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1 Introduction

Soft tissue deformation elicits vital transport processes throughout the body, and is
a key determinant in widespread conditions and diseases. For example, systemic
circulatory deficiencies may arise from impaired myocardial contraction, and
acceleration-induced axonal overstretching has been linked to traumatic brain [1, 2]
and can be investigated using MRI. Thus, noninvasive motion estimation is of
clinical and investigational interest. However, the acquisition and processing of
tagged MRI has been problematic due to long scan times, artifacts, and challenges
in obtaining accurate 3D estimates of displacement and strain. It has been shown
that integration of an organ’s geometry (and fiber orientations if relevant) and use of
material constitutive information can increase estimation accuracy, reduce artifacts,
and improve one’s ability to estimate dense displacements and strains from sparsely
acquired imaging data [1, 3].

Motivated by versatile contrast and unparalleled soft tissue sensitivity, several
motion estimation approaches have been developed within the MRI framework,
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as well as dedicated motion encoding pulse sequences, image postprocessing, or
both [4]. Analysis of tagged MRI is one of the most well-established approaches
which, from early implementations targeting the cardiovascular system, has
expanded to include other organs [5–7].

Best results in 3D motion estimation generally require consistent repetition
of movement and relatively high resolution, but these are constrained by scan
time [8, 9]. Traditionally, displacement information has been reconstructed in
the imaging planes first and then propagated to a 3D domain with the help of
interpolation methods, such as splines, or finite elements [3, 10]. These approaches
enable preemptive reduction of artifacts via smoothing or refinement, and enforce
incompressibility during the interpolation process [10]. However, the imaging raster
rarely aligns with the geometry or fiber structure of an organ; thus, smoothing or
interpolation may introduce fictitious edge tractions, or violate other mechanical
characteristics such as tissue anisotropy.

In this research, the tracking process is realized by enforcing image phase
conservation in material points within the field of view (FOV), but not coincident
with the spatial imaging raster. The proposed tracking kernel is based on the classic
harmonic phase (HARP) analysis of tagged MRI [11], combined with hyperelastic
model registration methods [1], according to a phase conservation principle parallel
to intensity conservation in optical flow [12]. Thus, the results are mechanically
representative, in that they are diffeomorphic, have traction free surfaces, and are
otherwise consistent with continuum mechanics, but the phase vector formulation
increases sensitivity in texture-free regions, and provides a more objective similarity
metric.

We demonstrate our implementation in three scenarios. The first two consist of
forward displacement reconstruction where the goal is to obtain deformation fields.
These include: measurement of impact-induced deformation in a Sylgard™ brain
phantom and quantification of fiber strain in residually stressed myocardium. The
third scenario consists of displacement-based inverse parameter identification of
intrinsic tongue muscle activation. Our results indicate that, in forward displacement
reconstruction, the approach is robust to artifacts (edges and large displacements)
and to material stiffening due to residual stress. In the inverse problem, we show
that evaluating fiber stretch enables approximation of muscle activation without the
need for iterative minimization.

2 Background

2.1 Harmonic Phase Analysis

Tagged MRI contains artificial magnetic patterns (lines or sinusoidal profiles) that
are imposed near the beginning of a CINE sequence and deform with moving tissue.
HARP analysis focuses on harmonic peaks in the Fourier domain, which arise from
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the periodic nature of tag patterns. The harmonic phase vector, � D [�1 �2 �3]T ,
where each term is the phase of the inverse Fourier transform of a harmonic peak
in an image whose tag direction is orthogonal to the other two directions, carries
information about local components of tissue motion. In particular, the phase at a
reference location, X, at t D t0 D 0 will be the same as tissue moves to a new spatial
location, x, at a later time. In other words,

� .X; t0/ D � .x; t/ : (1)

Thus, 3D motion estimation can be thought of as the solution of a multidimen-
sional, nonlinear, root-finding problem: given phase distributions at two time points,
find x for a given X, or vice versa.

We note that a practical application of HARP analysis deals not with the true
real-valued phase, but rather with the harmonic phase whose range is the interval
[ � � , �). Nevertheless, it is possible to use the expressions herein without loss of
generality by adopting local phase unwrapping in the final implementation [11].

2.2 Deformations in Continuum Mechanics

Tissue deformation can be modeled as a boundary problem seeking to minimize
an energy functional E(®), where the deformation map ® contains admissible
deformations evaluated at material points, i.e., ®(X) D x D X C u(X) [1]. Given an
integration domain, R2R3, the Euler–Lagrange equations necessary to minimize E
are obtained by taking the directional derivative with respect to a small variation (or
virtual displacement) in the spatial coordinates. This yields the weak form of the
so-called virtual work equation,

ıW D
Z
R

P W ı PF dV �
Z
R

f 0 � ıv dV C
Z
S

t0 � ıu dS: (2)

At equilibrium, ıW D 0 describes a static momentum balance between body
or boundary forces (respectively f0 and t0), and internal stresses defined by the
material-dependent first Piola–Kirchhoff stress tensor, P(F), and the spatial gradient
of the deformation map, F D dx

dX [13, 14].
One of the most popular approaches for solving the boundary problem associated

with (2) is FE analysis. This process generally involves extracting discretized
geometry from MRI via delineation and meshing, assigning a suitable constitutive
model, and defining boundary conditions. The FE method has experienced consid-
erable expansion in biomechanics, thanks to several improvements geared to handle
complex biological geometries, and nonlinear material models [13, 15].



84 A.D. Gomez et al.

3 Tracking Tagged MRI with Deformable Models

3.1 Conservation of Harmonic Phase Vector

The basis of HARP analysis, (1), can also be described through physical conserva-
tion principles. Let � represent a vectorial angular quantity (per unit mass), which
is conserved. Then, the net change in phase density can be expressed as a mass
transport process defined in weak form by

D

Dt

Z
R

�� dV D
Z
R

@ .��/

@t
dV C

Z
S

�� ˝ v � n dS; (3)

where the right-hand side contains generative and advection terms dependent on
mass density � and velocity v across a boundary surface with local normal n
[16]. Application of Gauss’ theorem and the continuity equation reduces the phase
conservation relationship to

D�

Dt
D @�

@t
C r� � v: (4)

The left side of the equation corresponds to the material description, which
yields the deformable model tracking constraint discussed in the next section. The
middle expression is equivalent to the spatial description, and is the harmonic
phase equivalent of the familiar optical flow equation used in intensity-based image
registration [12].

3.2 Nonlinear Tracking Constraint

We now focus on obtaining displacements using the material description of
harmonic phase conservation noting that direct application of (1) has two key
limitations: First, harmonic phase vector pairs are not unique as a consequence
of phase wrapping, thus tracking may converge at erroneous locations after large
displacements; second, without regularization, tracking points near edges will result
in spurious displacements due to partial volume artifacts.

Definition

Using integration with respect to time, the total derivative in (4) can be formulated
as a difference between two phase images, acquired at the reference and at a
subsequent time, evaluated at a material point and its corresponding location in
the deformed configuration, i.e., x D x(X, t). This difference defines the nonlinear
tracking constraint to be imposed on (2),
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f harp D �.t/ .� .x .X; t/ ; t/ � � .X; t0// ; (5)

where �(t) is a Lagrange multiplier that enforces phase consistency in tracking.
In essence, the constraint introduces an additional body force whose purpose is to
deform the model according to the temporal changes in the tag patterns.

Implementation

Given the nonlinear nature of (5), implementation within a Newton–Raphson
(or similar) iterative solver requires consistent linearization of the virtual work
contribution from the constraint to be applied on (2). In other words, linearizing
ıWharp .x; ıv/ D R

R f harp� ıv dV yields the tangent stiffness aggregate to be passed
along to the solver, i.e.,

DıWharp .x; ıv/ Œu� D
Z
R

�.t/r� .x .X; t/ ; t/ ıv� ıu dV: (6)

The tracking constraint was implemented as a plug-in extension to the FE solver
within the FEBio Software Suite [15].

Image Preprocessing

In (5), it is assumed that the harmonic phase images are defined everywhere, which
typically is not the case. Therefore, an image interpolation step must be built into the
implementation. In fact, we propose upsampling tagged images prior to harmonic
peak extraction (effective bandwidth remains limited by the original acquisition).
We used grid-based cubic spline interpolation to achieve isotropic resolution based
on the in-plane slice resolution. As with conventional HARP analysis, band-pass
filtering is necessary to extract harmonic peaks. In this research, each 2D slice was
filtered one image at a time, with a circular band-pass filter centered at the tagging
frequency with a radius equal to half of the center frequency [11].

Solution Strategy

Two main approaches for enforcement of tracking constraints are available in
this implementation. The first consists of applying a global, linearly increasing,
penalty �(t) function (penalty method), and the second consists of using an iterative
approximation to its local values to a given tolerance (augumented Lagrangian) [17].
Both the maximum penalty �max and tolerance �tol were adjusted according to a
desired tracking residual " D R

�(x(X, t), t) � �(X, t0) dV.
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4 Experiments and Results

4.1 Measuring Impact-Induced Deformation
in Brain Phantom

The goal of this experiment was to demonstrate our approach against traditional
HARP analysis, i.e., application of (1) with a fixed-point algorithm, for reconstruct-
ing the motion of a Sylgard™ phantom, Fig. 1(a). The phantom’s base was subject to
a sudden rotational acceleration and consequently imaged (3T scanner, 13 frames,
18 ms TR, 13 axial slices, 160 �160 px, 1.5 �1.5 mm, SPAMM sequence). Two
FE models of the phantom were constructed: one consisting of 4250 linear (fully
integrated) brick elements, and the other used the same number of elements using a
quadratic 20-node formulation. In both, the material was modeled as a Neo-Hookean
solid (C1 D 1.0 kPa, � D 120 kPa). Tracking was performed to " D 0.05 rad, with
�max D 0.2, and �tol D 0.1. Both algorithms ran for ten iterations per time frame.

Representative displacements at t D 54 ms appear in Fig. 1(c) and (d), for
conventional HARP and our method, respectively. As expected, using a fixed-
point algorithm results in two types of artifacts: spurious displacements near the
edges, and erroneous tracking due to large displacements. In contrast, the proposed
methodology results in smooth (traction-free) displacements at the boundaries, and
consistent tracking of rotation. Both linear and quadratic meshes yielded identical
qualitative results with minor quantitative differences (less than 0.1%).

4.2 Quantifying Fiber Stretch in Residually Stressed
Myocardium

Most tissues, even in the absence of loading, exhibit some level of residual stress,
which becomes apparent by recoil following an incision, suggesting that fibers in
situ are prestretched [18]. Here, we (a) demonstrate that our approach may include

Fig. 1 Acceleration-induced brain phantom deformation. As shown in the schematic (a), motion
of the base causes deformation into a new configuration (b). Conventional HARP analysis (c)
shows large-displacement artifacts (orange), and spurious displacements at the edges (green). The
problematic areas in proposed method (d) are largely artifact-free
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modeled prestretch via interstitial growth [19], and (b) evaluate changes in tracking
results due to prestretch-induced stiffness variations. To this end, the left ventricle
of a healthy volunteer was imaged (3T scanner, 12 long slices, eight long slices,
256 �256, 1.25 �1.25 mm, CSPAMM sequence), and images at early diastole
(lowest pressure load) were used to generate an FE model consisting of 6500 linear
brick elements. Simulated contraction, with parameters available in [1, 18], was
used as ground truth displacements, and to create synthetic deformed images for
tracking.

Two displacement results were obtained with a stress-free reference (SFR) and a
prestretched reference (PSR), which included �5\% mean fiber prestretch [18, 19].
In both, tracking was performed to " D 0.2 rad. Tracking from SFR terminated after
17 iterations using �max D 0.2 � 10�2 and �tol D 5 � 10�2. The same values for PSR
after ten iterations were 1.4 � 10�2 and 7 � 10�2, respectively. Compared to the
ground truth, the displacement residuals were 0.6˙0.3 mm and 0.9˙0.3 mm (SFR
and PSF, respectively). This similarity in residuals shows that prestretch-induced
variations can be compensated by tracking parameters. Thus, although the image-
derived deformed configurations are similar, the PSF relates to a reference state
consistent with experimental evidence of residual stress, Fig. 2(a), and results in
visibly higher systolic fiber shortening, Fig. 2(b) and (c).

4.3 Estimating Activation of Intrinsic Tongue Muscles

In this experiment, we estimate the magnitude of activation stress responsible
for an observed deformation in the tongue. To this end, motion was first tracked
based on a stack of images from a healthy volunteer at two time frames (3T
scanner, ten coronal slices, eight sagittal slices, 256�256, 1.9�1.9 mm, CSPAMM

Fig. 2 Comparison between SFR and PSR. A radial cut (a) on a ring-like section shows no change
in the SFR, but the same cut causes separation of edges in the PSR, similar to experimental
observations [18]. Comparable deformed configurations exhibit different fiber stretches with
respect to the SFR (b) or the PSR (c)
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Fig. 3 Motion estimation in the tongue. Five muscles from MRI (a) are used within an FE
model to extract deformations (b), and to simulate activation stresses. Measured and simulated
fiber stretches (c) show qualitative agreement with those extracted from the tagged images. Key:
GG genioglossus, IL inferior longitudinal, SL superior longitudinal, T transverse, V verticalis
M mandible insertion

sequence) using an FE model consisting of 280 quadratic brick elements, and the
tracking constraint set to " D 0.05 rad. To obtain contractile stress normalized to
material stiffness, the tissue was modeled as a Neo-Hookean solid (C1 D 1.0 kPa,
� D 120 kPa). Fiber directionality and muscle definitions were based on the
literature [7]. Unlike previous work, which relied on numerical optimization—
where multiple simulations were run to find the closest match between simulated
and observed tongue deformation—our strategy was to directly approximate the
contractile stresses from the image-derived fiber shortening according to the active
contraction model presented in [1] (solving for Tmax in Eq. 4). These approximations
were applied uniformly over each of the muscles in Fig. 3(a).

Image tracking, the basis of the observed tongue deformation, terminated after
ten iterations �max D 1.0 and �tol D 0.1. Displacement results appear in Fig. 3b.
Experimental and simulated fiber stretches averaged over the muscle region appear
in Fig. 3c, and show qualitative agreement. Comparison between the image-
based deformation and activation simulation allows direct estimation of contractile
stress, avoiding numerical optimization, which may converge at local minima [7].
Note that both, forward simulations and image tracking via the proposed phase
tracking constraint, occur in the same geometrical model; thus, comparison between
experimental and simulated behavior can be done on an element-per-element basis.

5 Discussion

This study extends fundamental concepts used for motion estimation based on
scalar intensity images to the vectorial phase domain, which allows application
of tagged images for mechanically regularized motion estimation. One immediate
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advantage of this type of regularization is the reduction of artifacts present at the
edges where image information is affected by partial volume. The use of tagged
images disambiguates similarity metrics associated with intensity in areas of low
texture. This improves motion tracking, and adds robustness to material parameter
uncertainty.

As shown in previous literature featuring intensity-based motion estimation in
FE models [1], displacements can be made consistent despite changes in material
parameters by scaling the tracking penalty. The idea is that, within a range, a stiffer
material will simply require larger forces to produce the same deformation. In the
proposed method, we take advantage of the vectorial nature of phase to extract a
similarity metric, ", that serves as a stopping criteria for motion estimation; the
tracking penalty continues to be scaled until the criteria is met. This basic principle
was demonstrated when tracking deformation in residually stressed ventricular
tissue, where the tracking parameters associated with the PSR were much larger than
the SFR, even though the tracking metric and displacement accuracy were identical.

In terms of implementation, the proposed method effectively reduces to cal-
culating body forces derived from phase images, i.e., the application of nodal
forces where each (xyz) component is equal to scaled differences between template
and target phase image in each corresponding tagging direction. The stiffness
contribution, evaluated once per element, is defined similarly to the contribution of
the material model but is defined as described in (6). From an image processing
standpoint, upsampling of images enables the use of advantageous interpolation
techniques that would be computationally expensive to evaluate along with the FE
tracking constraint.

6 Conclusion

The main goal of this paper was to introduce and demonstrate unique features asso-
ciated with this motion estimation strategy, including artifact reduction, robustness
to material parameters, and interaction between observed motion and mechanical
features like realistic geometry and fibers. Future research directions will focus
on the relative performance of its different components, both from an imaging
standpoint (the effects of image quality, upsampling, and filtering) and from a
modeling perspective (the consequences of constitutive modeling and geometrical
representation), and with respect to other motion estimation techniques.

Acknowledgments This research was funded by NIH Grant R01-NS055951, supplement
PA12-149, and support by the Center for Neuroscience and Regenerative Medicine.



90 A.D. Gomez et al.

References

1. Phatak NS, Maas SA, Veress AI, Pack NA, Di Bella EVR, Weiss JA (2009) Strain measurement
in the left ventricle during systole with deformable image registration. Med Image Anal
13:354–361

2. Wright RM, Ramesh KT (2012) An axonal strain injury criterion for traumatic brain injury.
Biomech Model Mechanobiol 11:245–260

3. Haber I, Metaxas DN, Axel L (2000) Three-dimensional motion reconstruction and analysis of
the right ventricle using tagged MRI. Med Image Anal 4:335–355

4. Ibrahim E-SH (2011) Myocardial tagging by cardiovascular magnetic resonance: evolution of
techniques-pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson
13:36

5. Bayly PV, Clayton EH, Genin GM (2012) Quantitative imaging methods for the development
and validation of brain biomechanics models. Annu Rev Biomed Eng 14:369–396

6. Moerman KM, Sprengers AMJ, Simms CK, Lamerichs RM, Stoker J, Nederveen AJ (2012)
Validation of tagged MRI for the measurement of dynamic 3D skeletal muscle tissue
deformation. Med Phys 39:1793–1810

7. Harandi, N.M., Woo, J., Farazi, M.R., Stavness, L., Stone, M., Fels, S., Abugharbieh, R.
(2015) Subject-specific biomechanical modelling of the oropharynx with application to speech
production. IEEE ISBI, pp 1389–1392

8. Knutsen AK, Magrath E, McEntee JE, Xing F, Prince JL, Bayly PV, Butman JA, Pham DL
(2014) Improved measurement of brain deformation during mild head acceleration using a
novel tagged MRI sequence. J Biomech 47:3475–3481

9. Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM, Epstein FH
(2007) Tracking myocardial motion from cine DENSE images using spatiotemporal phase
unwrapping and temporal fitting. IEEE Trans Med Imaging 26:15–30

10. Liu X, Abd-Elmoniem KZ, Stone M, Murano EZ, Zhuo J, Gullapalli RP, Prince JL (2012)
Incompressible deformation estimation algorithm (IDEA) from tagged MR images. IEEE
Trans Med Imaging 31:326–340

11. Osman NF, McVeigh ER, Prince JL (2000) Imaging heart motion using harmonic phase MRI.
IEEE Trans Med Imaging 19:186–202

12. Horn, B.K., Schunck, B.G. (1981) Determining optical flow. In: Technical Eymposium East.
pp. 319–331

13. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis.
Cambridge University Press, Cambridge

14. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Upper Saddle River
15. Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) FEBio: finite elements for biomechanics. J

Biomech Eng 134(1):011005
16. Spencer AJM (1985) Continuum mechanics. Dover Books, Essex
17. Guo H, Nickel JC, Iwasaki LR, Spilker RL (2012) An augmented Lagrangian method for

sliding contact of soft tissue. J Biomech Eng 134:084503
18. Genet M, Rausch MK, Lee LC, Choy S, Zhao X, Kassab GS, Kozerke S, Guccione JM, Kuhl

E (2015) Heterogeneous growth-induced prestrain in the heart. J Biomech 48:2080–2089
19. Ateshian GA, Ricken T (2010) Multigenerational interstitial growth of biological tissues.

Biomech Model Mechanobiol 9:689–702


	Motion Estimation with Finite-Element Biomechanical Models and Tracking Constraints from Tagged MRI
	1 Introduction
	2 Background
	2.1 Harmonic Phase Analysis
	2.2 Deformations in Continuum Mechanics

	3 Tracking Tagged MRI with Deformable Models
	3.1 Conservation of Harmonic Phase Vector
	3.2 Nonlinear Tracking Constraint
	Definition
	Implementation
	Image Preprocessing
	Solution Strategy


	4 Experiments and Results
	4.1 Measuring Impact-Induced Deformationin Brain Phantom
	4.2 Quantifying Fiber Stretch in Residually Stressed Myocardium
	4.3 Estimating Activation of Intrinsic Tongue Muscles

	5 Discussion
	6 Conclusion
	References


