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1 Introduction

Malignant gliomas are the most common primary brain tumors, accounting for
approximately 70% of the 22,500 new cases of primary brain tumors annually
diagnosed in adults in the USA [1]. The heterogeneity and infiltrative nature
of gliomas suggests that a resection within or adjacent to the eloquent areas is
challenging and carries a risk of post-operative neurologic deficit [2]. Therefore,
the main challenge for neurosurgeons in glioma surgery is to achieve a maximal
tumor resection while still preserving eloquent areas.

Image-guided neurosurgery (IGNS) has yielded faster, safer, and more effective
minimally invasive procedures [3–8]. During the procedure (i.e., after the opening
of the skull and dura), the shape of the brain changes because of the cerebrospinal
fluid drainage, gravity, the application of dehydrolyzing agent, and other operations
(i.e., resection, retraction), introducing discrepancies in relation to the pre-operative
configuration. Interventional MRI can compensate for the intra-operative brain
deformation. However, the acquisition of other image modalities (fMRI, DT-MRI)
is impractical due to long processing time (e.g., a 3T MAGNETOM Verio scanner
requires about 20 min to acquire a DT-MRI and more than 30 min to acquire a
BOLD fMRI).

Commonly, commercial systems exclusively use rigid registration to project the
pre-operatively acquired imaging (MRI, fMRI, and DT-MRI) into the navigational
system; however, a number of studies have tracked surface points in the brain
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and reported that movements on the order of a centimeter or more can occur
intra-operatively [9]. Additionally, shift can occur in deep subcortical white matter
because of tissue retraction, lateral ventricle, and the application of a dehydrolyzing
agent. Therefore, a non-rigid registration is necessary to accurately capture the soft
tissue deformation induced by tumor resection.

A commonly used non-rigid transformation model is based on the finite element
method (FEM). FE biomechanical models allow more principled control of local-
ized deformations and have been applied to improve the efficacy and efficiency
of brain surgery [3–8, 10–13]. An FE model is represented by a series of Partial
Differential Equations (PDEs), which describe the physical deformation of the
underlying tissues. The tissues are delineated in the image by using a segmentation
technique [14, 15]. The segmented image is tessellated into a volumetric mesh and
each element is assigned to a local physical description of the anatomical structure
to which it belongs. To find the numerical solution of the PDEs, constraints are
applied to the model, and a linear system of equations is solved to compute the
displacements on the mesh vertices. A dense deformation field can be estimated by
interpolating the computed mesh displacements at each image voxel.

Meshless methods have been presented as alternatives to FE methods. A
Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithm was developed
to compute soft tissue deformation in surgical simulation [16]. This method was
accurate in terms of overall reaction forces but not quite as good with individual
displacements or forces. In [17] a MTLED-based suite of algorithms was used to
perform a comprehensive patient-specific surgical simulation. The results obtained
using MTLED were as useful and accurate as those obtained with the FE method.

The produced non-rigid transformation can be useful to create augmented reality
visualizations of pre-operative multi-modal imaging (MRI, fMRI, DT-MRI) with
iMRI, and thus to facilitate real-time resection guidance in glioma surgery involving
language areas and neighboring subcortical motor pathways (e.g., Pyramid Tracts).
Figure 1a depicts such a visualization. The DTI tractography is shown in real-time
together with a tumor model (red) during the neurosurgical resection.

The augmented reality visualization helps neurosurgeon to achieve an appropri-
ate volumetric resection while preserving neighboring subcortical motor pathways.

The aim of this paper is to evaluate the efficiency (i.e., accuracy, robustness)
of two adaptive biomechanical non-rigid registration methods [3, 4] to compen-
sate for the brain deformation induced by cerebral glioma resection. The first
method employs a point/element outlier rejection scheme integrated into a Nested
Expectation and Maximization framework to simultaneously resolve the point cor-
respondence, the deformation field, and the resection region. The second approach
iteratively estimates a dense deformation field by inclemently and accurately
incorporating small changes in the geometry of the domain resulted by tumor
resection. The evaluation performed on MRI data from ten patients who underwent
partial, complete, and extended glioma resection at Huashan Hospital. Structural
MRI (SPGR, MP-RAGE, FLAIR, T2w) were acquired prior and during each surgery
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Fig. 1 (a) Non-rigid alignment of pre-operative DTI tractography with iMRI. The fused image
shows that the partially resected tumor is directly adjacent to the Pyramid Tracts. (b) Multi-
tissue mesh (number of tetrahedra: 160,179; minimum dihedral angle: 4.41ı). Top row: mesh
superimposed on MRI. Cyan and red represent the surface of the brain parenchyma mesh and the
tumor mesh, respectively. Bottom row: mesh fidelity illustrated on an axial, sagittal, and coronal
slice. Each slice depicts an intersection between the mesh surface (cyan and red lines) and the
segmented volume (green and yellow regions). The closer the mesh surface to the physical image
boundaries, the higher the mesh fidelity

with a 3T movable scanner. The registration accuracy was assessed on totally 40
volumetric alignments by: (i) a visual inspection, (ii) a Hausdorff Distance (HD)-
based error metric, and (iii) a landmark-based error measured by neurosurgeon.

2 Materials and Methods

2.1 Patient Population

Ten patients with an age range of 19–75 years underwent surgery on a single,
unilateral, and supratentorial primary glioma from September 2010 to August 2013.
The lesions involved in Pyramid Tracts (PTs) were in cortical regions in the motor
or somatosensory areas, cortical regions adjacent to the central gyrus, subcortical
regions with an infiltrative progression along the PTs, and/or deep temporal or
insular regions in relation to the internal capsule. Pre- and intra-operative brain
images were obtained in the integrated neurosurgical suite (IMRIS, Winnipeg, Man-
itoba, Canada) using a ceiling-mounted movable 3.0 T MAGNETOM Verio scanner
(Siemens AG, Erlangen, Germany) with a 70 cm working aperture. A neurosurgeon
categorized the image data as: (i) Partial Tumor Resection (PTR), (ii) Complete
Tumor Resection (CTR), and (iii) Extensive Tumor Resection (ETR). Table 1 lists
the clinical data.
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Table 1 Clinical MRI data

Image Size (voxels) Image Spacing (mm)
# Genre Type Pre-op Intra-op Pre-op Intra-op

1 M PTR 448 � 512 � 176 512 � 448 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1
2 M PTR 448 � 512 � 80 512 � 456 � 66 0.468 � 0.468 � 2 0.468 � 0.468 � 2
3 M PTR 448 � 512 � 176 512 � 448 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1
4 M CTR 512 � 448 � 176 512 � 448 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1
5 F CTR 448 � 512 � 176 448 � 512 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1
6 M CTR 448 � 512 � 176 384 � 512 � 144 0.488 � 0.488 � 1 0.488 � 0.488 � 1
7 M ETR 448 � 512 � 144 448 � 512 � 144 0.488 � 0.488 � 1 0.488 � 0.488 � 1
8 F ETR 512 � 456 � 66 456 � 512 � 66 0.468 � 0.468 � 2 0.468 � 0.468 � 2
9 F ETR 512 � 456 � 66 512 � 456 � 68 0.468 � 0.468 � 2 0.468 � 0.468 � 2
10 M ETR 448 � 512 � 176 448 � 512 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1

PTR partial tumor resection, CTR complete tumor resection, ETR extensive tumor resection

2.2 Segmentation

The biomechanical non-rigid registration in this study requires a pre-operative
segmentation. Pre-operative imaging is usually acquired few days before the first
intra-operative acquisition, therefore any computational requirements of a pre-
operative segmentation are easily satisfied. Before the segmentation, the brain is
extracted from the skull using the BET tool [14]. Then a combination of automatic
operators implemented in 3D Slicer (i.e., region growing and level-set filters) [15]
and a slice-by-slice manual segmentation is performed to correct any erroneously
included regions. An evaluation on how the segmentation accuracy affects the
registration accuracy is beyond the scope of this paper, however, it will be included
in our future work.

2.3 Rigid Registration

The first intra-operative scan is acquired after the head of the patient is positioned for
the craniotomy and fixed but before the opening of the skull. At this stage no brain
shift occurs. A Rigid Registration (RR) was performed with the BRAINSFit module
in 3D Slicer v4.4.0 [18] to compensate for any translations or rotations between the
pre- and the intra-operative image. RR uses a Versor Rigid 3D Transform (VR3DT)
to apply a rotation and translation to the space. RR relies on histogram bins and
spatial samples to estimate a Mattes Mutual Information (MMI) cost metric for the
alignment. The larger the number of samples, the slower and more precise the fit.
In order to achieve higher accuracy, we set 100 histogram levels and 5% sampling
percentage (50 and 0.2% are the default values, respectively). For the rest of the RR
parameters we used the default values.
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2.4 Adaptive Non-Rigid Registration

The last 10 years we explored the feasibility of three biomechanical non-rigid
registration methods to compensate for the brain deformation induced by tumor
resection: (i) A Physics-Based Non-Rigid Registration (PBNRR) integrated on ITK
and 3D Slicer [19]; (ii) A Nested Expectation-Maximization Non-Rigid Registration
(NEMNRR) [3, 20]; (iii) An Adaptive Physics-Based Non-Rigid Registration (APB-
NRR) [4, 21]. NEMNRR, and APBNRR are adaptive; PBNRR is non-adaptive.

The above non-rigid registration methods do not simulate the skull or an
interaction between the brain parenchyma and the skull. Before the registration,
the pre-operative and the intra-operative intracranial brain cavities are extracted
from the skull [14]. A sparse displacement field is computed from the distances
between features in the pre-operative intracranial cavity and their corresponding
features in the intra-operative intracranial cavity. PBNRR and APBNRR rely on a
cross correlation metric to compute the corresponding features. NEMNRR relies
on a Gaussian distribution function. A tetrahedral mesh of the brain parenchyma
is generated from a segmented pre-operative intracranial cavity and the sparse
displacement field is applied on the mesh nodes. The prescribed displacement field
implicitly accounts for a brain–skull interaction in the case where corresponding
features are located on the surface of the brain parenchyma. In this study, the nodes
on the parenchyma surface are free to translate in three-dimensions as no explicit
interaction between the brain and the skull is assumed.

A linear assumption is used for the displacements and the materials of the model.
The values of the mechanical properties of the isotropic materials (i.e., Young’s
modulus, Poisson ratio) were obtained from [8]. These values were extrapolated
from best-fit data obtained in porcine studies. For tumor, a value ten times stiffer
than that for normal tissue is used (Table 2). The adaptive methods employ a het-
erogeneous model (brain parenchyma, tumor). The non-adaptive method employs a
homogeneous model (brain parenchyma). The quality of the tetrahedral mesh (e.g.,
dihedral angle) influences the accuracy of the numerical solution of a linear system
of equations and thus, the correctness of the estimated transformation. The higher
the quality of the elements (e.g., the larger the minimum dihedral angle), the better
the conditioning of the coefficient matrix and, consequently, the convergence of the
linear solver. Figure 1b depicts a multi-tissue mesh used for biomechanical non-rigid
registration. Parameter ı (Table 2) determines the size of the mesh (ı > 0).

NEMNRR formulates the registration as a three-variable (point correspondence,
deformation field, and resection region) functional minimization problem, in which
point correspondence is represented by a fuzzy assign matrix, deformation field
is represented by a piecewise linear function regularized by the strain energy of
a heterogeneous biomechanical model, and resection region is represented by a
maximal connected tetrahedral mesh. This method utilizes a point/element outlier
rejection incorporated into a Nested Expectation and Maximization framework to
simultaneously resolve these three variables. Figure 2 illustrates the NEMNRR
framework.
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Table 2 Parameters for non-rigid registration

Parameter Value Description Method

Connectivity
pattern

face Pattern for block selection PBNRR, APBNRR

Fs 5% % selected blocks from total
number of blocks

PBNRR, APBNRR

Bs , x � Bs , y � Bs , z 3 � 3 � 3 Block size (in voxels) PBNRR, APBNRR
Ws , x � Ws , y � Ws , z 9 � 9 � 3 (PTR),

13 � 13 � 3
(CTR, ETR)

Block matching window
size (PBNRR, APBNRR) or
Search range (NEMNRR)
(voxels).

All

R 0.93 Annealing factor NEMNRR
• 5 Mesh size All
Eb , vb 2.1 KPA, 0.45 Young’s modulus, Poisson

ratio for brain parenchyma
All

Et , vt 21 KPA, 0.45 Young’s modulus, Poisson
ratio for tumor

NEMNRR, APBNRR

Fr 25% % of rejected outlier blocks PBNRR, APBNRR
Nrej 10 Number of outlier rejection

steps
PBNRR, APBNRR

Niter , . max 10 Max number of iterations APBNRR
Nb0 , min 1% of the total

number of
blocks

Minimum number of blocks
without a correspondence

APBNRR

All: PBNRR, NEMNRR, APBNRR

APBNRR iteratively estimates a dense deformation field by inclemently and
accurately incorporating small changes in the geometry of the domain resulted
by tumor resection. The computation of the dense field is facilitated by a sparse
displacement vector associated with highly discriminant blocks inside the cranial
cavity, and a heterogeneous biomechanical model which describes the physical
deformation of the brain. After each deformation, the quality of the elements
deteriorates, and thus the model is globally re-meshed in real-time using a Delaunay
meshing algorithm [22] to avoid the heavily distorted elements, and to recover the
anatomical boundaries with geometric guarantees. Figure 3 illustrates the APBNRR
framework. The model is globally re-meshed from a warped segmented image to
capture not only the brain deformations but also the complex geometric changes
nearby the tumor margins, while maintaining throughout the process meshes with
good quality elements—critical for the accuracy and convergence rate of the solver.
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Fig. 2 Nested Expectation Maximization framework [3]. In the horizontal direction, the inner
EM iteratively estimates the correspondence and the deformation field until no point outliers are
detected. In the vertical direction the outer EM rejects the element outliers and computes the
resected region

Fig. 3 APBNRR framework [4]. The red arrows show the execution order of the different modules
in the loop. The loop breaks when the number of blocks without correspondence is less than a
threshold or when the maximum number of iterations has been reached
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3 Results

We performed an evaluation on imaging data from ten patients underwent partial,
complete, and extended glioma resection. We assessed the registration accuracy with
a visual inspection, a Hausdorff Distance (HD)-based error metric, and a landmark-
based error measured by a neurosurgeon. Table 2 presents the parameters used for
the non-rigid registration. More details about the parameters of each method are
given in [3, 4, 19].

3.1 Visual Assessment

In most applications, careful visual inspection remains the first and most important
validation check available for previously unseen data. Figure 4 depicts a qualitative
assessment for six patients of this study. For each patient, we depict an intra-
operative MRI, a registered pre-operative MRI, and a subtraction between the
intra-operative and the registered pre-operative MRI. Based on Fig. 4, APBNRR
aligns more accurately the MR images and preserves the brain morphology during
the neurosurgical resection, especially near the tumor margins. The assessment
shows that the quality of the alignments is not significantly affected by the
volumetric resection (partial, complete, or extended). In contrast, the other methods
show significant misalignments near the tumor cavities.

3.2 Quantitative Assessment with the HD Metric

We employed a publicly available implementation of the Hausdorff Distance (HD)
metric [23] to quantitatively evaluate the registration accuracy. This metric is a
measurement of the degree of mismatch between two point sets. The first set is
extracted from the pre-operative volume, and then it is transformed according to
the estimated deformation field. The second point set is extracted from the intra-
operative volume. The HD metric is computed between the transformed point
set and the fixed point set. For the point extraction, we employed a Canny edge
detection implemented in ITK. Compare to a previous evaluation of the registration
accuracy [5], this study uses the 100% HD metric. The smaller the HD value, the
more precise the alignment (HD � 0). The ideal case with perfect alignment is when
HD is equal to 0. The ratio D HDX/HDY denotes how many times more accurate one
method is when compared to another. When ratio > 1 then method Y is ratio times
more accurate than method X. Table 3 presents the results. We computed a total of
40 HD errors. APBNRR achieved the smallest error in each individual case, and the
smallest average error (3.69 mm) among all the methods. APBNRR is on average,
6.83, 6.41, and 6.34 times more accurate compared to RR, PBNRR, and NEMNRR,
respectively.
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Fig. 4 Qualitative evaluation of the registration accuracy. Each row represents a single case. We
depict the same representative slice for all the images belonging to the same row. The results were
confirmed by a neurosurgeon who inspected the full registered volumes. From top to bottom row:
PTR cases 1, 2; CTR cases: 4, 5; ETR cases: 7, 9. From left to right column: (a) intra-op MRI;
(b) RR pre-op MRI; (c) PBNRR pre-op MRI; (d) NEMNRR pre-op MRI; (e): APBNRR pre-op
MRI; (f): (a) subtracted from (c); (g): (a) subtracted from (d); (h): (a) subtracted from (e)

3.3 Quantitative Assessment with Anatomical Landmarks

A neurosurgeon quantitatively evaluated the alignment accuracy on six anatomical
locations, as suggested in [24]. The neurosurgeon selected six landmarks in the pre-
operative volume and identified their correspondent locations in the intra-operative
volume. Two landmarks were selected at the cortex near the tumor depending on the
shift of the brain surface; other two landmarks were selected at the anterior horn and
at the triangular part of the lateral ventricle; the last two landmarks were selected
at the junction between the pons and mid-brain and at the roof of fourth ventricle.
For each landmark, the error was calculated as the distance between the physical
location of the point in the intra-operative volume and its transformed location in
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Table 3 Quantitative evaluation of the registration accuracy with a HD metric

Case Type HDRR HDPBNRR HDNEMNRR HDAPBNRR
HDRR

HDAPBNRR

HDPBNRR
HDAPBNRR

HDNEMNRR
HDAPBNRR

1 PTR 16.15 15.12 15.08 4.60 3.51 3.29 3.28
2 PTR 26.89 26.89 23.87 4.00 6.72 6.72 5.97
3 PTR 29.93 27.76 28.11 2.83 10.58 9.81 9.93
4 CTR 17.90 15.56 16.84 4.11 4.36 3.79 4.10
5 CTR 30.37 28.96 28.96 3.13 9.70 9.25 9.25
6 CTR 23.22 21.44 21.27 3.08 7.54 6.96 6.91
7 ETR 17.59 16.63 15.20 4.19 4.20 3.97 3.63
8 ETR 32.32 30.13 30.20 3.45 9.37 8.73 8.75
9 ETR 18.48 18.15 17.86 3.97 4.65 4.57 4.50
10 ETR 27.07 24.91 25.16 3.54 7.65 7.04 7.11
Average 23.99 22.56 22.26 3.69 6.83 6.41 6.34

HDRR, HDPBNRR, HDNEMNRR, and HDAPBNRR are the alignment error after an RR, PBNRR,
NEMNRR, and APBNRR registration, respectively
PTR partial tumor resection, CTR complete tumor resection, ETR extensive tumor resection. All
errors are in mm

Table 4 Quantitative evaluation of the registration accuracy with six anatomical landmarks
identified by a neurosurgeon

Method Average min error Average max error Average mean error

RR 3.49 11.96 7.27
PBNRR 1.72 9.94 5.38
NEMNRR 2.31 11.76 6.01
APBNRR 1.52 9.05 4.71

The values are the average minimum, maximum, and mean errors computed on the six anatomical
locations, from ten patients. All errors are in mm

the registered volume. For each patient, we calculated a minimum, a maximum,
and a mean error based on six landmarks. We then calculated their corresponding
average errors for ten patients. Table 4 presents the results. The landmark-based
assessment confirms that the APBNRR provides the most accurate alignments on
the specific anatomical locations. APBNRR exhibits the lowest average mean error
(4.71 mm) which may be clinically useful.

4 Conclusion

A retrospective study was carried out on volumetric MRI data acquired from ten
patients. The patients underwent an incomplete, complete, and extensive glioma
resection at Huashan Hospital. The accuracy of the alignments was assessed with
a: (i) robust HD metric, (ii) anatomical points identified by a neurosurgeon, and
(iii) visual assessment inspected by a neurosurgeon.
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The experimental evaluation confirmed that a geometric-based adaptive
deformable registration approach exhibits the most accurate alignments among
all the methods in this study, independently of the volumetric resection (PTR, CTR,
or ETR). This method significantly reduces the error due to rigid registration
commonly used by commercial neuronavigators within the time constraints
imposed by neurosurgery. Indeed, it completes a volumetric alignment, on the
average, in 137.90 s (including I/O) on a Linux workstation with 12 Intel Xeon
X5690@3.47 GHz CPU cores and 96 GB of RAM.

We observed differences between the alignment errors measured with a Haus-
dorff Distance metric and manually identified anatomical landmarks. We believe
that, this is because the HD approach computes the degree of mismatch between two
point sets A , B by measuring the distance of the point of A that is farthest from any
point of B and vice versa, but there is no explicit pairing of points of A with points
of B [25]. On the other hand, the landmark-based approach measures the Euclidian
distance between two but corresponding points, though in some applications (e.g.,
inter-subject brain registration) the true point-to-point correspondence can never be
known and may not even exist.
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