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1 Introduction

Cardiovascular disease, and more specifically atherosclerosis, is considered as one
of the most common causes of death in western societies. Atherosclerosis devel-
opment initiates under the effect of several conditions such as the hemodynamics
environment or the rapid accumulation of lipids and their oxidation. Nevertheless,
atherosclerosis is characterized as an inflammatory disease which starts after the
oxidation of low density lipoproteins (LDL) into the arterial wall and the migration
of monocytes and macrophages at the lesion site [1]. Blood flow and especially low
endothelial shear stress (ESS) and recirculations may cause injuries in the arterial
wall [2]. These regions are usually located near bifurcations, curves, and branches.
It has been shown that ESS affects in different ways the endothelial function altering
the local gene expression and/or the permeability to molecules [2]. This affects
endothelial permeability to LDL molecules and increases LDL accumulation in the
arterial wall [3]. In high risk patients, an invasive treatment is followed, such as
arterial bypass or Percutaneous Coronary Intervention. In coronary artery bypass
grafting (CABG), arterial or vein conduits (grafts) are used to bypass the occluded
arterial region. Stenting is a combination of angioplasty and stent implantation,
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where the tubular wire mesh is positioned in the stenosed arterial region, inflated
and permanently left in order to prevent arterial recoil and restenosis. The evolution
of stents has resulted in improved clinical outcomes, however, there are still some
issues that should be taken into consideration, such as the induced local arterial
injury, the possibility of in-stent restenosis (ISR), as well as the risk for stent
thrombosis (ST) [4].

Image processing algorithms and methodologies have been implemented for the
accurate reconstruction of arteries and computational models have been employed
utilizing the reconstructed arterial segments or trees. In the next sections a multi-
level modeling approach is presented (Fig. 1). More specifically, the first level
regards the arterial reconstruction using the available invasive and non-invasive vas-
cular imaging modalities such as intravascular ultrasound, angiography, computed
tomography, and magnetic resonance imaging. The second level is the modeling
of blood flow and the estimation of ESS at the reconstructed arteries. The third
level is the modeling of LDL and other molecules and cells in the arterial lumen

Fig. 1 Multi-level modeling approach of atherosclerotic plaque development
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and their accumulation into the arterial wall. In the fourth level, plaque growth is
modeled utilizing the results of the previous levels to model the inflammation in the
arterial wall and the formation of foam cells. Data from experimental and animal
studies have been used for the calculation of the parameters which are applied in
the computational models. The fifth level consists of an innovative approach of FFR
calculation, while in the sixth level, our stent deployment modeling approach, we
studied the performance of the Leader Plus stent type expansion inside a patient
specific coronary arterial segment focusing on the arterial stresses in the contact
region with the stent.

2 Multi-Level Modeling of Atherosclerosis

2.1 Level 1: 3D Arterial Reconstruction Using Medical Images

The prerequisite of the modeling approaches which employ the finite element
method is the use of geometries which represent the physical domain. Accurate
modeling of biomechanical systems requires realistic description of the system
geometry. Similarly, modeling approaches in atherosclerosis require an accurate
representation of the arterial segments or arterial trees. The arteries were recon-
structed utilizing various imaging modalities, e.g., intravascular ultrasound (IVUS),
angiography, MRI, computed coronary tomography angiography (CCTA). In the
following sections, the methodologies for 3D reconstruction of arteries based on the
fusion of IVUS and angiography, CT, and MRI are presented.

3D Coronary Artery Reconstruction Using IVUS and Angiography

Coronary artery reconstruction was performed based on the fusion of bi-plane
angiography and IVUS data [5]. Briefly, two orthogonal views of angiography are
acquired and the catheter path is found. Using the orthogonal views, a 3D catheter
path is generated. Active contours are implemented for the automate segmentation
of IVUS frames and the detection of the lumen and media-adventitia borders. In
the next step, the detected borders are placed perpendicularly onto the 3D catheter
path after appropriate absolute orientation of the IVUS frames onto the path. The
outcome of this process was two point clouds that represent the luminal and media-
adventitia wall geometry.

3D Artery Reconstruction Using MRI

MRI imaging can be used for the imaging and consequently the reconstruction of
arteries. Auer et al. introduced an active contour algorithm for the segmentation
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of high-resolution MRI and then proposed a methodology that uses statistical
information to characterize the plaque components [6]. Adame et al. [7] combined
a model-based segmentation algorithm and fuzzy clustering in order to detect the
vessel wall, lumen, and lipid core borders. An interesting study was performed
by Hofman et al. who used Bayesian, K-Nearest neighbor, feed-forward neural
networks, and a combination of Bayes classifier with the Parzen to characterize
the type of the plaque in the carotid arteries [8]. Finally, Liu et al. [9] presented
a Bayesian approach which used the pixel’s intensity, the wall thickness, and the
distance from the lumen to characterize plaque composition.

Our methodology includes four main steps [10]: (i) image acquisition and pre-
processing of T1-Weighted, and Time-of-Flight (TOF) and T2-Weighted images, (ii)
luminal border detection, (iii) outer vessel wall detection, and (iv) characterization
of the composition of the plaque (hemorrhages, calcium, lipid cores, and fibrotic
plaques). Active contours theory is implemented for lumen and outer vessel wall
border detection in TOF and T1-Weighted images, respectively. Moreover, identifi-
cation of the bifurcation is achieved using the theory of connecting components,
while the different plaque types are classified into hemorrhages, calcium, lipid
cores, and fibrotic plaques based on a knowledge-based algorithm. Validation of
the proposed methodology was made using two experts’ annotations (inter-observer
variability for the lumen was �1.60 ˙ 6.70 and for the outer vessel wall was
0.56 ˙ 6.28%) [10]. Plaque type is also accurately characterized after a validation
in 591 images [10].

3D Artery Reconstruction Using CT

Several studies have demonstrated that CCTA provides an accurate analysis of
coronary artery remodeling and is able to detect and quantify atherosclerotic plaque
[11, 12]. Furthermore, different studies have proved the ability of CCTA to assess
plaque burden and classify plaque composition [13]. Voros et al. [14] attempted to
validate three-dimensional, quantitative measurements of coronary plaque by CCTA
using IVUS. In a similar manner, Graaf et al. [15] correlated the metrics calculated
using a fully automated CCTA methodology with those derived by VH-IVUS.
Another study for the quantification of coronary arterial stenoses using CCTA was
presented by Arbab et al. [16]. This approach indicated that CCTA in comparison
with the conventional angiography is able to identify non-invasively patients with
coronary artery disease. Recently, Athanasiou et al. [17] presented an innovative
three-dimensional reconstruction methodology of coronary arteries and their plaque
morphology, using CCTA images.

Our approach includes seven stages (Fig. 2). In the first stage the CCTA images
are pre-processed using the Frangi Vesselness filter [18], which identifies tubular
structures and limits the region of interest (ROI) to vessel candidate regions. In the
second stage, a centerline extraction methodology is applied, using a minimum cost
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Fig. 2 The seven stages of
the proposed artery
reconstruction using CCTA

path approach [19]. In the third stage a weight function for lumen, outer wall, and
calcified plaque is estimated, based on a membership function of Hounsfield Units
(HU) values and the distance from the centerline. This function aims to compensate
different protocols for discriminating lumen, outer wall, and calcified plaque. In the
fourth stage, an extension of active contour models [20] for lumen segmentation is
implemented. In the fifth stage, similar to the previous stage, a level set approach for
outer wall segmentation is implemented. This approach uses as a prior shape for the
outer wall the previously segmented lumen. In the sixth stage, a level set method
is applied for plaque segmentation, taking into consideration calcium objects of
significant size. Finally, in the seventh stage the 3D surfaces for the lumen, outer
wall, and the calcified plaques are constructed.

2.2 Level 2: Blood Flow Modeling

Hemodynamics and especially, shear stress, found to play a considerable role in
the development of atherosclerotic plaques [2]. Blood flow is modeled using the
Navier–Stokes equations. The solution of the Navier–Stokes equations requires
appropriate boundary conditions and in the case of the transient simulation ini-
tial conditions are also needed. We assume that the blood flow is laminar and
incompressible. In addition the blood is considered to be Newtonian or non-
Newtonian. The arterial wall is assumed to be rigid and non-deformable. The inflow
boundary condition is defined by a constant velocity profile or a constant mass flow
rate while at the outlet of the arterial segment we define a constant average pressure
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profile. Finally, at the fixed walls all velocity components are set to be zero (no-
slip boundary condition). In the case of transient flow the inflow is defined by the
volumetric blood flow rate or a time dependent velocity profile. The flow rate is
specified by a waveform, while three cardiac cycles are required as a general rule for
accurate solution of pulsatile simulations. Blood flow modeling has been performed
in several studies using mainly the finite element method [21–24]. Papafaklis et al.
[25] studied the hemodynamics in coronary arteries bifurcation and investigated the
influence of ESS to arterial wall thickening.

The ESS calculation is associated with the arterial geometry especially for
regions of increased stenosis [26]. The presence of stenosis has a dramatic effect
on the local ESS distribution, while tachycardia had a pronounced impact on ESS in
the region of a stenosis with 3–5.7 fold decrease in time-averaged values during one
cardiac cycle, compared to the normal heart rate profile [26]. ESS is also correlated
with neointima formation after stent implantation [27]. In particular, in patients
with bare metal stents (BMS) a negative association was noted between ESS and
neointima burden (p D 0.002) as well as between ESS and the percentage of the
neointimal necrotic core component (p D 0.015). In patients with biolimus eluting
stents (BES), the suppression of neointimal formation did not allow evaluation of the
effect of ESS on its tissue characteristics. Thus, ESS determines not only the amount
but also the composition of the neointima in BMS. In the PROSPECT-CT study
it was found that CCTA-derived variables had a moderate accuracy in detecting
lesions that are likely to progress at follow-up [28]. Performing simulations at 17
bifurcations of the PROSPECT-CT database [29], we found that the Murray’s law
[30] provides the best accuracy to predict disease progression and also that the use
of the side branch in the calculations of ESS is necessary for accurate results. More
specifically, low ESS is an independent predictor of lumen reduction and necrotic
core increase.

2.3 Level 3: LDL Transport Modeling

The third level is the modeling of LDL transport and its accumulation in the arterial
wall. The same principles apply for the HDL transport as well as other cells transport
such as monocytes. The rationale is that LDL is transferred in the arterial lumen not
only by the blood flow (convection) but also by diffusion due to the concentration
difference. Furthermore, LDL/HDL molecules penetrate the endothelial membrane
and accumulate into the arterial wall. In order to model macromolecular transport
in arteries the convection-diffusion equation is employed.



Available Computational Techniques to Model Atherosclerotic Plaque. . . 45

Prosi et al. [31] have classified mass transfer models into three major categories:
(a) the wall-free models, (b) the lumen-wall models, and (c) the multi-layer models.
In wall-free models the arterial wall is non-permeable and the wall thickness is not
taken into account. Hong et al. [32] presented a numerical simulation of pulsatile
flow and macromolecular transport in complex blood vessels. The arterial wall was
assumed rigid and the low density lipoprotein (LDL) molecule was too large to
penetrate the arterial wall. The lumen-wall models are a more realistic approach
since the transport within the lumen is coupled with that in the arterial wall. In these
models, the arterial wall is simplified as a homogeneous porous monolayer. Sun
et al. [33] and Olgac et al. [34] investigated the influence of the ESS on the arterial
mass transport by modeling the blood flow and the solute transport in the lumen
and the arterial wall. The most realistic models are the multilayer models, in which
the arterial wall consists of more than one layers. Mass transport is made in each
layer and interaction between these layers exists. Prosi et al. [31] introduced several
mathematical models, based on partial differential equations, to study the coupled
transport of macromolecules in the blood stream and in the arterial wall.

We have implemented two LDL transport models. The first one has been
proposed by Sun et al. [35]. The second approach enhances the effect of LDL
accumulation in the luminal side assuming that endothelial permeability increases
when the local luminal LDL concentration is high [26]. Finally, another approach
has also been developed which describes a permeability model based on the local
endothelial dysfunction caused by the expression of nitric oxide [36]. Results
of these studies are summarized below. The endothelial permeability is modeled
assuming that the endothelium is a semi-permeable biological membrane. The
Kedem–Katchalsky equations [37] are employed. The permeability term of these
equations is of utmost importance and several experiments and studies attempted
to define it [38]. However, pathological conditions such as hypertension or diabetes
could increase endothelial permeability. Besides the constant endothelial permeabil-
ity model, a variable permeability model which depends on the local luminal LDL
concentration [39] has been developed.

Regarding the LDL transport modeling, we showed in one coronary artery
that hypertension and tachycardia affect LDL accumulation [26]. The model of
endothelial permeability which is based on the local LDL concentration showed that
the clinical impact of LDL in real life is simulated more accurately with this model.
LDL transport modeling was implemented in large arterial datasets in order to
show LDL’s effect to plaque growth using baseline and retrospective imaging data.
The results show that there is a correlation of high LDL accumulation with plaque
growth and especially with plaque burden increase. This finding is observed first in
58 coronary arteries acquired from the PROSPECT database [40]. It was also shown
using a dataset of 12 carotid arteries where for the first time MRI examinations from
three time points are used [41]. However, the accuracy to predict regions of plaque
growth is similar with low ESS leading us to use more sophisticated LDL transport
models, as the one based on the local luminal LDL concentration or the proposed
endothelial dysfunction model which is based on the production of nitric oxide.
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2.4 Level 4: Plaque Growth Modeling

The fourth level of multi-level modeling of atherosclerotic plaque growth is the
modeling of the major mechanisms which underlie the initiation and the formation
of plaque into the arterial wall. The first two studies were presented by Filipovic
et al. [42] and Parodi et al. [43]. Another plaque growth model was presented by
Cilla et al. [44]. It was applied in an artificial axisymmetric geometrical coronary
artery model. The results though it was not implemented into realistic arteries show
that the presented model can simulate the atheromatic plaque growth despite the use
of an artificial geometry.

In this level, we first model the oxidation of LDL. It is the first time that such
a model for the atheroprotective effect of HDL in the oxidation of LDL has been
presented. Thus, experimental data are used to develop a novel LDL oxidation
model [45]. In the next step, the effect of cytokines, the transport of monocytes and
their differentiation to macrophages, and finally the absorption of oxidized LDL
by them to form the foam cells are simulated [46]. The computational model has
been implemented in proof-of-concept studies of animal or human data recruited
during the ARTREAT project or using data from the databases of PROSPECT
and IBIS studies. The first version of the model includes only the modeling of
the LDL oxidation. More specifically, we assume that LDL is oxidized when it
gets inside the arterial wall. However, this mechanism is affected by the existence
of local concentration of HDL which plays an atheroprotective role to plaque
development. The proposed model was based on experimental studies. The model
was implemented in an arterial segment using pig data [47] and the results have
shown that the calculated oxidized concentration of LDL correlates well with
the lipid plaque components found in histological images. In the most complex
form of the plaque growth model, we model monocytes migration but also their
differentiation to macrophages into the arterial wall to finally estimate the formation
of foam cells. This model has been implemented in human arteries (coronaries and
carotids). In both cases the major conclusion is that advanced modeling of plaque
growth is necessary to increase the accuracy to predict the regions which are prone
for disease progression. More specifically, in the carotid artery we found that the
oxidized LDL and macrophages are correlated with lumen reduction and thickness
change, while the prediction accuracy of using all calculated variables in a multi-
variate model increases against of using only the low ESS as a predictor of disease
progression [48]. In a recent proof-of-concept case we demonstrated a validation
scenario of plaque growth modeling using follow-up virtual histology IVUS and
optical coherence tomography data from a human coronary arterial segment. In this
case the prediction accuracy is over 75% when using all variables [46]. The overall
multi-level approach results are shown in Fig. 3.
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Fig. 3 Multi-level rationale of plaque growth modeling. (A–C) 3D reconstruction of coronary and
carotid arteries, (D, G) ESS distribution coronary and carotid artery, (E) LDL accumulation in the
arterial wall in the LDL transport modeling level, and (F, H, I) oxidized LDL, macrophages, and
foam cells accumulation in the arterial wall in plaque growth modeling level
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2.5 Level 5: Computational Prediction of FFR

Fractional Flow Reserve (FFR) is considered the gold standard in every day clinical
practice for the evaluation of the severity of coronary lesions. However, it requires
the use of a dedicated pressure-flow wire, thus increasing the total cost of the
whole examination, as well as the discomfort of the patient. In order to tackle
this issue, several approaches have been reported in literature that combine non-
invasive imaging techniques (CCTA) and the use of computational fluid dynamics
to provide an estimation of the invasively measured FFR [49, 50]. Virtual functional
assessment index (vFAI) has been proposed as an accurate and valid equivalent to
the invasively measured FFR, allowing the evaluation of the hemodynamic status of
an existing coronary lesion in short time. Our method utilizes three-dimensional
(3D) anatomical data from the coronary vasculature and performs blood flow
modeling to calculate the ratio of pressures distal and proximal over the lesion for
flows ranging from 0 to 4 mL/s, normalized by the same ratio for a totally healthy
artery, offering an insight in CAD hemodynamic significance that is numerically
equal to the invasively measured FFR. In coronary angiography derived 3D models,
close correlation (r D 0.78, p < 0.0001) and agreement of vFAI compared to wire-
FFR (mean difference: �0.0039 ˙ 0.085, p D 0.59) was found [51]. Diagnostic
accuracy, sensitivity, and specificity for the optimal vFAI cut-point (�0.82) were
88%, 90%, and 86%, respectively. Regarding CCTA derived 3D models, very good
correlation (r D 0.88, p < 0.001) and strong agreement between vFAI and invasively
measured FFR (mean difference: �0.0039 ˙ 0.04) were also found [52]. The
respective diagnostic accuracy, sensitivity, and specificity for the optimal vFAI cut-
point (�0.84) were 91.7%, 75%, and 96.4%. Finally, in hybrid IVUS-angiography
3D models, a modest correlation (r D 0.84, p D 0.073) was found [53].

2.6 Level 6: Stent Modeling

Computational simulations might be an effective tool for investigating the mechan-
ical performance of stents and evaluating the arterial implications such as in
stent restenosis coming from different stent designs and materials, a process that
cannot be fully assessed in experimental studies [54]. Towards this direction,
several research teams have provided valuable information, either by performing
computational simulations of stent deployment inside idealized arteries, or even
utilizing patient specific imaging data for the reconstruction of arterial segments
[55, 56].

The unexpanded configuration of the 3D finite element model consisted of one
3D reconstructed coronary arterial segment and the Leader Plus stent geometry
(Fig. 4). The mesh was created with 3D higher order ten node elements. The
mesh sensitivity was implemented with a convergence criterion of the maximum
von Mises stresses being within 5%. Stent deployment was performed following a
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Fig. 4 (a) The reconstructed artery and the LeaderPlus stent. (b) Von Mises stress distribution
in the deformed Leader Plus Stent. (c) Von Mises stress at the arterial wall (MPa) during stent
expansion for the applied pressure of 1.2 MPa and 1.5 MPa

pressure driven approach through the application of a pressure directly to the inner
stent surface. To represent the performance of the human tissue, several material
models can be utilized. In our model, the artery was assumed homogeneous with
nonlinear behavior. A polynomial form of the Mooney–Rivlin hyperelastic material
model was used for the arterial wall [57], with the strain energy density function
based on Maurel et al. [58], whereas a bilinear elasto-plastic material model was
employed for the stent. The stent was initially placed in the arterial stenosis region.
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The ends of the artery were not allowed to move or rotate, appropriate boundary
conditions allowed the movement in the axial and radial directions of the stent,
whereas stent inflation was enabled by a pressure of 1.5 MPa. Stent expansion was
achieved under uniform pressure, however, due to the asymmetry of the stenosed
arterial region, stent struts deformed non-uniformly (Fig. 4). The investigation of
the stent response is of great importance since high stent stresses can result in stent
fracture and consequently in arterial injury. High stresses, approximately 550 MPa,
were observed in the stent connectors. During stent deployment, the von Mises
stresses were increasing (Fig. 4) and high von Mises stresses occurred in the arterial-
stent surface.

3 Discussion and Conclusions

A methodological approach for the computational modeling of the major mech-
anisms of atherosclerotic plaque development has been presented in this work.
Until recently 3D reconstruction and blood flow were only utilized to estimate
disease progression. In the current work we propose a multi-level modeling scheme
consisting of the 3D reconstruction level, the blood flow modeling and ESS
estimation level, the LDL transport modeling level, the plaque growth modeling
level but also the stent deployment modeling. Regarding the level of blood flow
modeling, first, we prove the effect of geometry and existed stenosis to ESS
distribution as well as the effect of tachycardia and hypertension. Second, we
associate ESS with disease progression utilizing the CT imaging modality and for
the first time we prove that CT imaging can accurately be used for the calculation
of ESS and disease progression. Third, for the first time we present an analysis
of ESS and neointima formation in arterial segments with deployed stent. Going
beyond the state of the art in LDL transport modeling we presented several novel
models for endothelial permeability as well as different analyses of the effect
of LDL concentration at plaque progression. More specifically, we developed a
model of endothelial permeability and LDL transport which is based on the local
concentration of LDL concentration. The developed model has been applied to
different datasets of arteries demonstrating the ability to predict regions which are
prone for plaque growth.

The major innovation is the development of plaque growth computational
models. This work starts with the development of an LDL oxidation model. The
proposed LDL oxidation model is based not only on the LDL accumulation in the
arterial wall, but also on the HDL concentration which has an atheroprotective role
on disease progression. The last part is the development of a plaque growth model
which simulates the major mechanisms of the atherosclerotic plaque growth process.
These mechanisms beside the LDL oxidation are the migration of monocytes into
the arterial wall under the effect of cytokines expression and their consequent
transformation to macrophages. The appearance of macrophages into the arterial
wall with the existence of oxidized LDL leads to the formation of foam cells.
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In this model we included all these mechanisms. We applied the proposed model
in several cases (one carotid artery and three coronary arteries) and the comparison
of the simulation results with the retrospective follow-up data prove that our model
is highly promising for a new kind of thinking in the field of atherosclerotic plaque
development. More specifically, until now low ESS is considered as a predictor of
disease progression without, however, accurate results. Complex modeling of plaque
growth increases the accuracy of disease prediction.
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