions.

Definition 71 Let � � R
n be a bounded open set, f W � ! R and 0 < ˛ � 1: Let

Œ f �C0;˛.�/ D sup
x;y2�
x¤y

� k f .x/� f .y/j
jx � yj˛

�
:

(i) The set C0;˛
�
�
�

is the set of f 2 C0
�
�
�

so that

k fkC0;˛.�/ D k fkC0.�/ C Œf �C0;˛.�/ < 1

where

k fkC0.�/ D sup
x2�

fj f .x/ jg:

If there is no ambiguity we drop the dependence on the set � and write simply

k fkC0;˛ D k fkC0 C Œ f �C0;˛ :

(ii) If r � 1 is an integer, then the set Cr;˛
�
�
�

is the set of functions f 2 Cr
�
�
�

so
that

Œrrf �C0;˛.�/ < 1:
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We equip Cr;˛
�
�
�

with the following norm

k fkCr;˛.�/ D k fkCr.�/ C Œrrf �C0;˛.�/

where

k fkCr.�/ D
rX

mD0
krmfkC0.�/ :

Remark 72

(i) Cr;˛
�
�
�

with its norm k�kCr;˛ is a Banach space.
(ii) If ˛ D 0; we set

k fkCr;0 D k fkCr :

(iii) If we assume that the domain is Lipschitz, then the following norms

k fkCr;˛ D
rX

mD0
krmfkC0;˛

and

k fkCr;˛ D
� k fkC0 C Œrrf �C0;˛ if 0 < ˛ � 1

k fkC0 C krrfkC0 if ˛ D 0:

are equivalent to the one defined above. We should, however, point out that
these norms are, in general, not equivalent for very wild domains.

(iv) When ˛ D 1; we note that C0;1
�
�
�

is in fact the set of Lipschitz continuous
functions.

The following extension result is due to Calderon and Stein.

Theorem 73 Let � � R
n be a bounded open Lipschitz set. Then there exists a

continuous linear extension operator

E W Cr;˛
�
�
� ! Cr;˛

0 .Rn/

for any integer r � 0 and any 0 � ˛ � 1: More precisely there exists a constant
C D C .r; �/ > 0 such that, for every f 2 Cr;˛

�
�
�
;

E . f /j� D f ; supp ŒE . f /� is compact,

kE . f /kCr;˛.Rn/ � C k fkCr;˛.�/ :
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Remark 74 The extension is universal, in the sense that the same extension also
leads to

kE . f /kCs;ˇ.Rn/ � C k fkCs;ˇ.�/

for any integer s and any 0 � ˇ � 1; with, of course, C D C .s; �/ as far as
f 2 Cs;ˇ

�
�
�
: The same extension is also valid for Sobolev spaces.

9.2 Product, Composition and Inverse

We start with a result on products of Hölder continuous functions.

Theorem 75 Let � � R
n be a bounded open Lipschitz set, r � 0 an integer and

0 � ˛ � 1: Then there exists a constant C D C .r; �/ > 0 such that

k fgkCr;˛ � C .k fkCr;˛ kgkC0 C k fkC0 kgkCr;˛ / :

The next theorem has also been intensively used.

Theorem 76 Let � � R
n; O � R

m be bounded open Lipschitz sets, r � 0 an
integer and 0 � ˛ � 1: Let g 2 Cr;˛

�
O
�
and f 2 Cr;˛

�
�IO� \ C1

�
�IO� : Then

kg ı fkC0;˛.�/ � kgkC0;˛.O/ k fk˛
C1.�/ C kgkC0.O/

while if r � 1; there exists a constant C D C .r; �;O/ > 0 such that

kg ı fkCr;˛.�/ � C
h
kgkCr;˛.O/ k fkrC˛

C1.�/
C kgkC1.O/ k fkCr;˛.�/ C kgkC0.O/

i
:

We easily deduce, from the previous results, an estimate on the inverse.

Theorem 77 Let �;O � R
n be bounded open Lipschitz sets, r � 1 an integer and

0 � ˛ � 1: Let c > 0: Let f 2 Cr;˛
�
�IO� and g 2 Cr;˛

�
OI�� be such that

g ı f D id and kgkC1.O/ ; k fkC1.�/ � c:

Then there exists a constant C D C .c; r; �;O/ > 0 such that

k fkCr;˛.O/ � C kgkCr;˛.�/ :
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9.3 Smoothing Operator

The next theorem is about smoothing Cr or Cr;˛ functions. We should draw the
attention that, in order to get the conclusions of the theorem, one proceeds, as usual,
by convolution. However the kernel has to be chosen carefully.

Theorem 78 Let � � R
n be a bounded open Lipschitz set. Let s � r � t � 0 be

integers and 0 � ˛; ˇ; � � 1 be such that

t C � � r C ˛ � s C ˇ:

Let f 2 Cr;˛
�
�
�
: Then, for every 0 < � � 1; there exist a constant C D C .s; �/ >

0 and f� 2 C1 �
�
�
such that

k f�kCs;ˇ � C

�.sCˇ/�.rC˛/
k fkCr;˛

k f � f�kCt;� � C�.rC˛/�.tC�/ k fkCr;˛ :

We also need to approximate closed forms in Cr;˛
�
�Iƒk

�
by smooth closed

forms in a precise way.

Theorem 79 Let � � R
n be a bounded open smooth set and � be the exterior

unit normal. Let s � r � t � 0 with s � 1 and 1 � k � n � 1 be integers. Let
0 < ˛; ˇ; � < 1 be such that

t C � � r C ˛ � s C ˇ:

Let g 2 Cr;˛
�
�Iƒk

�
with

dg D 0 in � and � ^ g 2 Cs;ˇ
�
@�IƒkC1� :

Then for every � 2 .0; 1�; there exist g� 2 C1 �
�Iƒk

�\Cs;ˇ
�
�Iƒk

�
and a constant

C D C .s; ˛; ˇ; �;�/ > 0 such that

dg� D 0 in �; � ^ g� D � ^ g on @�
Z

�

hg�I i D
Z

�

hgI i ; for every  2 HT
�
�Iƒk

�

kg�kCs;ˇ.�/ � C

�.sCˇ/�.rC˛/
kgkCr;˛.�/ C C k� ^ gkCs;ˇ.@�/

kg� � gkCt;� .�/ � C�.rC˛/�.tC�/ kgkCr;˛.�/ :
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Remark 80 We recall that if � is contractible and since 1 � k � n � 1; then

HT
�
�Iƒk

� D f0g :

10 An Abstract Fixed Point Theorem

The following theorem is particularly useful when dealing with non-linear problems,
once good estimates are known for the linearized problem (see [5] for some
applications). We give it under a general form (still a more sophisticated version
can be found in [16]), because we have used it this way in Theorems 44 and 52.
However, in many instances, Corollary 82 is amply sufficient. Our theorem will
lean on the following hypotheses.

.HXY/ Let X1 
 X2 be Banach spaces and Y1 
 Y2 be normed spaces such that
the following property holds: if

u�
X1�! u and ku�kX2 � r

then u 2 X2 and

kukX2 � r:

.HL/ Let L W X2 ! Y2 be such that there exists a linear right inverse operator
L�1 W Y2 ! X2 (namely LL�1 D id on Y2). Moreover there exist k > 0 such that
for every f 2 Y2

kL�1fkXi � kk fkYi i D 1; 2:

�
HQ
�

There exists � > 0 such that

Q W B� D fu 2 X2 W kukX1 � �g ! Y2

Q.0/ D 0 and for every u; v 2 B� ; the following two inequalities hold

kQ.u/� Q.v/kY1 � c.kukX1 C kvkX1 /ku � vkX1 (41)

kQ.v/kY2 � ckvkX1kvkX2 (42)

where c > 0 is a constant.
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Theorem 81 (Fixed Point Theorem) Let X1;X2;Y1;Y2;L;Q satisfy the hypothe-
ses .HXY/ ; .HL/ and

�
HQ
�
: Then, for every f 2 Y2 verifying

k fkY1 � min

�
�

2k
;
1

8k2c

�
(43)

there exists u 2 B� � X2 such that

Lu D Q.u/C f and kukXi � 2kk fkYi ; i D 1; 2: (44)

We have as an immediate consequence of the theorem the following result.

Corollary 82 Let X be a Banach space and Y a normed space. Let L W X ! Y
be such that there exists a linear right inverse operator L�1 W Y ! X (namely
L L�1 D id on Y) and there exists k > 0 such that

kL�1fkX � kk fkY :

Let � > 0 and

Q W B� D fu 2 X W kukX � �g ! Y

with Q.0/ D 0 and, for every u; v 2 B� ;

kQ.u/ � Q.v/kY � c.kukX C kvkX/ku � vkX
and where c > 0: If

k fkY1 � min

�
�

2k
;
1

8k2c

�

then there exists u 2 B� � X such that

Lu D Q.u/C f and kukX � 2kk fkY :

We now turn to the proof of Theorem 81.

Proof We set

N.u/ D Q.u/C f :

We next define

B D fu 2 X2 W kukXi � 2kk fkYi i D 1; 2g :
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We endow B with k � kX1 norm; the property .HXY/ ensures that B is closed. We
now want to show that L�1N W B ! B is a contraction mapping (cf. Claims 1 and 2
below). Applying Banach fixed point theorem we will have indeed found a solution
verifying (44), since LL�1 D id :

Claim 1 Let us first show that L�1N is a contraction on B: To show this, let u; v 2 B
and use (41), (43) to get that

kL�1N.u/� L�1N.v/kX1 � kkN.u/� N.v/kY1 D kkQ.u/ � Q.v/kY1
� kc.kukX1 C kvkX1 /ku � vkX1
� kc.2kk fkY1 C 2kk fkY1 /ku � vkX1
� 1

2
ku � vkX1 :

Claim 2 We next show L�1N W B ! B is well-defined. First, note that

kL�1N.0/kX1 � kkN.0/kY1 D kk fkY1 :

Therefore, using Claim 1, we obtain

kL�1N.u/kX1 � kL�1N.u/ � L�1N.0/kX1 C kL�1N.0/kX1
� 1

2
kukX1 C kk fkY1 � 2kk fkY1 :

It remains to show that

kL�1N.u/kX2 � 2kk fkY2 :

Using (42), we have

kL�1N.u/kX2 � kkN.u/kY2 � kkQ.u/kY2 C kk fkY2
� kckukX1kukX2 C kk fkY2
� k Œc.2kk fkY1 � 2kk fkY2 /C k fkY2 �
� k

	
4k2ck fkY1 C 1


 k fkY2

and hence, appealing once more to (43),

kL�1N.u/kX2 � 2kk fkY2 :

This concludes the proof of Claim 2 and thus of the theorem. �
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The Stability of the Isoperimetric Inequality

Nicola Fusco

1 Introduction

These lecture notes contain the material that I presented in two summer courses in
2013, one at the Carnegie Mellon University and the other one in a CIME school at
Cetraro. The aim of both courses was to give a quick but comprehensive introduction
to some recent results on the stability of the isoperimetric inequality.

The starting point is the De Giorgi’s proof of the isoperimetric inequality. Many
other proofs of this inequality are now available. Some of them are classical, like the
one based on the Brunn-Minkowski inequality, see for instance [15, Theorem 8.1.1],
or the one based on the Alexandrov rigidity theorem [2]. More recent proofs are the
one based on mass transportation due to Gromov, see Sect. 6, and the PDE proof
due to Cabré [16]. Among all these proofs the one by De Giorgi still stands as the
most intuitive from a geometric point of view and at the same time the most general
one since his isoperimetric inequality (17) applies to any measurable set of finite
measure.

In order to explain this proof a few basic properties of sets of finite perimeter are
required. They are presented in Sect. 2, while Sect. 3 contains a slightly modified
version of the original proof of De Giorgi.

The remaining part of these notes are devoted to the stability of the isoperimetric
inequality. In fact, once we know that for a given volume balls are the unique area
minimizers the next natural question is to understand what happens when a set E has
the same volume of a ball B and a slightly bigger surface area. Precisely, one would
like to show that in this case E must be close in a proper sense to a translation of B.
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Already a few years after the Hurwitz proof [49] of the isoperimetric inequality in
the plane, this problem was studied by Bernstein [8] and later on by Bonnesen [11]
for planar convex sets. The case of convex sets in any dimension was settled much
later by Fuglede in [39]. Section 4 contains the complete proof of the Fuglede’s
Theorem 26.

The stability of the isoperimetric inequality for general sets of finite perimeter
is a different story, see the discussion at the beginning of Sect. 5. The first result in
this direction was proved by Hall [47] in 1992 with a not optimal estimate of the
distance between E and the closest ball, while the estimate with the sharp exponent
was obtained by Maggi, Pratelli and myself in [44], see Theorem 34. Section 5
contains a fairly detailed discussion of this result, whose proof is based on a suitable
symmetrization argument aimed to reduce from a general set of finite perimeter to
an axially symmetric bounded set with a center of symmetry.

Other proofs and generalizations of the quantitative isoperimetric inequality (35)
were later on obtained by Figalli, Maggi and Pratelli in [34] and by Cicalese and
Leonardi in [23], see also [42] and [1]. These alternative proofs are presented in
Sect. 6.

The aforementioned papers were the starting point for an intensive study of the
stability of other geometric and functional inequalities such as other inequalities of
isoperimetric type [3, 5, 6, 9, 10, 22, 24, 25, 31, 41, 46, 56, 58], the Sobolev inequality
[21, 35, 36, 43], the Brunn-Minkowski inequality [33], the Faber-Krahn inequality
[12, 45] and several others [7, 13, 18, 20, 32, 52]. We shall not discuss here these
further developments. The interested reader may have a look at a the survey paper
[40] which contains a detailed account of all the recent results, updated to Spring
2015.

Finally, I would like to thank Ryan Murray who typed the notes of the course I
gave in Pittsburgh, Matteo Rinaldi who added some extra material from some hand
written notes of mine and Laura Bufford and Andrea Fusco for all the pictures.

2 A Quick Review of Sets of Finite Perimeter

We start by reviewing the definition and the main properties of sets of finite
perimeter which are the objects for which the isoperimetric inequality will be proved
in the next section. A good reference for the results stated here are the books
[4, 29, 51] and the original papers of De Giorgi collected in [28]. Note, however that
the definition below is equivalent, but different from the one originally proposed by
De Giorgi.

In the following we denote by Br.x/ the ball with radius r > 0 and center x and
we use the following simplified notation

Br WD Br.0/; B.x/ WD B1.x/ B WD B1.0/ :
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The measure of the unit ball B will be denoted by !n. As a starting point we consider
the classical divergence theorem stating that if E is a smooth bounded open set in
R

n, and ' is a smooth vector field in R
n with compact support, then

Z

E
div' dx D

Z

@E
' � �dHn�1 : (1)

Here, if k is a nonnegative integer, by Hk we denote the k-dimensional Hausdorff
measure in R

n. Observe that from the previous formula, by taking the supremum
over all vector fields ' 2 C1c.R

nIRn/, with jj'jj1 � 1, we get

Hn�1.@E/ D sup

�Z

E
div' dx W ' 2 C1c.R

nIRn/; jj'jj1 � 1

�
: (2)

Since the first integral in (1) makes sense for any measurable set, equality (2)
suggests how to extend the notion of boundary measure to any measurable set
E � R

n.

Definition 1 Let � be an open set in R
n. The perimeter of E in � is defined as

P.EI�/ WD sup

�Z

E
div' dx W ' 2 C1c.�IRn/; jj'jj1 � 1

�
:

An important feature of this definition is that the perimeter is not affected by
modifications on sets of measure zero. Thus the two sets shown in Fig. 1 have the
same perimeter. Note also that P.EI�/ D P.Rn n EI�/.

Observe that if P.EI�/ < 1, then the map

' 2 C1c.�IRn/ 7!
Z

E
div' dx

is linear and continuous with respect to the uniform convergence on C1c .�IRn/.
Therefore Riesz’s theorem yields that there exists a vector valued Radon measure

Fig. 1 Two sets with the
same perimeter
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� D .�1; : : : ; �n/ in � such that

Z

�

�Ediv' dx D
Z

E
div' dx D

Z

�

' � d� D
nX

iD1

Z

�

'i d�i

for all ' 2 C1c.�;R
n/. Thus � D �D�E , where D�E is the distributional derivative

of �E and the above formula can be rewritten as

Z

E
div' dx D �

Z

�

' � dD�E: (3)

In conclusion, E has finite perimeter in � if and only if D�E is a Radon measure
with values in R

n and finite total variation. In fact, from Definition 1 we immediately
get that

P.EI�/ D jD�Ej.�/:

If � D R
n we simply write P.E/ in place of P.EIRn/ and if P.E/ < 1 we say

that E is a set of finite perimeter. If P.EI�/ < 1 for every bounded open set, then
we say that E has locally finite perimeter. The following properties are immediate
consequences of Definition 1. For any measurable set E

P.�E/ D �n�1P.E/ for all � > 0 I (4)

moreover, for any open set �,

P.EI VE \�/ D P.EI� n E/ D 0

Therefore the measure D�E is concentrated on @E \� and (3) can be rewritten as

Z

E
div' dx D �

Z

@E\�
' � D�E; for all ' 2 C1c .�I .Rn/: (5)

Observe also that from Besicovitch derivation theorem [4, Theorem 2.22] we have
that for jD�Ej–a.e. x 2 suppjD�Ej there exists the derivative of D�E with respect to
its total variation jD�Ej and that it is a vector of length 1. For such points we have

D�E
jD�Ej .x/ D lim

r!0

D�E.Br.x//

jD�Ej.Br.x//
DW ��E.x/ and j�E.x/j D 1: (6)

Definition 2 We shall denote by @�E the set of all points in suppjD�Ej where (6)
holds. The set @�E is called the reduced boundary of E, while the vector �E.x/ is
the generalized exterior normal at x.
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From (6) it follows that the measure D�E can be represented by integrating ��E
with respect to jD�Ej, i.e.,

D�E D ��EjD�Ej:

Thus (5) can be rewritten as

Z

E
div'dx D

Z

@�E\�
' � �EdjD�Ej; 8 ' 2 C1c.�;R

n/: (7)

Since @�E � suppjD�Ej � @E, the reduced boundary of E is a subset of
the topological boundary. Moreover, as a consequence of De Giorgi structure
Theorem 6, if E has finite perimeter, then Hn�1.@�E/ D P.E/ < 1. Next example
shows that in general @�E can be much smaller than @E.

Example 3 Let us take a sequence fqig dense in R
n and set E WD

1[

iD1
B2�i.qi/.

Observe that j@Ej D 1. Nevertheless E is a set of finite perimeter. To see this
take ' 2 C1c.R

n;Rn/; jj'jj1 � 1, and note that

Z

E
div' dx D lim

N!1

Z
SN

iD1 B2�i .qi/
div' dx D lim

N!1

Z

@.
SN

iD1 B2�i .qi//
' � � dHn�1

� lim
N!1Hn�1�@

� N[

iD1
B2�i.qi/

��
� lim

N!1

NX

iD1
Hn�1�@B2�i.qi/

�

D n!n

1X

iD1
2�i.n�1/ < 1 :

In dimension 1, sets of finite perimeter are easily characterized (see [4, Proposi-
tion 3.52]).

Theorem 4 Let E � R be a measurable set. Then E has finite perimeter in R if and
only if there exist �1 � a1 < b1 < a2 < b2 < : : : < bn � C1 such that

E D
n[

iD1
.ai; bi/

up to a set of zero Lebesgue measure. Moreover, if � � R is an open set,

P.EI�/ D #.fai; bi 2 �g/:

Remark 5 Thus, if for instanceE D .0; 1/[.1; 2/, then P.E/ D 2 and @�E D f0; 2g.
In fact, as we already observed, the measure D�E does not change if we modify E
by a set of measure zero and thus E and .0; 2/ have the same reduced boundary.
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The characterization of sets of finite perimeter in R
n is more complicate and is

contained in the next theorem due to De Giorgi. For a proof see [29, Sect. 5.7.3] or
[4, Theorem 3.59].

Theorem 6 (De Giorgi) Let E � R
n be a measurable set of finite perimeter. Then

the following hold:

(i) @�E is .n � 1/-countably rectifiable, i.e., @�E D S1
iD1 Ki [ N0, where

Hn�1.N0/ D 0 and Ki are compact subsets of C1 manifolds Mi of dimension
n � 1;

(ii) jD�Ej D Hn�1 @�E;
(iii) for Hn�1-a.e. x 2 Ki, the generalized exterior normal �E.x/ is orthogonal to

the tangent plane TxMi to the manifold Mi at x;

(iv) for all x 2 @�E;
jE \ Br.x/j

Br.x/
! 1

2
as r ! 0;

(v) for all x 2 @�E; lim
r!0

Hn�1.@�E \ Br.x//

!n�1rn�1 D 1.

As a consequence of the equality (ii) above we have that (7) can we rewritten as

Z

E
div' dx D

Z

@E
' � �EdHn�1; 8 ' 2 C1c .R

n;Rn/:

Example 7 Let Q be a square in R
2. The reduced boundary is given by

@�Q D @Q nS4
iD1fvig, where vi are the vertices of Q. In fact, for any sufficiently

small ball Br.vi/ we have that jQ \ Br.vi/j=jBrj D 1
4
. Therefore from the property

(iv) in Theorem 6 it follows that the vi do not belong to the reduced boundary @�Q,
see Fig. 2.

Property (v) tells us that if x 2 @�E then the reduced boundary @�E looks flatter and
flatter at small scales. Observe in fact that if we rescale @�E around x, we have, see
Fig. 3,

Hn�1
�
@�E � x

r
\ B

�
D Hn�1.@�E \ Br.x//

rn�1 ! !n�1:

Fig. 2 The density of the
vertices is 1=4
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Fig. 3 Rescaling around x

Definition 8 Given a measurable set E and x 2 R
n, the density of E at x, D.xIE/,

is defined as

D.xIE/ WD lim
r!0

jE \ Br.x/j
!nrn

:

If 0 � a � 1 we denote by E.a/ the set of all points where the density of E is equal
to a.

Observe that from the above definition it follows immediately that

x 2 E.1/ if and only if lim
r!0

jE \ Qr.x/j
2nrn

D 1; (8)

where Qr.x/ is the cube with center at x with edge length equal to 2r and faces
parallel to the coordinate planes. A similar characterization holds also for the points
in E.0/.

Using densities, part (iv) of De Giorgi’s Theorem 6 can be written as @�E �
E.1=2/. We recall also that if E is a measurable set in R

n its measure theoretic
boundary @ME is defined by setting

@ME WD R
n n �E.0/ [ E.1/

�
: (9)

The next result gives a precise description of what is going on with sets of finite
perimeter. For the proof see for instance [4, Theorem 3.61].

Theorem 9 (Federer) Let E be a set of finite perimeter in Rn. Then

@�E � E.1=2/ � @ME and Hn�1�@ME n @�E
� D 0 :

Note that if E is a set of finite perimeter in � Theorems 6 and 9 hold in local form.
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Example 10 Let U � R
n�1 be a bounded open set and � D U � R. Let f W U !

R be a Lipschitz function. Let us denote by Sf WD f.x; t/ 2 � W t < f .x/g the
subgraph of f . Then it may be easily checked that Sf has finite perimeter in � and
that @�Sf coincides with �f WD f.x; f .x// W x 2 Ug up to a set of zero Hn�1 measure.
Moreover, the generalized normal �Sf .x/ coincides Hn�1-a.e. on �f with the usual

exterior normal
.�rf ; 1/
p
1C jrf j2 .

Example 11 Let f W R ! R be the function f .x/ D x2 sin 1
x and let E WD Sf be the

subgraph of f . Using the fact that f 0.0/ D 0 we get easily that

jE \ Brj
jBrj ! 1

2
:

However .0; 0/ … @�E since it can be checked that

lim sup
r!0

H1.@�E \ Br/

2r
> 1 :

Thus property (v) stated in Theorem 6 does not hold.

Approximating sets of finite perimeter with nicer sets is very useful to deduce
various properties from the corresponding ones of smooth sets. To this aim we
introduce the following notion of convergence.

Definition 12 Given a sequence of measurable sets Ej and a measurable set E, we
say that Ej ! E in measure in � if �Ej ! �E in L1.�/, i.e., j.Ej�E/\�j ! 0, as
j ! 1.

An important property of the perimeters is the lower semicontinuity with respect to
the convergence in measure. This is a straightforward consequence of Definition 1.
Precisely, if Ej is a sequence of measurable sets converging in measure in � to E,
then

P.EI�/ � lim inf
j!1 P.EjI�/:

For the proof of the next approximation result see for instance [4, Theorem 3.42].

Theorem 13 Let E be a set of finite perimeter. Then there exists a sequence of
smooth, bounded open sets Ej such that Ej ! E in measure in R

n and P.Ej/ !
P.E/.

In view of this theorem and of the lower semicontinuity of the perimeter we have
that E is a set of finite perimeter in R

n if and only if there exists a sequence of
smooth open sets Ej � R

n, such that

Ej ! E in measure in R
n and sup

j
P.Ej/ < 1:
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Note also that in Theorem 13 one may replace the smooth sets Ej with polyhedra,
i.e., bounded open sets obtained as the intersection of finitely many half–spaces. A
local version of Theorem 13 is also true (see [4, Remark 3.43]). As a consequence
of Theorem 13 observe that if E and F are sets of finite perimeter, the same is true
for E [ F, E \ F and E n F and that

P.E \ F/C P.E [ F/ � P.E/C P.F/ :

Simple examples show that the above inequality may be strict. In general the precise
expression of the reduced boundaries of E \ F or E [ F in terms of the reduced
boundaries of E and F is a little involved. The next statement provides the precise
picture. For a proof see for instance [34, (2.8), (2.9) and Lemma 2.2].

Proposition 14 Let E;F � R
n be sets of finite perimeter. Then, up to a set of zero

Hn�1 measure

@�.E \ F/ D fy 2 @�E \ @�F W �E.y/ D �F.y/g [ Œ@�E \ F.1/� [ Œ@�F \ E.1/�

and forHn�1-a.e. x 2 @�.E \ F/

�E\F.x/ D

8
ˆ̂<

ˆ̂:

�E.x/ D �F.x/ if x 2 fy 2 @�E \ @�F W �E.y/ D �F.y/g;
�E.x/ if x 2 @�E \ F.1/;

�F.x/ if x 2 @�F \ E.1/ :

Moreover, if jE \ Fj D 0, then, up to a set of zero Hn�1-measure, @�.E [ F/ D
@�E�@�F and

�E[F.x/ D
(
�E.x/ if x 2 @�E n @�F;
�F.x/ if x 2 @�F n @�E :

The next result, is just the Rellich-Kondrachov compactness theorem stated in
the framework of sets of finite perimeter (see [4, Theorem 3.39]).

Theorem 15 Given a bounded open set� � R
n and a sequence of measurable sets

Ej such that supj P.EjI�/ < 1, there exists a set E of finite perimeter in � such
that, up to a subsequence, Ej ! E in measure in �.

The theory of sets of finite perimeter can be viewed as a special part of the theory of
functions of bounded variation. Recall that if� is an open set a function u 2 L1.�/
is said to be of bounded variation if the distributional gradient Du is a vector-valued
measure in � with finite total variation. Observe that by definition of distributional
gradient

Z

�

u div' dx D �
Z

�

' dDu;
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for all C1 vector fields ' with compact support in �. From this formula it follows
immediately that the total variation jDuj.�/ of Du in � is given by

jDuj.�/ D sup

�Z

�

u div' dx W ' 2 C1c.�IRn/; jj'jj1 � 1

�
:

We shall denote by BV.�/ the space of all functions of bounded variation in �.
We conclude by recalling the coarea formula for sets of finite perimeter. For our

purposes it will be enough to consider only C1 maps, though these formulas may
easily generalized to Lipschitz and even less regular maps, see [4, Chap. 2] and [30,
Sect. 3.2]. Thus, let f W R

n ! R
k be a C1 map, 1 � k � n � 1, and E a set of

finite perimeter. By Definition 2 at every point x of the reduced boundary @�E we
have a generalized exterior normal �E.x/, hence a generalized tangent plane, that
we denote by Tx@�E. Therefore, we can consider the tangential differential of f at
x, that is the map df .x/ W Tx@�E ! R

k given by

df .x/.�/ D rf .x/.�/; for all � 2 Tx@
�E : (10)

Furthermore, we define the coarea factor at x as

Ckdf .x/ D
p

det.df .x/ ı .df .x//T/;

where .df .x//T is the transpose of the matrix df .x/. It can be shown that Ckdf .x/
is the square root of the sum of the squares of the k–order minors of the matrix
representing df .x/ with respect to a base in Tx@�E and a base in R

k (see [4, (2.71)]).

Theorem 16 (Coarea Formula for Sets of Finite Perimeter) Let E � R
n be a set

of finite perimeter and f W Rn ! R
k a C1 map, 1 � k � n � 1. If g W Rn ! Œ0;C1�

is a Borel function, then

Z

@�E
g.x/Ckdf .x/ dHn�1.x/ D

Z

Rk
dz
Z

f�1.z/\@�E
g.x/ dHn�1�k.x/:

Observe that if � W R
n ! R

k is the projection over the first k components, i.e.
�.x; y/ D x for all .x; y/ 2 R

k � R
n�k, then Ckd�.x; y/ D j�Ey .x; y/j, for all .x; y/ 2

@�E, where �E D .�Ex ; �
E
y / 2 R

k � R
n�k. To prove this consider an orthonormal

base f�1; : : : ; �n�1g for T.x;y/@�E, such that the frame f�1; : : : ; �n�1; �E.x; y/g is
positively oriented. Then the matrix representing d�.x; y/ with respect to the
given orthonormal base of T.x;y/@�E and the standard base fe1; : : : ; ekg in R

k has
coefficients ei � �`, for i D 1; : : : ; k, ` D 1; : : : ; n � 1. Therefore, the matrix
representing det.d�.x/ ı .d�.x//T/ has coefficients

aij WD
n�1X

`D1
.ei � �`/.ej � �`/ D ıij � �Ei �Ej for i; j D 1; : : : ; k :
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Recall that if a; b 2 R
k and I denotes the identity matrix, then

det.I C a ˝ b/ D 1C a � b : (11)

Thus Ckd�.x; y/ D p
det.aij/ D p

1� j�Ex j2 D j�Ey j and the coarea formula reduces
to

Z

@�E
g.x; y/j�Ey .x; y/jdHn�1.x; y/ D

Z

Rk
dx
Z

.@�E/x

g.x; y/dHn�1�k.y/; (12)

where

.@�E/x D fy 2 R
n�k W .x; y/ 2 @�Eg;

see Fig. 4. If we apply (12) to the particular case of the projection over the first n�1
components, recalling that H0 is the counting measure, we have that for every Borel
function g W Rn ! Œ0;C1�.

Z

@�E
g.x; y/j�Ey .x; y/jdHn�1.x; y/ D

Z

Rn�1

� X

y2.@�E/x

g.x; y/
�
dx : (13)

From this formula we deduce that the vertical part of the reduced boundary @�E “is
not seen from below”.

To be precise, let us define the vertical part of the reduced boundary by setting
V WD f.x; y/ 2 @�E W �Ey .x; y/ D 0g. If we apply (13) with g D �V we getR
@�E �V .x; y/j�Ey .x; y/jdHn�1.x; y/ D 0. Therefore, the right hand side of (13) is

Fig. 4 Section of @�E
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Fig. 5 The set V

also zero, i.e.,

Z

Rn�1

# .fy 2 R W .x; y/ 2 Vg/ dx D 0:

This implies that for Hn�1-a.e. x 2 R
n�1, the section Vx is empty, see Fig. 5.

3 De Giorgi’s Proof of the Isoperimetric Inequality

In the framework of sets of finite perimeter the isoperimetric inequality takes the
following very general form.

Theorem 17 Let E � R
n be a measurable set with jEj D jBrj. Then

P.Br/ � P.E/ (14)

with the equality holding if and only if E is a ball.

De Giorgi’s proof follows an idea that Steiner had one century before [59]. Actually,
the proof of the isoperimetric property of the ball was the original motivation for
Steiner to introduce the symmetrization that nowadays bears his name.

Definition 18 Let E � R
n be a measurable set. For x 2 R

n�1 set Ex WD fy 2 R W
.x; y/ 2 Eg and `.x/ WD H1.Ex/. Then the Steiner symmetrization of E with respect
to the hyperplane fxn D 0g is given by Es D f.x; y/ 2 R

n�1 � R W �`.x/=2 < y <
`.x/=2g.

The previous definition can be extended in an obvious way to any hyperplane ��
passing through the origin and orthogonal to a unit vector �. The resulting Steiner
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(a) (b)

Fig. 6 Steiner symmetral of a measurable set. (a) Symmetrization wrt the plane fxn D 0g.
(b) Symmetrization wrt a plane with normal � ¤ en

symmetrization of E with respect to �� will be denoted by Es;� , see Fig. 6. The
symmetrization of E with respect to fxn D 0g will be denoted by Es.

From Fubini’s theorem we have immediately that jEj D jEs;�j, while it is not
too difficult to show, see for instance [29, Lemma 2, Sect. 2.2], that diam.Es;�/ �
diam.E/. If E is a measurable set, then ` is a measurable function. Instead, if E is a
set of finite perimeter it can be proved that ` is a function of bounded variation in
R

n�1 and even a Sobolev function if @�E has no vertical part. However, for the proof
of the isoperimetric inequality the relevant fact is that the Steiner symmetrization of
a set keeps the volume and decreases the perimeter.

Theorem 19 Let E be a set of finite perimeter with jEj < 1. Then the following
properties hold:

(i) ` 2 BV.Rn�1/;
(ii) ` 2 W1;1.Rn�1/ if and only if Hn�1.fz 2 @�E W �En .z/ D 0g/ D 0;

(iii) P.Es/ � P.E/;
(iv) if P.Es/ D P.E/ then for Hn�1-a.e. x 2 R

n�1; Ex coincides up to a set of zero
H1 measure with a line segment.

Inequality (iii) is classical and is proved for smooth sets in the beautiful book of
Pólya–Szegö [57]. Property (iv) appears in a weaker form in De Giorgi’s original
paper on the isoperimetric property of balls [27]. The above statement of (iv) as well
as (i) and (ii) are proved in [19, Theorem 1.1, Lemma 3.1, Proposition 1.2].

Note that if P.E/ D P.Es/, then E and Es are not necessarily equal up to a
translation, as shown in Fig. 7. In both pictures P.E/ D P.Es/, conclusion (iv) of the
theorem holds but E ¤ Es up to a translation. However, it is possible to characterize
the cases when the equality P.E/ D P.Es/ implies that E and Es coincide up to a
translations, see [19] and [17], where a deeper analysis is carried on. We now turn
to the proof of the isoperimetric inequality via Steiner symmetrization.
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Fig. 7 In general, symmetrals are not translated of the original sets

Proof From the rescaling property (4) it follows that in order to prove (14) it is
enough to show that P.E/ � P.B/ for all sets E such that jEj D jBj D !n, with the
equality holding if and only if E is a ball.

Step 1. We first fix BR, with R > 1 and consider the minimum problem

inf fP.E/ W E � BR; jEj D !ng :

Observe that the above infimum is always attained. In fact, let Ej � BR, with jEjj D
!n, be a minimizing sequence, i.e., limj P.Ej/ D inffP.E/ W E � BR; jEj D !ng. By
the compactness Theorem 15 we may assume, up to a not relabelled subsequence,
that Ej converge in measure to some set F � BR with jFj D !n. By the lower
semicontinuity of the perimeter we have P.F/ � lim infP.Ej/ and thus F is a
minimizer.

We claim that F coincides, up to a set of measure zero, with a convex set. To
prove this, fix � 2 Sn�1 and consider the Steiner symmetrization Fs;� of F with
respect to the hyperplane�� passing through the origin and orthogonal to �. Observe
that jFs;�j D jFj D !n and that Fs;� � BR. Moreover, from part (iii) of Theorem 19
we have that P.Fs;�/ � P.F/ and thus, by the minimality of F, we may conclude
that P.Fs;�/ D P.F/. Thus, recalling the property (iv) stated in Theorem 19, we
have that for Hn�1-a.e. x 2 �� , the section ft 2 R W x C t� 2 Fg coincides up
to a set of H1 measure zero with an open interval. By the arbitrariness of � this
property clearly holds for all directions � 2 S

n�1. Notice that if we knew that each
section ft 2 R W x C t� 2 Fg is an open interval for any � 2 S

n�1 and any x 2 �� ,
then we could conclude at once that F is a convex set. Although this may be not
true, Lemma 20 guarantees that there exists a set equivalent to F up to a set of zero
Lebesgue measure which has this property. This set is precisely F.1/, the set of all
points where F has density 1. Hence, F.1/ is an open convex set.

To simplify the notation let us set F D F.1/. Our goal now is to show that F is
a ball. Denote by U the projection of F on R

n�1. Then there exist two functions
y1; y2 W U ! R, y1 convex and y2 concave, such that F D f.x; y/ W x 2 U; y1.x/ <
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Fig. 8 Projection of F

y < y2.x/g, see Fig. 8. Moreover, Fs D f.x; y/ W x 2 U; .y1 � y2/.x/=2 < y <
.y2 � y1/.x/=2g. We have:

P.F/ D
Z

U

q
1C jry1j2 C

Z

U

q
1C jry2j2; P.Fs/ D 2

Z

U

q
1C jr.y2 � y1/=2j2:

SinceF is a minimizer,P.F/ D P.Fs/ and thus by the strict convexity of the function
t 7! p

1C t2 we get that ry2 D �ry1, hence y2 D �y1 C c, thus proving that F D
Fs up to a translation. Repeating this argument for all the Steiner symmetrizations
Fs;� , with � 2 Sn�1, we finally conclude that F must be a ball. This proves the
isoperimetric inequality for a bounded set E.

Step 2. Let us now consider the case of an unbounded set E with jEj D !n. From
Theorem 13 we get a sequence of smooth bounded sets Ej such that Ej converge
in measure to E in R

n and P.Ej/ ! P.E/ as j ! 1. From Step 1 we then have
that P.Ej/ � P.Brj/ where jEjj D jBrj j. From this inequality and using the fact that
jEjj ! jEj, letting j ! 1, we have that P.E/ � P.B/. Finally, if P.E/ D P.B/ we
may repeat the same argument used in Step 1 to conclude first that E.1/ is an open
convex set and then that it is a ball. ut

Let us now give the proof of the technical lemma used before. Note that this
lemma was not explicitly stated in the original paper [27]. For the proof below I
thank Giovanni Alberti with whom I discussed the issue a few years ago. To this
aim, given a measurable set E, we denote by �.E/C the essential projection of E
over the first n � 1 coordinates plane, that is

�.E/C WD fx 2 R
n�1 W H1.Ex/ > 0g :

Lemma 20 Let E be a measurable set in R
n such that for Hn�1-a.e. x 2 R

n�1 the
section Ex D fy 2 R W .x; y/ 2 Eg is equivalent to a segment up to a set of zero H1
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measure. Then, denoting by F the set of points of density 1 with respect to E, Fx is a
segment for every x 2 R

n�1.

Proof Let z1 D .x; y1/, z2 D .x; y2/ be two points in Fx with y1 < y2. Let us
fix y 2 .y1; y2/. We claim that z D .x; y/ 2 Fx. Since E has density 1 at x1 and
x2 the same is true also for F. Therefore, given " > 0, there exists r" such that, if
0 < r < r", then, see (8),

jF \ Qr.zi/j
2nrn

> 1 � " for i D 1; 2 :

By Fubini’s theorem we have that

2nrn.1�"/ < jF\Qr.zi/j D
Z

�.F\Qr.zi//C
H1.F\Qr.zi//x/ dx � 2rHn�1.�.F\Qr.zi//

C/

and thus

Hn�1.�.F \ Qr.zi//
C/ > 2n�1rn�1.1 � "/ for i D 1; 2 : (15)

Since the essential projections of F \ Qr.z1/ and F \ Qr.z2/ are both contained in
the same .n � 1/-dimensional cube of edge length 2r, from (15) we get that

Hn�1��.F \ Qr.z1//
C \ �.F \ Qr.x2//

C� > 2n�1rn�1.1 � 2"/ : (16)

Now, recall that by assumption for Hn�1-a.e. x 2 �.F\Qr.z1//C \�.F\Qr.z2//C
the set Fx is equivalent to a segment such that H1.Fx \ Qr.zi// > 0 for i D 1; 2.

Therefore, if we take r" <
1

2
minfy � y1; y2 � yg, we get that

H1.Fx \ Qr.z// D 2r :

This inequality, together with (16) implies that

jF \ Qr.x/j > 2nrn.1� 2"/; for all r < r" :

Therefore, letting first r ! 0 and then " ! 0, we immediately get that F has density
1 at z and thus z 2 F. Hence the result follows. ut
An equivalent way of stating the isoperimetric inequality can be obtained noting that
if jEj D jBrj for some r > 0, then jEj D !nrn and P.Br/ D n!nrn�1. Therefore (14)
becomes

P.E/ � n!1=nn jEj1�1=n: (17)
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Fig. 9 The level sets of f

Observe that since P.E/ D jD�Ej.Rn/ and k�Ek
L

n
n�1 .Rn/

D jEj1�1=n this inequality

can be viewed as a particular case of the Sobolev inequality forW1;1.Rn/ or BV.Rn/.
To understand better this connection we need to introduce an important formula, first
proved by Fleming and Rishel in [37]. As shown in the picture below, it is a sort of
curvilinear version of the familiar Fubini theorem, Fig. 9.

Theorem 21 (Coarea Formula for Lipschitz Function) Let � � R
n be an open

set and f W � ! R a Lipschitz function. Then f f > tg is a set of finite perimeter for
H1-a.e. t 2 R. Moreover, if g W � ! Œ0;C1� is a Borel function,

Z

�

g.x/jrf j dx D
Z

R

dt
Z

@�f f>tg
g.x/ dHn�1.x/: (18)

The next result shows that the isoperimetric inequality (17) is equivalent to the
Sobolev inequality (with the same constant).

Theorem 22 The following statements are equivalent:

(1) for all measurable set E with finite measure P.E/ � C0jEj n�1
n ;

(2) for all f 2 W1;1.Rn/ we have that krfkL1.Rn/ � C0k fkL n
n�1 .Rn/

.

Proof To show that the Sobolev inequality (2) implies the isoperimetric inequality
(1), we use mollifiers. For " > 0 set f" WD �" � �E , where �".x/ D "�n�.x="/ is a
standard mollifier. Note that f" 2 W1;1.Rn/ and that f" ! �E a.e. in R

n. Then, fix
' 2 C1c.R

n;Rn/ with jj'jj1 � 1. Using the definition of f", performing a change
of variable and recalling Definition 1, we easily get

�
Z

Rn
rf" � ' dx D

Z

Rn
f" div' dx D

Z

Rn
dx
Z

Rn
�".z/�E.x � z/ div'.x/dz

D
Z

Rn
�".z/dz

Z

Rn
�E .y/ div'.y C z/dy � P.E/

Z

Rn
�".z/dz D P.E/:
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Taking the supremum over all such ', from (2) we get

P.E/ �
Z

Rn
jrf"j � C0k f"k n

n�1
:

Hence (1) follows, letting " ! 0 and recalling that f".x/ ! �E.x/ for a.e. x 2 R
n.

To prove that the isoperimetric inequality implies the Sobolev inequality we are
going to use the coarea formula (18). Note that by density it is enough to prove (2)
for a function f 2 C1c .R

n/. Moreover, splitting f in its positive and negative part, we
may always assume without loss of generality that f � 0. Then, for any t � 0 we
truncate f from below by setting ft WD minff ; tg. We set also �.t/ WD k ftk n

n�1
. Note

that � is an increasing function and that for h > 0

�.t C h/� �.t/ � k ftCh � ftk n
n�1

� hjf f > tgj1�1=n

Thus � is Lipschitz and �0.t/ � jf f > tgj1�1=n for H1-a.e. t 2 R. Furthermore,
using the isoperimetric inequality (14), we have

k f k n
n�1

D lim
t!C1�.t/ D

Z C1

0
�0.s/ds �

Z C1

0
jf f > sgj1�1=nds

� C�1
0

Z C1

0
P.f f > sg/ds D C�1

0

Z C1

�1
ds
Z

@�f f>sg
dHn�1 D C�1

0

Z

Rn
jrf j;

where the last equality follows from (18) with g 	 1. ut

4 Stability of the Isoperimetric Inequality: Convex
and Nearly Spherical Sets

After having proved the isoperimetric inequality we now turn to the next issue,
namely the stability of this inequality. In other words, if E is a set such that jEj D
jBrj and P.E/ D P.Br/ C ı for some small ı, can we say that E is somehow close
to a ball? And how can we measure the distance from a ball in terms of ı?

The first results in this direction were proven for planar convex sets by Bernstein
[8] in 1905 and Bonnesen [11] in 1924. As we shall see in this section, it took some
time before the problem was completely solved for convex sets in any dimension.

Theorem 23 (Bonnesen) Given a convex set E � R
2, with jEj D jBj, there exist

two concentric disks Br1.x0/ � E � Br2 .x0/ such that

.r2 � r1/
2 � P2.E/� P2.B/

4�
: (19)
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Fig. 10 Bonnesen’s theorem

Figure 10 illustrates the statement of the theorem. A remarkable feature of inequal-
ity (19) is that the constant appearing on the right hand side is optimal. However,
we cannot expect to prove also in higher dimension such a precise inequality. Thus,
it may be useful to restate it in a weaker form that we may hope to extend to the
general n-dimensional case. To this aim, observe that from (19) it follows that if
P.E/ � P.B/ � 1 there exists x0 2 R

2 such that

d2H.E;B.x0// � C.P.E/� P.B//

for some positive constant C. Here and in the following we denote by

dH.E;F/ WD inff" > 0 W E � F C B"; F � E C B"g

the Hausdorff distance between any two sets E;F � R
n.

Remark 24 Let � � R
n be a bounded open set. Set C.�/ WD fK � � W

K compactg. Then the set C.�/, endowed with the Hausdorff distance is a compact
metric space, see for instance [4, Theorem 6.1]. Moreover the convergence of Kj to
K in the metric space .C.�/; dH/ is equivalent to the two following conditions

(i) for all x 2 K there exist xj 2 Kj such that xj ! x;
(ii) if xj 2 Kj, then any limit point of the sequence fxjg belongs to K.

The convergence defined by (i) and (ii) is also known as convergence in the sense of
Kuratowski.

Throughout all this section we shall only deal with sets E of the same volume as B.
This is not a restriction at all since all the statements that we shall prove under this
assumption also apply to sets of any measure, up to a suitable rescaling.
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Definition 25 Let E � R
n be a convex set with jEj D jBj. We define the

isoperimetric deficit and the asymmetry index of E by setting

D.E/ WD P.E/� P.B/; A.E/ WD min
x2Rn

dH.E;B.x//;

respectively.

The extension of Bonnesen result Theorem 23 to high dimension was obtained
by Fuglede in 1989, see [39].

Theorem 26 (Fuglede) Let n � 2. There exist ı;C, depending only on n, such that
if E is convex, jEj D jBj, and D.E/ � ı, then:

A.E/ �

8
ˆ̂̂
<̂

ˆ̂̂
:̂

C
pD.E/; n D 2

C

s

D.E/ log

�
1

D.E/
�
; n D 3

C.D.E// 2
nC1 ; n � 4:

(20)

As we already observed, for n D 2 the above estimate is just a weaker version
of the more precise inequality (19). As shown in [39, Sect. 3] also when n � 3 the
estimates above are optimal. In fact if n � 4 one cannot replace the power 2

nC1 by a
bigger one and if n D 3 one cannot remove the logarithm of 1=D.E/ from the right
hand side of (20).

Fuglede’s theorem is based on the following result for nearly spherical sets, that
is sets which are very close to the unit ball, see Fig. 11. It turns out that for such sets
one may estimate very precisely the distance from the ball by writing up the Taylor
expansion of the perimeter. As we shall see, the next result will be also useful to
prove the stability of the isoperimetric inequality for general sets of finite perimeter.

Theorem 27 Let u W Sn�1 ! .�1; 1/ be a Lipschitz function and let

E WD ftz.1C u.z// W z 2 S
n�1; 0 � t < 1g : (21)

Fig. 11 A nearly spherical
set
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There exists ".n/ > 0 such that if kukW1;1.Sn�1/ < ", jEj D jBj and the barycenter
of E is the origin, then

D.E/ � 1

4
kr�uk2L2.Sn�1/

� 1

8!n
jE�Bj2: (22)

Note that in (22) we have denoted by r�u the tangential gradient of u on S
n�1. In

the sequel we shall refer to a set E � R
n satisfying (21) as to a nearly spherical set.

In order to prove Theorem 27 we need the formulas stated in the next lemma.

Lemma 28 Let E be as in (21), with kukW1;1.Sn�1/ < 1. Then

P.E/ D
Z

Sn�1

q
.1C u/2.n�1/ C .1C u/2.n�2/jr�uj2 dHn�1 : (23)

Moreover,

jEj D 1

n

Z

Sn�1

.1Cu.z//n dHn�1;
Z

E
x dx D 1

n C 1

Z

Sn�1

z.1Cu.z//nC1 dHn�1 :
(24)

Proof We start by proving (24). To this aim we extend u to R
nnf0g by setting

u.x/ WD u.x=jxj/ for all x 6D 0. In this way we have that E D ˆ.B/, whereˆ W Rn !
R

n is the mapˆ.x/ WD x.1Cu.x//, x 2 B. Note that Dˆ.x/ D .1Cu.x//IC x˝Du
and that since u is homogeneous of degree zero, then x � Du.x/ D 0 for all x 6D 0.
Thus, recalling (11) we conclude that the Jacobian Jˆ of ˆ is given by .1C u.x//n.
Therefore

jEj D
Z

B
Jˆ dx D

Z

B
.1C u.x//n dx D

Z 1

0

rn�1 dr
Z

Sn�1

.1C u.x//n dHn�1 :

Hence the first equality in (24) follows. The second one is obtained similarly.
Since E is a bounded open set with Lipschitz boundary, P.E/ D Hn�1.@E/, see

Example 10 or [4, Proposition 3.62]. Then, recalling that @E D ˆ.Sn�1/, from the
area formula, see for instance [4, Theorem 2.92], we have

P.E/ D Hn�1.@E/ D
Z

Sn�1

Jn�1ˆ dHn�1; (25)

where the .n � 1/-dimensional Jacobian Jn�1ˆ of the map ˆ is given by

Jn�1ˆ D
q

det
�
.dˆ.x//T ı dˆ.x/

�
:

Here the linear map dˆ.z/ W TzSn�1 7! R
n is the tangential differential ofˆ defined

in (10) and .dˆ.z//T is its adjoint. Note that for any � 2 TzSn�1 we have dˆ.z/.�/ D
�.1 C u.z// C zD�u.z/, where D�u.z/ D ru.z/ � � . Therefore the coefficients of
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the matrix dˆ.z/ relative to an orthonormal base f�1; : : : ; �n�1g of TzSn�1 and to
the standard base fe1; : : : ; eng are given by �i � eh.1 C u.z// C zhD�i u.z/, for i D
1; : : : ; n � 1, h D 1; : : : ; n. Thus, for all i; j 2 f1; : : : ; n � 1g, the coefficients aij of
the matrix .dˆ.z//T ı dˆ.z/ are given by

aij D
nX

hD1

�
�i � eh.1Cu/C zhD�i u

��
�j � eh.1Cu/C zhD�j u

� D ıij.1Cu/2CD�i uD�j u;

where in the last equality we have used the fact that �i � �j D ıij and �i � z D 0 for all
i; j D 1; : : : ; n � 1. Hence, recalling (11) we have

Jn�1ˆ D
q

det.aij/ D
q
.1C u/2.n�1/ C .1C u/2.n�2/jr�uj2

and thus (23) follows immediately from (25). ut
We are now in position to give the proof of Theorem 27. The proof below follows
closely the one given in [40] which has the advantage of avoiding some heavy
computations of the original proof by Fuglede.

Proof of Theorem 27 Step 1. From (23) we have

P.E/� P.B/ D
Z

Sn�1

2

4.1C u/n�1
s

1C jr�uj2
.1C u/2

� 1
3

5 dHn�1

D
Z

Sn�1

	
.1C u/n�1 � 1



dHn�1

C
Z

Sn�1

.1C u/n�1
2

4
s

1C jr�uj2
.1C u/2

� 1

3

5 dHn�1:

From the Taylor expansion of the square root it follows that for t > 0 sufficiently
small

p
1C t � 1C t

2
� t2

7
. Hence, if " is small, from the assumption kukW1;1.Sn�1/ <

" we get

P.E/� P.B/ �
Z

Sn�1

	
.1C u/n�1�1
 dHn�1

C
Z

Sn�1

.1C u/n�1
�
1

2

jr�uj2
.1C u/2

� 1

7

jr�uj4
.1C u/4

�
dHn�1

�
Z

Sn�1

	
.1C u/n�1�1
 dHn�1 C

�
1

2
� C"

�Z

Sn�1

jr�uj2dHn�1;

(26)
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where C is a constant depending only on n. From the first equality in (24) it follows
that the assumption jEj D jBj is equivalent to

Z

Sn�1

	
.1C u/n � 1
dHn�1 D 0; (27)

that is

Z

Sn�1

�
nu C

nX

hD2

 
n

h

!
uh
�
dHn�1 D 0: (28)

From this identity, recalling again that kukL1.Sn�1/ < ", we have

Z

Sn�1

udHn�1 � �n � 1

2

Z

Sn�1

u2dHn�1 � C"
Z

Sn�1

u2dHn�1:

Therefore, using this last inequality and the smallness assumption, we may estimate

Z

Sn�1
Œ.1C u/n�1 � 1�dHn�1 D .n � 1/

Z

Sn�1
udHn�1 C

n�1X

hD2

 
n � 1

h

!Z

Sn�1
uhdHn�1

� .n � 1/
Z

Sn�1
udHn�1 C .n � 1/.n � 2/

2

Z

Sn�1
u2dHn�1

� C"
Z

Sn�1
u2dHn�1

� �n � 1

2

Z

Sn�1
u2dHn�1 � C"

Z

Sn�1
u2dHn�1:

In conclusion, recalling (26), we have proved that if kukW1;1.Sn�1/ � ", then

P.E/� P.B/ �
�1
2

� C"
�Z

Sn�1

jr�uj2dHn�1 �
�n � 1

2
C C"

� Z

Sn�1

u2dHn�1;
(29)

for some constant C depending only on the dimension n.

Step 2. Now, for any integer k � 0, let us denote by yk;i, i D 1; : : : ;G.n; k/, the
spherical harmonics of order k, i.e., the restriction to S

n�1 of the homogeneous
harmonic polynomials of degree k, normalized so that jjyk;ijjL2.Sn�1/ D 1, for all
k and for i 2 f1; : : : ;G.n; k/g. Taking into account the normalization, we have that
y0 D 1=

p
n!n and y1;i D zi=

p
!n, for i D 1; : : : ; n. Recall that the polynomials yk;i

are eigenfunctions of the Laplace-Beltrami operator on S
n�1 and that for all k and i

��Sn�1yk;i D k.k C n � 2/yk;i :
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Therefore if we write

u D
1X

kD0

G.n;k/X

iD1
ak;iyk;i; where ak;i D

Z

Sn�1

uyk;idHn�1;

we have

jjujj2L2.Sn�1/
D

1X

kD0

G.n;k/X

iD1
a2k;i; jjr�ujj2L2.Sn�1/

D
1X

kD1
k.k C n� 2/

G.n;k/X

iD1
a2k;i : (30)

Observe that from formula (28) we have

a0 D 1p
n!n

Z

Sn�1

udHn�1 D � 1

n
p
n!n

nX

hD2

 
n

h

!Z

Sn�1

uhdHn�1;

hence

ja0j � Cjjujj22 � C"jjujj2 :

From the assumption that the barycenter of E is at the origin and from the second
equality in (24) we have

Z

Sn�1

z.1C u.z//nC1 dHn�1 D 0 :

Then, using the equality
R
Sn�1 z D 0 and arguing as before, we immediately get that

for all i D 1; : : : ; n,

ja1;ij D
ˇ̌
ˇ̌ 1p
!n

Z

Sn�1

uzi dHn�1
ˇ̌
ˇ̌ � C"jjujj2:

Therefore, from (30) we get

jjujj22 � C"2jjujj22 C
1X

kD2

G.n;k/X

iD1
jak;ij2 H) jjujj22 � 1

1 � C"

1X

kD2

G.n;k/X

iD1
jak;ij2:

But since for k � 2, k.k C n � 2/ � 2n, from (30) we have

jjujj22 � 1

2n.1� C"/
jjr�ujj22
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and thus, recalling (29) and choosing " sufficiently small, in dependence on n, we
get

P.E/� P.B/ �
�1
2

� C"
�Z

Sn�1
jr�uj2dHn�1 �

�n � 1

2
C C"

� 1

2n.1 � C"/
jjr�ujj22

� 1

4

Z

Sn�1
jr�uj2dHn�1 � n

3
jjujj2L2 .Sn�1/

� 1

3!n
jjujj2L1.Sn�1/

: (31)

This proves the first inequality in (22). To get the second inequality we observe that,
choosing again " sufficiently small

jE�Bj D 1

n

Z

Sn�1

j.1C u.x//n � 1j dHn�1 � n C 1

n

Z

Sn�1

juj dHn�1 :

Therefore, from the last inequality of (31) we conclude that

P.E/ � P.B/ � 1

3!n
jjujj2L1.Sn�1/

� n2

3.n C 1/2!n
jE�Bj2 � 1

8!n
jE�Bj2 :

ut
The theorem we have just proved allows us to estimate the distance in W1;2 of

a nearly spherical set E from the unit ball with the isoperimetric deficit. Now, an
interpolation result will tell us that indeed we may also control the L1 distance,
hence the Hausdorff distance, between E and B. For the proof see [39, Lemma 1.4].

Lemma 29 (Interpolation Lemma) If v 2 W1;1.Sn�1/ and
R
Sn�1 v D 0, then

jjvjjn�1
L1.Sn�1/

�

8
ˆ̂̂
<

ˆ̂̂
:

�jjr�vjj2; n D 2

4jjr�vjj22 log
8ejjr�vjj1

jjr�vjj22
; n D 3

Cjjr�vjj22jjr�vjjn�31 ; n � 4;

where the constant C depends only on the dimension.

Combining Lemma 29 with Theorem 27 we immediately get the estimate of the L1
distance between a nearly spherical set E and the unit ball.

Theorem 30 Under the assumptions of Theorem 27, there exist ";C > 0 depending
only on n such that if jjujjW1;1.Sn�1/ � ", then

jjujjn�1
L1.Sn�1/

�

8
ˆ̂̂
<

ˆ̂̂
:

C
pD.E/; n D 2

CD.E/ log

�
1

D.E/
�
; n D 3

CD.E/jjr�ujjn�31 ; n � 4:
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Proof Set v WD .1C u/n � 1
n

. From the volume constraint jEj D jBj we have,

see (27),

Z

Sn�1

v dHn�1 D 1

n

Z

Sn�1

	
.1C u/n � 1
dHn�1 D 0:

Moreover, since

v D u C 1

n

nX

hD2

 
n

h

!
uh;

if " > 0 is small enough we have

1

2
juj � jvj � 2juj; 1

2
jr�uj � jr�vj � 2jr�uj:

Then the result follows immediately from Theorem 27 and the interpolation
Lemma 29. ut

Let us now consider the case of a convex set with small isoperimetric deficit and
let us indicate the main steps in the proof of Fuglede’s Theorem 26. The first step,
see Lemma 32, is to show that a convex set with small isoperimetric deficit is close in
the Hausdorff distance to a ball with the same volume. At this stage, however, we are
not yet able to quantify how close is the set to the ball in terms of the isoperimetric
deficit. Next, we observe that if a convex set is close in the Hausdorff sense to a ball
of the same volume, then it is also close to the same ball in W1;1, see Lemma 33.
Then, the final step of the proof consists in combining these observations with the
precise estimate provided by Theorem 30.

Let us start with a simple lemma relating the diameter diam.E/ of a convex set E
with its volume and perimeter. To this aim, let us recall that

P.E/ � P.F/ if E; F are convex and E � F : (32)

Lemma 31 Let E � R
n be a bounded open convex set. Then

diam.E/ � c.n/
ŒP.E/�n�1

jEjn�2 :

Proof First observe that if n D 2 we trivially have diam.E/ � 1
2
P.E/:

So let us assume n � 3. Let x; y 2 @E be such that diam.E/ WD d D jx�yj. Then,
rotate and translate E so to reduce to the situation shown in Fig. 12.

By Fubini’s Theorem, jEj D R d
0
Hn�1.Et/dt, where Et D E \ fxn D tg. Observe

that there exists s 2 .0; d/ such that Hn�1.Es/ � jEj=d. Note that we may always
assume that 0 < s � d=2 (otherwise we just rotate E upside down). Let C be the
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Fig. 12 The construction in
the proof of Lemma 31

cone in Fig. 12 with base Es and vertex x. Using the coarea formula (12) and (32)
we may estimate

P.E/ � P.C/ � Hn�1.@C n Es/ D
Z d

s
dt
Z

@Ct

1

j�Ct j dH
n�2 �

Z d

s
Hn�2.@Ct/dt

D
Z d

s

� d � t

d � s

�n�2
Hn�2.@Es/dt D .d � s/Hn�2.@Es/

n � 1 � d

2

Hn�2.@Es/

n � 1 :

From the isoperimetric inequality (17) we get

Hn�2.@Es/ � .n � 1/!
1=.n�1/
n�1

	Hn�1.Es/

 n�2
n�1 � .n � 1/!

1=.n�1/
n�1

� jEj
d

� n�2
n�1

:

Thus,

P.E/ � c.n/d

� jEj
d

� n�2
n�1

;

whence the result follows. ut
Let us now prove that a convex set with small isoperimetric deficit is close in the

Hasudorff distance to a ball.

Lemma 32 For all " > 0, there exists ı" > 0 such that if E is convex, jEj D jBj,
the barycenter of E is the origin and D.E/ < ı", then there exists a function u 2
W1;1.Sn�1/, with jjujjL1.Sn�1/ � ", and such that

E WD ftz.1C u.z// W z 2 S
n�1; 0 � t < 1g :
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Proof We argue by contradiction. Assume that there exist "0 > 0 and a sequence
of closed convex sets Ej such that jEjj D jBj, the barycenter of Ej is the origin,
D.Ej/ ! 0, but jjujjjL1.Sn�1/ � "0, where uj is the Lipschitz function representing
Ej as in (21). From Lemma 31 it follows that the sets Ej are equibounded and so,
recalling Remark 24, we may assume that they converge in the Hausdorff distance
to a closed set E. Note that E is convex and that the sequence Ej converge to E also
in measure. In particular jEj D jBj. Since D.Ej/ ! 0, we have that P.Ej/ ! P.B/.
Therefore, from the isoperimetric inequality and the lower semicontinuity of the
perimeter we get that

P.B/ � P.E/ � lim
j!1P.Ej/ D P.B/ :

Thus E is a ball, actually the unit ball centered at the origin, since all the Ej have
barycenter at the origin. This gives a contradiction, since the Ej are converging in
the Hausdorff sense to the unit ball B, while jjujjjL1.Sn�1/ � "0 for all j. ut

The following lemma shows that the Hausdorff distance of a convex set from a
ball controls indeed also its distance in W1;1.

Lemma 33 Let E is a convex set such that

E WD ftz.1C u.z// W z 2 S
n�1; 0 � t < 1g :

for some Lipschitz function u W Sn�1 ! .�1=2; 1=2/. Then

kr�ukL1 � 2
p

kukL1

1C kukL1

1� kukL1

:

Proof Let us fix Pz 2 @E and let z 2 S
n�1 be such that Pz D z.1 C u.z// and u

is differentiable at z. Recall that the tangent plane Tx@E is spanned by the vectors
.1C u.z//�i C zru.z/ � �i, where f�1; : : : ; �n�1g is an orthonormal base for TzSn�1.
Therefore the exterior normal to E at Pz is given by

�E.Pz/ D z.1C u.z// � r�u.z/p
.1C u.z//2 C jr�u.z/j2

: (33)

Since z � r�u.z/ D 0, we have

z � �E.Pz/ D 1C u.z/p
.1C u.z//2 C jr�u.z/j2

:

Then, denoting by H the projection of the origin on the tangent plane to E at Pz, we
have, see Fig. 13, OH

OPz
D z � �E.Pz/. Observe that

OPz � 1C jjujj1; OH � 1 � jjujj1;
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Fig. 13 The construction in
the proof of Lemma 33

where the second inequality follows by the convexity of E. Thus,

1 � jjujj1
1C jjujj1 � z � �E.Pz/ D 1C u.z/p

.1C u.z//2 C jr�u.z/j2
;

from which we get

jr�u.z/j2
.1C u.z//2

�
�
1C jjujj1
1� jjujj1

�2
� 1 D 4jjujj1

.1 � jjujj1/2 ;

thus concluding

jr�u.z/j2 � 4jjujj1
�
1C jjujj1
1� jjujj1

�2
;

whence the assertion follows. ut
Let us conclude this section by giving the

Proof of Theorem 26 Let as assume n � 4, since otherwise the proof is similar and
even easier.

From Lemmas 32 and 33 it follows that if E is a convex set with jEj D jBj and
D.E/ is sufficiently small, then, up to a translation, E is a nearly spherical set as
in (21) with barycenter at the origin, satisfying kukW1;1 < ", where " > 0 is the
one provided by Theorem 30. Therefore, using this theorem and Lemma 33 again,
we get

jjujjn�11 � cD.E/jjr�ujjn�31 � cjjujj n�3
21 D.E/ :
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hence, jjujj
nC1
21 � cD.E/. Thus we may conclude that

A.E/ � dH.E;B/ D jjujj1 � c ŒD.E/� 2
nC1 : ut

5 Stability of the Isoperimetric Inequality: Proof
by Symmetrization

We now discuss the quantitative isoperimetric inequality for general sets of finite
perimeter. In this case it is clear that we cannot use the Hausdorff distance to
measure the distance of a set E from a ball, since a set with the same volume of
the ball B and a slightly larger perimeter may have small far away pieces or tiny
long tentacles. Taking into account these examples it is then reasonable to introduce
the so called Fraenkel asymmetry which is defined, for any measurable set E of finite
measure, as

˛.E/ WD inf
x2Rn

n jE�Br.x/j
rn

W jEj D jBrj
o
:

Note that the above infimum is always attained. In the following we shall refer to a
minimizer of the right hand side as to an optimal ball for E. Clearly, optimal balls do
not need to be unique. Observe also that, since jE�Br.x/j is exactly the L1 distance
between �E and �Br.x/, ˛.E/ can be regarded as the normalized L1 distance of E
from its optimal ball. It is convenient to normalize also the isoperimetric deficit by
setting

D.E/ WD P.E/� P.Br/

rn�1 ;

where jBrj D jEj.
In 1992 Hall [47], using some previous results proved in collaboration with by

Hayman and Weitsman [48], showed that there exists a constant c.n/ such that for
all measurable sets of finite measure

˛.E/4 � c.n/D.E/ : (34)

Note that the power on the left hand side of (34) is independent of the dimension
of the ambient space. Note also that an inequality of this kind becomes critical only
when the set E is a small perturbation of the ball. As an example consider for any
n � 2 the ellipsoid

E" D
�

x21
1C "

C x22.1C "/C x23 C : : :C x2n � 1

�
;
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with " > 0. Then ˛.E"/ D jE"�Bj, see [6, Lemma 5.9] and it is not difficult to show
that

D.E"/

˛2.E"/
! � > 0; as " ! 0C:

This example led Hall to conjecture in [47] that inequality (34) should hold in any
dimension with the (optimal) exponent 2. This was proved by Maggi, Pratelli and
the author in [44]. The precise statement goes as follows.

Theorem 34 (Quantitative Isoperimetric Inequality) There exists a constant
�.n/ such that for any measurable set E of finite measure

˛.E/2 � �.n/D.E/: (35)

In this section we are going to discuss the proof of this result originally given in
[44], which relies mostly on symmetrization arguments.

Note that inequality (35) can be rewritten in the following equivalent way: if
jEj D jBrj, then

P.E/ � P.Br/
�
1C 1

n!n�.n/
˛.E/2

�
:

Thus the asymmetry index ˛.E/ estimates from below the second order term in the
Taylor expression of P.E/ in terms of P.Br/.

Before going into the proof of (35) let us make some preliminary remarks.
First, observe that since both ˛.E/ and D.E/ are scale invariant, to prove

Theorem 34 we may always assume jEj D jBj. Note also that if one proves (35)
for a set with small isoperimetric gap, i.e., D.E/ � ı0, then the general case follows.
As a matter of fact, if D.E/ > ı0 and jEj D jBrj, then

˛.E/ � jE�Brj
rn

� 2!n � 2!np
ı0

p
D.E/ :

The strategy of the proof consists in reducing the general case to more and more
special classes of sets. Precisely, in the first step one reduces to sets contained in
a sufficiently large square, see Lemma 35. Then one wants to reduce to bounded
n-symmetric sets, i.e., sets which are symmetric with respect to n orthogonal
hyperplanes, Theorem 40. These sets have the nice property that the ball centered
at their center of symmetry is “almost optimal” in the sense stated in Lemma 38.
The last reduction consists in passing from n-symmetric to axially symmetric sets
whose profile is obtained by rotating a one-dimensional graph. Note that the proof of
the quantitative isoperimetric inequality (35) for axially symmetric sets was already
contained in Hall’s paper [47, Theorem 2]. Different proofs are given in [44, Sect. 4]
and in [50, Sect. 7]. The approach to stability issues via symmetrization has been
used also used to deal with the Sobolev inequality, the isoperimetric inequality in
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Gauss space and with other relevant geometric and functional inequalities, see for
instance [6, 7, 13, 21, 22, 32, 33, 35, 43, 45, 46], and also [41, 52, 58].

The first reduction step is provided by the next result, see [44, Lemma 5.1]).

Lemma 35 There exist positive constants L;C; ı depending only on n such that if
jEj D jBj and D.E/ � ı one can find a set F � Œ�L;L�n, with jFj D jBj, such that

˛.E/ � ˛.F/C CD.F/ and D.F/ � CD.E/:

We will not give the detailed proof of this lemma, which consists in cutting the far
away parts of E and rescaling the remaining part of the set. The main ingredients
of the proof are the isoperimetric inequality and the strict concavity of the function
t
n�1
n for t > 0, which allows to estimate in a quantitative way the asymmetry created

by splitting a set in two parts. To understand how this estimate works observe that
for all � 2 .0; 1/

�
n�1
n C .1 � �/ n�1

n � 1 � c.n/minf�; 1� �g: (36)

Let E D Br.x/[B�.y/ the union of two disjoint balls such that jEj D jBj and r � �.
Then

rn C �n D 1

and from (36) we may estimate the isoperimetric deficit of E by

D.E/ D P.Br.x//C P.B�.y//� P.B/ � c.n/minfrn; �ng � c.n/�n :

Hence the estimate on the Fraenkel asymmetry of E immediately follows:

1

2
˛.E/ � jB.x/ n Br.x/j D !n.1 � rn/ D !n�

n � !nc.n/D.E/ :

It is clear how to use Lemma 35. Indeed if the quantitative isoperimetric inequal-
ity (35) holds for a bounded set, then, given any set E with jEj D jBj and D.E/ � 1,
denoting by F the set provided by Lemma 35, we have

˛.E/ � ˛.F/C CD.F/ �
p
�.n/D.F/C CD.F/ � C0pD.E/ :

for a constant C0 depending only on n.
Thus, from now one we may assume without loss of generality that the set E has

volume !n, that E � Œ�L;L�n , for some given L > 0, and that D.E/ � ı for some
conveniently small ı.

The advantage of working with bounded sets is that in this case the compactness
theorem for sets of finite perimeter Theorem 13 implies that ˛.E/ depends continu-
ously on D.E/.
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Lemma 36 Let L > 0. For any " > 0 there exists ı > 0 such that if E � Œ�L;L�n,
jEj D jBj, and D.E/ � ı then ˛.E/ � ".

Proof The proof is by contradiction. Assume that there exist " > 0 and a sequence
of sets Ej � Œ�L;L�n , with jEjj D jBj, D.Ej/ ! 0 and ˛.Ej/ � " > 0 for all
j 2 N. Since the sets Ej are equibounded, by Theorem 15 we may assume that up
to a not relabeled subsequence the Ej converge in measure to some set E1 of finite
perimeter. Thus jE1j D jBj, and by the lower semicontinuity of the perimeters
P.E1/ � P.B/, so E1 is a ball. However the convergence in measure of Ej to E1
immediately implies that jEj�E1j ! 0, against the assumption ˛.Ej/ � ". The
contradiction concludes the proof. ut

Next step in the proof of the quantitative isoperimetric inequality is to reduce to
the simpler case of an n-symmetric set.

Definition 37 We say that E � R
n is n-symmetric if, up to a translation and a

rotation, E is symmetric about each coordinate plane.

Note that even if E is n-symmetric it is not true in general that the optimal ball is the
one centered at the center of symmetry of E, as shown in Fig. 14. However, the next
lemma shows that for n-symmetric sets this ball is optimal “up to a constant”.

Lemma 38 Let E be n-symmetric with centre of symmetry at the origin, jEj D jBj.
Then

˛.E/ � jE�Bj � 3˛.E/

Proof Let B.x0/ be an optimal ball for E, i.e. ˛.E/ D jE�B.x0/j. Then by the
triangular inequality we have

jE�Bj � jE�B.x0/j C jB.x0/�Bj:

Fig. 14 An optimal ball not
centered at the origin
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Note that since E is n-symmetric B.�x0/ is optimal as well, i.e., ˛.E/ D
jE�B.�x0/j. Therefore from the inequality above we have

˛.E/ � jE�Bj � ˛.E/C jB.x0/�Bj � ˛.E/C jB.x0/�B.�x0/j
� ˛.E/C jE�B.x0/j C jE�B.�x0/j D 3˛.E/:

ut
The next step is to reduce the proof of the quantitative isoperimetric inequal-

ity (35) to n-symmetric bounded sets. But before discussing how this can be done
let us first introduce a few definitions.

Given a direction � 2 Sn�1 and a measurable set E of finite measure, let us
consider the affine hyperplane �� orthogonal to � splitting E into two parts of equal
measure. We denote by E0 the part of E contained in the open half space HC

� with
inner normal � and by E00 the part of E contained in the open half space H�

� with
inner normal ��. Then, we set EC

� WD E0[r�.E0/, where r� is the reflection about the
hyperplane �� and E�

� WD E00 [ r�.E00/. See Fig. 15 where, to simplify the notation,
we dropped the subscript �. We claim that

P.EC
� /C P.E�

� / � 2P.E/ (37)

with the inequality being possibly strict. To see this observe that from the definition
of density we easily have that

	
E.0/ [ E.1/


 \ �� � 	
.EC

� /
.0/ [ .EC

� /
.1/

 \ 	

.E�
� /

.0/ [ .E�
� /

.1/

 \ �� :

Therefore, from the definition of measure theoretic boundary given in (9) we
deduce in particular that @ME�̇ \ �� � @ME \ �� and thus, recalling Theorem 9,
Hn�1.@�E�̇ \ ��/ � Hn�1.@�E \ ��/. Hence, (37) follows, since

P.EC
� /C P.E�

� / D 2P.E \ HC
� /C Hn�1.@�EC

� \ ��/C 2P.E \ H�
� /

C Hn�1.@�E�
� \ ��/

� 2P.E \ HC
� /C 2P.E \ H�

� /C 2Hn�1.@�E \ ��/ D 2P.E/ :

Fig. 15 The sets EC and E�

are obtained by reflecting the
upper and lower half of E
with respect to the horizontal
plane

E
E−E+
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Observe that inequality (37) implies that

D.EC
� /C D.E�

� / � 2D.E/ : (38)

Therefore if we could prove that for some positive constant C0 depending only on n

˛.E/ � C0Œ˛.E
C
� /C ˛.E�

� /�; (39)

we would conclude that, setting F either equal to EC
� or E�

� , then

˛.E/ � 2C0˛.F/; D.F/ � 2D.E/ :

Then by applying this argument to all coordinate directions we would find a
n-symmetric set G with the same volume of E such that

˛.E/ � 2nCn
0˛.G/; D.G/ � 2nD.E/

and from these inequalities we would conclude that in order to prove (35) for E it is
enough to prove it for the n-symmetric set G.

Inequality (39) is not true in general as we can see looking at the set E in Fig. 16.
In fact, by reflecting the upper and lower halves of E with respect to the horizontal
plane we get that E˙ are both balls, hence ˛.E˙/ D 0. However, if we symmetrize
the same set with respect to the vertical direction the asymmetry index may even
increase, as one can see in Fig. 17.

The following lemma shows that the phenomenon illustrated by this example is a
general fact. Indeed, if for some � the asymmetry of EC

� and E�
� is much lower than

the one of E, then given any other orthogonal direction �0, at least one of the two
sets E�̇0

has a larger asymmetry than E, up to a multiplicative constant depending
only on the dimension.

Lemma 39 There exist ı;C, depending only on n, such that if E � Œ�L;L�n, jEj D
jBj and D.E/ � ı, given any two orthogonal direction �1; �2 and the four sets

Fig. 16 A set for which (39)
is not true
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Fig. 17 A different
symmetrization may give a
bigger asymmetry

EC
�1
;E�

�1
;EC

�2
;E�

�2
, we have that D.E�̇i / � 2D.E/, for i D 1; 2. Moreover, at least

one of them, call it F, satisfies the estimate

˛.E/ � C˛.F/:

We are not giving the proof of this lemma, for which we refer to (see [44,
Lemma 2.5]). Instead we show how to use it in order to reduce the proof of (35)
to n-symmetric sets.

Theorem 40 There exist ı1 and C1 depending only on n such that if E �
Œ�L;L�n; jEj D jBj; ı.E/ � ı1, then there exists an n-symmetric set F such that
F � Œ�2L; 2L�n; jFj D jBj and

˛.E/ � C1˛.F/; D.F/ � 2nD.E/: (40)

Proof Take ı1 D 2�.n�1/ı, where ı is the constant of Lemma 39. By applying the
lemma n � 1 times to different pairs of orthogonal directions we find a set eE �
Œ�L;L�n with n � 1 symmetries, jeEj D jBj and such that

˛.E/ � Cn�1˛.eE/; D.eE/ � 2n�1D.E/;

where C is the constant given by Lemma 39. Without loss of generality we may
assume thateE is symmetric with respect to the first n�1 directions e1; : : : ; en�1. Let
us consider a hyperplane �en orthogonal to en and dividingeE into two parts of equal
measure,eE0;eE00, and the corresponding setseEėn . From (38) we have that

D.eEėn
/ � 2D.eE/ � 2nD.E/:

To control the asymmetry of eEėn
observe that since eE is symmetric with respect to

the first n � 1 directions, the sets eEėn
are both n-symmetric. Moreover, by suitably

translatingeE if necessary, we may also assume that they are both symmetric around
the origin. Thus we may apply Lemma 38 to estimate

˛.eE/ � jeE�Bj D 1

2

	jeEC
en�Bj C jeE�

en�Bj
 � 3

2

	
˛.eEC

en/C ˛.eE�
en/


:
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Thus, at least one of the sets eEėn has asymmetry index greater than
1

3
˛.eE/.

Therefore, denoting by F this set, we have

D.F/ � 2D.eE/ � 2nD.E/

and

˛.E/ � Cn�1˛.eE/ � 3Cn�1˛.F/: ut

Having proved Theorem 40, from now on we may assume that E is an n-symmetric
set such that E � Œ�L;L�n for some L depending only on n, jEj D jBj. We now want
to pass from n-symmetric sets to axially symmetric sets, i.e., sets E having an axis
of symmetry such that every non-empty cross-section of E perpendicular to this axis
is a .n � 1/-dimensional ball.

In order to perform this further simplification, let us recall the definition of
Schwartz symmetrization of a set E (Fig. 18). To this aim, given a measurable set
E, for all t 2 R we set

Et D fx 2 R
n�1 W .x; t/ 2 Eg:

A result due to Vol’pert states that if E is a set of finite perimeter then Et is a set of
finite perimeter in R

n�1 for a.e. t 2 R. For a proof of this important property see for
instance [6, Theorem 2.4].

Definition 41 Given a measurable set E � R
n, its Schwartz symmetrization is

defined as

E� D f.x; t/ 2 R
n�1 � R W t 2 R; jxj < rE.t/g;

where !n�1rn�1
E .t/ D Hn�1.Et/.

Fig. 18 The Schwartz symmetrization of the set E
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Note that jE�j D jEj. Moreover, as for Steiner symmetrization, also Schwartz
symmetrization decreases the perimeter. The next result (see [44, Lemma 3.3])
provides a useful formula for the perimeter of an axially symmetric set whose
boundary has no horizontal flat parts. To this aim, given a measurable set E � R

n,
for H1-a.e. t 2 R we set

vE.t/ WD Hn�1.Et/; pE.t/ WD Pn�1.Et/;

where Pn�1.�/ denotes the perimeter of a subset of Rn�1. Observe that this definition
makes sense since for H1-a.e. t 2 R the slice Et is a set of finite perimeter in R

n�1.
Note also that from Definition 41 we have vE.t/ D vE�.t/ for all t. Moreover, the
isoperimetric inequality in R

n�1 yields that pE�.t/ � pE.t/, since .E�/t is a ball with
the same measure of Et.

Theorem 42 Let E � R
n be a set of finite perimeter and let E� be its Steiner

symmetrization. Then

P.E�/ � P.E/ : (41)

Moreover, if

Hn�1.@�E \ f�Et D ˙1g/ D 0; (42)

then vE belongs to W1;1.R/ and the following formulas hold:

P.E/ �
Z

R

q
v02
E C p2E dt; P.E�/ D

Z

R

q
v02
E C p2E�

dt :

The next step in the proof of the quantitative isoperimetric inequality is given by the
following theorem, which states that we may eventually reduce to the case of axially
symmetric sets.

Theorem 43 Let E � Œ�L;L�n be an n-symmetric set satisfying (42) such that
jEj D jBj and D.E/ � 1. If n D 2 or if n � 3 and the quantitative isoperimetric
inequality (35) holds true in R

n�1, there exists a constant C depending only on n
such that

˛.E/ � ˛.E�/C C
p
D.E/; and D.E�/ � D.E/: (43)

We shall give the proof of this theorem at the end of this section. First, we show how
to conclude the proof of the quantitative isoperimetric inequality (35) by combining
this result with a final estimate for axially symmetric sets. This estimate is provided
by the next theorem, which is a particular case of a more general one proved by Hall
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in [47, Theorem 2] for general axially symmetric sets. As we already mentioned,
two different proofs of Theorem 44 below are given in [44, Sect. 4] and in [50,
Sect. 7].

Theorem 44 Let E � Œ�L;L�n be an axially and n-symmetric set with center of
symmetry at the origin, such that jEj D jBj. Then

jE�B.x0/j � C0pD.E/; (44)

for some constant C0 depending only on the dimension n.

The two previous theorems immediately yield the proof of (35).

Proof of Theorem 34 We argue by induction on the dimension n assuming that
either n D 2 or n � 3 and the isoperimetric inequality (35) holds in R

n�1.
As we already observed, in order to prove (35) it is enough to consider a set E �

Œ�L;L�n, such that jEj D jBj and that D.E/ � ı for some conveniently small ı 2
.0; 1/. Moreover, since the set of directions � 2 S

n�1 such that Hn�1.@�E \ f�Et D
˙1g/ > 0 is at most countable, by rotating E if necessary we may always assume
that (42) holds. Recall that Theorem 40 allows us to replace E by a n-symmetric
set F � Œ�2L; 2L�n satisfying (40). And observe that from the proof of Theorem 40
and the statement of Lemma 39 it is clear that also F satisfies (42). Therefore, by
replacing E with the n-symmetric set F if necessary, we may always reduce the
proof of (35) to the case of a set E satisfying all the assumptions of Theorem 41.

Thus, recalling (43) and applying (44) to E� we conclude, assuming without loss
of generality that the center of symmetry of E� is at the origin,

˛.E/ � ˛.E�/C C
p
D.E/ � jE��Bj C C

p
D.E/

� C0pD.E�/C C
p
D.E/ � C00pD.E/ :

where the constant C00 depends only on the dimension n. ut
We now turn to the proof of Theorem 43.

Proof of Theorem 43 Denoting by B.x0/ an optimal ball for E�, we have

˛.E/ � jE�B.x0/j � jE��B.x0/j C jE�E�j D ˛.E�/C jE�E�j:

Hence, in order to prove the first inequality in (43) it is enough to show that

jE�E�j � c.n/
p
D.E/; (45)
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for some positive constant c depending only on n. The second inequality in (43)
follows immediately from (41). To prove (45) we use again Theorem 42 to estimate

D.E/ D P.E/� P.B/ � P.E/� P.E�/ �
Z

R

q
v02
E C p2E �

q
v02
E C p2E�

dt

D
Z

R

p2E � p2E�q
v02
E C p2E C

q
v02
E C p2E�

dt

�
�Z

R

q
p2E � p2E�

dt

�2
1

R
R

q
v02
E C p2E C

q
v02
E C p2E�

dt

�
�Z

R

q
p2E � p2E�

dt

�2
1

P.E/C P.E�/
;

where the inequality before the last one follows from Hölder’s inequality. Since
D.E/ � 1, we have P.E�/ � P.E/ � P.B/C 1. Therefore from the above estimate
we get, recalling that pE � pE� ,

p
D.E/ � cn

Z

R

q
p2E � p2E�

dt (46)

D cn

Z

R

p
pE C pE�

p
pE�

p
.pE � pE�/=pE� dt

� p
2cn

Z

R

pE�

p
.pE � pE�/=pE� dt :

Now assume that n � 3 and observe that since .E�/t is an .n � 1/–dimensional ball
of radius rE.t/ with !n�1rn�1

E .t/ D Hn�1.Et/, the ratio

pE.t/ � pE�.t/

rn�2
E .t/

is precisely the isoperimetric gap of Et in R
n�1. Since by assumption, the quantita-

tive isoperimetric inequality (35) holds true in R
n�1, we have

�.n � 1/

s
pE.t/ � pE�.t/

rn�2
E .t/

� ˛n�1.Et/;

where ˛n�1.Et/ is the .n � 1/-dimensional Fraenkel asymmetry of Et. But Et is an
.n�1/-symmetric set in R

n�1 and .E�/t is the ball centered at the center of symmetry
of Et. Therefore from Lemma 38 we get

�.n � 1/
s

pE.t/ � pE�.t/

rn�2
E .t/

� ˛n�1.Et/ � 1

3

Hn�1.Et�.E�/t/
rn�1
E .t/

:
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Inserting this inequality in (46) we then get

p
D.E/ � c

Z

R

rn�2
E .t/

s
pE.t/ � pE�.t/

rn�2
E .t/

dt � c
Z

R

Hn�1.Et�E�
t /

rE.t/
dt

� c

L

Z L

�L
Hn�1.Et�E�

t / dt D c

L
jEt�E�

t j;

where the inequality before the last one follows from the inclusion E � Œ�L;L�n

and the last equality is just Fubini’s theorem. This proves (45). Hence the assertion
follows when n � 3.

If n D 2, since E is 2-symmetric, either Et is a symmetric interval (and thus Et D
E�
t ) or Et is the union of at least two essentially disjoint intervals and thus pE.t/ � 4,

while pE�.t/ D 2. Note also that since E � Œ�L;L�2, then H1.Et�E�
t / � 2L for all

t 2 R. Therefore, from (46) we easily get

p
D.E/ � p

2c2

Z

R

pE�

p
.pE � pE�/=pE� dt D 2c2

Z

ftWEt¤E�

t g
p
pE � pE� dt

� 2c2

Z

ftWEt¤E�

t g

p
2 dt �

p
2c2
L

Z

ftWEt¤E�

t g
H1.Et�E�

t /dt D
p
2c2
L

jE�E�j;

thus concluding the proof also in this case. ut

6 Alternative Proofs of the Quantitative Isoperimetric
Inequality

In this section we discuss two different approaches to the quantitative isoperimetric
inequality, the first one via the regularity theory of sets of finite perimeter and the
second one via mass transportation. The latter approach will provide us with the
extension of (35) to the anisotropic perimeter, a result that cannot be achieved via
symmetrization techniques. In the final part of this section we shall give an account
of a stronger version of (35) which is very much in the spirit of the estimate (22)
proved for nearly spherical sets.

We start by presenting the approach to the quantitative isoperimetric inequalities
introduced by Cicalese and Leonardi in [23] with some further simplifications due
to Acerbi, Morini and the author, see [1]. In comparing this new proof with the one
that we have seen in the previous section one can see two main differences. The
proof by symmetrization is more elementary since it relies on some geometric ideas
that do not require the use of deep previous results. But that proof is quite long. The
approach of Cicalese and Leonardi to the quantitative isoperimetric inequality is
based on the deep results of De Giorgi’s regularity theory for area minimizing sets of
finite perimeter, but it has the advantage of providing a quicker proof. Moreover this



114 N. Fusco

approach has proved to be useful in the study of the stability of other inequalities,
see [1, 9, 10, 12, 25].

As we said before we need a regularity result on area minimizing sets of finite
perimeter or, more generally, of area almost minimizers.

Definition 45 Let !; r be positive numbers. A set E of finite perimeter is an .!; r/-
area almost minimizer if, for all balls B%.x0/ with % < r and all measurable sets F
such that E�F �� B%.x0/, we have

P.E/ � P.F/C !%n:

So, an almost minimizer minimizes the perimeter with respect to local variations of
the set up to a higher order volume term. De Giorgi’s regularity theory, originally
established only for minimizers, readily extends to almost minimizers, see [60,
Sects. 1.9 and 1.10] and [51, Theorems 26.5 and 26.6].

Theorem 46 If E is an .!; r/-area almost minimizer, then @�E is a manifold of class
C1;1=2, @E n @�E is relatively closed in @E and Hs.@E n @�E/ D 0 for all s > n � 8.

Moreover, if Ej is a sequence of equibounded .!; r/-area almost minimizers
converging in measure to an open set E of class C2, then for j large each Ej is
of class C1;1=2 and the sequence Ej converges to E in C1;˛ for all 0 < ˛ < 1=2.

Next lemma is a simple consequence of the isoperimetric inequality.

Lemma 47 If ƒ > n, the unique solution up to translations of the problem

min
˚
P.F/Cƒ

ˇ̌jFj � jBjˇ̌ W F � R
n



(47)

is the unit ball.

Proof By the isoperimetric inequality it follows that in order to minimize the
functional in (47), we may restrict to the balls Br. Thus the above problem becomes

min
r>0

˚
n!nr

n�1 Cƒ!njrn � 1jg;

which has a unique minimum for r D 1, if ƒ > n. ut
Lets us now describe how the new proof of the isoperimetric inequality works.

The main idea in Cicalese and Leonardi approach was to reduce the proof of (35) to
nearly spherical sets via a contradiction argument. They start by assuming that there
exists a sequence of sets Ej with infinitesimal isoperimetric deficits for which the
quantitative inequality does not hold. Then they replace it with a different sequence
of sets Fj, still not satisfying the quantitative inequality and converging to B in C1,
thus contradicting Fuglede’s Theorem 27 for nearly spherical sets. The sets Fj are
constructed as the solutions of certain minimum problems and their convergence in
C1 to the unit ball is a consequence of Theorem 46.
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In the following we shall set for any measurable set of finite measure

A.E/ WD min
x2Rn

˚jE�B.x/j
:

Clearly A.E/ D ˛.E/ if jEj D jBj.
Proof of (35) by regularity Step 1. Fix R > 0 so that the ball BR contains the cube
Œ�L;L�n given by Lemma 35. As we observed in the previous section, it is enough
to prove (35) for a set E � BR, with jEj D jBj and with D.E/ � ı for some fixed
ı > 0. Thus, let us argue by contradiction assuming that there exists a sequence
Ej � BR; jEjj D jBj, with D.Ej/ ! 0 and

D.Ej/ � C0˛.Ej/
2; (48)

for some constant C0 to be chosen later. Observe that Lemma 36 implies that
A.Ej/ D ˛.Ej/ ! 0. Let us now introduce a new sequence Fj, where for each j
the set Fj is a minimizer of the following problem

min
˚
P.F/C jA.F/� A.Ej/j CƒjjFj � jBjj W F � BR



;

whereƒ > n is a fixed constant. Note that the penalization term ƒjjFj � jBjj forces
the minimizersFj to have almost the same volume of the unit ball, while the presence
of jA.F/� A.Ej/j has the effect that the asymmetry of Fj is very close to the one of
Ej, hence converges to zero.

Since the perimeters of the Fj are equibounded, the compactness Theorem 15
implies that, up to a not relabeled subsequence, they converge in measure to some
set F1. Moreover, the lower semicontinuity of the perimeter immediately yields that
F1 is a minimizer of the problem: min

˚
P.E/C A.E/C ƒjjEj � jBjj W E � BR



.

Therefore, for every set E of finite perimeter, from Lemma 47 we have

P.F1/C A.F1/CƒjjF1j � jBjj � P.B/ � P.E/CƒjjEj � jBjj :

In particular, F1 is a minimizer of the problem in (47), hence Lemma 47 implies
that F1 is a ball and thus that the Fj converge in measure to some ball B1.x0/.

We now want to show that the there exists ! > 0 such that all sets are Fj are
.!;R/-area almost minimizers. This fact, thanks to Theorem 46, will imply the
convergence to B1.x0/ in C1. To prove the almost minimality of the Fj, let us fix
a set F such that Fj�F �� Br.x/ for some ball Br.x/ with radius r < R and let us
consider two cases.

First. let us assume that F � BR. Then, by the minimality of Fj we get

P.Fj/ � P.F/C jA.F/� A.Ej/j � jA.Fj/� A.Ej/j Cƒ
	jjFj � jBjj � jjFjj � jBjj


� P.F/C jA.F/� A.Fj/j Cƒ
ˇ̌jFj � jFjj

ˇ̌

� P.F/C .ƒC 1/jF�Fjj � P.F/C .ƒC 1/!nr
n:
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If instead jF n BRj > 0, we split F in two parts, one inside and the other one outside
BR. Hence,

P.Fj/ � P.F/ D ŒP.Fj/ � P.F \ BR/�C ŒP.F \ BR/� P.F/�:

Since F \ BR � BR, as before we have

P.Fj/� P.F \ BR/ � .ƒC 1/!nr
n;

while

P.F \ BR/ � P.F/ D P.BR/� P.F [ BR/ � 0

by the isoperimetric inequality. Therefore we may conclude that the sets Fj are all
..ƒC 1/!n;R/–almost minimizers and that the sequence Fj converges to B1.x0/ in
C1;˛ for all ˛ < 1=2.

Step 2. By the minimality of the Fj, recalling (48) and using Lemma 47, we get

P.Fj/CƒjjFjj � jBjj C jA.Fj/ � A.Ej/j � P.Ej/ (49)

� P.B/C C0A.Ej/
2 � P.Fj/CƒjjFjj � jBjj C C0A.Ej/

2:

Therefore, jA.Fj/ � A.Ej/j � C0A.Ej/
2. Since A.Ej/ ! 0, we get that

A.Fj/=A.Ej/ ! 1.
To conclude the proof we need only to rescale the sets Fj to the same volume of

the unit ball by setting eFj D �jFj C xj, where �nj jFjj D jBj and xj is chosen so that
eFj has the baricenter at the origin. Note that �j ! 1 since the Fj converge in C1 to
a unit ball. Observe also that, since P.Fj/ ! P.B/ and ƒ > n, for j large we have
P.Fj/ < ƒjFjj. Thus for j large we have also

ˇ̌
P.eFj/ � P.Fj/

ˇ̌ D P.Fj/j�n�1
j �1j � P.Fj/j�nj �1j � ƒj�nj �1jjFjj D ƒ

ˇ̌jeFjj�jFjj
ˇ̌
:

From this estimate, recalling (49) we get that

P.eFj/ � P.Fj/Cƒ
ˇ̌jeFjj�jFjj

ˇ̌ D P.Fj/Cƒ
ˇ̌jFjj�jBjˇ̌ � P.B/CC0A.Ej/

2: (50)

However, since A.Fj/=A.Ej/ ! 1 as j ! 1, we have A.Ej/
2 < 2A.eFj/

2 for j large.
Therefore, from (50) we obtain

P.eFj/� P.B/ < 2C0A.eFj/
2;

which leads to contradiction to (22) if C0 < 1=.16!n/, since theeFj are converging
in C1 to B, This contradiction concludes the proof. ut
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In the remaining part of this section we will present two extensions of the
isoperimetric inequality (35). The first one deals with the anisotropic perimeter.
We recall that if � W Rn ! Œ0;1/ is a positively 1-homogeneous function such that
�.x/ > 0 for all x 6D 0 the anisotropic perimeter associated with � is defined for
any set E of locally finite perimeter by setting

P�.E/ WD
Z

@�E
�.�E.x//dHn�1.x/:

It is well known that the isoperimetric sets with respect to this perimeter are the
homothetic and translated of the so called Wulff shape set associated to � , see [38]
and also [26] for two-dimensional case, which is given by

W� WD fx 2 R
n W hx; �i � �.�/ < 0 for all � 2 Sn�1g:

Then, the anisotropic isoperimetric inequality states that

P� .E/ � P� .W� /

for all sets of finite perimeter such that jEj D jW� j, with equality holding if and
only if E is a translated of the Wulff shape set W� .

The quantitative version of the anisotropic isoperimetric inequality was proved
by Figalli, Maggi and Pratelli in [34]. It states that there exists a constant C,
depending only on n, such that for any set of finite perimeter E such that jEj D
rnjW� j

˛� .E/
2 � CD� .E/; (51)

where

˛� .E/ WD min
x2Rn

n jE�.x C rW� /

rn

o
; D� .E/ WD P�.E/� P� .rW� /

rn�1

denote the anisotropic asymmetry index and the anisotropic isoperimetric deficit,
respectively.

Since the Wulff shape W� can be any bounded open convex set, it is clear that
no symmetrization argument can be used to prove the anisotropic isoperimetric
inequality or its quantitative counterpart (51). An extra difficulty is also due to
the extreme rigidity of the anisotropic perimeter which is not invariant by rotation.
Moreover, even the equality P� .E/ D P� .Rn n E/ holds true only if � is symmetric
with respect to the origin. Observe also that since the Wulff shape set W� is
in general a non smooth convex set, no strategy based on regularity may ever
work. And in fact a completely different strategy was devised in [34] to prove
inequality (51), based on optimal mass transportation and on the proof of the
isoperimetric inequality given by Gromov in [55].



118 N. Fusco

The idea of this proof, that we present in the simpler case of the standard
perimeter, is to use a transport map from the set E to the an isoperimetric set of the
same volume. Though the original proof of Gromov used the Knothe map, which has
the advantage of being defined by an explicit construction, it is more convenient to
use the so called Brenier map whose properties are stated in the following theorem,
see [14], and also [53] and [54].

Theorem 48 Let E be a set of finite perimeter with jEj D jBj. There exists a convex
function ' W Rn ! R such that if we set T D r', then T.x/ 2 B for a.e. x 2 R

n and
det rT.x/ D 1 for a.e. x 2 E.

Let us now give the

Gromov’s proof of the isoperimetric inequality Being the gradient of a convex
function, T is a BV map, see [29, Sect. 6.3, Theorem 2]. However, in order to avoid
unnecessary technical difficulties, let us assume that T is Lipschitz. For every x 2 E
let us denote by �i.x/, i D 1; : : : ; n, the eingenvalues of the symmetric matrix
rT.x/. Using the arithmetic–geometric mean inequality, we have

P.B/ D n!n D n
Z

B1

dy D n
Z

E
.det rT/1=ndx D n

Z

E
.�1 : : : �n/

1=ndx

�
Z

E
.�1 C � � � C �n/dx D

Z

E
divT dx D

Z

@E
T � �EdHn�1 � P.E/:

Moreover, since det rT.x/ D 1, if P.E/ D P.B/ we have that �1.x/ D �2.x/ D
: : : D �n.x/ D 1 for a.e. x 2 E. Therefore, T is a translation and E is a ball. ut

Beside being extremely simple, this argument gives some non trivial quantitative
information. In fact, by subtracting the last and the first terms in the above chain of
inequalities we get that

Z

E

	
.�1 C : : : �n/=n � .�1 : : : �n/

1=n

 � 1

n
D.E/; (52)

Z

@E
.1 � T � �E/dHn�1 � D.E/: (53)

The first inequality (52) is telling us that if the isoperimetric deficit D.E/ is small
the eigenvalues of T.x/ are almost equal, at least in an integral sense. From this
inequality one can deduce, see [34, Corollary 2.4]), that there exists a constant c
depending only on n such that

Z

E
jrT � Ij � c

p
D.E/ : (54)
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Let us assume, without loss of generality, that B is the optimal ball for E and let
us observe, as proved in [34, Lemma 3.5], that

jE�Bj � c.n/
Z

@�E

ˇ̌
1 � jxjˇ̌ dHn�1:

Then, in order to prove (51) one should control the right hand side of the previous
inequality with

p
D.E/. To this aim, using (53) we have

Z

@�E

ˇ̌
1 � jxjˇ̌ dHn�1 �

Z

@�E

	ˇ̌
1 � jT.x/jˇ̌C ˇ̌jT.x/j � jxjˇ̌
 dHn�1

�
Z

@�E

	 �
1 � T.x/ � �E.x/

�
C jT.x/ � xj
 dHn�1 � D.E/C

Z

@�E
jT.x/� xj dHn�1:

The difficult part of the proof of Figalli, Maggi and Pratelli consists in showing
that if the isoperimetric deficit D.E/ is small one may always reduce to the case
when a Poincaré type inequality for the boundary traces holds with a constant c.n/
depending only on n. If this is true, recalling (54), one gets

Z

@�E
jT.x/ � xj dHn�1 � c.n/

Z

E
jrT � Ij � c

p
D.E/ :

Beside providing an alternative proof of the quantitative isoperimetric inequality
in the wider framework of anisotropic perimeter, the paper by Figalli, Maggi and
Pratelli contains several interesting results. In particular, Theorem 3.4 in [34] states
that given any set of finite perimeter E with small deficit one may always extract
from E a maximal set for which a trace inequality holds with a universal constant.
This is a new and deep result that may have several applications. Moreover, the mass
transportation approach used in [34] has been also successfully used to obtain the
quantitative versions of other important inequalities (see [21, 33, 35]).

At the beginning of this section we observed how the proof of the isoperimetric
inequality of Cicalese and Leonardi shows that one may always reduce to the case
of a nearly spherical set and thus to Fuglede’s Theorem 27. However, the two sets E
and F in Fig. 19 have the same measure, the same asymmetry index, but D.E/ << 1,
while D.F/ >> 1. Therefore the quantitative isoperimetric inequality (35) gives a
sharp information on the set E while gives no information at all on the set F. The
reason is that while the asymmetry index looks only at the distance in measure of a
set from a ball, the isoperimetric gap encodes also an information on the oscillation
of the boundary of the set.

This suggests that we should introduce a more precise index which takes into
account also the oscillation of the normals to the boundary of the set E. To this aim,
given a set of finite perimeter E and a ball Br.y/ with the same volume of E, we are
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Fig. 19 E and F have the same measure and the same Fraenkel asymmetry

Fig. 20 The construction of the asymmetry index ˇ.E/

going to measure the distance from E to the ball in the following way (see Fig. 20).
For every point x 2 @�E we take the projection �y;r.x/ of x on the boundary of
@Br.y/ and consider the distance j�E.x/� �r;y.�y;r.x//j between the exterior normal
to E at the point x and the exterior normal to Br.y/ at the projection point �y;r.x/.
Then, we take the L2 norm of this distance and minimize the resulting norm among
all possible balls, thus getting

ˇ.E/ WD min
y2Rn

��
1

2rn�1

Z

@�E
j�E.x/� �r;y.�y;r.x//j2 dHn�1.x/

�1=2�
:

We shall refer to ˇ.E/ as to the oscillation index of E. Observe that Fuglede’s
Theorem 27 provides an estimate for both the asymmetry and the oscillation index.
In fact, if E is a nearly spherical set satisfying (21) with a sufficiently small ", recall,
see (33), that for every point x 2 @�E the exterior normal to E is given by

�E.x/ D z.1C u.z//� r�u.z/p
.1C u.z//2 C jr�u.z/j2

;
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where z D x=jxj and thus x D z.1C u.z//. Thus, from (22) we have

˛.E/2Cˇ.E/2 � jE�Bj2 C 1

2

Z

@�E

ˇ̌
ˇ�E.x/� x

jxj
ˇ̌
ˇ
2

dHn�1

D jE�Bj2 C
Z

@�E

�
1��E.x/ � x

jxj
�
dHn�1

� c
Z

Sn�1

juj2dHn�1 C c
Z

Sn�1

�
1 � 1C u.z/p

.1C u/2 C jruj2
�
dHn�1

D c
Z

Sn�1

juj2dHn�1 C c
Z

Sn�1

p
.1C u/2 C jruj2 � .1C u/p

.1C u/2 C jruj2 dHn�1

� c
Z

Sn�1

juj2dHn�1 C c
Z

Sn�1

jruj2 dHn�1 � cD.E/:

Next result, proved by Julin and the author in [42], is an improved version of the
quantitative isoperimetric inequality.

Theorem 49 There exists a constant �.n/ such that for any set of finite perimeter E

ˇ.E/2 � �D.E/:

Note that the inequality above is stronger than the quantitative isoperimetric
inequality (35) since it can be shown (see [42, Proposition 1.2]) that there exists
a constant C.n/ such that

˛.E/Cp
D.E/ � Cˇ.E/:
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Mathematical Problems in Thin Elastic
Sheets: Scaling Limits, Packing, Crumpling
and Singularities

Stefan Müller

1 Introduction

1.1 Thin Objects are Different

Thin elastic objects have fascinated mathematicians and engineers for centuries and
more recently have also become an object of intense study in theoretical physics,
biology and material design. While there have been a number of mathematical
theories for thin elastic objects for a long time, a new rigorous variational approach
has only emerged more recently. In these lectures I will review some of the
variational tools which have emerged and discuss a number of open and challenging
problems.

From a mathematical point of view the deformation of thin objects is interesting
because it leads to more complex, more nonlinear and at the same time more
universal behaviour. Geometry, rather than specific material dependent constitu-
tive relations, drives complex behaviour. Here are some typical features of thin
objects:

• Small forces can lead to large deformations
• Large rotations arise easily
• Compression leads to instability (buckling)
• Even small forces are sufficient to push the system into a deeply nonlinear

regime, beyond classical bifurcation analysis
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• Energy may concentrate on irregular, lower dimensional sets (e.g., in crumpling)
• Often fine scale structure in the form of wrinkles arises, frequently on multiple

scales

Thin objects also often have optimal features, such as maximum strength at
given weight. Therefore their performance and their, sometimes dramatic, failure
have been studied for a long time in structural engineering. More recently thin
elastic sheets have also created a lot of interest in the physics community as model
systems for the concentration of energy (see, e.g., Witten’s review [116]) and in
biology as a model for the formation of spatial patterns, see, e.g., Sharon et al.
[109]. For a general introduction with many interesting examples see the book by
Audoly and Pomeau [8]. New experimental techniques to prescribe the intrinsic
geometry of a thin elastic sheets have led to new questions about predicting the
three dimensional shapes such sheets will occupy and a broad spectrum of potential
applications ranging from micromachines through programmable (meta)materials
to new architectural designs [6, 38, 56, 102, 110].

In these notes we will consider the limiting behaviour of thin elastic objects as
the thickness h goes to zero. To organise the wealth of interesting phenomena and
mathematical questions one can broadly distinguish two types of problems:

(a) problems where the solution has a well-defined limit as h ! 0 and the natural
goal is characterise the limit; or

(b) problems where the solution develops increasing complexity (e.g., finer and
finer wrinkles) and the goal is to understand the scale and geometry of this
complexity.

Problems of type (b) are familiar in many other contexts where one has the
competition between a nonconvex energy which favours the formation of fine scale
microstructure and a higher order singular perturbation which limits the fineness of
the microstructure. In these notes I will mostly focus on (a). Problems of type (b)
are briefly discussed in Sect. 6.1 in connection with crumpled sheets and in the final
Sect. 7 which essentially consists of a list of some interesting open problems and
pointers to the literature.

For problems where the solution has a well-defined limit one can further
distinguish between

(a1) problems where the limiting solutions have localized defects which play an
important role in the limiting theory and

(a2) problems where the limiting solutions do not have defects, or where the
presence of defects is not particularly important for the limiting theory.

There is a large literature on problems of type (a1) in the context of Ginzburg-
Landau theories where the defects take the form of vortices (or point singularities)
in two dimensions and of vortex lines in three dimensions. In these notes I will
mostly focus on (a2), with the exception of Sect. 5. In that section I will discuss the
effect of point defects in thin elastic sheets which either are induced by external
forces (d-cones) or by an intrinsic defect in the underlying metric (r-cones). In
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this case one expects a logarithmic term in the scaling of the energy just as in the
Ginzburg-Landau theories. The situation is, however, more subtle since in contrast
to GL theories the basic field is not a general scalar (or complex-valued) field but a
gradient field, so that one cannot apply cut-and-paste arguments.

1.2 Formulation of Mathematical Theories for Lower
Dimensional Objects

There are two general approaches to formulate mathematical theories for lower
dimensional objects. The first approach is to formulate new theories for one and
two dimensional objects from scratch based on suitable kinematic restrictions and
lower dimensional versions of the fundamental balance laws. The second approach
is to derive such theories from the three dimensional theory of nonlinear elasticity.
Examples of the first approach go back to Euler (‘Euler elastica’ as unstretchable
objects which only have bending stiffness) and the Cosserat brothers. An excellent
account of the modern version of this approach can be found in Antman’s book [5].

The second approach (derivation from three dimensional elasticity) has also been
followed for a very long time. The classic implementation is to make a certain ansatz
for the expected form of the three dimensional deformation (based on physics or
engineering intuition) and to carry out a formal expansion into the small thickness
parameter. Since one can make many different reasonable ansatzes this has led to
a large variety of plate and shell theories which have been very useful for certain
applications but which may lead contradicting predictions and whose range of
validity remains somewhat unclear. In particular the von Kármán plate theory has
been both in wide use and been faced with serious criticism.

Truesdell writes about von Kármán’s theory: ‘Analysts seems to love it, and it
makes no sense to critical students of mechanics’. He then discusses five specific
objections to the theory (which he attributes to S.S. Antman) and concludes ‘These
objections do not prove that anything is wrong with von Kármán’s strange theory.
They merely suggest that it would be difficult to prove that anything is right with it’
[113, pp. 601–602].

Ciarlet writes in his three-volume treatise on elasticity: ‘The two-dimensional
von Kármán equations play an almost mythical role in applied mathematics’ [26,
p. 367].

As we will see the mysteries in the derivation of lower dimensional theories such
as the von Kármán theory disappear if one follows a variational approach based on
minimization of the energy as we will in these lectures. This approach is ansatz-free.
A special asymptotic form of the underlying deformation in the limit of vanishing
thickness emerges as rigorous mathematical conclusion and is not an assumption of
the theory. One key ingredient is a precise quantitative version of the idea that three
dimensional elastic deformations with low energy are very close to rigid motions.
This idea goes back to work of F. John in the 1960s but a version necessary for
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the derivation of lower dimensional theories appeared only about 15 year ago (see
Theorem 2 below).

1.3 Mathematical Questions

We consider elastic objects whose reference configuration is a thin three dimen-
sional domain of the form

˝h D S � .�h

2
;
h

2
/ � R

3

where S � R
2 is a bounded domain with Lipschitz boundary. To a deformation

u W ˝h ! R
3

we associate the elastic energy per unit height

Eh.u/ D 1

h

Z

˝h

W.ru/ dx:

The stored energy density W describes the specific properties of a given elastic
material. We will only need the following very general properties of W W R3�3 !
.�1;1�:

W.RF/ D W.F/ 8R 2 SO.3/; (frame indifference) (1)

W.Id/ D minW D 0; (normalization) (2)

W.F/ � c dist2.F;SO.3//; for some c > 0 and all F; (coercivity) (3)

W is C2 near SO.3/: (4)

Condition (1) expresses the fact that the elastic energy is independent under
postmultiplication by a rigid motion or, equivalently, independent under the change
to another observer who uses another (oriented) orthonormal frame (frame indif-
ference). Condition (2) is just a normalization, while condition (3) expresses
non-degeneracy of the energy near its minimum point Id and for very large
deformations. Finally (4) will allow us to use Taylor expansion for deformations
with small strain (it could be replaced by the slightly weaker hypothesis that W
has a second order Taylor expansion at Id, but we will not pursue this here). We
allow that W.F/ takes the value 1. In this way one can impose constraints like
the condition det ru > 0 which guarantees that ru is (infinitesimally) orientation
preserving.
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Frame indifference (1) implies that there exists a unique function QW W R3�3sym;C !
.�1;1/ defined on positive definite symmetric matrices such that

W.F/ D QW.FTF/ if detF > 0: (5)

This identity holds in particular in a neighbourhood of SO.3/ and by (3) the
function QW has a unique minimum at Id. Condition (4) implies that QW is C2 in a
neighbourhood of Id and

D2W.Id/.G;G/ D 4D2 QW.Id/.G;G/ (6)

for all symmetric matrices G.
Natural mathematical questions are:

• What is the scaling of the minimal energy (subject to certain boundary conditions
on u or additional energy contributions � R

˝
f � u dx from applied forces f )?

• After suitable rescaling, is there a limiting two dimensional theory?
• What can we say about the solution to specific problems?

The rigorous derivation of lower dimensional theories in the limit h ! 0 will
be discussed in Sects. 3 and 4 below, the behaviour of specific solutions will be
discussed in Sect. 5 on conical singularities and Sect. 6 on packing, crumpling and
origami.

1.4 Heuristics for Scaling Laws

To develop some intuition what limiting theories to expect we motivate and explore
certain ansatzes to guess the scaling of the energy as h ! 0. As a warm-up we first
consider the reduction from two to one dimensions.

1.4.1 From 2d to 1d

To simplify, we first consider the analogous question of passing from a two
dimensional to a one dimensional theory. Thus we consider the previous energy
functional on a strip˝h D .0;L/�.� h

2
; h
2
/. A key step is to understand the structure

of deformations with low energy. For a map u W .0;L/ � .� h
2
; h
2
/ ! R

2 the energy
density W.ru.x// is zero at a point x if and only if

j@1u.z/j D 1; j@2u.z/j D 1; .@1u.z/; @2u.z// D 0

and if the pair .@1u; @2u/ is positively oriented with respect to the standard
orientation of R2. Here .�; �/ denotes the standard scalar product in R

2.
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It is easy to see that the above conditions can be satisfied for all points x on the
midline .0;L/ � f0g of the strip if u has the form

u.z1; z2/ D �.z1/C �.z1/z2 (7)

with

j� 0j D 1; (8)

� D D90� 0 (9)

where D90 denotes a rotation by 90ı. These conditions have an easy interpretation.
The first condition says that the midline is mapped isometrically to R

2. The second
condition asserts that fibres perpendicular to the midline are mapped to lines of equal
length, perpendicular to the image of the midline (and with the correct orientation).
If we assume that � and � are C1 we can compute ru at any point.

ru D .� 0; �/„ƒ‚…
2SO.2/

C.�0; 0/ z2„ƒ‚…
O.h/

:

Here we write .a; b/ for the matrix a˝e1Cb˝e2. Since � is a unit vector the vector
�0 is perpendicular to � and hence parallel to � 0. In fact

�0 D ��� 0 where � is the curvature of �:

This yields

ru D .Œ1 � �z2�� 0; �/ D .� 0; �/
�
1 � �z2 0
0 1

�

and using frame indifference (2) we get

W.ru/ � h2�2 D h2j� 00j2:

Thus we arrive heuristically at the variational problem that Euler proposed for one
dimensional elastica

Minimize
Z L

0

j� 00j2 subject to j� 0j D 1:

More precisely, if we make the ansatz (7) with (8) and (9) then we get

lim
h!0

1

h2
1

h

Z

.0;L/�.� h
2 ;

h
2 /

W.ru/ dz D 1

24
E
Z L

0

.� 00.z1//2 dz1 (10)
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with

E D D2W.Id/.e1 ˝ e1; e1 ˝ e1/ (11)

Interestingly, a rigorous (ansatz-free) argument based on � -convergence (see below
for the definition and properties) shows that the limit functional has indeed the
form (10), but that the coefficient E in (11) does not give the correct � -limit. The
ansatz (7) is too rigid and misses an important pathway by which the system can
reduce its energy. A posteriori one can see that an ansatz of the form

u.z1; z2/ D �.z1/C �.z1/z2 C a.z1/z
2
2

would have been sufficient. Initially, however, it is by no means obvious that one
needs to include a term of order O.h2/ in the ansatz.

1.4.2 From 3d to 2d

Now we return to the original problem to study objects whose reference configura-
tion is a thin three dimensional domain

˝h D S � .�h

2
;
h

2
/:

Again we can obtain low energy deformations if we make the following assump-
tions:

• The midplane S � f0g is mapped isometrically;
• fibres perpendicular to the midplane are mapped to straight segments perpendic-

ular to the image of the midplane and their orientation is preserved.

These assumptions are sometimes referred to as ‘Kirchhoff’s hypothesis’ since
Kirchhoff made them in his fundamental paper [55] on geometrically nonlinear plate
theory. We shall see later that it is not necessary to make these assumptions; energy
bounds guarantee that the deformations must have such a behaviour asymptotically
as h ! 0, see (23) in Theorem 4 (note that y is defined on the rescaled domain
˝ � .� 1

2
; 1
2
/ and rhy.x/ D ru.z/). Thus we look for an ansatz of the form

u.z1; z2; z3/ D w.z0/C �.z0/z3 where z0 D .z1; z2/ (12)

subject to the constraints

.rw/Trw D Id2�2
� D @1w ^ @2w
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where a ^ b denotes the vector product of two vectors in R
3. Both conditions can

be summarized by saying that @1w; @2w; � is an orthonormal basis with the standard
orientation or, equivalently, that .@1w; @2w; �/ 2 SO.3/.

Since � is a unit vector, any derivative @i� is perpendicular to � and hence can be
written as a linear combination of @1w and @2w. Since @1w and @2w are orthonormal
the coefficients are just given by the second fundamental form A:

@i� D Ai1@1w C Ai2@2w for i 2 f1; 2g:

Thus

ru D .@1w; @2w; �/C .@1�; @2�; 0/x3

D .@1w; @2w; �/

�
Id2�2 C x3A 0

0 1

�

Thus using frame indifference we get

1

h

Z

˝h

W.ru/ dz � h2
Z

S
Q.A/ dz0

where Q is a suitable quadratic form on symmetric 2 � 2 matrices. In this way we
are led to a variational problem of the form

Minimize
Z

S
Q.A/ dz0 subject to .rTw/rw D Id2�2 (13)

where A is the second fundamental form of the map w W S � R
2 ! R

3. We will
see below that a problem of this form arises indeed as the rigorous � -limit of the
three dimensional problem. As in the reduction from 2d to 1d the naive ansatz (12)
predicts, however, the wrong form of Q, see Theorem 4 below for the correct form
of Q.

1.4.3 From 3d to 1d

Curves in R
3 have a richer geometric structure than planar curves and are charac-

terised by curvature and torsion rather than merely curvature. One can consider a
rigorous reduction from three dimensional elasticity to one dimensional rods in R

3

by fixing a cross section S � R
2 and considering the tube like domain

˝h D .0;L/ � hS � R
3
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maps u W ˝h ! R
3 and the scaled energy

Eh.u/ D 1

h2

Z

˝

W.ru/ dx:

Here the rescaling by h�2 reflects the fact that the volume of ˝h scales like h2. In
this case the ansatz

u.z1; z2; z3/ D �.z1/C �.z1/z2 C b.z1/z3 (14)

with

R.z1/ WD .� 0.z1/; �.z1/; b.z1// 2 SO.3/

a Frenet frame of the curve � yields

W.ru/ � h2Q.RTR0/

where Q is a quadratic form which depends on D2W.Id/. In terms of the curvature
� and the torsion � of the curve the matrix RTR0 is given by

RTR0 D
0

@
0 �� 0

� 0 ��
0 � 0

1

A

and thus the limiting energy can be expressed as a quadratic form in � and � . Again
the ansatz (14) predicts the right form of the limiting energy but not the correct
quadratic form. Indeed that ansatz misses important phenomena such as the energy
contribution due to warping of the deformed cross-section if the cross-section is
not a disc. The rigorous limiting theory for the scaling h�2Eh was derived in [78].
Similar results were obtained independently by Pantz [98].

At lower energies further rescaling leads to a rod theory which is the one
dimensional counterpart of the von Kárman theory for plates [79]. A limiting theory
for strings without bending stiffness was established earlier by Acerbi et al. [3]. This
theory was the precursor of the 2d membrane limit discussed in Sect. 4.1. Mielke
[76] has used a centre manifold approach to compare solutions in a thin tube to a
one dimensional problem. His approach already works for finite thickness h, but
requires that the nonlinear strain .ru/Tru is uniformly close to the identity (and
the approach cannot easily be extended to include applied forces).
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1.4.4 Two Dimensional Theories for h > 0

We will see below in Theorems 4 and 5 that the limit problem (13) for the reduction
from 3d to 2d can be rigorously justified in the regime where the energy per unit
height scales like h2. One disadvantage of the limit problem is that it is very rigid.
In particular only boundary conditions which are compatible with exact isometric
immersions of the midplane S are admissible. Also it may well happen that globally
the energy is not bounded by h2, but that this is only due to localized singularities
(see Sect. 5 for further discussion). In this case no argument by � -convergence
is available at the moment, but we would still expect that solutions to the three
dimensional behave like the ansatz (12) but with a mapw which may slightly deviate
from an isometric immersion.

So let w W S ! R
3 be a (smooth) map such that .rw/Trw � Id2 D O.h/ and let

� WD @1w ^ @2w
j@1w ^ @2wj ; Aij WD .@i�; @jw/:

u.z/ D w.z1; z2/C z3�.z1; z2/: (15)

Then

@iu D @iw C z3@i�; @3u D � 8i 2 f1; 2g:

Now Œ.ru/Tru�˛ˇ D .@˛u; @ˇu/ for ˛; ˇ 2 f1; 2; 3g. Since � is perpendicular
to @iw we get that Aij D .�@i@jw; �/ and in particular Aij D Aji. Moreover � is
perpendicular to @i� since j�j2 D 1. Thus

Œ.ru/Tru�3i D 0; Œ.ru/Tru�33 D 1 8i 2 f1; 2g

and

Œ.ru/Tru�ij D .@iw; @jw/C 2z3Aij C O.h2/

Together with (5) and (6) and using that
R

� h
2

h
2
z23 D 1

12
h3 we find

1

h

Z h
2

� h
2

W.ru/ dz3 
 1

8
Q3..rw/Trw � Id2/C h2

24
Q3.A/

since the integral over the term linear in z3 vanishes.
Thus we expect

1

h

Z

˝h

W.ru/ dz 

Z

S
Q
	
.rw/Trw � Id2



„ ƒ‚ …

stretching energy

C h2Q0.A/„ ƒ‚ …
bending energy

dz0 (16)
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where Q and Q0 are suitable positive definite quadratic forms on symmetric 2 � 2

matrices. The preceeding calculation suggests that Q D 1
8
Q3 and Q0 D 1

24
Q3 but

once more the ansatz (15) gives the right structure of the two dimensional functional
but is too rigid to predict the precise quadratic form correctly.

The first term on the right hand side of (16) corresponds to a stretch of the
midplane (which extends more or less uniformly across the thickness) and the
second term reflects the effect of curvature: even when the midplane is unstretched
positive curvature leads to a stretch on parallel planes above the midplane and a
compression on parallel planes below the midplane.

At the moment there is no result in the spirit of � -convergence which guarantees
that minimization of the integral on the left hand side and the integral on the
right hand side yield asymptotically the same result. One can nonetheless use
minimization of the right hand side as a starting point. Once one has some
information about the minimizers of this simpler problem it is usually possible to
construct test functions with similar energy for the full three dimensional problem.
To show that minimizers of the left hand side cannot have substantially lower energy
than those on the right hand side is usually harder, but in some cases can be achieved
as well, once we have a good understanding of the simpler problem on the right hand
side of (16).

1.5 Convergence of Minimizers and � -convergence

The results on limiting variational problems are most naturally expressed in terms
of � -convergence, even though � -convergence is not really needed to understand
and prove them. Consider the following general setting: let X be a metric space and
for k 2 N consider functionals Ik W X ! Œ�1;1�. We would like to define a notion
of convergence of the Ik which guarantees that the infimum of Ik converges to the
infimum of the limit functional I. Pointwise convergence is not enough, not even
when X D Œ�1; 1�. Indeed consider the functions

Ik.x/ D min.k

ˇ̌
ˇ̌x � 2

k

ˇ̌
ˇ̌ ; 1/ 8x 2 Œ�1; 1�:

Then the Ik converge pointwise to I 	 1 and min Ik D 0 for all k � 2, but min I D 1.
De Giorgi found the right notion of convergence which combines a lower bound
for all sequences which approximate a point with an upper bound for a particular
sequence.

Definition 1 (De Giorgi and Franzoni [34]) We say that a sequence Ik W X !
Œ�1;1� � -converges to I W X ! Œ�1;1� if the following two conditions
hold.

(i) For all x 2 X and all sequences with xk ! x we have lim infk!1 Ik.xk/ �
I.x/;
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(ii) For all x 2 X there exist yk ! x such that lim supk!1 Ik.yk/ � I.x/.

We write Ik
�! I to denote � -convergence.

Using a diagonalization argument one can easily check that a � -limit is always
lower semicontinuous. Together with a mild compactness condition on the sublevel
sets of Ik � -convergence implies the convergence of minimizers.

Theorem 1 Assume that the sequence Ik � -converges to I and satisfies the
following compactness condition

8t 2 R Ik.yk/ � t H) fyk W k 2 Ng is precompact in X: (17)

Then the minimum of I is attained and

inf Ik ! min I:

If, in addition, I 6	 1 then every sequence of approximate minimizers of Ik contains
a subsequence which converges to a minimizers of I.

This result is an immediate consequence of the definitions. To illustrate this we
recall the short proof.

Proof First assume that lim infk!1 inf Ik > �1 and lim supk!1 inf Ik < 1.
Then there exist xk such that Ik.xk/ � inf Ik C 1

k . In particular, the sequence
Ik.xk/ is uniformly bounded from above. Now first select a subsequence such that
limj!1 inf Ikj D lim infk!1 inf Ik. By (17) there exists a further subsequence (not
relabelled) which has a limit x� and the lower bound in � -convergence gives

I.x�/ � lim inf
j!1 Ikj.xkj/ D lim

j!1 inf Ikj D lim inf
k!1 inf Ik:

By the upper bound there exist yk such that lim supk!1 Ik.yk/ � I.x�/. Thus in
particular

lim sup
k!1

inf Ik � I.x�/:

Hence lim supk!1 inf Ik D lim infk!1 inf Ik D I.x�/.
If lim infk!1 inf Ik D �1 then one can show similarly that there exists x� with

I.x�/ D �1. The upper bound in � -convergence implies that there exist yk such
that lim supk!1 Ik.yk/ D �1. Thus lim supk!1 inf Ik D �1.

Finally if lim supk!1 inf Ik D 1 then the upper bound in the definition of � -
convergence implies that I 	 1. We claim that the lower bound in the definition of
� -convergence implies that lim infk!1 inf Ik D 1. Indeed, if lim infk!1 inf Ik <
M < 1 then there exists a subsequence kj and points xkj such that Ikj.xkj/ < M.
By (17) a further subsequence has a limit point x�. Thus I.x�/ � M, a contradiction.
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This finishes the proof of the first statement. A short inspection of the proof
shows that the same arguments also prove the second statement.

One obvious, but useful, property of � -convergence is that it is stable under
continuous perturbations.

Proposition 1 Suppose that Ik W X ! Œ�1;1� and Ik
�! I. Let F W X ! Œ�1;1�

be continuous. Then

Ik C F
�! I C F:

Proof This follows directly from the definition of � -convergence because F.xk/ !
F.x/ and F.yk/ ! F.x/ for the sequences xk and yk which appear in the definition.

To verify � -convergence it is often useful that it suffices to verify the upper
bound for x in a suitable dense set, and up to a small error.

Lemma 1 Let D � X be a dense set with the following additional property

8x 2 X 9 xj 2 D xj ! x; lim sup
j!1

I.xj/ � I.x/:

Assume that

8ı > 0 8x 2 D 9 xk 2 X xk ! x; lim sup
k!1

Ik.xk/ � I.x/C ı:

Then property (ii) in Definition 1 holds.

Proof This can be proved by a diagonalization argument.

� -convergence has many additional natural and useful properties. For surveys
on � -convergence see Alberti [4], Braides [20] and Dal Maso [32].

We often deal with functionals Ih depending on a continuous parameter h > 0.
We say that Ih � -converges to I if and only if for every sequence hk ! 0 with
hk > 0 the functional Jk WD Ihk converges to I.

Notation

We use the usual notation Lp and Wk;p for the Lebesgue and Sobolev spaces,
respectively. By*we denote weak convergence. We will always take limits h ! 0,
with h > 0. To avoid clumsy notation for subsequences we say that ‘ah ! a for a
subsequence’ if there exists a sequence hk with hk > 0 and limk!1 hk D 0 such
that limk!1 ahk D a.
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2 A Key Ingredient: The Quantitative Rigidity Estimate
or Nonlinear Korn Inequality

In the previous section we have seen the construction of certain low energy test
functions on thin domains. They have the feature that their gradient is a rotation
which varies on a scale of order 1 plus a small perturbation. Our goal is to show
the converse: if the energy per unit height of a deformation u scales like h2 then ru
must be close to a rotation which only depends on the in-plane variables and the
difference quotient of ru is controlled, see Theorem 3 below.

The key ingredient is the following rigidity result for n dimensional maps.
It states that if a gradient field is L2 close to the set of all rotations then it is
close to a single rotation, with a linear bound between the two errors. This is a
quantitative version of a classical result in geometry and mechanics, often refereed
to as Liouville’s theorem: a map whose gradient is a rotation at (almost) every point
is a rigid motion and in particular affine (for a proof of Liouville’s theorem for
Sobolev maps see Reshetnyak [105]).

Theorem 2 ([40, Thm. 3.1]) Let n � 2 and let U � R
n be a bounded domain with

Lipschitz boundary. There exists a constant C.U/ with the following property: for
each v 2 W1;2.UIRn/ there is an associated rotation R such that

krv � RkL2.U/ � C.U/k dist.ru;SO.n//kL2.U/: (18)

Moreover C.U/ is invariant under dilation and translation: C.aC�U/ D C.U/ for
all a 2 R

n and � > 0.

Similarly one can obtain estimates in Lp (for 1 < p < 1) and even in Lorentz space
Lp;q with 1 < p < 1 and 1 � q � 1, see [30], but we will not need such estimates
in these notes.

The invariance under translation and dilation is obvious. If we set va;�.x/ D
��1v.a C �x/ then both sides of (18) scale in the same way. We will later use this
invariance to apply the estimate to cubes of size h.

The estimate (18) can be see as a nonlinear version of Korn’s inequality. This
inequality states that there exists a constant C0.U/ such for each w 2 W1;2.UIRn/

there exists a skew-symmetric matrix W such that

krw � WkL2.U/ � C0.U/ k sym rwkL2.U/ (19)

where symF D .FT C F/=2 is the symmetric part of F. Korn’s inequality follows
from Theorem 2 by linearization. It suffices to apply the theorem to id C ıw, to note
that the skew symmetric matrices are the tangent space of SO.n/ and to pass to the
limit ı ! 0.

We now briefly discuss related earlier results. John [52, 53] proved the coun-
terpart of estimate (18) under the additional condition that u 2 C1 and that
dist.ru;SO.n// is uniformly small. In particular he shows that in this case for any
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cube Q � U there exists a rotation RQ such that

Z

Q
jru � RQj2 � Ln.Q/ sup

Q
j dist.ru;SO.n//j2 :

Division by Ln.Q/ shows that ru is in the space BMO; in fact John’s paper
[52] was the birth of BMO. Reshetnyak [107] obtained related results for almost
quasiconformal, rather then almost conformal, maps.

It follows from the work of Reshetnyak [105, 106] that if dist.ru.k/;SO.n//
converges to zero in Ln.U/ then a subsequence of ru.k/ converges strongly in Ln.U/
to a constant R 2 SO.n/. Kohn [58] showed an Lp (or C0) estimate for u (rather than
ru) which follows formally by combining the Lp version of (18) with the Poincaré
inequality (see his Theorem (1.4) and estimate (1.5)). Actually he uses a quantity
Eu.x/ on the right hand side to measure the deviation from a rotation which is a bit
stronger than dist.ru.x/;SO.n//.

3 Kirchhoff’s Geometrically Nonlinear Plate Theory

We return to the study of the energy functional

Eh.u/ D 1

h

Z

˝h

W.ru.z// dz

for maps

u W ˝h D S � .�h

2
;
h

2
/ ! R

3; S � R
2:

In Sect. 1.4 we saw that the ansatz (12) yields maps u.h/ which satisfy

Eh.u.h// � Ch2:

We now want to show that every sequence of maps uh with Eh.u.h// � Ch2 looks
asymptotically like the ansatz and to compute the � -limit of 1

h2
Eh. The maps uh

are defined on h-dependent domains˝h. To study the limit it is more convenient to
rescale all maps to a fixed domain. We set

˝ D ˝1 D S � .�1
2
;
1

2
/;

z D .z1; z2; z3/ D .x1; x2; hx3/; y.x/ WD u.z/:
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Then y W ˝ ! R
3 and

ru.z/ D rhy.x/ WD .@1y; @2y;
1

h
@3y/:

Eh.u/ D
Z

˝

W.rhy.x// dx DW Ih.y/:

The following compactness result is crucial.

Theorem 3 (Compactness [40, Thm. 4.1]) Assume that W satisfies (3). There
exists a constant C which depends only on S and the constant c in (3) with the
following property. If h 2 .0; 1� then there exists a map R.h/ W S ! SO.3/ such
that

(i) krhy.h/ � R.h/kL2.˝/ � CIh.y.h//,

(ii)
R
S0

jR.h/.x0 C 
/ � R.h/.x0/j2 dx0 � C Ih.y.h//
h2

.j
j2 C h2/
for all S0 � S with dist.S0; @S/ > 2.j
j C h/ and all 
.

Moreover, if hk ! 0 and

lim sup
k!1

1

h2k
Ihk.y.hk// < 1

then

(iii) rhk y
.hk/ is precompact in L2.˝IR3�3/ and every cluster point R belongs to

W1;2.˝IR3�3/ with @3R D 0 and satisfies R 2 SO.3/ a.e.

Remark 1 (Loss of Compactness by Wrinkling) The assumption lim suph!0 h
�2Ih

.y.h// < 1 is the weakest assumption on Ih.y.h// which implies compactness (if
W satisfies (3) and (4)). Indeed, given any function ! W .0; "/ ! .0;1/ with
lim suph!0 h

�2!.h/ D 1 there exist y.h/ such that Ih.y.h// � C!.h/ for all
h 2 .0; h0/ and a sequence hk ! 0 such that y.hk/ is not compact. One may take the
following deformations which correspond to fine scale wrinkling in the x2 direction.

y.h/.x1; x2; x3/ D
 

x1
�h.x2/

!
C hx3

 
0

�h.x2/

!

with

.�h/
0
.x2/ D

 
cos pŒh�1!1=2.h/x2�
sin pŒh�1!1=2.h/x2�

!
; �h.x2/ D

 
� sin pŒh�1!1=2.h/x2�
cos pŒh�1!1=2.h/x2�

!
:

where p W R ! R is a smooth periodic function. Then there exist rotations R.h/.x2/
such that jrhy.h/ � R.h/j � C!1=2.h/ and this gives the desired bound for Ih.y.h//.
One the other hand there exist hk ! 0 with !.hk/=h2k ! 1 and rhk y

.hk/ is not
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precompact in L2. The weak L2-limit of rhk y
.hk/ is a constant matrix .e1; a; 0/ and

jaj < 1. Thus the weak limit does not correspond to an isometric immersion of the
mid-plane S. See [40, Section 5] for further discussion.

Proof (Idea of Proof) We use the following strategy to prove (i) and (ii)

• Rescale back to ˝h

• Divide ˝h into cubes of size h (up to a thin boundary layer)
• Apply the rigidity estimate (18) in each cube
• This yields a piecewise constant map R.h/ W S ! SO.3/ which satisfies (i)
• To get the difference quotient estimate (ii) for 
 D �ei with j�j � h apply the

rigidity estimate to two neighbouring cubes. By the rigidity estimate there is a
single rotation for the union; hence the rotations for the two neighbouring cubes
must be close.

• For general 
 iterate the previous estimate and use the triangle inequality.

Now we prove (iii). Let R.hk/ be as in (i) and (ii). By (i) the sequence rhk y
.hk/ is

precompact in L2.˝IR3�3/ if and only if R.hk/ is precompact in L2.SIR3�3/ and the
cluster points of the two sequences agree (up to the identification of maps Q W ˝ !
R
3�3 which satisfy @3Q D 0 with maps QQ W S ! R

3�3.
The precompactness of R.hk/ follows from (ii) and the Frechet-Kolmogorov

compactness criterion. Here we use that R.hk/ is uniformly bounded to ensure the
R.hk/ cannot concentrate near @S, see [40] for the details. If R is a cluster point of
R.hk/ then R 2 SO.3/ a.e. by L2 convergence. Moreover R satisfies the difference
quotient estimate

Z

S0

jR.x0 C 
/ � R.x0/j2 dx0 � CLj
j2 if dist.S0; @S/ > 2.j
j/

for all 
 ¤ 0where L D lim supk!1 h�2
k Ih.y.hk//. It follows that R 2 W1;2.S;R3�3/.

Now we can easily establish � -convergence. Define the admissible set of
isometric maps

A WD fy 2 W2;2.˝IR3/ W @3y D 0; .@iy; @jy/ D ıij for i; j 2 f1; 2gg

and the limit functional

IKi.y/ D
(

1
24

R
S Q2.A/ dx

0 if y 2 A;
1 else.

(20)

Here

Aij WD .@i�; @jy/; where � D @1y ^ @2y
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are the second fundamental form and the normal, respectively, associated to the map
yjS. The quadratic form Q2 is defined implicitly by minimization. Consider first the
quadratic form

Q3.H/ WD D2W.Id/.H;H/ (21)

on 3 � 3 matrices. Then define for 2 � 2 matrices A D .aij/i;j2f1;2g

Q2.A/ WD min
b2R3

Q3

0

@
a11 a12 b1
a21 a22 b2
b1 b2 b3

1

A : (22)

In the context of � -convergence it is convenient to view A as a set of maps from
˝ to R

3. Because of the constraint @3y D 0 we can of course view A equivalently
as a set of maps from the two dimensional midplane S to R

3.

Theorem 4 (� -convergence [40, Thm. 6.1]) Assume that W satisfies (1)–(4).
Then the functionals h�2Ih are � -convergent to IKi. In particular the following
assertions hold.

(i) (ansatz free lower bound) If y.h/ ! Ny in W1;2.˝IR3/ as h ! 0 and

lim inf
h!0

1

h2
Ih.y.h// < 1

then Ny 2 A and, for a subsequence,

rhy
.h/ ! .@1 Ny; @2 Ny; �/ with � D @1 Ny ^ @2 Ny: (23)

Moreover

lim inf
k!1

1

h2
Ih.y.h// � IKi.Ny/: (24)

(ii) (upper bound) Given Ny 2 A there exist Oy.h/ such that Oy.h/ ! Ny in W1;2.˝IR3/
and

lim sup
h!0

1

h2
Ih.Oy.h// � IKi.Ny/:

Remark 2 If lim infh!0 h�2Ih.y.h// D 1 then (24) in (i) holds trivially. In view
of (i) in Theorem 3 it suffices to assume that y.h/ converges to Ny strongly in L2 (or
weakly in W1;2).

Pantz [97, 99] proved similar upper and lower bounds under the additional
restriction that the maps y.h/ are C1 diffeomorphisms and that dist.ry.h/;SO.3//
is uniformly small. Under these assumptions he can use the earlier results of John
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[52, 53] instead of the rigidity result in Theorem 2. Of course uniform estimates on
dist.ry.h/;SO.3// do not follow from mere control of the scaled energy h�2Ih.y.h//.

Proof Step 1. Upper bound
This is easy, up to a little twist. For Ny 2 A\C2. N̋ IR3/ one can use the functions

Oy.h/.x0; x3/ WD Ny.x0/C hx3�.x
0/C h2

2
x23d.x

0/

with � D @1 Ny ^ @2 Ny and a suitable choice of d. The term involving d (which is
absent in the naive ansatz (12)) allows one to really achieve the upper bound with
the quadratic form Q2 as defined above. If one drops this term one only gets an
upper bound with the quadratic form

QQ.A/ D Q3

0

@
a11 a12 0
a21 a22 0
0 0 0

1

A :

For Ny 2 A\W2;1.˝IR3/ one can argue in the same way. Finally if we only have
Ny 2 A one can carefully approximate Ny by W2;1 maps (not necessarily isometric
immersions) in such a way that the approximation agrees on a very large set with Ny
(‘truncation of gradients’: see [74, 118] for the general approximation scheme and
[40] for the application to our concrete situation). Alternatively one can also use
the non trivial fact that smooth isometric immersion are dense in W2;2 isometric
immersions. This was shown by Pakzad [96] for convex sets and by Hornung
[49] for bounded sets with Lipschitz boundary. One cannot simply use convolution
since this would destroy the isometry constraint. Instead one uses that isometric
immersions in W2;2 are developable maps and then smoothes the Frénet frame.

Step 2. Lower bound, overview

The lower bound is the main point. Let L WD lim infh!0 h�2Ih.y.h//. By assumption
L < 1. Thus, for a subsequence,

h�2Ih.y.h// ! L:

For ease of notation we assume that this convergence holds along the whole
sequence (for the general case one should replace h by hk with hk ! 0 in the
following argument).

Then there are three main ingredients in the argument, the most important one
being compactness.

(i) Approximation by maps on S and compactness: there exist R.h/ W S ! SO.3/
such that h�1krhy.h/ � R.h/kL2 � C and

rhy
.h/ ! R in L2.˝IR3�3/
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as h ! 0 where

R D .@1 Ny; @2 Ny; �/; with � D @1 Ny ^ @2 Ny; (25)

@3 Ny D 0; Ny 2 W2;2: (26)

(ii) Identification of the limiting strain: let R.h/ be as in (i) and suppose that for a
subsequence

G.h/ WD .R.h//Trhy.h/ � Id

h
* G in L2.˝IR3�3/: (27)

Let G00 be the 2�2 submatrix which consists of the first two rows and columns
of G. Then

G00.x0; x3/ D G0.x
0/C x3A.x

0/ (28)

where A is the second fundamental form of NyjS.
(iii) Careful Taylor expansion of W.Id C hG.h//: let G.h/ be as in (ii). Then

lim inf
h!1

1

h2

Z

˝

W.Id C hG.h// dx � 1

24

Z

S
Q2.A/ dx

0:

The desired lower bound follows from (i), (ii) and (iii) since

W.rhy
.h// D W.R.h/.Id C G.h/// D W.Id C G.h//:

Most assertions in (i) follow directly from Theorem 3. It only remains to show
that for each sequence hk ! 0 and each L2 cluster point R of rhky

.hk/ we have

R D .@1 Ny; @2 Ny; @1 Ny ^ @2 Ny/: (29)

and that (26) holds.
By Theorem 3(iii) every cluster point R of rhk y

.hk/ satisfies R 2 SO.3/. By
assumption we have for i 2 f1; 2g that rhy.h/ei D @iy.h/ ! @i Ny in L2. Thus
Rei D @i Ny. Since R 2 SO.3/ this implies that Re3 D @1 Ny ^ @2 Ny and this proves (29).

To prove the first identity in (26) note that @3y.h/ D hrhy.h/e3 ! 0 in L2 since
rhy.h/ is bounded in L2. Finally by Theorem 3(iii) we have R 2 W1;2 and hence
Ny 2 W2;2.

The identification of the limiting strain will be discussed below. Finally (iii)
follows from Lemma 2 below.

Step 3. Identification of the limiting strain

We have

rhy
h D R.h/.Id C hG.h//: (30)
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and

lim
h!0

R.h/ D lim
h!0

rhy
.h/ D .@1 Ny; @2 Ny; �/

in L2.˝IR3�3/. The key ingredient in the proof of (28) is the compatibility
condition for gradients, i.e., the fact that second derivatives commute (in the sense
of distributions)

1

h
@3.ry.h//ei D 1

h
@3@iy

.h/ D @i
1

h
@3y

.h/ D @i.rhy
.h//e3 8i 2 f1; 2g:

Applying this to (30) and using that @3R.h/ D 0 we get

R.h/@3G
.h/ei D @i.R

.h/e3 C hG.h/e3/: (31)

If we can pass to the limit h ! 0 (in the sense of distributions) we get

R@3Gei D @i.Re3/ D @i�:

Let j 2 f1; 2g and take the scalar product with Rej D @j Ny. Then

.ej; @3Gei/ D .Rej;R@3Gei/ D .@j Ny; @i�/ D Aij:

This is the desired conclusion. Now we cannot quite pass to the limit h ! 0 on the
left hand side of (31) because @3G.h/ converges only weakly in W�1;2 and we only
know that R.h/ converges strongly in L2. This difficulty can be easily overcome if
we work with difference quotients in x3 rather than derivatives.

Let s > 0 and for x3 2 .�1; 1� s/ define

H.h/.x0; x3/ WD 1

s
ŒG.h/.x0; x3 C s/� G.h/.x0; x3/�:

Now we apply (30) to ei with i 2 f1; 2g, divide by h, take the difference quotient,
express the difference quotient in y.h/ in terms of an integral over @3y.h/ and use that
R.h/ is independent of x3. This yields

@i
1

s

Z s

0

1

h
@3y

.h/.x0; x3 C �/ d� D R.h/.x0/H.h/.x0; x3/ei

where the outer derivative @i is understood in the sense of distributions. The
integrand is just rhy.h/e3 and converges in L2 to � as h ! 0. Now we can pass
to the limit on the right hand side because H.h/ converges weakly in L2 and R.h/

converges strongly in L2. Since � is independent of x3 we thus obtain

@i�.x
0/ D R.x0/H.x0; x3/ei:
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It follows that Hei is independent of x3. Thus Gei is affine in x3 and R@3Gei.x0; x3/ D
@i�.x0/ for x3 2 .�1; 1 � s/). Since s > 0 was arbitrary we get the same identity for
x3 and the proof is finished as above by taking the scalar product with Rej D @j Ny.

Lemma 2 (Taylor Expansions for Lower Bounds) Assume that W W R
3�3 !

Œ0;1� is C2 in a neighbourhood of Id and satisfies W.Id/ D 0. Assume further that
hk > 0 with hk ! 0 and

Gk * G in L2.˝IR3�3/ (32)

as k ! 1. Then

lim inf
k!1

1

h2k

Z

˝

W.Id C hkG
k/ dx � 1

2

Z

˝

Q3.G/ dx: (33)

where Q3.F/ WD D2W.Id/.F;F/. If, in addition, W satisfies the frame indifference
condition (2) and if the 2 � 2 submatrix G00 of G satisfies

G00.x0; x3/ D G0.x
0/C x3G1.x

0/

then

lim inf
k!1

1

h2k

Z

˝

W.Id C hkG
k/ dx � 1

2

Z

S
Q2.symG0/ dx

0 C 1

24

Z

S
Q2.symG1/ dx

0

(34)

where Q2 is defined by (22).

Proof The main difficulty is that hkGk may not converge uniformly to 0. We will
circumvent this problem by restricting to a large set where hkGk is uniformly small.

Since W is C2 in a neighbourhood of Id and has a minimum at Id we have
DW.Id/ D 0 and there exists an increasing function ! W Œ0;1/ ! Œ0;1/ with
limt!0 !.t/ D 0 such that

W.Id C F/ � 1

2
Q3.F/� !.jFj/ jFj2:

Let

˝k WD fx 2 ˝ W jGkj � h�1=2
k g

and let �k be the characteristic function of˝k. Then

L3.˝ n˝h/ � hk

Z

˝

jGkj2 dx ! 0:
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Thus for every g 2 L2.˝/ we have �kg ! g in L2.˝/ as k ! 1. This implies that

�kG
k * G in L2.˝IR3�3/: (35)

Since W � 0 we get

Z

˝

W.Id C hkG
k/ dx �

Z

˝

�kW.Id C hkG
k/ dx

�
Z

˝

1

2
�kQ3.Gk/�

Z

˝

�k !.hkjGkj/ h2kjGkj2 dx:

Now �k!.hkjGkj/ � !.
p
hk/ ! 0. Since �k only takes the values 0 and 1 we also

have �kQ3.Gk/ D Q3.�kGk/. Thus

lim inf
k!1

1

h2k

Z

˝

W.Id C hkG
k/ dx D lim inf

k!1
1

2

Z

˝

Q3.�kG
k/ dx:

Since W � 0 the quadratic form Q3 is positive semidefinite and hence convex. Since
�kGk * G standard lower semicontinuity results imply that

lim inf
k!1

1

2

Z

˝

Q3.�kG
k/ dx � 1

2

Z

˝

Q3.G/ dx:

This finishes the proof of (32).
To prove (33) note that frame indifference (2) implies that Q3.G/ D Q3.symG/

and the definition of Q2 implies that Q3.symG/ � Q2.symG00/. Now (33) follows
from (32) by expandingQ2.symG0C x3 symG1/ and using that for I D .� 1

2
; 1
2
/ we

have
R
I x3 dx3 D 0 and

R
I x
2
3 dx3 D 1

12
.

From the upper and lower bounds in Theorem 4 (i.e., � -convergence of the
energy) one easily obtains convergence of minimizers for problems with additional
forcing terms.

Theorem 5 (Convergence of Minimizers in the Presence of Applied Forces)
Assume that W satisfies (1)–(4). Let f 2 L2.˝IR3/ and assume that f is independent
of x3 and the total applied force vanishes, i.e.,

Z

˝

f dx D 0: (36)

Consider the functionals

Jh.y/ WD
Z

˝

W.rhy/�
Z

˝

h2f � y dx;

JKi.y/ WD IKi.y/�
Z

˝

f � y dx;
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where IKi is given by (20). Then the minimum of JKi is attained and

lim
h!0

1

h2
inf Jh D min JKi:

Moreover if y.h/ is a sequence of almost minimizers of Jh, i.e., if h�2ŒJh.y.h// �
inf Jh� ! 0 then there exist constants c.h/ 2 R

3 such that a subsequence of y.h/�c.h/

converges strongly in W1;2.˝IR3/ to a minimizer of J. We may take c.h/ as the
average of y.h/,

c.h/ D 1

L3.˝/
Z

˝

y dx:

Note that without the assumption (36) we have inf Jh D �1. Indeed if y is any
deformation with Jh.y/ < 1 and a 2 R

3 then

Jh.a C y/ D Jh.y/� a �
Z

˝

f dx:

Thus if
R
˝
f dx ¤ 0 optimization in a shows that inf Jh D �1.

For convergence of (almost) minimizers subject to certain boundary conditions
on @S � .� 1

2
; 1
2
/ (or a large enough subset thereof) see [40, Thm. 6.2].

Proof Condition (36) implies that for all a 2 R
3 we have Jh.a C y/ D Jh.y/ and

JKi.a C y/ D JKi.y/. Hence we may restrict the problem to the space

X D fy 2 W1;2.˝IR3/ W
Z

˝

y dx D 0g:

The Poincaré inequality shows that

kykL2 � CkrykL2 � CkrhykL2 8y 2 X 8h 2 .0; 1�: (37)

It follows from Theorem 4 and Proposition 1 that Jh
�! JKi. In view of Theorem 1

it only remains to show that if hk ! 0 and Jhk .y.hk// � t then y.hk/ is precompact
in X. This follows from the following key estimate. There exists a constant C such
that

Jh.y/ � 1

2

1

h2
Ih.y/� C (38)

for all y and all h 2 .0; 1�. Indeed this estimate and Theorem 3 imply that rhk y
.hk/ is

precompact in L2 and precompactness of y.hk/ in X then follows from the Poincaré
inequality (37).
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To prove (38) note that (3) implies that W.F/ � cjF2j � C for some c > 0. Thus

ckrhyk2L2 �
Z

˝

W.rhy/ dx C C � Ih.y/C C

and in combination with the Poincaré inequality (37) we get

Z

˝

f � y dx � 1

4ı
k fk2L2 C ıkrhyk2L2 � Cı C CıIh.y/:

Choosing ı D 1
2C we get (38).

4 A Hierarchy of Theories Ordered by the Scaling
of the Elastic Energy

The previous section gives a very satisfactory theory if the elastic energy per unit
height Ih.y/ scales like h2, where h is the thickness. Depending on the applied loads
and the boundary conditions other scalings of the energy may arise, too.

4.1 The Regime Ih.y/ � h2 and Relaxed Membrane Energies

Historically the case Ih.y/ � h2 was the first case in which a rigorous � -limit was
established. In this case we cannot expect compactness in W1;2 (see Remark 1). We
only have weak convergence of (a subsequence of) rhy.h/ in L2 and the limiting
theory involves a minimization over all possible oscillations (see the definition
of Q f below). More precisely LeDret and Raoult [64–66] considered the scaling
Ih.y/ � 1 and (under some technical growth and coercivity conditions on W)
showed that the � -limit of Ih (with respect to L2, not W1;2) is given by the membrane
energy

Ime.Ny/ WD
Z

S
.QW2/.@1 Ny; @2 Ny/ dx0;

where, as before, Ny satisfies the constraint @3 Ny D 0. Here W2 is defined on 3 � 2

matrices by

W2..a; b// D min
c2R3

W..a; b; c// 8a 2 R
3; b 2 R

3
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and where for a function f W R3�2 ! R the symbol Q f denotes its quasiconvexifi-
cation

Q f .G/ WD inf

�Z

.0;1/2
f .G C r'/ dx0 W ' 2 C1

c ..0; 1/
2IR3/

�
: (39)

We note in passing that the energies QW2 are necessarily very degenerate. If W D 0

on SO.3/ andW � 0 thenQW2.G/ D 0 for all ‘short’ linear maps, i.e., for all G such
that jGxj � jxj for all x. Thus the limiting theory has no resistance to compression.
For the connection of the limiting theory with the classical tension field theory in
mechanics [103, 104, 115] see Pipkin [100, 101].

One can also consider the minimization of functionals with applied loads

Jh.y/ D Ih.y/�
Z

˝

h˛f � y dx:

As in the previous section we assume that the total force vanishes, i.e.,
R
˝
f dx D 0.

For ˛ D 0 a subsequence of (almost) minimizers of Jh converges weakly (after
possible substraction of a constant) to minimizers of Jme given by

Jme.y/ D Ime.y/ �
Z

˝

f � y dx:

For 0 < ˛ < 2 Conti [27] showed that a subsequence of (almost) minimizers of
h�˛Jh converges weakly (after possible substraction of a constant) to a minimizer
of the constrained functional Jmc

Jmc.Ny/ D Imc.Ny/�
Z

˝

f � Ny dx

where the constrained membrane energy Imc is defined by

Imc.Ny/ D
(
0 if QW2.r 0 Ny/ D 0 a.e.

C1 else.

Here r 0 Ny D .@1 Ny; @2 Ny/ and we impose the constraint @3 Ny D 0 as before. Thus to
minimize Jmc one maximizes the work done by the force f among all deformations
y which have zero relaxed membrane energy. Under typical assumptions on W this
will be all short maps, i.e., all maps with .r 0y/Tr 0y < Id.

In the following we mostly focus on the scaling regimes Ih.y/ � h2. A summary
of the results for all scaling regimes Ih � hˇ is given at the end of this section, see
Tables 1 and 2.
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4.2 The Regime Ih.y/ � h2 and von Kármán Like Theories

This subsection follows very closely [42].

4.2.1 Convergence to Affine Isometries

We consider again the energy with an applied force with strength h˛.

Jh.y/ D Ih.y/�
Z

˝

h˛f � y dx D
Z

˝

W.rhy/ dx �
Z

˝

h˛f � y dx:

We assume again that the force is independent of x3,

@3 f D 0; (40)

and that the total force is zero
Z

˝

f dx D 0: (41)

In Sect. 3 we have seen that for ˛ D 2 the (almost) minimizers y.h/ of Jh satisfy
Jh.y.h// � h2 and Ih.y.h// � h2 and that a subsequence converges (up to substraction
of constants) to a minimizer of Kirchhoff’s geometrically nonlinear plate theory.

Now we are interested in the behaviour of (almost) minimizers y.h/ for weaker
forces, i.e., the case ˛ > 2. Using the Poincaré inequality (37) it is easy to see that
h�2Ih.y.h// ! 0. Indeed, let y.h/ be an almost minimizers of Jh. Using the trivial
comparison function y.h/.x/ D .x0; hx3/T we see that Jh.y.h// � Ch˛ . Hence by (38)
we have Ih.y.h// � Ch2 and thus krhy.h/kL2 � C. The Poincaré inequality (37)
implies that

R
˝
y � h˛f dx � Ch˛ . Thus Ih.y.h// � Ch˛ � h2.

Theorems 3 and 4 still apply and we get that a subsequence of the y.h/ (after
subtraction of suitable constants) converges in W1;2 to Ny 2 A with IKi.Ny/ D 0.
Now (3) implies that the quadratic form Q3 D D2W.Id/ is positive definite
on symmetric matrices. Thus Q2 is positive definite on symmetric matrices and
therefore the second fundamental form A of NyjS vanishes. We recall the classical
argument that this implies that all second derivatives of Ny vanish.

Proposition 2 Let y 2 W2;2.SIR3/ and assume that

.@iy; @jy/ D ıij 8i; j 2 f1; 2g:

Set � D @1y ^ @2y and Aij D .@i�; @jy/. Then

@i@jy D �Aij� 8i; j 2 f1; 2g:
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In particular

jr2yj2 D jAj2

where j � j denotes the Euclidean norm.
Proof We first show that

.@i@jy; @ky/ D 0 8i; j; k 2 f1; 2g: (42)

Indeed

0 D @j.@iy; @iy/ D .@i@jy; @iy/:

Taking .i; j/ D .1; 2/ and .i; j/ D .2; 1/ we get .@1@2y; @1y/ D .@1@2y; @2y/ D 0

while the choice i D j gives .@i@iy; @iy/ D 0. Finally for .i; j/ D .1; 2/ or .2; 1/ we
also have

.@i@iy; @jy/ D @i.@iy; @jy/� .@iy; @i@jy/ D 0:

Thus (42) holds and we get @i@jy D .@i@jy; �/�. Now

.@i@jy; �/ D @i .@jy; �/„ ƒ‚ …
D0

�.@jy; @i�/ D �Aij:

Thus the limit NyjS is an affine isometry. Therefore there exists a rotation R 2
SO.3/ such that

RT Ny.x/ D
0

@
x1
x2
0

1

A D
�

id2.x0/
0

�
:

It follows that there exist rotations NR.h/ 2 SO.3/ and constants c.h/ 2 R
3 such that

Qy.h/ WD . NR.h//Ty.h/ � c.h/ !
�

id2
0

�
:

We would like to show that a suitable rescaling of Qy.h/��id2
0

�
converges to a nontrivial

limit and that the limit is the minimizer of a suitable functional. To get an idea which
rescalings and which limit functionals to look for we briefly return to the heuristic
ansatz based approach in Sect. 1.4. We will then show that the scalings suggested by
the ansatz lead indeed to a rigorous convergence result, see Theorem 6.
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4.2.2 Heuristic Arguments for the Form of the Limit Functional

In Sect. 1.4 we have seen that an ansatz of the form

y.h/.x/ D w.x1; x2/C hx3�.x1; x2/

where w W S ! R
3 a smooth map with j.rw/Trw � Id2j � Ch and where � D

@1w^@2wj@1w^@2wj yields

Z

˝

W.rhy/ dx 
 1

8

Z

S
Q3
	
.rw/Trw � Id2



dx0 C 1

24

Z

S
Q3.A/ dx

0 (43)

where Aij D .@i�; @jw/. Here we translated the results in Sect. 1.4 into the rescaled
setting using the rescalings .z1; z2; z3/ D .x1; x2; hx3/ and y.x/ D u.z/ which imply
rhy.x/ D ru.z/. Now we look for near isometries w which are in addition close to
the trivial map x0 7! �x0

0

�
. We make the ansatz

w.x1; x2/ D
0

@
x1
x2
0

1

AC
0

@
h�u1.x1; x2/
h�u2.x1; x2/
hıv.x1; x2/

1

A :

The reason to choose different scaling exponents � > 0 and ı > 0 for the in-plane
components w1;w2 and the out-of-plane component w3, respectively, will become
clear when we compute the terms in (43). We get

@1w ^ @2w D
0

@
�hı@1v
�hı@2v
1

1

AC O.h�Cı C h2�/

and j@1w ^ @2wj D 1C O.hı/. Neglecting the higher order terms we conclude that

� 

0

@
�hı@1v
�hı@2v
1

1

A ; A 
 �hır2v:

Thus we get the following approximations for y.h/ and .rw/Trw:

y.h/.x0; x3/ 

 

x0

hx3

!
C
 
U.x0/
V.x0/

!
� hx3

 
rV.x0/
0

!
; with U D h�u and V D hıV:

(44)

Œ.rw/Trw�ij D
 
ei C

 
h�@iu

hı@iv

!
; ej C

 
h�@ju

hı@jv

!!

D ıij C h�.@iuj C @jui/C h2ı@iv@jv C O.h2� / (45)
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The right hand side of (44) is commonly called a Kirchhoff-Love ansatz and often
used as a starting point for a formal expansion.

We proceed from (45). Neglecting again the higher order terms we get

.rw/Trw � Id2 
 2h� sym ru C h2ırv ˝ rv

where symG D 1
2
.GT C G/ denotes the symmetric part. Thus for our ansatz

Z

˝

W.rhy
.h// dx 
 1

8

Z

S
Q3.2h

� sym ru C h2ırv ˝ rv/ dx0 C h2

24

Z

S
Q3.h

ır2v/ dx0

(46)

We focus on applied forces perpendicular to the unperturbed plate, i.e., forces
with f1 D f2 D 0. Then we get for the loading term

�
Z

˝

h˛f � y dx D �h˛Cı
Z

S
f3v dx

0:

The sum of the right hand side of (46) and the loading term becomes

1

8

Z

S
Q3.2h

� sym ru C h2ırv ˝ rv/dx0

Ch2C2ı
1

24

Z

S
Q3.r2v/ dx0 � h˛Cı

Z

S
f3v dx

0 (47)

We now explore the different scaling regimes. The last two terms can balance
only if 2C 2ı D ˛ C ı, i.e., if

ı D ˛ � 2: (48)

The first term scales like hmin.2�;4ı/. Hence there is a special case in which all terms
scale in the same way namely 2� D 4ı D 2C ı D ˛ C ı, i.e.,

ı D 1; � D 2; ˛ D 3:

This is the scaling of the von Kármán theory and in this case the approximate
functional becomes

h4
�
1

8

Z

S
Q3.2 sym ru C rv ˝ rv/dx0 C 1

24

Z

S
Q3.r2v/ dx0 �

Z

S
f3v dx

0
�
:

If ˛ > 3 then (48) implies that ı > 1 and thus the term h4ı becomes negligible
compared to h2C2ı. Thus for � D .2 C 2ı/=2 D ˛ � 1 the functional behaves
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asymptotically like the functional

h2˛�2
�
1

8

Z

S
Q3.2 sym ru/dx0 C 1

24

Z

S
Q3.r2v/ dx0 �

Z

S
f3v dx

0
�
:

This functional is quadratic and the contributions of u and v are decoupled. Since
Q3 is positive definite we get sym ru D 0 and thus by Korn’s inequality u is
an infinitesimal isometry, i.e., u is affine and ru is a constant skew-symmetric
matrix. The Euler-Lagrange equation for v is a linear fourth order partial differential
equation, in the simplest case 1

12
�2v D f3.

Finally, if ˛ 2 .2; 3/ then there are two possibilities. If there exist pairs .u; v/
such that

R
S fv ¤ 0 (in particular this requires that v is non-constant) then

2 sym ru C rv ˝ rv D 0 ; (49)

and the energy is determined by the balance of the last to terms. This leads again to
ı D ˛ � 2 and the minimal energy among maps which satisfy the constraint (49) is
negative and of order h2˛�2.

On the other hand if
R
S fv D 0 for all .u; v/ which satisfy (49) then the energy

is determined by the competition between the first and the last term in (47). This
yields 2� D 4ı D ˛ C ı and thus ı D 1

3
˛. The minimal energy is again negative

and of order h
4
3 ˛. Since ˛ < 3 we have .2˛� 2/ < 4

3
˛ and thus �h2˛�2 < �h

4
3 ˛ for

0 < h � 1.
Thus the first regime ı D ˛ � 2 in which nontrivial solutions of (49) exist gives

the lower energy. We focus on this regime first and will briefly return to the other
regime in Sect. 4.4.

We take ı D ˛ � 2 and rescale the energy by h˛Cı D h2˛�2. Then the first term
explodes as h ! 0 unless it is exactly zero, i.e., unless � D 2ı and (49) holds. Thus
we expect that the limit problem consists in minimizing

1

24

Z

S
Q3.r2v/ dx0 �

Z

S
f3v dx

0

subject to the constraint

2 sym ru C rv ˝ rv D 0:

We will now state a theorem which shows that the heuristic reasoning indeed
captures the correct behaviour of (almost) minimizers as h ! 0. The only difference
is that the quadratic form Q3 has to be replaced by Q2 defined by (22). The reason
for the change from Q3 to Q2 is as before that the ansatz we made does not allow
for sufficient relaxation of strains in the direction perpendicular to the midplane.
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4.2.3 Rigorous Limit Functionals

Let y.h/ be a sequence of almost minimizers of Jh. We want to analyse the
deviation of

Qy.h/.x/ WD . NR.h//Ty.h/.x/ � c.h/ (50)

from its limit
�x0

0

�
, for suitably chosen rotations NR.h/ 2 SO.3/ and translations

c.h/ 2 R
3. We set I D .� 1

2
; 1
2
/ and consider the averaged in-plane and out-of-plane

displacements

U.h/.x0/ WD
Z

I

 Qy.h/1
Qy.h/2

!
.x0; x3/�

 
x1
x2

!
dx3; V.h/.x0/ WD

Z

I
Qy.h/3 dx3 (51)

and their rescalings

u.h/ D 1

h�
U.h/; v.h/ D 1

hı
V.h/ (52)

defined by parameters �; ı 2 R.
For u 2 W1;2.S;R2/ and v 2 W2;2.S/ we introduce the generalized von Kármán

functional

IvK;˛.u; v/ WD �˛

2

Z

S
Q2.

1

2
Œru C .ru/T C rv ˝ rv�/ dx0

C 1

24

Z

S
Q2.r2v/ dx0 (53)

where

�˛ WD
8
<

:

1 if 2 < ˛ < 3;
1 if ˛ D 3;

0 if ˛ > 3

with the convention that 0 � 1 D 0. In other words for ˛ D 3 we have the usual von
Kármán functional

IvK.u; v/ WD 1

2

Z

S
Q2.

1

2
Œru C .ru/T C rv ˝ rv�/C 1

24
Q2.r2v/ dx0; (54)

for ˛ > 3 we have the “linearized” von Kármán functional

IvK; lin.v/ D 1

24

Z
Q2.r2v/ dx0;
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and for 2 < ˛ < 3 we also have IvKlin but subject to the nonlinear constraint

ru C .ru/T C rv ˝ rv D 0: (55)

A symmetrized gradient e D sym ru satisfies @2@2e11 C @1@1e22 � 2@1@2e12 D 0

(in the sense of distributions). Thus if (55) holds with v 2 W2;2.S/ we must have

det.r2v/ D 0: (56)

Conversely (56) is sufficient for the existence of a map u such that (55) holds, see
[42, Proposition 9].

Geometrically, (56) is exactly the condition that the Gauss curvature of the graph
of v vanishes. Thus, at least for sufficiently smooth functions, (56) is equivalent to
existence of an isometric map from the graph of v to R

2, see [42, Theorem 7] for a
precise statement.

Theorem 6 (von Kármán Like Theories [42, Thm. 2]) Suppose that W satis-
fies (1)–(4) and the applied forces independent of x3, normal, i.e„

f1 D f2 D 0

and have vanishing total force and total moment

Z

˝

f3 dx D 0;

Z

˝

x0f3 dx D 0:

Then the following assertions hold.

(i) (linearized isometry constraint) Suppose 2 < ˛ < 3 and set ˇ D 2˛ � 2,
� D 2.˛ � 2/, ı D ˛ � 2. If ˛ 2 .2; 5

2
/ suppose in addition that S is simply

connected. Then 0 � inf Jh � �Chˇ. If y.h/ is a ˇ-minimizing sequence (i.e.,
if h�ˇ.Jh.y.h// � inf Jh/ ! 0) then there exists constants NR.h/ 2 SO.3/ and
c.h/ 2 R

3 such that NR.h/ ! NR and Qy.h/ and the scaled in-plane and out-of-plane
deformations given by (50)–(52) satisfy (for a subsequence)

rh Qy.h/ ! Id in L2.˝IR3�3/; (57)

u.h/ ! Nu in W1;2.SIR2/; v.h/ ! Nv in W1;2; (58)

Eq. (55) holds and Nv 2 W2;2. Moreover the pair . Nv; NR/minimizes the functional

JvK; lin.v;R/ D 1

24

Z
Q2.r2v/ dx0 � R33

Z

S
f3 � v dx0; (59)
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subject to

det.r2v/ D 0: (60)

(ii) (vK theory) Suppose that ˛ D 3 and set ˇ D 4, � D 2, ı D 1. Then 0 �
Jh � �Chˇ and for a (subsequence of a) ˇ-minimizing sequence (57) and (58)
hold and the limit .Nu; Nv; NR/ minimizes the usual von Kármán functional

Jvk.u; v;R/ D Ivk.u; v/� R33

Z

S
f3 � v dx0:

(iii) (linearized vK theory) Suppose ˛ > 3 and set ˇ D 2˛ � 2, � D ˛ � 1 and
ı D ˛�2. Then 0 � inf Jh � �Chˇ and for a (subsequence of a) ˇ-minimizing
sequence (57) and (58) hold with Nu D 0 and the pair . Nv; NR/ minimizes the
linearized von Kármán functional

JvK; lin.v;R/ D 1

24

Z

S
Q2.r2v/ dx0 � R33

Z

S
f3 � v dx0:

In all cases we have convergence of the scaled energy h�ˇJh.y.h// to the minimum
of the limit functional. Moreover for f3 6	 0 we have NR33 D 1 or NR33 D �1.
Remark 3 If NR33 D 1 then NR is an in-plane rotation and y.h/ is close to NR�x0

0

�
(up to

translation). If NR33 D �1 then NR is an in-plane rotation followed by a 180ı out-of-
plane rotation R0 D diag.�1; 1;�1/. Since J0 is invariant under the transformation
.u; v;R/ 7! .u;�v;R0R/ it suffices to consider the (conventional) situation R33 D 1.

Remark 4 Under the assumption that the minimizers y.h/ of the three dimensional
problem admit an asymptotic expansion y.h/ D y.0/ C hy.1/ C h2y.2/ C : : : where
the coefficients y.k/ are bounded in suitable spaces Ciarlet [25] showed that the
equations for the leading order non trivial terms are given by the von Kármán
equations if the forces are scaled in the natural way.

4.3 Strategy of Proof in the von Kármán Scaling

For simplicity we focus on the von Kármán regime: ˛ D 3, ˇ D 4, ı D 1, � D 2.
The main point is to show the following combined compactness and � -convergence
type result for Ih. The assertion for the minimizer of Jh then follows from a Poincaré
type inequality, similar to, but slightly more subtle than, the one used in the proof of
Theorem 5, see [42, Section 7.1, p. 219] for the details. For sequences with bounded
scaled energy we obtain in general only weak convergence of u.h/ in W1;2. For the
argument that for minimizing sequences this can be improved to strong convergence,
see [42, Section 7.2, p. 219]. This argument uses the fact that for minimizing
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sequences the integrands are equiintegrable and uses an equiintegrable version of
the rigidity estimate in Theorem 2. For the proof of that result see Conti [30].

Theorem 7 ([42, Thm. 3]) Let the exponents for the rescaling of the averaged in-
plane and out-of-plane deviations by given by � D 2 and ı D 1, respectively. Then
the following assertions hold.

(i) (Compactness and ansatz-free lower bound) If

lim inf
h!0

1

h4
Ih.y.h// < 1

then there exist constants NR.h/ 2 SO.3/ and c.h/ 2 R
3 such that, for a

subsequence, NR.h/ ! NR and the maps Qy.h/ WD Œ NR.h/�Ty.h/ � c.h/ and the scaled
in-plane and out-of plane deformations defined by (51) and (52) satisfy (for a
subsequence)

rhy.h/ ! Id in L2.˝IR3�3/;
u.h/ * u in W1;2.SIR2/;
v.h/ ! v in W1;2.S/; v 2 W2;2.S/:

9
=

; (61)

Moreover

lim inf
h!0

1

h4
Ih.y.h// � Ivk.u; v/:

(ii) (Optimality of the lower bound) If v 2 W2;2.S/ and u 2 W1;2.SIR2/ there exist
Oy.h/ such that (61) holds and

lim
h!0

1

h4
Ih.Oy.h// D Ivk.u; v/:

Proof Proof of optimality. Assume first that u and v are smooth and use the ansatz

Oyh.x0; x3/ D
 

x0

hx3

!
C
 
h2u

hv

!
� h2x3

0

@
@1v

@2v

0

1

AC h3x3d
.0/ C h3

2
x23d

.1/

where d.i/ W S ! R
3. Note that for d.0/ D d.1/ D 0 this ansatz agrees with the one

used in the heuristic calculation above. Now

rh Oy.h/ D Id C
 
h2ru �h.rv/T
hrv 0

!
� h2x3

 
r2v 0

0 0

!

Ch2d.0/ ˝ e3 C h2x3d
.1/ ˝ e3 C O.h3/:
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A short calculation shows that

lim
h!0

h�4W.rh Oy.h// D lim
h!0

h�4 QWŒ.rh Oy.h//Trh Oy.h//� D Q3.A C x3B/

where

A D sym ru C 1

2
rv ˝ rv C 1

2
jrvj2e3 ˝ e3 C symŒd.0/ ˝ e3�;

B D �r2v C symŒd.1/ ˝ e3�

and optimizing over d.0/ and d.1/ we obtain the assertion for smooth u and v. For
u 2 W1;2 and v 2 W2;2 optimality of the bound follows by approximation.

The proof of part (i) of Theorem 7 involves again three steps, as the proof of
Theorem 4

• Compactness: proof of (61)
• Identification of the limiting strain
• Use of Lemma 2 to prove the lower bound

4.3.1 Outline of the Argument

For the first two points the main thing is to show that using only the condition
Ih.y.h// � Ch4 and a good choice of the constant rotations NR.h/ we can show that
u.h/ and v.h/ converge to u and v, respectively and that Qy.h/ looks essentially like the
ansatz used in the heuristic argument, i.e.,

rh Qy.h/ 
 Id C
 
h2ru � x3h2r2v �hrv C O.h2/

h.rv/T O.h2/

!
(62)

This implies

.rh Qy.h//Trh Qy.h/ � Id 
 h2
 
2 sym ru C rv ˝ rv � 2x3r2v O.1/

O.1/ O.1/

!
: (63)

Since the quadratic form Q2 depends only on the entries Œ.rh Qy.h//Trh Qy.h/�ij for i; j 2
f1; 2g the limits u and v are thus enough to compute the limiting energy and the
unknown terms of order 1 do not matter for the lower bound.

We first sketch the general strategy of the argument and then give precise
statements and proofs, see Theorem 8, Lemmas 3 and 4. The starting point is the
approximation of Qy.h/ by rotations. In Theorem 3 we saw that there exists maps



Thin Elastic Sheets 161

R.h/ W S ! SO.3/ such that

krh Qy.h/ � R.h/kL2.˝/ � C
q
Ih.Qy.h// D C

q
Ih.y.h// � Ch2 (64)

and that the maps R.h/ satisfy a difference quotient estimate. We will show shortly
that we can actually construct maps R.h/ which are in addition differentiable and
satisfy the gradient estimate

krR.h/kL2.S/ � C
1

h

q
Ih.Qy.h// � Ch: (65)

This implies in particular that R.h/ is close to a constant (in an Lq sense). By a good
choice of the constant rotation NR.h/ in the definition of Qy.h/ we may assume that this
constant is the identity matrix. Using the fact that the exponential map maps skew
symmetric matrices to SO.3/ we get that

R.h/ D Id C hW.h/ C h2

2
W.h/2 C O.h3/; W.h/ D

0

B@
0 �W.h/

21 �W.h/
31

W.h/
21 0 �W.h/

32

W.h/
31 W.h/

32 0

1

CA

where W.h/ is bounded in Lq. Thus

rh Qy.h/ 
 Id C hW.h/.x0/C h2

2
.W.h//2.x0/C h2G.h/.x0; x3/

where G.h/ is bounded in L2.˝/. Now we can bring v.h/ and u.h/ into the picture.
First it follows from the definition of v.h/ that

rv.h/ D .W.h/
31 ;W

.h/
32 /C O.h/ D 1

h
.R.h/31 ;R

.h/
32 /C O.h/:

Since 1
hrR.h/ is bounded in L2 this shows that rv.h/ ! rv in L2 and that r2v 2 L2.

For the averaged in-plane components we obtain

ru D 1

h

 
0 �W.h/

21

W.h/
21 0

!
C O.1/:

This first looks bad because the first term is of order O.h�1/. This first term is,
however, skew-symmetric and we thus conclude that sym ru.h/ is bounded in L2.
It follows from Korn’s inequality that there exist constant skew-symmetric 2 � 2

matrices NW.h/ such that ru.h/ � NW.h/ is bounded in L2. Now by a good choice of the
rotations NR.h/ we can actually assume that the constant matrices NW.h/ are zero. Thus
we get (for a subsequence) weak convergence ru.h/ * ru in L2. So far we have
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shown that

Z 1
2

� 1
2

rh Qy.h/ dx3 D Id C
 

h2ru.h/ �hrv.h/ C O.h2/
h.rv.h//T O.h2/

!


 Id C
 

h2ru �hrv C O.h2/
h.rv/T O.h2/

!
(66)

To get some information on the x3 dependence of Qy.h/ we proceed as for the
Kirchhoff functional and use the (distributional) compatibility relation

1

h
@3.rh Qy.h//ei D 1

h
@3 @i Qy.h/ D @i

1

h
@3 Qy.h/ D @i.rh Qy.h//e3 for i 2 f1; 2g: (67)

Since

rh Qy.h/ D R.h/ C O.h2/ D Id C
 

0 �hrv.h/
h.rv.h//T 0

!
C O.h2/

we get from the convergence rv.h/ ! rv and from (67) for i D 1; 2

@3.rh Qy.h//ei 

 

�h2r2v

0

!
C O.h3/: (68)

Here the approximate identity 
 should strictly speaking be understood in the space
W�1;2. Moreover (64) implies that

.rh Qy.h/ � R.h//e3 �
Z 1

2

� 1
2

.rh Qy.h/ � R.h//e3 dx3 D O.h2/:

Since R.h/ is independent of x3 the terms in R.h/ drop out on the left hand side and
we get

rh Qy.h/e3 �
Z 1

2

� 1
2

rh Qy.h/e3 dx3 D O.h2/ (69)

Now (69), (68) and (66) imply (62). This finishes the outline of the argument.
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4.3.2 Detailed Proof

The first ingredient in the detailed proof of the lower bound in Theorem 7 is the
following refinement of Theorem 3 which provides an approximation by more
regular rotations.

Theorem 8 ([42, Thm. 6]) (Approximation by regular rotations) Let S � R
2 be a

bounded domain with Lipschitz boundary and let ˝ D S � .� 1
2
; 1
2
/. There exists a

constant ı0 > 0 and a constant C > 0 with the following property. If y 2 W1;2.˝/,

E WD
Z

˝

dist2.rhy;SO.3// dx

and

E � ı0h
2 (70)

then there exists a map R 2 W1;2.SI SO.3// and a constant NQ 2 SO.3/ with

krhy � Rk2L2.˝/ � CE; (71)

krRk2L2.S/ � C

h2
E; (72)

kR � NQk2Lp � Cp

h2
E; 8p < 1; (73)

krhy � NQk2L2 � C

h2
E: (74)

Proof We first show (71) and (72). Then (73) will follow from the Poincaré
inequality and (74) follows from (73) and (71).

In the proof of Theorem 3 we used the rigidity estimate to construct an
approximation by rotations Rh W S ! SO.3/ which are constant on squares of size
h and which satisfy a difference quotient estimate. Let S0 be compactly contained in
S. By mollification at the scale h we obtain a smooth map QRh W S ! R

3�3 which
satisfies the estimates kr QRhk2L2.S0/

� Ch�2E and the estimate k QRh �RhkL2.S0/ � CE.
Condition (70) and the difference quotient estimate guarantee that Rh only changes
by C

p
ı0 between two neighbouring squares of size h on which Rh is constant.

It follows that supS0

j QRh � Rhj � C
p
ı0. Thus QRh is uniformly close to SO.3/. Now

there exists a smooth projection � from a tubular neighbourhood of SO.3/ to SO.3/.
Then R WD � ı QRh has the desired properties on each subset S0 compactly contained
in S. By using a similar mollification argument near the boundary and a partition of
unity we can construct a map R W S ! SO.3/ which satisfies (71) and (72), see [42],
pp. 200–203 for the details.

Actually, for the proof of the lower bound in Theorem 7 an estimate on each
compactly contained subset S0 would be sufficient. For the u.h/ and v.h/ we only get
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convergence in compactly contained subsets, but this suffices to prove a lower bound
for the von Kármán functional restricted to S0. Since S0 was arbitrary we recover the
desired lower bound by the monotone convergence theorem.

To prove (73) let QQ denote the average of R over S. Then by the Poincaré
inequality

kR � QQkLp.S/ � CpkrRkLp.S/ (75)

We will show that QQ is close to SO.3/. Since the function F 7! dist.F;SO.3// is
1-Lipschitz we have for all x0 2 S

j dist. QQ;SO.3//j D j dist. QQ;SO.3//� dist.R.x0/;SO.3/j � j QQ � R.x0/j:

Thus

L2.S/ 12 j dist. QQ;SO.3//j D k dist. QQ;SO.3//kL2.S/ � k QQ � RkL2.S/ � C2krRkL2.S/:
(76)

By definition of the distance function there exists NQ 2 SO.3/ such that j QQ � NQj D
dist. QQ;SO.3//. Thus (73) follows from (75) and (76).

Now we use the approximation by more regular rotations to establish the
compactness properties (61).

Lemma 3 ([42, Lemma 1]) Suppose that

lim sup
h!0

1

h4
Ih.y.h// < 1:

Then there exist maps R.h/ W S ! SO.3/ and constants NR.h/ 2 SO.3/ and c.h/ 2 R
3

such that the maps

Qy.h/ WD . NR.h//Ty.h/ � c.h/

and the in-plane and out-of-plane displacements

U.h/.x0/ WD
Z

I

 Qy.h/1
Qy.h/2

!
.x0; x3/�

 
x1
x2

!
dx3; V.h/.x0/ WD

Z

I
Qy.h/3 dx3

and their rescalings

u.h/ D 1

h2
U.h/; v.h/ D 1

h
V.h/
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have the following properties.

krh Qy.h/ � R.h/kL2.˝/ � Ch2; (77)

kR.h/ � IdkLq.S/ � Cqh 8q < 1; (78)

krR.h/kL2.S/ � Ch: (79)

Moreover, for a subsequence,

1

h
.R.h/ � Id/ ! A in Lq.SIR3�3/ 8q < 1; (80)

1

h
.rh Qy.h/ � Id/ ! A in L2.˝IR3�3/ (81)

1

h2
symŒR.h/ � Id� ! A2

2
in Lq.˝IR3�3/ 8q < 1: (82)

v.h/ ! v in W1;2.S/; v 2 W2;2.S/; (83)

u.h/ * u in W1;2.SIR2/; (84)

with

@3A D 0; A 2 W1;2.S;R3�3/; (85)

A D e3 ˝ rv � rv ˝ e3: (86)

Proof This is taken almost verbally from [42].

Step 1. Normalization
Apply first Theorem 8 to y.h/ and let NQh be the constant for which (73) and (74)
hold. If we take NR.h/ D NQh we get (77)–(79). By Jensen’s inequality the average
deformation gradient NF.h/ WD L3.˝/�1 R

˝
rh Qy.h/ then satisfies j NF.h/ � Idj � Ch.

Thus if we change NR.h/ and R.h/ simultaneously by an additional in-plane rotation
of order h then (77)–(79) still hold and we can assume in addition that

Z

˝

@2 Qy.h/1 � @1 Qy.h/2 dx D 0: (87)

By choosing c.h/ appropriately we may also assume

Z

˝

Qy.h/ �
 

x0

hx3

!
dx D 0: (88)

Step 2. Convergence of A.h/ WD 1
h .R

.h/ � Id/



166 S. Müller

By (78) there exists a subsequence (not relabelled) such that A.h/ converges
weakly

A.h/ * A in W1;2.SIR3�3/:

Using the compact Sobolev embedding we get (80). Together with (77) we also
get (81).
Step 3. Convergence of 1

h2
sym.R.h/ � Id/

Since .R.h//TR.h/ D Id we have A.h/C .A.h//T D �h.A.h//TA.h/. Hence ACAT D
0 and after division by h we get (82) from the strong convergence of A.h/.
Step 4. Convergence of the scaled normal and in-plane deviations
Considering the .31/ and .32/ component of (80) we get rv.h/ ! rv D
.A31;A32/. The normalization (88) implies that v.h/ has average zero. Thus
the convergence in (83) holds. Moreover v 2 W2;2 as A 2 W1;2. From (77)
and (82) we see that sym ru is bounded in L2. Using Korn’s inequality and the
normalizations (87) and (88) we get (84)
Step 5. Identification of A.
By Steps 3 and 4 the matrix A is skew-symmetric, A31 D @1v and A32 D @2v. It
only remains to show that A12 D 0. Integrating (81) over x3 and using (84) we
get

A12 D lim
h!0

h@2u
.h/
1 D 0

in L2.S/.

We now can identify the limiting strain. We use the same notation as in Lemma 3.

Lemma 4 (Identification of the Limiting Strain, [42, Lemma 2]) Let the
assumptions in Lemma 3 hold. Let

G.h/ WD .R.h//Trh Qy.h/ � Id

h2

Then, for a subsequence,

G.h/ * G in L2.˝IR3�3/

and the 2 � 2 submatrix G00 given by G00
ij D Gij for i; j 2 f1; 2g satisfies

G00.x0; x3/ D G0.x
0/C x3G1.x

0/

where

symG0 D sym ru C 1

2
rv ˝ rv; G1 D �r2v:
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Remark 5 Note that this rigorous conclusion is slightly weaker than the rela-
tion (62) we obtained by formal reasoning. We can uniquely identify G1 (i.e. @3G00)
but for G0 D R

I G
00 we can only identify the symmetric part. This is, however,

enough to prove the lower bound because Q2.G00/ depends only on the symmetric
part of G00.

Proof Weak convergence of a subsequence of G.h/ follows from (77).

Step 1. Proof that @3G00 D �r2v.

As in the Kirchhoff scaling regime this is based on the compatibility relations for
gradients. For s > 0 and x3 2 .�1; 1� s/ consider the difference quotients

H.h/.x0; x3/ WD 1

s
ŒG.h/.x0; x3 C s/� G.h/.x0; x3/�:

Multiply the definition of G.h/ by R.h/ take the difference quotient and express the
difference quotient acting on y by an integral over @3y (note that R.h/ is independent
of x3 and drops out when taking difference quotients). This yields for i; j 2 f1; 2g

.R.h/H.h//ij.x
0; x3/ D @j

�
1

h

1

s

Z s

0

1

h
@3 Qy.h/i .x

0; x3 C �/ d�

�
:

The integrand is .rh Qy.h//i3.x0; x3 C �/. Hence by (81) the right hand side converges
in W�1;2.S � .�1; 1 � s// to @j.Ai3/ D �@j@iv. Since R.h/ ! Id in Lq and hence
boundedly a.e. the left hand side converges weakly to

Hij.x; x3/ D 1

s
ŒGij.x

0; x3 C s/� Gij.x
0; x3/�:

Thus

Hij.x
0; x3/ D �@j@iv.x0/:

In particular Hij is independent of x3. Hence Gij is affine in x3 and @3G00 D �r2v.

Step 2. Identification of G0.

It suffices to consider the averages

G.h/0 .x
0/ WD

Z 1
2

� 1
2

G.h/.x0; x3/ dx3:

Using the relation RTF� Id D RT.F�R/ D .RT � Id/.F�R/CF�R for R 2 SO.3/
in the definition of G.h/ we get

G.h/ D .R.h/ � Id/T
rh Qy.h/ � R.h/

h2
C rh Qy.h/ � Id

h2
C Id � .R.h//T

h2
:
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Now the first term converges to zero in L1.˝/ by (77) and (78). Thus after
integration over the x3 variable and passing to the weak limit in L2 we get from (84)
and (82)

symG00
0 D 0C sym ru � .A2/00

2
:

Now A D e3 ˝rv� rv˝ e3 and thus �.A2/00 D rv˝rv. This finishes the proof.

4.4 Overview of the Hierarchy of Models

The different limiting theories and the regimes of applied forces in which they arise
are summarized in Table 1, taken from [42]. Our discussion so far has been focussed
on natural boundary conditions. The results can often be extended to prescribed
Dirichlet type boundary conditions on all or part of @S � .� 1

2
; 1
2
/, see [40, 42] for

details.
For certain rather rigid boundary conditions new scaling regimes can arise. One

example are the fully clamped boundary conditions

y.h/.x0; x3/ D
 

x0

hx3

!
on @S � .�1

2
;
1

2
/: (89)

This corresponds to the condition that the deformation is the identity map @S �
.� h

2
; h
2
/ in the original variables. The relevance of these boundary conditions is that

they imply that the scaled in-plane deviations u satisfy (for NR.h/ D Id)

Z

S
tr sym ru dx0 D

Z

S
div u dx0 D 0:

Thus if

sym ru C rv ˝ rv D 0 (90)

then
Z

S
jrvj2 dx0 D

Z
� tr sym ru dx0 D 0:

Hence the infinitesimal isometry constraint (90) can only be satisfied if rv D 0.
Thus the heuristic discussion following (47) suggest that for 0 < ˛ < 3 the optimal
scaling is given by ˇ D 4

3
˛, � D 2

3
˛ and ı D 1

3
˛. Moreover the limit problem
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should consist in minimizing

1

2

Z

S
Q3.sym ru C 1

2
rv ˝ rv/ dx0 �

Z

S
f3v dx

0 (91)

subject to

u D v D 0 on @S:

This energy was proposed by Föppl. It is similar to the von Kármán energy
but without the term in r2v which represents bending stiffness. Experimentally,
the predictions of Föppl’s theory (for clamped boundary conditions) have been
confirmed over a range of forces that covers four orders of magnitude by Head and
Sechler [48]. Nonetheless the precise status of Föppl’s theory as a limiting theory
had been unclear until recently. In [29] it was shown that if one incorporates the
boundary conditions (89) into the functional by setting

QIh.y/ WD
( R

˝
W.rhy/ if (89) holds,

1 else

and if one formally extends QIh to L2.˝IR3/ by setting it to 1 on L2.˝IR3/ n
W1;2.˝IR3/ then the functionals

QJh.y/ WD h� 4
3 ˛

�
QIh.y/� h˛

Z

˝

f3y3 dx

�

� -converge (with respect to the L2 metric) to

IFp;rel.u; v/�
Z

S
f3v dx

0

where IFp;rel.u; v/ is the lower semicontinuous envelope (or relaxation) of the Föppl
functional

IFp.u; v/ WD 1

2

Z

S
Q3.sym ru C 1

2
rv ˝ rv/ dx0:

Note that in view of the coercivity condition W.F/ � cjFj2 �C strong convergence
in L2 is essentially the same as weak convergence in W1;2. The latter convergence,
however, is not metrizable and hence not so suitable for the general set-up of
� -convergence.

The full range limiting theories for the clamped boundary conditions (89) is
summarized in Table 2, also taken from [42].
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4.5 Extension to Shells and Non Euclidean Geometries

It is natural at ask whether the � -convergence results can be extended to the case
when the underlying two dimensional domain S is not flat, but curved (a shell) or
more generally an abstract surface with a Riemannian metric. An early easy example
is given in [41], but in general the situation is much more subtle, see, e.g., Efrati et al.
[37], Lewicka et al. [71], Lewicka et al. [70], Lewicka and Pakzad [69], Kupferman
and Solomon [63], Lewicka et al. [72] and Bhattacharya et al. [17]. For an even
more general setting that includes dislocations and disclinations see, e.g., Yavari
and Goriely [117], Kupferman and Maor [62] as well as Moshe et al. [83].

5 Conical Singularities in Elastic Sheets

In most � -limit functionals only the stretching energy or only the bending energy
appears explicitly in the energy. The only exception is the von Kármán theory where
both terms enter the energy. The von Kármán theory applies rigorously, however,
only when the applied forces and the induced strains are rather small (even though
it can often be a good guide to explore more nonlinear regimes). In a number
of interesting concrete problems the interaction of stretching energy and bending
energy plays an important role at small, but finite, thickness h and these problems
can thus not be analyzed by using only the limit models discussed above. We will
use an energy functional of the form (16) to explore some of these problems. In fact
we will focus on the simplest energy which captures the competition of stretching
and bending, i.e., the functional

Ih.y/ D
Z

S

ˇ̌
.ry/Try/ � Id

ˇ̌2 C h2jr2yj2 dx (92)

where y W S � R
2 ! R

3 is now a map defined only on the midplane S. Here we
have replaced the general quadratic forms by the square of the Euclidean norm and
the norm of the second fundamental form jAj by jr2vj. The latter replacement is
motivated by the fact that jAj2 D jr2vj2 if .rv/Trv D Id, see Proposition 2.

5.1 Conical Singularities in a Sheet Pushed into a Hollow
Cylinder, d-Cones

This subsection follows closely [84] and [86].
Imagine, or even better perform, the following experiment. Put a hollow cylinder

on a table and put a thin sheet on top of the cylinder. Push the sheet into the cylinder
along the middle axis of the cylinder. The sheet will form a fold and partially lift
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Fig. 1 When a sheet is pushed into a hollow cylinder a developable cone, or d-cone, forms.
Reprinted with permission from [86]

off the cylinder, see Fig. 1. We try to understand what shape the sheet forms and
how the shape depends on its thickness h, in the limit h ! 0. This problem has
been discussed extensively in the physics literature, see, e.g., Cerda and Mahadevan
[22, 23], Liang and Witten [73] as well as Witten [116], and several remarkable
features have been predicted. The angle corresponding to the region where the sheet
lifts off the rim of the hollow cylinder is a universal constant (
 139ı), independent
of the indentation, the thickness and the material (for small indentations, see Cerda
and Mahadevan [23]). The tip of the ridge consists of a crescent-shaped ridge where
stress and energy focus. There are predictions based on numerical simulations and
certain formal asymptotic arguments that the radius of the crescent scales like
Rcres � h1=3Rcyl where h is the thickness of the sheet and Rcyl the radius of the
cylinder, but in Witten [116] it is argued that the scaling behaviour is not really
understood and cannot be derived from the dominant energy scaling.

As a first step towards a better rigorous understanding we try to understand the
scaling of the total energy of the sheet as a function of h. For the problem as stated
no rigorous lower bound for the energy is known. Following Brandman et al. [21]
we consider a slightly modified problem for which one can obtain rigorous upper
and lower bounds. For h ! 0 we expect that the sheet forms a cone which is locally
isometric to the plane and hence developable (such cones are often referred to as d-
cones in the physics literature). We now first consider the problem of finding upper
and lower bounds for the energy (92) when the two dimensional set S is the unit disc
B1 and y agrees on @B1 with a developable cone Qy. Here we ignore the fact that the
sheet is constrained by the container. In a second step one can then minimize over
all isometric cones Qy, subject to the constraints that the indentation d > 0 is given
and that the cone cannot penetrate the boundary of the container. If we move the
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vertex of the cone to the origin then any cone Qy is determined by a curve

� W S1 D @B1 ! R
3

via

Qy.x/ D jxj�
�

x

jxj
�
:

One can easily check that Qy is an isometric immersion if and only if

j�.x/j D 1; j� 0.x/j D 1 8x 2 S1; (93)

i.e., if � is a unit speed curve on the sphere S2. Indeed both conditions are clearly
necessary: the first condition guarantees that radial rays from the origin have the
right length while the second condition guarantees that the boundary of the unit disc
is mapped to a curve of the correct length 2� . Conversely, it is easy to check that
the conditions imply that .rQy/TrQy D Id, i.e., that Qy is an isometric immersion.

Theorem 9 ([84, Thm. 1] or [86, Thm. 1]) Assume that � W S1 ! R
3 satisfies (93)

and consider the space of admissible maps

V� WD fy 2 W2;2.B1IR3/ W y.0/ D 0; yj@B1 D �g

and the functional

Ih.y/ D
Z

S

ˇ̌
.ry/Try/ � Id

ˇ̌2 C h2jr2yj2 dx

If the curve � does not lie in a plane then there exist constants C2 and C3, which
only depend on � , such that for sufficiently small h > 0

C1 ln
1

h
� 4C1 ln

�
ln
1

h

�
� C2 � 1

h2
min
y2V�

Ih.y/ � C1 ln
1

h
C C3; (94)

where

C1 D C1.�/ D 1

ln 2

Z

B1nB1=2
jr2 Qyj2dx :

This result improves on [21]. In particular it is show that the deviation from the
leading order logarithmic term is a most of order ln ln h�1. It is not known whether
the double logarithm really arises or whether the correction is simply of order 1 (as is
assumed in the physics literature). There are some relations to the large literature on
Ginzburg-Landau functionals (where it is known that the correction is of order 1).
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The main additional difficulty is that in our setting the basic variable is already a
gradient field so that one cannot use cut-and-paste arguments to modify the field.

In a second step one can bring back the constraint that the sheet is pushed into
a hollow cylinder by requiring in addition that �3 � d, where d > 0 is the amount
of indentation and minimize C1.�/ over all curves which satisfy this additional
constraint. This is a one dimensional problem, so one can even hope for explicit
solutions. In the physics literature this minimization has been carried out by Cerda
and Mahadevan [22, 23]. More precisely in [22] they consider the minimization of
C1.�/ in the small deflection approximation (which corresponds to the von Kármán
regime studied above). In [23] the equilibrium equations are derived for developable
cones in geometrically nonlinear theory (large deflections). This is equivalent to
considering the Euler-Lagrange equation for the minimization of C1.�/. In the small
deflection approximation the solutions are analyzed in detail. Under the assumption
that the set of angles for which the cone lifts off the cylinder is a finite number of
intervals the solutions are determined, solutions for different number of intervals (of
equal length) are compared and solutions with one interval (of 
 139ı) are found to
be global minimizers. Olbermann [91] has recently proved that the small deflection
regime arises rigorously as a � -limit and has shown that for local minimizers of
the small deflection problem the detachment set is indeed always a finite union of
intervals (without any apriori assumption on the detachment set).

Proof (Upper Bound) This is easy. It suffices to take y.h/ D h�
� jxj

h

�
�
�

x
jxj
�

where

� 2 C2.R/ and �.t/ D t for t � 1 while �.t/ D 0 for t � 1
2
.

The main point is to prove the lower bound. The difficulty is that the stretching
energy

Ist.y/ D
Z

B1

W.ry/ dx with W.F/ D jFTF � Idj2 (95)

is not lower semicontinuous (with respect to weak convergence in the natural energy
space W1;4). The lower semicontinuous envelope (or relaxation) is given by

Irel.y/ D
Z

B1

QW.ry/ dx (96)

where QW is the quasiconvexification of W (see (39) for the definition). Now
W.F/ D 0 for FTF D Id implies that QW.F/ D 0 whenever FTF � Id, i.e. for
all maps which do not involve stretch. Thus every map y with rTyry � Id can be
approximated (weakly in W1;4) by maps y.k/ such that Ist.y.k// ! 0.

Thus, roughly speaking, we can expect a good lower bound for Ist only if there
are regions where stretch occurs. Here the Dirichlet boundary conditions come to
our aid. We have

jy.z/� y.0/j D jQy.z/� 0j D 1 for all z 2 @B1: (97)
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Thus the endpoints of the curve ˛ W Œ0; 1� ! R
3 with ˛.t/ D y.tz/ have distance 1.

Therefore the length of ˛ is bigger or equal than 1 and it equals 1 only if ˛ is a
straight line, i.e., if y D Qy on the radial segment ftz W t 2 Œ0; 1�g. If y deviates from Qy
anywhere on this segment then ˛ has length larger than 1 and hence stretching must
occur somewhere. In other words, moving a chord which is pulled tight involves
some stretching and hence has an energy cost. This idea is quantified in Lemma 6
below.

We now verbally follow [84], pp. 2235–2236 to sketch the main ideas of the
proof of the lower bound. For details of the argument see [86]. The proof of the
lower bound will be an easy consequence of the following three lemmata. We fix �
and will assume that

Ih.y/ � C1
1

h2
ln
1

h
: (98)

We first show that y remains very small close to zero. This will allow us to use
an approximate version of (97) where the origin 0 is replaced by a point close to the
origin.

Lemma 5 supBh
jyj � Ch ln 1

h .

Lemma 6 Assume that h ln 1
h � r0 � 1 and set Ar0 D Br0 n Br0=2. Then

Z

Ar0

jy � Qyj2 dx � Cr30h ln
1

h
:

Lemma 7 Assume that h ln 1
h � r0 � 1. Then

ˇ̌
ˇ̌
ˇ

Z

Ar0

r2.y � Qy/ W r2 Qy dx

ˇ̌
ˇ̌
ˇ � C

� r0
h

�1=8 �
ln
1

h

�1=2
:

Lemma 5 follows from the scale invariant estimate

sup
x2Bh

ˇ̌
ˇ̌y.x/� y.0/� x � 1

jBhj
Z

Bh

ry

ˇ̌
ˇ̌ � Ckr2ykL2.Bh/ ;

the estimate
ˇ̌
ˇ
R
B1

ry
ˇ̌
ˇ D

ˇ̌
ˇ
R
@B1

y ˝ �
ˇ̌
ˇ � 2� and the BMO-type estimate

ˇ̌
ˇ̌ 1
jBhj

Z

Bh

ry � 1

jB1j
Z

B1

ry

ˇ̌
ˇ̌ � C

�
ln
1

h

�1=2
kr2ykL2.B/

(to get the optimal exponent 1=2 in the logarithm one can use e.g. the Trudinger-
Moser inequality).
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To prove Lemma 6 set e D y � Qy and denote by e0 D @re the derivative in the
radial direction. On a.e. segment r 7! .r cos 
; r sin 
/ we have

je.r; 
/ � e.h; 
/j2 � r
Z r

h
je0j2.�; 
/ d� (99)

and using that y.1; 
/ � �.
/ D j�.
/j2 D 1 we get

Z 1

h
je0.�; 
/j2 d� D

Z 1

h

�j@ryj2 � 1� d� � 2h C 2y.h; 
/ � �.
/ : (100)

To finish the proof we integrate (99) with respect to r dr d
 , use the pointwise
estimate j.ry/Try � Idj2 � .j@ryj2 � 1/2, the Cauchy-Schwarz inequality with
respect to d� d
 and Lemma 5.

To prove Lemma 7 we use integration by parts, Lemma 6, the simple esti-
mate kr2ek2

L2.Ar/
� ln 1

h and standard interpolation estimates for krekL2.Ar/ and

krekL2.@Ar/ as well as the homogeneity properties of r2 Qy and r3 Qy.

Proof of the Lower Bound in Theorem 9 Let M 2 N with M 
 log2
1
h � 4 log2 ln 1

h .
Then by Lemma 7

Z

B1nB2�M

jryj2 dx �
Z

B1nB2�M

jrQyj2 dx � 2
Z

B1nB2�M

r2.y � Qy/ W r2Qy dx

� C1M ln 2 � 2C
M�1X

kD0
.2kh/1=8

�
ln
1

h

�1=2

� C1M ln 2 � 2C.2Mh/1=8
�

ln
1

h

�1=2

and the assertion follows from the choice of M.

5.2 Another Conical Singularity, Regular Cones

Another method to produce a conical singularity is as follows. Take a two
dimensional disc BR of radius R, cut out a sector of angle 2�ı2 and reglue the edges.
If we ignore bending energy, the sheet will form a radially symmetric cone given
by the image of the disc under the map yı.x/ D .

p
1 � ı2x; ıjxj/T . In the physics

literature this cone is sometimes referred to as a regular cone, or r-cone for short.
Geometrically the cutting-and-glueing procedure is equivalent to a change of

metric. Instead of the standard Euclidean metric on the unit disc we use the metric

gı.x/ D er ˝ er C .1� ı2/e
 ˝ e
 D Id � ı2e
 ˝ e
 where er D x

jxj ; e
 D x?

jxj :



178 S. Müller

A natural energy for a map y W D ! R
3 is now

Ihı .u/ D
Z

BR

j.ry/Try � gıj2 C h2jr2yj2 dx:

If we take y D yı then the first term in the integrand vanishes identically, but the
second term behaves like h2jxj�2 and hence the integral diverges logarithmically
near 0. As for the developable cone discussed in the previous subsection we expect
that the minimizer of Ihı is close to yı but regularized at scale h and that the minimal
energy behaves like h2.C1 ln h�1CO.1// where C1 is a specific constant, computed
using the cone yı .

5.2.1 The Radially Symmetric Case

One advantage of the functional Ihı is that it allows for interesting radially symmetric
competitors while the only radially symmetric developable cone is the flat disc.
Thus it is natural to test our expectations on the minimum of Ihı and the shape of
the minimizers by first minimizing only over radially symmetric maps y, i.e., maps
which satisfy y.x/ D .a.jxj/x1; a.jxj/x2; b.jxj//T . In [85] it is shown that for the von
Kármán approximation of the energy functional the energy of minimizers among
radially symmetric maps behaves indeed like h2.C1 ln h�1CO.1//, withC1 D 2�ı2,
and that minimizers converge almost exponentially to a radially symmetric cone as
jxj ! 1.

To describe the results more precisely we first consider the von Kárman
approximation in this setting. We make the von Kármán ansatz

y.x/ D
 
x

0

!
C
 
ı2 OU.x/
ı OV.x/

!

and get .ry/Try 
 Id C ı2.2 sym r OU C r OV ˝ r OV/. Neglecting terms which are
formally of higher order and using the identity e
 ˝ e
 D Id � er ˝ er we get

Ihı .y/ 
 ı4
Z

BR

ˇ̌
ˇ2 sym r OU C Id C r OV ˝ r OV � er ˝ er

ˇ̌
ˇ
2C h2

ı2
jr2 OVj2 dx: (101)

We will from now on work with the functional on the right hand side of (101).
It is easy to see that for the standard cone given by OV.x/ D jxj (and the choice
OU.x/ D � 1

2
x) the first term vanishes and the second term diverges like h2

ı2
jxj�2

leading to a logarithmic divergence of the energy.
We now restrict attention for radially symmetric functions, i.e., we assume that

OV.x/ D W.r/; OU.x/ D 1

2
.Ou.r/ � r/

x

r
; where r D jxj;



Thin Elastic Sheets 179

and we set

Ow.r/ WD W 0.r/:

Here the factor 1
2

in the formula for OU is included to ensure consistency with the
notation in [85]. Then the integral on the right hand side of (101) becomes up to
factor of 2�

I�R.Ou; Ov/ D
Z R

0

��.r/ r dr; where � D h

ı
and (102)

��.r/ WD .Ou0 C Ow2 � 1/2 C
� Ou
r

�2
C �2

�
Ow0 2 C Ow2

r2

�
: (103)

We are interested in the limit h ! 0 or, equivalently, � ! 0. Using the rescaling
Ou�.r/ D 1

�
u.�r/ and Ow�.r/ D Ow.�r/, where Ou� and Ow� are defined on Œ0;R=��, we

see that this is the same as taking � D 1 and considering the limit R ! 1. In
particular we have

min
1

�2
I�R D min I1R=�: (104)

We thus assume from now on

� D 1 and we set �.r/ WD �1.r/:

We expect that w.r/ 
 1 for r � 1. Thus the integral in (102) diverges
logarithmically in R. The first key observation in [85] is that we can obtain a
well defined limit functional for R ! 1 if we renormalize the energy density
� by substracting r�2 for r � 1. More precisely consider a cut-off function
 2 C1.Œ0;1// with

 D 0 on Œ0;
1

2
�;  D 1 on Œ1;1/

and define formally

OE W W ! R [ f1g

.Ou; Ow/ 7! lim
R!1

Z R

0

�
�1.r/�  .r/

r2

�
r dr; (105)

where

W WD
�
.Ou; Ow/ 2 W1;2

loc ..0;1/IR2/ W
Z 1

0

�1.r/ r dr < 1
�
:
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Theorem 10 ([85, Thm. 1.1]) The functional OE is well-defined, i.e., the limit
in (105) exists as an element of R [ f1g, and is bounded from below. Moreover
OE possesses minimizers .Ou; Ow/ 2 W with Ow � 0 and OE.Ou; Ow/ < 1. In addition, each
minimizer with Ow � 0 satisfies for any � < 2

Ou.r/ D 1

2r
C o

�
e��p

r
�

Ow.r/ D 1C o
�
e��p

r
�

as r ! 1.

Remark 6 The restriction Ow � 0 was only imposed to break the obvious non-
uniqueness arising from the symmetry Ow 7! � Ow.

Proof (Sketch of Proof) The main point is to prove a lower bound for
R R
1 .�.r/ �

r�2/ r dr, uniformly in R. The key observation is that the integrand can be split into a
positive term, a term with rapid decay and a null Lagrangian, i.e., a term which only
depends on the values of .Ou; Ow/ at 1 and R. Indeed with the substitutions Ou D 1

2r C u
and Ow D 1C w we get

� � 1

r2
D .2w C w2 C u0/2 C

�u
r

�2 C w02 C 1

2r4
� 1

r

�u
r

�0
: (106)

The first three terms are positive, the fourth term is integrable against r dr and
the integral of the last term against r dr is u.R/=R � u.1/. Careful interpolation
arguments then show that u.R/=R can be controlled by the integral of the positive
terms on the right hand side of (106) and u.1/ can be controlled by

R 1
0
�.r/ r dr.

Thus we obtain the desired uniform lower bound. In view of the rescaling (104) it
follows (see [85, Cor 3.5]) that there exists a constant C such that for all � � 1 the
unrenormalized energy on the unit disc I�1 defined in (102) satisfies

ln��1 � C � inf
1

�2
I�1 � ln��1 C C where � D h

ı
:

This is the counterpart of the bound (94) for the d-cone, but without the ln ln term.
To establish the asymptotics for Ou and Ow we first show by an energy argument

that limr!1 w.r/ D 0 and then study the Euler-Lagrange equations in the u;w
variables. It turns out that after the change of variables r D s2 the linear part of the
Euler-Lagrange equation is autonomous up to corrections of order 1

s or smaller in
the coefficients of the lower order derivatives. A careful analysis of the ODE yields
the desired decay for u and w.
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5.2.2 The General Case

We return to the study of minimizers of

Ihı .u/ D
Z

BR

j.ry/Try � gıj2 C h2jr2yj2 dx; (107)

where

gı.x/ D er ˝ er C .1 � ı2/e
 ˝ e
 D Id � ı2e
 ˝ e


with er D x
jxj , e
 D x?

jxj , and we drop the assumption of radial symmetry.
For the d-cone discussed in Sect. 5.1 the main argument for a lower bound on the

energy was that ‘moving a cord which is pulled tight costs energy’. This argument
relies heavily on the fact that we described Dirichlet boundary condition. Without a
Dirichlet boundary condition the only lower bound which is known in the setting of
Sect. 5.1 is that

lim
h!0

1

h2
min Ih D 1:

Indeed, if this failed, we could find y.h/ such that a subsequence of y.h/ (after
substraction of constants) converges strongly in W1;2 to a limit y 2 W2;2 which
satisfies .ry/Try D Id. Thus y is developable (see the proof of Proposition 3
below). This is incompatible with the assumptions that the sheet is indented and
cannot penetrate the boundary of the cylinder.

For the r-cone problem, i.e., the minimization of (107) we want to derive a lower
bound without imposing additional Dirichlet conditions. To achieve this Olbermann
[92, 93] pursued an approach which is based on intrinsic geometric quantities, in
particular the pull-back metric g D .ry/Try and its Gaussian curvature.

His starting point is that the prescribed metric gı is non-Euclidean and its
(generalized) Gaussian curvature is a multiple of the Dirac mass at the origin, more
precisely Kı D �ı2ı0. Now g has to be L2 close to gı to keep the energy small
and thus we expect that the Gaussian curvature K of g is close to Kı in a suitable
negative norm, or equivalently K and Kı are close after suitable smoothing. Now
one can use the fact that K is the Jacobian of the Gauss map �y W D ! S2 which
maps a point x 2 D to the normal �y.x/ D @1y ^ @2y=j@1y ^ @2yj. Assuming for a
moment that y is sufficiently regular and the Gauss map is injective (and its image
is contained in a half-sphere) we can now bring the isoperimetric inequality into the
picture. First we have

H2.�y.Br// D
Z

Br

K dx 

Z

Br

Kı dx D �ı2:
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Thus the isoperimetric inequality gives

H1.@�y.Br// & 2�ı:

Hence by the Cauchy-Schwarz inequality

2�r
Z

@Br

jr�y.x/j2 dH1 �
�Z

@Br

jr�y.x/j2 dH1

�2
� .H1.@�y.Br///

2:

Now we expect jr�yj2 . jr2yj2 (compare Proposition 2). Putting these estimates
together we arrive at

Z

@Br

jr2yj2 dH1 & 4�2ı2

2�r
D 2�ı2

r
: (108)

We cannot expect this to hold for arbitrarily small r since the approximate equality
ofK andKı involves some smoothing. The natural scale for the smoothing is h. If we
assume that the previous reasoning can be turned into rigorous estimates for r � Ch
then integration of (108) from r D Ch to 1 gives the desired lower bound. The above
reasoning is only a cartoon of the real argument, but Olbermann showed in [93] that
under a mild global assumption one can use a reasoning based on proximity of K
and Kı , the Gauss map, the isoperimetric inequality on S2 and suitable interpolation
inequalities to get bounds for the modified functional

J1
h .y/ WD kg � gık2L1.B1nBh/

C h2kD�yk2L2.B1/
where, as above, �y denotes the normal to the surface y. He shows that there exist
constants Cı such that for all h 2 .0; e�1/

2�ı2 ln h�1 � 3

2
ln ln h�1 � Cı � 1

h2
inf J1

h;ı � 2�ı2 ln h�1 C Cı: (109)

Note that the quantity m20 in [93] is related to ı by m20 D 1 � ı2.
The estimate (109) represents very important progress because it is based on

the intrinsic properties of the prescribed geometry rather than externally imposed
boundary conditions. Nonetheless, it still requires a modification of the original
energy functional (107) and some global conditions. Recently Olbermann achieved
a breakthrough which allows him to treat the original functional without any
additional conditions [92] . The key idea is, roughly speaking, to replace the
Gaussian curvature in the previous argument by its linearization, i.e., the expression
� 1
2
.@2@2g11 C @1@1g22 � 2@1@2g12/. Since

gij D .@iy; @jy/ D
3X

kD1
@iy

k@jy
k
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a short calculation shows that

�1
2
.@2@2g11 C @1@1g22 � 2@1@2g12/ D

3X

kD1
det r2yk:

Then an argument which essentially involves the isoperimetric inequality for the
sets wk.Br/, where wk D ryk, shows that [92, Thm. 1]

2�ı2 ln h�1 � 3

2
ln ln h�1 � Cı � 1

h2
inf Ihı � 2�ı2 ln h�1 C Cı: (110)

Actually, with a slight variation of the argument one can even remove the doubly
logarithmic term and one can show that minimizers y.h/ converge to the cone yı
as h ! 0 [94]. Technically instead of the isoperimetric inequality for wk.Br/ one
uses a Sobolev estimate for the degree of wk which is essentially equivalent to the
isoperimetric inequality but properly accounts for possible multiple coverage of the
image.

6 Crumpling, Packing and Origami

6.1 Crumpling and the h5=3 Conjecture

Let D � R
2 be the unit disc and let

˝h D D � .�h

2
;
h

2
/

be a cylinder of height h with 0 < h � 1. We are interested in the minimum energy
(per unit height) needed to pack the thin cylinder into a three dimensional ball B1=4
of radius 1

4
and the corresponding minimizers or minimizing sequences. With our

notation

Eh.u/ D 1

h

Z

˝h

W.ru/ dx

were are thus interested in the quantity

e.h/ WD inffEh.u/ W u W ˝h ! B1=4 � R
3g (111)

This problem has been discussed widely in the physics literature, see, e.g.,
Lobkovsky et al. [75], Kramer and Witten [60] and Witten’s survey [116]. It is
believed that the minimizers for small h correspond to crumpled structures with a
fine network of rounded ridges which become sharper as h ! 0. In fact this problem
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is seen as a model problem to study the concentration of the energy on complex
lower dimensional sets. Based on scaling arguments, an assumed equipartition of
stretching and bending energy and numerical simulations Lobkovsky et al. [75]
conjectured that the minimal energy satisfies the scaling law

e.h/ � h5=3: (112)

The best mathematical results known are the following. As before, we assume that
W satisfies the conditions (1)–(4).

Proposition 3

lim inf
h!0

h�2e.h/ D 1:

Theorem 11 (Conti and Maggi [28, Thm. 1.2])

lim sup
h!0

h�5=3e.h/ < 1:

Conti and Maggi also prove a lower bound of order h5=3 for a deformation which
is close to a single ridge. Under slightly stronger assumption the h5=3 scaling law
for deformations close a single ridge had earlier been established by Venkataramani
[114]. The main mathematical problem in proving a lower bound of order h5=3

for the energy is to show that there is not a deformation which looks completely
different from an almost origami (or ridge-like) pattern which gives a much lower
energy.

Proof (Proof of Proposition 3) This is an easy consequence of Theorem 4. Indeed
if there existed a sequence hk ! 0 and maps uk with uk.˝h/ � B1=4 such that
h�2
k Ehk.uk/ remains bounded then Theorem 4 would imply that (a subsequence of)

the rescaled maps yk.x/ D uk.x0; hkx3/ converged strongly in W1;2.˝IRm/ to a map
Ny 2 W2;2 with @3 Ny and with NyjD an isometric immersion.

This implies that NyjD is a developable map, i.e., for each point x 2 D the map Ny
is constant in a neighbourhood of x or Ny is affine on a line segment through x with
endpoints in on @D. This is a classical results for smooth isometric immersions, for
isometric immersionsW2;2 on convex domains see Pakzad [96] who extended earlier
work of Kirchheim for W2;1 maps [54]; for nonconvex domains see also Hornung
[49]. It follows that there is a straight line segment through 0 with endpoints on
@D on which y is affine or that y is affine on a polygon with corners on @D. In
particular Ny.D/ contains a line segment of length one. On other hand the constraint
uk.˝h/ � B1=4 implies that Ny.D/ � B1=4. Hence Ny.D/ cannot contain such a line
segment. This contradiction finishes the proof of Proposition 3.

The upper bound by Conti and Maggi requires a much more delicate analysis and
makes use of the striking results by by Nash [90] and Kuiper [61] that C1 isometric
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immersions are much more flexible than C2 isometric immersions. The proof of the
upper bound proceeds in three steps.

• Use the Nash-Kuiper embedding theorem to approximate the contractionU.x/ D
1
8
x in C0 by a C1 isometric embedding.

• Use a careful construction to approximate an C1 isometric embedding by a
piecewise affine isometric embedding, a so called origami map.

• Smooth the edges of the piecewise affine isometric embedding in an optimal way

Origami maps and origami structures have recently attracted a lot of attention,
e.g., as building structures or metamaterials [38, 102, 110].

6.2 Packing of Biomembranes

There are also very interesting packing problems for biomembranes. Here a
membrane is modelled as compact surface ˙ � R

3 and one considers the so-called
Helfrich-Canham bending energy which in the simplest case is given by

E.˙/ D 1

4

Z

˙

H2 dH2:

In this case the energy agrees with the Willmore energy in differential geometry.
Here the bending energy depends only on the mean curvature H (the sum of the two
principal curvatures) rather the full second fundamental form A. This reflects the
fact that we are interested in membranes which have no intrinsic shear resistance.
One usually assumes also that the membrane is incompressible. Thus the total area
a of ˙ is fixed. Given an open set ˝ � R

3 (a ‘container’) and a number a > 0 a
natural minimization problem is

Minimize E.˙/ subject to ˙ � ˝ and area.˙/ D a:

In [88] the simplest case when˝ equals the unit ball B.1/ is considered. If a D 4�k
with an integer k then a natural candidate for a minimizer is given by k copies of
the unit sphere (more precisely one constructs a minimizing sequence by taking k
concentric spheres of radius close to 1 and connecting them by very thin tubes which
are almost catenoids and hence have mean curvature almost zero). A calibration
argument shows that this construction indeed provides the infimum of the energy.
Using the rigidity estimates of [35, 36] one can also analyse the behaviour of the
minimal energy for a D 4�C ı for a small ı > 0. The case of general containers˝
is wide open, even for convex˝ . An interesting question is whether one understand
the asymptotic behaviour for large prescribed area a.
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7 Outlook

To close, let me briefly mention a number of related problems, most of which are
wide open, with some pointers to the rapidly growing literature.

(i) Blistering in thin films
Consider a thin film deposited on a substrate at high temperature. If the
thermal expansion coefficient of the substrate is larger than that of the film, the
film is under compressive stress after cooling. The compressive stress may be
partially released by a debonding of the film and the formation of wrinkling
patterns.

This problem was first studied from a point of global energy minimization
by Gioia and Ortiz [44, 95]. A key feature of the problem is that for films with
small aspect ratio the system is in the regime well beyond the first unstable
eigenmode (this regime is sometimes called the far from threshold regime or
FFT regime).

For a prescribed debonded region the optimal scaling laws was identified
for von Kármán approximation in [15] and for the full three dimensional
problem in [16], see also Jin-Sternberg [51]. An interesting feature is that a
finite fraction of the energy is concentrated in a thinner and thinner boundary
layer.

If the debonded region is not prescribed, but is included in the minimiza-
tion problem through a bonding energy per bonded area, then only partial
results are known [18, 19]. For compliant substrates see Kohn and Nguyen
[59] as well as Bedrossian and Kohn [11].

(ii) Wrinkling under loading by boundary forces
In the blister problem the emergence of wrinkles is driven by an incompatibil-
ity at the boundary of the debonded region: the Dirichlet boundary condition
prescribes a circumferential length which is shorter than the one preferred
by the film. One can also look for wrinkling for softer boundary conditions
given by prescribed loads. Davidovitch et al. [33] discuss wrinkling in a
thin annulus under axial loading as prototypical example. The corresponding
scaling law of the energy has been rigorously established by Bella and Kohn
[13].

(iii) Embedding of non Euclidean sheets
Here the formation of singularities or microstructure through wrinkling is
not driven by (soft or hard) boundary conditions but by an intrinsic incom-
patibility of the metric. We already saw a very special case of a prescribed
metric with a single conical singularity in Sect. 5.2. One motivation to study
more generally the minimization of stretching and bending energy for sheets
with a non Euclidean background metric came from experiments by Sharon
et al. [108] which showed a buckling cascade with up to six generations of
refinements in thin raptured sheets.

The author’s explanation is that the rapture introduces plastic deformation
near the line of rupture leading a non Euclidean background metric. The self-
similar refinement has attracted a lot of attention in the physics literature, see,
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e.g., the Fourier approach of Audoly and Boudaoud [7] as well as recent work
Gemmer et al. [43] who introduce a new family of singular test function which
allow for refinement. Very few mathematically rigorous results are known.
Recently interesting progress was achieved by Bella and Kohn [12].

The original work of Sharon et al. [108] already discusses a number of
other possible applications including three dimensional pattern formation in
biological systems such as leaves. Swelling hydrogels whose metric can be
prescribed by photochemistry provide an excellent experimental system to
test the effect of specific geometries, see Klein et al. [56, 57].

(iv) Wrinkling in drapes
In the physics literature this has been studied by Cerda et al. [24]. A recent
mathematical analysis was carried out by Bella and Kohn [14].

(v) Buckling of thin walled cylinders
Understanding the critical buckling load of thin walled cylinders and the
complex folding patterns which appear at the onset of instability is a classical
problem on which a huge literature exists. For recent progress and a review
of earlier results on rigorous scaling laws of the elastic energy in terms of the
compression � and the thickness h see Tobasco [112]. A related problem was
studied by Conti et al. [31]. More generally, the critical buckling load of a
curved surface (shell) is closely related to the optimal scaling of the constant
in Korn’s inequality (our reasoning in the proof of Theorem 3 shows that for
flat plates the Korn constant scales like h2), see the work by Grabovsky and
Haratunyan on axially compressed circular shells [45, 46] and on zero Gauss
curvature shells [47] for recent progress.

(vi) Relevance of the � -limit theories for stability
In the context of forces which are consistent with the von Kármán scaling this
is discussed in [67].

(vii) Convergence for low-energy equilibria, rather than minimizers
Here the main idea is to replace � -convergence, which is taylored to global
minimizers, by the theory of compensated compactness developed by Murat
and Tartar [89, 111] . For the reduction from 2d to 1d or from 3d to 1d
this can be done in great generality [80, 82]. For the reduction from 3d to
2d convergence of equilibria has so far only been established if the energy
per unit volume decays like h4 or stronger, i.e., in the von Kármán or the
biharmonic (linear) regime [87].

A main difficulty in going beyond that regime is that there we have no
canonical way to approximate ‘almost isometric immersions’ maps by exact
isometric immersions. One cannot use the implicit function theorem because
W2;2 isometric immersions are characterised by the condition detA D 0

for the second fundamental form and the linearisation of this condition is
degenerate.

Indeed the space of isometric immersions (or equivalently the space of
developable maps) is very large. This is in sharp contrast with the situation
for curves in two or three dimensions which can be described by the angle
of the tangent vector with the x1 axis or a Frenet frame, respectively. Even
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establishing the Euler-Lagrange equation corresponding to the minimization
of
R
S jAj2 or, equivalently, the Willmore energy

R
S jHj2, subject to the isometry

constraint detA D 0 is highly nontrivial. Hornung [50] carried out the careful
study of the regularity properties of W2;2 isometric immersions, derived a
suitable forms of the Euler-Lagrange equation and studied the regularity of
their solutions.

The convergence result in [87] requires the commonly used assumption
that jDW.F/j � C.jFj C 1/. Unfortunately this assumption is incompatible
with the condition that the energy should blow up at infinite compression:
W.F/ ! 1 as detF # 0. Mora and Scardia [81] have overcome this
difficulty and have shown that convergence of equilibria still holds under
the much weaker growth condition jDW.F/FT j � k.W.F/ C 1/ which is
compatible with blow-up at infinite compression. In this setting it is not
known whether minimizers satisfy the usual form of the Euler-Lagrange
equation. Nonetheless Ball [9, 10] has shown that using outer variations of
the form .Id C "�/ ı u one can show that minimizers satisfy a physically very
natural form of the equilibrium condition (which under a natural invertibility
assumption is equivalent to the vanishing of the weak divergence of the
Cauchy stress tensor). This equilibrium condition is the starting point of
the analysis by Mora and Scardia. Lewicka and Hui [68] have extended the
convergence result i to incompressible elastic materials (i.e., W.F/ D 1 if
detF ¤ 1).

Monneau [77] has shown that given a sufficiently smooth (and sufficiently
small) solution of the von Kármán equation there exists a nearby solution of
the of three dimensional elasticity problem for sufficiently thin domains.

Mielke [76] has used a centre manifold approach to compare solutions in a
thin strip to a one dimensional problem. His approach already works for finite
thickness h, but requires that the nonlinear strain .rhy/Trhy is in L1 close to
the identity. Applied forces are difficult to handle in this approach.

(viii) Time dependent problems
Here results for the reduction from 3d to 2d are so far only known in von
Kármán regime and the biharmonic (linear) regime. In [2] it is shown that
(rescaled) solutions of the 3d problem which satisfy the natural energy bounds
converge to solutions of the 2d problem (here again linear growth of DW is
required). In [1] it is shown that given a sufficiently regular solution of the 2d
problem (with periodic boundary conditions) there exists a solution of the 3d
problem (on a rescaled time interval) nearby. The main difficulty is to show
that a regular 3d solution exists on a sufficiently long time interval and does
not develop shocks.
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Aspects of PDEs Related to Fluid Flows

Vladimír Šverák

1 Introduction

These notes loosely follow the lectures given by the author at the International
Mathematical Summer Center in Cetraro in the summer of 2013. There are two
main themes. The first concerns the long-time behavior of solutions of the 2d
incompressible Euler equations, and other Hamiltonian equations. For 2d Euler
one observes (numerically and experimentally) a tendency for a certain “order” to
appear from seemingly chaotic data. Well-known works which gave insights into
this phenomenon include papers by Onsager [46] and Kraichnan [34]. Subsequent
contributions by many other researchers are mentioned in the corresponding
sections of the notes.

Ultimately this theme can be related to a general phenomenon discovered early
on by the founders of statistical mechanics: in phase spaces of systems with
infinitely many degrees of freedom (such as electro-magnetic fields), there is always
“a lot of room” at the degrees of freedom corresponding to small scales (or high
spatial Fourier modes). For the purposes of fundamental physics, there is in fact
too much room, and this leads to the classical “thermodynamical death” paradoxes
which were only resolved by quantum mechanics.

Here we will not be concerned with foundational issues, but will use this phe-
nomenon for making conjectures about the behavior of various infinite-dimensional
Hamiltonian systems. It should be emphasized that rigorous results proving that the
phenomenon indeed happens, based on actual dynamics given by various PDEs,
are rare. Most of the time the rigorous results are fairly far away from what is
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conjectured, and the problems are difficult, even for the simplest models. As an
example, let us take the de-focusing cubic non-linear wave equation on the circle

utt � uxx C u3 D 0 ; x 2 S1 : (1)

One can construct simple solutions by considering functions independent of x.
These will be of the form u.x; t/ D U.t/ ; where U00 C U3 D 0. These are
periodic functions (related to elliptic functions). What happens when we slightly
perturb these solutions, let the perturbed function evolve exactly according to
the equation, and wait for a long time? In Sect. 2.1 we show that based on the
thermodynamical principles one should conjecture that, generically, the perturbed
solution will converge weakly in H1 to zero. (Of course, the time scales involved
might be enormous.) There may be obstacles from the KAM theory, pioneered for
PDEs by Kuksin [35]. Many non-generic perturbations might stay on KAM tori, and
the generic solutions would have to find their way between a possibly rich family of
these tori (“Arnold diffusion”).

For other equations, which include the 2d incompressible Euler equation, various
non-linear Schrödinger equations, and generalized KdV equations, for example, the
behavior is modified by conserved quantities which are continuous with respect to
relevant weak topologies, and prevent the escape of the full solution to the high
spatial Fourier modes. The combination of the (sufficiently continuous) conserved
quantities and the large amount of room at high frequencies gives rise to the
“order from chaos” phenomenon mentioned above, at least at the level of statistical
considerations (and generic solutions). The actual dynamics can again exhibit KAM
tori and various non-generic solutions which behave in a special way, and it is
difficult to say what really happens for general solutions.

It is important to realize that the problems we consider may have several
natural time-scales. For example, in the famous Fermi-Ulam-Pasta numerical
experiments [22] convergence to statistical equilibria (“thermalization”) of the type
considered here was not observed, and the search for explanations famously lead to
the discovery of the complete integrability of the KdV equation. However, it turns
out there is a second, much longer, time scale on which thermalization is indeed
observed, see for example [4]. In the context of the issues discussed here, one always
has in mind the longest possible time scales.

The main benefit of the statistical mechanics methods applied to the problems
considered here is that we can relatively easily make conjectures which are hard to
prove or disprove.

The statistical mechanics picture suggests a sharp distinction between the behav-
ior of finite-dimensional Hamiltonian systems and sufficiently generic1 infinite-
dimensional Hamiltonian systems at finite energy when the longest time-scales
are concerned. Whereas in the former one will have (under some reasonable
boundedness assumptions) the Poincaré recurrence, and the complexity of a given

1We should exclude the completely integrable systems, for example.
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solution has nowhere to escape, in infinite dimensions there is always enough room
for the complexity to escape to high modes, and the “visible part” of the solution
can potentially simplify.2

None of this is new, of course, these conclusions have been known for a long
time. Our goal here is to present a relatively simple approach which hopefully will
make the issues more accessible to mathematicians who are not familiar with the
methods of statistical mechanics. There are many other excellent sources, some of
which be quoted in the text.

It should be mentioned that recently there has been progress in understanding the
appearance of the small scales from the actual dynamics for special solutions, see for
example [3, 14, 23, 31, 44]. While these works do not directly address the problems
above, where information about generic solutions is needed, they do improve our
understanding of the issues involved.

The second theme of the lectures is related to the problem of uniqueness of the
Leray-Hopf weak solutions with L2 initial data. Recent developments concerning
scale-invariant solutions have led to plausible scenario of non-uniqueness for
compactly supported initial date with finite energy. This is discussed in Sect. 4.

2 Motivation and Examples

For finite-dimensional Hamiltonian systems we have the Liouville theorem about
volume-preservation in the phase space by the evolution, and Poincaré recurrence
(under appropriate assumptions). Therefore the system will typically “oscillate”, in
the sense that, generically, its behavior on a time interval of any fixed length will
be almost exactly repeated if we wait long enough. On the other hand, in typical
infinite-dimensional systems such behavior is likely not generic, as there is always
more “room” in the phase space and there may be no non-degenerate Liouville
measure.

Let us start with some examples.

2.1 1d Non-linear Wave Equation

On the one-dimensional circle S1 D R=2�Z let us consider the non-linear wave
equation

utt � uxx C ~u3 D 0 ; (2)

2This may not be the case for infinite-energy solutions which may have enough energy to fill all
the available phase-space, even though it is infinite-dimensional.
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where ~ is a parameter. For our example we will consider only the de-focusing case
~ > 0. This is of course a Hamiltonian system, with the Hamiltonian

H D
Z

S1

�
1

2
v2 C 1

2
u2x C ~

4
u4
�

dx ; (3)

(where v D ut is considered as an independent variable) and “canonical form”

Pu D ıH
ıv
;

Pv D � ıH
ıu :

(4)

The global well-posedness of the Cauchy problem for (2) with u.0/ D u0 2 H1.S1/
and ut.0/ D v0 2 L2.S1/ is not hard to prove and we will take it for granted (as
well as preservation of Hs regularity of the initial data by the evolution). What is the
long-time behavior of the solution? We have the energy conservation

d

dt
H.v; u/ D 0 (5)

and, in addition, we have the conservation of the momentum: letting

P.v; u/ D
Z

S1
vux dx ; (6)

we have

d

dt
P.v; u/ D

Z

S1

�
ıH

ıu
ux � v

�
ıH

ıv

�

x

�
D 0 : (7)

This is of course a consequence of the translational symmetry of our problem
and Noether’s theorem. The evolution generated by P via

Pv D ıP
ıu

Pu D � ıP
ıv

(8)

is the translation of .v; u/.
The solution .v; u/ starting from .v0; u0/ with

H.v0; u0/ D E ; P.v0; u0/ D p (9)

will therefore satisfy H.v; u/ D E and P.v; u/ D p for all time. We do not know
about any other constraints a “generic” solution would satisfy. The first guess at the
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long-time behavior therefore could be:

Ergodicity guess, nlw
After a long time the solution .v.t/; u.t// looks like a “random
element” of the manifold given by H D E ; P D p:

(10)

One problem with this statement is that we have no natural probability measure
on the infinite-dimensional manifold

†E;p D ˚
.v; u/ 2 L2 � H1 ; H.v; u/ D E ; P.v; u/ D p



: (11)

Modulo this difficulty, which will be addressed later by taking suitable limits of
finite-dimensional subspaces, the guess above amounts to replacing the equation of
motion by a postulate of statistical mechanics. How good is the guess? In general,
if we make such guesses and do not forget to take into account all known conserved
quantities, we get statements which at the level of generic solutions (and sufficiently
general equations) are hard to prove or disprove. (The word “generic” in the last
statements is important, as the statement would typically not be true for all solutions,
due to obstacles from KAM theory, for example.) Numerical verification can be
tricky, as it is difficult to simulate Hamiltonian dynamics in high dimensions with
high precision over long time-scales. Therefore from a purely mathematical point
of view, the above considerations cannot replace the study of the actual dynamics.
From a more practical point of view of predicting the future of physical systems
the benefits are not as limited, thought, similar to the situation with statistical
mechanics. This is because the equations are never completely precise and in the
end the conservation laws may be more fundamental than the equations themselves.

There are various non-generic solutions which do not obey the above prin-
ciple (P). These include periodic solutions, [39], and also small quasi-periodic
solutions with many frequencies constructed by KAM techniques, [11, 55]. A simple
class of non-trivial periodic solutions are travelling waves3

u.x; t/ D h.x � ct/ ; (12)

where c is a real number with jcj > 1 and h is a smooth function on S1 satisfying

.c2 � 1/h00 C ~h3 D 0 : (13)

The last equation has many solutions (and they can be expressed in terms of elliptic
functions).

If we believe statement (10), all the travelling waves above should be unstable,
and under generic small perturbations they should “disintegrate” (perhaps after a
long time) to solutions described in (P).

3In the context of this example these were drawn to the author’s attention by Jalal Shatah.
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One can view (4) as a dynamical system in the space L2.S1/ � H1.S1/. If
H.v0; u0/ D E, then the solution will stay in the set

XE D f.v; u/ 2 L2.S1/ � H1.S1/ ; H.v; u/ � E :g (14)

When we equip XE with the weak topology L2.S1/�H1.S1/, we can think of it as a
compact metric space, as the function H is weakly lower-semicontinuous. We will
denote this metric space by .XE;w/, to emphasize the weak topology.

Lemma 1 Equation (2) (or, equivalently, Eq. (4)) defines a dynamical system on
.XE;w/. In particular, the solution map

..v0; u0/; t/ ! .v.t/; u.t// (15)

is continuous as a map from .XE;w/ � R to .XE;w/.

Proof This follows easily from the known well posedness results for (2), see for
example [52]. For the specific equation considered here there are many ways to
do the proof, including quite elementary ones, which the reader may do as an
exercise.

We can now apply the standard dynamical system considerations. In particular,
we can define the !-limit sets for each solution .v.t/; u.t// as

� D �.v0; u0/ D \t>0f.v.s/; u.s// 2 XE; s � tg ; (16)

where the overbar denotes the closure in .XE;w/.
As we already mentioned, the energy H is weakly lower-semi-continuous on

.XE;w/ and hence we have to have H � H.v0; u0/ on �. The other conserved
quantity, P, does not have good continuity properties on .XE;w/, and therefore there
are no obvious constraints from it on the set �.

Let us represent the solution by a Fourier series:

u.x; t/ D 1

2�

X

k2Z

Ou.k; t/eikx : (17)

For the real-valued solutions which we consider here we have to have

Ou.�k; t/ D Ou.k; t/ : (18)

where the overbar denotes complex conjugation. The independent degrees of
freedom are therefore determined by the coefficients

Ou.0; t/; Ou.1; t/; Ou.2; t/; : : : ; (19)

with Ou.0; t/ real and Ou.1; t/; Ou.2; t/; : : : complex. The classical way of thinking
about the system is as follows: for each k D 1; 2 : : : the linear part of the wave



Aspects of PDEs Related to Fluid Flows 201

equation defines a 2d harmonic oscillator with frequency k (which can also be
thought of a two independent 1d oscillators). The frequency k D 0 can be thought
of as a degenerate oscillator. For the linear equation there is no interaction of these
oscillators, they evolve independently of each other. The non-linear term introduces
a complex interaction, and once it is turned on, the oscillations can spread from one
frequency to another. The interaction is conjectured to be sufficiently complex so
that in the generic case, after a sufficiently long time, the energy will be distributed
between many frequencies and the energy in any single frequency will be small, and
approaching zero as t ! 1. In the space .XE;w/ this will mean that the solution
.v.t/; u.t// will weakly converge to zero, and the omega limit set � will be

� D f.0; 0/g : (20)

We emphasize again that this cannot be expected to be true for every solution,
but only for “generic solutions”. In addition to the travelling wave (12), a class
of simple non-trivial solution can be obtained by considering solutions independent
of x, i.e. u.x; t/ D U.t/. These solutions are also periodic in time, and it would
be interesting if any small generic perturbation would, after a long time, cause a
complete “disintegration” of these solutions.

It seems to be beyond the possibilities of existing methods to prove or disprove
such statements rigorously. However, it is possible to study rigorously the connec-
tion between such conjectures and the statement (10). This will be our main goal.

The same issues can be considered for many other equations. We will consider
two other examples.

2.2 Non-linear Schrödinger Equation

For functions on S1 let us consider the de-focusing non-linear Schrödinger equation

iut C uxx � ~juj2�u D 0 ; (21)

where � > 0; ~ > 0 are parameters. For simplicity we can think of � � 1, but not
exactly � D 1, as for � D 1 the equation is completely integrable and has infinitely
many conserved quantities, see for example [20]. We can also think of the more
general form

iut C uxx � ~f .uNu/u D 0; (22)

where f .u/ D F0.u/ with F convex and satisfying some growth conditions at for
u ! 1. Letting u D u1 C iu2, we can write (22) in the real form as

Pu1 D ıH
2ıu2

Pu2 D � ıH
2ıu1

;
(23)
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or in complex form as

Pu D �i
ıH

ı Nu ; (24)

where the Hamiltonian H is given by

H D H.u/ D
Z

S1
.ux Nux C F.uNu// dx : (25)

In addition to conservation of H, Noether’s theorem provides two other conserved
quantities: the momentum

P D P.u/ D
Z

S1
� i

2
.Nuux � uNux/ ; (26)

and the mass

M D M.u/ D
Z

S1
uNu dx : (27)

It is also easy to check directly that (22) implies

d

dt
H D 0 ;

d

dt
P D 0 ;

d

dt
M D 0 : (28)

As an exercise, the reader can check that—as expected from Noether’s theorem—
the equations

Pu D �i
ıP

ıu
and Pu D �i

ıM

ıu
(29)

generate symmetries of the equation.
For (21) and � D 1 there are many more conserved quantities, see for example

[20], but here we focus on the cases the set of known conserved quantities is
exhausted by (28).

For our purposes here the natural “phase space” for the evolution is H1. Similarly
to the previous example, we can consider the set

XE D fu 2 H1 ;H.u/ � Eg (30)

equipped with the weak topology. This is a compact metric space, which we will
denote by .XE;w/. The well-posedness results for (22) imply (under some mild
continuity and growth assumptions on f ) that the equation defines a good dynamical
system on .XE;w/, similarly to Lemma (1). We can therefore again consider the
!-limit sets �.
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The Hamiltonian H will again be lower-semicontinuous on .XE;w/. The main
difference with the previous example now is the following:

Lemma 2 The functions P and M defined by (26) and (27) respectively are
continuous on .XE;w/.

This is of a standard statement, and we leave the proof as an exercise for the reader.
An obvious corollary of the lemma is the following. Assume that � D �.u0/

is the !-limit set for the initial condition u0 and let m D M.u0/; p D P.u0/. Then
M D m and P D p on�.

If we think of the long-time behavior of the solution in terms of the Fourier
modes, as in the last section, the non-linear interaction argument would still suggest
that each Fourier mode should approach zero for generic solutions, but from the
conservation and weak continuity of M and P we see that this is not possible. To
accommodate both the “spreading of the solution across Fourier modes” and the
conservation of M and P, we can guess the following standard conjecture:

Conjecture 1 (Variational Characterization of Long-Time Behavior) Over
long-time, the solutions will approach (in the sense of .XE;w//) the set of minimizers
of H under the constraints M D m and P D p.

This heuristics has been well-known in many contexts, see for example [18, 41]
and references therein.

Another point of view would be an analogy of (10). Denoting by u0 the initial
conditions and letting E D H.u0/; p D P.u0/;m D M.u0/ it seems reasonable to
guess (unless there are additional conserved quantities which we do not know about)
the following:

Ergodicity guess, nls
After a long time, the solution u.t/ of .22/looks (generically) like
a “random function” from the “manifold” H D E;P D p;M D m:

(31)

Proving or disproving this statement (after making it more precise by considering
suitable limits of finite-dimensional subspaces) seems beyond reach of current
methods. However, we will see that it is possible to link it to conjecture (1) above.

The non-linear Schrödinger equation can also be considered in higher dimension.
The initial value problem has been studied in depth by many authors, see for
example [6, 13, 30, 32]. In the context of our focus here we should mention the
topic of wave turbulence, see for example [57], and the cubic non-linear Schrödinger
equation on the 2d torus. The considerations above concerning the long-time
behavior apply with the obvious adjustments to higher-dimensional situation, too.
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2.3 The Generalized Korteweg-de Vries Equation (gKdV) on S1

The equation is

ut C f .u/x � uxxx D 0 ; (32)

where f D F0 with F smooth and some mild assumptions on the growth at u !
1. The classical cases of KdV and modified KdV (mKdV), when the equation
is completely integrable and has infinitely many conserved quantities, correspond
respectively to

F.u/ D u3

6
or F.u/ D u4

12
: (33)

The equation again is well-known to have a Hamiltonian structure. Letting

H.u/ D
Z

S1

�
1

2
u2x C F.u/

�
dx ; (34)

we can write

Pu D � @

@x

ıH

ıu
: (35)

In this case the symplectic form behind the equation is

�.u; v/ D
Z

S1
�.@�1

x u/v dx ; (36)

which is well defined on H1
0.S

1/ D fu 2 H1.S1/ ;
R

S1 u dx D 0g (and, in fact also on

the larger space H
1
2 ). Noether’s theorem gives the conserved quantity

I.u/ D
Z

S1

1

2
u2 : (37)

We emphasize again that in the famous completely integrable cases given by (33)
we have many more conserved quantities. Here our focus is on the situation when
H and I are the only known conserved quantities. Assuming we have not missed
any conserved quantities, we can again take a guess at the long time behavior. First,
based on the idea of energy spreading “as much as possible over the Fourier modes”
in a way consistent with the conservation of I, it is natural to guess that after long
time the generic solutions should be related to minimizers of H under the constraint
of a given value of I. Another point of view would be that after a long time a generic
solution for H.u0/ D E and I.u0/ D p will look as a “random function” from the
manifold fH D E ; I D pg, which again can be made more precise by considering
suitable limits of finite dimensional subspaces.
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2.4 Critical Points of Hamiltonians on Invariant Submanifolds

We see from the examples above that the problem of minimizing the Hamiltonian
under constraints given by conservation laws appears naturally in the context of the
long-time behavior. This leads to “solitons”, as we now recall. For simplicity let us
consider a finite dimensional Hamiltonian system which we will write as

Px D JH0.x/ ; (38)

where J is the matrix describing the underlying symplectic structure. We can think
of J as constant in x, although the considerations apply equally well to the case when
J depends on x. Let f1; : : : ; fm be conserved quantities for (38). Let us consider a
critical point Nx of H on the submanifold

†c1;:::;cm D f f1 D c1 ; f2 D c2; ; : : : ; fm.x/ D cmg : (39)

Let us assume that †c1;:::;cm is smooth near Nx. We have

H0.Nx/ D �1 f
0
1.Nx/C � � � C �m f 0

m.Nx/ (40)

for some real numbers �1; : : : ; �m. If H0.Nx/ D 0, then Nx is a rest point of the system.
We will consider the more interesting case when H0.Nx/ does not vanish. Let

f D �1 f1 C �2 f2 C : : : �m fm ; c D �1c1 C � � � C �mcm E D H.Nx/ : (41)

Let � t be the flow induced by (38). Both H and f are preserved by the flow, in the
sense that H.� t.x// D H.x/ and f .� t.x/ D f .x/. Hence the condition H0.Nx/ D
f 0.Nx/ will be preserved along the trajectory passing through Nx. This means that the
trajectory is given also by

Px D Jf 0.x/ ; x.0/ D Nx : (42)

By Noether’s theorem, the flow  tW x0 ! x.t/ given by solving

Px D Jf 0 (43)

with the initial condition x.0/ D x0 is a symmetry of the system. Hence the motion
of Nx is given by the 1-parameter symmetry group  t.

As an example we can consider the classical Kepler problem of a motion of a
planet. The conserved quantities will be the energy and the angular momentum.
If we minimize the energy subject to the constraint of a given momentum, we
get circular orbits. The solutions of (22) and (32) obtained from the constrained
minimizations are of similar nature: for (22) we get a modulated travelling wave,
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whereas for (32) we get a travelling wave. The travelling wave (12) for the non-
linear wave equation also belongs to this category, although it cannot be obtained
by direct constrained minimization, as the function P is not weakly continuous.

2.5 2d Incompressible Euler

On the 2d torus T2 D T2a;b D R2=aZ ˚ bZ, where a; b > 0 are parameters, we
consider the 2d incompressible Euler equation in the vorticity form:

!t C ur! D 0 ; (44)

where u is determined from ! via the equations

� D !; u D r? : (45)

Here r? denotes the field .� x2 ;  x1 / and we assume

Z

T2
!.x; t/ dx D 0 ; (46)

which is clearly preserved by the evolution.
Strictly speaking, Eq. (44) is a Poisson system (rather than Hamiltonian). It

arises from a larger Hamiltonian system by a symmetry reduction. A classical
finite-dimensional example of this is the following: in R2 consider a version of the
classical Kepler problem with Hamiltonian

H.y; x/ D 1

2
jyj2 C V.r/ ; r D jxj : (47)

This problem has an obvious SO.2/ symmetry: if .y.t/ ; x.t// is a solution and R
is a rotation, then .Ry.t/;Rx.t// is again a solution. We can write the equations of
motion in terms of the Poisson bracket

f f ; gg D
X

fyk gxk � fxk gyk ; (48)

as

Pf D fH; f g : (49)

The Poisson bracket preserves the class of functions f on the phase space R2 � R2

which are invariant under the action .y; x/ ! .Rx;Ry/ of SO.2/. The set of orbits
of this action can be though of as a three-dimensional manifold X (with singular
points corresponding to the projections of the point of the form .0; x/ and .y; 0/)
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and the invariant functions on R2 � R2 can be thought of as functions on X. The
equation of motion (49) descends to X, and hence we now have an equation on X.
Since dimX D 3, the system on X given by (49) is not symplectic. The function

M.x; y/ D x1y2 � x2y1 (50)

(angular momentum) on R2 � R2 which generates the SO.2/ symmetry via

Pf D fM; f g (51)

is itself invariant (because fM;Mg D 0, due to the anti-symmetry of the bracket), it
also descends on X. As the invariant functions can be defined exactly by fM; f g D 0,
we see that

fM; f g D 0 for any (sufficiently regular) function of X: (52)

The manifold M is foliated into two-dimensional manifolds fM D cg which will be
invariant under the evolution on X given by

Pf D f QH; f g (53)

for any Hamiltonian QH. The systems (53) will be hamiltonian on each leaf
fM D cg. The functions C on X with the property that fC; f g D 0 for each f are
called Casimir functions. They coincide with functions which are locally constant
on each symplectic leaf (and in our case they can be factored through M near the
points where the differential of M does not vanish).

This structure has many consequences. For example, the equilibria of the system
on M correspond to the critical points of H restricted to the leaves, and hence can
be expected to come in one-dimensional families, is indeed the case generically.

Euler equation also can also be thought about in this way. We consider incom-
pressible fluids in T2. From the point of view of classical mechanics, our goal is
to determine the motion of the “fluid particles”. At the level of the continuum
description, our natural configuration space is therefore the group of volume
preserving diffeomorphisms of T2, or, more precisely, its connected component
containing the identity, which we will denote by G. The Hamiltonian is given by
the kinetic energy. If � D � t is a trajectory in G, the Hamiltonian is

H.�; P�/ D
Z

T2

1

2
j P�.x/j2 dx : (54)

The tangent space to G at the identity element is the space of divergence-free fields
u on T2, and on those fields the Hamiltonian is of course

Z

T2

1

2
ju.x/j2 dx : (55)
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The phase space can be identified with the pairs .�; P�/ where � 2 G and P� 2 T�G
(the tangent space to G at �, which is identified with the co-tangent space via the L2

scalar product) and G acts on the phase space by the symmetries

.�; P�/ ! .� ı  ; P� ı  / ; (56)

which can be interpreted as re-labeling of the particles. The “reduced phase space”,
analogous to the space X in the above example, can be identified with the space of
(smooth) div-free fields (by taking  D ��1 in (56), which essentially represents
passing from the Lagrangian description to the Eulerian description). The reader can
consult for example [42] for details.

There are of course many ways to introduce coordinates for all the relevant
objects. The description in terms of the vorticity ! and the stream function in (45)
has the advantage that there are no constraints on ! other then the trivial one given
by (46), and therefore it identifies the genuine degrees of freedom (which is not
the case with the velocity field u, for example, or the vorticity field in the case of
three dimensions). We can view the space of the scalar vorticities ! satisfying the
condition (46) as another incarnation of our reduced space, analogous to X above.
Strictly speaking the correspondence between ! and u works only if we assume
that

R
T2 u.x/ dx D 0, which is a condition preserved by the Euler equation written in

terms of u, and is also a condition required for the introduction of the stream function
 , but it is not automatically satisfied in general. The difficulty is caused by the
fields constant in x. It is not hard to extend the analysis so that this possibility could
be included. Here we will restrict ourself to the case

R
T2 u.x/ dx D 0. It captures the

most interesting features of the general case.
From the point of view of applying Statistical Mechanics considerations it

is important to analyze the conserved quantities. The Hamiltonian is of course
conserved, and in terms of ! and  we have

H D
Z

T2
�1
2
! dx : (57)

All the other known conserved quantities are Casimir functions whose conservation
is derived from the fact that the Euler evolution leaves invariant the sets

O!0 D f! D !0 ı � ; � 2 Gg : (58)

The invariance of O!0 is obvious, we can see it directly without the considerations
above. This also gives the conservation of the quantities

If .!/ D
Z

T2
f .!.x// dx ; (59)

where f is any continuous function. These are Casimir functions, generated from
the full phase space f�; P�g by the symmetries (56) by which we factored to get the
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reduced space. Therefore If do not generate non-trivial symmetries of the reduced
space (similarly to the function M not generating any non-trivial symmetries of X
in the simple Kepler-type example above). The orbits O!0 can also be thought of
(formally) as the symplectic leaves of the Poisson structure induced on the space of
the vorticities from the symplectic reduction. This should only be taken as a useful
heuristics. Finding a rigorous framework which would preserve the heuristics is
non-trivial. For some results in this direction see for example [2, 12, 26]. For the
expressions for the Poisson brackets see [45].

A natural space for the vorticities in which the equation is globally well-posed is
L1. A well-known result of Yudovich, see [56], says that the initial value problem
for (44) is uniquely solvable for all time (in a natural class of functions) when the
initial condition !0 is in L1. With non-smooth vorticities the corresponding flows
will not generate smooth diffeomorphism, but volume-preserving homeomorphism.
We will still denote the set of such mappings by G, slightly abusing the notation.

For any C � 0 the set of all vorticities ! satisfying (46) and jj!jjL1 � C
is compact in the weak� topology of L1 (induced by considering L1 as the dual
space of L1). In the rest of this section we will use the notation

XC D f! 2 L1.T2/ ; jj!jjL1 � C ;

Z

T2
!.x/ dx D 0g : (60)

The space .XC;w�/ can be considered as a compact metric space. The dynamics is
still well-behaved with respect to the weak� topology:

Lemma 3 The Euler equation (44) defined a dynamical system on .Xc;w�/. In
particular, the solution map

!0 ! !.t/ (61)

is continuous as a map from .XC;w�/ � R ! .XC;w�/.

The proof is not difficult, essentially one can just check that the arguments
usually used in the proof of the Yudovic theorem give after minor adjustments the
proof of the continuity. For a proof of the Yudovic theorem which works very well
in this respect see [40], for example.

The energy H given by (57) is easily seen to be a continuous function on
.XC;w�/. On the other hand, the functionals If given by (59) are not weakly�
continuous on XC, except for the trivial case when f is affine. However, when f
is convex, If is lower semi-continuous on .XC;w�/ by standard arguments.

We will denote by O!0 the closure of O!0 is .XC;w�/.

Lemma 4 For any !0 2 XC the set O!0 is convex.

Heuristically this is not difficult to understand, as we can use “micro-structures”
to approximate convex combinations, see for example [51], where the reader can
find a full proof.
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Example Assume that !0 D 1A � 1T2nA where A is a measurable set with jAj D
1
2
jT2j. Then

O!0 D f! 2 L1.T2/ jj!jjL1 � 1 ;

Z

T2
! dx D 0g : (62)

What is a good ergodic guess for the long-time behavior? This question goes back
to the classical paper by Onsager [46]. In that paper Onsager considered the system
of finitely many point vortices, i.e. the situation when !0 is a linear combination of
finitely many Dirac masses. This leads to a finite-dimensional system with Liouville
measure, but its phase-space does not approximate the phase-space .XC;w�/ very
well. Nevertheless, it already captures some key phenomena. Statistical mechanics
of point vortices has been further pursued for example in [19].

A classical approach, due to Kraichnan, see [34], is to take the Fourier truncation
of (44) together with two natural conserved quantities. The Fourier truncation
preserves the natural Lebesgue measure on the Fourier coefficients, the energy H
and also the enstrophy

I2.!/ D
Z

T2
!2 dx : (63)

Assume

I2.!0/ D c2 : (64)

Kraichnan’s original calculation is with the Gibbs measures, but one can also take
the following version:

Approximate ergodicity guess, 2d Euler (after Kraichnan)
After a long time the solution !.t/ looks like a “random
element” of the manifold given by H D E ; I2 D c2:

(65)

The exact meaning and the mathematical consequences of this hypothesis can be
worked our completely, see Example 1 after Theorem 1 in Sect. 3.6. Although it is
easy to come up with examples where the actual dynamics cannot follow this model
(e. g. by considering !0 for which the prediction ! based on (65) does not satisfy
jj!jjL1 � jj!0jjL1), the model already captures the famous downward cascade.

There is a corresponding variational principle, which follows from (65) (see the
above mentioned Example in Sect. 3.6), and which can also be conjectured directly
based on other heuristic considerations, such as the “spreading of enstrophy in
Fourier modes”, or more sophisticated arguments, see or example [41].

A guess which takes into account all known conserved quantities is the following.
We refer the reader to [5, 41, 43, 49, 53] for more discussion.
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Ergodicity guess, 2d Euler (after Miller and Robert-Sommeria)
After a long time the solution !.t/ looks like a “random
element” of the manifold given by fH D Eg \ O!0 :

(66)

It less obvious how to make this mathematically precise. One approach, essen-
tially taken in [43] is as follows. Divide T2 into N � N rectangles. On each
rectangle replace !0 by its average over the rectangle (corresponding to taking the
L2-projection to functions which are constant on the rectangles). Denote this new
function by !.N/0 . Act on the function !.N/0 by permuting the rectangles. The group
involved in this action is the symmetric group SN2 of all possible permutations of the
N2 rectangles. Let O.N/

!0 be the orbit of this group.4 It is not clear to what degree the
actual dynamics of Euler equation can achieve this type of mixing, especially when
N is very large (see for example the discussion in [53]), but the results one obtains
from this model are not unreasonable.

The natural measure to take on O.N/
!0 is the counting measure, which we will

denote by �N (instead of the more precise �!0;N). For any set A the measure �N.A/
is just the number of elements in O.N/

!0 \ A. If we decide to work with the canonical
ensemble, one should work with the measures

�E;!0IN D Z�1e�ˇH.!/�N ; Z D
Z

e�ˇH.!/d�N.!/ : (67)

where ˇ is chosen so that

Z
H.!/ d�E;!0IN.!/ D E : (68)

Another approach, relying on the micro-canonical ensemble, and perhaps reflect-
ing better the Euler dynamics (although ultimately both approaches may lead to
similar conclusions), is the following. Let O.N/

!0 and � be as above, take " > 0, and
consider the measure

�"E;!0;N D Z�11fE�"<H.!/<EC"g �N ; Z D
Z

1fE�"<H.!/<EC"g d�N.!/ : (69)

We are interested in the limits

lim
"!0

lim
N!1�E;!0;N (70)

or perhaps

lim
N!1�

"N
E;!0;N

; (71)

4We avoid the more logical but unwieldy notation O.N/

!
.N/
0

.
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where "N ! 0 as N ! 1 is a suitable chosen sequence. It is not clear to the author
if one can find in the literature a completely rigorous version of such calculations,
although one can find references (such as those above) where the calculations are
done, perhaps from a slightly different angle, with the physicist’s level of rigor, or
with the use of some heuristics.

Another approach (which does not quite address the problem of the exact
calculations above, but it is related to it) is to use some elementary combinatorics
and/or heuristics for deriving a notion of entropy adopted to a given orbit O!0 . Such
a function S D S!0 should have the following properties. We use the notation

L1
0 D L1.T2/ \ f! ;

Z

T2
! dx D 0 g : (72)

(i) SWL1
0 ! R [ �1 is concave and upper semi-continuous on .XC;w�/ for each

C > 0.
(ii) f! 2 L1

0 ; S.!/ > �1g is dense subset of O!0 .

For instance, in the example following Lemma 4 a natural entropy function
(which can be derived from a certain quite natural “state counting”, see for instance
[51]) is

S.!/ D
Z

T2

�
�1C !

2
log

1C !

2
� �1C !

2
log

�1C !

2

�
dx : (73)

This function comes up often in statistical mechanics, in connections fermions or
spin systems, see for example [17]. Each rectangle in our N � N mesh used above
can be occupied exactly once, either by 1 or �1. There is an extra constraint that
the total number of 1 is the same as the total number of �1. In some sense, the
incompressibility condition introduces a variant of the exclusion principle. This is
exactly the point which is not quite captured by simple point-vortex models.

The selection principle for the equilibria on which (variants of) our measures
should concentrate now is the maximization of the entropy subject to the constraint
of a given energy. This leads to equations of the type

� D f . / : (74)

These themes are discussed (in a somewhat different technical setup) for example
in [41, 43, 49, 51, 53].

In [50] Shnirelman introduced another interesting idea, which we explain here in
a slightly different language. Let us denote by O!0;E the set O!0 \ fH D Eg. One
can introduce a partial order on the set O!0;E be defining

!1 � !2 ” O!2;E � O!1;E : (75)
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Heuristically one can argue that !2 is “more mixed” than !1. In [50] one can find
very good explanations for this, from a slightly different angle. Shnirelman’s form of
the “ergodic guess” then is that over long time, a generic solution converges weakly�
towards a maximal element. (Maximal elements are easily seen to exists by standard
set-theoretical considerations and compactness.) One can show, see [50], that any
maximal element satisfies an equation of the form (74), although this time, unlike
in the previous case, the new form of the “ergodic guess” does not say much about
the function f beyond the fact that it is monotone. The advantage of this approach
is that in some sense it is not trying to “guess too much”. Instead, we just insist that
the solutions will “mix” as much as they can, without trying to specify the entropy
functions which quantifies the amount of mixing. As the exact form of this function
depends on the details of the model and sometimes may be in doubt (see [53], for
example) this approach seems to have its advantages.

3 Choosing Random Functions with Constraints

3.1 Measures ı. f.x/ � b/ dx

We first recall some standard notation. For more general definition involving
composition of distributions with smooth maps see for example [25].

Let n > m consider a sufficiently regular f W Rn ! Rm. Let ı D ıRm be the Dirac
mass in Rm and let ı."/ be its approximation by smooth functions, e. g.

ı."/ D 1

"m
�.

x

"
/ dx ; (76)

where � is a suitable mollifying function. Let b 2 Rm and let us consider the
measure

ı."/. f .x/ � b/ dx : (77)

This is clearly a well-defined measure in Rn. If assume that the limit

lim
"&0

Z

Rn
'.x/ı."/. f .x/ � b/ dx (78)

exists and is finite for each smooth, compactly supported continuous function ', we
can define the measure ı. f .x/� b/ dx as

Z
'.x/ı. f .x/� b/ dx D lim

"&0

Z

Rn
'.x/ı."/. f .x/� b/ dx : (79)
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Some assumptions on f are needed for this limit to exist. The nature of these
assumptions is probably best seen from the co-area formula, which we now recall.

Let us treat b as a variable. We note that, trivially,

Z

Rm
'.x/ı. f .x/� b/ db D '.x/: (80)

An additional integration over x gives

Z

Rn

Z

Rm
'.x/ ı. f .x/� b/ db dx D

Z

Rn
'.x/ dx (81)

Changing the order of integration in the double integral on the left, we obtain

Z

Rm

�Z

Rn
'.x/ı. f .x/ � b/ dx

�
db D

Z

Rn
'.x/ dx : (82)

Let us compare this formula with the classical co-area formula (see Federer [21],
Theorem 3.2.12, p. 249). Let Jf .x/ be defined as the square root of the sum of squares
of all m�m sub-determinants of rf .x/. In particular, if m D 1, then Jf .x/ D jrf .x/j.
The co-area formula says that for any Lipschitz f we have

Z

Rn
'.x/Jf .x/ dx D

Z

Rm

Z

f�1.b/
'.x/dHn�m.x/ db ; (83)

where Hk denotes the k-dimensional Hausdorff measure. Comparing (82) and (83),
we see that, at least formally,

ı. f .x/� b/ dx D 1

Jf .x/
Hn�mjf�1.b/ : (84)

In particular, for m D 1 we have

ı. f .x/� b/ D 1

jrf .x/j H
n�1jf f .x/Dbg : (85)

Although this formula is useful, it has the disadvantage of bringing into the
consideration structures which are not part of the original setup. Note that the
definition of ı. f .x/ � b/ involves only a set with a measure and a function on it,
whereas the expression on the right-had side of (85) involves also expressions which
need a metric.

We see that ı. f .x/ � b/ is definitely well-defined when f is a C1-function and
Jf .x/ does not vanish on f f .x/ D bg. In the case when Jf .x/ vanishes at some
points of the set f f .x/ D bg the question of existence of ı. f .x/ � b/ near those
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points has to be investigated in more detail.5 In general, questions concerning the
existence of ı. f .x/ � b/ in the presence of degenerate points (where Jf vanishes)
can be subtle, but the measure is well-defined in many cases when the degeneracies
of Jf .x/ are relatively mild. One can also consider definitions when the measures
ı."/. f .x/ � b/ are suitably normalized before taking the limit " & 0. However,
with such definitions the limit measure may concentrate at the set of the degenerate
points, if the degeneracies are significant. Moreover, the limit may not be unique.

In what follows we will sometimes use the notation ı. f .x/ � b/ dx even when
the existence of this object is not completely clarified. This will be done at an
intermediate stage, where we are not yet formulating the exact statements and our
discussion is at a heuristic level. Of course, in the formulation of our rigorous results
we should be more careful.

Recalling that

ıR2.x1; x2/ D ıR.x1/ıR.x2/ ; (86)

we see that for f D . f1; : : : ; fm/ and b D .b1; : : : ; bm/ we can write

ı. f .x/� b/ dx D ı. f1.x/ � b1/ı. f2.x/� b2/ : : : ı. fm.x/� bm/ dx : (87)

3.2 Elementary Example

Let us start with a simple example. On the unit circle S1 consider set of real-valued
functions in H1.S1/ with

Z

S1
u dx D 0; J.u/ D

Z

S1
u2x dx D E ; (88)

where E > 0 is given. How does a “random function” satisfying these conditions
look? Unless we specify some probability measure on our set, the question is of
course not well-defined. Let us set H1

0 D H1
0.S

1/ D fu 2 H1.S1/ ;
R
u dx D 0g. It

is natural to work with finite-dimensional subspaces V � H1
0 . On such subspaces

we have a natural measure LV invariant under translations (which is unique up to
a multiplicative constant). In many cases is coincides with the Liouville measure
of a truncation of Hamiltonian systems of interest. A natural probability measure
corresponding to our question (when u is in V) is the measure

Z�1ı.J � E/LV : (89)

5Consider for example n D 2;m D 1 and f .x/ D x1x2. The reader can check that the measure
ı. f .x// is well-defined in R2 n f0g, but not in R2 .
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where

Z D
Z

V
ı.J.u/� V/ dLV.u/ (90)

is a normalizing factor. We can now look at “typical properties” of functions with
probability distribution given by (89) in suitable limits V % H1

0 . For example, we
have

Proposition 1 For any s < 1

Z

V
jjujj2Hs Z�1ı.J.u/� E/ dLV.u/ ! 0 as dimV ! 1 : (91)

We see that the measures (89) will concentrate at 0 when in spaces Hs when s < 0.
In particular, when the dimension of V is sufficiently high, the “random function”
from V with J.u/ D E will be close to 0 in the sup-norm. On the compact metric
space .XE;w/ where XE D fu 2 H1

0 ; J.u/ � Eg and w is the weak topology of H1

the measures (90) will also concentrate at 0 as dimV % 1.

Proof of the proposition: We can choose coordinates u1; : : : ; un on V in which

J.u/ D u21 C � � � C u2n : (92)

and

Js.u/ D jjujj2PHs D a1u
2
1 C � � � C anu

2
n : (93)

Then
Z

V
u2k Z

�1ı.J.u/� E/ dLV.u/ D 1

n
; k D 1; 2; : : : ; n (94)

and hence
Z

V
Js.u/ Z

�1ı.J.u/� E/ dLV.u/ D 1

n
.a1 C � � � C an/ (95)

and the claim follows once we establish that the coefficients that for large n most of
the coefficients aj have to be small. For some specific choices of increasing family
of subspaces V , such as Fourier truncations, or some other common approximations
this is trivial. The general case is left to the reader as an exercise.

Remark The simple lemma above already can be used to explain some classical
variational principles from the point of view of Statistical Mechanics, without
invoking “friction” or other type of artificially introduced dissipation. Instead,
at the level of Statistical Mechanics, one can see from the above the effect of
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the “inviscid dissipation”, or “thermodynamical death” (discovered by physicist
studying foundations of thermodynamics in nineteenth century).

Let us consider for example the equation

utt � uxx D f .x/ ; (96)

on the unit circle S1, where u and f are real-valued, with

Z
f .x/ dx D 0 and

Z
u.x; t/ dx D 0 : (97)

Note that the general case when (97) is not satisfied can be reduced to the case
when (97) by subtracting solutions of utt D f for suitable u and f which are constant
in x. The Eq. (97) is Hamiltonian, with the Hamiltonian

H.ut; u/ D
Z

S1

�
1

2
u2t C 1

2
u2x � fu

�
dx : (98)

The solutions of this linear problem can of course be written quite explicitly, for
example in terms of the Fourier coefficients, and they are quasi-periodic. There is
no dissipation effect in that case. The standard argument in statistical mechanics
is the following. Even if we assume that our system is closed, the Hamiltonian is
in reality more complicated than (98). There will be a small extra term �H1 which
will change the long-time dynamics so that the long-time evolution will be towards
equi-distribution of energy on the surface fHC �H1 D Eg. In the limit of very small
(but non-zero) � the system will evolve with good approximation towards the equi-
distribution of energy on the surface fH D Eg. From the lemma above we see (after
a simple change of coordinates) that these assumptions imply that over sufficiently
long time, the solution should approach weakly in H1 the solution of the steady
state equation �uxx D f . All this is just another expression of the classical rule of
the statistical mechanics that the system is trying to distribute energy between the
degrees of freedom to the maximal degree allowed by conservation laws.

3.3 Heuristics from Probability for Two Quadratic Constraints

Let now modify the previous example and consider functions in H1.S1/ with

Z

S1
u dx D 0 ; H.u/ D

Z

S1
u2x dx D E ; I.u/ D

Z

S1
u2 dx D b: (99)

We again consider finite-dimensional subspaces

V � H1
0 D fu 2 H1.S1/ ;

Z

S1
u dx D 0g ; (100)
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and this time the measure we are interested in will be

�E;bIV D Z�1ı.H.u/� E/ı.I.u/� b/LV ; (101)

where the normalizing factor Z is given by

Z D
Z

V
ı.H.u/� E/ ı.I.u/� b/ dLV.u/ : (102)

To keep things as simple as possible, we will work out the case when the spaces
V are given by Fourier truncation. The space V corresponding to Fourier truncation
to frequencies � N can be identified with CN . We will use coordinates zk D kOu.k/,
so that the two functions H; I become

H.z/ D jz1j2 C jz2j2 C � � � C jzN j2 ; (103)

I.z/ D a1jz1j2 C a2jz2j2 C � � � C aNjzN j2 ; (104)

where aj D 1=j2. We will write �E;bIN for �E;bIV (defined by (101)) in this situation.
There are several heuristic arguments which can help us to see what we can

expect as N ! 1. Here we will present one using probability theory. We first
simplify the problem slightly and consider the coefficients a1; a2; : : : for which
ak D 0 when k > l, where l is a fixed (possibly large, but independent of N).
A classical result in probability is that as N ! 1, the (C-valued) functions
z1; z2; : : : ; zl considered on the sphere jz1j2 C � � � C jzN j2 D E with surface measure
normalized to one increasingly behave as independent normally distributed random
variables with mean zero and variance E=N, see for example [16]. In other words,
we can write, with increasingly good approximation as N ! 1

zk D
r

E

N
Zk ; k D 1; 2; : : : ; l ; (105)

where Zk are independent (complex-valued) variables with normal distribution. This
takes (approximately) into the account the constraint H D E. To take into account
the constraint I D b, we restrict out attention to “events”

a1Z
2
1 C a2Z

2
2 C � � � C alZ

2
l � b

N

E
: (106)

(Strictly speaking, we should take suitable limit measure on events when the last
sum belonging to .bN=E � "; bN=E C "/ as " & 0.). Assume a1 > a2 > : : : al > 0.
For large N the event (106) happens only with extremely low probability, and from
the properties of the normal distribution it is clear that the best chance for (106) to
happen is that

a1Z
2
1 � b

N

E
: (107)
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All the other possibilities are exponentially less likely. We see from this argument
that we can expect that as N ! 1, the behavior of the measures �E;bIN will be
such that their push-forward on any finite number of coordinates z1; : : : ; zn will
concentrate in the first one, where it will approach the circle jz1j2 D bN

a1E
.

In other words, if we denote by .XE;w/ the space fu 2 H1
0.S

1/ ; H.u/ � Eg with
the weak topology of H1, the measures �E;bIN (assuming they are well-defined) will
concentrate in this space on the first Fourier mode, i.e. the set of minimizers of H
under the constraint I D b.

This phenomenon is at heart of all the conjectures about the long-time behavior
discussed in these notes. It is very closely related to Bose-Einstein condensation
(we will comment more on this later), and to the phenomenon of “thermodynamical
death” as discovered in the nineteenth century (as we mentioned earlier).

The behavior of the measures �E;bIN should be contrasted with the behavior of
the Gibbs measures

Z�1e�ˇH.u/ dLV.u/ ; Z D
Z

V
e�ˇH.u/ dLV .u/ (108)

for a fixed ˇ > 0, which corresponds to fixed positive temperature. In the limit of
V % H1

0 these measures will approach (in a suitable sense) the Wiener measure,

which “lives” on functions with regularity below H
1
2 . This corresponds to the

situation when, on average, all modes will be excited with a non-zero amount of
energy. In particular, the total energy will be infinite. Such measures are relevant
for the study of low-regularity (infinite-energy) solutions of non-linear Schrödinger
equation and other Hamiltonian equations, as pioneered in [7, 37].

The situation with finite energy can be also related to Gibbs measures with ˇ
changing as ˇ � ˇ0 dimV as the dimension of V increases.

Studying low probability events such as (106) in our situation above is the topic
of the Large Deviations Theory, see for example [15]. The techniques developed in
that area are applicable to problems we study, see for example [9, 18, 54]. The
most natural setup for that theory is in terms of Gibbs measures corresponding
to temperatures 1=.ˇ0dimV/. Some work is still needed to handle the constraints,
though.

3.4 Laplace Principle

Consider a compact metric space X with a probability measure �. Let wWX ! R be
a non-negative continuous function which is not identically zero on the support of
�. Consider the probability measures �n given by

Z
'.x/d �n.x/ D

R
X '.x/w

n.x/ d�.x/R
X w

n.x/ d�.x/
; (109)

for each continuous function '.
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Lemma 1 As n ! 1 the measures �n concentrate in the set
K D K�;w D fx 2 supp� ; w.x/ D maxsupp� wg.
Proof Assume ' is supported away from K and that j'j � C. Let M D maxsupp� w
and M1 D maxsupp ' wg. Let U D fx ;w.x/ > M2 D .M C M1/=2:g and A D �.U/.
Then the expression (109) is clearly estimated by

CMn
1

AMn
2

(110)

which approaches zero as n ! 1.

More precise forms of the Laplace principle can be considered. For example one
can study the asymptotics of the integrals

Z 1

0

'.x/xme�f .x/ dx (111)

as � ! 1.
In the context of large deviations methods, there is a generalization of the Laplace

principle which is called Varadhan’s lemma, see [15], which is exactly what is
needed if we wish to approach the problems studied here using those methods.

3.5 Perturbations Depending on Finitely Many Variables

There is a very simple heuristics (coming from statistical mechanics) behind all the
results discussed which relies only on the Laplace principle, without any references
to probability techniques. It is best illustrated in the following example. We will
change our notation slightly. We will work with RN , where we think of N as
large (and taking the limit N ! 1. The coordinates in RN will be denoted by
X1;X2; : : :XN . (We emphasize that these are not random variables, but classical
plain coordinates.) Assume that we have functions H; f1; f2; : : : ; fr of the variables
X, where we think of H as a Hamiltonian and f1; : : : ; fr as conserved quantities. We
will be interested in the measures

�N D Z�1ı.H � E/ı. f1 � c1/ı. f2 � c2/ : : : ı. fr � cr/LN ; (112)

where, as usual,

Z D
Z

RN
ı.H.X/�E/ı. f1.X/�c1/ı. f2.X/�c2/ : : : ı. fr.X/�cr/ dLN.X/ ; (113)
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is a normalizing factor. We assume that all these objects are well defined in the sense
of Sect. 3.1. In particular, we assume of course that the conditions H D E; f1 D
c1; : : : ; fr D cr are compatible and can be satisfied for some non-trivial set of states.
We will write f D . f1; : : : ; fr/; c D .c1; : : : ; cr/ and use the shorter notation

ıRr. f � c/ D ı. f1.X/� c1/ı. f2.X/� c2/ : : : ı. fr.X/� cr/ : (114)

Finally, we will assume that the measure ıRr. f .x/ � c/ dx is well-defined and its
support coincides with the set f f .x/ D cg. This will always be the case when c is a
regular value of f (in terms of the Morse-Sard Theorem), and, in fact, under quite
weaker assumptions once m is large.

Let us write the Hamiltonian in the form

H.X/ D 1

2
.X21 C X22 C � � � C X2N/C f0.X/ : (115)

Our main assumption in this section will be:

There exists m 2 N independent of N such that f0; f1; : : : ; fr
depend only on X1; : : : ;Xm:

(116)

Assuming that m;N are even and that the symplectic form relevant for the
dynamics has constant coefficients, (116) implies for the dynamics that there is
no interaction between the variables X1; : : : ;Xm and XmC1; : : : ;XN . In terms of
Statistical Mechanics the system XmC1; : : : ;XN represents “ideal gas”, with very
simple dynamics. The assumption that the measures (112) give the correct long-time
behavior of the actual dynamics is of course an idealization of what (conjecturally)
happens if small terms which can be neglected in this calculation (but still make
ergodicity plausible) are present. The usual heuristics is that the system X1; : : : ;Xm

is in contact with the ideal gas represented by XmC1; : : : ;XN

The whole situation can be embedded into the Hilbert space l2.N/ in the obvious
way:

.X1;X2; : : : ;XN/ ! .X1;X2; : : : ;XN ; 0; 0; : : : / : (117)

In what follows we will assume that f0 is bounded from below. Let .XE;w/ be the
compact metric space given by the subset fH � Eg of l2.N/ taken with the weak
topology of l2.N/.

Proposition 2 In the situation above, as N ! 1, the measures �N considered in
.XE;w/ will concentrate on the set of minimizers of H under the constraint f D c.

Proof Let ' be a continuous function depending on finitely many variables
X1; : : : ;Xl. We can assume without loss of generality that l � m C 1. We will write

.X1; : : : ;XN/ D .x1; : : : ; xl; y1; : : : ; yn/ ; l C n D N : (118)
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Then by our assumptions

H.X/ D H1.x/C 1

2
jyj2 ; f .X/ D f .x/ : (119)

Writing the integral
R
dX as

R R
dx dy and using the easy formula

Z

Rn
ı.
1

2
jyj2 � QE/ dy D �n QE n

2�1 (120)

(for QE � 0), we obtain

Z

RN
'.X/d�N.X/ D

R
Rl '.x/.E � H1.x//

n
2�1ıRr. f .x/� c/ dx

R
Rl.E � H1.x//

n
2�1ıRr. f .x/ � c/ dx

; (121)

and the result follows from Lemma 1.

Remark One can interpret the calculation in the following way. The for the fixed
number of variables x1; : : : ; xl should be at equilibrium with the much larger system
described by the variables y1; : : : ; yn. However, the total energy of the combined
system is limited to E, and when this is uniformly distributed over all system, there is
not much left for the subsystem x1; : : : ; xl. The system y1; : : : ; yn acts effectively as
a “refrigerator”, removing as much energy out of the system x1; : : : ; xl as is allowed
by the requirement that f be conserved.

Proposition 2 is “almost” applicable to the non-linear Schrödinger equation
(Sect. 2.2) and the gKdV equation (Sect. 2.3), in the sense that although the
Hamiltonian and conserved quantities there do not quite satisfy the assumptions
of the proposition, they satisfy them after a small perturbation of the functionals.
However, bridging the gap between Proposition 2 and the real situation would
still require some effort if we wish to work with the exact constraints. It is an
interesting problem which may not have been worked out completely in the existing
mathematical literature. Things become easier if we are willing to relax the exact
constraints somewhat, see below.

Let us now consider a similar approximation for the nonlinear wave equation
from Sect. 2.1. We will consider a Fourier truncation to N modes. We will consider
the Fourier coefficients as real, having in mean the real form of the Fourier series.
We fix a large natural number l. Our notation will be as follows.

V0;V1; : : : ;VN coefficients of the velocity field v

X1;X2; : : : ;XN coefficients of the derivative ux
X0 the “constant part” of u

x D .x0; : : : ; xl/ the first l C 1 components of X, including X0
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We will now assume that the Hamiltonian is of the form

H D 1

2
V20 C 1

2
V21 C � � � C 1

2
V2N C 1

2
X21 C � � � C 1

2
X2N C f .x/ ; (122)

where f is a truncation of
R

S1
~
4
u4 to l modes. This is the simplification we make

in this model—we truncate the “interaction term” to l modes, rather than N. As
X1; : : : ;XN are Fourier modes of the derivative ux and the interaction terms depends
only on u, the error caused by this approximation can be assumed to be small, in a
suitable sense.

The momentum function is of the form

P D X1V1 C X2V2 C � � � C XNVN : (123)

To diagonalize P, we will work with the variables

Ak D Vk C Xkp
2

; Bk D Vk � Xkp
2

: (124)

and write

A D .a; �/ D .a0; a1; : : : ; al; �1; : : : ; �n/ ;
B D .b; q/ D .b0; b1; : : : ; bl; q1; : : : ; qn/ ;
g D 1

2
V20 C f .x/ D g.a; b/ :

(125)

We also let

QE D E � �
1
2
a21 C � � � C 1

2
a2l C 1

2
b21 C � � � C 1

2
b2l C g.a; b/

�
;

Qp D p � �
1
2
a21 C � � � C 1

2
a2l � 1

2
b21 � � � � � 1

2
b2l
�
:

(126)

for the first lC1 components of A and B respectively. Both QE and Qp can be considered
as functions of a; b. We wish to evaluate, for a smooth test function ' of A;B which
depends only on a; b, the integrals

Z

RNC1
�RNC1

'.A;B/d�N.A;B/ D
R

RNC1
�RNC1 '.a; b/ı.H � E/ı.P � p/ dA dBR

RNC1
�RNC1 ı.H � E/ı.P � p/ dA dB

;

(127)

assuming of course that E and p are such that the integral in the denominator
does not vanish. Writing

R
dA dB as

R
da db

R
d�dq, the key point is again that the

integral
R
d� dq can be evaluated explicitly.

Z

Rn�Rn
ı. QE� 1

2
j� j2� 1

2
jqj2/ı.Qp� 1

2
j� j2C 1

2
jqj2/ d� dq D �n. QE� Qp/ n2�1

C . QEC Qp/ n2�1
C ;

(128)
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where �n is an immaterial constant which has no effect on the value of (127) and
. � /C denotes the positive part.

We see that when evaluating (127) for large N, we can again apply Lemma (1),
and we only need to find the set where the expression

w D . QE � Qp/C. QE C Qp/C (129)

attaints it maximum, when considered as a function of a; b. Letting

˛ D 1

2
a21 C � � � C 1

2
a2l ; ˇ D 1

2
b21 C � � � C 1

2
b2l ; � D g.a; b/ (130)

We can take l as large as we wish, as long as we keep it fixed when N ! 1. It
is easy to see that once l is sufficiently large, than the parameters ˛; ˇ; � can be
chosen independently of each other, as long as they are all positive. Hence we can
consider w in (129) as a function of ˛; ˇ; � (and the expression is quite simple), and
maximize it over the set f˛ � 0; ˇ � 0; � � 0g. An routine calculation shows that
the maximum is attained at ˛ D 0; ˇ D 0; � D 0. We have shown

Proposition 3 In the situation above, the measures �N concentrate in the space
.XE;w/ defined by (14) at the point .0; 0/ as N ! 1.

Proof See the calculation above.

We see that if the guess (10) is correct, then the generic solutions will indeed be
escaping to higher and higher Fourier modes, leaving essentially nothing behind in
the low modes. This would mean that for example the periodic solutions U.t/ which
are constant in x and which can have large amplitude would eventually completely
“disintegrate”. The times scales necessary for this effect (if it is real) might be
enormous.

3.6 Diagonal Quadratic Forms in CN

Let us consider the situation when the phase space is CN and all the functionals
involved are of the form

f .z1; : : : ; zN/ D g.jz1j2; jz2j2; : : : ; jzN j2/ ; (131)

where g is a function on RN (satisfying some mild technical assumptions which will
be clear from the context). When g is smooth and compactly supported, it is easy to
see that

Z

CN
g.jz1j2; : : : ; jzN j2/ dL2N.z/ D �N

Z

RN
C

g.x1; : : : ; xN/ dx ; (132)
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where L2N is the standard Lebesgue measure ion CN and RNC are vectors in RN with
non-negative coordinates. (This change of variables has been used in [8].) If all the
functionals involved in the definition of our measures are of the form (131), one
can use the last formula to simplify the calculations in some cases. For example, in
Sect. 3.3 the functionals H; I on CN can be replaced by the functionals

H.x/ D x1 C x2 C � � � C xN ; (133)

I.x/ D a1x1 C a2x2 C � � � C aNxN : (134)

The measure

�E;b;N D Z�1ı.H � E/ ı.I � b/LN ; (135)

with

Z D
Z

RN
C

ı.H � E/ ı.I � b/dLN.x/ (136)

is then a multiple of the .N � 2/-dimensional Hausdorff measure on the convex set
given by the linear equations H D E; I D b in RNC. As usual, we only consider the
parameters for which Z > 0.

One advantage to working with linear constraints is that we do not have to worry
about degenerate points of f 0 when defining the measures ı. f .x/ � b/. When f is
linear, f 0 is constant and there are no problems in this direction.

Connection to Free Bose Gas Let us assume a1 � a2 � � � � > 0 ; ak ! 0 and set

yk D akxk ; Ek D 1

ak
; k D 1; 2; : : : ;N : (137)

Then

H D E1y1 C E2y2 C � � � C ENbN ; (138)

I D y1 C y2 C � � � C yN : (139)

We can think of a quantum system with N energy states with levels E1 � E2 �
� � � � EN , respectively, with EN % 1 for N ! 1, and interpret yk as the number
of particles in the state jki. Then I is the total number of particles and H is the
energy. One can consider the system under the constraints H � E and I D b. (Note
that the “hard constraint” H D E is not useful here, as the achievable energy levels
are discrete.) By H � E we can mean for example that we only count states with
energy in some well-chosen interval around E. This corresponds to “microcanonical
ensemble”. In physics one studies the question of what the “most likely states”
are, although instead of the constraint H � E one usually takes the “canonical



226 V. Šverák

ensemble” (with respect to H) based on the Gibbs measure given by weighing
a natural background measure by Z�1e�ˇH . (In the case at hand the background
measure would be the counting measure.) A famous result by Bose and Einstein
is that at very low temperature a non-negligible fraction of particles will be in the
lowest-energy state. This is the Bose-Einstein condensation. See for example [10]
for a mathematical treatment and a number of references. The concentration effects
we consider here are in some sense a variant of this phenomenon when the variables
are continuous and the temperature approaches zero.

We will study a slight generalization of the measures (135), when we can have
several constraints of the type I. The results will be applicable to measures (101)
and, more generally, to various other problems with diagonal quadratic constraints,
which include the “ideal Schrödinger gas” discussed below (represented by the
linear Schödinger equation) or the micro-canonical version of Kraichnan’s well-
known results about downward cascades in 2d flows.

On the space RNC we consider the function

H.x/ D H.N/.x/ D x1 C � � � C xN ; (140)

and a set of r linear constraints given by a linear map A D A.N/W RN ! Rr, which
will be identified with its matrix

0
BB@

a11 a12 : : : a1N
a21 a22 : : : a2N
: : : : : : : : : : : :

ar1 ar2 : : : arN :

1
CCA (141)

For any fixed indices k; l with 1 � k � r and l � 1 the coefficient ak l is independent
of N. In other words, we can think of A as a matrix with r infinite rows, and of A.N/

as its truncation to N columns. We will often write A instead of A.N/ when the value
of N is clear from the context. We assume that

akl ! 0 as l ! 1 ; k D 1; 2; : : : ; r : (142)

and that the rank of A.N/ is r once N is sufficiently large. We will be interested in the
measures

�E;bIN D Z�1ı.H.N/.x/ � E/ ıRr.A.N/x � b/LN ; (143)

where

Z D
Z

RN
ı.H.N/.x/ � E/ ıRr.A.N/x � b/ dLN.x/ ; (144)

and we assume that E > 0 and b 2 Rr are such that Z > 0.
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Another way to think about these measures is as follows. Assuming Z > 0, the
set

fx 2 RN I xi � 0; i D 1; 2; : : : ;N ; H.x/ D E ; Ax D bg � .RC/N : (145)

is a compact convex set of dimension N � r � 1 (we assume N is large), and the
measures (143) are just suitable multiples of the .N � r� 1/-dimensional Hausdorff
measure on the set, normalized to total mass 1.

Strictly speaking, potentially there could be some degenerate cases when our
definition in Sect. 3.1 would not be equivalent to this. To avoid this marginal
issue, we will only consider the “non-degenerate case”. The precise definition is
as follows.

Definition 1 We say that the measures �E;bIN are non-degenerate if the set
fH.N/.x/ D E ; A.N/x D bg has a non-empty intersection of dimension N � r � 1

with the interior of the cone RNC.

Note that by our assumptions the set fH.N/.x/ D E ; A.N/x D bg has dimension
N � r � 1 once N is sufficiently large.

The whole situation can be imbedded in the space l1.N/ of absolutely summable
sequences. Let

XE D fx 2 l1.N/ ; xk � 0 for each k and x1 C x2 C � � � � Eg : (146)

It is natural to consider XE with the weak� topology (when the space l1 is considered
as the dual space of the space c0 of infinite sequences converging to 0. We will
denote this topology by w�. It is well-known that .XE;w�/ is a compact metric
space. The convergence in .XE;w�/ is the same as component-wise convergence.
(Note that by its definition, the set XE is obviously bounded in norm in the space l1.)

Our goal in this section is to prove the following result, which—as already
indicated above—can be considered in some sense as a version of the Bose-Einstein
condensation in the limit when particle numbers can be continuous and the total
amount of energy is bounded. In contrast with the quantum case, in such situation
the condensation cannot occur at any positive temperature as long as the total
amount of energy of the system is bounded. In the quantum case the variables xj
are natural numbers, and that restriction allows the condensation happen (at least
partially) even at (small) positive temperature. See [10] for a precise mathematical
treatment.

Theorem 1 Assume the parameters E; b are such that the measures �E;bIN given
by (143) are well defined for sufficiently large N. Then, as N ! 1, the measures
concentrate in the space .XE;w�/ on the set of minimizers of H on the subset of XE

given by the constraint Ax D b.

Proof The proof is quite similar to the proof of Proposition of 2, although this
time we will not be able to integrate over the “non-interactive” degrees of freedom
explicitly, as the interaction does not have to have a definite cut-off. However, the
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bulk of the interaction still comes from only finitely many degrees of freedom, and
this will be sufficient in this the case considered in the theorem, as we can quite
easily handle the perturbations caused by truncations to finitely many modes.

Step 1. (Understanding the minimizers)

Let ej be the jth vector of the canonical basis of RN and set

aj D A.Eej/ 2 Rr : (147)

This is the jth column of he matrix EA. The compatibility of the constraints H D E
and Ax D b on RNC is easily seen to be equivalent to the condition that b is in the
convex hull of the vectors a1; a2; : : : ; aN . The condition that �E;bIN be well-defined
in the sense of Definition 1 means that b is in fact the interior of the convex hull
of a1; : : : ; aN for large N. Let CN be the convex hull of the set fa1; : : : ; aN ; 0g and
define

Nt D fmax t I tb 2 CNg : (148)

The point Ntb lies on the boundary of CN and since aj ! 0 for j ! 1, Ntb is easily
seen to be independent of N once N is large enough. We can write

Ntb D Ny1a1 C Ny2a2 C � � � C NyNaN ; (149)

where Nyj are positive and sum up to 1. In the “generic case” the point Ntb will lie
on a face of the boundary which is an .r � 1/-simplex and the coefficients Nyj will
be unique, independent of N when N is large, with exactly r of them being strictly
positive. In that case the point

Nx D Ny
Nt (150)

is the unique point where H attains its minimum (which has value E=Nt) on the set of
constraints. The point Nx will be independent of N for N large enough and exactly r
of its coordinates will not vanish.

In the non-generic case the coefficients Ny may not be unique, but it is still clear
that there exists some index k0 such that Nyk D for k � k0 once N is large enough.
The set of the point of the form (150) will then be a compact convex polyhedron in
the intersection of some affine subspace of RN and RNC.

An important point is that Nt and the point Nb are continuous with respect to small
perturbations of A and b. In other words, the map .A; b/ ! Nt D Nt.A; b/ will be
continuous with respect to .A; b/ as long as the point b belongs to the interior of the
convex hull of a1; : : : ; aN for sufficiently large N. Note also that in the generic case
the point Nx will also depend continuously on .A; b/ in some small neighborhood of
the pair we started with.

Using these observations, it is not hard to prove the following statement.
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Lemma 2 Assume that m is sufficiently large. Then for each � > 0 and each A0; b0
sufficiently close to .A; b/ (in the sense that A.m/ is close A0.m/ and b0 is close to b)
we have

R
Rm

C

ı.A0x � b0/1fH.x/< E
Nt.A;b/C�g dxR

Rm
C

ı.A0x � b0/ 1fH.x/<Eg dx
� " D ".�;m;A; b/ > 0 : (151)

Step 2. Postponing the proof of the lemma for the moment, let us complete the
proof of the theorem. Let us write the points of X D .X1; : : : ;XN/ of RNC as

X D .x; y/ ; x D .x1; : : : ; xm/ 2 RmC ; y D .y1; : : : ; yn/ 2 RnC ; mCn D N :
(152)

Let us further write

y D .E � t/� � 2 RnC ; �1 C �2 C � � � C �n D 1 ; t 2 Œ0;E� : (153)

We will use the notation

�n�1 D f� 2 RnC ; �1 C �2 C � � � C �n D 1g (154)

Letting H.x/ D H.m/.x/ D x1 C x2 C � � � C xm, it is easy to see that we ca write
our integrals as

Z

RN
C

f .X/ı.H � E/dX D (155)

cm;n

Z

�n�1

Z

Rm
C

f .x; .E � H.x//�/.E � H.x//n�1 dx dHn�1.�/;

where cm;n as positive constant the exact value of which is immaterial for our
calculations. (Evaluating cm;n explicitly is an interesting exercise.)

We need to evaluate the limit as n ! 1 of integrals of the form

IN D
R

RN
C

'.X/ ı.H.X/� E/ ıRr.AX � b/ dX
R

RN
C

ı.H.X/� E/ıRr.AX � b/ dX
; (156)

where we can assume without loss of generality that the function ' depends only on
the first m variables x D .x1; : : : ; xm/. Using the change of variables (156), we can
write

IN D
R
�n�1 d�

R
Rm

C

dx '.x/ıRr.Ax C .E � H.x//A�� b/.E � H.x//n�1C
R
�n�1 d�

R
Rm

C

dx ıRr.Ax C .E � H.x//A�� b/.E � H.x//n�1C
; (157)
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where . � /C denotes the positive part. In related integrals in the proof of Propo-
sition 2 we could integrate over � explicitly, but here such an evaluation might be
harder (although perhaps still not impossible). Therefore it seems to be easier to first
integrate of x. We note that once m is large the term .E � H.x//A� will be small,
due to assumption (142). The dominant term in (157) will again be .E � H.x//n�1.
Let us assume that ' is supported away from the set where .E � H.x// attains its
maximum. We need to show that under this assumption IN ! 0 as N ! 1. Using
Lemma 2, this can be done by essentially adjusting the proof of Lemma 1 to the
case when there is an additional averaging involved, and instead of (109) we have

R
†n

d�
R
X '.x/w

n.x/ d�.x; �/
R
†n

d�
R
X w

n.x/ d�.x; �/
; (158)

where d� denotes some probability measure on the set †n. (Note that the expres-
sion (158) is invariant under replacing d� by c d�; c > 0.) The potential difficulty
is that we do not have control which is sufficiently uniform in �. Lemma 2 and the
upper semi-continuity of the set-valued map A0; b0 ! Y.A0; b0; ENt0 mentioned in its
proof address this issue. Using the notation from the proof of Lemma 1, the upper
semi-continuity of our set-valued map implies that there exists QM > M1 such that

max
supp�. � ;�/w � QM ; for each � 2 †n ; (159)

and Lemma 2 then shows that the expression (158) will still be bounded by

CMn
1

� QMn
2

(160)

for some QM2 > M1. The statement of the theorem then follows easily.

Proof of Lemma 2: During the proof we consider m as fixed (and sufficiently large),
and therefore we can write A and H instead of A.m/ and H.m/, respectively, and,
in general, we do not have to indicate the dependence of m. We use the notation
introduced in the proof of the theorem before Lemma 2. Let

Y.A; b;E/ D fx 2 RmC ; Ax D b;H.x/ D Eg: (161)

In the non-degenerate case it is easily seen that

Hm�r�1.Y.A0; b0;E/ � � > 0 (162)

for A0; b0; in a neighborhood of A; b for some constant � which depends on A; b;E;m
and the size of the neighborhood. The set Y.A0; b0; ENt0 / consists of a single point Nx0
in the generic case, when A0; b0 is close to A; b. In the non-generic case the set
Y.A0; b0; ENt0 / may be larger, and we just choose any Nx0 in it. The dependence of Nx0 on
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the parameters may not be continuous in that case, but the important point is that Nt0
is continuous.

Also, the set-valued map A0; b0 ! Y.A0; b0; ENt0 / is easily seen to be upper-
semicontinuous, in the sense that for each open set O containing Y.A; b; ENt / there
is a neighborhood of A; b such that Y.A0; b0; ENt0 / � O for A0; b0 in that neighborhood.

Because H is linear, we have

H..1� s/Nx0 C .s/Y.A0; b0;E// D .1 � s/
E
Nt0 C sE : (163)

Define s0 by

.1 � s0/
E
Nt C s0E D E

Nt C �

2
; : (164)

Note that the point Nx0 is at distance at least

d0 D 1p
m
.E � E

Nt0 / (165)

from the plane H D E in which Y.A0; b0;E/ is contained. Together with (162) this
means the Hr measure of the set

f.1� s/Nx0 C sy ; s 2 .0; s0/ ; y 2 Y.A0; b0;E/g (166)

is bounded below by 1
r �s

r�1
0 d0. Recalling that Nt0 is continuous in A0; b0 the claim

follows easily.

Let us now present two examples where Theorem 1 can be applied (in addition
to the model problem with measures (101)).

Example 1 (Kraichnan’s Energy-Enstrophy Model for 2d Euler) We consider the
2s Euler equation, see Sect. 2.5. We assume the conservation of the energy

H.!/ D 1

2

Z

T2
�! dx D 1

2

Z

T2
juj2 dx (167)

and enstrophy

I.!/ D
Z

T2
!2 dx : (168)

As we have seen, there are many other conserved quantities, but it turns out that the
prediction based on H and I alone already captures the most important phenomenon,
which is Kraichnan’s downward cascade. Also, for direct Fourier truncation of Euler
the quantities E and I may could be the only conservation laws. (There are more
sophisticated truncations, see for example [1, 58], but the direct Fourier truncation



232 V. Šverák

probably remains the one which is used the most.) In the Fourier representation
the Functionals H and I are quadratic and diagonal, and hence after the change
of variables j O!kj2 D xk and using formula (132) Theorem 1 immediately applies.
We obtain Kraichnan’s conclusion that in the Fourier space the energy should
concentrate in the lowest (non-zero) modes.

Example 2 (Ideal “Schrödinger gas” in d Dimensions) In the d-dimensional torus
consider the classical Schrödinger equation

iut D ��u C �u : (169)

The Noether-type conserved quantities (which survive a generic non-linear per-
turbation, assuming of course we adjust the Hamiltonian accordingly) are the
Hamiltonian H � R

Td rur Nu C �uNu, the momentum P � � i
2

R
Td .Nuru � ur Nu/

and the mass I D R
Td uNu. The value of � can be adjusted by the change of

variables u.x; t/ ! u.x; t/e�iE0t. The linear equation of course does not have any
interaction between the Fourier modes, but we can again think of a very small non-
linear perturbation which will ensure ergodicity by will not significantly affect the
Statistical Mechanics considerations, similarly to the considerations for the classical
“ideal gas”, where inter-molecular interaction energy is not considered although the
system is assumed to be ergodic (for the purposes of Statistical Mechanics). All
the quantities are quadratic diagonal in the Fourier variables, and hence Theorem 1
applies immediately after the change of variables jOukj2 D xk, at least when � > 0.
The general case follows easily either by directly checking the proof of the Theorem
in the slightly more general situation arising due to the presence of modes with zero
or negative energy, or by the change of variable indicated above. In any case the
conclusion is that the measures representing the statistical equilibria will concentrate
(in the weak topology of H1) on the set of minimizers of the Hamiltonian subject
to the constraints P D p and I D m. The proof of Theorem 1 then shows how to
find these minimizers. For example, when � D 0 and E; p;m are given, we can mix
a particle of momentum p by suitably using some of the closest “pure momentum
states” in a way which minimizes the energy, and then put all the remaining mass
into the zero mode. In particular, if p D 0, all the mass will be in the zero mode. The
long time behavior of the (slightly non-linearly perturbed) equation should then be
given by weak convergence of the solution to the set of these minimizers, with the
excess energy going to high frequencies.

3.7 More General Functionals

The method used in the proof of Theorem 1 can be used in more general situations,
although one may have to modify the statements somewhat to avoid some natural
complications. We will illustrate this on the simple example which can be thought
of as a non-linear version of Proposition 1 considered in Sect. 3.2. Let us consider
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RN with coordinates X D .X1; : : : ;XN/. We will consider a situation with just one
functional H.X/ D H.N/.X/. One can think of

H.u/ D
Z

S1

�
1

2
u2x C F.u/

�
dx ; (170)

with a smooth F restricted to Fourier truncations, for example. Additional assump-
tions on F will become clear as we proceed. One of them will be

F.u/ ! 1 when juj ! 1 ; (171)

which in dimension d D 1 is sufficient to guarantee the existence of minimizers.
For the finite-dimensional truncation we will again use the notation

X D .x; y/ ; x D .x1; : : : ; xm/ ; y D .y1; : : : ; yn/ ; m C n D N ; (172)

where the meaning of x is of course different than in (170). There will be no danger
of misunderstanding from this slight abuse of notation. We will write

H.x; y/ D Hm.x/C hm.x; y/C 1

2
jyj2 ; (173)

i.e. we think of the yj as Fourier coefficients of the derivative ux (possibly after
some fixed finite shift in the indices). In terms of the original variable u this may for
example correspond to letting uN D um C vm, where uN is the Fourier truncation to
N modes and um is the Fourier truncation to m modes, with vm representing the error
between the two truncations (whose dependence on N is not indicated), and setting

Hm.uN/ D H.um/ jyj2 D
Z

S1
.vm/

2
x dx ; (174)

so that

hm D
Z

S1
.F.um C vm/ � F.um// dx : (175)

Then

hm D
Z 1

0

ds
Z

S1
F0.um C svm/vm dx : (176)

The last expression is small in comparison to the H1-norm of vm when F is smooth,
uN is controlled in H1, and vm is only supported in high Fourier modes.
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Similarly to our previous calculations, we define

Z

RN
'.X/ d�E;N.X/ D

R
RN '.x/ı.H.x; y/� E/ dx dyR

RN ı.H.x; y/� E/ dx dy ;
: (177)

and wish to show that the measures �E;N (assuming they are well-defined) concen-
trate (under suitable assumptions, and in the sense of the weak topology of H1) on
the set of minimizers ofH. Let us first proceed with the calculation formally, without
worrying about various issues which eventually will need to be addressed by a more
careful analysis of our assumptions, or by slightly adjusting the statement.

We will change variables in the integrals as follows. We set

y D r� ; � 2 Sn�1 ; r D jyj ; (178)

where Sn�1 is the unit sphere in Rn. Then

Z

RN
g.X/ dX D

Z

Sn�1

d�
Z

Rm
dx
Z 1

0

dr g.x; r�/ ; (179)

for any g (under appropriate assumptions), and hence we can write

Z

RN
'.X/ d�E;N.X/ D (180)

R
Sn�1 d�

R
Rm '.x/dx

R1
0

rn�1dr ı.Hm.x/C hm.x; r�/C 1
2
r2 � E /

R
Sn�1 d�

R
Rm dx

R1
0

rn�1dr ı.Hm.x/C hm.x; r�/C 1
2
r2 � E / :

To evaluate the integral over r in the last expression, let us consider the equation for
r given by

Hm.x/C hm.x; r�/C 1

2
r2 D E ; (181)

in which we consider x and � as parameters. Some of the issues we have to deal with
surface already in this equation. We would like to consider (181) as a perturbation
of the case hm D 0, which can be solved explicitly. When E � Hm.x/ is not very
small, we have no problem as long as the derivative

@

@r
hm.x; r�/ D �ryhm.x; r�/ : (182)

is sufficiently small, and standard implicit function theorem considerations give us
unique solvability. We will denote the solution R D R.x; �;E/. However, when
Hm.x/ � E is very small, the situation may be more complicated. Disregarding
this difficulty for a moment, let us assume that (181) either has a unique solution
R.x; �;E/ it has no solution, in which case we define R.x; �;E/ D 0. Let 
 W R ! R



Aspects of PDEs Related to Fluid Flows 235

be the usual Heaviside function, equal to one for non-negative numbers and to zero
otherwise. Then

Z 1

0


.E � Hm.x/� hm.x; r�/ � 1

2
r2/rn�1 dr D 1

n
Rn.x; �;E/ ; (183)

Taking @
@E of the last equation, we obtain

Z 1

0

ı.E�Hm.x/� hm.x; r�/� 1

2
r2/rn�1 dr D Rn�1.x; �;E/

@R.x; �;E/

@E
: (184)

The derivative @R
@E can be evaluated by taking the @

@E derivative of (181).

.R C �ryhm.x;R�//
@R

@E
D 1 W (185)

We again see the difficulties with small R from this equation.

R
Sn�1 d�

R
Rm '.x/Rn�1.x; �;E/ @R.x;�;E/

@E dx
R

Sn�1 d�
R

Rm Rn�1.x; �;E/ @R.x;�;E/
@E dx

; (186)

and we see that, modulo the difficulties near R D 0, the situation is similar as before:
the dominant term in the integrals should be � Rn�2 and the measures �E;N should
concentrate near the points where R is maximal, taking into account the smallness
of hm for large m, should be near the minimizers of H.

The difficulties for small R may be genuine for certain functions H, but in many
cases they are only caused by our choice of coordinates. Adjusting the coordinates
to the function H will no doubt solve these issues in at least in some cases, under
appropriate assumptions on H (some which are already needed for all the objects to
be well-defined).

One can also deal with this difficulty by changing the setup slightly. We note that
the difficulties just discussed come from small values ofR.x; �;E/, which at the level
reasoning based on real “physical states” should be harmless. Our difficulties come
from working with the “hard-conditioned” microcanonical measures Z�1ı.H �
E/ dX. If we work with ı."/ as defined by (77) for some " > 0, the difficulties
largely disappear. Roughly speaking, denoting again by " > 0 the “regularization
parameter” in ı."/, instead of working with

lim
N!1 lim

"!0
; (187)

we can work with

lim
"!0

lim
N!1 : (188)
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This approach is taken for example in [9] or in [18], although in these works the
authors use different methods, based on the theory of large deviations. The methods
used above can be also applied in those cases. The advantage of working with (188)
is that one can handle quite “rough” perturbations from exactly calculable situations.

There can also consider an intermediate way between (187) and (188): we can
take � depending on N. In many cases this actually happens in some sense with
the canonical ensemble. For readers not working in this area we recall this classical
phenomenon for the simplest case of the Hamiltonian

Q.X/ D 1

2
jXj2 (189)

in RN . The micro-canonical ensemble for energy level E > 0 is

�E;N D Z�1ı.Q � E/ dX ; Z D
Z

RN
ı.Q � E/ dX : (190)

This is just the surface measure on the sphere fjXj2 D Eg normalized to total mass
one. The corresponding canonical measure (the Gibbs measure) is

�E;N D Z�1e�ˇjXj2 dX ; Z D
Z

RN
e�ˇjXj2 dX ; (191)

where ˇ is chosen so that

Z

RN
jXj2 d�E;N D E : (192)

This gives ˇ D N
2E . A classical calculation shows that most of the mass of the

measure �E;N concentrates within distance �
q

E
N of the sphere fjXj D Eg and

therefore there is an analogy between �E;N the measure

.Z"/�1ı."/.Q � E/ dX ; Z" D
Z

RN
ı."/.Q � E/ dX ; (193)

with

" �
r

E

N
; (194)

and a suitable choice of the mollifying kernel � in (76).
In this spirit we will consider measures �N;E defined for a sequence "k & 0 by

d �E;N.X/ D Z�1
N ı."N /.H.N/.X/� E/ dX ; ZN D

Z

RN
ı."N /.H.N/.X/� E/ dX :

(195)
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We will write H.X/ instead of H.N/.X/ in what follows if there is no danger of
confusion. We will again use the notation (172), (173), and (178). Let us fix E0 > E.
We will assume that H is Lipschitz on the subset fH � E0g and, in addition,

supH.X/�E0

�jhm.x; r�/j C j�ryhm.x; r�/j
� ! 0 as m ! 1: (196)

These conditions are satisfied in many situations relevant for PDEs is lower dimen-
sions. For example, in the context of functional (170) which we are considering in
this section, we recall that we should think of X as the Fourier coefficients of the
derivative ux and hence the X-coordinates of high frequency part of u will have a
factor .high frequency/�1 in front of them.

Proposition 4 Using the notation introduced above, assume condition (190) is
satisfied. Let � 2 .0; 1/ and set "k D �k ; k D 1; 2; : : : . Then the measures �E;N
defined by (189) concentrate (in the weak topology of H1) on the set of minimizers
of H as N ! 1.

Sketch of proof: We use the change of variables (179) and write, similarly to (180),

Z

RN
'.X/ d �E;N.X/ D (197)

R
Sn�1 d�

R
Rm '.x/dx

R1
0

rn�1dr ı."N /.Hm.x/C hm.x; r�/C 1
2
r2 � E /

R
Sn�1 d�

R
Rm dx

R1
0 rn�1dr ı."N /.Hm.x/C hm.x; r�/C 1

2
r2 � E /

:

For a fixed x; � and a fixed m we set

QE D E � Hm.x/ ; Qh.r/ D hm.x; r�/ : (198)

We will also temporarily write " D "N . The key point is to have good estimates for
the integral

I D
Z 1

0

ı."/
�
1

2
r2 C Qh.r/ � QE

�
rn�1 dr : (199)

Let E be the minimum value of H. Assume

jQhj � � ; jQh0j � � : (200)

Let ˛ 2 . 9
10
; 1/ and choose QE1 so that

˛.E � E/ < QE1 < E � E : (201)
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Also choose QE0 so that

QE0 D �2

16
QE1 : (202)

Once �; �; � are small enough, the largest values of I will be for QE above QE1, and
they will bounded below by

� . QE1/ n2�1 : (203)

For QE > QE0 and small enough �; �; � the value of I will be given to a good
approximation by

� . QE/ n2�1 : (204)

In this respect the situation is quite similar to what we have seen in the proof of
Theorem 1. For small QE the bound (205) will no longer be valid, but we can use the
estimate

I . .2
p QE0/n�1

�
D . �

2
/n�1. QE1/ n�1

2

"
: (205)

which will be true for sufficiently small �; �; �. Now for " D �N the last expression
of (205) is dominated by (203) as N ! 1. The rest of the proof is similar to the
proof of Theorem 1. One issue which may be worth mentioning is that we need to
make sure that there will be enough mass (with respect to the measure dx, for any
�) in the set where I is bounded below by (203). At a heuristic level this will follow
if we show that the solutions R.x; �;E/ of (181) have continuous dependence on x
for each fixed m. This is not hard to see by taking the xj-derivatives of

Hm.x/C hm.x; �R/C 1

2
R2 D E (206)

and using our assumptions on H; hm to estimates @R
@xj

.

Remark 1 The same idea can be used in the case when, in addition to H, we have
several constraints f .X/ whose dependence of Xn is becoming weak for large n, in
the sense that

f .x; y/ D fm.x/C gm.x; y/ ; (207)

where gm.x; y/ satisfies a condition of type (196). This case is planned to be
discussed, together with other material, in [48].
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Remark 2 Since, in the non-linear case, finite dimensional truncations give typi-
cally only approximations of the original equation, taking ı."N / instead ı in our
formulae, with "N quickly converging actually seems quite appropriate.

4 On the Cauchy Problems for the Navier-Stokes Equations

In this last lecture we will discuss recent results in [27, 28] concerning the Cauchy
problem for the Navier-Stokes equations. Our focus will be on the main ideas and
heuristics, technical details can be found in the two papers just mentioned. The
equations are

ut C uru C rp ��u D 0

div u D 0

�
in R3 � .0;1/ ; (208)

ujtD0 D u0 in R3 ; (209)

There are two basic features of the equations: energy identity and the scaling
symmetry. The energy identity describes the evolution of the kinetic energy in the
fluid:

Z

R3

1

2
ju.x; t2/j2 dx C

Z t2

t1

Z

R3
jru.x; t/j2 dx dt D

Z

R3

1

2
ju.x; t1/j2 dx ; (210)

for 0 � t1 � t2. The scaling symmetry is

u.x; t/ u�.x; t/ �u.�x; �2t/ ;
p.x; t/ ! p�.x; t/ D �2p.�x; �2t/ ;
u0.x/ u0�.x/ �u0.�x/ ;

(211)

where � is any number in .0;1/. It is immediate to verify that these transformations
preserve the equations. We have

Z

R3

1

2
ju0�.x/j2 dx D ��1

Z

R3

1

2
ju0j2 dx ; (212)

which means that the magnitude of the kinetic energy is just a relative number from
the point of view of the equation. We can scale it to any value by the symmetry (211).
Moreover, we see that the energy becomes smaller if we “move” the solution to
smaller scales. This is not good news for the regularity theory, as regularity is exactly
about controlling what happens at small scales. At the time of this writing the energy
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is the only coercive quantity which we control for general solutions. It means that
the equation is “super-critical”. This is a relative notion: if a new coercive estimate
is discovered (however unlikely this may be), the status of the equation could be
changed to “critical” or even “sub-critical”.

4.1 Weak Solutions and the Problem of Their Local-In Time
Uniqueness

It is interesting to note that the scaling symmetry and the considerations around
it do not play any role in the construction of the Leray-Hopf weak solution. That
construction goes along the following lines. We first approximate the equation
by a suitable regularization (in which it becomes sub-critical, for example), or a
truncation to a finite-dimensional subspace, in such a way that the energy estimate
is still valid for the approximation. That way we get for each level of approximation
(which we can associate to a parameter " > 0, for example) an approximate solution
u."/ and the remaining task is to prove that a suitably chosen subsequence of these
approximations converges to the (weak) solution of the original equations. The
details of this construction, which goes back to Leray’s paper [38], can be found in
any text on the weak solutions. One can go through the whole construction without
ever needing to consider the scaling symmetry. The natural function space for the
construction of the weak solutions, the space L1

t L2x \ L2t PH1
x , is based exactly on the

quantities controlled by the energy estimate. The use of this space and every other
step in the construction seem to be exactly what is needed.

The main issue in the theory of the weak solutions is their uniqueness. Already
in Leray’s 1934 paper criteria for uniqueness are studied, and a number of works
by other mathematicians have extended his results since. E. Hopf seemed to believe
in uniqueness of the weak solutions (see [24]) whereas O. A. Ladyzhenskaya has
believed that one cannot get uniqueness in this class, see [36]. This is discussed in
more detail in the introduction of the paper [28].

Of course, the question of uniqueness is of fundamental importance. The Navier-
Stokes equation is a newtonian model, and in the newtonian mechanics the state
of the system at present should uniquely determine its state in the future. It was
already known to Leray that, under natural assumptions, a weak solution of the
Cauchy problem with u0 in the space Lp for some p > 0 is unique near time t D 0

and globally unique if it does not develop a singularity. Later this was extended by
Kato to the case p D 3, see [29].

The construction of weak solutions works well for u0 2 L2, but the local-in time
uniqueness of the weak solutions is open in that case.
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4.2 Perturbation Theory

Another method for proving the existence of solutions (this time only local-in time)
is perturbation theory. In this approach we treat the non-linear term in the equation
as a perturbation, and construct a sequence of approximate solutions by solving the
linear problems

u0t C rp.0/ ��u0 D 0

div u0 D 0

u0jtD0 D u0

(213)

and

unt C rp.n/ ��un D � div .un�1 ˝ un�1/ ;
div un D 0 ;

unjtD0 D 0 ;

(214)

for n D 1; 2; 3; : : : .
In the context of the Navier-Stokes equations the procedure (often called Picard

iteration) goes back to Oseen’s 1911 paper [47], and produces a sequence of
solutions un which with the right assumptions should converge to a solution u of the
original Cauchy problem. Leray essentially showed that it works at least for short
times when u0 2 Lp for p > 3. Note that the space Lp is “subcritical” when p > 3:
the Lp-norm of the scaled function u0� increases with increasing �, so we cannot
move the solution to small scales without having to pay a large penalty in terms of
the L1

t Lpx norm. The case p D 3 is “critical”, a borderline between super-critical
and sub-critical. The quantity

R
R3 ju0j3 dx is invariant for the Navier-Stokes scaling

(similarly to length in geometry being invariant under rotations or translations) and
its magnitude has an intrinsic meaning from the point of view of the equation. Note
that this means that if we can prove that the iteration above converges on the time
interval .0;T.�// whenever jju0jjL3 � �, then the solution has to be global when
T.�/ > 0 and jju0jjL3 � �. In this case we have global existence of smooth solutions
based purely on the perturbation theory, without any help from the energy inequality,
and hence that our proof should work for a more general class of equations.

The Lp spaces in the above considerations can be replaced by many other spaces,
such as various Besov spaces, Morrey spaces, etc. One of the best perturbation
theory results is due to Koch-Tataru [33], with u0 2 .BMO/�1, which is again a
critical space for the Navier-Stokes scaling.

There are various arguments which can help to elucidate the role the scaling
symmetry and various function spaces in the perturbation theory arguments. We
briefly describe one of them. Let us see when the non-linear term can be considered
as a perturbation for data of the form

u0.x/ � jxj�˛ (215)
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near the origin. The function u0 is of course vector-valued, the meaning of the
notation 215 is that u0 behaves as a .�˛/-homogeneous function. Then

�u0 � jxj�˛�2 ; u0ru0 � jxj�2˛�1 : (216)

We see that if ˛ < 1near the origin �u0 can be expected to be dominant (in some
sense), and the non-linear term can be considered as a perturbation, which makes
the perturbation theory feasible. This is the sub-critical case. On the other hand, for
˛ > 1 the perturbation theory is not feasible, as the non-linear term can dominate.
This is the super-critical case. The case ˛ D 1 is critical. In that case one should
look at

u0 � ajxj�1 ; (217)

and one has

�u0 � ajxj�3 ; u0ru0 � a2jxj�3 : (218)

Therefore when a is small we should be in a perturbative regime, whereas when a
is large we are in the non-perturbative (or “large solutions”) regime. This heuristic
works very well, it captures more than what one might expect from the not-so-
sophisticated argument.

The perturbation theory always needs that some small quantity. For example,
even when we have a function u0 2 L3 which is not small, there is a “hidden”
smallness quantity around: the integrals

Z

Br

juj3 dx (219)

(where Br represents balls of radius r) are small when r is small. By rescaling u to
ru0.rx/ we will have the same statement with r D 1 for the re-scaled function. This
is essentially what makes it possible to prove the short-time existence for large L3

data.
By contrast, the space .BMO/�1, the Morrey space M2;1 with the norm given by

sup
x;r

1

r

Z

Bx;r

ju0.y/j2 dy ; (220)

or the Lorentz space L3;1 (the weak L3-space), are examples of spaces where
functions do not behave in this way. The spaces .BMO/�1 ; M1;2 and L3;1 contain
.�1/-homogeneous functions u0 smooth away from the origin. For such functions
we of course have

ju0.x/j � ajxj�1 (221)
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and the scaling u0 ! u0� leaves the function invariant. There does not seem to
be any “hidden” smallness condition which would be useful for the Navier-Stokes
perturbation theory, unless the coefficient a is already small. In that case one can
indeed quite easily establish existence and uniqueness via the Picard iteration for
functions u0 which are .�1/-homogeneous and smooth away from the origin. Once
a is small, one can work in the spaces above, or use an even simpler space given by
the norm

sup
x2R3;t>0

j
p

jxj2 C tjju.x; t/j : (222)

We see that there are essentially two type of critical spaces. One type is
represented by PH 1

2 ;L3 or certain Besov spaces. With any function in these spaces
one can associate a small quantity ( related to a “uniform continuity condition”)
useful for the Navier-Stokes theory, one can prove local-in-time well-posedness
results for any function in the space.

The other type are the space which contain .�1/-homogeneous functions, where
the perturbation method works only for functions with a small norm.

We will argue that this not just a technical point, but it indeed reflects the behavior
of the actual solutions of the Navier-Stokes equations.

4.3 Scale-Invariant Solutions for Large Data

Let us take a .�1/-homogeneous div-free vector field w0.x/ which is smooth away
from the origin, and let us look at the Cauchy problem (208), (209) with

u0 D u.�/0 D �w0.x/ : (223)

As we have just discussed, for small � we are in the range when the perturbation
theory can be applied and we have no problem proving existence and uniqueness
of the solutions to the Cauchy problem (in appropriate classes of functions). As the
initial condition u0 is scale invariant and we have uniqueness, the solution itself
must be scale-invariant. This means that it is of the form

u.x; t/ D 1p
t
U

�
xp
t

�
: (224)

The profile function U satisfies the following elliptic equations

��U � 1
2
xrU � 1

2
U C UrU C rP D 0 ;

div U D 0
(225)
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in the space R3, and the “boundary condition”

U.x/ D u0.x/C o.jxj�1/ ; jxj ! 1 : (226)

What happens as the parameter � is increased? A natural approach is to try to
establish the existence of the solutions of elliptic problem (225) with the boundary
conditions (226).

It is clear that to solve the elliptic problem for large data, we have to go beyond
the perturbation theory. In the case of the usual steady Navier-Stokes in a bounded
domain, where (226) is replaced by a Dirichlet boundary condition, the problem was
solved by Leray by using the degree theory. The non-perturbative argument which is
used in that approach is interesting even in the case of finite-dimensional equations.
The following statement for Rn captures its main point.

Lemma 1 (Leray’s Argument for Steady Solutions, Finite-Dimensional Ver-
sion) Let f W Rn ! Rn be a continuous function such that

.x; f .x// D 0 ; x 2 Rn ; (227)

where . � ; � / denotes the usual scalar product. Let y 2 Rn. Then the equation

x C f .x/ D y (228)

has at least one solution in Rn and, moreover, every solution x of the equation
satisfies

jxj � jyj : (229)

The statement is interesting even for n D 2, in which case its validity should
be heuristically clear from suitable pictures. The proof of the general case (for any
dimension) requires some non-trivial topological argument. One use for example
Browder’s degree or, alternatively, Sard’s theorem (after approximating f by a
smooth function) applied to the function FW Rn � R ! R

F.x; �/ D x C �f .x/ : (230)

A more general version of the lemma can be obtained by considering a function
F.x; �/ from Rn � Œ0; 1� such that F.x; 0/ D x. If the equation

F.x; �/ D y (231)

has no solution with jxj � r > jyj for any � 2 Œ0; 1�, then the equation

F.x; 1/ D y (232)



Aspects of PDEs Related to Fluid Flows 245

has a solution x with jxj � r. From Sard’s theorem it is not hard to see that when
F is smooth, then—in the above situation—there will be a smooth curve joining the
solution x.0/ of F.x; 0/ D y and our solution x.1/ of (231).

However, the curve of solutions can potentially “turn back” a few times before it
reaches the a point with � D 0. In other words, the curve may not be a graph of a
function � ! x.�/.

It turns out one can use Leray’s strategy to solve (225), (226). The most difficult
step is to obtain good a-priori estimates, analogous to the requirement that the
Eq. (231) has no solutions with jxj � r.

This strategy is implemented in [28], where the following results is proved.

Theorem 1 ([28]) For any .�1/-homogeneous divergence free vector field u0
which is locally Hölder continuous away from the origin, the Cauchy prob-
lem (208), (209) has at least one scale-invariant solution u.

The main point of course is that there are no smallness assumptions.

4.4 Possible Non-uniqueness of Leray-Hopf Solutions

If the elliptic problem (225), (226) has more than one solution U the Cauchy
problem (208), (209) will also have more than one solution. Notice that the non-
uniqueness arises immediately—the two solutions will be different at any positive
time, although their limit as t ! 0 will be the same. At the spectral level the non-
uniqueness will be detectable as follows. We again consider the family u.�/0 given
by (223). For small � we have a unique curve of solutions U.�/ of (225), (226)
(where we take u0 D u.�/0 ). Let L� be the linearization at U� of the Eq. (225),
with zero boundary conditions. In the finite-dimensional setting, the “turning” of
the curve U.�/ (when is just stops being a graph of a function of �) is characterized
(in the generic case) by an eigenvalue of L� crossing the imaginary axis at zero.
(For small � the spectrum of L� is on the left of the imaginary axis.) If we extent
our class of solutions to a larger class of discretely self-similar solutions (where the
invariance under scaling is only required for a discrete set �n0 ; n D 1; 2; : : : , rather
than all � > 0), any crossing of the imaginary axis (even when it is away from
zero) will cause (under some natural technical assumptions) non-uniqueness of the
solutions of the Cauchy problem.

The non-uniqueness in the class of invariant or discretely invariant solutions is
not directly applicable to Leray-Hopf solutions, due to the slow decay of the fields
when jxj ! 1. However, it turns out that one can perform a truncation procedure
and—assuming the spectrum will cross the imaginary line as � increases—achieve
the same phenomenon starting from compactly supported data with one-point
singularity near the origin where the datum grows as � jxj�1.

The proofs of these statement are technically non-trivial and can be found in [28].
We conjecture that the spectral condition will be satisfied for certain solutions, and
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therefore we believe that we have non-uniqueness. If that is the case, then, quite
remarkably, the simple heuristic arguments and analogies in Sect. 4.2 would capture
the real behavior of the equation, and the Navier-Stokes equations would only be
well-posed in the spaces where the classical perturbation theory works.
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