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Preface

Extending the success of computational mechanics to fields outside traditional
engineering, in particular to biology, the biomedical sciences, and medicine,
has been recognised as one of the greatest challenges facing the computational
engineering and computational mechanics communities. While advancements are
being made towards clinically relevant computational biomechanics models and
simulations, there is still much work ahead before personalised medicine under-
pinned by personalised computer simulations becomes a part of healthcare.

The first volume in the Computational Biomechanics for Medicine book series
has been published in 2010. Since then, the book has become an annual forum
for specialists in computational sciences to describe their latest results and discuss
the possibility of applying their techniques to computer-integrated medicine. This
eighth volume in the Computational Biomechanics for Medicine book series com-
prises 14 of the latest developments in solid biomechanics, vascular biomechanics,
multi-level modelling and brain biomechanics, from researchers in Australia, New
Zealand, China, Belgium, France, Germany, Greece, Poland, Sweden, United
Kingdom and the USA. Some of the topics discussed are as follows:

• Tailored computational models
• Traumatic brain injury
• Soft tissue damage
• Soft tissue mechanics
• Medical image analysis
• Disease mechanisms and progression
• Clinically relevant simulations

The Computational Biomechanics for Medicine book series does not only
provide the community with a snapshot of the latest state of the art, but more
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vi Preface

importantly, when computational biomechanics and patient-specific modelling are a
mainstay of personalised healthcare, it will serve as a key reminder of how the field
has overcome one of its greatest challenges.

Crawley, Perth, WA, Australia Adam Wittek
Crawley, Perth, WA, Australia Grand Joldes
Auckland, New Zealand Poul M.F. Nielsen
Crawley, Perth, WA, Australia Barry J. Doyle
Crawley, Perth, WA, Australia Karol Miller
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The Effects of Geometric Variation
from OCT-Derived 3D Reconstructions
on Wall Shear Stress in a Patient-Specific
Coronary Artery

Lachlan J. Kelsey, Carl Schultz, Karol Miller, and Barry J. Doyle

1 Introduction

In 2013, coronary artery disease (CAD) was the most common cause of death
globally, resulting in 8.14 million deaths worldwide [1]. While the underlying
mechanisms of CAD are not entirely understood, it is generally accepted that
atherosclerosis is the main cause [2, 3]. The risk factors for atherosclerotic plaque
formation in the coronary arteries are typically systemic in nature: i.e. diabetes, high
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2 L.J. Kelsey et al.

cholesterol and hypertension. However, the local site specificity of atherosclerotic
plaques has been shown to depend on the local haemodynamic behaviour and shear
stress experienced by an artery’s endothelial layer. Plaques are generally located
at regions of disturbed flow and low endothelial shear stress. The wall shear stress
(WSS) experienced by endothelial cells ultimately influences their phenotype and
therefore the inflammatory component of plaque progression [4, 5].

Modelling an arteries’ haemodynamics with computational fluid dynamics
(CFD) can be used to predict the blood flow behaviour in large arteries, such
as the aorta, renal or carotid arteries (e.g. [6]). Common imaging methods such as
computed tomography (CT) and magnetic resonance imaging (MRI) have enabled
accurate reconstruction and modelling of the patient-specific human anatomy
of these regions. However, imaging the coronary arteries is technically more
challenging, as the spatial resolution of images limits our ability to reconstruct
anatomically correct geometries [7]. In order to provide an evaluation of coronary
artery stenosis severity in clinical practice, angiographic images are commonly used
to create three-dimensional (3D) coronary artery reconstructions [8]. However, these
reconstructions (which determine the vessel centreline from angiography) typically
assume that the vessel is either circular or elliptical in cross-section, which results
in an artificial smoothing of the lumen surface [7]. To increase the fidelity/lumen
detail of these biplane angiography reconstructions, cross-sectional information
may be acquired/derived from intravascular ultrasound (IVUS) or, more recently,
intravascular optical coherence tomography (OCT), and registered along the vessel
centreline. Aside from lumen detail, both IVUS and OCT imaging modalities
provide useful diagnostic and prognostic information. OCT clearly shows high-risk
features such as thin fibrous caps, inflammation and lipid pools, while IVUS allows
for visualisation of atherosclerotic plaques [9].

Biplane angiography with IVUS was used in the PREDICTION study [10],
which showed that CFD-computed low WSS regions correlated with regions of
future plaque progression and lumen narrowing. While proven useful, the resolution
of IVUS is an order of magnitude lower than OCT (i.e. 150 �m vs. 10 �m), and
thus more likely to cause the loss of spatial information, important to accurate
model reconstruction (particularly in stented arteries) [11–15]. However, both
imaging modalities are limited by their axial/longitudinal resolution (�200 �m
distance between images). The level of artery wall detail is expected to underpin
predictions of plaque deposition through better estimation of WSS. Therefore,
coupling OCT data with image registration and vessel reconstruction methods to
create 3D coronary artery models for CFD analysis is becoming more common
[7, 9, 11, 14, 16]. However, in non-stented vessels, previous work has highlighted
that simplifications to biplane angiographic models have had little impact on
WSS estimation [8]. Furthermore, the benefit that intravascular imaging brings to
WSS estimation, i.e. biplane angiography with IVUS [17], has been shown to be
dependent on the geometry, as reasonably expected. Regarding this, CFD models
based on coronary CT-derived geometries have emerged as a non-invasive means to
estimate WSS fields which correlate with the site specificity of plaque (e.g. [18]).
This is promising given the utility and availability of CT.
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When compared to other methods, notably coronary CT, the imaging and
reconstruction of OCT is relatively time-consuming, but provides the greatest level
of wall detail. However, the presence of the guidewire shadow in OCT images is a
limitation, and depending on the geometric features present, the segmentation of the
artery lumen can require a high (or low) contour (point) resolution [19].

This study explores how changes to the resolution of an active contour model
(or SNAKE [20]) affect the lumen-segmentation of an OCT-imaged left anterior
descending (LAD) coronary artery. Similar to previous studies using biplane
angiography (without IVUS or OCT) [8], the primary objective is to see how small
variations in geometric detail affect the haemodynamics within the vessel (WSS
computed from CFD) and provide comment on the merit of the reconstruction
method used. The proximal end of the LAD coronary artery contains a stent, which
may impact the performance of the active contour model, while the results are
expected to change less in the distal end of the artery.

2 Method

2.1 Geometry Reconstruction

Three versions of a LAD coronary artery geometry were reconstructed from OCT
image sets (acquired using Dragonfly OPTIS imaging catheters; St. Jude Medical,
St. Paul, MN, USA). The in-plane pixel resolution of the OCT images was 10 �m,
while the axial distance between OCT images was 200 �m. For each reconstruc-
tion, a different point resolution was used to trace the lumen contours. These
resolutions contained 25, 50 and 100 points, respectively. The highest resolution
reconstruction (100 Pts.) was considered to be geometrically accurate. The lumen
contours were traced using an active contour function (MATLAB function Snake2D,
copyright 2010, Dirk-Jan Kroon) previously used for OCT reconstruction [7],
where a deformable spline is used to outline object contours using gradient vector
flow [20]. This results in a non-uniform distribution of points discretising the
lumen perimeters. For the 100 pt., high-resolution contours the average (in-plane)
displacement between contour points was approximately 87 �m, however, at regions
of extreme curvature the lumen discretisation reduced to OCT pixel size (�10 �m).
The average displacement between contour points for the 50 and 25 pt. contours
was two and four times greater than the 100 pt. contours, respectively. However,
at regions of extreme curvature the minimum distances between points on the 50
and 25 pt. contours were larger than the OCT pixel size, with an average minimum
discretisation size of 55 and 230 �m, respectively.

While the reconstruction method used here closely follows that of Kousera et al.
[7], there are a few distinctions. Kousera et al. investigated single conduit geometries
and registered their OCT-lumen contours along manually traced centrelines (using
multiple angiography projections). However, in our study the OCT geometry is
registered along a CT-derived centreline and merged with CT to include branching
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arteries (such as the circumflex) and a distal bifurcation. The 3D CT-reconstruction
(0.4 mm pixel size) and centreline calculation were performed using MIMICS
v18 (Materialize, Belgium). The inclusion of side branches has been shown to
improve the estimation of WSS [16]. The side branches also serve as landmarks
which guide the orientation of the OCT-lumen contours along the vessel centreline.
This approach follows previous work [16, 21], where the necessary rotations and
longitudinal displacements were interpolated in the absence of local landmarks.
Additionally, while not present in previous OCT-CFD models, idealised (circular)
branching arteries have been included where visible on OCT but not visible on CT
(or of insufficient CT-resolution to be reconstructed).

While calculating the OCT-lumen contours using the active contour algorithm,
slight modifications to the previous method [7] were implemented to improve the
success rate of the contour algorithm and reduce the need for image thresholding.
This was done by altering the initial condition used by the contour algorithm. Instead
of using a circle as the initial contour, the initial contour was calculated to more
closely fit the lumen. To do this, the guidewire centre-point (stored during the
guidewire removal; Fig. 1) was used as an initial estimate of a false lumen centroid,
and the following steps were performed:

• Radially search the greyscale OCT image for the points of maximum brightness
about the centroid.

• Remove any points whose radius is more than 1.5 standard deviations outside of
the mean radial distance.

• Estimate a new centroid from the remaining points (the centroid of a polygon).
• Repeat this process until the change in the position of the new centroid is

negligible.
• Smooth the point cluster with a moving average (11 nearest neighbours) and

shrink its radii by 15%. This is the initial contour for the active contour algorithm
(Fig. 1).

It should also be mentioned that, in order to completely reconstruct the LAD
coronary artery, three OCT image sets were required as each OCT pullback is only
54 mm in length (270 images). The position of the patient’s stent was a useful
landmark which helped determine OCT contour orientations, and the nature of the
connection between the OCT image sets (Fig. 2). A contour matching algorithm
was implemented to find the rotational mismatch between overlapping contours.
The mean and root-mean-square (RMS) of the difference in the magnitude of the
radial vectors of each contour were minimised in this process.

2.2 CFD Mesh

The volume mesh was constructed within STAR-CCMC v10.06 (CD-adapco
Group) using a core unstructured polyhedral mesh and a prism-layer mesh near
the wall boundary. The prism-layer mesh was progressively refined approaching
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Fig. 1 Determining the lumen of an OCT image (greyscale). The two discontinuities in the artery
wall are the guidewire shadow (top left) and a branching artery (bottom left)

the wall and the thickness of the prism-layer mesh and the surface size (edge
length) were defined relative to the local lumen diameter. Curvature refinement was
performed with a minimum surface size of 10 �m to ensure that details present
in the geometries were not lost during meshing (Fig. 3). A conservative first-order
Laplacian smoothing operation was applied to all three geometries before meshing
to remove any unnatural transitions between neighbouring OCT contours, as well
as attached branches. The outlets of the geometry were (normally) extruded by
11 times their diameter creating layers of prismatic cells to ensure that the outlets
boundaries were isolated from the region of interest to avoid non-physical behaviour
and instability in the numerical solution. Note that the polyhedral mesh was chosen
over the more common tetrahedral mesh as it offers (finite-volume) solutions of
similar accuracy at lower cost [22].
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Fig. 2 Reconstructed LAD coronary artery geometries. The lower (distal) end of the stent is
indicated on the medium-resolution geometry (the entire LAD coronary artery is stented above
this point). OCT images (a) and (b) show the (similar) behaviour of the active contour model in
the stented and non-stented regions of the geometry, respectively

Fig. 3 Mesh cross-section and surface refinement (high-resolution geometry)

In order to determine a sufficient level of (uniform) mesh refinement, the Grid
Convergence Index (GCI) [23] was investigated for the flow conditions outlined in
Sect. 2.3, for both the low- and high-resolution geometries (derived from 25 pt. and
100 pt. active contours, respectively). The same meshing parameters were used for
each of the geometries and the GCI was determined for the average WSS on the
LAD surface, the pressure at the inlet and the velocity throughout the domain (sum
of scattered probes). The meshes were deemed optimal when the GCI was less than
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2% for all the variables considered [24]. This resulted in meshes of 0.9, 1.2 and
1.7 million cells, respectively, for the three geometries (low-, medium- and high-
resolution). The greater number of cells in the high-resolution geometry mesh is
attributable to the curvature refinement undertaken to preserve geometric features
and a slow volumetric growth rate away from these regions.

2.3 Physical Assumptions and Boundary Conditions

The blood flow was approximated as laminar and was considered to be an isother-
mal, incompressible, (Carreau-Yasuda, generalised) non-Newtonian fluid with an
infinite-shear viscosity of 0.0035 Pa s and a density of 1050 kg/m3 [24–26]. The
walls of the arteries were characterised by a no-slip, rigid wall boundary condition
[27, 28] and the Navier–Stokes and continuity equations were solved using STAR-
CCMC (using a finite-volume discretisation and a second order upwind convection
scheme). The convergence of each solution was considered to be achieved once
the variables measured for determination of GCI were stable, and were supported
by low (iterative) residuals (i.e. 10�12 RMS-absolute error for each direction of
momentum and continuity).

As previous reports have shown that the WSS fields resulting from steady-state
and transient simulations matched qualitatively [29], the geometries were compared
for a steady-state flow field. The inlet flow (left main coronary artery) was set to
an assumed mean diastolic flow-rate of 57 mL/min [30] (Reynolds Number D 130),
which is half the maximum flow-rate. The flow-rate out the patient’s circumflex was
29% of the inlet flow [31]. For the remaining (unquantified) LAD coronary artery
outlets, the flow was split according to Murray’s law, where the flow leaving each
outlet is proportional to the cube of the outlet diameter (d) [32]. This is supported
by the solution to the Poiseuille flow equation (1); as blood vessels are proven to
regulate their size in order to maintain nominal levels of WSS (�w) [33]:

Q D .�=32�/ �w d3 (1)

where Q is flow-rate, and � is dynamic viscosity.
To ensure that the inlet velocity field was well developed, after each solver

iteration the inlet velocity profile assumed the shape of the velocity profile three
cell lengths downstream (while enforcing the desired mass-flow). This approach is
similar to assumptions of fully developed parabolic flow and Womersley velocity
profiles [34], but also accounts for the asymmetry induced by the downstream
geometry. The inlet velocity profiles for each of the three geometries were the
same, as the geometry immediately downstream from the inlet was CT-based and
sufficiently far upstream from the OCT geometry sections to be influenced by
changes to the geometry (Fig. 4).
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Fig. 4 Inlet velocity profile

2.4 Low WSS Analysis

Stent implantation causes changes in vascular geometry that alter local velocity
and WSS distributions. These variations have been correlated with neointimal
hyperplasia [35] and the ability of endothelial cells to migrate onto stent surfaces
[36]. In relation to WSS, levels of 0.4 Pa or less has been associated with neointimal
thickening in the coronary arteries [35, 37]. Time-averaged WSS values below this
threshold have been used to quantify the impact of implanted stents (using OCT-
derived geometries) [11]. Furthermore, previous work has shown that monocyte
adhesion exponentially increases when WSS is below 0.4 Pa [38, 39]. Therefore,
regions of WSS below 0.4 Pa are used in this study to identify areas of thrombotic
susceptibility, and form a relevant basis for the comparison of the three geometries.

3 Results and Discussion

For the low-, medium- and high-resolution geometries, the LAD coronary artery
surface-averaged WSS was 0.835 (C7%), 0.794 (C2%) and 0.78 Pa, respectively.
This was inversely related to the differences in the surface area of the three
OCT geometries: the surface areas were 9.27 (�4%), 9.58 (�1%) and 9.69 cm2.
Furthermore, the standard deviation of WSS across the LAD coronary artery
increased with the resolution of the geometry; the values for the three geometries
were 0.494 (�8%), 0.524 (�2%) and 0.537 Pa, respectively. These trends are not
unexpected, and are not indicative of large variations in the WSS fields. This is
supported by the circumferential averaging of WSS along the LAD coronary artery
centreline (Fig. 5), as well as the qualitative agreement observed for the solutions to
WSS (and velocity) throughout the LAD coronary artery (Fig. 6).
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Fig. 5 Circumferential averaging of WSS along the LAD centreline

Fig. 6 Comparing the WSS fields for a wide range of values

However, the variation in the regions of low WSS, below 0.4 Pa, is much greater
than the aggregate differences (discussed above). These differences occur in the
proximal half of the LAD coronary artery where the artery is stented (Fig. 7). While
not completely different to the low-resolution geometry, the walls of the medium-
and high-resolution geometries contain a larger number of localised recesses that
harbour low-velocity blood and therefore have low WSS (Fig. 7). For the low-,
medium- and high-resolution geometries, the area of the LAD coronary artery
surface below 0.4 Pa is 0.66 (�51%), 1.08 (�19%) and 1.34 cm2, respectively. The
low WSS analysis of the stented geometry appears to be very sensitive to the fidelity
of the reconstruction. This is similar to previous observations of WSS field variation
in a stented artery, which compared IVUS and OCT reconstructions. However, in
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Fig. 7 Areas of WSS below 0.4 Pa

that study the differences were more extensive [14]. Furthermore, the similarity of
the WSS fields in the distal half of the three geometries examined here concurs
with results from the analyses of non-stented coronary arteries, reconstructed using
a range of methods (including biplane angiography with OCT) [9].

There are a number of limitations to this study. This work only investigated one
patient’s geometry. Furthermore, the model depended on physical simplifications
which are commonly implemented. Primarily, a steady-state flow field was used;
whereas, a pulsatile flow field would likely increase the disparity in the results.
Additionally, like other OCT reconstructions, it was assumed that the OCT images
were orthogonal to the vessel centreline. This assumption is not suitable for tortuous
vessels, as the guidewire does not follow the centreline path, but rather the path
of lowest bend energy. It is recommended that the guidewire path is always taken
into account to minimise the reconstruction error (i.e. [11]). This was not necessary
for the geometry used here as the guidewire followed the vessel centreline and
no longitudinal displacements had to be altered for the OCT image landmarks
(branches) to agree with those shown on CT. Furthermore, while the high-resolution
contour accurately segmented the lumen from the images, the stented geometry was
not perfectly captured by OCT. Due to strut reflections; minor geometric details are
missing where the stent struts are not embedded in the artery wall, as a neointimal
layer has not yet developed in some areas of the stented LAD lumen.
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4 Conclusion

Care should be taken when reconstructing geometries from OCT images to ensure
that the final geometry closely represents the underlying imaging. This is particu-
larly true for analyses of stented arteries (or complex geometries)—otherwise, poor
reconstructions may produce misleading or incorrect results.

In this study, the high-resolution (100 pt. contour) reconstruction accurately
represented the OCT images for the entire LAD coronary artery lumen. In the
un-stented region of the artery, the lower-resolution reconstructions produced very
similar geometries, and thus similar results when modelling the haemodynamics.
However, the areas of low WSS in the stented portion of the artery depended greatly
on the resolution of the geometric reconstruction. Compared to the high-resolution
reconstruction, both the low- and medium- resolutions failed to accurately determine
the areas of low WSS, as minor geometric features were inadequately represented.

While alternative OCT segmentation methods are available (e.g. [14]), the
accuracy of the final geometry is limited by the ability of OCT to capture the in
vivo geometry. In this regard, the axial distance between OCT images is more
limiting than the pixel resolution (and cross-sectional information) of the images.
Furthermore, the sensitivity of localised WSS to geometric differences is just as
relevant in analyses using geometries derived from other imaging modalities.
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Constitutive Modelling of Lamb Aorta

Ryley A. Macrae, Jane Pillow, Karol Miller, and Barry J. Doyle

1 Introduction

Vascular inflammation is an established marker of cardiovascular pathogenesis, but
its role on arterial tissue biomechanics is not well understood. Inflammation has
been identified as a risk factor for many adverse cardiovascular events [1], and is
associated with increased risk even in apparently healthy individuals [2]. Inflam-
mation is now widely regarded as a major contributing factor in the pathogenesis
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of atherosclerosis [3, 4]. The inflammatory process is also associated with the
development of aneurysms [5]. Furthermore, aneurysms with acute inflammation
have been demonstrated to exhibit an increased rate of expansion [6–8].

These diseases involve extensive vascular remodelling changes to tissue biome-
chanics, but outside of gross changes to artery behaviour little work has been done
on isolating the effect of inflammation on tissue biomechanics. There is a wealth
of literature associating the presence of both acute and chronic inflammation with
increased arterial stiffness as indicated by in-vivo measurements such as pulse-
wave velocity (PWV) [9–12] but the mechanisms behind this remain unclear.
Furthermore, while measurements such as pulse-wave velocity can illustrate the
gross behaviour of arterial biomechanics under physiologic loading conditions, the
precise effects of inflammation on the biomechanics of arteries remain relatively
unexplored. The use of liposaccharides as a means for producing animal models
of inflammation is well established. Intra-amniotic delivery of LPS to the fetus
is widely used to model perinatal inflammation, though very few studies have
examined the effect of this inflammation on cardiovascular biomechanics; though
induced perinatal inflammation has been shown to alter haemodynamics and induce
structural changes in the heart and small vessels [13–20].

The development of reliable constitutive models of the artery is necessary in
order to better comprehend the mechanical component of cardiovascular disease
pathogenesis [21], as well as providing insight into the complex biomechanical
behaviours induced during therapeutical interventions such as arterial clamping and
angioplasty [22]. The aim of this project was to develop constitutive models for the
aorta of LPS-treated and non-treated lambs, so as to assess the impact of perinatal
inflammation on arterial biomechanics. Changes in the arterial stiffness can lead to
arterial remodelling and dysfunction, and so its characterization can provide insight
into the nature of inflammatory processes, as well as being used to describe long
term changes in arterial structure due to active vascular remodelling processes.

2 Methods

2.1 Subjects

Intra-amniotic LPS has been shown to impact the cardiovascular development of
mouse [23] and rat [13] animal models, as well as impair function, alter the heart
structure and induce expression of the inflammatory markers cytokine interleukin-
1B and tumour necrosis factor in the myocardium of sheep [18, 24]. Foetal lambs
were exposed to intra-amniotic injections of either saline (control group n D 4) or
4 mg Escherichia coli LPS (2 mg/mL: Sigma-Aldrich; 055:B5) (LPS group, n D 6)
2 days prior to operative operative preterm delivery at 129 days gestation. Lambs
were then ventilated for 7 days, and then euthanized via 150 mg/kg of intravenous
pentobarbitone (Valabarb, Jurox, Australia) for post-mortem. The aortas from each
preterm lamb were excised for mechanical testing.
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2.2 Test Protocol

Due to the small size of the excised specimens, mechanical testing was conducted
via uniaxial loading of a ring-shaped specimen with a custom-built uniaxial test rig.
While uniaxial tension experiments are insufficient to fully characterize the three-
dimensional constitutive stress–strain relations of biological materials, these tests
can provide useful descriptive information of the mechanical behaviour [25].

Testing was conducted within 24 h of excision. Ring-shaped samples were
prepared by cutting the tubular specimen (i.e. the aorta) into smaller sections of
an approximate width of 1.5 mm via circumferential cuts normal to the central
axis (average of 8 rings per aortic specimen). Wall thickness (mean D 1.01 mm),
sample width (mean D 1.58 mm) and ring circumference (mean D 12.8 mm) were
measured optically via ImageJ. Average wall thickness was taken as the mean of 8
measurements, average wall width taken as the mean of 5 measurements and vessel
circumference measured directly with the measurement tool. The sample was then
mounted between two parallel metal wires and pre-stretched to the configuration
shown in Fig. 1 and preconditioning applied via loading–unloading cycles until a
repeatable displacement–force curve was obtained, as is standard for uniaxial testing
of biological soft tissues [26]. Preconditioning was conducted to a maximum strain
of 0.2 in all samples, and a repeatable mechanical response was noted after five
loading–unloading cycles. Before testing, images of the sample were again taken to
measure the initial distance between the pins (as shown in Fig. 1).

Fig. 1 Schematic of a uniaxial tension test of an arterial ring in the (a) reference and (b) deformed
configuration, and corresponding photograph of loaded specimen. Reproduced from [25]
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The approximate strain is calculated by measuring the displacement between the
two wires [27, 28]. The average stretch ratio in the circumferential direction �™avg is
most simply determined by:

�� avg D l C �rw

lo C �rw
(1)

where rw is the radius of the cylindrical wire and l and lo are the distances between
the centres of the wires. Wires were coated in oil so as to minimize friction at
the boundaries, and stress induced by friction was neglected from the analysis.
The sample was then extended at a constant rate of 0.1 mm/s until failure whilst
continuously measuring displacement and force.

2.3 Data Analysis

As the constitutive relations derived are intended to describe the mechanical
behaviour and allow for comparison between LPS-treated and control specimens,
data was processed in terms of the global stretch ratio consistently across specimens
[29]. It was assumed that the effects of any friction and bending stiffness would
be either negligible or relatively consistent across samples. Upon pre-loading the
sample force was noted to be approximately 0.01 N, as compared to an average
failure force of 2 N, indicating that the effect of bending stiffness was relatively
low. Thus, assuming the ring is free to move along the wire boundary, nominal
stress (Savg) will be given by:

Savg D Fexp

2 � Aavg
(2)

where Aavg is the average cross-sectional area of the ring, assumed to be rectangular,
Aavg D t � w, and Fexp is the measured tension. However, while the width of each
ring could be assumed constant, wall thickness around the ring was shown to vary
significantly, with some rings showing a variation in wall thickness up to 30%.
Thus, the assumption of constant cross-sectional area throughout the ring is invalid.
Assuming the ring breaks at the smallest cross-sectional area, with the data of
specimens which broke near the wires or in a region distinct from that of lowest
cross-sectional area discarded, the nominal stress at the smallest cross-sectional area
(Sb) can be determined from experimental data via:

Sbexp D Fexp

2 � Ab
(3)

where Ab is the smallest initial cross-sectional area, as calculated at the smallest
thickness. In order to derive a stress–strain relationship, it is necessary to relate the
global average stretch (�avg) to a stretch local to the point of failure (�b). Assuming
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circumferential force (F� ) is constant throughout the ring, circumferential stress will
be proportional to the initial cross-sectional area:

F� D Savg� Aavg D Sb� Ab (4)

If we assume isotropy and incompressibility, the strain energy function can be
expressed in terms of the first and second invariants of the Green strain tensor [30]:

W D �
W .I1; I2/ (5)

Assuming no shear, under uniaxial tension the strain invariants are given by:

I1 D �1
2 C 2

�1

; I2 D 2�1 C 1

�1
2

(6)

where �1 is the stretch in the direction of loading �� . An Ogden model [31] with
N D 1 proved a good fit (R2 � 0.97) for the data while utilizing few parameters,
given as follows:

W D �

˛

�
�˛

1 C �˛
2 C �˛

3 � 3
�

(7)

With nominal stress being given by:

S1 D �

�1

�
�˛

1 � �
�˛
2

1

�
(8)

where [�, ˛] are the particular coefficients of a given strain energy function. For
the given strain levels, the use of higher order models is not warranted, as indicated
by the goodness of fit. Determining the stretch ratio at the region of smallest cross-
sectional area (�b) is a not entirely trivial matter. In this particular case, �b was
determined via substituting Eq. (8) into the relation given by Eq. (4), such that:

�
�˛

b � �
�˛
2

b

�

�b
D Aavg

Ab
�

�
�˛

avg � �
�˛
2

avg

�

�avg
(9)

For the given measurements of Ab, Aavg and the range of values determined from
displacement data [�avg], an initial guess was made of the constitutive parameters
[�, ˛] and used to compute corresponding local stretch values [�b]. These values
of stretch were then used to compute Sb as per Eq. (8). Model calibration was
conducted via minimizing the error between this curve Sb��b and the curve derived
from experimental data Sbexp � �b, as determined from Eq. (3). Error was computed
via a least squares method weighted towards the low-strain region:

Error D
X �

1 � Smodel

Sexp

�2

(10)
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Error was weighted towards the low stress/strain region, as data in this region is
of more physiological relevance than that in the very high strain region. In addition,
data in the high stress–strain region is also influenced by factors not accounted
for in the model, such as tissue damage occurring prior to tissue failure. The
resultant fitted parameters [�, ˛] were then used to compute a new local stretch
as described above which was then input into Eq. (9), and this approach iterated
until successive error between computed constitutive parameters was negligible.
All model calibration was conducted via a custom MATLAB script. While initial
guesses for the constitutive parameters were at first selected arbitrarily, to reduce
calibration time the initial guesses were then set to values approximate to those
determined for early samples; [� D 2 � 10�4, ˛ D 10].

Shear modulus in the undeformed state was derived from the Ogden model via:

�o D 1

2
�˛ (11)

3 Results

Data from ten specimens (cut into approximately eight rings each) were utilized
(control n D 4, LPS-treated n D 6). LPS-treated lambs demonstrated a trend
towards higher wall thickness, though this finding was not significant (p > 0.35),
with aortic specimens from the control group having an average of thickness of
0.977 ˙ 0.073 mm and LPS-treated group 1.076 ˙ 0.079 mm (see Fig. 2).

Force-extension data of rings cut from a single specimen showed high consis-
tency (Fig. 3). Incorporation of the local stretch as determined by Eq. (9) affected the
estimates of the Ogden parameter � by up to 15%, and had no appreciable effect on
determination of the parameter ˛ (�0.1%). Fig. 4 illustrates the stress-stretch curve
as assessed by taking a constant cross-sectional area compared to the stress-stretch
curve computed with a locally determined stretch, for a representative sample.

The average constitutive parameters determined for the Ogden model were
not significantly different between groups (see Table 1, Fig. 5), although �

Fig. 2 Average wall
thicknesses of the aorta for
both the control and
LPS-treated groups with
standard deviations
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Fig. 3 Experimental force–displacement curves taken from a representative specimen (LPS-
treated)

trended higher in the LPS-treated group (� D 7.77 � 10�4 ˙ 6.96 � 10�4

versus 4.43 � 10�4 ˙ 3.67 � 10�4; p > 0.4). The ˛ parameter showed no
difference between groups (p > 0.85), with an average of 12.78 ˙ 0.58 MPa
(control D 12.96 ˙ 2.145, LPS-treated D 12.65 ˙ 3.378). A difference was
noted in the initial shear modulus, being higher in the LPS-treated group
(4.48 � 10�3 ˙ 3.71 � 10�3 MPa versus 2.70 � 10�3 ˙ 2.23 � 10�3 MPa),
although again variation was high and the finding was non-significant (p > 0.4).

4 Discussion and Conclusion

The relation between inflammation and cardiovascular disease is widely re-
searched, yet little data exists on the biomechanical impact of inflammation on
the aorta. Previous studies suggest that inflammation stiffens the aorta [32, 33];
however, these previous studies use in-vivo pulse-wave velocity with inherent
assumptions on aortic morphology, and not physical biomechanical ex-vivo testing.
Our preliminary ex-vivo data suggests that LPS-induced systemic inflammation
during foetal development does not greatly affect the biomechanical behaviour
(i.e. stiffness) of the aorta, as assessed by vessel constitutive parameters. The
development of these constitutive models provides valuable data on the precise
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Table 1 Collected values of constitutive parameters and initial shear modulus. Statistical signifi-
cance was not reached in any case

Group – � (MPa) ˛ �o(MPa)

Control Mean 4.43 � 10�4 12.96 2.70 � 10�3

Standard Dev ˙3.67 � 10�4 ˙2.145 ˙2.23 � 10�3

LPS-treated Mean 7.77 � 10�4 12.65 4.48 � 10�3

Standard Dev ˙6.96 � 10�4 ˙3.378 ˙3.71 � 10�3

effects on mechanical behaviour of perinatal inflammation. Although there was
on average a trend for LPS-treated arteries to be stiffer in the low-strain region,
a significant change in stiffness expected was not demonstrated. The majority of
prior studies employ pulse-wave velocity as an indicator of bulk stiffness, and thus
care must be taken when comparing this data to the material stiffness given by the
elastic modulus as measures of bulk stiffness are dependent on the thickness of the
artery [34].
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groups, with standard deviation

There are limitations to our work and it is possible the induced systemic
inflammation was insufficiently present in the foetal cardiovascular system—either
in severity or duration—to provoke a significant change in the biomechanics of the
aorta. The constitutive parameters determined are primarily intended for comparison
between treatment groups, and thus have not taken into account the potential impact
of boundary friction on the parameter values. For a more precise determination
of constitutive parameters, finite element method should be used [35]. The study
was further limited by the number of specimens; due to the high variability in
material properties between subjects, more data would be required to ascertain
what, if any, correlation exists between systemic foetal inflammation and arterial
biomechanics. This data represents a preliminary cohort, with testing of additional
subjects currently underway. As this article is focussed on assessing the passive
biomechanical response of the artery as an indication of structural remodelling, it
necessarily neglects the active response of the artery, largely mediated via nitric
oxide production [10].

In conclusion, this is the first study to assess the impact of inflammation on the
biomechanical response of the aorta, using ex-vivo test methods. We show that in
our preliminary cohort, inflammation does not significantly impact aortic stiffness,
and the preterm lamb can be represented by a first order Ogden constitutive model.
Further testing is needed to conclusively determine the effect of inflammation on
aortic biomechanics.
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Quantifying Cytoskeletal Morphology
in Endothelial Cells to Enable Mechanical
Analysis

Yi Chung Lim, Detlef Kuhl, Michael T. Cooling, and David S. Long

1 Introduction

Blood-flow induced wall shear stress (WSS) is a focal risk factor for atherosclerosis
[1]. Disturbed oscillatory WSS elicits an inflammatory endothelial cell (EC)
response that contributes to the pathogenesis of atherosclerosis. Conversely, steady
WSS results in a protective EC response [2]. A key EC response to WSS is
the change in cell morphology: in particular, cytoskeletal morphology. Steady
WSS results in cell elongation and alignment in the flow direction. In contrast,
disturbed WSS causes greater shape variation in ECs (similar to cells grown in static
conditions) [3–9].

Chien postulated that EC morphological dependency on WSS is caused by
ECs maintaining an internal force homeostasis: cells adapt their morphology to
keep internal forces within a “normal” range. In the case of disturbed WSS, the
preferential flow direction cannot be sensed. This leads to internal force extremes
causing endothelial dysfunction and an inflammatory response [10].

Computational models have already been used to quantify the stresses and
strains within a single EC [11] or a population of ECs [12] in response to WSS
(see [13] for a recent review). However, the effect of EC morphology on internal
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force transmission of WSS has only recently been examined. In particular, the
effect of morphological variation in the nucleus and cell membrane on the internal
force response to WSS has been quantified [14]. Further extension is required
to include the cytoskeleton—a key component in cell mechanical stability [15].
One barrier to this is the lack of quantitative spatial descriptors (also known as
shape/morphometric/summary descriptors) to define cytoskeletal morphology. Once
this challenge has been overcome, it will be possible to test Chien’s theory by
quantifying the internal force distributions in populations of ECs with differing
morphologies that are exposed to different WSS environments.

In this study, we have extended the spatial descriptor analysis to include the
cytoskeleton and primary cilia. These descriptors were then used to recreate specific
cells. Furthermore, our set of spatial descriptors were used to generate virtual cells
characteristic of the entire population. Thus, the morphological variation of the
entire population can be represented by a smaller set of virtual cells without a
significant loss in information.

Our spatial descriptor analysis aims to provide a spatial domain suitable for
future mechanical analysis. In doing so, we hope to enable future studies on the
role of EC mechanics in atherosclerosis.

2 Materials and Methods

Human microvascular endothelial cells (HMEC-1s) were cultured using previously
described methods [14, 16]. The primary cilia, acetylated ’-tubulin, F-actin and the
nuclei from 15 HMEC-1s were then co-imaged as previously described [14, 16].

2.1 Spatial Descriptors

The framework for spatial descriptors is based on the series of studies published by
Murphy et al. [17–19].

Reference system, nucleus and cell membrane shape: The reference coordinate
system of our model has previously been described [14]. Briefly, the nucleus
centroid is the origin of coordinate system, the long axis of the nucleus forms
the first axis, the apical-basal direction forms the second axis and the 3rd axis is
perpendicular to the other two. Nuclei are chosen as the reference point as they
are easily identified, and there is only one in every EC. The spatial descriptors of
the nucleus and cell membrane have also been previously described [14]. Image
processing and analysis was carried out in MATLAB (version 2013b), ImageJ
(version 1.48o) and AMIRA (version 5.6).

Cytoskeleton—deconvolution: The acetylated ’-tubulin and F-actin components
of cytoskeleton were imaged and the morphology quantified. As a preliminary step,
deconvolution was carried out to increase contrast of the cytoskeletal structures,
thus allowing automatic segmentation. Image stacks of actin and tubulin were
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nf-actin = 3

Lf-actin

θf-actin
Lactin-cent θactin-cent
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Fig. 1 Spatial descriptors used to quantify F-actin morphology: (a) nf-actin, the number of actin
fibres present in each cell, in this simplified example there are only three fibres (blue); (b) Lf-actin,
fibre length; (c) � f-actin, fibre orientation with respect to the nuclear axis; (d) Lactin-cent, the length
between the actin fibre centroid and the nucleus centroid (shown in green) and (e) � actin-cent, angle
of the vector between actin fibre centroid and the nucleus centroid

deconvolved with an artificial point spread function (PSF) calculated using the
Diffraction PSF 3D ImageJ plugin (http://www.optinav.com/Diffraction-PSF-3D.
htm, [20]). Deconvolution was then carried out using the Iterative Deconvolve 3D
ImageJ plugin (http://www.optinav.com/Iterative-Deconvolve-3D.htm, [20]).

F-actin: Each individual actin fibre was traced semi-automatically using the
simple neurite tracer tool in ImageJ [21], hence the 3D coordinates of each fibre
(at pixel resolution) were quantified. We found that nearly all stress fibres were
within two slices (0.9 �m layer), in a layer one slice (0.45 �m) below the base of
the nucleus. Hence the morphology of the actin fibre network can be captured by a
2D analysis. Five spatial descriptors were used to represent F-actin (see Fig. 1). The
first is the number of actin fibres present in each cell, nf-actin. All other F-actin spatial
descriptors are arrays of size nf-actin. The other descriptors are the fibre length, Lf-actin;
the fibre orientation with respect to the nuclear axis, � f-actin; the length between
the centroid of the fibre and the nucleus centroid, Lactin-cent and angle of the vector
between actin fibre centroid and the nucleus centroid, � actin-cent.

Acetylated ˛-tubulin: Acetylated ˛-tubulin migrates outward from the centro-
some, and therefore can be modelled as a branching network, with straight segments.
The centrosome was not explicitly imaged, but instead was estimated to be the voxel
with maximum intensity in the tubulin images [22]. Again, the simple neurite tracer
tool [21] was used to segment the acetylated a-tubulin morphology. The six spatial
descriptors used to quantify ˛-tubulin morphology were: (1) the position of the
centrosome with respect to the nucleus centroid; (2) number of microtubules in the
cell, ntubule (similar to F-actin, the remaining descriptors are arrays of size ntubule);
(3) the length of each microtubule, Ltubule; (4) the collinearity of a microtubule
against its parent microtubule (the microtubule that it branched out from), � cotubule;
(5) the change in height (z value) of the centroid microtubule compared to the height
of the parent microtubule and (6) the ancestry number of the microtubule, which

http://www.optinav.com/Diffraction-PSF-3D.htm
http://www.optinav.com/Diffraction-PSF-3D.htm
http://www.optinav.com/Iterative-Deconvolve-3D.htm
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Fig. 2 Spatial descriptors used to quantify acetylated ˛-tubulin morphology: (a) the position of
the centrosome relative to nuclear centroid; (b) number of microtubules in the cell, ntubule; (c) the
length of each microtubule, Ltubule; (d) the collinearity of a microtubule with its parent microtubule,
� cotubule, note this consists of an in-plane angle and a z-direction change in slice and (e) the ancestry
number of the microtubule, which identifies the number of its parent microtubule. In this example
the ancestry numbers are 0, 0, 2, 2, indicating that the first two microtubules originate at the
centrosome, and the third and fourth tubules originate from the second microtubule

identifies the number of its parent microtubule. These descriptors are illustrated in
Fig. 2.

Primary cilium: Due to spectral overlap, a separate population (n D 39), from
the population that was used in cell shape, nucleus and cytoskeleton analysis, of
cells was used to examine primary cilium morphology using methods described in
Lim et al. 2015 [16]. To avoid bias, every cilium in each image was analysed. Two
spatial descriptors were formulated for primary cilia, cilia length and cilia-centroid
position—the vector between the nucleus centroid and the base of the cilium.

2.2 Generating Virtual Cells

Virtual cells were generated from the complete population dataset of previously
described morphological descriptors. Statistical boot-strapping was used to obtain a
distribution for each of the descriptors: first, the n-sized vector (where n is nf-actin or
ntubule, respectively) of every spatial descriptor was resampled with replacement, to
generate 1000 n-sized vectors. This large dataset is normal distributed. The F-actin
and tubulin networks and primary cilia could then generated by sampling from these
distributions. As the nucleus centroid is the reference point in the set of tubulin, actin
and primary cilia descriptors, it is possible to generate a virtual cell with all of these
components.
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3 Results

3.1 F-Actin

The median of nf-actin was 20 fibres, with a maximum of 32 and a minimum of ten.
There were fewer actin stress fibres than microtubules on average. Lf-actin is right
skewed, with a median value of 4.6 �m (see Fig. 3a). From the angle histogram of
� f-actin (see Fig. 3b) there does not appear to be a preferential angle of orientation of
actin fibres. Median Lactin-cent was 13 �m (see Fig. 3c), suggesting that the majority
of the actin stress fibres were beyond the xy area bounded by the nucleus. From the
angle histogram of � actin-cent (see Fig. 3d), it appears that the centroid of actin fibres
are preferentially to the left and right (270ı and 90ı) of the nucleus centroid, rather
than above–below (0ı and 180ı) the nucleus centroid (nucleus axis is parallel to the
above–below direction).
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Fig. 3 Quantification of spatial descriptors of F-actin in the population. (a) The histogram of
Lf-actin shows Lf-actin is right skewed and not normal (Shapiro–Wilk test, p < 0.0001). (b) The angle
histogram of � f-actin with units in degrees: no preferential direction is evident. (c) The histogram of
Lactin-cent. Lactin-cent is not normal, (Shapiro–Wilk test, p < 0.0001). Most of the values of Lactin-cent

are above 5 �m, suggesting that actin fibres are far from the nucleus. (d) The angle histogram
of � actin-cent. Fibres are preferentially to the left and right (270ı and 90ı) of the nucleus centroid,
rather than above–below (0ı and 180ı) the nucleus centroid
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Fig. 4 Quantification of spatial descriptors of acetylated ’-tubulin in the population. (a) Column
graph of distance between centrosome and nucleus (blue), half of nucleus length (orange) and
half of nucleus width (grey), inset: cartoon cell illustrating these lengths with nucleus in green.
The centrosome distance is shown by the dashed blue circle. (b) The histogram of Ltubule shows
microtubule length is right skewed and not normal (Shapiro–Wilk test, p < 0.0001). (c) Angle
histogram of � cotubule, with units in degrees. The majority of microtubules are within 30ı of their
parent microtubule

3.2 Acetylated ˛-Tubulin

The distance in the xy plane between the centrosome and the nucleus centroid for all
cells in the population are illustrated in Fig. 4a, with the nucleus length and width
of that cell for comparison. The median of ntubule was 38, with a maximum of 71
and minimum of 15. Ltubule was right skewed, with a median value of 5.9 �m (see
Fig. 4b). The median of � cotubule was 3ı, with the majority of microtubules within
30ı of the parent microtubule (see Fig. 4c). The ancestry number and change in
height are not shown here, but are stored to allow specific cells to be recreated.
The actin filament and microtubule networks of a specific cell can also be recreated
from its spatial description (see Fig. 5). The methods presented in this study result
in straight actin filaments and straight microtubules. Nearly all actin filaments
are captured, whereas the finer microtubule network cannot be resolved with our
imaging technique. Note, these recreated images are in 2D. While actin filaments
are mostly in plane, the microtubule network is not, hence further development is
needed to extend these recreated models to 3D.

3.3 Primary Cilium

A histogram of primary cilium length is shown in Fig. 6a. The median ˙ interquar-
tile range of primary cilium length was 3.0 �m ˙ 1.0 �m. The position of the base
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Fig. 5 Actin filament (a–c) and microtubule (d–f) morphology in a specific cell can be regenerated
directly from its spatial descriptors. (a) F-actin (pink) and nucleus (red) in a HMEC-1. (b)
Actin filament network recreated from spatial descriptors described in Fig. 1. Consisting of actin
filaments (blue), nucleus axis (red) and filament centroids (blue crosses). (c) Overlap of the original
image with the recreated geometry. While the recreated filaments are straighter than they appear
in the original image, there is a close resemblance between the two. (d) Image slice of acetylated
’-tubulin in a HMEC-1. The nucleus position is evident, as microtubules form a cage structure
around it. (e) The geometry of the microtubule network (in 2D), recreated from spatial descriptors
described in Fig. 2. The nucleus axis is shown in red, with the microtubules in blue. (f) Overlap
of the original image with the recreated geometry. Similarly, recreated microtubules are straighter
than the original image, and only the larger, thicker microtubules are detected

of the cilia relative to the nucleus centroid is shown in Fig. 6b. There does not appear
to be a directional pattern in cilia location.

3.4 Generating Virtual Cell Components

To illustrate the ability to generate virtual cell components using our method, three
2D models of a single cell composed of a nucleus, cilium and cytoskeleton were
created (see Fig. 7). These have a cytoskeletal network and primary cilium typical
of the overall population of ECs.



34 Y.C. Lim et al.

y

x

primary cilia length (μm)

ycneuqerf

0 5 8

6

12

1

(a) (b)

Fig. 6 Spatial descriptors of the primary cilium. (a) The histogram of primary cilium length
(n D 39). The median ˙ interquartile range of primary cilium length was 3.0 �m ˙ 1.0 �m. (b)
A scatter plot of the xy position of the base of the cilia with respect to the nucleus centroid, (units
are normalised by nucleus length of each individual cell). Orange circle indicates a half nucleus
length away from nucleus centroid. Inset: cartoon of cell giving context to the orange circle. The
base of the cilium is generally very close to the nucleus centroid, with the majority within half a
nucleus length (of that specific cell). There does not appear to be a predominant direction, with
respect to the nucleus axis

These virtual models are at a preliminary stage. Further extension is needed to
examine the co-dependency of spatial descriptors. For instance, the nucleus position
and tubulin network are likely to be co-dependent, as the tubulin forms a cage around
the nucleus. As this dependency is not measured in our current analysis, the virtual
cells shown in Fig. 7 have a cage like tubulin network that is independent of nucleus
position. Other less obvious co-dependencies may exist, and are best tested for using
a regression analysis. Further extension is also required to generate 3D models.

4 Discussion and Conclusions

In this paper, we have quantified the morphological variation of the EC cytoskeleton
and primary cilium using newly developed spatial descriptors. Our findings are in
close agreement with a number of earlier studies: We found that actin occupies a
planar layer in the cell (15–18% of the total cell height), which is in close agreement
with Galbraith et al. finding of 20% (Fig. 7, from [5]). We also agree with the
findings of Chiu et al. [3] that actin stress fibres tend to localise at the periphery of
the cells. Our estimates for number of microtubules (median of 38) and collinearity
(median of 3ı, with the majority of values within 30ı) is within the range of the
findings of Li et al. [23] for a number of different cancer cell lines.

We found that centrosomes do not have to appear to have a directional bias in
static cells (they are equally likely to occur at any angle around the nucleus centroid
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Fig. 7 Virtual cells generated using morphological descriptors, containing: actin stress fibres
(green lines, with crosses at the centroid position); the microtubule network (in red), emerging
from the centrosome (black circle) and the primary cilium (length, indicated, emerging from the
centrosome). An idealised nucleus was also added (blue dashed oval), with length and width of the
average nucleus calculated in [14]. Furthermore, the cells are enclosed by a cell membrane based
on the smallest shape that can enclose the subcellular components

with respect to the nucleus centroid). Furthermore, we found that centrosomes
occur near the nucleus centroid. Both these findings are in agreement with the
qualitative findings of Galbraith et al. (Fig. 1a, t D 0; [5]). Furthermore, the base
of the primary cilium is closely associated with centrosomes [24]: we also found
a lack of preferential direction of the base of the cilia with respect to the nucleus
centroid and nucleus axis. This is in agreement with Galbraith et al.’s finding that
the centrosomes in static cells are distributed evenly upstream and downstream of
the cell centroid (Fig. 1b, t D 0; [24]). Our estimated HMEC-1 primary cilium
length of 3.0 �m is within the reported range of primary cilia lengths in other EC
types [25–27].

Our spatial descriptor analysis is an improvement over existing descriptors
because it can represent the geometry of a particular cell (Fig. 5) with sufficient
accuracy to allow mechanical modelling: the most sophisticated cytoskeletonised
EC models to date only represent the larger elements of the cytoskeleton as straight
elements (n < 50) [12, 28], which our approach captures. Furthermore, our approach
allows the creation of virtual cytoskeletonised cells that are characteristic of the
entire population. Although at a preliminary stage, it is hoped that this virtual cell
approach will reduce the computational cost of analysing the mechanics of an entire
cell population.
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We are in the process of developing a tensegrity-based mechanical cell model
using the morphological data of the cytoskeleton obtained in this study. Our model
consists of custom geometrically non-linear truss elements based on those devel-
oped by Crisfield [29, 30], modified to incorporate a prestress. A load controlled
Newton–Raphson method is used to solve the static analysis of this model [31]. This
modelling framework is suitable for modelling a cytoskeleton. Furthermore, we will
use this model together with force-relaxation/force-minimisation methods [32–34]
to determine force equilibrium. Forces acting on the membrane can be calculated
using existing continuum methods [14] and mapped on to the nearest nodes in the
pseudo-tensegrity model. It is anticipated that preliminary results of our model will
be presented at the conference.

Acknowledgments HMEC-1s were kindly provided by Dr. Edwin Ades, Mr. Francisco J. Candal
(CDC, Atlanta GA, USA) and Dr. Thomas Lawley (Emory University, Atlanta, GA, USA)
NCEZID-R147589-00 [35]. The authors would also like to acknowledge Dr. Sue McGlashan, Ms.
Hilary Holloway and Ms. Jacqui Ross from the Biomedical Imaging Research Unit, University of
Auckland for assistance in microscope training and image acquisition. This work was supported
by a University of Auckland Faculty Research Development Fund grant (3702516, D.S.L.). The
first author is grateful for financial support from the University of Kassel.

References

1. Davies PF, Polacek DC, Shi C, Helmke BP (2002) The convergence of haemodynamics,
genomics, and endothelial structure in studies of the focal origin of atherosclerosis. Biorhe-
ology 39(3):299–306

2. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular patho-
physiology. Nat Clin Pract Cardiovasc Med 6(1):16–26

3. Chiu J, Wang DL, Chien S, Skalak R, Usami S (1998) Effects of disturbed flow on endothelial
cells. J Biomech Eng 120(1):2–8

4. Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Gimbrone MA (1986) Turbulent fluid
shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A
83(7):2114–2117. doi:10.1073/pnas.83.7.2114

5. Galbraith CG, Skalak R, Chien S (1998) Shear stress induces spatial reorganization of the
endothelial cell cytoskeleton. Cell Motil Cytoskeleton 40(4):317–330

6. Helmlinger G, Geiger RV, Schreck S, Nerem RM (1991) Effects of pulsatile flow on cultured
vascular endothelial cell morphology. J Biomech Eng 113(2):123–131

7. Levesque MJ, Sprague EA, Schwartz CJ, Nerem RM (1989) The influence of shear stress on
cultured vascular endothelial cells: the stress response of an anchorage-dependent mammalian
cell. Biotechnol Prog 5(1):1–8

8. Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator
of the pattern of blood flow. J Biomech Eng 103(3):172–176

9. Rouleau L, Farcas M, Tardif J, Mongrain R, Leask RL (2010) Endothelial cell morphologic
response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
J Biomech Eng 132(8):081013–081013

10. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell.
Am J Physiol Heart Circ Physiol 292(3):H1209–H1224

http://dx.doi.org/10.1073/pnas.83.7.2114


Quantifying Cytoskeletal Morphology in Endothelial Cells to Enable. . . 37

11. Ferko M, Bhatnagar A, Garcia M, Butler PJ (2007) Finite-element stress analysis of a
multicomponent model of sheared and focally-adhered endothelial cells. Ann Biomed Eng
35(2):208–223

12. Dabagh M, Jalali P, Butler PJ, Tarbell JM (2014) Shear-induced force transmission in a
multicomponent, multicell model of the endothelium. J R Soc Interface 11(98):20140431

13. Lim YC, Cooling MT, Long DS (2014) Computational models of the primary cilium and
endothelial mechanotransmission. Biomech Model Mechanobiol 14:665–678

14. Lim YC, McGlashan S, Cooling MT, Long DS (2016) Mechanical models of endothelial
mechanotransmission based on a population of cells. In: Joldes GR, Doyle B, Wittek A, PMF
N, Miller K (eds) Computational biomechanics for medicine. Springer, New York

15. Chen TJ, Wu CC, Su FC (2012) Mechanical models of the cellular cytoskeletal network for
the analysis of intracellular mechanical properties and force distributions: a review. Med Eng
Phys 34(10):1375–1386

16. Lim YC, McGlashan S, Cooling MT, Long DS (2015) Culture and detection of primary cilia
in endothelial cell models. Cilia 4(1):11

17. Buck TE, Li J, Rohde GK, Murphy RF (2012) Toward the virtual cell: automated approaches
to building models of subcellular organization “learned” from microscopy images. BioEssays
34(9):791–799

18. Peng T, Murphy RF (2011) Image-derived, three-dimensional generative models of cellular
organization. Cytometry A 79(5):383–391

19. Zhao T, Murphy RF (2007) Automated learning of generative models for subcellular location:
building blocks for systems biology. Cytometry A 71(12):978–990

20. Dougherty R (2005) Extensions of DAMAS and benefits and limitations of deconvolution in
beamforming. Am Inst Aeronaut Astronaut. doi:10.2514/6.2005-2961

21. Longair MH, Baker DA, Armstrong JD (2011) Simple neurite tracer: open source software
for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27(17):
2453–2454

22. Shariff A, Murphy RF, Rohde GK (2011) Automated estimation of microtubule model
parameters from 3-D live cell microscopy images. In: Anonymous biomedical imaging: from
nano to macro, 2011 IEEE international symposium on, p. 1330

23. Li J, Shariff A, Wiking M, Lundberg E, Rohde GK, Murphy RF (2012) Estimating microtubule
distributions from 2D immunofluorescence microscopy images reveals differences among
human cultured cell lines. PLoS One 7(11):e50292

24. Hagiwara H, Ohwada N, Aoki T et al (2008) The primary cilia of secretory cells in the human
oviduct mucosa. Med Mol Morphol 41(4):193–198

25. Iomini C, Tejada K, Mo W et al (2004) Primary cilia of human endothelial cells disassemble
under laminar shear stress. J Cell Biol 164(6):811–817

26. Van der Heiden K, Groenendijk BCW, Hierck BP, Krams R, de Com R, Cheng C, Baiker
M, Pourquie MJBM, Alkemade FE, deRuiter MC, Gittenberger-de Groot AC, Poelmann RE
(2006) Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn
235(1):19–28

27. Geerts WJC, Vocking K, Schoonen N, Haarbosch L, van Donselaar EG, Regan-Klapisz E, Post
JA (2011) Cobblestone HUVECs: a human model system for studying primary ciliogenesis. J
Struct Biol 176(3):350–359

28. Khayyeri H, Barreto S, Lacroix D (2015) Primary cilia mechanics affects cell mechanosensa-
tion: a computational study. J Theor Biol 379:38–46

29. Crisfield MA (1991) Non-linear finite element analysis of solids and structures volume 1:
essentials. Wiley, New York

30. Crisfield MA (1997) Non-linear finite element analysis of solids and structures volume 2:
advanced topics. Wiley, New York

31. Zienkiewicz OC, Taylor RL (2000) The finite element method: the basis. Butterworth-
Heinemann, Oxford

32. Bel Hadj Ali N, Rhode-Barbarigos L, Smith IFC (2011) Analysis of clustered tensegrity
structures using a modified dynamic relaxation algorithm. Int J Solids Struct 48(5):637–647

http://dx.doi.org/10.2514/6.2005-2961


38 Y.C. Lim et al.

33. Estrada GG, Bungartz H-J, Mohrdieck C (2006) Numerical form-finding of tensegrity struc-
tures. Int J Solids Struct 43(22–23):6855–6868

34. Paul C, Lipson H, Cuevas FJV (2005) Evolutionary form-finding of tensegrity structures.
In: GECCO ‘05 Proceedings of the 7th annual conference on Genetic and evolutionary
computation on, pp. 3–10

35. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992)
HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J
Investig Dermatol 99(6):683–690



Available Computational Techniques to Model
Atherosclerotic Plaque Progression
Implementing a Multi-Level Approach

Antonis I. Sakellarios, Georgia Karanasiou, Panagiotis Siogkas,
Vasiliki Kigka, Themis Exarchos, George Rigas, Lampros K. Michalis,
and Dimitrios I. Fotiadis

1 Introduction

Cardiovascular disease, and more specifically atherosclerosis, is considered as one
of the most common causes of death in western societies. Atherosclerosis devel-
opment initiates under the effect of several conditions such as the hemodynamics
environment or the rapid accumulation of lipids and their oxidation. Nevertheless,
atherosclerosis is characterized as an inflammatory disease which starts after the
oxidation of low density lipoproteins (LDL) into the arterial wall and the migration
of monocytes and macrophages at the lesion site [1]. Blood flow and especially low
endothelial shear stress (ESS) and recirculations may cause injuries in the arterial
wall [2]. These regions are usually located near bifurcations, curves, and branches.
It has been shown that ESS affects in different ways the endothelial function altering
the local gene expression and/or the permeability to molecules [2]. This affects
endothelial permeability to LDL molecules and increases LDL accumulation in the
arterial wall [3]. In high risk patients, an invasive treatment is followed, such as
arterial bypass or Percutaneous Coronary Intervention. In coronary artery bypass
grafting (CABG), arterial or vein conduits (grafts) are used to bypass the occluded
arterial region. Stenting is a combination of angioplasty and stent implantation,
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where the tubular wire mesh is positioned in the stenosed arterial region, inflated
and permanently left in order to prevent arterial recoil and restenosis. The evolution
of stents has resulted in improved clinical outcomes, however, there are still some
issues that should be taken into consideration, such as the induced local arterial
injury, the possibility of in-stent restenosis (ISR), as well as the risk for stent
thrombosis (ST) [4].

Image processing algorithms and methodologies have been implemented for the
accurate reconstruction of arteries and computational models have been employed
utilizing the reconstructed arterial segments or trees. In the next sections a multi-
level modeling approach is presented (Fig. 1). More specifically, the first level
regards the arterial reconstruction using the available invasive and non-invasive vas-
cular imaging modalities such as intravascular ultrasound, angiography, computed
tomography, and magnetic resonance imaging. The second level is the modeling
of blood flow and the estimation of ESS at the reconstructed arteries. The third
level is the modeling of LDL and other molecules and cells in the arterial lumen

Fig. 1 Multi-level modeling approach of atherosclerotic plaque development
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and their accumulation into the arterial wall. In the fourth level, plaque growth is
modeled utilizing the results of the previous levels to model the inflammation in the
arterial wall and the formation of foam cells. Data from experimental and animal
studies have been used for the calculation of the parameters which are applied in
the computational models. The fifth level consists of an innovative approach of FFR
calculation, while in the sixth level, our stent deployment modeling approach, we
studied the performance of the Leader Plus stent type expansion inside a patient
specific coronary arterial segment focusing on the arterial stresses in the contact
region with the stent.

2 Multi-Level Modeling of Atherosclerosis

2.1 Level 1: 3D Arterial Reconstruction Using Medical Images

The prerequisite of the modeling approaches which employ the finite element
method is the use of geometries which represent the physical domain. Accurate
modeling of biomechanical systems requires realistic description of the system
geometry. Similarly, modeling approaches in atherosclerosis require an accurate
representation of the arterial segments or arterial trees. The arteries were recon-
structed utilizing various imaging modalities, e.g., intravascular ultrasound (IVUS),
angiography, MRI, computed coronary tomography angiography (CCTA). In the
following sections, the methodologies for 3D reconstruction of arteries based on the
fusion of IVUS and angiography, CT, and MRI are presented.

3D Coronary Artery Reconstruction Using IVUS and Angiography

Coronary artery reconstruction was performed based on the fusion of bi-plane
angiography and IVUS data [5]. Briefly, two orthogonal views of angiography are
acquired and the catheter path is found. Using the orthogonal views, a 3D catheter
path is generated. Active contours are implemented for the automate segmentation
of IVUS frames and the detection of the lumen and media-adventitia borders. In
the next step, the detected borders are placed perpendicularly onto the 3D catheter
path after appropriate absolute orientation of the IVUS frames onto the path. The
outcome of this process was two point clouds that represent the luminal and media-
adventitia wall geometry.

3D Artery Reconstruction Using MRI

MRI imaging can be used for the imaging and consequently the reconstruction of
arteries. Auer et al. introduced an active contour algorithm for the segmentation
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of high-resolution MRI and then proposed a methodology that uses statistical
information to characterize the plaque components [6]. Adame et al. [7] combined
a model-based segmentation algorithm and fuzzy clustering in order to detect the
vessel wall, lumen, and lipid core borders. An interesting study was performed
by Hofman et al. who used Bayesian, K-Nearest neighbor, feed-forward neural
networks, and a combination of Bayes classifier with the Parzen to characterize
the type of the plaque in the carotid arteries [8]. Finally, Liu et al. [9] presented
a Bayesian approach which used the pixel’s intensity, the wall thickness, and the
distance from the lumen to characterize plaque composition.

Our methodology includes four main steps [10]: (i) image acquisition and pre-
processing of T1-Weighted, and Time-of-Flight (TOF) and T2-Weighted images, (ii)
luminal border detection, (iii) outer vessel wall detection, and (iv) characterization
of the composition of the plaque (hemorrhages, calcium, lipid cores, and fibrotic
plaques). Active contours theory is implemented for lumen and outer vessel wall
border detection in TOF and T1-Weighted images, respectively. Moreover, identifi-
cation of the bifurcation is achieved using the theory of connecting components,
while the different plaque types are classified into hemorrhages, calcium, lipid
cores, and fibrotic plaques based on a knowledge-based algorithm. Validation of
the proposed methodology was made using two experts’ annotations (inter-observer
variability for the lumen was �1.60 ˙ 6.70 and for the outer vessel wall was
0.56 ˙ 6.28%) [10]. Plaque type is also accurately characterized after a validation
in 591 images [10].

3D Artery Reconstruction Using CT

Several studies have demonstrated that CCTA provides an accurate analysis of
coronary artery remodeling and is able to detect and quantify atherosclerotic plaque
[11, 12]. Furthermore, different studies have proved the ability of CCTA to assess
plaque burden and classify plaque composition [13]. Voros et al. [14] attempted to
validate three-dimensional, quantitative measurements of coronary plaque by CCTA
using IVUS. In a similar manner, Graaf et al. [15] correlated the metrics calculated
using a fully automated CCTA methodology with those derived by VH-IVUS.
Another study for the quantification of coronary arterial stenoses using CCTA was
presented by Arbab et al. [16]. This approach indicated that CCTA in comparison
with the conventional angiography is able to identify non-invasively patients with
coronary artery disease. Recently, Athanasiou et al. [17] presented an innovative
three-dimensional reconstruction methodology of coronary arteries and their plaque
morphology, using CCTA images.

Our approach includes seven stages (Fig. 2). In the first stage the CCTA images
are pre-processed using the Frangi Vesselness filter [18], which identifies tubular
structures and limits the region of interest (ROI) to vessel candidate regions. In the
second stage, a centerline extraction methodology is applied, using a minimum cost
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Fig. 2 The seven stages of
the proposed artery
reconstruction using CCTA

path approach [19]. In the third stage a weight function for lumen, outer wall, and
calcified plaque is estimated, based on a membership function of Hounsfield Units
(HU) values and the distance from the centerline. This function aims to compensate
different protocols for discriminating lumen, outer wall, and calcified plaque. In the
fourth stage, an extension of active contour models [20] for lumen segmentation is
implemented. In the fifth stage, similar to the previous stage, a level set approach for
outer wall segmentation is implemented. This approach uses as a prior shape for the
outer wall the previously segmented lumen. In the sixth stage, a level set method
is applied for plaque segmentation, taking into consideration calcium objects of
significant size. Finally, in the seventh stage the 3D surfaces for the lumen, outer
wall, and the calcified plaques are constructed.

2.2 Level 2: Blood Flow Modeling

Hemodynamics and especially, shear stress, found to play a considerable role in
the development of atherosclerotic plaques [2]. Blood flow is modeled using the
Navier–Stokes equations. The solution of the Navier–Stokes equations requires
appropriate boundary conditions and in the case of the transient simulation ini-
tial conditions are also needed. We assume that the blood flow is laminar and
incompressible. In addition the blood is considered to be Newtonian or non-
Newtonian. The arterial wall is assumed to be rigid and non-deformable. The inflow
boundary condition is defined by a constant velocity profile or a constant mass flow
rate while at the outlet of the arterial segment we define a constant average pressure
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profile. Finally, at the fixed walls all velocity components are set to be zero (no-
slip boundary condition). In the case of transient flow the inflow is defined by the
volumetric blood flow rate or a time dependent velocity profile. The flow rate is
specified by a waveform, while three cardiac cycles are required as a general rule for
accurate solution of pulsatile simulations. Blood flow modeling has been performed
in several studies using mainly the finite element method [21–24]. Papafaklis et al.
[25] studied the hemodynamics in coronary arteries bifurcation and investigated the
influence of ESS to arterial wall thickening.

The ESS calculation is associated with the arterial geometry especially for
regions of increased stenosis [26]. The presence of stenosis has a dramatic effect
on the local ESS distribution, while tachycardia had a pronounced impact on ESS in
the region of a stenosis with 3–5.7 fold decrease in time-averaged values during one
cardiac cycle, compared to the normal heart rate profile [26]. ESS is also correlated
with neointima formation after stent implantation [27]. In particular, in patients
with bare metal stents (BMS) a negative association was noted between ESS and
neointima burden (p D 0.002) as well as between ESS and the percentage of the
neointimal necrotic core component (p D 0.015). In patients with biolimus eluting
stents (BES), the suppression of neointimal formation did not allow evaluation of the
effect of ESS on its tissue characteristics. Thus, ESS determines not only the amount
but also the composition of the neointima in BMS. In the PROSPECT-CT study
it was found that CCTA-derived variables had a moderate accuracy in detecting
lesions that are likely to progress at follow-up [28]. Performing simulations at 17
bifurcations of the PROSPECT-CT database [29], we found that the Murray’s law
[30] provides the best accuracy to predict disease progression and also that the use
of the side branch in the calculations of ESS is necessary for accurate results. More
specifically, low ESS is an independent predictor of lumen reduction and necrotic
core increase.

2.3 Level 3: LDL Transport Modeling

The third level is the modeling of LDL transport and its accumulation in the arterial
wall. The same principles apply for the HDL transport as well as other cells transport
such as monocytes. The rationale is that LDL is transferred in the arterial lumen not
only by the blood flow (convection) but also by diffusion due to the concentration
difference. Furthermore, LDL/HDL molecules penetrate the endothelial membrane
and accumulate into the arterial wall. In order to model macromolecular transport
in arteries the convection-diffusion equation is employed.
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Prosi et al. [31] have classified mass transfer models into three major categories:
(a) the wall-free models, (b) the lumen-wall models, and (c) the multi-layer models.
In wall-free models the arterial wall is non-permeable and the wall thickness is not
taken into account. Hong et al. [32] presented a numerical simulation of pulsatile
flow and macromolecular transport in complex blood vessels. The arterial wall was
assumed rigid and the low density lipoprotein (LDL) molecule was too large to
penetrate the arterial wall. The lumen-wall models are a more realistic approach
since the transport within the lumen is coupled with that in the arterial wall. In these
models, the arterial wall is simplified as a homogeneous porous monolayer. Sun
et al. [33] and Olgac et al. [34] investigated the influence of the ESS on the arterial
mass transport by modeling the blood flow and the solute transport in the lumen
and the arterial wall. The most realistic models are the multilayer models, in which
the arterial wall consists of more than one layers. Mass transport is made in each
layer and interaction between these layers exists. Prosi et al. [31] introduced several
mathematical models, based on partial differential equations, to study the coupled
transport of macromolecules in the blood stream and in the arterial wall.

We have implemented two LDL transport models. The first one has been
proposed by Sun et al. [35]. The second approach enhances the effect of LDL
accumulation in the luminal side assuming that endothelial permeability increases
when the local luminal LDL concentration is high [26]. Finally, another approach
has also been developed which describes a permeability model based on the local
endothelial dysfunction caused by the expression of nitric oxide [36]. Results
of these studies are summarized below. The endothelial permeability is modeled
assuming that the endothelium is a semi-permeable biological membrane. The
Kedem–Katchalsky equations [37] are employed. The permeability term of these
equations is of utmost importance and several experiments and studies attempted
to define it [38]. However, pathological conditions such as hypertension or diabetes
could increase endothelial permeability. Besides the constant endothelial permeabil-
ity model, a variable permeability model which depends on the local luminal LDL
concentration [39] has been developed.

Regarding the LDL transport modeling, we showed in one coronary artery
that hypertension and tachycardia affect LDL accumulation [26]. The model of
endothelial permeability which is based on the local LDL concentration showed that
the clinical impact of LDL in real life is simulated more accurately with this model.
LDL transport modeling was implemented in large arterial datasets in order to
show LDL’s effect to plaque growth using baseline and retrospective imaging data.
The results show that there is a correlation of high LDL accumulation with plaque
growth and especially with plaque burden increase. This finding is observed first in
58 coronary arteries acquired from the PROSPECT database [40]. It was also shown
using a dataset of 12 carotid arteries where for the first time MRI examinations from
three time points are used [41]. However, the accuracy to predict regions of plaque
growth is similar with low ESS leading us to use more sophisticated LDL transport
models, as the one based on the local luminal LDL concentration or the proposed
endothelial dysfunction model which is based on the production of nitric oxide.
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2.4 Level 4: Plaque Growth Modeling

The fourth level of multi-level modeling of atherosclerotic plaque growth is the
modeling of the major mechanisms which underlie the initiation and the formation
of plaque into the arterial wall. The first two studies were presented by Filipovic
et al. [42] and Parodi et al. [43]. Another plaque growth model was presented by
Cilla et al. [44]. It was applied in an artificial axisymmetric geometrical coronary
artery model. The results though it was not implemented into realistic arteries show
that the presented model can simulate the atheromatic plaque growth despite the use
of an artificial geometry.

In this level, we first model the oxidation of LDL. It is the first time that such
a model for the atheroprotective effect of HDL in the oxidation of LDL has been
presented. Thus, experimental data are used to develop a novel LDL oxidation
model [45]. In the next step, the effect of cytokines, the transport of monocytes and
their differentiation to macrophages, and finally the absorption of oxidized LDL
by them to form the foam cells are simulated [46]. The computational model has
been implemented in proof-of-concept studies of animal or human data recruited
during the ARTREAT project or using data from the databases of PROSPECT
and IBIS studies. The first version of the model includes only the modeling of
the LDL oxidation. More specifically, we assume that LDL is oxidized when it
gets inside the arterial wall. However, this mechanism is affected by the existence
of local concentration of HDL which plays an atheroprotective role to plaque
development. The proposed model was based on experimental studies. The model
was implemented in an arterial segment using pig data [47] and the results have
shown that the calculated oxidized concentration of LDL correlates well with
the lipid plaque components found in histological images. In the most complex
form of the plaque growth model, we model monocytes migration but also their
differentiation to macrophages into the arterial wall to finally estimate the formation
of foam cells. This model has been implemented in human arteries (coronaries and
carotids). In both cases the major conclusion is that advanced modeling of plaque
growth is necessary to increase the accuracy to predict the regions which are prone
for disease progression. More specifically, in the carotid artery we found that the
oxidized LDL and macrophages are correlated with lumen reduction and thickness
change, while the prediction accuracy of using all calculated variables in a multi-
variate model increases against of using only the low ESS as a predictor of disease
progression [48]. In a recent proof-of-concept case we demonstrated a validation
scenario of plaque growth modeling using follow-up virtual histology IVUS and
optical coherence tomography data from a human coronary arterial segment. In this
case the prediction accuracy is over 75% when using all variables [46]. The overall
multi-level approach results are shown in Fig. 3.
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Fig. 3 Multi-level rationale of plaque growth modeling. (A–C) 3D reconstruction of coronary and
carotid arteries, (D, G) ESS distribution coronary and carotid artery, (E) LDL accumulation in the
arterial wall in the LDL transport modeling level, and (F, H, I) oxidized LDL, macrophages, and
foam cells accumulation in the arterial wall in plaque growth modeling level
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2.5 Level 5: Computational Prediction of FFR

Fractional Flow Reserve (FFR) is considered the gold standard in every day clinical
practice for the evaluation of the severity of coronary lesions. However, it requires
the use of a dedicated pressure-flow wire, thus increasing the total cost of the
whole examination, as well as the discomfort of the patient. In order to tackle
this issue, several approaches have been reported in literature that combine non-
invasive imaging techniques (CCTA) and the use of computational fluid dynamics
to provide an estimation of the invasively measured FFR [49, 50]. Virtual functional
assessment index (vFAI) has been proposed as an accurate and valid equivalent to
the invasively measured FFR, allowing the evaluation of the hemodynamic status of
an existing coronary lesion in short time. Our method utilizes three-dimensional
(3D) anatomical data from the coronary vasculature and performs blood flow
modeling to calculate the ratio of pressures distal and proximal over the lesion for
flows ranging from 0 to 4 mL/s, normalized by the same ratio for a totally healthy
artery, offering an insight in CAD hemodynamic significance that is numerically
equal to the invasively measured FFR. In coronary angiography derived 3D models,
close correlation (r D 0.78, p < 0.0001) and agreement of vFAI compared to wire-
FFR (mean difference: �0.0039 ˙ 0.085, p D 0.59) was found [51]. Diagnostic
accuracy, sensitivity, and specificity for the optimal vFAI cut-point (�0.82) were
88%, 90%, and 86%, respectively. Regarding CCTA derived 3D models, very good
correlation (r D 0.88, p < 0.001) and strong agreement between vFAI and invasively
measured FFR (mean difference: �0.0039 ˙ 0.04) were also found [52]. The
respective diagnostic accuracy, sensitivity, and specificity for the optimal vFAI cut-
point (�0.84) were 91.7%, 75%, and 96.4%. Finally, in hybrid IVUS-angiography
3D models, a modest correlation (r D 0.84, p D 0.073) was found [53].

2.6 Level 6: Stent Modeling

Computational simulations might be an effective tool for investigating the mechan-
ical performance of stents and evaluating the arterial implications such as in
stent restenosis coming from different stent designs and materials, a process that
cannot be fully assessed in experimental studies [54]. Towards this direction,
several research teams have provided valuable information, either by performing
computational simulations of stent deployment inside idealized arteries, or even
utilizing patient specific imaging data for the reconstruction of arterial segments
[55, 56].

The unexpanded configuration of the 3D finite element model consisted of one
3D reconstructed coronary arterial segment and the Leader Plus stent geometry
(Fig. 4). The mesh was created with 3D higher order ten node elements. The
mesh sensitivity was implemented with a convergence criterion of the maximum
von Mises stresses being within 5%. Stent deployment was performed following a
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Fig. 4 (a) The reconstructed artery and the LeaderPlus stent. (b) Von Mises stress distribution
in the deformed Leader Plus Stent. (c) Von Mises stress at the arterial wall (MPa) during stent
expansion for the applied pressure of 1.2 MPa and 1.5 MPa

pressure driven approach through the application of a pressure directly to the inner
stent surface. To represent the performance of the human tissue, several material
models can be utilized. In our model, the artery was assumed homogeneous with
nonlinear behavior. A polynomial form of the Mooney–Rivlin hyperelastic material
model was used for the arterial wall [57], with the strain energy density function
based on Maurel et al. [58], whereas a bilinear elasto-plastic material model was
employed for the stent. The stent was initially placed in the arterial stenosis region.
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The ends of the artery were not allowed to move or rotate, appropriate boundary
conditions allowed the movement in the axial and radial directions of the stent,
whereas stent inflation was enabled by a pressure of 1.5 MPa. Stent expansion was
achieved under uniform pressure, however, due to the asymmetry of the stenosed
arterial region, stent struts deformed non-uniformly (Fig. 4). The investigation of
the stent response is of great importance since high stent stresses can result in stent
fracture and consequently in arterial injury. High stresses, approximately 550 MPa,
were observed in the stent connectors. During stent deployment, the von Mises
stresses were increasing (Fig. 4) and high von Mises stresses occurred in the arterial-
stent surface.

3 Discussion and Conclusions

A methodological approach for the computational modeling of the major mech-
anisms of atherosclerotic plaque development has been presented in this work.
Until recently 3D reconstruction and blood flow were only utilized to estimate
disease progression. In the current work we propose a multi-level modeling scheme
consisting of the 3D reconstruction level, the blood flow modeling and ESS
estimation level, the LDL transport modeling level, the plaque growth modeling
level but also the stent deployment modeling. Regarding the level of blood flow
modeling, first, we prove the effect of geometry and existed stenosis to ESS
distribution as well as the effect of tachycardia and hypertension. Second, we
associate ESS with disease progression utilizing the CT imaging modality and for
the first time we prove that CT imaging can accurately be used for the calculation
of ESS and disease progression. Third, for the first time we present an analysis
of ESS and neointima formation in arterial segments with deployed stent. Going
beyond the state of the art in LDL transport modeling we presented several novel
models for endothelial permeability as well as different analyses of the effect
of LDL concentration at plaque progression. More specifically, we developed a
model of endothelial permeability and LDL transport which is based on the local
concentration of LDL concentration. The developed model has been applied to
different datasets of arteries demonstrating the ability to predict regions which are
prone for plaque growth.

The major innovation is the development of plaque growth computational
models. This work starts with the development of an LDL oxidation model. The
proposed LDL oxidation model is based not only on the LDL accumulation in the
arterial wall, but also on the HDL concentration which has an atheroprotective role
on disease progression. The last part is the development of a plaque growth model
which simulates the major mechanisms of the atherosclerotic plaque growth process.
These mechanisms beside the LDL oxidation are the migration of monocytes into
the arterial wall under the effect of cytokines expression and their consequent
transformation to macrophages. The appearance of macrophages into the arterial
wall with the existence of oxidized LDL leads to the formation of foam cells.
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In this model we included all these mechanisms. We applied the proposed model
in several cases (one carotid artery and three coronary arteries) and the comparison
of the simulation results with the retrospective follow-up data prove that our model
is highly promising for a new kind of thinking in the field of atherosclerotic plaque
development. More specifically, until now low ESS is considered as a predictor of
disease progression without, however, accurate results. Complex modeling of plaque
growth increases the accuracy of disease prediction.
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Reduced Order Model of a Human Left
and Right Ventricle Based on POD Method

Piotr Przybyła, Witold Stankiewicz, Marek Morzyński, Michał Nowak,
Dominik Gaweł, Sebastian Stefaniak, and Marek Jemielity

1 Introduction

According to the World Health Organization, chronic diseases are responsible
for 63% of all deaths in the world, with cardiovascular disease as the leading
cause of death. Magnetic resonance imaging technologies have advanced rapidly
in recent years enabling both radiologists and cardiologists to perform evaluated
studies for assessment of the functional parameters of the heart, such as myocardial
wall motion, volumetric parameters, ejection fraction, and stroke volume across
both the left and right ventricles. In theory the term cardiomyopathy could apply
to almost any disease affecting the heart, in practice it is usually reserved for
severe myocardial disease leading to heart failure [1]. Clinical biomechanists are
confronted with various challenges. One of them is the task of reducing the amount
of data from clinical datasets [2, 3].

Recently computer methods and programs are being implemented throughout all
aspects of biomedical research and medical practice. Many of them are concentrated
on biomechanics of particular movement disorders, as in the case of hip joint
dysplasia [4], Parkinson disease [5], or cardiac motion [6]. In the last case, to mark
the deteriorations, clinical biomechanists record kinematic and electromyographic
signals, which are both analyzed statistically and in terms of an explicit inverse
dynamic model [7]. These analyses, on the other hand, may grant insight into proper
relevant biomechanical aspects of particular movement disorders and, in some cases,
elemental motor deteriorations. Nevertheless, magnetic resonance imaging brings
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a large amount of data which is difficult to elaborate and process. The design of
the model of heart motion is difficult as the movement interweaves with several
factors such as muscle contraction, blood flow, calcification, fiber orientation, and
nerve impulses. Each of those aspects can be designed separately and is challenging
as well. The example of computational model combining all the aforementioned
factors is given in [8].

Another solution can be a “Black Box” model based on statistical analysis. An
overview of these methods, combining different types of models over a global shape
model and promising for other medical segmentation problems, especially if local
anatomical abnormalities (e.g., a tumor) appear, is presented in [9].

In [10] clinical diagnosis is based upon global modes of motion, measurement
of longitudinal displacement of the LV may be critical, and thus an increased
emphasis on acquiring sufficient long axis image data may be warranted. They also
suggest that methods sensitive to transmural differences in displacement may offer
a clinical advantage for diagnosis of functional abnormality. Finally, the creation
of a kinematic mode database can greatly increase reconstruction efficiency in
healthy hearts by eliminating modes which contribute little to the reconstruction
accuracy [11].

We can create a “black box model” based only on movement observation,
which could be applied in, for example, flow control. Mathematical models for
human ventricles contain large amounts of data. Their numerical solution is based
on appropriate space/time discretizations which requires computational times that
even utilizing state-of-the-art algorithmic solvers are far from being acceptable.
A means to overcome this difficulty is to use reduced order models (ROMs) where
the dimension of the ROM is, by at least one order of magnitude, smaller than
the dimension of the full order model while still separating the effects of the
essential dynamics of the underlying physiological processes. Suitable model order
reduction techniques include balanced truncation (BT) [12], Proper Orthogonal
Decomposition (POD) [13], and reduced basis methods (RBM) [14].

This paper is structured as follows. In Sect. 2 we describe the method of generat-
ing a model of left and right ventricle. In Sect. 3 we present Proper Orthogonal
Decomposition. Decomposition of left and right ventricle and decomposition of
left ventricles are presented in Sects. 4 and 5, respectively. Finally, discussion and
conclusions are presented in Sect. 6.

2 Generation of a Patient-Specific Cardiac Model

Choosing an optimal medical image visualization method always raises many
questions. With a choice between CT, ultrasonography, Spectral CT, and MRI, the
Magnetic Resonance Imaging seems to be the most suitable—while CT slices are
more dense, they are related with radiation.

Initial clinical data consists of a cine-MRI sequence of the cardiac cycle of an
adult patient. Images are in short axis, covering both ventricles (ten slices; slice
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thickness: 8 mm, temporal resolution: 25 frames). Images were made isotropic and
contrast was enhanced by clamping the tails of the grey-level histogram. DICOM
examinations were loaded into the program, in particular, dynamic information on
a cardiac study is automatically extracted.

To build a patient-specific model of the heart from the DICOM data resulting
from MRI, it is crucial to segment the different parts of the organ. That implies
segmenting the left and right endocardia, as well as the epicardium.

In this paper, we demonstrate our methodology on commonly available datasets.
They consist of left and right ventricle data by Toussaint et al. [7], and a set of
left ventricle models from the Sunnybrook Cardiac Data, SCD [15]. In the first
case, interactive surface generation using implicit functions was used. Segmentation
is started on the first frame of the MRI cardiac sequence, corresponding to end
diastole. Interactive segmentation is based on variational implicit surfaces [16],
which consists of computing an implicit function whose zero-level set passes
through defined control points (landmarks). In order to calibrate the physiological
parameters of the model, segmentation operation is repeated throughout the entire
cardiac sequence, in order to estimate—for instance—the blood pool volume. The
semi-automatic process described above, in which the user empirically specifies
landmarks and filters, is to ensure the visual compliance of the myocardium area
in the MRI and the determined mask. Then, nonlinear image registration based
on diffeomorphic demons is performed [17]. The resulting deformation fields are
then used to propagate the myocardium mask throughout further frames of cardiac
sequence. Finally, the dynamic mesh of the myocardium is obtained by performing
successive isosurface extractions on the aforementioned binary masks.

3 Proper Orthogonal Decomposition

Modal decomposition is a powerful and popular tool in model reduction techniques
[18] and biomechanics [13]. In the case of the empirical approach, where the modes
are obtained from the analysis of measured data or simulation, a number of methods
may be distinguished. The most popular of them, Proper Orthogonal Decomposition
(POD) (also known as PCA—Principal Component Analysis) [19–21] is based on
the eigenanalysis of the autocorrelation matrix computed for the input signal [22].
There are many variants of this method designed for certain purposes. For example,
method of snapshots [23] is used when the number of snapshots is much smaller than
the dimension of the single snapshot. Sparse PCA [24] finds modes that are sparse
vectors, that facilitates further interpretation. Kernel PCA [25] is the extension of
PCA using kernel functions for the mapping of input data onto higher-dimensional
feature space and multilinear PCA [26] is based on the linear transformations of
each dimensional separately.

Another decomposition methods used in biomechanics include Independent
Component Analysis [27] and Linear Discriminant Analysis (LDA) [28].
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In the case of global analysis of cyclic data, snapshot POD of Sirovich is the
best approach. This method is based on the assumption that there is a correlation
between sampled data and it decomposes the data into uncorrelated modes that are
optimal for energy representation by construction.

In this method, the M snapshots vi of size N (number of Degrees of Freedom)
are centered using time-averaged solution u0. Resulting M fluctuation vectors
vi

0 D vi � u0 form a matrix V 0. POD modes used in model reduction are the
eigenvectors ui of standard eigenproblem Cui D �i�ui of the autocorrelation matrix
C. In snapshot POD, this matrix (of size M � M) is defined as:

C D 1

M
V 0TV 0;

and the POD modes wi are computed by the projection of eigenvectors ui, related to
eigenvalues �i of largest magnitude and representing mode amplitudes, onto a set of
initial snapshots V:

wi D Vui

kVuik :

4 Proper Orthogonal Decomposition of Left and Right
Ventricle

A set of meshes was created with the help of CardioViz [29, 30], containing the
85 frames of the cardiac cycle. Vertex positions at each time frame are assigned
to the corresponding frame mesh. As the topology of the mesh does not change
along the sequence, a single VTK object explaining the topology is given to all the
frames. Scalar data are also associated with each time frame. Linear interpolation
is used to map scalar information on the mesh object [7]. Proper orthogonal
decomposition was implemented to one cardiac cycle. The cycle was decomposed
to 85 modes, which should represent 100% energy of heart motion. The Table 1
presents individual and joint information transferred by modes. We note the first
five modes only, by virtue of little percentage of information being transferred by
further modes, assuming that they can be neglected. It can be seen that just the first
three modes represent 99% of information concerning the cardiac cycle. Using this
data we can judge, which modes seem to be the important.

The first three modes, multiplied by maximal and minimal values of coefficients
and superimposed on the time-average geometry of the heart, are presented in Fig. 1.
In order to strengthen the visual effect, the results are scaled twice. The first mode
represents systole of both left and right ventricles, with no twist.

The twist and movement along long axis are described by the second and third
POD modes (Figs. 2 and 3, respectively).
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Table 1 Information transferred by modes

Mode number Information transferred [%] Information transferred (jointly) [%]

1 73.55 73.55
2 22.14 95.70
3 3.43 99.13
4 0.49 99.63
5 0.14 99.77
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Fig. 1 The First POD mode superimposed on averaged geometry, depicted using doubled min.
and max. values of corresponding time coefficient (dimensionless mode amplitude A)
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Fig. 2 Same as Fig. 1, but for the second POD mode

The figures above display slight discrepancy in amplitude at the beginning and
end of the cycle. We assume that the reason for this is the absence of snapshots
for one or two time steps. Diagrams of specific modes are distinctive to a factual,
individual heart model [7], in this case left and right ventricle with no pathologies.
Pathological ventricles will have differing, individual diagrams.
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Fig. 3 Same as Fig. 1, but for the third POD mode

5 Proper Orthogonal Decomposition of Left Ventricles

Proper Orthogonal Decomposition was performed on models from The Sunnybrook
Cardiac Data (SCD) [15], also known as the 2009 Cardiac MR Left Ventricle
Segmentation Challenge data, consisting of models from a mixed groups of patients
and pathologies. The data contributor is the Imaging Research, Sunnybrook Health
Sciences Centre, Toronto, Canada. The subset of the data was first used for
automated myocardium segmentation challenge from short-axis MRI, held by
a MICCAI workshop in 2009. The data has already been registered [15]. The
study description indicates the pathology. The patient datasets were classified into
four groups representing diverse morphologies, based on the following clinical
criteria [31]:

I. Heart failure with infarction (SC-HF-I) group had EF < 40% and evidence of
late gadolinium (Gd) enhancement (12 patients)

II. Heart failure with no infarction (SC-HF-NI) group had EF < 40% and no late
Gd enhancement (12 patients)

III. LV hypertrophy (SC-HYP) group (EF > 55%, 12 patients)
IV. Healthy (SC-N) group had EF > 55% and no hypertrophy (nine patients).

Three groups of patients (I, II, and IV) were chosen for further analysis of modal
decomposition. The results were presented for the most exemplary of them.

5.1 Ventricle Models with Heart Failure with Infarction

Modal distribution of the same pathology seems to be comparable between different
patients. Proportional information of mode I does not exceed 60%. As proportional
information we understand the shared information of movement carried by mode.
The same phenomena applies to mode II and III. Mode II holds on the level between
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Fig. 4 Proportional information transferred by the modes. Three different patients with heart
failure with infarction presented from left to right
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Fig. 6 Amplitude range overview through modal distributions of mode I, II, III for all test cases.
Mode amplitudes A in time (frames of cycle), presented for every test case, mode I and mode II

30% and 42%, while mode III does not exceed 3%. Proportional distribution for
three exemplary patients: men aged 48, 57, 69 is shown in Fig. 4.

Changes of amplitudes in time for the first three modes in Fig. 5 for exemplary
patients are congenial. Transition of graphs appears almost simultaneously (mode
I and III) showing little differences between mode II (patient II and III has similar
progress; the curve of patient I is flattened at the beginning of the cycle).

Figure 6 displays the amplitudes of mode I and II in time for every test case of the
presented group. Thorough analysis will require full medical history of every single
patient, which was not provided in the data. However it is noticeable, that changes
of amplitude are congenial.
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Fig. 9 Amplitude range overview through modal distributions of mode I, II, III for all test cases.
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5.2 Healthy (SC-N) Group, no Hypertrophy

Exemplary distributions of healthy patients: 63 aged male, 53 aged female, 77
aged female, is presented in Fig. 7. In this case, mode I substantially dominates
in proportional information distribution. There is little influence of modes II and III.
Similar phenomena appeared in the model of left and right ventricle in Sect. 4.

Range of amplitude in time for first three modes in Fig. 8 for healthy patients is
almost identical, even though we compare patients from differing ages and gender.
The averaged value of mode I from acquired dataset is 91.35%.

In Fig. 9 we have presented the amplitudes of mode I and II in time for every test
case of the presented group. The shape of amplitudes is similar, and the tendency is
maintained for every test case in both modes.



Reduced Order Model of a Human Left and Right Ventricle Based on POD Method 65

1

Percentual information transferred Percentual information transferred Percentual information transferred

0

20

40

60

80

100

78.83

15.32

3.67
1.25 0.39 0.30 0.11 0.09 0.02 0.02

71.61

21.71

3.47 1.48 0.92 0.35 0.24 0.09 0.06 0.05

78.90

15.20

4.50
0.79 0.28 0.19 0.07 0.06 0.01 0.00

[%]

0

20

40

60

80

100
[%]

0

20

40

60

80

100
[%]

2 3 4 5 6 7 8 9 10
mode

1 2 3 4 5 6 7 8 9 10
mode

1 2 3 4 5 6 7 8 9 10
mode

Fig. 10 Proportional information transferred by the modes. Three different patients with heart
failure without infarction presented from left to right

0
-80

-60

-40

-20

0

20

40

60

80

100 120

100

80

60

40

20
0

20

40

60

80

-100

80

60

40

20

0

-20

-40

-60

-80
0 2 4 6 8 10 12 14 16 18 20

frame
0 2 4 6 8 10 12 14 16 18 20

frame

A A AMode 1
Mode 2
Mode 3

Mode 1
Mode 2
Mode 3

Mode 1
Mode 2
Mode 3

2 4 6 8 10 12 14 16 18 20
frame

Fig. 11 Mode amplitudes A in time, presented for three different patients; heart without infarct

5.3 Heart Failure with no Infarction

The third group of patients analyzed in this paper were having heart failure without
infarct. In these cases, achieved data indicates greater influence for mode II in
pathological hearts than for healthy ones. However, it was still less than for patients
with heart failure with infarct. Three exemplary test cases (77 aged male, 82 aged
male, 77 aged female) are presented in Figs. 10 and 11.

Mode amplitude is fluctuating in mode II and III, while mode I is similar in all
presented cases. Average value of mode I for patients with no infarction fluctuates
between 70% and 80%, while mode II exceeds 15%, which is rather unique, and
characteristic for this pathology.

In Fig. 12 we have presented the amplitudes of mode I and II in time for
every test case of the presented group. It is notable, that amplitudes are similar
to these presented in Sect. 5.1. As mentioned before, thorough analysis could be
performed with closer information about patients pathology. However, general trend
of amplitudes is maintained.

6 Discussion and Conclusions

This article concerns the analysis of the motion of the left and right ventricle,
captured from MRI examination. We have proven that such a complex motion might
be modeled with a few degrees of freedom—POD modes and their amplitudes.



66 P. Przybyła et al.

0

150

100

50

0

-50

-100

-150
0 2 4 6 8 10 12 14 16 18 20

-80
0 2 4 6 8 10 12 14 16 18 20

frame

-60

-40

-20

0

20

40

60
A

frame

mode I mode ll

llll

1 2 3 4 5
mode

20

40

60

80

100
78.0733

16.1442

Percentual information transferred
range

3.41667
1.34333 0.5075

[%]

Fig. 12 Amplitude range overview through modal distributions of modes for all test cases. Mode
amplitudes A in time (frames of cycle), presented for every test case, mode I and mode II

Modal decomposition gives more insight into the heart than 2D analysis of MRI
slices. This approach is in line with the recent works. Principal Component Analysis
has been already used to analyze the electrocardiogram signals for detection of heart
arrhythmia [32], reduced order modeling [33], and automated diagnosis of cardiac
health [34]. Recently, 4D models are used as an input. Wu et al. [35] use POD to
analyze time-varying, three-dimensional data from ECG-gated multislice cardiac
CT images of human right ventricle and classify pulmonary hypertension. They
state that such approach might provide “new metrics to improve the diagnosis and
understanding of cardiovascular diseases.” Similar approach for cardiac MR and CT
image sequences is used by Perperidis et al. [29].

In our study, already three modes allow to reproduce 99% of the original
properties of the heart motion, to analyze it and compare to the real motion of systole
and diastole. It will make possible the correlation of modal data (modes, amplitudes,
and eigenvalues) with the corresponding pathologies. As the change in the cardiac
cycle will be visible after the spatio-temporal decomposition as well, the designed
model makes the proper diagnosis, preparation for invasive procedures and future
treatment much easier, more cost effective and requiring less time.

The analyzed set is quite small, but preliminary conclusions may be drawn. It
seems that the increased eigenvalue of second mode (related to higher amplitudes)
might be correlated with the aforementioned heart failures. The order of the higher
modes might vary for different subjects. The first modes always represent the
contraction of the ventricles. The differentiation between failing and healthy hearts
is done by comparing ratios of the first mode (failing below 89–91%) and second
mode (failing above 5.1–6.7%), no matter what motion it describes. Unfortunately,
myocardial infarction does not affect noticeably the modal amplitudes and eigenval-
ues. This case requires further study, performed on a larger patients group.

The POD analysis can show abnormalities which cannot be observed in live
time diagnostics, before any dysfunction or symptoms arise. This would allow the
prevention of changes in cardiac muscle by early diagnosis and treatment either
pharmacologically or surgically. A major significance of this work is that we would
be able to diagnose various hearts, including the prenatal heart. MRI examination
is both suitable and safe for in utero scans of the fetal heart. As an example, let us
consider the left ventricle ejection fraction. The normal value is more than 50%,
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when it falls below, it is identified as left ventricle dysfunction. As we know from
its movement we are able to “switch off or disregard” this specific part of the
muscle and we will not receive any important information about the disease, because
the LVEF will remain >50%. This could present in heart infarct, cardiomyopathy,
dangerous heart infections, and other states. The use of POD can show that despite
the normal ejection fraction, another underlying disease may be present. The cardiac
movement preceding the heart conduction system has been known to have been
misdiagnosed. The conductive system leads the impulse to start the systole from
the apex to the bases. Conduction problems with the impulse may not been seen as
a delay of diastole or systole within the muscle segment. The large more obvious
issues are easily appreciated, however, the smaller more subtle issues are not easily
perceived and unfortunately they often go unnoticed. The POD method is ideally
suited for quick diagnosis of these types of abnormalities. Last but not least this is
an excellent tool for the presentation and teaching of cardiac abnormalities, for both
medical students and as a tool for Cardiac specialists.

An important limitation of the method is the need of registration of the data
resulting from medical imaging. While there are software tools for such handling
available, they still do not allow full automation. The quality of the data, like the
resolution of MRI slices, is related to the above—it might influence the order of
(further) modes, their shapes, and eigenvalues.
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Estimation of the Permeability Tensor
of the Microvasculature of the Liver
Through Fabric Tensors

Rodrigo Moreno, Patrick Segers, and Charlotte Debbaut

1 Introduction

Liver diseases represent a big burden for health systems. As an example, the
prevalence of chronic liver conditions in Europe has been reported as high as
5.7% [1]. A full understanding of the circulatory system of the liver and how it
is affected by different liver diseases can be used for designing better treatments.
This knowledge can also be used in liver transplantation for both improving surgery
planning and increasing the viability of the liver graft through hypothermic machine
perfusion [6].

At the microscale, a promising procedure for studying the structure of the
vasculature of the liver in vitro is to analyze vascular corrosion casts imaged through
micro-computed tomography (micro-CT). At this scale, the liver is organized
in functional units often referred to as lobules [9]. Blood flows in the lobule
from vessels located at the corners towards the central vein in the center through
microvessels called sinusoids. The boundaries of the lobules are referred to as
vascular septa. Figure 1 shows a schematic representation of a lobule.

A strategy that has been followed by some researchers is to describe the lobules
as a porous media which can be characterized through different parameters such
as porosity, pore size, and permeability. Such models can be used to predict the
microperfusion at a micro-level [2, 5].
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Fig. 1 Schematic
representation of a liver
lobule

Central vein

Vascular septa

Sinusoids

Hepatic arteriolePortal venule

One of the most important parameters in those models is the permeability, which
measures how easy it is for a fluid to traverse a porous material. The discharge per
unit area q (given in m/s) is related to the gradient of the pressure rp (given in Pa/m)
in porous media through the Darcy’s law:

q D �K
�

rp; (1)

where K is the permeability given in m2 and � is the dynamic viscosity given in
Pa s. It is known that the permeability is not isotropic inside the lobules, which
means that accurate models must consider second-order tensorial estimates of this
parameter [4]. The permeability tensor is a symmetric positive definite second-
order tensor, which can be represented by a 3 � 3 matrix. Basically, the permeability
tensor depends on the geometry of the microvasculature, the properties of the vessel
walls, the fluid dynamics properties of the blood, and properties of the parenchymal
matrix.

Although it is possible to compute the permeability tensor through computational
fluid dynamics (CFD) simulations in vascular corrosion casts imaged through
micro-CT [4, 14], this approach has two main issues. On the one hand, the
simulations require boundary conditions that are not straightforward to design.
On the other hand, the computations are usually restricted to relatively small
samples due to the expensive computational cost of the simulations. Thus, with this
approach, the computation of the permeability tensor for a complete lobule usually
requires averaging several permeability tensors computed from subsamples of the
lobule.

CFD simulations require certain assumptions. It is well known that blood is a
complex non-Newtonian fluid whose behavior varies depending on the diameter of
the vessels. However, it is common to assume that blood behaves as a Newtonian
fluid for computing the permeability tensor provided that the range of diameters
of sinusoids inside the lobules is relatively reduced (8–20 �m) and blood flows at
low velocities within those vessels. An important consequence of these assumptions
is that the anisotropy and orientation of the permeability tensor mostly depends
on the geometric arrangement of sinusoids of the lobule. This opens the door to
approximating the permeability tensor through image processing-based methods for
tackling the aforementioned issues of CFD simulations.
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Fabric tensors are geometric features that describe the anisotropy and orientation
of porous media [12]. In biomechanics, especially in trabecular bone research and
material mechanics, fabric tensors have been used for two different purposes. First,
different anisotropy measurements, e.g., fractional anisotropy (FA), can directly
be extracted from tensors, which can potentially be used as quantitative imaging
biomarkers. Second, fabric tensors can be combined with other parameters for
predicting biomechanical tensors. For example, fabric tensors can be used for
accurately estimating the stiffness tensor of trabecular bone in a few seconds [13].
Indeed, fabric tensors can also be applied to describe the microarchitecture of the
microvessels in the lobules, considering that they can also be modeled as porous
media. Although, the potential of this approach has recently been pointed out in
[8], to the best of our knowledge, this is the first attempt of using fabric tensors in
this context. Hence, the main aim of this paper is to explore the use of fabric tensors
for approximating the permeability tensor of the liver lobules.

The paper is organized as follows. Section 2 describes the materials and methods.
Section 3 compares the results with CFD. Finally Sect. 4 discusses the results and
makes some concluding remarks.

2 Materials and Methods

2.1 Image Acquisition

A normal human liver which was discarded for transplantation after failed realloca-
tion was used in this study.1 A vascular corrosion cast was created for the liver using
the standard procedure used in our lab [4]. First, a polymer resin was injected from
the hepatic artery and portal vein to the liver until the resin reached the vena cava
inferior. Second, the tissue surrounding the vessels was dissolved using potassium
hydroxide.

Once the corrosion casts were obtained, a sample of size 1:1 � 1:9 � 1:5 mm was
taken for imaging through an in-house developed micro-CT scanner. The resolution
of the images is 2:6 �m isotropic. This sample contains approximately three lobules
of the liver, which were manually separated from each other. The images were
segmented using Otsu’s threshold. Vessels with diameters beyond 20 �m were
discarded by just considering vessels that are filtered out by the opening operator
of mathematical morphometry as described in [3, 10]. Figure 2 shows a rendering
of the normal liver containing approximately three lobules.

1Ethical approval was obtained from the Ethical Committee of the University Hospitals Leuven
(Belgium) and by the Belgian Liver and Intestine Committee.
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Fig. 2 Rendering of the micro-CT image of a sample taken from the normal liver containing three
lobules

Fig. 3 Rendering of the
section used for computing
the permeability tensor
through CFD

2.2 CFD Simulations

The CFD simulations were performed as described in [4]. A sample of 150 �
150 � 150 �m was cut from one of the three lobules. The z axis of the sample
was aligned to the central vein. A surface mesh of the sample was used to create the
volume meshes used in the simulations. Figure 3 shows the sample used for the CFD
simulations.

Three simulations were performed, one per axis. In order to facilitate setting the
boundary conditions for the simulations, two slabs of 15 �m were put perpendicular
to the axis of interest before and after the sample in every simulation. A typical fluid
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velocity was set at one slab and a zero pressure was set at the end of the opposite
slab. CFD simulations were performed to estimate local velocities and pressures. By
applying the Darcy’s law, these values were used to compute the different entries of
the permeability tensor for 15 subsamples of size 50 � 50 � 50 �m taken from the
original sample. Finally, these entries were averaged and the resulting tensors were
symmetrized to get a single permeability tensor for the complete sample. A detailed
description of the computations is given in [4].

2.3 Estimation of the Permeability Tensor
Through Fabric Tensors

Methods for computing fabric tensors can roughly be classified into boundary- and
volume-based [12]. Boundary-based fabric tensors have the advantage of being very
efficient. From these, the generalized mean intercept length (GMIL) tensor [11] was
chosen for this study since it has been proven versatile for predicting biomechanical
tensors [13].

The GMIL tensor is computed in three steps. The mirrored extended Gaussian
image (EGI) [7] is computed either from a robust estimation of the gradient or
from a surface mesh. Second, the EGI is convolved with a kernel in order to obtain
an orientation distribution function (ODF). Finally, a second-order fabric tensor is
computed from the ODF. More formally, the generalized MIL tensor is computed as:

GMIL D
Z

�

v vT

C.v/
d�; (2)

where v are vectors on the unitary sphere �, and C is given by C D H � E: that
is, the angular convolution (�) of a kernel H with the mirrored EGI E. In particular,
the von Mises–Fisher kernel, which is a function on the polar angle � in spherical
coordinates, is given by:

H.�/ D 	

4� sinh.	/
e	 cos.�/: (3)

The advantage of using this kernel is that it has a parameter 	 that can be used
to control its smoothing action. A value of 	 D 8 yielded the best results in the
experiments of Sect. 3.

Fabric tensors are dimensionless descriptors, which means that they must be
combined with other features for predicting the size of the permeability tensor. In
this paper, we used the density of sinusoids 
 for this purpose. In particular, we
used a linear regression model between the Frobenius norm of the tensors obtained
through CFD from the 15 subsamples used for computing the permeability tensor
and their respective density 
.R2 D 0:89/.
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3 Results

Figure 4 depicts the permeability tensor computed through CFD and fabric tensors.
As shown, the shape of the two tensors is very similar and the main difference
between them is their orientation.

Table 1 shows the eigenvalues of the two tensors before and after normalization
as well as the FA.

The table shows that the shape of both tensors is very similar. Moreover, they
tend to be orthotropic with respect to the central vein, which is consistent with the
shape of the lobule shown in Fig. 1 and with the findings in [15]. Furthermore, the
anisotropy in the axis parallel to the central vein is approximately twice the one in
plane. Notice that the differences in the non-normalized eigenvalues are related to
the linear model used to predict the size of the tensors and not with the use of fabric
tensors.

The normalized difference of the norm DN , the normalized difference of the FA
DFA, and the angle between the main eigenvectors DA were computed to compare the
permeability tensor computed through CFD and fabric tensors, which are referred
to as KCFD and KFT, respectively. These measurements are given by:

DN D j jjKCFDjjF � jjKFTjjF j
jjKCFDjjF ; (4)

DFA D jFA.KCFD/ � FA.KFT/j
FA.KCFD/

; (5)

DA D arccos.je1CFD � e1FTj/; (6)

Fig. 4 Permeability tensor
computed on a sample taken
from a lobule. Results from
CFD and fabric tensors are
depicted in green and red,
respectively

Table 1 Eigenvalues before and after normalization for a sample of a lobule

Tensor �1 (f m2) �2 (f m2) �3 (f m2) �2=�1 (%) �3=�1 (%) FA (%)

KCFD 32:01 17:26 14:27 53:91 44:56 42:12

KFT 26:15 14:92 11:07 57:05 42:32 42:32
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Fig. 5 Results for the three lobules. The tensors are plotted with a slice of the micro-CT image
approximately where the central veins are located

Table 2 Eigenvalues after
normalization for the
complete lobules shown in
Fig. 5

Lobule �2=�1 (%) �3=�1 (%) FA (%)

Left 35:02 30:91 60:82

Center 31:40 25:21 66:69

Right 37:62 33:81 57:44

where jj � jjF is the Frobenius norm, FA is the fractional anisotropy, and e1

is the eigenvalue corresponding to the largest eigenvalue of the tensor. These
measurements are 17.9%, 0.2%, and 19.62ı for the tested sample.

Figure 5 shows the results for the three lobules with the proposed method.
As shown, the resulting tensors are approximately aligned with the orientation of
the central veins. The corresponding CFD-based tensors were not available for
comparison due to the high computational complexity of the simulations.

Table 2 shows the normalized eigenvalues and the FA for the three tensors.
Similarly to the previous experiment, they exhibit orthotropic symmetry, but they
have larger anisotropy.

As for computational effort, the new method took 330 ms for processing the
result shown in Fig. 4 and 7.5 s per lobule for the results shown in Fig. 5. The CFD
counterpart for Fig. 4 took several hours.

4 Discussion

A new method for estimating the permeability tensor of the microvasculature of the
liver based on fabric tensors was presented. The main advantage of the new method
is that it is very efficient and does not require to set boundary conditions. The results
are promising, in particular with respect to the shape of the tensor, where the new
method was able to reproduce the one obtained through CFD.

The results of this paper suggest that the permeability tensor is mostly related
to the geometrical arrangement of the sinusoids. However, this finding must be
validated with a larger dataset. Actually, the main limitation of this study is that,
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due to ethical restrictions, it is difficult to have access to more data. One way to
circumvent this problem is to work with animal models, something that will be
tested in our lab.

Additional ongoing research include improving the estimation of the size of the
tensors and improving the CFD simulations in order to consider the non-linear
dependency of the permeability tensor on the gradient of the pressure as reported
in [16].
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Motion Estimation with Finite-Element
Biomechanical Models and Tracking
Constraints from Tagged MRI

Arnold D. Gomez, Fangxu Xing, Deva Chan, Dzung L. Pham, Philip Bayly,
and Jerry L. Prince

1 Introduction

Soft tissue deformation elicits vital transport processes throughout the body, and is
a key determinant in widespread conditions and diseases. For example, systemic
circulatory deficiencies may arise from impaired myocardial contraction, and
acceleration-induced axonal overstretching has been linked to traumatic brain [1, 2]
and can be investigated using MRI. Thus, noninvasive motion estimation is of
clinical and investigational interest. However, the acquisition and processing of
tagged MRI has been problematic due to long scan times, artifacts, and challenges
in obtaining accurate 3D estimates of displacement and strain. It has been shown
that integration of an organ’s geometry (and fiber orientations if relevant) and use of
material constitutive information can increase estimation accuracy, reduce artifacts,
and improve one’s ability to estimate dense displacements and strains from sparsely
acquired imaging data [1, 3].

Motivated by versatile contrast and unparalleled soft tissue sensitivity, several
motion estimation approaches have been developed within the MRI framework,
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as well as dedicated motion encoding pulse sequences, image postprocessing, or
both [4]. Analysis of tagged MRI is one of the most well-established approaches
which, from early implementations targeting the cardiovascular system, has
expanded to include other organs [5–7].

Best results in 3D motion estimation generally require consistent repetition
of movement and relatively high resolution, but these are constrained by scan
time [8, 9]. Traditionally, displacement information has been reconstructed in
the imaging planes first and then propagated to a 3D domain with the help of
interpolation methods, such as splines, or finite elements [3, 10]. These approaches
enable preemptive reduction of artifacts via smoothing or refinement, and enforce
incompressibility during the interpolation process [10]. However, the imaging raster
rarely aligns with the geometry or fiber structure of an organ; thus, smoothing or
interpolation may introduce fictitious edge tractions, or violate other mechanical
characteristics such as tissue anisotropy.

In this research, the tracking process is realized by enforcing image phase
conservation in material points within the field of view (FOV), but not coincident
with the spatial imaging raster. The proposed tracking kernel is based on the classic
harmonic phase (HARP) analysis of tagged MRI [11], combined with hyperelastic
model registration methods [1], according to a phase conservation principle parallel
to intensity conservation in optical flow [12]. Thus, the results are mechanically
representative, in that they are diffeomorphic, have traction free surfaces, and are
otherwise consistent with continuum mechanics, but the phase vector formulation
increases sensitivity in texture-free regions, and provides a more objective similarity
metric.

We demonstrate our implementation in three scenarios. The first two consist of
forward displacement reconstruction where the goal is to obtain deformation fields.
These include: measurement of impact-induced deformation in a Sylgard™ brain
phantom and quantification of fiber strain in residually stressed myocardium. The
third scenario consists of displacement-based inverse parameter identification of
intrinsic tongue muscle activation. Our results indicate that, in forward displacement
reconstruction, the approach is robust to artifacts (edges and large displacements)
and to material stiffening due to residual stress. In the inverse problem, we show
that evaluating fiber stretch enables approximation of muscle activation without the
need for iterative minimization.

2 Background

2.1 Harmonic Phase Analysis

Tagged MRI contains artificial magnetic patterns (lines or sinusoidal profiles) that
are imposed near the beginning of a CINE sequence and deform with moving tissue.
HARP analysis focuses on harmonic peaks in the Fourier domain, which arise from
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the periodic nature of tag patterns. The harmonic phase vector, � D [�1 �2 �3]T ,
where each term is the phase of the inverse Fourier transform of a harmonic peak
in an image whose tag direction is orthogonal to the other two directions, carries
information about local components of tissue motion. In particular, the phase at a
reference location, X, at t D t0 D 0 will be the same as tissue moves to a new spatial
location, x, at a later time. In other words,

� .X; t0/ D � .x; t/ : (1)

Thus, 3D motion estimation can be thought of as the solution of a multidimen-
sional, nonlinear, root-finding problem: given phase distributions at two time points,
find x for a given X, or vice versa.

We note that a practical application of HARP analysis deals not with the true
real-valued phase, but rather with the harmonic phase whose range is the interval
[ � � , �). Nevertheless, it is possible to use the expressions herein without loss of
generality by adopting local phase unwrapping in the final implementation [11].

2.2 Deformations in Continuum Mechanics

Tissue deformation can be modeled as a boundary problem seeking to minimize
an energy functional E(®), where the deformation map ® contains admissible
deformations evaluated at material points, i.e., ®(X) D x D X C u(X) [1]. Given an
integration domain, R2R3, the Euler–Lagrange equations necessary to minimize E
are obtained by taking the directional derivative with respect to a small variation (or
virtual displacement) in the spatial coordinates. This yields the weak form of the
so-called virtual work equation,

ıW D
Z

R
P W ı PF dV �

Z

R
f 0 � ıv dV C

Z

S
t0 � ıu dS: (2)

At equilibrium, ıW D 0 describes a static momentum balance between body
or boundary forces (respectively f0 and t0), and internal stresses defined by the
material-dependent first Piola–Kirchhoff stress tensor, P(F), and the spatial gradient
of the deformation map, F D dx

dX [13, 14].
One of the most popular approaches for solving the boundary problem associated

with (2) is FE analysis. This process generally involves extracting discretized
geometry from MRI via delineation and meshing, assigning a suitable constitutive
model, and defining boundary conditions. The FE method has experienced consid-
erable expansion in biomechanics, thanks to several improvements geared to handle
complex biological geometries, and nonlinear material models [13, 15].
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3 Tracking Tagged MRI with Deformable Models

3.1 Conservation of Harmonic Phase Vector

The basis of HARP analysis, (1), can also be described through physical conserva-
tion principles. Let � represent a vectorial angular quantity (per unit mass), which
is conserved. Then, the net change in phase density can be expressed as a mass
transport process defined in weak form by

D

Dt

Z

R
�� dV D

Z

R

@ .��/

@t
dV C

Z

S
�� ˝ v � n dS; (3)

where the right-hand side contains generative and advection terms dependent on
mass density � and velocity v across a boundary surface with local normal n
[16]. Application of Gauss’ theorem and the continuity equation reduces the phase
conservation relationship to

D�

Dt
D @�

@t
C r� � v: (4)

The left side of the equation corresponds to the material description, which
yields the deformable model tracking constraint discussed in the next section. The
middle expression is equivalent to the spatial description, and is the harmonic
phase equivalent of the familiar optical flow equation used in intensity-based image
registration [12].

3.2 Nonlinear Tracking Constraint

We now focus on obtaining displacements using the material description of
harmonic phase conservation noting that direct application of (1) has two key
limitations: First, harmonic phase vector pairs are not unique as a consequence
of phase wrapping, thus tracking may converge at erroneous locations after large
displacements; second, without regularization, tracking points near edges will result
in spurious displacements due to partial volume artifacts.

Definition

Using integration with respect to time, the total derivative in (4) can be formulated
as a difference between two phase images, acquired at the reference and at a
subsequent time, evaluated at a material point and its corresponding location in
the deformed configuration, i.e., x D x(X, t). This difference defines the nonlinear
tracking constraint to be imposed on (2),
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f harp D �.t/ .� .x .X; t/ ; t/ � � .X; t0// ; (5)

where �(t) is a Lagrange multiplier that enforces phase consistency in tracking.
In essence, the constraint introduces an additional body force whose purpose is to
deform the model according to the temporal changes in the tag patterns.

Implementation

Given the nonlinear nature of (5), implementation within a Newton–Raphson
(or similar) iterative solver requires consistent linearization of the virtual work
contribution from the constraint to be applied on (2). In other words, linearizing
ıWharp .x; ıv/ D R

R f harp� ıv dV yields the tangent stiffness aggregate to be passed
along to the solver, i.e.,

DıWharp .x; ıv/ Œu� D
Z

R
�.t/r� .x .X; t/ ; t/ ıv� ıu dV: (6)

The tracking constraint was implemented as a plug-in extension to the FE solver
within the FEBio Software Suite [15].

Image Preprocessing

In (5), it is assumed that the harmonic phase images are defined everywhere, which
typically is not the case. Therefore, an image interpolation step must be built into the
implementation. In fact, we propose upsampling tagged images prior to harmonic
peak extraction (effective bandwidth remains limited by the original acquisition).
We used grid-based cubic spline interpolation to achieve isotropic resolution based
on the in-plane slice resolution. As with conventional HARP analysis, band-pass
filtering is necessary to extract harmonic peaks. In this research, each 2D slice was
filtered one image at a time, with a circular band-pass filter centered at the tagging
frequency with a radius equal to half of the center frequency [11].

Solution Strategy

Two main approaches for enforcement of tracking constraints are available in
this implementation. The first consists of applying a global, linearly increasing,
penalty �(t) function (penalty method), and the second consists of using an iterative
approximation to its local values to a given tolerance (augumented Lagrangian) [17].
Both the maximum penalty �max and tolerance �tol were adjusted according to a
desired tracking residual " D R

�(x(X, t), t) � �(X, t0) dV.
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4 Experiments and Results

4.1 Measuring Impact-Induced Deformation
in Brain Phantom

The goal of this experiment was to demonstrate our approach against traditional
HARP analysis, i.e., application of (1) with a fixed-point algorithm, for reconstruct-
ing the motion of a Sylgard™ phantom, Fig. 1(a). The phantom’s base was subject to
a sudden rotational acceleration and consequently imaged (3T scanner, 13 frames,
18 ms TR, 13 axial slices, 160 �160 px, 1.5 �1.5 mm, SPAMM sequence). Two
FE models of the phantom were constructed: one consisting of 4250 linear (fully
integrated) brick elements, and the other used the same number of elements using a
quadratic 20-node formulation. In both, the material was modeled as a Neo-Hookean
solid (C1 D 1.0 kPa, 	 D 120 kPa). Tracking was performed to " D 0.05 rad, with
�max D 0.2, and �tol D 0.1. Both algorithms ran for ten iterations per time frame.

Representative displacements at t D 54 ms appear in Fig. 1(c) and (d), for
conventional HARP and our method, respectively. As expected, using a fixed-
point algorithm results in two types of artifacts: spurious displacements near the
edges, and erroneous tracking due to large displacements. In contrast, the proposed
methodology results in smooth (traction-free) displacements at the boundaries, and
consistent tracking of rotation. Both linear and quadratic meshes yielded identical
qualitative results with minor quantitative differences (less than 0.1%).

4.2 Quantifying Fiber Stretch in Residually Stressed
Myocardium

Most tissues, even in the absence of loading, exhibit some level of residual stress,
which becomes apparent by recoil following an incision, suggesting that fibers in
situ are prestretched [18]. Here, we (a) demonstrate that our approach may include

Fig. 1 Acceleration-induced brain phantom deformation. As shown in the schematic (a), motion
of the base causes deformation into a new configuration (b). Conventional HARP analysis (c)
shows large-displacement artifacts (orange), and spurious displacements at the edges (green). The
problematic areas in proposed method (d) are largely artifact-free
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modeled prestretch via interstitial growth [19], and (b) evaluate changes in tracking
results due to prestretch-induced stiffness variations. To this end, the left ventricle
of a healthy volunteer was imaged (3T scanner, 12 long slices, eight long slices,
256 �256, 1.25 �1.25 mm, CSPAMM sequence), and images at early diastole
(lowest pressure load) were used to generate an FE model consisting of 6500 linear
brick elements. Simulated contraction, with parameters available in [1, 18], was
used as ground truth displacements, and to create synthetic deformed images for
tracking.

Two displacement results were obtained with a stress-free reference (SFR) and a
prestretched reference (PSR), which included �5\% mean fiber prestretch [18, 19].
In both, tracking was performed to " D 0.2 rad. Tracking from SFR terminated after
17 iterations using �max D 0.2 � 10�2 and �tol D 5 � 10�2. The same values for PSR
after ten iterations were 1.4 � 10�2 and 7 � 10�2, respectively. Compared to the
ground truth, the displacement residuals were 0.6˙0.3 mm and 0.9˙0.3 mm (SFR
and PSF, respectively). This similarity in residuals shows that prestretch-induced
variations can be compensated by tracking parameters. Thus, although the image-
derived deformed configurations are similar, the PSF relates to a reference state
consistent with experimental evidence of residual stress, Fig. 2(a), and results in
visibly higher systolic fiber shortening, Fig. 2(b) and (c).

4.3 Estimating Activation of Intrinsic Tongue Muscles

In this experiment, we estimate the magnitude of activation stress responsible
for an observed deformation in the tongue. To this end, motion was first tracked
based on a stack of images from a healthy volunteer at two time frames (3T
scanner, ten coronal slices, eight sagittal slices, 256�256, 1.9�1.9 mm, CSPAMM

Fig. 2 Comparison between SFR and PSR. A radial cut (a) on a ring-like section shows no change
in the SFR, but the same cut causes separation of edges in the PSR, similar to experimental
observations [18]. Comparable deformed configurations exhibit different fiber stretches with
respect to the SFR (b) or the PSR (c)
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Fig. 3 Motion estimation in the tongue. Five muscles from MRI (a) are used within an FE
model to extract deformations (b), and to simulate activation stresses. Measured and simulated
fiber stretches (c) show qualitative agreement with those extracted from the tagged images. Key:
GG genioglossus, IL inferior longitudinal, SL superior longitudinal, T transverse, V verticalis
M mandible insertion

sequence) using an FE model consisting of 280 quadratic brick elements, and the
tracking constraint set to " D 0.05 rad. To obtain contractile stress normalized to
material stiffness, the tissue was modeled as a Neo-Hookean solid (C1 D 1.0 kPa,
	 D 120 kPa). Fiber directionality and muscle definitions were based on the
literature [7]. Unlike previous work, which relied on numerical optimization—
where multiple simulations were run to find the closest match between simulated
and observed tongue deformation—our strategy was to directly approximate the
contractile stresses from the image-derived fiber shortening according to the active
contraction model presented in [1] (solving for Tmax in Eq. 4). These approximations
were applied uniformly over each of the muscles in Fig. 3(a).

Image tracking, the basis of the observed tongue deformation, terminated after
ten iterations �max D 1.0 and �tol D 0.1. Displacement results appear in Fig. 3b.
Experimental and simulated fiber stretches averaged over the muscle region appear
in Fig. 3c, and show qualitative agreement. Comparison between the image-
based deformation and activation simulation allows direct estimation of contractile
stress, avoiding numerical optimization, which may converge at local minima [7].
Note that both, forward simulations and image tracking via the proposed phase
tracking constraint, occur in the same geometrical model; thus, comparison between
experimental and simulated behavior can be done on an element-per-element basis.

5 Discussion

This study extends fundamental concepts used for motion estimation based on
scalar intensity images to the vectorial phase domain, which allows application
of tagged images for mechanically regularized motion estimation. One immediate
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advantage of this type of regularization is the reduction of artifacts present at the
edges where image information is affected by partial volume. The use of tagged
images disambiguates similarity metrics associated with intensity in areas of low
texture. This improves motion tracking, and adds robustness to material parameter
uncertainty.

As shown in previous literature featuring intensity-based motion estimation in
FE models [1], displacements can be made consistent despite changes in material
parameters by scaling the tracking penalty. The idea is that, within a range, a stiffer
material will simply require larger forces to produce the same deformation. In the
proposed method, we take advantage of the vectorial nature of phase to extract a
similarity metric, ", that serves as a stopping criteria for motion estimation; the
tracking penalty continues to be scaled until the criteria is met. This basic principle
was demonstrated when tracking deformation in residually stressed ventricular
tissue, where the tracking parameters associated with the PSR were much larger than
the SFR, even though the tracking metric and displacement accuracy were identical.

In terms of implementation, the proposed method effectively reduces to cal-
culating body forces derived from phase images, i.e., the application of nodal
forces where each (xyz) component is equal to scaled differences between template
and target phase image in each corresponding tagging direction. The stiffness
contribution, evaluated once per element, is defined similarly to the contribution of
the material model but is defined as described in (6). From an image processing
standpoint, upsampling of images enables the use of advantageous interpolation
techniques that would be computationally expensive to evaluate along with the FE
tracking constraint.

6 Conclusion

The main goal of this paper was to introduce and demonstrate unique features asso-
ciated with this motion estimation strategy, including artifact reduction, robustness
to material parameters, and interaction between observed motion and mechanical
features like realistic geometry and fibers. Future research directions will focus
on the relative performance of its different components, both from an imaging
standpoint (the effects of image quality, upsampling, and filtering) and from a
modeling perspective (the consequences of constitutive modeling and geometrical
representation), and with respect to other motion estimation techniques.
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Subpixel Measurement of Living Skin
Deformation Using Intrinsic Features

Amir HajiRassouliha, Andrew J. Taberner, Martyn P. Nash,
and Poul M.F. Nielsen

1 Introduction

Characterising the behaviour of skin is important in a number of applications. For
example, quantification of skin properties can provide a better understanding of
the wound healing process [1], the effects of ageing [2], the process of wrinkle
formation [3], as well as improved methods for surgical planning [4]. Skin is a
complex tissue that is anisotropic, heterogeneous, nonlinear, and viscoelastic [5].
Several methods have been developed to characterise the complex mechanical
behaviour of skin in-vivo or in-vitro, such as during biaxial [6], compression
[7], suction [8], or indentation [9] tests on tissues. Measuring the skin surface
deformation is an essential part of all these methods. To address this, various
devices have been designed and built for measuring skin deformations in-vivo.
Some use sensor technologies, such as three-degree-of-freedom tactile devices [10],
microrobots [11], motion capture systems [12], while others use image processing
techniques for measuring deformations, such as single cameras [13, 14], multi-view
stereo [15], and hand-held stereoscopic devices [16].

Digital image correlation (DIC) is the main image processing method used for
measuring skin deformation with subpixel accuracy. DIC is a technique in which
images are divided into many smaller overlapping subimages, and the displacement
is found for each individual subimage separately [17]. The DIC technique typically
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includes two main steps for first finding the integer shift, and then the subpixel shift
between two subimages. The integer part of most of the existing DIC algorithms
uses cross-correlation (CC) to find the shift between two subimages. However, CC
frequently fails on images that are poorly textured. Therefore, speckled patterns or
markers are often added to the surface of the skin to enable the shift to be estimated
using CC [13–15]. Furthermore, the accuracy and efficiency of the subpixel part
of most of the existing algorithms are limited. To address these limitations, we
have recently proposed a new method for subpixel image registration. This method
is based on a phase-based algorithm that uses Savitzky–Golay differentiators in
gradient correlation (P-SG-GC) [18]. It has been shown that the P-SG-GC algorithm
can achieve accuracies better than 0.0002 pixel (60 times better than the state-of-the-
art algorithms) in finding synthetically applied shifts to 2400 standard subimages of
size 128 pixel � 128 pixel [18]. Furthermore, P-SG-GC is computationally efficient
and performs well in low-textured images, where most of the existing algorithms
fail to find the displacement [18].

This study investigates the performance of P-SG-GC for finding the deformation
of living skin. First, an experimental setup was arranged to measure the accuracy
of P-SG-GC in finding translational shifts of a target ranging from subpixel values
to large shifts. Then, P-SG-GC was used to measure the deformation of skin using
only intrinsic features.

2 Method

The accuracy of P-SG-GC in measuring translational shifts was evaluated by the
experimental setup shown in Fig. 1. A photographic stand was used to hold a single
monochrome CMOS USB 3 camera (Flea3 FL3-U3-13Y3M-C, Point Grey, Canada)
in a position perpendicular to the surface of a flat object (target). The camera was
equipped with a 12.5 mm lens (Fujinon) and the target was attached to a ball bearing
manual linear stage with an accuracy of 2 �m over a 25 mm travel range (M-423
(https://www.newport.com/p/M-423), Newport, USA.).

A series of translational shifts (approximately 5, 10, 100, 500, 1000, 1500, and
2000 �m) were applied to the target using the translational stage. The camera
captured images from the initial and shifted positions of the target. These were
divided into approximately 2700 subimages of size 64 pixel � 64 pixel, which were
distributed uniformly across the surface of the target with a step increment of 10
pixel. The P-SG-GC algorithm was used to measure displacements between all the
subimages of the initial and shifted images in the x and y directions (dx and dy). The
total displacement for each subimage was calculated using Eq. 1:

Dt.i/ D
q

dx
2 C dy

2 .pixel/ .i � n/ (1)

https://www.newport.com/p/M-423
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Fig. 1 The experimental
setup used to evaluate the
accuracy of P-SG-GC in
measuring translational shifts.
A photographic stand was
used to hold the camera in a
position perpendicular to the
surface of a flat object
attached to a linear
translational stage

where i is the subimage number, and n is the total number of subimages. The mean
of the Dt(i) values (MD) (Eq. 2) was chosen as the estimation of the P-SG-GC
algorithm for that translational shift of the target.

MD D
Pn

iD1 Dt.i/

n
.pixel/ (2)

If we assume an ideal condition at each applied translational shift, including a
perfect perpendicular position of the camera and a completely flat target, all the
Dt(i) values should be equal. Therefore, the standard deviation of the Dt(i) values at
each translational shift was considered as an indication of the accuracy of the P-SG-
GC algorithm in measuring the shift. In addition, the linearity between the set of
applied physical shifts (in �m) and the MD values was considered as an indication
of the linearity of measurements.

The estimation of physical shifts using a camera system is subject to various
sources of error. One of the error sources that can be compensated for is the
effect of optical distortions of the camera lens, especially the radial distortion
(also known as barrel distortion) [19]. The lens radial distortion causes straight
lines to become curved in the camera images (similar to being mapped around a
sphere), thus changing the estimates of displacements from the images. To minimise
this effect, we compensated for lens distortion in the images and repeated the
computations. The lens distortion removal (i.e. undistortion of the images) was
performed using radial and tangential lens distortion coefficients estimated through
a camera calibration process.

After the P-SG-GC algorithm was tested, this algorithm was used to measure
deformations of living skin. For this purpose, two images were taken of the skin
on the back of a volunteer’s hand at two different deformation states due to the
movement of the volunteer’s thumb. To provide a similar condition to that used in
the evaluation step, the volunteer’s hand was positioned at the same location as the
target used for the validation experiments.
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3 Results and Discussion

Figure 2 shows the difference between the Dt(i) values (Eq. 1) and the MD values
(Eq. 2) estimated using the P-SG-GC algorithm applied to original (distorted) image
in the left column and undistorted images in the right column for shifts of 500, 1000,
1500, and 2000 �m. The difference values are colour-coded and are in units of pixel.
As can be seen in Fig. 2, the MD values were all larger than 1 pixel for all these
shifts and a distinct pattern is evident for the original (distorted) images in the left
column. This pattern is indicative of a lens radial distortion effect that compresses
the periphery of the image towards the optical centre (i.e. the principal point)
[19]. Because of this effect, the measured shifts around the edges of the original
(distorted) images were smaller than their actual values. The shift independent effect
of lens distortion is shown in Fig. 3, where the P-SG-GC algorithm was applied
to determine the displacement field between one of the images and its undistorted
version.

The comparison between the left and right columns of Fig. 2 illustrates the
improvement in the displacement estimates by correcting for lens distortion. Not
only were the spatial distributions more uniform in the images of the right
column compared with the left column, but the degree of underestimation of
the displacement magnitudes was also reduced. The values in undistorted images
revealed a distribution of displacements that is likely to be related to a relative
tilt between the camera sensor and the target surface. This is an issue because the
displacement measurements were performed in 2D by assuming that the camera
axis was perpendicular to the surface of the flat object, the accuracy of which
was difficult to determine using our experimental setup. Furthermore, the camera
calibration error in finding the lens distortion coefficients was not considered in
these measurements.

Figure 4 shows the linearity of the relation between translational shift (5, 10,
100, 500, 1000, 1500, and 2000 �m) and the MD values for the original (distorted)
and undistorted images. As illustrated in Fig. 4, the estimates from the P-SG-GC
algorithm show a linear correlation with the physical shift for both the original
(distorted) and undistorted images ( (1 � R2) D 5.2 � 10�4 for the original images
and (1 � R2) D 5.6 � 10�4 for undistorted images).

Figure 5 shows the standard deviation of the estimated Dt(i) values (Eq. 1) at
the different translational shifts estimated from the original images and undistorted
images. The standard deviation of the estimates based on the undistorted images
was approximately half that estimated using the original (distorted) images. This
illustrates that the removal of the lens distortion helped to increase the measurement
accuracy.

The standard deviations of the measurements in Fig. 5 were less than 0.01 pixel
for shifts less than 1 pixel (at 5 �m, 10 �m, and 100 �m shifts it was 0.008 pixel,
0.008 pixel, and 0.009 pixel, respectively). The standard deviation increased for
displacements larger than 1 pixel, but the values were small compared with the
displacement. For example, the standard deviation of the P-SG-GC measurements
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Fig. 2 The (Dt(i)–MD) values measured using the P-SG-GC algorithm applied to the original and
undistorted images. The values are colour-coded and are in units of pixel. The target was moved
downward using the linear translational stage, and the shift magnitudes are indicated at the left
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Fig. 3 The displacement
map caused by the lens
distortion model on the same
area as of the images in
Fig. 2. The displacement
values were estimated
applying the P-SG-GC
algorithm to one of the
images and its undistorted
version. Displacement
magnitudes are colour-coded
in a logarithmic scale and
values are in units of pixel

Fig. 4 The linearity between the MD values estimated using the P-SG-GC algorithm, and the
translational shifts of the target using the linear translational stage

for the estimation of the 2000 �m shift was 0.0735 pixel for the original (distorted)
images and 0.0456 pixel for undistorted images (0.36% and 0.22% of the MD
values, respectively). The low standard deviation of the measurements (Fig. 5) and
the high degree of linearity between the estimated values and actual physical shifts
(Fig. 4) demonstrate that the P-SG-GC algorithm could measure small and large
displacements to a good level of accuracy.

We next used the P-SG-GC algorithm to measure skin deformation on a
volunteer’s hand. As shown in Fig. 6, the volunteer’s hand was placed at a similar
location to that of the target, and an image was taken of the initial state of the skin
of the back of the hand (Fig. 6a). The volunteer then moved his thumb to deform the
skin of the back of his hand (Fig. 6b). As evident in Fig. 6, the skin in this test did
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Fig. 5 The standard deviation of displacements estimated for subimages of the original (distorted)
and undistorted images using the P-SG-GC algorithm

Fig. 6 The images of a volunteer’s hand used in this study to test the capability of the P-SG-GC
algorithm in finding the skin displacements using intrinsic features. The volunteer was asked to
move his thumb in (b) to deform the skin of the back of his hand

not have obvious intrinsic features, and no extra pattern was applied to the skin. The
P-SG-GC algorithm was used to estimate the skin deformations from Fig. 6a and
Fig. 6b. The result of the measurements for subimages of size 64 pixel � 64 pixel
is shown in Fig. 7. The magnitude of the displacements is colour-coded, and the
arrows indicate the localised direction of skin movement. The skin displacements
ranged from subpixel values (0.01 pixel) to values larger than 18 pixels. As can be
seen in Fig. 7, the displacement fields show a continuous gradient over the surface
of the skin. The result illustrates that the P-SG-GC algorithm could successfully
estimate the skin deformation using only intrinsic features. These measurements
cannot be validated directly with currently available methods, since most of them
fail to measure skin deformation using intrinsic features.
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Fig. 7 The estimation of the
skin deformation from the
images of Fig. 6 using the
P-SG-GC algorithm and
subimages of size 64 � 64
pixel. The magnitude of the
displacements is colour-coded
and the arrows show the
directions of displacement

4 Conclusion

Measuring skin deformation is an important step for developing biomechanical
models of skin. Existing methods cannot provide sufficient accuracy [10–12], or
require the addition of textured patterns to the skin [13–15]. In this paper, we have
addressed these limitations using a novel subpixel image registration algorithm (P-
SG-GC) [18]. An experimental setup was created (Fig. 1) for validating P-SG-GC
with a flat target and a linear translational stage. A series of translational shifts (5,
10, 100, 500, 1000, 1500, and 2000 �m) were applied to the target, which were
then measured by comparing the original and undistorted initial and shifted images
using P-SG-GC with subimages of size 64 � 64 pixel. The lens distortion effects
(Fig. 3) were corrected in the images, which resulted in more accurate displacement
measurements (Fig. 2).

The results showed a high degree of linearity between the physical and estimated
shifts (Fig. 4). Furthermore, the measurements had small standard deviation values
compared to the applied displacements (Fig. 5). These results indicate the high
accuracy of the P-SG-GC algorithm. Increasing the subimage size from 64 to
128 pixel would further decrease this error, although this would also decrease the
localised spatial resolution of the displacement estimates.

The P-SG-GC algorithm was used to find the deformation of the skin of a
volunteer’s hand (Fig. 6). The result showed that P-SG-GC could measure the skin
displacements from subpixel values (0.01 pixel) to values larger than 18 pixels
(Fig. 7) using subimages of size 64 � 64 pixel. Even though the skin in this example
did not have obvious image features, P-SG-GC could estimate the displacements
using only intrinsic textures.

The measurements of this study were all performed in 2D using a single camera.
In future, a stereoscopic system will be used to measure 3D skin deformations, and
the measurements will be compared with the estimation of finite element models of
skin.
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Three-Dimensional Glenohumeral Joint
Kinematic Analyses from Asynchronous Biplane
Fluoroscopy Using an Interpolation Technique

Mohsen Akbari-Shandiz, Joseph D. Mozingo, David R. Holmes III,
and Kristin D. Zhao

1 Introduction

The use of biplane fluoroscopic systems has become increasingly popular for
evaluating joint kinematics in vivo [1–6]. Glenohumeral joint kinematics can be
quantified from biplane fluoroscopic images using radiostereometric analysis (RSA)
or a 3D–2D registration approach. Custom biplane fluoroscopic systems, which are
not FDA-approved for clinical use, have been commonly used for these approaches
[2, 7]. Clinical biplane systems are FDA-approved but are inherently not well-
suited for biplane analyses due to the fact that images are acquired asynchronously.
Asynchrony in image acquisition has the advantage of reducing cross-scattering
effects of one X-ray source onto the other [8]; however, asynchronous acquisition
introduces errors into the registration process, as there is joint movement between
the two asynchronous images. Moreover, the magnitude of the error depends on
the speed of movement which is not known prior to the scan and the fluoroscopy
frame rate. Thus, achieving accurate 3D kinematics using conventional techniques
on temporally offset data sets is challenging.

In the present study, our goal was to improve the accuracy of image registra-
tion by generating simulated corresponding fluoroscopy images. We introduce an
interpolation algorithm to generate missing images in biplane image sequences thus
producing interpolated-synchronous image pairs. The main objective of this study
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was to validate the proposed approach using an artificial shoulder model and clinical
biplane fluoroscope. We performed a quantitative comparison of 3D–2D registration
using (a) asynchronous biplane image registration and (b) interpolated-synchronous
biplane image registration.

2 Methods

2.1 Image Acquisition

We imaged radiopaque humerus and scapula bone models (Reference part #1020-
100-1, Sawbones, Pacific Research Laboratories) with radiopaque beads rigidly
attached to the surface of each. Seven and nine beads were fixed on the humerus
and scapula, respectively. A clinical flat-panel biplane fluoroscope (Siemens Artis
Zee; Forchheim Germany) was used for all 2D imaging. The scapula was fixed
in a custom apparatus that allowed free movement of the humerus (Fig. 1), and
the glenohumeral joint was centered in the imaging volume of the biplane fluoro-
scope. Biplane radiographic images of the shoulder were acquired at 30 frames/s
(15 frames/s temporally offset for each source; an oscilloscope was used to check
the offset for the biplane system and to ascertain if it was constant), while manually
elevating the humerus relative to the scapula in the frontal plane (approximately
2.66 s from rest to full elevation).

Fluoroscopic images were also acquired at multiple static humeral elevation
angles (73 kVp, plane 1: 39 mA, plane 2: 92 mA) using the custom apparatus to
evaluate the effect of calibration error. This will be explained in more detail below.

The flat-panel detectors remained stationary and were positioned 90ı from each
other for all image acquisitions. A custom calibration cube was imaged using the
fluoroscopic setup to define the orientation of the X-ray sources and detectors.
Following fluoroscopic imaging, CT imaging was acquired on a clinical CT scanner

Fig. 1 Sawbones radiopaque
shoulder bone model, fixed in
a custom apparatus, was
imaged using a clinical
biplane fluoroscope, while
manually elevating the
humerus relative to the
scapula
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Fig. 2 Humerus and scapula coordinate systems based on ISB recommendations

(Siemens Definition FLASH; Forchheim, Germany), with slice thickness: 1 mm;
kVp: 140; FOV: 426 mm; and pixel image size: 512 � 512, to obtain the 3D bone
models and 3D positions of the beads.

2.2 Image Analysis

3D models of the humerus and scapula were manually segmented from recon-
structed CT volumes (AnalyzePro; Mayo Clinic). Coordinate systems were com-
puted for each 3D bone model using anatomical features as recommended by the
International Society of Biomechanics (ISB) as shown in Fig. 2 [9]. Forty paired
biplane digital fluoroscopic images, corresponding to one elevation movement, were
analyzed.

To quantify bone rotations and translations, the 3D–2D image registration
was performed using open-source software (JointTrack Biplane, sourceforge.net/
projects/jointtrack/) [10]. To perform a comparison between 3D–2D registration and
RSA analysis, the 3D positions of the beads were determined relative to the bone
coordinate systems by segmenting them directly from the CT volumes.

The 3D positions of the beads were tracked from the biplane fluoroscopy images
using a freely available software (XMA Lab; Brown University) [11], and then used
to calculate frame-by-frame motion for each bead set and thus the corresponding
bone model.

http://sourceforge.net/projects/jointtrack
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Asynchronous Biplane Registration

To quantify bone rotations and translations, the 3D bone models were registered to
each set of two biplane images under the assumption that they were synchronous,
despite the joint movement between the two asynchronous images (Fig. 4a). The 3D
positions of the beads were also determined from the asynchronous biplane images
using the RSA technique.

Generating Interpolated Images

Since the proposed method relies on generating interpolated images from the 3D
data, a contour projection algorithm was developed. Following the segmentation
of the CT image volumes, the 3D bone models are defined as a set of vertices
and triangle meshes. The silhouette of the 3D bone models were identified by the
contour edges, which are common sides of triangle meshes that have the normal
pointing in opposite directions from the X-ray source (Fig. 3) [12]. The silhouette
was then projected on the image plane to create the missing images. A Matlab script
(version 9.0.0.341360 (R2016a), The Mathworks Inc., Natick, Massachusetts) was
used to identify the silhouette of each bone model and project it onto the image
plane to create the missing images. Since JointTrack software uses a contour-based
registration technique, the projection of the silhouette of the bone models is enough
for the image registration.

Fig. 3 2D perspective silhouette of bone models was projected to create simultaneous correspond-
ing fluoroscopy images
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Semi-Synchronous Biplane Registration

In the proposed interpolation algorithm, the bone models were registered indepen-
dently to each view from two X-ray sources. The bone kinematics from sets of two
successive images for view 1 (X-ray source 1) were measured using single plane
image registration and then interpolated to determine the bone pose at the time
between the two acquisition times (Fig. 4b). Pose interpolation was performed as the
interpolation of rigid body transformations between two registrations. First, the rigid
body transformations were converted to kinematic parameters (three translations
along and three rotations around X, Y, and Z axes). Then each kinematic parameter
was averaged between two registrations, assuming the bone models moved with no
acceleration during each time interval to determine the interpolated pose.

Since the single plane registration accuracy for in-plane bone translation and
rotation is much higher than the registration accuracy for the out-of-plane motions,
the interpolated pose is only reliable in the in-plane direction for the corresponding
view (view 1 in this case). We can therefore project the bone model with the new
interpolated pose, given the known position of the view 1 source and detector
and the surface geometry of the bone models. This generates the missing image
which coincides with the corresponding fluoroscopy images from view 2 (Fig. 4b).
The same process was repeated for view 2 (Fig. 4c). The 3D bone models were
then matched to each set of interpolated-synchronous biplane images in order to
determine the joint movement (Fig. 4d). The same technique was used for the RSA
analysis in order to generate interpolated-synchronous biplane images of the beads.

2.3 Comparison Analysis

Since our RSA (gold standard) results were also determined from the interpolated-
synchronous biplane images, we first needed to evaluate the accuracy of the RSA
results. We measured reprojection error as an indication of the accuracy of the
RSA for the two registration methods. The reprojection error is a geometric error
corresponding to the image distance between a projected point and a measured
one and is used to quantify how closely an estimate of a 3D point recreates the
point’s true projection. However, the reprojection error contains the calibration
error, in addition to the error due to the asynchronous acquisition. To measure the
reprojection error due to the calibration error alone, we analyzed images that were
acquired statically at multiple static humeral elevation angles. Static images can
be assumed as synchronous biplane images, considering no object motion occurs
between the acquisitions.

We evaluated the accuracy of the 3D–2D registration by computing the absolute
error between the 3D–2D registration results and the RSA analysis, for each of six
poses (three positions and three orientations) of the humerus and scapula, in each
image pair.
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Fig. 4 An interpolation algorithm was used to generate the missing images in biplane image
sequences to produce interpolated-synchronous image pairs: (a) asynchronous biplane images;
(b) generate missing images in view 1; (c) generate the missing images in view 2; (d) interpolated-
synchronous biplane images
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3 Results

For the asynchronous RSA analysis, mean reprojection error of all the beads was
1.0 ˙ 0.7 pixel (max 4 pixels), compared to the 0.4 ˙ 0.3 pixel (max 1.7 pixels)
error for the interpolated-synchronous RSA analysis. The average reprojection error
due to the calibration error alone was 0.06 ˙ 0.05 pixel (max 0.2 pixels).

For the asynchronous biplane acquisition, the mean absolute error between
the 3D–2D registration approach and the RSA analysis were 0.42 ˙ 0.03 mm
and 1.03 ˙ 0.22ı (max error: 1.24 mm and 5.73ı) for the humerus, and were
0.37 ˙ 0.04 mm and 0.28 ˙ 0.03ı (max error: 1.43 mm and 1.11ı) for the scapula.

For the interpolated-synchronous biplane acquisition, the mean absolute
error between the 3D–2D registration approach and the RSA analysis were
0.18 ˙ 0.01 mm and 0.4 ˙ 0.13ı (max: 0.6 mm and 1.7ı) for the humerus and
were 0.25 ˙ 0.02 mm and 0.17 ˙ 0.02ı (max: 0.9 mm and 0.7ı) for the scapula.
The absolute error for all frames is shown for each kinematic variable in Fig. 5.

4 Discussion

The notion of registering fluoroscopic images to 3D data has been studied for
several decades. Early findings are reported in [13]. Many approaches have been
proposed; however, nearly all of them assume synchrony between images. Single
plane approaches have been proposed where the third dimension is geometrically
modeled [14]; however, errors were high [15]. Moreover, when motion is introduced
the accuracy of 3D bone pose, reconstructed from either the RSA technique or
the 3D–2D image registration, is even more influenced by the synchronicity of the
biplane images.

Our studies showed that the introduced interpolation algorithm improves this
accuracy by creating interpolated-synchronous biplane images. The interpolated-
synchronous biplane registration was expected to perform superiorly. With 3D–2D
image registration, movement of the bone models along the out of plane axis
produces relatively little change in the model projection. By using the simultaneous
image pair, registration in one view serves to correct the depth estimate in the other,
and vice versa. The reprojection error in the RSA analysis due to asynchronous
biplane acquisition was also reduced using the same interpolation technique. The
interpolated-synchronous biplane registration technique produced average errors
(0.18 mm and 0.4ı for the humerus and 0.25 mm and 0.17ı for the scapula)
that are in the range of published results of other studies that have validated the
3D–2D registration technique at the shoulder using custom biplane (synchronous
biplane) fluoroscopes [2, 3, 7]. Therefore, our interpolation approach is able to
provide acceptable accuracy for shoulder kinematics. The difference between the
two approaches becomes more pronounced with faster bone movement. This is
suggested by the greater improvements in accuracy seen in humerus tracking
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Fig. 5 The frame-to-frame absolute error (circles) and mean absolute error (arrows) for each
kinematic variable (X: anterior–posterior translation; Y: superior–inferior translation; Z: medial–
lateral translation; Xr: elevation (abduction–adduction); Yr: axial rotation, Zr: flexion–extension) at
different elevation angles: (a) humerus kinematics from asynchronous; (b) scapula kinematics from
asynchronous; (c) humerus kinematics from interpolated-synchronous; (d) scapula kinematics
from interpolated-synchronous registration

compared to the scapula, which underwent slower movement. One limitation of the
study is that we assumed the bone models moved with no acceleration in each time
interval. However, this was an acceptable assumption for the small time intervals
between two successive frames and the movement velocity examined in this study.

In order to quantitatively demonstrate the accuracy of the proposed method, this
study was conducted with artificial bone models and a single shoulder activity.
Results may differ for a human shoulder joint with surrounding soft tissue, and
with different shoulder motions. To address some of these issues an intensity-based
registration scheme may be used where a CT image is registered to the X-ray images
by comparison of the pixel intensity between digitally reconstructed radiographs
(DRR) and the X-ray image [2]. The use of an intensity-based registration approach
also reduces the dependency of registration on the accuracy of segmentation [16].
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Future work includes the investigation of accuracy of the proposed technique in
different shoulder activities using a cadaveric model and the addition of digitally
reconstructed radiographs (DRRs) to our protocol for intensity-based 3D–2D image
registration. The introduced interpolation algorithm would be applicable to a variety
of 3D–2D registration applications, and is of interest to activities with fast bone
movements.
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An Evaluation of Adaptive Biomechanical
Non-Rigid Registration for Brain Glioma
Resection Using Image-Guided Neurosurgery

Fotis Drakopoulos, Chengjun Yao, Yixun Liu, and Nikos Chrisochoides

1 Introduction

Malignant gliomas are the most common primary brain tumors, accounting for
approximately 70% of the 22,500 new cases of primary brain tumors annually
diagnosed in adults in the USA [1]. The heterogeneity and infiltrative nature
of gliomas suggests that a resection within or adjacent to the eloquent areas is
challenging and carries a risk of post-operative neurologic deficit [2]. Therefore,
the main challenge for neurosurgeons in glioma surgery is to achieve a maximal
tumor resection while still preserving eloquent areas.

Image-guided neurosurgery (IGNS) has yielded faster, safer, and more effective
minimally invasive procedures [3–8]. During the procedure (i.e., after the opening
of the skull and dura), the shape of the brain changes because of the cerebrospinal
fluid drainage, gravity, the application of dehydrolyzing agent, and other operations
(i.e., resection, retraction), introducing discrepancies in relation to the pre-operative
configuration. Interventional MRI can compensate for the intra-operative brain
deformation. However, the acquisition of other image modalities (fMRI, DT-MRI)
is impractical due to long processing time (e.g., a 3T MAGNETOM Verio scanner
requires about 20 min to acquire a DT-MRI and more than 30 min to acquire a
BOLD fMRI).

Commonly, commercial systems exclusively use rigid registration to project the
pre-operatively acquired imaging (MRI, fMRI, and DT-MRI) into the navigational
system; however, a number of studies have tracked surface points in the brain
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and reported that movements on the order of a centimeter or more can occur
intra-operatively [9]. Additionally, shift can occur in deep subcortical white matter
because of tissue retraction, lateral ventricle, and the application of a dehydrolyzing
agent. Therefore, a non-rigid registration is necessary to accurately capture the soft
tissue deformation induced by tumor resection.

A commonly used non-rigid transformation model is based on the finite element
method (FEM). FE biomechanical models allow more principled control of local-
ized deformations and have been applied to improve the efficacy and efficiency
of brain surgery [3–8, 10–13]. An FE model is represented by a series of Partial
Differential Equations (PDEs), which describe the physical deformation of the
underlying tissues. The tissues are delineated in the image by using a segmentation
technique [14, 15]. The segmented image is tessellated into a volumetric mesh and
each element is assigned to a local physical description of the anatomical structure
to which it belongs. To find the numerical solution of the PDEs, constraints are
applied to the model, and a linear system of equations is solved to compute the
displacements on the mesh vertices. A dense deformation field can be estimated by
interpolating the computed mesh displacements at each image voxel.

Meshless methods have been presented as alternatives to FE methods. A
Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithm was developed
to compute soft tissue deformation in surgical simulation [16]. This method was
accurate in terms of overall reaction forces but not quite as good with individual
displacements or forces. In [17] a MTLED-based suite of algorithms was used to
perform a comprehensive patient-specific surgical simulation. The results obtained
using MTLED were as useful and accurate as those obtained with the FE method.

The produced non-rigid transformation can be useful to create augmented reality
visualizations of pre-operative multi-modal imaging (MRI, fMRI, DT-MRI) with
iMRI, and thus to facilitate real-time resection guidance in glioma surgery involving
language areas and neighboring subcortical motor pathways (e.g., Pyramid Tracts).
Figure 1a depicts such a visualization. The DTI tractography is shown in real-time
together with a tumor model (red) during the neurosurgical resection.

The augmented reality visualization helps neurosurgeon to achieve an appropri-
ate volumetric resection while preserving neighboring subcortical motor pathways.

The aim of this paper is to evaluate the efficiency (i.e., accuracy, robustness)
of two adaptive biomechanical non-rigid registration methods [3, 4] to compen-
sate for the brain deformation induced by cerebral glioma resection. The first
method employs a point/element outlier rejection scheme integrated into a Nested
Expectation and Maximization framework to simultaneously resolve the point cor-
respondence, the deformation field, and the resection region. The second approach
iteratively estimates a dense deformation field by inclemently and accurately
incorporating small changes in the geometry of the domain resulted by tumor
resection. The evaluation performed on MRI data from ten patients who underwent
partial, complete, and extended glioma resection at Huashan Hospital. Structural
MRI (SPGR, MP-RAGE, FLAIR, T2w) were acquired prior and during each surgery
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Fig. 1 (a) Non-rigid alignment of pre-operative DTI tractography with iMRI. The fused image
shows that the partially resected tumor is directly adjacent to the Pyramid Tracts. (b) Multi-
tissue mesh (number of tetrahedra: 160,179; minimum dihedral angle: 4.41ı). Top row: mesh
superimposed on MRI. Cyan and red represent the surface of the brain parenchyma mesh and the
tumor mesh, respectively. Bottom row: mesh fidelity illustrated on an axial, sagittal, and coronal
slice. Each slice depicts an intersection between the mesh surface (cyan and red lines) and the
segmented volume (green and yellow regions). The closer the mesh surface to the physical image
boundaries, the higher the mesh fidelity

with a 3T movable scanner. The registration accuracy was assessed on totally 40
volumetric alignments by: (i) a visual inspection, (ii) a Hausdorff Distance (HD)-
based error metric, and (iii) a landmark-based error measured by neurosurgeon.

2 Materials and Methods

2.1 Patient Population

Ten patients with an age range of 19–75 years underwent surgery on a single,
unilateral, and supratentorial primary glioma from September 2010 to August 2013.
The lesions involved in Pyramid Tracts (PTs) were in cortical regions in the motor
or somatosensory areas, cortical regions adjacent to the central gyrus, subcortical
regions with an infiltrative progression along the PTs, and/or deep temporal or
insular regions in relation to the internal capsule. Pre- and intra-operative brain
images were obtained in the integrated neurosurgical suite (IMRIS, Winnipeg, Man-
itoba, Canada) using a ceiling-mounted movable 3.0 T MAGNETOM Verio scanner
(Siemens AG, Erlangen, Germany) with a 70 cm working aperture. A neurosurgeon
categorized the image data as: (i) Partial Tumor Resection (PTR), (ii) Complete
Tumor Resection (CTR), and (iii) Extensive Tumor Resection (ETR). Table 1 lists
the clinical data.
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Table 1 Clinical MRI data

Image Size (voxels) Image Spacing (mm)
# Genre Type Pre-op Intra-op Pre-op Intra-op

1 M PTR 448 � 512 � 176 512 � 448 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1
2 M PTR 448 � 512 � 80 512 � 456 � 66 0.468 � 0.468 � 2 0.468 � 0.468 � 2
3 M PTR 448 � 512 � 176 512 � 448 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1
4 M CTR 512 � 448 � 176 512 � 448 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1
5 F CTR 448 � 512 � 176 448 � 512 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1
6 M CTR 448 � 512 � 176 384 � 512 � 144 0.488 � 0.488 � 1 0.488 � 0.488 � 1
7 M ETR 448 � 512 � 144 448 � 512 � 144 0.488 � 0.488 � 1 0.488 � 0.488 � 1
8 F ETR 512 � 456 � 66 456 � 512 � 66 0.468 � 0.468 � 2 0.468 � 0.468 � 2
9 F ETR 512 � 456 � 66 512 � 456 � 68 0.468 � 0.468 � 2 0.468 � 0.468 � 2
10 M ETR 448 � 512 � 176 448 � 512 � 176 0.488 � 0.488 � 1 0.488 � 0.488 � 1

PTR partial tumor resection, CTR complete tumor resection, ETR extensive tumor resection

2.2 Segmentation

The biomechanical non-rigid registration in this study requires a pre-operative
segmentation. Pre-operative imaging is usually acquired few days before the first
intra-operative acquisition, therefore any computational requirements of a pre-
operative segmentation are easily satisfied. Before the segmentation, the brain is
extracted from the skull using the BET tool [14]. Then a combination of automatic
operators implemented in 3D Slicer (i.e., region growing and level-set filters) [15]
and a slice-by-slice manual segmentation is performed to correct any erroneously
included regions. An evaluation on how the segmentation accuracy affects the
registration accuracy is beyond the scope of this paper, however, it will be included
in our future work.

2.3 Rigid Registration

The first intra-operative scan is acquired after the head of the patient is positioned for
the craniotomy and fixed but before the opening of the skull. At this stage no brain
shift occurs. A Rigid Registration (RR) was performed with the BRAINSFit module
in 3D Slicer v4.4.0 [18] to compensate for any translations or rotations between the
pre- and the intra-operative image. RR uses a Versor Rigid 3D Transform (VR3DT)
to apply a rotation and translation to the space. RR relies on histogram bins and
spatial samples to estimate a Mattes Mutual Information (MMI) cost metric for the
alignment. The larger the number of samples, the slower and more precise the fit.
In order to achieve higher accuracy, we set 100 histogram levels and 5% sampling
percentage (50 and 0.2% are the default values, respectively). For the rest of the RR
parameters we used the default values.
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2.4 Adaptive Non-Rigid Registration

The last 10 years we explored the feasibility of three biomechanical non-rigid
registration methods to compensate for the brain deformation induced by tumor
resection: (i) A Physics-Based Non-Rigid Registration (PBNRR) integrated on ITK
and 3D Slicer [19]; (ii) A Nested Expectation-Maximization Non-Rigid Registration
(NEMNRR) [3, 20]; (iii) An Adaptive Physics-Based Non-Rigid Registration (APB-
NRR) [4, 21]. NEMNRR, and APBNRR are adaptive; PBNRR is non-adaptive.

The above non-rigid registration methods do not simulate the skull or an
interaction between the brain parenchyma and the skull. Before the registration,
the pre-operative and the intra-operative intracranial brain cavities are extracted
from the skull [14]. A sparse displacement field is computed from the distances
between features in the pre-operative intracranial cavity and their corresponding
features in the intra-operative intracranial cavity. PBNRR and APBNRR rely on a
cross correlation metric to compute the corresponding features. NEMNRR relies
on a Gaussian distribution function. A tetrahedral mesh of the brain parenchyma
is generated from a segmented pre-operative intracranial cavity and the sparse
displacement field is applied on the mesh nodes. The prescribed displacement field
implicitly accounts for a brain–skull interaction in the case where corresponding
features are located on the surface of the brain parenchyma. In this study, the nodes
on the parenchyma surface are free to translate in three-dimensions as no explicit
interaction between the brain and the skull is assumed.

A linear assumption is used for the displacements and the materials of the model.
The values of the mechanical properties of the isotropic materials (i.e., Young’s
modulus, Poisson ratio) were obtained from [8]. These values were extrapolated
from best-fit data obtained in porcine studies. For tumor, a value ten times stiffer
than that for normal tissue is used (Table 2). The adaptive methods employ a het-
erogeneous model (brain parenchyma, tumor). The non-adaptive method employs a
homogeneous model (brain parenchyma). The quality of the tetrahedral mesh (e.g.,
dihedral angle) influences the accuracy of the numerical solution of a linear system
of equations and thus, the correctness of the estimated transformation. The higher
the quality of the elements (e.g., the larger the minimum dihedral angle), the better
the conditioning of the coefficient matrix and, consequently, the convergence of the
linear solver. Figure 1b depicts a multi-tissue mesh used for biomechanical non-rigid
registration. Parameter ı (Table 2) determines the size of the mesh (ı > 0).

NEMNRR formulates the registration as a three-variable (point correspondence,
deformation field, and resection region) functional minimization problem, in which
point correspondence is represented by a fuzzy assign matrix, deformation field
is represented by a piecewise linear function regularized by the strain energy of
a heterogeneous biomechanical model, and resection region is represented by a
maximal connected tetrahedral mesh. This method utilizes a point/element outlier
rejection incorporated into a Nested Expectation and Maximization framework to
simultaneously resolve these three variables. Figure 2 illustrates the NEMNRR
framework.
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Table 2 Parameters for non-rigid registration

Parameter Value Description Method

Connectivity
pattern

face Pattern for block selection PBNRR, APBNRR

Fs 5% % selected blocks from total
number of blocks

PBNRR, APBNRR

Bs , x � Bs , y � Bs , z 3 � 3 � 3 Block size (in voxels) PBNRR, APBNRR
Ws , x � Ws , y � Ws , z 9 � 9 � 3 (PTR),

13 � 13 � 3
(CTR, ETR)

Block matching window
size (PBNRR, APBNRR) or
Search range (NEMNRR)
(voxels).

All

R 0.93 Annealing factor NEMNRR
• 5 Mesh size All
Eb , vb 2.1 KPA, 0.45 Young’s modulus, Poisson

ratio for brain parenchyma
All

Et , vt 21 KPA, 0.45 Young’s modulus, Poisson
ratio for tumor

NEMNRR, APBNRR

Fr 25% % of rejected outlier blocks PBNRR, APBNRR
Nrej 10 Number of outlier rejection

steps
PBNRR, APBNRR

Niter , . max 10 Max number of iterations APBNRR
Nb0 , min 1% of the total

number of
blocks

Minimum number of blocks
without a correspondence

APBNRR

All: PBNRR, NEMNRR, APBNRR

APBNRR iteratively estimates a dense deformation field by inclemently and
accurately incorporating small changes in the geometry of the domain resulted
by tumor resection. The computation of the dense field is facilitated by a sparse
displacement vector associated with highly discriminant blocks inside the cranial
cavity, and a heterogeneous biomechanical model which describes the physical
deformation of the brain. After each deformation, the quality of the elements
deteriorates, and thus the model is globally re-meshed in real-time using a Delaunay
meshing algorithm [22] to avoid the heavily distorted elements, and to recover the
anatomical boundaries with geometric guarantees. Figure 3 illustrates the APBNRR
framework. The model is globally re-meshed from a warped segmented image to
capture not only the brain deformations but also the complex geometric changes
nearby the tumor margins, while maintaining throughout the process meshes with
good quality elements—critical for the accuracy and convergence rate of the solver.
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Fig. 2 Nested Expectation Maximization framework [3]. In the horizontal direction, the inner
EM iteratively estimates the correspondence and the deformation field until no point outliers are
detected. In the vertical direction the outer EM rejects the element outliers and computes the
resected region

Fig. 3 APBNRR framework [4]. The red arrows show the execution order of the different modules
in the loop. The loop breaks when the number of blocks without correspondence is less than a
threshold or when the maximum number of iterations has been reached
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3 Results

We performed an evaluation on imaging data from ten patients underwent partial,
complete, and extended glioma resection. We assessed the registration accuracy with
a visual inspection, a Hausdorff Distance (HD)-based error metric, and a landmark-
based error measured by a neurosurgeon. Table 2 presents the parameters used for
the non-rigid registration. More details about the parameters of each method are
given in [3, 4, 19].

3.1 Visual Assessment

In most applications, careful visual inspection remains the first and most important
validation check available for previously unseen data. Figure 4 depicts a qualitative
assessment for six patients of this study. For each patient, we depict an intra-
operative MRI, a registered pre-operative MRI, and a subtraction between the
intra-operative and the registered pre-operative MRI. Based on Fig. 4, APBNRR
aligns more accurately the MR images and preserves the brain morphology during
the neurosurgical resection, especially near the tumor margins. The assessment
shows that the quality of the alignments is not significantly affected by the
volumetric resection (partial, complete, or extended). In contrast, the other methods
show significant misalignments near the tumor cavities.

3.2 Quantitative Assessment with the HD Metric

We employed a publicly available implementation of the Hausdorff Distance (HD)
metric [23] to quantitatively evaluate the registration accuracy. This metric is a
measurement of the degree of mismatch between two point sets. The first set is
extracted from the pre-operative volume, and then it is transformed according to
the estimated deformation field. The second point set is extracted from the intra-
operative volume. The HD metric is computed between the transformed point
set and the fixed point set. For the point extraction, we employed a Canny edge
detection implemented in ITK. Compare to a previous evaluation of the registration
accuracy [5], this study uses the 100% HD metric. The smaller the HD value, the
more precise the alignment (HD � 0). The ideal case with perfect alignment is when
HD is equal to 0. The ratio D HDX/HDY denotes how many times more accurate one
method is when compared to another. When ratio > 1 then method Y is ratio times
more accurate than method X. Table 3 presents the results. We computed a total of
40 HD errors. APBNRR achieved the smallest error in each individual case, and the
smallest average error (3.69 mm) among all the methods. APBNRR is on average,
6.83, 6.41, and 6.34 times more accurate compared to RR, PBNRR, and NEMNRR,
respectively.
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Fig. 4 Qualitative evaluation of the registration accuracy. Each row represents a single case. We
depict the same representative slice for all the images belonging to the same row. The results were
confirmed by a neurosurgeon who inspected the full registered volumes. From top to bottom row:
PTR cases 1, 2; CTR cases: 4, 5; ETR cases: 7, 9. From left to right column: (a) intra-op MRI;
(b) RR pre-op MRI; (c) PBNRR pre-op MRI; (d) NEMNRR pre-op MRI; (e): APBNRR pre-op
MRI; (f): (a) subtracted from (c); (g): (a) subtracted from (d); (h): (a) subtracted from (e)

3.3 Quantitative Assessment with Anatomical Landmarks

A neurosurgeon quantitatively evaluated the alignment accuracy on six anatomical
locations, as suggested in [24]. The neurosurgeon selected six landmarks in the pre-
operative volume and identified their correspondent locations in the intra-operative
volume. Two landmarks were selected at the cortex near the tumor depending on the
shift of the brain surface; other two landmarks were selected at the anterior horn and
at the triangular part of the lateral ventricle; the last two landmarks were selected
at the junction between the pons and mid-brain and at the roof of fourth ventricle.
For each landmark, the error was calculated as the distance between the physical
location of the point in the intra-operative volume and its transformed location in
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Table 3 Quantitative evaluation of the registration accuracy with a HD metric

Case Type HDRR HDPBNRR HDNEMNRR HDAPBNRR
HDRR

HDAPBNRR

HDPBNRR
HDAPBNRR

HDNEMNRR
HDAPBNRR

1 PTR 16.15 15.12 15.08 4.60 3.51 3.29 3.28
2 PTR 26.89 26.89 23.87 4.00 6.72 6.72 5.97
3 PTR 29.93 27.76 28.11 2.83 10.58 9.81 9.93
4 CTR 17.90 15.56 16.84 4.11 4.36 3.79 4.10
5 CTR 30.37 28.96 28.96 3.13 9.70 9.25 9.25
6 CTR 23.22 21.44 21.27 3.08 7.54 6.96 6.91
7 ETR 17.59 16.63 15.20 4.19 4.20 3.97 3.63
8 ETR 32.32 30.13 30.20 3.45 9.37 8.73 8.75
9 ETR 18.48 18.15 17.86 3.97 4.65 4.57 4.50
10 ETR 27.07 24.91 25.16 3.54 7.65 7.04 7.11
Average 23.99 22.56 22.26 3.69 6.83 6.41 6.34

HDRR, HDPBNRR, HDNEMNRR, and HDAPBNRR are the alignment error after an RR, PBNRR,
NEMNRR, and APBNRR registration, respectively
PTR partial tumor resection, CTR complete tumor resection, ETR extensive tumor resection. All
errors are in mm

Table 4 Quantitative evaluation of the registration accuracy with six anatomical landmarks
identified by a neurosurgeon

Method Average min error Average max error Average mean error

RR 3.49 11.96 7.27
PBNRR 1.72 9.94 5.38
NEMNRR 2.31 11.76 6.01
APBNRR 1.52 9.05 4.71

The values are the average minimum, maximum, and mean errors computed on the six anatomical
locations, from ten patients. All errors are in mm

the registered volume. For each patient, we calculated a minimum, a maximum,
and a mean error based on six landmarks. We then calculated their corresponding
average errors for ten patients. Table 4 presents the results. The landmark-based
assessment confirms that the APBNRR provides the most accurate alignments on
the specific anatomical locations. APBNRR exhibits the lowest average mean error
(4.71 mm) which may be clinically useful.

4 Conclusion

A retrospective study was carried out on volumetric MRI data acquired from ten
patients. The patients underwent an incomplete, complete, and extensive glioma
resection at Huashan Hospital. The accuracy of the alignments was assessed with
a: (i) robust HD metric, (ii) anatomical points identified by a neurosurgeon, and
(iii) visual assessment inspected by a neurosurgeon.
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The experimental evaluation confirmed that a geometric-based adaptive
deformable registration approach exhibits the most accurate alignments among
all the methods in this study, independently of the volumetric resection (PTR, CTR,
or ETR). This method significantly reduces the error due to rigid registration
commonly used by commercial neuronavigators within the time constraints
imposed by neurosurgery. Indeed, it completes a volumetric alignment, on the
average, in 137.90 s (including I/O) on a Linux workstation with 12 Intel Xeon
X5690@3.47 GHz CPU cores and 96 GB of RAM.

We observed differences between the alignment errors measured with a Haus-
dorff Distance metric and manually identified anatomical landmarks. We believe
that, this is because the HD approach computes the degree of mismatch between two
point sets A , B by measuring the distance of the point of A that is farthest from any
point of B and vice versa, but there is no explicit pairing of points of A with points
of B [25]. On the other hand, the landmark-based approach measures the Euclidian
distance between two but corresponding points, though in some applications (e.g.,
inter-subject brain registration) the true point-to-point correspondence can never be
known and may not even exist.
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Registration of Prone and Supine Breast MRI
for Breast Cancer Treatment Planning

Thiranja P. Babarenda Gamage, Habib Y. Baluwala, Martyn P. Nash,
and Poul M.F. Nielsen

1 Introduction

Breast cancer is the leading cause of cancer-related death in females, affecting 1 in
every 10 women worldwide. Breast conserving therapy (BCT) is the most common
procedure used for treating early stage invasive breast cancers, and involves
localized excision of tumorous lesions followed by radiotherapy. Clinical imaging
modalities used for diagnosing the disease (e.g., MRI) are acquired with the patient
positioned differently to that assumed during the actual treatment procedures. Since
such procedures are not performed under image guidance, localization of tumors is
challenging, especially when the stiffness of the tumor is similar to the stiffness of
the surrounding tissue. This represents a significant challenge for clinicians, with
the majority of studies in the literature reporting incomplete excision of tumors in
20–40% of the patients who underwent BCT [1]. This study therefore aimed to
register regions of interest between diagnostic prone MRI and pre-operative supine
MRI to help clinicians localize tumors during treatment procedures.

Such registration problems have typically been solved using image intensity-
based non-rigid registration algorithms in a number of different organs [2]. In such
approaches, a transformation is applied to one image in order to best match image
intensity values in another image, using nonlinear optimization [3, 4]. However,
these methods have proven to be unreliable when attempting to account for large
changes in tissue motion in highly deformable organs, such as that observed in the
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breast between the prone and supine positions. The failure of these approaches
is usually due to poor registration initialization, which can cause the locally
convergent optimization algorithms used for maximizing voxel correspondence to
diverge, especially if physically based constraints are not used to help constrain the
problem [5].

Previous studies have therefore aimed to develop biomechanical models of the
breast to provide an estimate of the tissue displacement observed between the prone
and supine MRI for initializing non-rigid registration algorithms [6]. However,
recent studies have observed relatively large errors in tissue displacement estimates
from the biomechanical models. For example, [7] observed mean model errors
between 11.5 and 39.2 mm when simulating prone to supine breast deformation,
even with a model that accounted for the mechanical behavior of multiple tissues in
the breast (skin, fat, fibroglandular tissues), and the pectoral muscle, on which these
breast tissues sit.

These large errors may be due to the simplified frictionless boundary conditions
that were applied on the posterior surface of model during the simulation. These
boundary conditions were used for approximating sliding of the pectoral muscle
over the ribcage that occurs due to relative changes in the position of the arm
between the prone and supine positions. However, frictionless boundary conditions
may not be suitable, as the extent to which the pectoral muscle slides over the breast
tissues is then largely dependent on the stiffness of the breast tissues (with stiffer
parameters resulting in less sliding and less stiff parameters resulting in a greater
extent of sliding). In this study we aimed to determine the accuracy to which prone
and supine MRI could be registered using an initial estimate of tissue displacement
from a biomechanical model that directly prescribes the observed motion of the
pectoral muscle between the prone and supine positions.

Section 2 describes the methodology used for solving prone-to-supine breast
mechanics, and using this initial estimate for non-rigidly registering the prone
and supine MRI. Section 3 describes the results of the registration procedure, and
provides an analysis of the accuracy of the initial estimate of tissue displacement
provided by the mechanics simulation. Potential approaches for improving the
accuracy of the mechanics simulations are then discussed in Section 4.

2 Methodology

2.1 Modeling Breast Anatomy

Prone and supine MR images were acquired from two volunteers using a Siemens
1.5 T Magnetom Avanto MRI system. T2-weighted imaging sequences were
acquired for each volunteer with an axial (transversal) slice orientation, and a
0.684 mm � 0.684 mm � 2.5 mm voxel size.

Subject-specific finite element (FE) models of the left breast were created from
the prone MR images of each volunteer considered in this study. In each model,
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Fig. 1 FE model geometric fits are shown in (a) and (b) for volunteers 1 and 2, respectively. The
dashed blue line indicates the axilla boundary of the muscle tissue

separate FE meshes were created to represent the geometry of the breast tissue
and pectoral muscle. The meshes were created by fitting cubic Hermite basis
functions to manually segmented skin, muscle, and chest wall boundaries seen in
the prone MRI (denoted as skin, muscle, and chest�wall, respectively), using an
iterative closest point algorithm. The skin and chest wall root-mean-squared errors
(RMSE) following the fitting were 1.19 mm, 0.98 mm, and 1.20 mm, respectively,
for volunteer 1 and 0.74 mm, 1.02 mm, 1.17 mm, respectively, for volunteer 2. The
fitted meshes are shown in Fig. 1.

2.2 Modeling Breast Mechanics

Finite elasticity theory was used to simulate the large deformations observed
during prone-to-supine breast repositioning [8]. These governing equations were
solved using the finite element method in the OpenCMISS computational modeling
software package [9]. The mechanical responses of the breast tissues were assumed
to be isotropic and were modeled using an ideally incompressible, hyperelastic neo-
Hookean constitutive relation. A linear Lagrange hydrostatic pressure field was used
to enforce incompressibility of the breast tissues.

The breast and muscle tissues were each described by a different neo-Hookean
stiffness parameter, namely �breast (a homogeneous representation of the stiffness of
the breast tissues, composed mainly of adipose, fibroglandular, and skin tissues) and
�muscle (representing the stiffness of the pectoral muscles). These parameters were
assigned to their respective mesh elements.
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Since the breast was imaged under gravity loading conditions, either the regional
stress-state of the breast, or its stress-free reference configuration, is required for
accurate mechanics simulations. The importance of determining this stress-free
reference configuration was highlighted for the breast in [10]. In this study, a
stress-free reference configuration was numerically determined, by implementing
the algorithm described in [11], in the OpenCMISS numerical software package.
Once the reference configuration was identified, the breast could be re-orientated to
simulate the supine position.

Boundary and Loading Conditions

An important aspect of simulating breast tissue movement involves accounting for
any relative motion between the pectoral muscles and the chest wall. This relative
motion arises due to a relative change in position of the shoulder joint and the arm,
to which the pectoral muscles attach, when an individual is repositioned. Previous
studies have attempted to indirectly account for this sliding behavior by introducing
frictionless [7] or frictional [12] contact constraints, at the muscle and chest wall
interface. However, this assumes that the observed degree of sliding depends mainly
on the stiffness of the breast tissues and not the actual motion of the shoulder joint
and arm (which is dependent on the orientation in which the subject is positioned
during imaging). Such an assumption can therefore introduce large modeling errors.

The lateral insertion points of the pectoralis major muscle or the shoulder joint
were not visible within the field of view of either the prone or supine MR images
of each volunteer. Therefore, the amount of sliding due to shoulder and arm motion
could only be approximated in this study. This was achieved by first aligning the
anterior sternocostal articulation junctions in both the prone and supine images. The
axillary boundary of the pectoral muscle (defined by the dashed blue line in Fig. 1)
was then identified in both the prone and supine MR images, and used to estimate
the degree of sliding. Kinematic constraints were then applied on the posterior
surface of the muscle to enforce the observed sliding motion along the curvature
of the chest wall. A linear gradient was used to determine the amount of sliding at
any point along this posterior surface, from a fixed edge at the sternal boundary of
the model (representing the medial insertion point of the pectoralis major muscles)
to the observed degree of sliding at the axillary boundary of the pectoral muscle.

Gravity loading was applied as a body-force acting in the direction determined
from the alignment of the prone and supine MR images. The density of the breast
tissue was defined as the volume weighted combination of the adipose (928 kg/m3)
and fibroglandular (1035 kg/m3) tissue densities [13]. A density of 1060 kg/m3 [14]
was used for the muscle tissue.
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Mesh Convergence Analysis

An FE displacement convergence analysis was performed to ensure the simulation
results were mesh resolution independent. Six geometric points were randomly
embedded within the fibroglandular region of the prone breast model. The simulated
positions of these material points were compared with successive refinements to
the mesh. This convergence analysis was performed using the breast geometry
of volunteer 2, with neo-Hookean stiffness parameters �muscle D 106 Pa and
�breast D 190 Pa. From this analysis, a 7756 degree of freedom (DOF) mesh
resolution was chosen for generating the results in the remainder of the study, as
it produced a 0.14 mm maximum displacement difference of the embedded points
compared with a 14,404 DOF mesh.

2.3 Registering Prone and Supine MRI

As described in Sect. 1, image intensity-based registration techniques alone are
incapable of successfully registering the large degree of breast tissue deformation
observed between the prone and supine MR images, unless a suitable initial estimate
of the tissue motion is provided. In this study, the nonlinear transformation, Tm(�),
obtained from simulating prone-to-supine repositioning using the FE mechanics
model (where � are the constitutive parameters of the FE model) was used as this
initial estimate. This was achieved by embedding prone MRI pixels into the prone
model, allowing each to be assigned a unique material point. These material points
were subsequently transformed using Tm, and re-sampled to generate a model-
simulated supine MRI. The model-simulated supine MRI and the independently
acquired supine MRI were then registered using image intensity-based registration
techniques. This procedure defined another nonlinear and invertible transformation,
Tr, which maps material points between these two images. The total tissue motion
was therefore described by T D Tr�Tm.

Implementation

In this study, the registration framework developed by [3] was used to determine
the transformation Tr using a NMI similarity metric. This was performed using the
IRTK software package [3, 4].

The IRTK registration procedure involved both rigid and non-rigid components.
The rigid component of the registration was parameterized using a 12 DOF, affine
transformation (which allowed translation, rotation, shear, and anisotropic scaling).
The non-rigid component of Tr was represented by a multi-resolution free-form-
deformation (FFD), parameterized using a lattice of control point vectors, to allow
linear interpolation of the MR images. The NMI similarity metric was maximized
with a conjugate gradient descent optimization algorithm to determine the optimal
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parameters of the rigid and non-rigid components of Tr. The muscle tissue was not
registered during this procedure due to the low signal quality and lack of visible
features within the tissue.

Verifying Implementation Accuracy

The accuracy of the registration framework was verified by applying a known
deformation field from a mechanics solution to the prone MR image [15]. The
extent to which the applied deformation could be recovered using the registration
framework was then analyzed. This approach was also used to tune the numerical
parameters of the registration framework (such as the spacing between control
points and number of registration iterations) to ensure the framework was suitable
for registering the MR images used in this study. The results of the MRI registration
verification tests indicated that the framework was capable of recovering the
simulated deformation with a 3D RMSE of 0.45 mm.

2.4 Identifying Subject-Specific Mechanical Properties

The registered displacements (described by Tr) can be used to indicate the discrep-
ancy between the model-simulated supine MRI and the independently acquired
supine MRI. The constitutive parameters of the model (�) could therefore be
optimized to minimize these discrepancies. The optimal constitutive parameters (�*)
identified from this procedure therefore allow the breast model to provide the best
estimate of tissue motion in the supine position, for optimally registering the model-
simulated supine MRI and the independently acquired supine MRI.

A nonlinear, least squares optimization procedure was implemented to minimize
the mean-squared registered displacements, ˚MSE, and thus to determine subject
specific �* as shown below:

min
�

�MSE
Tr

D 1

N

NX

iD1

�
���

�
Is .�; xi/ � Tr.

�
Is.�; xi/; Is/

�
���

2:

where xi denotes the geometric location of the ith breast tissue voxel in the model-

simulated supine MRI (
�
Is .�; xi/) and its corresponding registered location in the

independently acquired supine MRI (Tr.
�
Is .�; xi/ ; Is/). While the registration was

performed over the entire breast tissue region, only the pixels representing the
fibroglandular tissue were used for evaluating ˚MSE. This was because many fea-
tures were present in the fibroglandular tissue region, compared with the relatively
featureless adipose tissue.
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The optimization procedure was implemented in Matlab using the lsqnonlin
optimization function. Box constraints, defining upper and lower bounds on the
parameters, were manually defined during the optimization procedure to describe
a feasible range of parameters.

3 Results

The optimal constitutive parameters (�*) that minimized the registered displace-
ments are shown in Table 1. These results indicated that the breast tissue of volunteer
2 was stiffer than volunteer 1. However, similar muscle stiffness parameters were
identified for both volunteers. These parameters are similar to those obtained in a
similar study that modeled only the breast and muscle tissues (�breast

* D 50 Pa, and
�muscle

* D 260 Pa) [16].
The supine shape determined using the biomechanical model with the optimal

set of model constitutive parameters (�*) is shown in Fig. 2a. Figure 3a shows an
example of axial slice of the model-simulated supine MRI obtained from transform-
ing the prone MRI using Tm(�*). Figure 3b–f shows the results of the procedure
used to register the model-simulated supine MRI and the independently acquired
supine MRI. The differences in image intensities before and after registration are
shown in Fig. 3e, f, respectively. These results showed good agreement between
the registration-simulated supine MRI and the independently acquired supine MRI.
A quantitative comparison between these images was also performed by comparing
distances between the centroid of eight manually segmented landmarks identified
in these images that were distributed throughout the breast tissue. The results of
this analysis are shown in Table 2, and also indicated good agreement between the
images.

The displacements described by Tr were then used to provide an indication of
the accuracy of the models. These displacements are described in Table 3. The
magnitudes of these displacements are also shown on the simulated supine geometry
in Fig. 4 to indicate the distribution of the errors within the breast tissue.

The results in Fig. 4 indicate large 3D registered displacement magnitudes were
observed near the nipple position of the model. This was identified to be due to the
model over-estimating the tissue motion near the nipple in both volunteers (as seen

Table 1 Optimal constitutive parameters (�*) that minimized the registered displacements
between the model-simulated supine MRI and the independently acquired supine MRI

Volunteer �breast
* (Pa) �muscle

* (Pa)

1 106 190
2 377 242
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Fig. 2 The simulated supine shape of the breast from the mechanics solution solved using the
optimal constitutive parameters (�*). Each red arrow indicates the error between the model-
simulated nipple position (indicated by the green sphere) and its location identified from the
independently acquired supine MRI

in Figs. 2 and 3c) in the axial (x–y) plane. The results in Table 3 also indicate
that the registered displacements were the largest along the caudal-cranial direction
(z-axis). Registered displacements of up to 12 mm were observed towards the caudal
boundary (�z) in volunteer 1, and up to 23 mm towards the cranial boundary (Cz)
in volunteer 2.

4 Discussion

The results described in this study indicated that the two parameter models with the
improved boundary conditions provided a good initial estimate of the tissue motion
for registering the prone and supine MRI. These models showed mean modeling
errors (identified from MRI registration) of 9.1 and 19.4 mm for volunteer 1 and 2,
respectively, compared with mean modeling errors between 11.5 and 39.2 mm for
the six parameter model considered in [7] (identified by tracking the displacement
of nine fiducial markers placed on the breast surface). However, the results in this
study highlighted that relatively large errors were present in certain regions of the
model.

The largest registered displacements between the model-simulated supine MRI
and the independently acquired supine MRI were along the cranial-caudal axis
(z-axis). The RMS alignment errors between the sternum landmarks in the prone and
supine MRI (2.29 mm and 2.40 mm for volunteers 1 and 2, respectively) were an
order of magnitude smaller than these registered displacements. It was therefore
unlikely that these discrepancies were due to errors in aligning the prone and supine
MR images. Furthermore, the direction of the registered displacements along the
z-axis for volunteer 1 was different to that observed in volunteer 2. These additional
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Fig. 3 MRI registration results for a transverse section of the FE model, simulated with the
optimal tissue parameters (�*). The FE model-simulated supine MRI and independently acquired
supine MRI are shown in (a) and (b), respectively. The registered displacements described by Tr

are indicated by the yellow arrows in (c), and the resulting registration-simulated MRI is shown
in (d). The differences in image intensities before registration and after registration are shown
in (e) and (f), respectively
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Table 2 The quantification of the registration errors using the mean (�), standard deviation (¢),
and maximum (max) difference in the centroid of six manually labelled landmarks in the model-
simulated supine MRI and the independently acquired supine MRI

Volunteer � (mm) ¢ (mm) Max (mm)

1 1.61 1.24 3.37
2 1.10 0.50 1.67

Table 3 Total tissue displacement (T) between the registered prone and supine MRI (T D Tr �
Tm). Tm describes the estimate of the prone-to-supine displacements from the mechanics model
using the optimal constitutive parameters. Tr describes the additional displacements required to
match the deformation observed in the independently acquired supine MRI

T (mm) Tm (mm) Tr (mm)
Volunteer Component � ˙ ¢ � ˙ ¢ � ˙ ¢

1 Magnitude 61.8 ˙ 14.6 61.8 ˙ 16.0 9.1 ˙ 3.9
x 38.7 ˙ 6.1 41.7 ˙ 7.6 �3.0 ˙ 5.1
y 47.2 ˙ 15.0 44.4 ˙ 16.1 2.8 ˙ 3.8
z 1.2 ˙ 6.7 5.6 ˙ 4.0 �4.4 ˙ 4.6

2 Magnitude 51.9 ˙ 7.9 49.7 ˙ 9.8 19.4 ˙ 4.8
x 24.4 ˙ 4.1 33.6 C 6.1 �9.2 ˙ 7.1
y 42.9 ˙ 8.9 36.2 ˙ 9.2 6.7 ˙ 2.6
z 14.0 ˙ 5.0 �0.1 ˙ 1.7 14.1 ˙ 3.7

Fig. 4 The 3D magnitude of the registered displacements, describing by the discrepancy between
the model-simulated supine MRI and the independently acquired supine MRI

displacements may be due to different motion of the shoulders in the z-axis (cranial-
caudal direction), during repositioning from the prone-to-supine positions, which
could not be accounted for in the model. However, further investigation is required
to confirm this hypothesis.
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Large errors were also observed near the nipple position of the model. This
observation maybe due to the lack of a stiffer skin layer in the model which, if
present, may resist motion of the nipple towards the axilla, and help improve the
accuracy of the models.

The tissue landmarks used for assessing the accuracy of the registration were
only labelled by one human rater. Obtaining labels from multiple raters would allow
the accuracy of the segmentation to be estimated using probabilistic methods such
as Simultaneous Truth And Performance Level Estimation (STAPLE) [17]. The
use of Hausdorff distance-based automatic segmentation approaches may also help
assess the alignment of structures within the breast, particularly in the regions where
fibroglandular tissue is present [18].

The breast is supported by Cooper’s ligaments that extend from the skin into the
pectoral muscle fascia. It is unclear if these structures contribute significantly when
simulating the supine position as the ligaments would likely be in compression and
therefore unable to carry load. However, their influence is likely more significant
when determining the unloaded state of the breast from the prone position (where
the ligaments are in tension). Further investigations are required to determine the
influence of these ligaments during prone to supine repositioning.

5 Conclusions

This chapter describes a biomechanical modeling framework for simulating breast
tissue motion from the prone-to-supine orientation to help clinicians register tissue
motion between diagnostic prone MRI and pre-operative supine MRI, for example,
for treatment of planning procedures. The framework was demonstrated using MR
images from two volunteers. A relatively large displacement of the pectoral muscle
was observed between the prone and the supine positions in both volunteers. This
motion was accounted for in the models by directly prescribing the observed motion
of the muscle during the prone-to-supine simulations. The results showed that a two
parameter breast model provided good initial estimates of tissue displacement for
registering the prone and supine MRI, with registration errors less than 5 mm for
mean tissue displacement magnitudes of up to 61.8 mm.
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Evaluation of Strains on Levator Ani Muscle:
Damage Induced During Delivery for
a Prediction of Patient Risks
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1 Introduction

The pelvic floor mobility is linked to a complex equilibrium related to the
mechanical properties of tissues and the geometry of the related organs [1]. Different
anatomical structures seem to play a major contribution in such balance and life
events, such as aging, pregnancy, or delivery that could affect the physiologic
mobility and induces pathology such as genital prolapse (POP). As POP concerns
30% of the women population [2], understanding of these diseases is a major health
issue. Multiparity related to vaginal delivery is now identified as a significant risk
factor [3]. In addition, modification of the pelvic floor during pregnancy is also
reported as a change of organs equilibrium, leading to an alteration of POP-Q
(POP quantification system) [4]. The main hypothesis of the changes highlighted
previously was the change in biomechanical properties of the pelvic tissues [5].
These observations bring us to study the sustainable structures such as muscles and
ligaments for a better understanding of the involved phenomena.

Furthermore, many studies are interested in perineal avulsion that could be
classified into four categories, with first-degree corresponding to laceration on
superficial perineal skin and fourth-degree is used for the most critical form [6].
These different forms of perineal trauma occurred on 85% of women having vaginal
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birth and 60% receive stitches [7]. Literature reveals also a link between occurrence
of levator ani muscle (LAM) trauma and POP pathology [8, 9]. It is interesting
to notice also significant differences on LAM defects between nulliparous patient
and primiparous women with vaginal delivery [10]. No LAM defects are observed
on nulliparous against 20% on primiparous women with vaginal delivery (71% of
women with LAM trauma present incontinence).

Finite element method, coupled with mechanical behavior models of biological
structures, is commonly used in biomechanics to investigate strains and stresses
occurred on human body. In gynecology/obstetric, FE simulation allows us to ana-
lyze the mobility of the pelvic system in physiological and pathological conditions
[1, 11]. Further studies are also reported in the literature concerning the pelvic
system during childbirth and more precisely the deformations that occurred on
muscle of the pelvic floor [12, 13]. However, these studies are often represented by
simplified models of anatomy and rarely focused on the local geometry of pelvic
structures. It would be interesting to develop an FE model of the whole pelvic
system with refined geometry on sustainable structure such as LAM to access to
precise quantifiable measurements. Such a tool will help to evaluate the behavior of
anatomical structures under different loading conditions and appears to be relevant
to assess the damages and predict the risk of perineal lesions during delivery
following different scenarios.

2 Materials and Methods

The approach engaged in this study follows a classical protocol involving the data
acquisition from pregnant woman through clinical MRI, modeling the anatomical
structures involved and generating an FE model. We have focused on several
relevant parameters to better understand the strain levels induced on the pelvic
floor during childbirth; this model is set to match different delivery scenarios or
morphology of the patient and fetus.

2.1 MRI Protocol to 3D Representation

Different MRI sequences were performed on four pregnant primiparous women
(institutional ethical approval CEROG OBS 2012-05-01 R1), without noticeable
medical history and presenting a normal gynecologic examination (Fig. 1a). The
MRI are performed on T1, T2, and proton density sequences under medical
supervision. For each patient, five MRI are performed, distributed at different weeks
of gestation (e.g., 16, 32, and 38) and 2 months and 1 year after delivery. These
sequences allow us to obtain images in different incidences (axial, coronal, and
sagittal). Thanks to the AVIZO Standard edition 7

®
(Visualization Sciences Group

VSG, SAS) software, a manual thresholding is applied on these data to generate
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Fig. 1 (a) MRI at 38 weeks, (b) 3D reconstruction at 38 weeks with principal anatomic structure:
(1) uterus, (2) fetal head, (3) bladder, (4) sacrum, (5) rectum, (6) uterosacral ligaments, (7) levator
ani muscle, (8) vagina, (c) Comparison between LAM data from MRI and fitted surface, deviation
analysis (black surface represents the interpolated geometry)

a 3D pelvic models composed by bone structures, organs, muscles, ligaments, and
fetus (Fig. 1b).

Eighteen structures are identified individually for each term in order to have
representative models of pelvic system during pregnancy and on post-partum. Based
on the four women, this applied protocol brings us to the opportunity to create 20
3D reconstruction of the entire pelvic to analyze the geometrical evolution during
pregnancy and after, and to take into account the geometrical modification close to
delivery time.

2.2 Geometrical Surfaces to FE Model

A protocol is developed to represent the geometrical changes such as cervical
dilation which must be taken into consideration for FE simulation. Using a recon-
struction software from the MRI is not sufficiently adapted to use the geometries in
FE simulations. Manual work is needed to make geometric reconstructions compat-
ible with the FE method. This intermediate step is performed using CATIA software
(Dassault Systèmes) and consists in transforming each anatomical structure into a
viable surface model for the FE meshing (Fig. 2a).

This step involves B-Spline curves on which surfaces can be interpolated to
match with the geometry of the organs or muscles. An analysis of the deviation
between these surfaces and reconstructions resulting from AVIZO was established
to validate the process and guarantee the representativeness of the patient. The
average deviation is about �0.06 mm, which allows us to have a relevant precision,
in accordance with the tolerance induced by the voxel size (0.53 � 0.53 � 4.8 mm).
Some geometries with thin structures, difficult to detect on MRI, are interpolated
to avoid the holes (Fig. 1c). Imperfections from operator-dependent segmentation,
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Fig. 2 (a) Surface model reconstruction, (b) mapping of the LAM thicknesses at 38 weeks, with
constant value and refinement with eight groups, (c) illustration of the points of reference on the
LAM (Rul and Rlr , related to the upper/lower and left/right directions, respectively) and boundary
conditions on LAM (A—link with the pubic symphysis, B–link with obturator muscle, C—link
with sacrospinous ligament, and D—link with the coccyx)

reconstruction algorithms or software, are removed especially the stair-step artifact
induced by the voxel size, a phenomenon commonly observed in such type of
reconstruction method.

In order to develop an FE model, we used the 38 weeks models corresponding
to the geometry 2 or 3 weeks before childbirth. Analysis of the geometry of each
patient was made according to the term as well as to the fetal head. No significant
differences have been observed on the bone structure. For muscle structures, the
levator ani muscle (LAM) was individualized to consider each muscle structure
(puborectalis, pubococcygeus, and iliococcygeus). During segmentation, observa-
tions on the MRI images revealed a change in the size of LAM. This observation
was confirmed during the reconstruction and analysis of the geometrical model with
an increase in thickness close to the delivery followed by a decrease during post-
partum. As LAM is one of the anatomical structures impacted during delivery [14],
this structure could highly damage and represents a priority analysis area to evaluate
the risk of lesion. The thickness of the structures has been investigated during
surface model definition. Special attention is paid to the creation of LAM geometry
(Fig. 2b). In literature, many studies use surfaces with a constant thickness [12, 13]
and few used a thickness variation [15, 16]. Since the principal aim is to analyze
the areas where deformations are critical, consequently strongly influenced by the
geometry of the model, it was necessary to develop a method to refine the geometry
locally by increasing the mesh definition. A Python routine has been developed in
order to attribute the real thickness in a shell formulation by computing the distance
between each gravity center of element and external surface of muscle (Fig. 2b).
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Fig. 3 (a) FE model with anatomical sustainable structures with boundary conditions; (1) fetal
head, (2) sacrum, (3) obturator internus muscle, (4) LAM iliococcygeus muscle, (5) sacrospinous
ligament, (6) LAM pubococcygeus muscle, (7) skin limit, (b) illustration of the reference trajectory
corresponding to a left occipitoanterior cephalic presentation (Rs ratio related to the time of
simulation)

2.3 FE Simulation and Scenario

These models lead us to perform simulations with FE method into Abaqus/CAE
6.12–2 software (Dassault Systèmes Simulia Corp.). We generate an FE mesh of the
geometrical model derived from MRI to 38 weeks. This model is established with
15,000 elements and a convergence study was performed to guarantee the quality
of the mesh (Fig. 3a). We assign mechanical properties from preliminary works to
organs and ligaments [17, 18]. One of the conclusions of these publications is to
show that despite the intra and inter dispersions, the mechanical properties can be
differentiated in the old women but remain statistically equivalent among young
people. So we assume that the ligament properties were similar in a parturient. We
favored a hyperelastic behavior on our simulation to compute strain more accurately
than with linear elastic models [1]. In accordance with the mechanical properties
of pelvic cavity, a C0 (0.24) and C1 (0.19) coefficients are employed to defined a
hyperelastic behavior with large strain into ABAQUS (second order Yeoh model
[19]). The bone structures are considered as a stiff deformable part (E D 10 GPa).

Boundary conditions (Figs. 2c and 3a) for each structure suspension are equiv-
alent to previous works already published [1]. During delivery, uterine contraction
occurred but such a phenomenon is “poorly” described in literature and hard to
quantify with experimental test. This lack of information leads to difficulties to
consider muscle activation in our FE method approach. We decided to impose
trajectory of the fetal head descent and not focus on the uterine contractions. The
advantage of this approach is to employ parameter path to correspond to different
scenarios and cephalic presentations.
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The imposed trajectories allow to compare to one to each other and investigate
their influence on the pelvic floor. The most common cephalic presentation is the left
occipitoanterior (LOA), which occurred in 57% of delivery scenarios and is related
to a longitudinal vertex presentation where the occiput is close to the pubis and
faces to the left (Fig. 3b). A first internal rotation is performed at the beginning of
the simulation to align the occiput to the pubic symphysis. The head then performs
an important rotation (axis normal to the sagittal plane) during passage into the
LAM. We decided to study this trajectory as a reference in the following parts. This
presentation will be compared with a posterior position (occiput faces posteriorly)
and more precisely the right occipitoposterior (ROP), occurred in 33% of delivery.

3 Result

3.1 Strain Analysis on Levator Ani Muscle

First part evaluates the influence of the muscle thickness on the computed strain
level. Since a relationship between strain and material damage has been observed
on experimental tests on pelvic organs [20], strain level is a relevant criterion
to evaluate the avulsion risk. The first simulation is performed with a constant
thickness on the LAM. The protocol of thickness allocation is applied to increase
the representativeness of the model. To optimize the computing time, we chose to
gather the elements with closed thicknesses by groups. Refinement groups used in
this study correspond to 5, 8, and 12. Variable thicknesses influence the strain levels
locally and are relevant to access to critical strain level (Fig. 4a). Maximal strain
with constant thickness is about 81%, on the right side of muscle (Rlr D 0.67),

Fig. 4 (a) Comparison of strain mapping at the maximal step between constant thickness model
and variable model with 12 groups of refinement, (b) Evolution of critical area of each model
during head descent



Evaluation of Strains on Levator Ani Muscle: Damage Induced During Delivery. . . 141

while 109% with variable model with 12 groups of refinement, located on the other
side (Rlr D 0.24). In addition with this result, we may notice that the zones mostly
impacted change with the descent of fetal head in the birth canal. Obviously, the
upper part (Rul<0.2) is more impacted at the beginning of the simulation than during
the extraction of fetal head where lower part (Rul>0.6) suffers largest strain. This
argument brings us to identify, thanks to the Rul, Rlr, and Rs ratio (Fig. 2c), the loca-
tion of the critical position of the head which is configuration and time dependent.

Strain distribution on LAM depends on the thickness mapping. The comparison
between constant and different groups of thickness shows that the simulation results
converge in function of the number of employed groups. A configuration with eight
groups of refinement is sufficient to take into account the precise level of strain
(Fig. 4b). Since the global geometry and local distribution are not symmetric, taking
account of the LAM thickness shows that some complications may occur rather on
one side than another (Rlr ratio). As expected, the higher strain occurs in the thinner
regions (Figs. 2b and 4a). The first conclusion reveals the necessity of FE refinement
of the thickness to evaluate the lesion risk with a better precision. The application
of this mapping in patient-specific is strongly advised. The following simulations
take this configuration as reference to assess the influence of head size, parturient
morphology at different terms or descent scenario (Fig. 5).

3.2 Fetal Head and Term

Secondly, we investigated morphological parameters with the FE parametric model
such as the size of fetal head. To estimate the impact on the strain levels, the cranial
perimeter varies from ˙5%, corresponding to the percentile classes. In accordance

Fig. 5 FE simulation of the left occipitoanterior presentation: (1) skin, (2) fetal head, (3) LAM,
(4) sacrum, (5) obturator internus muscle, (6) pubic symphysis



142 O. Mayeur et al.

80
Head ratio

0.95
Puborectalis

area
Anterior

LOA
Posterior

ROP
Pubococcygeus

area
Iliococcygeus

area
Head ratio

1.00

(a) (b) (c)

Head ratio
1.05

90

100

110

120

130

140

0 90

R
O

P

LO
A

100

110

120

130

140

150

20

40

60

80

LAM geometry
33weeks
38weeks

100

120

S
tr

ai
n 

(%
)

S
tr

ai
n 

(%
)

S
tr

ai
n 

(%
)

Fig. 6 (a) Influence of the fetal head size on LAM strains, (b) Influence of the weeks of gestation
on the maximal strain level area, comparison on the different anatomical structures of LAM
(geometry of parturient), (c) Influence of the head position, comparison between LOA and ROP

with the LAM refinement study, some differences of the maximal strain location
are observed (Fig. 6a). The critical areas are also positioned on the lower part of
LAM but with few differences of location between the three configurations (1 mm2

zone). The simulation allows us to predict that the most important damage area
depends on the duration of the head descend in the LAM. Since the trajectory is
unchanged in this study, it helps to show that strain levels follow the same trend at
the beginning of simulation but become higher with large head before the delivery,
when the fetal head arrives at the vulva. Maximum strain levels observed for the
0.95, 1, and 1.05 head ratios rise to 103%, 109%, and 128% respectively. In Fig. 6,
the box-plot representation is used by taking the principal strain value of the eight
elements close to the most impacted one.

MRI reconstructions on the four pregnant women at different weeks allow us to
show that the thickness on LAM increases during pregnancy with a mean difference
about 12% between 33 (5.4 mm) and 38 weeks (6.1 mm). This difference in LAM
thickness has been implemented on the model to correspond to a premature scenario.
In order to separate the effect of the geometry of the parturient from the geometry
of the fetal head that evolved also during the term, we chose to keep the same head
size for this simulation. At equivalent head size, we can see that the strain levels
are quite similar between 33 and 38 weeks (Fig. 6b). The individualization of each
muscle structure reveals that this trend matches with the localizations, dispersions,
and maximum strain values. The modification of the fetal head size has a stronger
impact than the morphological change of mother local geometry. The acquisition of
patient geometry near the second trimester seems sufficient to predict the high strain
location.
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3.3 Cephalic Presentation

Comparison between left occipitoanterior and right occipitoposterior configurations
has a last motivating result to evaluate the strain levels. An increase in maximal
strain is observed with a posterior cephalic presentation (Fig. 6c). The maximum
value changes from 109 to 142%. For the occiput posterior configuration, FE
simulation shows that this level occurred later in time with Rs ratio above 0.92
against 0.78 previously. This result is caused by the rotation of the head that happens
later on the kinematic. Since the face is closer to the pubis in the ROP presentation,
it is necessary to consider a higher displacement magnitude on the back before
the head deflexion, contrary to an anterior presentation where occipital bone is
leaned on the pubic symphysis, leading to a more progressive rotation during head
deflexion. Since such phenomena occur later, the critical area is located on the lower
position of LAM, near the external anal sphincter that represents an area commonly
injured during laceration of perineum. Similarly, the maximal strain location is
more symmetrical on the LAM with that configuration since it is centered on the
puborectal muscle with Rlr ratio about 0.47. On our fetal head model, occipital
bone presents a more rounded shape compared to the frontal bone and could help to
explain this difference on the quasi-symmetrical strain distribution. To conclude, the
posterior presentation has higher strain levels, essentially caused by the rotation of
the head that appeared later and the shape of the occipital bone affecting the LAM.

4 Discussion

Thanks to this study, we can notice that prediction of lesion risk during childbirth
through a simulation tool involves several parameters related to numerical modeling,
patient-specific morphology, and scenario type.

The damage evaluation on anatomical structures depends firstly on the quality
of the anatomical representation. At a global scale, the reconstruction of a specific-
patient follows a standard approach. The geometrical model is strongly conditioned
by the MRI resolution. Moreover, the muscles structures, as well as ligaments, are
difficult to segment and the 3D model needs substantial manual work to achieve
characteristic simulation. The sustainable structures close to the LAM are also
important to have a representative kinematic of the pelvic during delivery. At the
local scale, the definition of muscle thicknesses provides also an essential step to
predict the lesion risk. Taking thickness into consideration at any point of LAM
allows us to identify the lower part of the muscle (puborectalis) as the most impacted
area. These geometrical variations allow us to have a non-uniform distribution of
strain over the LAM to offer a precise location of the damage at the most critical
moment that corresponds to the appearance of the fetal head at the vaginal orifice.

In literature, the most critical cases are identified at the superficial level (skin),
corresponding to the third and fourth degree perineal tears and are equivalent to an
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avulsion of the external anal sphincter [6]. However, on the second degree, lesions
appear in a deep level and more precisely on the puborectalis muscle. Our tool helps
to predict this grade level as it gives strain mapping over the LAM. In this study,
the inclusion of MRI at several months of pregnancy also brings interesting results
in warning about risk of lesion. Considering no evolution of fetal head between 33
and 38 weeks of pregnancy, results are significantly equivalent when we compare
the influence of LAM geometry. The maximal strain area is located on the same
zone and we do not have a significant difference in strain level. The most influential
factor considering the term is the size of the fetal head. To develop the refined FE
model of a specific patient, we could consider an analysis of the pelvic floor at the
second trimester to predict the risks. Simulation could be performed according to
different sizes, shapes, and positions of fetal head before childbirth and thus prevent
eventual damage to ensure a better medical follow-up.

Regarding the cephalic presentation, posterior position is more critical than the
anterior position. This comparison is already observed in literature but the risk rate
is not significant and corresponds to a trend [21]. Severe perineal lacerations may
occur on the patient with higher rates with a posterior presentation than anterior one
[22]. Third and fourth degree laceration occurs with 6.7% on anterior presentation
and 18.2% on posterior one [23]. The simulations performed in this work allow us
to quantify the injury risk in function of the general kinematic and the shape of the
head. Thanks to the imposed trajectory, we could modify displacement magnitude
to identify more accurately the influence of the rotation of the head and better
understand the origin of the lesions.

In this study, some topics are not addressed such as the individualization of each
fontanelle allowing the movement of skull to facilitate the fetal head descent. It
was assumed that the simulations are performed with a rigid head with prescribed
path that could cause an overestimation of strain levels. A comparison with no
path could be used in future study to quantify the difference between the two
approaches. Coccyx mobility observed during childbirth was not integrated but need
to be investigated in future study as it has a significant role in pelvic floor mobility
[24]. Muscle nonlinearity and anisotropy [15, 16, 25] could be also integrated in the
model to identify more precisely the critical strains.

5 Conclusion

The knowledges on the occurrence of injury criteria are referenced but few person-
alized means exist to study the damage induced during delivery for a prediction of
lesion risks. The FE method helps us to identify the most influential parameters.
The local geometry is a major factor influencing the damage evaluation. Taking
thickness variation into consideration is needed to better quantify risk areas on the
LAM. Variations of strain levels depend also on the size of the head or cephalic
presentation. All these results are in agreement with statistical and epidemiological
data and could help to explain some clinical differences such as the perineal
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lacerations induced by an anterior or posterior presentation of fetal head. Since
the modeling of the parturient at the second trimester of pregnancy is sufficient
to observe the maximal strain level, this developed approach could be used like a
predictive tool to assess potential risks and adapt medical follow-up to the patient.
The simulation protocol could be done on a semi-automated way to be a new tool
evaluating damages on the pelvis during delivery and predicting patient risks.
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Abusive Head Trauma: Developing
a Computational Adult Head Model to Predict
Brain Deformations under Mild Accelerations

Nikini T. Puhulwelle Gamage, Andrew K. Knutsen, Dzung L. Pham,
Andrew J. Taberner, Martyn P. Nash, and Poul M.F. Nielsen

1 Introduction

“Shaken baby syndrome” (SBS) is a well-known phrase used to describe a class of
head injuries inflicted on young infants by their caregivers. As the name implies,
it was thought for many years that these injuries were caused by violent shaking.
However, it is now recognised that mechanisms involving impact may cause very
similar injuries and hence the term “Abusive Head Trauma” (AHT) is now used,
which does not require the medical practitioner to assume one specific mechanism
of injury [1].

The injuries most commonly associated with AHT include intracranial bleeding
(typically subdural) and bleeding into the retina, although a variety of other injuries
may be sustained [2]. These injuries are not visible externally. Therefore, for a head
injury to be diagnosed in an infant with no external signs of trauma, the infant
must present symptoms of brain dysfunction (encephalopathy). These symptoms
can be subtle, and vary from vomiting and lethargy to coma and acute collapse [3].
Internationally, the incidence of AHT is between 14 and 40 per year per 100,000
infants under the age of one [4].

N.T. Puhulwelle Gamage
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand

A.K. Knutsen • D.L. Pham
Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation,
Bethesda, MD, USA

A.J. Taberner • M.P. Nash • P.M.F. Nielsen (�)
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand

Department of Engineering Science, The University of Auckland, Auckland, New Zealand
e-mail: p.nielsen@auckland.ac.nz

© Springer International Publishing AG 2017
A. Wittek et al. (eds.), Computational Biomechanics for Medicine,
DOI 10.1007/978-3-319-54481-6_13

147

mailto:p.nielsen@auckland.ac.nz


148 N.T. Puhulwelle Gamage et al.

Uncertainties about the mechanisms of injury often become a central issue in
criminal trials. This is particularly so for infants with no external signs of impact and
no fractures of the ribs or long bones. In these infants, the classical “shaken babies”,
it may be argued that there was no trauma at all. In particular, it is often argued that
shaking alone cannot cause serious brain injuries, and that the whole concept of SBS
is fundamentally flawed. In these arguments, the lack of biomechanical evidence
for shaking as a cause of injury often plays a key role [5]. It has become clear that
further biomechanical research is needed to help determine the quantitative linkages
between shaking an infant and the injuries that may result. Computational modelling
of the infant head can help to address ambiguities surrounding the diagnosis of AHT.

The main aim of the AHT research project at the Auckland Bioengineering
Institute is to ascertain if shaking alone can cause the injuries seen in AHT. In
order to address this question, the problem has been separated into three parts. The
first was to determine the mechanical coupling between the torso and the head.
This involved determining how the head moved when the torso was shaken [6]. The
second part was to use measurements of head motions to investigate the mechanical
effects on the infant brain under these conditions. The third part was to link the
mechanical indices identified and link them to the injuries seen in AHT.

In order to create an accurate computational infant head model the computational
techniques used to create this model need to be validated. This paper outlines how
an adult head model was created and validated using in-vivo experimental data. The
computational techniques that were validated in this paper will then be used to create
an infant head model, which could then be used to determine certain mechanical
indices on the infant brain under a shaking motion.

2 Methods

A set of mild acceleration in-vivo adult head rotation experiments were conducted.
The deformations of the brain under these rotational motions were measured and
were used to validate a finite element (FE) model.

A healthy volunteer was placed supine into a magnetic resonance imaging (MRI)
scanner with a rotational rig placed around their head. When a pulley was actuated,
a latch was released allowing the head to rotate approximately 30ı, guided by an off
axis weight until a mechanical stop was reached. This protocol provided repeatable
accelerations of approximately 260 rad�s�2. These experiments were approved by
the Internal Review Board at the National Institute of Health (USA) [7].

Tagged MR images were acquired using a novel approach that combined a
modified tagged MRI pulse sequence with an MRI-compatible angular position
sensor [7]. The imaging and the rotation were synchronised using a fibre optic
sensor, which detected the release of the latch and started the MRI sequence. The tag
lines were applied immediately at the start of the motion, and a second trigger was
sent to the scanner when the shaft of the device rotated through approximately 29ı,
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Fig. 1 The rotational
displacement of the adult
head. The first (left) red line
shows when the data started
to be acquired and the second
(right) red line shows the end
of the data acquisition
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Fig. 2 Left: the original STL
surface mesh that was
obtained from ITK Snap.
Right: the STL mesh after it
had been modified with
MeshLab

beginning the cine gradient echo acquisition from which the displacements were
obtained.

To capture the full deformation of the brain, the experiments were repeated
120 times. Image displacements were computed using harmonic phase (HARP)
analysis [8]. A filter radius was applied to create the HARP images. Two dimen-
sional displacements of 14 axial slices throughout the adult brain were obtained.
Starting at the base of the brain (brainstem), slices were regularly spaced at 10 mm
intervals. This resulted in 13 slices and 59,478 points of measurement. Data for 13
time steps were collected, with the acquisition starting at 0.3074 s (first red line in
Fig. 1) just before the mechanical stop and data collected every 18 ms until 0.5422 s
(second red line). The 2D displacements were all measured relative to the first time
step.

The rotational displacement of the whole head can be seen in Fig. 1. The first
peak shows when the head came to a compliant stop. Once the rig contacted this
stop, it would rebound slightly—an event evident in the decaying ripple after the
first peak.

To determine the experimental error, rotational experiments were conducted on
a gel phantom multiple times and the displacements throughout the gel, over time
were measured. The variation in these results showed an experimental precision



150 N.T. Puhulwelle Gamage et al.

error (uncertainty) of 1.5 mm. The bias error (accuracy) was not determined from
these experiments. However, very low bias errors have been shown to occur for a
similar MR imaging technique [9]. Therefore an experimental error of 1.5 mm will
be used when analysing the results.

A computational FE model of the adult head undergoing mild acceleration
rotational motions was created with ANSYS Workbench, using a fluid–structure
interaction (FSI) model. A high resolution MR scan of the geometry of the
volunteer’s head was imported into the ANSYS Workbench environment. Volumes
corresponding to the brain, brain stem, and the optic nerves of the volunteer were
segmented from the model. ITK Snap (US National Institute of Health, [10]) was
used to segment the images using active contour segmentation. This is a semi-
automated segmentation process, where certain sections of the head could be
segmented based on intensity levels, expansion force, smoothing force, and edge
attraction force [10]. The segmented images were subsequently cleaned manually.

The cerebrospinal fluid (CSF) and the skull were not segmented from the MR
images as the T1 weighted MRI intensity levels of the skull and the CSF could
not be differentiated. Gravitational loading while the brain was being imaged could
also alter the volume of the CSF. Because of this the CSF and skull had to be
created manually. Once the entire brain had been segmented, the data were written
to stereolithography (STL) files and imported into MeshLab (National Research
Council (Italy)), a 3D mesh processing application. The STL surface mesh that
was obtained from ITK Snap was cleaned, filtered, and reduced using MeshLab
(see Fig. 2).

This processing of the initial STL mesh resulted in the fine folds of the brain (gyri
and sulci) being smoothed out. This was acceptable as these folds were not thought
to substantially influence the mechanical behaviour of the brain, but would overly
complicate the final FE mesh geometry. This processing did cause the dimensions
of the brain to decrease by approximately 2 mm in height and length. The STL files
for the brain stem and the optic nerve were not processed in this way as they did not
contain a complex outer surface.

Once the cleaned STL files had been created, they were saved as a “.XYZ” file,
which contained the locations of all the nodes and the surface normals. The XYZ file
of the brain was then used to create the CSF and skull of the adult head. MATLAB
(The Math Works Inc., 2013) was used to project the nodes outwards to create the
outer surface of the CSF layer and further extended to create the outer surface of the
skull. The geometric models of the CSF and the skull were then saved as “.XYZ”
files. MeshLab was used to create the outer surfaces of the CSF and the skull from
the nodes and the surface normals. A Poisson surface reconstruction algorithm was
used to create the surface from the point clouds. This model contained a 2 mm CSF
layer and a 6 mm thick skull [11].

The falx cerebri and the tentorium cerebelli were added to the existing geometry.
These structures could not be segmented using ITK Snap as they had similar MRI
intensities as the surrounding tissue; instead, these structures were added manually
using ANSYS ICEM (ANSYS Inc., Canonsburg, PA, USA). The outlines of the falx
and tentorium were created using points and line segments. Faces were then inserted
to create a final geometry. The longitudinal fissure and the transverse fissure were
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Fig. 3 The volume mesh of
the adult head. Top left:
transverse plane, Top right:
Off-centred medial plane,
Bottom left: Isometric view,
Bottom right: Coronal plane.
Red represented the brain,
blue the CSF, green the skull,
and pink the falx and
tentorium

used to position the falx and the tentorium at the correct positions. These surfaces
were also projected outwards by 2 mm to create the CSF layer between the brain
and the falx cerebri and the tentorium cerebelli. The sizes of the falx cerebri and the
tentorium cerebelli were estimated from the MRI scans and were consistent with
those reported in the literature [11].

Once the anatomical surface model was created, a volume mesh was built using
ANSYS ICEM. All surface meshes were imported into ICEM and an integrated
volumetric mesh was created through an automated process. Tetrahedral meshes
were used for the skull, CSF, falx, tentorium, optic nerves, and brainstem. The
surface of the brain was described using tetrahedral elements. The main body of
the brain was meshed using a hexahedral mesh. Figure 3 shows the mesh that was
created by ICEM. The structural mesh (everything apart from the CSF) contained
24,831 elements, while the fluid component contained 85,504 elements. Once the
geometry had been discretised, it was imported into ANSYS Workbench.

This workflow resulted in a model where the brain was contained inside a skull
and surrounded by a 2 mm thick CSF layer. The falx cerebri and the tentorium
cerebelli protruded into the skull, thereby separating the two hemispheres of the
brain and the cerebellum. CSF was also present between the falx and brain, and
between the tentorium and the brain. The optic nerves and the brainstem tether
the brain to the skull, and both extend from the brain through the CSF to the
outer surface of the skull. This arrangement is illustrated in Fig. 3, where the
green elements represent the skull, blue elements represent the CSF, pink elements
represent the falx and tentorium, and red elements represent the brain.

Table 1 lists the material properties that were assigned to each part of the
model. The outer skull, falx, and tentorium were modelled using elastic material
properties. The CSF was modelled using the standard fluid properties of density
(�) and viscosity (�). The brain, optic nerves, and brainstem were modelled using a
linear viscoelastic material property.
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Table 1 The material properties that were used in the computational model

Anatomical structure Material model

Brain G0 D 0.038 MPa, G
1

D 0.007 MPa, t1 D 0.0014 s [12–15]
Skull E D 7 GPa, � D 0.22 [16, 17]
CSF P D 1000.59 kgm�3, � D 0.78 [18–20]
Falx/Tentorium E D 31.5 MPa, � D 0.23 [14, 15, 21]

The rotational displacement of the head (Fig. 1) was used as a kinematic
constraint on the FE model and was applied to the outer nodes of the skull. Two
sets of contact conditions were applied in this model. A bonded contact condition
was implemented between the outer edge of the optic nerves and the skull, and a
frictionless contact condition was applied between the brainstem and the skull. The
frictionless contact condition allowed the brainstem to move independently of the
skull and the bonded contact condition of the optic nerve did not let the optic nerve
to move independently of the skull. These constraints were assumed to provide a
reasonable representation of the interactions between these anatomical structures.
An FSI boundary was placed on the outer surface of the brain and the inner surface
of the skull. This allowed the displacements from the solid solver to be transferred
to the fluid domain (CSF) and the forces from the fluid solver were transferred to the
solid domain (brain and skull). This was a simplified representation of the meninges
layers but this proved to be sufficient to accurately model the deformation of the
brain under mild angular rotations.

3 Results

The results from the FE model and the experimental model were compared to
determine whether the FE model could reliably represent the deformation of the
brain. Figure 4 shows the root mean squared (RMS) error between the resultant
displacements magnitudes between all the points (59478) measured from the adult
experiments and the predicted displacements from the corresponding points in the
computational model. The time steps relate to the acquisition time of the tagged
MRI images. The RMS error was seen to vary with the rotation of the brain.

Figure 5 shows the magnitude of the displacements and the errors associated at
each time point. The error was calculated by taking the absolute differences between
the measured and the predicted displacements. There was no obvious relationship
between the absolute errors and the total displacement of the brain.

Figure 6 shows the relative errors between the measured and the predicted dis-
placements. The relative errors were calculated by dividing the absolute differences
between the measured and predicted displacements by the measured displacements.
Time steps 2, 3, 4, and 6 have median relative errors below 0.1 and the other time
steps had median relative errors that were above 0.1.
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Fig. 4 RMS error between the experimental data and the FE model for each time step for the adult
head model. The time steps were 18 ms apart from one another

Fig. 5 Shows the displacement magnitudes (blue) from the measured displacement for each time
step and the absolute errors (black) between the measured and the predicted displacement values.
The time steps were 18 ms apart from one another

Figure 7 shows a slice (coronal plane of the brain) of the raw data from the
experimental results (left), the FE model (middle), and their difference (right). The
colours in these plots represent the x displacement (perpendicular to the plane
shown) of the brain, with maximum value of 3.4 mm (red) and a minimum of
�4.2 mm (blue). All the displacements measured were relative to the first time step.
The following time steps show the displacement of the brain from just after the head
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Fig. 6 Relative errors between the predicted and the measured displacements at each of the time
steps, the time steps were 18 ms apart from one another

had hit a mechanical stop. The brain deforms the greatest amount during the start
and settles as the experiments go on. Only the first six time steps are shown as the
deformations were small in the remaining time steps.

4 Discussion

The main aim of this work was to validate a computational model that was used
to predict the displacements of the adult human brain undergoing mild rotational
accelerations. A volunteer underwent mild acceleration (max of 260 rad�s�2) head
rotations, where the 3D deformation of the brain was measured using a tagged
MRI sequence. The motion of the volunteer’s head was recorded and the rotational
displacements were used to kinematically constrain the outer nodes of the FE model
of the skull. The displacements of the brain under this rotation predicted by the FE
model were compared to the displacements measured in the experiment.

The maximum and RMS error between the predicted displacements and the
measured displacements at each time step are presented in Fig. 4. All RMS errors
were below the experimental error of 1.5 mm. Thus, the FE model provides
acceptable predictive accuracy.

A comparison of the measured displacements and the prediction errors is
illustrated in Fig. 5. Acquisition commenced immediately prior to the impact with
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Fig. 7 Comparison of x-displacements from the experiments (left) and the FE model (middle),
with the difference between the two (right), for the adult head FE model. The colours in these plots
represent the x displacement of the brain, with maximum value of 3.4 mm (red) and a minimum of
�4.2 mm (blue)
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the mechanical stop, in order to capture the maximum displacements of the brain.
This is evident as the first three time steps had median displacements of more
than 1.5 mm. When the head ceased rotating, and the brain motion settled, the
median displacements measured were below 1 mm. The median absolute error in
the model predictions were below 0.3 mm, which was well below the experimental
error, and much smaller than the overall displacement of the brain. The absolute
errors were also relatively constant throughout the rotation of the head. Figure 7
also conveys this information. The relative errors between the predicted and the
measured displacements at each of the time steps (Fig. 6) were small for time steps
2, 3, and 4. However, there were rather large relative errors at other time points. This
was because of the small displacements (medians lower than 1 mm) at these time
steps coupled with the relatively constant absolute errors throughout the experiment.
This combination would result in a high relative error and hence these errors do not
detract anything from the predictive capabilities of the computational model. These
results provide confidence in the computational model that was used to predict the
displacement of the brain under mild acceleration rotations.

This paper has detailed the construction of an FE model that was used to
predict the displacements of the adult human brain undergoing mild rotational
accelerations. The computational techniques required to predict the displacement of
the brain were validated using in-vivo measurements of human brain displacements.
In future, these computational techniques will be incorporated into an FE model of
an infant head in order to predict the mechanical effects on the infant brain under
a shaking motion. The dynamic stresses, strains, and the motion of the brain in
relation to the skull will be used to help ascertain whether injuries could result from
particular shaking incidents.
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Computation of Brain Deformations Due
to Violent Impact: Quantitative Analysis
of the Importance of the Choice of Boundary
Conditions and Brain Tissue Constitutive Model

Fang Wang, Zhengyang Geng, Sudip Agrawal, Yong Han, Karol Miller,
and Adam Wittek

1 Introduction

Traumatic brain injuries have been recognised as important public health and socio-
economic problems affecting millions of people world-wide [1, 2]. Although the
exact mechanisms of such injuries are still a subject of debate, brain deformation
or strain has been pointed out in the literature as possible key biomechanical cause
[3]. As direct measurement of strains during impact is extremely difficult for ethical
and technical reasons, in practice, predicting brain responses through mathematical
modelling is often the best possible solution [3]. Such prediction has been the
subject of substantial research effort which resulted in numerous brain models
implemented using the finite element method [3–9]. There are differences between
such models in terms of geometry, constitutive models and constitutive constants
for the brain tissues, and the way the brain–skull interface (tissues located between
the brain and skull that determine boundary conditions of the brain) is modelled.

Constitutive behaviour of the brain tissues has been a subject of numerous exper-
imental studies [9–13]. In contrast, as pointed-out by Wittek et al. [14], there is very
little quantitative information about the mechanical behaviour of the brain–skull
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Fig. 1 Anatomical structures
of brain–skull interface.
Modified from Haines et al.
[29]

interface and boundary conditions of other body organs. However, the importance
of representation of boundary conditions in computational biomechanics models of
the brain has been confirmed in several studies [6, 15, 16].

Constitutive properties of meningeal layers forming the brain–skull interface
have been studied by Jin et al. [17–19]. However, direct representation of complex
anatomical structure of the brain–skull interface (Fig. 1) would require quantitative
data about the interactions between tissue layers within the brain–skull interface
and necessitate very fine spatial discretisation resulting in very large number
of small elements. Therefore, various simplifying approaches have been used
in computational biomechanics models for predicting the brain responses under
transient loads. For instance, Al-Bsharat et al. [20] used a layer of solid elements to
model subarachnoidal cerebrospinal fluid CSF, with a frictionless sliding interface
between arachnoid membrane and dura. Zhang et al. [4] selected sliding contact
allowing no separation to represent the brain–skull interface. Miller et al. [21]
compared the results obtained using 2-D computational biomechanics models with
the experimental data obtained using pig brain and found that a sliding contact
interface between the brain and skull was more suitable to predict the distribution
of brain axonal injury. Similar approach (frictionless contact) was suggested by
Agrawal et al. [22] for representing brain–skull interactions under compression
at low loading speeds compatible with neurosurgery. In contrast, Claessens et al.
[23] suggested that no-slip interface allowing no relative movement between
the brain surface and skull exhibited a better agreement with the experiments
than sliding contact. Some head–brain models include direct representation of
key anatomical structures/tissues (cerebral meninges and CSF) of the brain–skull
interface. Examples include the model by Yang [24], Total HUman Model for Safety
THUMS by Toyota Motor Corporation and Toyota Central R&D Labs [25, 26],
models developed at Wayne State University [4, 27], and SIMon model [28].
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As none of the currently used approaches for modelling the brain–skull interface
in computational biomechanics models for prediction of brain responses under
transient loads and understanding mechanisms of traumatic brain injury has been
accepted as a “gold standard”, answering the question about effects of assumptions
and simplifications when modelling the brain–skull interface remains an important
and challenging research topic. Building on the previous research effort by Kleiven
et al. [6] and Wittek and Omori [15], this study contributes to answering this ques-
tion by quantifying the effects of approach for modelling the brain–skull interface
and constitutive model of the brain tissues on predicting the brain deformations due
to transient loads compatible with automotive impacts. We focus on the maximum
principal strain and shear strain within the brain as they were proposed as possible
measures/criteria for evaluation of brain injury risk [27]. We used the head–brain
model from Total HUman Model for Safety THUMS Version 4.0 by Toyota Motor
Corporation and Toyota Central R&D Labs [25, 26].

2 Methods

2.1 Head–Brain Model

We used previously validated head–brain model from Total HUman Model for
Safety THUMS Version 4.0 [25, 26]. The THUMS brain model includes repre-
sentation of key tissues and anatomical components of the brain: grey mater, white
mater, falx, subarachnoidal cerebrospinal fluid (CSF), dura, arachnoid and pia (Figs.
2 and 3). The brain parenchyma is discretised using under-integrated eight-noded
hexahedral elements. Dura, arachnoid and pia mater are represented using layers of
four-noded shell elements with linear elastic constitutive model. No sliding between
the skull and dura and between dura and arachnoid is allowed (tied contacts are
used). The subarachnoidal CSF is modelled as a layer of eight-noded hexahedral
solid elements (Fig. 3) with fluid-like properties (i.e. the deviatoric stress component
in the CSF is solely due to viscosity).

Fig. 2 THUMS Version 4.0
brain model
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Fig. 3 Brain–skull interface representation in THUMS Version 4.0 brain model

Fig. 4 (a) THUMS (Version 4.0) head–brain model with the cervical spine and the first (T1) and
second (T2) thoracic vertebrae used in this study. T1, T2, scapula, collar bones and sternum were
fully constrained to provide a base for the cervical spine (b) Head angular velocity—time histories
measured in the experiments (cadaver test No. C755-T2) by Hardy et al. [30]. These time–histories
were used as the head loading (prescribed angular velocity) in this study. X, Y and Z axes originate
at the head gravity centre as shown in Fig. 5

Loading and Model Set-Up

We studied the effects of approach for modelling the brain–skull interface on
predicting the brain responses under transient loads by modelling the experiments
on human cadaver head–neck complexes conducted by Hardy et al. [30]. We
selected these experiments as Hardy et al. [30] reported quantitative results of
displacement of selected points within the brain.

In the experiments by Hardy et al. [30], the human cadaver head–neck complexes
were subjected to frontal and occipital impacts resulting in motion in sagittal plane.
Therefore, the entire cervical spine together with the first (T1) and second (T2)
thoracic vertebrae from the THUMS Version 4.0 model were included in the model
used in this study (Fig. 4a). T1 and T2, scapula, and collar bones were fully (rigidly)
constrained to form a base for the cervical spine.

Direct modelling of an impact to the cadaver head would require calibration of
the contact interactions between the head and impactor as well as information to
create patient-specific models of the skull and cervical spine. Such information is



Computation of Brain Deformations Due to Violent Impact: Quantitative. . . 163

Fig. 5 Schematic
representation of location of
the markers (neutral density
targets NDTs) implanted in
the brain in the experiments
by Hardy et al. [30, 31].
Based on Hardy et al. [31]

Fig. 6 (a) Initial position (in a coordinate system with origin at the head gravity centre COG, see
Fig. 5) of the NDTs in the study by Hardy et al. [31], and (b) their representation (selected nodes)
in the THUMS Version 4.0 finite element brain model in this study. X-Z coordinate system origin
is at the head COG (see Fig. 5)

not available from the study by Hardy et al. [30]. Therefore, we directly defined
the head kinematics by prescribing (at the head gravity centre) the head angular
velocity–time histories measured in the experiments by Hardy et al. [30] (Fig. 4b).
We used the time histories from cadaver test No. C755-T2 by Hardy et al. [30].
Position of the head gravity centre and head mass in the model were also taken from
the data for cadaver test No. C755-T2 [30] (Fig. 5).

Analysed Brain Responses

To quantify the brain deformation under impact loading, Hardy et al. [30] applied
X-ray to track the motion of twelve neutral density targets (NDTs) implanted within
the brain (Fig. 5), and recorded the experimental output for ten of them (Fig. 6).
We compared the trajectories and excursions of these targets with the computed
trajectories and excursions of the brain model nodes located close to the targets
(Fig. 6). Following [30], the excursions were defined as the differences between
the maximum positive and negative displacements and the starting locations. Given
limited accuracy of the data regarding the NDTs location in the experiment [30] and
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complex geometry of the brain, it would be extremely difficult to modify the brain
finite element discretisation to ensure that the analysed nodes are placed exactly at
the NDTs’ location. However, the positions of the NDTs and analysed nodes appear
to be sufficiently close (Fig. 6) to justify quantitative comparison of their motion.

As strains within the brain have been proposed in the literature [27] as possible
measures/criteria for evaluation of brain injury risk, we analysed the effects of
the constitutive model of the brain tissues and approach for modelling the brain–
skull interface on the maximum principal strain and shear strain within the brain
parenchyma predicted using the computational biomechanics model. Although in
biomechanical engineering studies, maximum values of strain or stress are often
used to evaluate the risk of tissue rupture, prediction of the maximum strain values
with computational biomechanics models implemented using finite element method
can be mesh dependent and may be affected by localised phenomena/modelling
artefacts. Therefore, following Garlapati et al. [32], we analysed quantile plots of
the maximum principal strain and shear strain at the time when the maximum strain
value was observed. Almansi strain measure was used.

2.2 Investigation of Effects of Constitutive Modelling of Brain
Parenchyma and Approach for Brain–Skull Interface
Modelling

Constitutive Model and Properties of the Brain Tissues

In the THUMS Version 4.0 brain model as well as many other models [8, 28]
used in computational impact biomechanics, the constitutive behaviour of the brain
parenchyma is often represented using a linear viscoelastic model. However, the
experimental studies have clearly indicated non-linear stress–strain relationship of
the brain tissues and proposed hyperelastic or hyperviscoelastic models to describe
the tissue constitutive behaviour [11, 33, 34]. Following Miller and Chinzei [11], we
used the Ogden hyperviscoelastic model as it accounts for the difference between
the tensile and compressive stiffness of the brain tissue (Simulations 1, 2, 3 and 4 in
Tables 1 and 2):

W D 2

˛2

Z t

0

	
G .t � �/

d

d�

�
�˛

1 C �˛
2 C �˛

3 � 3
�


d� C K .J � 1 � ln J/ ; (1)

G.t/ D Gi C .G0 � Gi/ e
�t
� ; (2)

where W is the potential function, �i’s are the principal stretches, G0 is an
instantaneous shear modulus, Gi is the relaxed shear modulus, � is the characteristic
time, ˛ is the material coefficient which can assume any real value without
restrictions [11, 35], K is the bulk modulus and J is the relative volume change.
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Table 1 Constitutive models and parameters for the brain tissues used in this study. See Eqs. (1)
and (2) for explanation of the symbols

Linear viscoelastic model Ogden hyperviscoelastic model
Part G0 (Pa) Gi (Pa) �(s) G0 (Pa) ˛ Gi (Pa) �(s)

White matter cerebrum 1100 550 0.06 1100 –4.7 550 0.06
White matter cerebellum 1100 550 0.06 1100 –4.7 550 0.06
Gray matter cerebrum 850 425 0.06 850 –4.7 425 0.06
Gray matter cerebellum 850 425 0.06 850 –4.7 425 0.06

Table 2 Simulation matrix

Modelling approach for brain–skull interface

Brain tissue
constitutive
model

Original
THUMS
head/brain model
(see Fig. 2)

Brain rigidly
attached to the
skull

Frictionless
contact between
the brain and
skull

Cohesive layer
(spring-like)
between the
brain and skull

Linear vis-
coelastic model

Simulation 1–2 Simulation 2–2 Simulation 3–2 Simulation 4–2

Ogden hypervis-
coelastic model

Simulation 1 Simulation 2 Simulation 3 Simulation 4

As the brain tissue properties used in THUMS brain model have been reported
to be somewhat beyond the range published in the literature [36], we used the
properties (instantaneous shear modulus of 1100 Pa) that correspond to the highest
strain rate applied in the experiments published by Miller and Chinzei [11, 33]
(Table 1). As the experiments by Miller and Chinzei [11, 33] do not distinguish
between the properties of grey and white mater, we followed the assumptions used
in the original THUMS Version 4.0 brain model. The white mater in the cerebrum
and cerebellum was assigned a shear modulus 25% greater than the grey mater
(Table 1).

Models of the Brain–Skull Interface

In this study, four approaches for modelling the brain–skull interface were used (see
Table 2). The brain–skull interface model used in THUMS (Version 4.0) head–brain
model (Figs. 2 and 3) was treated as a base approach (Simulations 1 and 1–2 in
Table 2). Three other approaches (Simulations 2, 2–2, 3, 3–2, 4 and 4–2 in Table 2)
were introduced here to evaluate the effects of modelling of the brain–skull interface
on prediction of deformations within the brain.

We started the analysis with two modelling approaches that can be regarded as
representing limits of possible types of interactions between the brain and skull.
In the first approach, the brain surface was rigidly attached to the skull through
tied contact interface (Simulations 2 and 2–2 in Table 2). This approach allows no
relative sliding and separation between the brain and skull, and has been reported by
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Claessens et al. [23] as providing a good agreement with the experimental results.
The second approach (Simulations 3 and 3–2 in Table 2) uses a frictionless sliding
contact between the brain and skull, which allows not only tangential movement
but also separation between the brain and skull. It has been successfully used in the
studies on predicting the brain deformations due to craniotomy (surgical opening
of the skull) by Hu et al. [37] and Wittek et al. [38], and recommended in the
experimental study by Agrawal et al. [22] as providing a good representation of
interactions between the brain surface and skull when the brain–skull interface
is subjected to compression. Given the anatomical structure of the brain–skull
interface (Fig. 1), one may expect that its actual behaviour should fall between the
two modelling approaches just discussed.

The fourth approach for the brain–skull interface modelling used in this study
(Simulations 4 and 4–2 in Table 2) relies on the experimental results by Mazumder
et al. [39]. Mazumder et al. [39] quantified the mechanical behaviour of the entire
brain–skull interface through sheep brain indentation and found that it exhibits
spring-like behaviour. Mazumder et al. [39] proposed a value of 11.45 N mm�1/mm2

for the brain–skull interface stiffness. Therefore, in Simulations 4 and 4–2 (see
Table 2), we represented the brain–skull interface using a layer of spring-type (no
damping) cohesive elements with stiffness in the normal direction determined from
Mazumder et al. [39].

Simulation Matrix

Eight computer simulations using the head–brain model shown in Fig. 2 with four
different approaches for modelling the brain–skull and two constitutive models of
the brain tissues were conducted here (Table 2). All the simulations were conducted
using LS-DYNA 971 non-linear explicit dynamics finite element code by Livermore
Software Corporation (Livermore, CA, USA; http://www.lstc.com). This code is
widely used in both academia and industry for impact/injury biomechanics and car
crash safety applications.

3 Results

The magnitude and general behaviour of trajectories of the nodes representing
the markers (Neutral Density Targets NDTs) implanted within the brain in the
experiments by Hardy et al. [30] were found to be strongly affected by the
approach for modelling the brain–skull interface (Figs. 7 and 8, and Table 3).
For the brain surface rigidly attached to the skull through a tied contact and
linear viscoelastic model for the brain parenchyma (Simulation 2–2), magnitudes
of the nodal trajectories were the smallest and exhibited large differences with
trajectories of the markers experimentally determined by Hardy et al. [30] (Figs. 7b

http://www.lstc.com
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Fig. 7 Comparison of trajectories of nodes in THUMS model when varying the brain–skull
interface modelling approach for linear viscoelastic model for brain tissue parenchyma and markers
in the experiments by Hardy et al. [30]. The trajectories are given in the local head coordinate
system (aligned with the Frankfort plane) with origin at the head COG (a) Simulation 1–2: original
approach used in THUMS version 4.0 model (Fig. 2) (b) Simulation 2–2: brain rigidly attached to
the skull (c) Simulation 3–2: frictionless sliding contact between the brain and skull (d) Simulation
4–2: brain–skull interface modelled using a layer of spring-type cohesive elements

and 8b). Large differences between the trajectories obtained using the computational
biomechanics brain model and experimental results by Hardy et al. [30] were
also observed for the brain–skull interface represented using a frictionless contact
(Simulations 3 and 3–2 in Figs. 7c and 8c, and Table 3).

Comparisons of the nodal trajectories shown in Figs. 8 and 9 and excursions of
the selected nodes (at location of NDTs a1, p1, a5 and p5 in Table 3) indicated that
changing the constitutive model of the brain parenchyma from linear viscoelastic
to Odgen hyperviscoelastic exerted appreciable effects on predicted deformations
within the brain. For majority of the analysed ten nodes, the trajectories predicted
using Odgen hyperviscoelastic model, rather than the linear viscoelastic model,
tended to be closer to trajectories of the markers experimentally determined by
Hardy et al. [30] (Figs. 8 and 9). This is also quantitatively confirmed by analysis
of the experimentally observed and predicted excursions of NDTs a1, p1, a5 and p5
(Table 3).
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Fig. 8 Comparison of trajectories of nodes in THUMS model when varying the brain–skull
interface modelling approach for Ogden hyperviscoelastic model for brain tissue parenchyma
and markers in the experiments by Hardy et al. [30]. The trajectories are given in the local head
coordinate system (aligned with the Frankfort plane) with origin at the head COG (a) Simulation 1:
original approach used in THUMS version 4.0 model (Fig. 2) (b) Simulation 2: brain rigidly
attached to the skull (c) Simulation 3: frictionless sliding contact between the brain and skull
(d) Simulation 4: brain–skull interface modelled using a layer of spring-type cohesive elements

Analysis of the predicted maximum principal strain and shear strain within
the brain led to observation consistent with those made when analysing nodal
trajectories at selected locations within the brain. Appreciable differences in the pre-
dicted strain magnitude and distribution were observed when varying the approach
for modelling the brain–skull interface (Figs. 9 and 10). The smallest strain was
computed for the brain surface rigidly attached to the skull through a tied contact
(Simulations 2–2 and 2). For this approach, the nodal trajectories also exhibited
the smallest magnitude (compare Figs. 7b and 8b). The effects exerted when
changing the constitutive model of the brain parenchyma from linear viscoelastic
to Ogden hyperviscoelastic were clearly noticeable although much smaller than
those observed when varying the approach for modelling the brain–skull interface
(Figs. 9 and 10). The differences in the maximum strain computed when varying
the constitutive model were of an order of 10% of the predicted maximum principal
strain (Fig. 9) and up to around 40% for the maximum shear strain.
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Table 3 Experimentally determined (by Hardy, 2007) and predicted in this study excursions of
NDTs a1, p1, a2 and p2. See Figs. 5 and 6 for position of the NDTs and definition of axes X and
Z. Simulations 1, 2, 3 and 4—Ogden hyperviscoelastic constitutive model; Simulations 1–2, 2–2,
3–2 and 4–2—linear viscoelastic model. See Table 2 for more complete description

Predicted Excursion (mm)
Simulations

NDT#

Hardy (2007)
Experiment
(mm) 1–2 2–2 3–2 4–2 1 2 3 4

al X 3.48 5.11 1.57 3.05 1.52 3.71 3.09 4.37 0.83
�4.27 �0.81 �0.46 �3.54 �1.69 �3.20 �4.14 �4.86 �3.1

Z 0.78 1.49 0.72 1.46 0.62 2.26 2.02 3.17 1.60
�1.66 �1.03 �0.22 �1.18 �0.41 �1.41 �1.65 �2.22 �1.80

pl X 4.20 5.48 2.06 2.18 0.92 5.43 4.37 3.70 2.73
�3.70 �2.30 �0.75 �2.84 �2.19 �4.20 �5.16 �4.77 �4.80

z 1.95 1.39 0.38 2.26 0.74 2.34 2.44 4.27 2.50
�1.05 �2.44 �0.9 �2.22 �0.49 �2.01 �1.39 �3.37 �0.91

a5 X 1.54 2.79 0.64 3.35 2.8 3.23 3.73 5.33 4.66
�1.35 �4.27 �1.40 �4.19 �4.54 �3.45 �3.03 �5.90 �5.44

z 1.23 0.85 0.84 1.80 1.02 1.99 1.84 �7.06 2.17
�1.89 �0.97 �0.37 �2.28 �0.99 �2.02 �2.49 �3.76 �4.14

p5 X 1.22 1.98 0.52 2.13 5.86 3.75 4.65 2.10 5.95
�0.49 �0.10 �1.23 �2.7 �5.55 �2.99 �3.34 �4.94 �7.12

z 2.64 1.65 0.51 2.83 1.06 2.42 2.73 4.25 2.06
�1.96 �2.63 �1.14 �2.26 �1.44 �2.69 �2.41 �3.58 �2.37

Fig. 9 Quantile plots of principal (Almansi) strain when varying brain–skull interface modelling
approach, with (a) Linear viscoelastic and (b) Ogden hyperviscoelastic models for the brain tissues.
For information about the simulations, see Table 2

4 Discussion

This study indicates that when applying computational biomechanics models to
predict deformations within the brain under transient (impact) loads, the results are
strongly affected by the method of modelling the brain–skull interface. Significant
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Fig. 10 Quantile plots of shear (Almansi) strain when varying brain–skull interface modelling
approach, with (a) Linear viscoelastic and (b) Ogden hyperviscoelastic models for the brain tissues.
For information about the simulations, see Table 2

effects were found in terms of kinematics of specific points within the brain (Figs.
7 and 8, and Table 3) as well as magnitude and distribution of brain tissue strain
(Figs. 9 and 10). These results are consistent with the findings by Kleiven and Hardy
[6, 15].

For the brain–skull interface represented as a “rigid connection” (tied contact)
between the brain and skull, the maximum shear strains were around four times
smaller than for the interface modelled using a layer of cohesive elements between
the brain and skull, and approach originally used in THUMS Version 4.0 brain
model that includes direct representation (solid elements with fluid-like properties)
of the subarachnoidal cerebrospinal fluid CSF (Fig. 10). As strains within the brain
have been proposed in the literature [27] as possible measures/criteria for evaluation
of brain injury risk, the results obtained here highlight the importance of appro-
priately defining boundary conditions for the brain when applying computational
biomechanics models in such evaluation.

Although providing a specific solution for brain–skull interface modelling is out
of the scope of this study, comparisons of the calculated (using the biomechanical
brain model) and experimentally obtained by Hardy et al. [30] trajectories and
excursions of the selected points within the brain conducted here (Figs. 7 and 8,
and Table 3) seem to suggest that such solutions should have the characteristics
exhibited by the approach originally used in THUMS version 4.0 model (Fig. 2).
This approach allows for movement between the brain outer surface and skull,
while preventing complete separation between the brain and skull. Introduced here
representation of the brain–skull interface as a layer of cohesive elements with
spring-like properties also exhibits these characteristics. However, the mechanical
properties for the cohesive elements were derived from the study by Mazumder et al.
[39]. The study by Mazumder et al. [39] was conducted under loads compatible with
neurosurgery. This may be one possible explanation for the differences between the
modelling results obtained using these properties and experimental results by Hardy
et al. [30] (Figs. 7 and 8). To the best of our knowledge, the behaviour of the brain–
skull interface under conditions compatible with injury causing transients has not
been investigated yet.
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Changing the constitutive model of the brain parenchyma from linear viscoelastic
to Ogden hyperviscoelastic exerted appreciable effects on the predicted kinematics
of the selected points within the brain and brain tissue strain (Figs. 7, 8, 9, and 10,
and Table 3). For the Ogden hyperviscoelastic model, the predicted trajectories of
the selected points within the brain tended to be closer to the trajectories experimen-
tally determined by Hardy et al. [30] than when the linear viscoelastic model was
used (Figs. 7 and 8). This observation suggests that accurate prediction and analysis
of brain trauma requires constitutive models of the brain tissues compatible with
non-linear formulation of solid mechanics, such as hyperelastic/hyperviscoelastic
models, and accounting for the differences between the tensile and compressive
stiffness of the brain tissue. To the best of our knowledge, such suggestion has not
been made before.
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