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1 Introduction

According to the World Health Organization, chronic diseases are responsible
for 63% of all deaths in the world, with cardiovascular disease as the leading
cause of death. Magnetic resonance imaging technologies have advanced rapidly
in recent years enabling both radiologists and cardiologists to perform evaluated
studies for assessment of the functional parameters of the heart, such as myocardial
wall motion, volumetric parameters, ejection fraction, and stroke volume across
both the left and right ventricles. In theory the term cardiomyopathy could apply
to almost any disease affecting the heart, in practice it is usually reserved for
severe myocardial disease leading to heart failure [1]. Clinical biomechanists are
confronted with various challenges. One of them is the task of reducing the amount
of data from clinical datasets [2, 3].

Recently computer methods and programs are being implemented throughout all
aspects of biomedical research and medical practice. Many of them are concentrated
on biomechanics of particular movement disorders, as in the case of hip joint
dysplasia [4], Parkinson disease [5], or cardiac motion [6]. In the last case, to mark
the deteriorations, clinical biomechanists record kinematic and electromyographic
signals, which are both analyzed statistically and in terms of an explicit inverse
dynamic model [7]. These analyses, on the other hand, may grant insight into proper
relevant biomechanical aspects of particular movement disorders and, in some cases,
elemental motor deteriorations. Nevertheless, magnetic resonance imaging brings
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a large amount of data which is difficult to elaborate and process. The design of
the model of heart motion is difficult as the movement interweaves with several
factors such as muscle contraction, blood flow, calcification, fiber orientation, and
nerve impulses. Each of those aspects can be designed separately and is challenging
as well. The example of computational model combining all the aforementioned
factors is given in [8].

Another solution can be a “Black Box” model based on statistical analysis. An
overview of these methods, combining different types of models over a global shape
model and promising for other medical segmentation problems, especially if local
anatomical abnormalities (e.g., a tumor) appear, is presented in [9].

In [10] clinical diagnosis is based upon global modes of motion, measurement
of longitudinal displacement of the LV may be critical, and thus an increased
emphasis on acquiring sufficient long axis image data may be warranted. They also
suggest that methods sensitive to transmural differences in displacement may offer
a clinical advantage for diagnosis of functional abnormality. Finally, the creation
of a kinematic mode database can greatly increase reconstruction efficiency in
healthy hearts by eliminating modes which contribute little to the reconstruction
accuracy [11].

We can create a “black box model” based only on movement observation,
which could be applied in, for example, flow control. Mathematical models for
human ventricles contain large amounts of data. Their numerical solution is based
on appropriate space/time discretizations which requires computational times that
even utilizing state-of-the-art algorithmic solvers are far from being acceptable.
A means to overcome this difficulty is to use reduced order models (ROMs) where
the dimension of the ROM is, by at least one order of magnitude, smaller than
the dimension of the full order model while still separating the effects of the
essential dynamics of the underlying physiological processes. Suitable model order
reduction techniques include balanced truncation (BT) [12], Proper Orthogonal
Decomposition (POD) [13], and reduced basis methods (RBM) [14].

This paper is structured as follows. In Sect. 2 we describe the method of generat-
ing a model of left and right ventricle. In Sect. 3 we present Proper Orthogonal
Decomposition. Decomposition of left and right ventricle and decomposition of
left ventricles are presented in Sects. 4 and 5, respectively. Finally, discussion and
conclusions are presented in Sect. 6.

2 Generation of a Patient-Specific Cardiac Model

Choosing an optimal medical image visualization method always raises many
questions. With a choice between CT, ultrasonography, Spectral CT, and MRI, the
Magnetic Resonance Imaging seems to be the most suitable—while CT slices are
more dense, they are related with radiation.

Initial clinical data consists of a cine-MRI sequence of the cardiac cycle of an
adult patient. Images are in short axis, covering both ventricles (ten slices; slice
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thickness: 8 mm, temporal resolution: 25 frames). Images were made isotropic and
contrast was enhanced by clamping the tails of the grey-level histogram. DICOM
examinations were loaded into the program, in particular, dynamic information on
a cardiac study is automatically extracted.

To build a patient-specific model of the heart from the DICOM data resulting
from MRI, it is crucial to segment the different parts of the organ. That implies
segmenting the left and right endocardia, as well as the epicardium.

In this paper, we demonstrate our methodology on commonly available datasets.
They consist of left and right ventricle data by Toussaint et al. [7], and a set of
left ventricle models from the Sunnybrook Cardiac Data, SCD [15]. In the first
case, interactive surface generation using implicit functions was used. Segmentation
is started on the first frame of the MRI cardiac sequence, corresponding to end
diastole. Interactive segmentation is based on variational implicit surfaces [16],
which consists of computing an implicit function whose zero-level set passes
through defined control points (landmarks). In order to calibrate the physiological
parameters of the model, segmentation operation is repeated throughout the entire
cardiac sequence, in order to estimate—for instance—the blood pool volume. The
semi-automatic process described above, in which the user empirically specifies
landmarks and filters, is to ensure the visual compliance of the myocardium area
in the MRI and the determined mask. Then, nonlinear image registration based
on diffeomorphic demons is performed [17]. The resulting deformation fields are
then used to propagate the myocardium mask throughout further frames of cardiac
sequence. Finally, the dynamic mesh of the myocardium is obtained by performing
successive isosurface extractions on the aforementioned binary masks.

3 Proper Orthogonal Decomposition

Modal decomposition is a powerful and popular tool in model reduction techniques
[18] and biomechanics [13]. In the case of the empirical approach, where the modes
are obtained from the analysis of measured data or simulation, a number of methods
may be distinguished. The most popular of them, Proper Orthogonal Decomposition
(POD) (also known as PCA—Principal Component Analysis) [19-21] is based on
the eigenanalysis of the autocorrelation matrix computed for the input signal [22].
There are many variants of this method designed for certain purposes. For example,
method of snapshots [23] is used when the number of snapshots is much smaller than
the dimension of the single snapshot. Sparse PCA [24] finds modes that are sparse
vectors, that facilitates further interpretation. Kernel PCA [25] is the extension of
PCA using kernel functions for the mapping of input data onto higher-dimensional
feature space and multilinear PCA [26] is based on the linear transformations of
each dimensional separately.

Another decomposition methods used in biomechanics include Independent
Component Analysis [27] and Linear Discriminant Analysis (LDA) [28].
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In the case of global analysis of cyclic data, snapshot POD of Sirovich is the
best approach. This method is based on the assumption that there is a correlation
between sampled data and it decomposes the data into uncorrelated modes that are
optimal for energy representation by construction.

In this method, the M snapshots v; of size N (number of Degrees of Freedom)
are centered using time-averaged solution uy. Resulting M fluctuation vectors
v/ = v; — up form a matrix V’. POD modes used in model reduction are the
eigenvectors u; of standard eigenproblem Cu; = A;-u; of the autocorrelation matrix
C. In snapshot POD, this matrix (of size M x M) is defined as:

c=LyTy
M ,
and the POD modes w; are computed by the projection of eigenvectors u;, related to
eigenvalues A; of largest magnitude and representing mode amplitudes, onto a set of
initial snapshots V:

Vu,'
[IVaes |

P =

4 Proper Orthogonal Decomposition of Left and Right
Ventricle

A set of meshes was created with the help of CardioViz [29, 30], containing the
85 frames of the cardiac cycle. Vertex positions at each time frame are assigned
to the corresponding frame mesh. As the topology of the mesh does not change
along the sequence, a single VTK object explaining the topology is given to all the
frames. Scalar data are also associated with each time frame. Linear interpolation
is used to map scalar information on the mesh object [7]. Proper orthogonal
decomposition was implemented to one cardiac cycle. The cycle was decomposed
to 85 modes, which should represent 100% energy of heart motion. The Table 1
presents individual and joint information transferred by modes. We note the first
five modes only, by virtue of little percentage of information being transferred by
further modes, assuming that they can be neglected. It can be seen that just the first
three modes represent 99% of information concerning the cardiac cycle. Using this
data we can judge, which modes seem to be the important.

The first three modes, multiplied by maximal and minimal values of coefficients
and superimposed on the time-average geometry of the heart, are presented in Fig. 1.
In order to strengthen the visual effect, the results are scaled twice. The first mode
represents systole of both left and right ventricles, with no twist.

The twist and movement along long axis are described by the second and third
POD modes (Figs. 2 and 3, respectively).
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Table 1 Information transferred by modes

Mode number Information transferred [%] Information transferred (jointly) [%]
1 73.55 73.55
2 22.14 95.70
3 343 99.13
4 0.49 99.63
5 0.14 99.77

0 10 20 30 40 50 60 70 80 90
frame

Fig. 1 The First POD mode superimposed on averaged geometry, depicted using doubled min.
and max. values of corresponding time coefficient (dimensionless mode amplitude A)
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Fig. 2 Same as Fig. 1, but for the second POD mode

The figures above display slight discrepancy in amplitude at the beginning and
end of the cycle. We assume that the reason for this is the absence of snapshots
for one or two time steps. Diagrams of specific modes are distinctive to a factual,
individual heart model [7], in this case left and right ventricle with no pathologies.
Pathological ventricles will have differing, individual diagrams.
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Fig. 3 Same as Fig. 1, but for the third POD mode

S Proper Orthogonal Decomposition of Left Ventricles

Proper Orthogonal Decomposition was performed on models from The Sunnybrook
Cardiac Data (SCD) [15], also known as the 2009 Cardiac MR Left Ventricle
Segmentation Challenge data, consisting of models from a mixed groups of patients
and pathologies. The data contributor is the Imaging Research, Sunnybrook Health
Sciences Centre, Toronto, Canada. The subset of the data was first used for
automated myocardium segmentation challenge from short-axis MRI, held by
a MICCAI workshop in 2009. The data has already been registered [15]. The
study description indicates the pathology. The patient datasets were classified into
four groups representing diverse morphologies, based on the following clinical
criteria [31]:

I. Heart failure with infarction (SC-HF-I) group had EF < 40% and evidence of
late gadolinium (Gd) enhancement (12 patients)
II. Heart failure with no infarction (SC-HF-NI) group had EF < 40% and no late
Gd enhancement (12 patients)
III. LV hypertrophy (SC-HYP) group (EF > 55%, 12 patients)
IV. Healthy (SC-N) group had EF > 55% and no hypertrophy (nine patients).

Three groups of patients (I, II, and IV) were chosen for further analysis of modal
decomposition. The results were presented for the most exemplary of them.

5.1 Ventricle Models with Heart Failure with Infarction

Modal distribution of the same pathology seems to be comparable between different
patients. Proportional information of mode I does not exceed 60%. As proportional
information we understand the shared information of movement carried by mode.
The same phenomena applies to mode II and ITI. Mode II holds on the level between
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Fig. 4 Proportional information transferred by the modes. Three different patients with heart
failure with infarction presented from left to right
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Fig. 5 Mode amplitudes A in time, for three different patients with heart failure with infarction
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Fig. 6 Amplitude range overview through modal distributions of mode I, II, III for all test cases.
Mode amplitudes A in time (frames of cycle), presented for every test case, mode I and mode II

30% and 42%, while mode III does not exceed 3%. Proportional distribution for
three exemplary patients: men aged 48, 57, 69 is shown in Fig. 4.

Changes of amplitudes in time for the first three modes in Fig. 5 for exemplary
patients are congenial. Transition of graphs appears almost simultaneously (mode
I and III) showing little differences between mode II (patient II and III has similar
progress; the curve of patient I is flattened at the beginning of the cycle).

Figure 6 displays the amplitudes of mode I and II in time for every test case of the
presented group. Thorough analysis will require full medical history of every single
patient, which was not provided in the data. However it is noticeable, that changes
of amplitude are congenial.
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Fig. 7 Proportional information transferred by the modes. Three different patients with healthy
hearts presented from left to right
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Fig. 8 Mode amplitudes A in time, presented for three different patients with healthy hearts
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Fig. 9 Amplitude range overview through modal distributions of mode I, II, III for all test cases.
Mode amplitudes A in time (frames of cycle), presented for every test case, mode I and mode II

5.2 Healthy (SC-N) Group, no Hypertrophy

Exemplary distributions of healthy patients: 63 aged male, 53 aged female, 77
aged female, is presented in Fig. 7. In this case, mode I substantially dominates
in proportional information distribution. There is little influence of modes II and III.
Similar phenomena appeared in the model of left and right ventricle in Sect. 4.

Range of amplitude in time for first three modes in Fig. 8 for healthy patients is
almost identical, even though we compare patients from differing ages and gender.
The averaged value of mode I from acquired dataset is 91.35%.

In Fig. 9 we have presented the amplitudes of mode I and II in time for every test

case of the presented group. The shape of amplitudes is similar, and the tendency is
maintained for every test case in both modes.
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Fig. 10 Proportional information transferred by the modes. Three different patients with heart
failure without infarction presented from left to right
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Fig. 11 Mode amplitudes A in time, presented for three different patients; heart without infarct

5.3 Heart Failure with no Infarction

The third group of patients analyzed in this paper were having heart failure without
infarct. In these cases, achieved data indicates greater influence for mode II in
pathological hearts than for healthy ones. However, it was still less than for patients
with heart failure with infarct. Three exemplary test cases (77 aged male, 82 aged
male, 77 aged female) are presented in Figs. 10 and 11.

Mode amplitude is fluctuating in mode II and III, while mode I is similar in all
presented cases. Average value of mode I for patients with no infarction fluctuates
between 70% and 80%, while mode II exceeds 15%, which is rather unique, and
characteristic for this pathology.

In Fig. 12 we have presented the amplitudes of mode I and II in time for
every test case of the presented group. It is notable, that amplitudes are similar
to these presented in Sect. 5.1. As mentioned before, thorough analysis could be
performed with closer information about patients pathology. However, general trend
of amplitudes is maintained.

6 Discussion and Conclusions

This article concerns the analysis of the motion of the left and right ventricle,
captured from MRI examination. We have proven that such a complex motion might
be modeled with a few degrees of freedom—POD modes and their amplitudes.
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Fig. 12 Amplitude range overview through modal distributions of modes for all test cases. Mode
amplitudes A in time (frames of cycle), presented for every test case, mode I and mode 1T

Modal decomposition gives more insight into the heart than 2D analysis of MRI
slices. This approach is in line with the recent works. Principal Component Analysis
has been already used to analyze the electrocardiogram signals for detection of heart
arrhythmia [32], reduced order modeling [33], and automated diagnosis of cardiac
health [34]. Recently, 4D models are used as an input. Wu et al. [35] use POD to
analyze time-varying, three-dimensional data from ECG-gated multislice cardiac
CT images of human right ventricle and classify pulmonary hypertension. They
state that such approach might provide “new metrics to improve the diagnosis and
understanding of cardiovascular diseases.” Similar approach for cardiac MR and CT
image sequences is used by Perperidis et al. [29].

In our study, already three modes allow to reproduce 99% of the original
properties of the heart motion, to analyze it and compare to the real motion of systole
and diastole. It will make possible the correlation of modal data (modes, amplitudes,
and eigenvalues) with the corresponding pathologies. As the change in the cardiac
cycle will be visible after the spatio-temporal decomposition as well, the designed
model makes the proper diagnosis, preparation for invasive procedures and future
treatment much easier, more cost effective and requiring less time.

The analyzed set is quite small, but preliminary conclusions may be drawn. It
seems that the increased eigenvalue of second mode (related to higher amplitudes)
might be correlated with the aforementioned heart failures. The order of the higher
modes might vary for different subjects. The first modes always represent the
contraction of the ventricles. The differentiation between failing and healthy hearts
is done by comparing ratios of the first mode (failing below 89-91%) and second
mode (failing above 5.1-6.7%), no matter what motion it describes. Unfortunately,
myocardial infarction does not affect noticeably the modal amplitudes and eigenval-
ues. This case requires further study, performed on a larger patients group.

The POD analysis can show abnormalities which cannot be observed in live
time diagnostics, before any dysfunction or symptoms arise. This would allow the
prevention of changes in cardiac muscle by early diagnosis and treatment either
pharmacologically or surgically. A major significance of this work is that we would
be able to diagnose various hearts, including the prenatal heart. MRI examination
is both suitable and safe for in utero scans of the fetal heart. As an example, let us
consider the left ventricle ejection fraction. The normal value is more than 50%,
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when it falls below, it is identified as left ventricle dysfunction. As we know from
its movement we are able to “switch off or disregard” this specific part of the
muscle and we will not receive any important information about the disease, because
the LVEF will remain >50%. This could present in heart infarct, cardiomyopathy,
dangerous heart infections, and other states. The use of POD can show that despite
the normal ejection fraction, another underlying disease may be present. The cardiac
movement preceding the heart conduction system has been known to have been
misdiagnosed. The conductive system leads the impulse to start the systole from
the apex to the bases. Conduction problems with the impulse may not been seen as
a delay of diastole or systole within the muscle segment. The large more obvious
issues are easily appreciated, however, the smaller more subtle issues are not easily
perceived and unfortunately they often go unnoticed. The POD method is ideally
suited for quick diagnosis of these types of abnormalities. Last but not least this is
an excellent tool for the presentation and teaching of cardiac abnormalities, for both
medical students and as a tool for Cardiac specialists.

An important limitation of the method is the need of registration of the data
resulting from medical imaging. While there are software tools for such handling
available, they still do not allow full automation. The quality of the data, like the
resolution of MRI slices, is related to the above—it might influence the order of
(further) modes, their shapes, and eigenvalues.
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