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Dedicated to Ann Johnson (1965-2016)

This volume owes much to Ann. It synthesizes the work of the cooperation group
“Mathematics as a Tool” that gathered over several years at the Center for Inter-
disciplinary Research (ZiF), Bielefeld. The core group consisted of P. Blanchard,
M. Carrier, J. Jost, and J. Lenhard. They partly acted as authors; most of the chapters
are by scholars who were involved in workshops or other events organized by
the ZiF group. Ann, who sadly passed away shortly before the book came out,
was more than a brilliant participant in a workshop. She and her work have been
an important source of inspiration for the entire group. Our joint work on the
history and philosophy of mathematization, including earlier workshops at the ZiF,
motivated Martin Carrier and myself to set up the ZiF cooperation group.

My own work owes much to Ann. We enjoyed an unusual collaboration that
was based on the stunning experience of thinking on the same wavelength —
notwithstanding our different characters and different disciplinary backgrounds.
We quickly agreed how history, technology, mathematics, and philosophy could be
mixed in fortunate ways. Maybe, we were rather thinking on wavelengths interfering
in a way that many crests and no troughs remained. It is a marvellous experience
that is, I believe, very rare in a researcher’s career.

Ann had the gift to transform persistent effort into uplift for new thought. I hope
this volume can achieve something similar. If one or another chapter makes the
reader start thinking about what could be fruitfully taken up, changed, and amplified,
this is pretty much what Ann would have liked. Let us carry on in her spirit.

Bielefeld, Germany Johannes Lenhard
Bielefeld, Germany Martin Carrier
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Introduction: Mathematics as a Tool

Johannes Lenhard and Martin Carrier

The role mathematics plays in the sciences has been assessed differently and
in conflicting ways. Put very roughly, a strong view holds that mathematically
formulated laws of nature refer to or reveal the rational structure of the world.
By contrast, a weak view denies that these fundamental laws are of an essentially
mathematical character, and rather suggests that mathematics is merely a tool for
systematizing observational knowledge summarized in these laws so that one can
make additional use of these laws.

In the present volume, we want to put forward a position that combines features
of both viewpoints. This position is supposed to characterize the use of mathematics
in certain specific areas where mathematical reasoning is employed. It is intended
to bring out characteristic features of making practical use of mathematical instru-
ments. The position presents a strong view about how mathematics functions as a
tool; “strong” because it assigns an active and even shaping role to mathematics.
But at the same it refrains from any claims about the mathematical structure of
the universe that is (allegedly) mirrored by mathematical theories in the physical
sciences. Employing mathematics as a tool is independent from the possible
mathematical structure of the realms of objects under consideration. Hence the tool
perspective is contextual rather than ontological.

When mathematics is used as a tool, it cannot be guided exclusively by
internal mathematical reasoning. Instead, what qualifies as adequate tool-use is also
determined by the problem at hand and its context. Consequently, tool-use has to
respect conditions like suitability, efficacy, optimality, and others. Of course, no
tool will provide anything like the unique solution. On the contrary, the notion of
tool stresses that there is a spectrum of means that will normally differ in how
well they serve particular purposes. This practical outlook demands a new view

J. Lenhard (IJ) « M. Carrier
Department of Philosophy, Bielefeld University, Bielefeld, Germany
e-mail: johannes.lenhard @uni-bielefeld.de; martin.carrier @uni-bielefeld.de
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on the concept of validity in mathematics. The traditional philosophical stance
emphasizes the permanent validity of mathematical theorems as a pivotal feature.
The tool perspective, in contrast, underlines the inevitably provisional validity
of mathematics: any tool can be adjusted, improved, or lose its adequacy upon
changing practical conditions.

This contextual and malleable nature of mathematical knowledge used as an
instrument is a pivotal element of the entire book. We are not so much interested
in tools that are ready-made, off-the-shelf products. Rather, we are concerned
with the practice of mathematization in which processes such as developing tools,
constructing models and designing procedures are intertwined with each other.

The introduction will work out this perspective in more detail, partly in (illu-
minating) contrast to popular accounts of mathematics and mathematization. We
understand our endeavor as a fundamentally interdisciplinary one that needs to be
informed from at least three angles: the recent practice of using mathematics, the
history, and the philosophy of science. When putting this volume together, we did
not attempt to separate these perspectives, but to interlock them in a (hopefully)
enlightening way. Before we give a brief overview of the topical structure in Sect.
3, let us provide some philosophical and historical context.

1 Perspectives on Mathematics

1.1 Mathematics as the Language of Nature — Promises
and Limitations of Mathematization

The use of mathematical laws for describing and explaining natural phenomena
is among the chief epistemic achievements of the Scientific Revolution of the
seventeenth century. Medieval scholarship had joined Aristotle in emphasizing the
difference between ideal mathematical postulates and real physical phenomena
and had considered it impossible, for this reason, to accomplish a mathematical
science outside of the ideal realm of celestial bodies. By contrast, the pioneers of
the Scientific Revolution, such as Galileo Galilei, René Descartes, and Johannes
Kepler, suggested to seek for mathematical laws of nature and conceived physics
as a mathematized science. Galileo’s law of freely falling bodies, Descartes’s (or
Snel’s) law of refraction and his law of inertia, or Kepler’s laws of planetary
motion implemented this new idea of mathematical laws of nature. Underlying
this approach was the assumption that nature exhibits a mathematical structure.
As Galileo put it, the book of nature is written in mathematical language; or in
Kepler’s words, God used geometrical figures in creating the world. In an influential
historical account, Alexandre Koyré featured a Platonic vision of a mathematically
structured nature as a methodological key element of the Scientific Revolution
(Koyré 1968, 1978). Newton’s Philosophiae Naturalis Principia Mathematica is
often regarded as an early climax of the endeavor to capture the blueprint of the
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universe in mathematical terms. Michael Mahoney aptly pointed out that granting
mathematical structure ontological impact was a key move during the Scientific
Revolution that turned nature into a mathematical realm (Mahoney 1998).

A second vision of the Scientific Revolution consisted in connecting under-
standing and intervention. Francis Bacon and Descartes developed the idea of an
applied science in which knowledge about natural processes provides a basis of
technology. The best way to take nature into the service of humans is to elucidate
her inner workings. This idea has proven highly effective for mathematical science.
Mathematical laws of nature make predictions possible under (hypothetically)
varying conditions which, in turn, make such laws suited to supporting technical
intervention. The outcome of technical procedures needs to be anticipated with high
precision, and mathematical laws are apt to meet such requirements.

However, the success of the mathematical sciences is not unlimited. It is true,
these sciences have managed to enormously enhance their grip on complicated
phenomena in the past 150 years. Even if mathematical treatment was often able
to strip off constraints of idealizations and controlled laboratory conditions and to
cope with ever more complex systems, the full complexity and intricacy of real-
world situations, until the present day, still poses various difficulties and obstacles
to their mathematical treatment.

An early exemplar of a complexity problem is the so-called three-body problem
that Henri Poincaré demonstrated to be unsolvable around 1900. The difficulty
concerns the calculation of the motion of bodies under the influence of their mutual
gravitational attraction. This dynamical model proved to be so complex that no
analytical solution could be derived. Consequently, in spite of the fact that the
underlying mathematical laws are known comprehensively, the long-term motions
that result from their rule cannot be foreseen.

A second, similarly famous example, and an early one for the study of “complex
systems,” goes back to the meteorologist Edward Lorenz. He found in the early
1960s that a given set of differential equations produced different results depending
on tiny variations in the initial conditions. Even minute dissimilarities, fluctuations,
and uncertainties in these initial conditions led to quite distinct subsequent states.
Lorenz’s discovery is called “deterministic chaos” today: the time evolution of
relevant physical systems depends so sensitively on the precise initial conditions
that no long-term prediction is feasible. Even if the nature of the system and the
laws governing its time development were known without remainder, its future
course could not be anticipated reliably. Speaking more generally, systems attain
a high degree of complexity in the relevant sense if individual entities interact on a
certain level and their interaction produces emergent phenomena on a higher level,
especially when the manifestation of the higher-level phenomena depends upon the
details of lower-level interactions.

In other examples of complexity, the means of mathematical modeling are insuf-
ficient for deriving valuable solutions. The Navier-Stokes equations are believed
to completely capture the behavior of fluids. But these equations cannot be solved
in general; solutions can only be given for special cases. Likewise, Schrodinger’s
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equation is taken to account comprehensively for non-relativistic quantum phenom-
ena. Yet already the helium atom can be treated only approximately. The examples
show that the concept of complexity has many faces and, more importantly, that the
complexity of the conditions pushes the mathematization of nature to its limits—at
least regarding predictions and, consequently, targeted interventions in the course of
nature.

In a different vein, some fields of science appear much less suited to mathe-
matical treatment—quite independently of their complexity. An important area is
the life sciences. Molecular biology is mostly directed at disclosing mechanisms
which are governed by spatial structures. Molecules mesh with each other and
occupy receptors mostly in virtue of their spatial properties. To be sure, all these
mechanisms may be based on quantum laws, and spatial features can be expressed
geometrically, i.e., mathematically. Yet, up to these days, mathematical approaches
hardly contribute significantly to understanding the relevant interactions. Spatial
figures, mechanisms, and feedback loops are the essential concepts. Admittedly,
mathematization has led to a couple of statistical rules, like Mendel’s laws, and
evolutionary models, or has yielded reaction rates of biomolecules. But it is an
open question whether mathematics will be able to add important further insights
into the life sciences. In short, nature seems not to welcome mathematization
indiscriminately.

Thus, the strong view regarding the mathematization of nature seems to be
constrained to rather narrow limits. Mathematical laws of nature and the option
of putting them to use are restricted to a closely encircled range of sciences
and phenomena. However, a look into recent scientific endeavors reveals that
mathematical procedures flourish and fulfill various tasks outside this range. Fields
such as molecular biology or systems biology make ample use of mathematical
methods, without, however, embodying the vision of the strong view, i.e., without
assuming that mathematics provides access to the inner workings of the pertinent
mechanisms and without building targeted intervention on mathematical insights.
This observation motivated us to look at the more modest use of mathematics as a
tool.

1.2 Mathematics as a Tool

Mathematical analysis can be helpful in practical respect even if the pertinent
fundamental processes cannot be understood or caught productively in mathematical
terms. Mathematics deals with structures and such structures can be found at various
places, not only in the makeup of bodies and their interactions. It is part of the power
of mathematical methods to be able to disclose features and identify patterns in all
sorts of data, independently of their nature and origin.

As a result, mathematics is essential in bringing out structures in data and making
use of them, as well as in establishing links between theory and data. As to the
first item, mathematics is helpful for identifying data patterns and thus makes
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data-driven research possible. The increase of computing power in the past decades
has opened up a new path toward analyzing data, a path that does not lead through
constructing theories and building models. As to the second item, mathematics is
suited to forging links between theories and phenomena. Measurement procedures
can be accounted for mathematically even if the constitution of the pertinent objects
and interactions is not governed by mathematical laws. For instance, schematic
screening is dependent on mathematical methods. High-throughput procedures or
DNA -arrays require mathematical assistance in registering and processing the data.
Automated pattern recognition or statistical analysis are indispensable for gaining
access to relevant features of the data.

We speak of mathematics as a tool in order to designate the usefulness of
mathematics even in areas where the fundamental objects and their interactions
seem not to be governed by mathematical laws of nature. Mathematics as a general
approach to disclosing and handling general structures irrespective of their physical
nature can yield productive insights even into such areas. Using mathematics as
a handy vehicle provides new opportunities for taking advantage of mathematical
methods. Employing mathematics as an instrument in this sense can break new
ground in practical respect even in fields whose basic principles are resistant
to mathematization. Thus, mathematical methods are analyzed regarding their
instrumental virtues.

It is not customary to look at mathematics from this perspective. The standard
account of mathematics is centered on deducibility and provability and associated
with coherence and certainty. The tool account is different in that mathematics
is analyzed as an instrument, and, consequently, cast for an auxiliary role. If
mathematics is used as a tool, the agenda is set by other fields; mathematics helps
to solve problems that emerge within these fields. Consequently, the particular
internal coherence of mathematics does not by itself guarantee progress. For
example, mathematical considerations like deriving new consequences from already
accepted model assumptions are only a first step in considering the adequacy of a
mathematical model. Further, as it will become clearer when we address particular
cases, the instrumental use of mathematics often proceeds in a rough and ready
way and seems to be part of endeavors that look tentative and deficient in epistemic
respect. Still, it is a virtue rather than a vice of mathematics that it proves to be
helpful even under conditions that leave much to be desired in epistemic respect.
Using mathematics as a tool is in no way meant in a pejorative sense. It rather
emphasizes the productivity of mathematics in coping with structures of arbitrary
nature.

Using mathematics as a tool is by no means a recent development. On the
contrary, the ancient slogan “saving the phenomena” was popular to describe the
instrumental use of mathematics in astronomy. Mathematics was used to demon-
strate the compatibility of observations with cosmological and physical principles
and with additional auxiliary assumptions. This compatibility was established by
reproducing and anticipating astronomical observations on their basis. However,
many features of this mathematical account were not taken seriously as a description
of nature. The narrow empirical basis of terrestrial observers was assumed to
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be insufficient for disclosing the true motions of the planets. As a result, in
the tradition of saving the phenomena, the success of explaining and predicting
celestial phenomena was not attributed to the truthful representation of the universe.
Mathematics was used as a tool.

Although the tool perspective is relevant for large parts of mathematics as it
occurs in the sciences, it has not yet received much scholarly attention. There is
a prominent strand in the philosophy of mathematics that discusses “applicability”
in a very principled sense, arguing about the indispensability of mathematics and
its ontological status in specific contexts where “the unreasonable effectiveness of
mathematics” (Wigner 1960) is a striking issue. A typical question is whether indis-
pensability does or does not grant reality of mathematical entities. A representative
study is Colyvan (2001), though the controversy about indispensability is going
on, cf. Leng (2002), or Saatsi (2011), among others. One line in this discussion is
particularly relevant for our perspective, namely seeing mathematics as a heuristic
tool. Formal manipulation of an equation, for instance, might open up new contexts
for using this (new) equation. The studies by Steiner (1998) and Bangu (2012)
highlight this aspect.

The tool perspective, however, is more related to actual scientific practices than to
something as fundamental as indispensability. Given the recent practice turn in the
philosophy of science, the hesitant uptake of the tool perspective might still come as
a surprise. One reason is that this perspective requires adopting an interdisciplinary
approach that looks at mathematics in connection with other disciplines. The recent
work on “mathematical practice,” however, primarily looks at what mathematicians
do rather than focusing on how mathematics functions in a wider context (Mancosu
2008, van Kerkhove et al. 2010).

Among the factors that contributed to eclipsing the instrumental use from the
philosophical and (to a lesser extent the) historical view is the traditional distinction
between pure and applied mathematics. This distinction suggests a division of labor
between the pure branch that creates and validates mathematical knowledge and the
applied branch that draws particular conclusions from this body of knowledge so as
to solve extra-mathematical problems. In this approach, construction and application
of mathematics look like two separate activities, and the applied branch is marked as
being completely epistemically reliant on the pure branch. The distinction between
pure and applied is sometimes maintained while the hierarchical relation is reversed.
Mathematical structures are then claimed to be abstractions from structures in
the real world on which pure mathematics would build its theories. Mathematics,
accordingly, would be primarily a natural science (Kitcher 1983).

We do not share either view. The counterpoint we will develop abandons this
assumption of unidirectional dependence and assumes, on the one hand, that using
mathematics as a tool has an impact on the corpus of mathematical knowledge. New
mathematical knowledge springs from developing methods to cope with practical
challenges. Yet we also believe, on the other hand, that the system of mathematical
knowledge shapes the development and instrumental use of mathematical models.
Mathematics and the various sciences we consider benefit from proceeding in such
reciprocal dependence. Mathematics is no ready-made repository simply to be
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tapped. On the contrary, problems and the tools to their solution co-evolve. Looking
at the invention and implementation of tools thus highlights how dynamical the
process of bringing mathematics to bear on the demands of practice actually is.

We want to propose five characteristic aspects of mathematics as a tool that
exhibit significant differences to the standard account mentioned. These five
partially overlapping topics will be discussed in the following section. Section three
will bring together the relevant observations and draw conclusions about the general
lessons to be learned from regarding mathematics as a tool. They will challenge the
philosophical viewpoint that modern science is characterized by a uniform method
and also call into question the role mathematics plays in arguments about science
and rational order.

2 Characteristic Features of the Instrumental Use
of Mathematics

We present five features that are intended to sketch characteristic modes of using
mathematics as a tool and also lead to open research questions. Each of them is rich
enough to justify separate treatment, but there is also much overlap among them so
that in practice concrete instances usually involve more than one feature.

2.1 Mathematics as a Mediator Between Theory
and Observation

Mathematical theories are indispensable for forging links between theory and
observation. This applies to measurement, i.e., to connecting theoretical quantities
with data as well as to technology. The use of mathematics is essential for
registering phenomena and for generating and shaping phenomena. In the former
case, mathematics is employed as observation theory. In the latter, it is used as an
instrument of intervention in the course of nature.

Mathematical theories of observation have been in use for a long time. Isaac
Newton measured the gravitational attraction of the Earth by bringing mathematical
laws of mechanics to bear on pendulum oscillation. Measuring electric current
intensity by means of a galvanometer relies on Maxwell’s equations. Similarly, the
use of mathematics for ameliorating technological intervention has a long tradition.
In 1824, Sadi Carnot was the first to apply highbrow theoretical principles (caloric
theory) to the operation of advanced technical devices (the steam engine). His
analysis supported the conclusion that the only way to enhance the efficiency of
the steam engine was to increase the relevant temperature differences. We will not
dwell on such familiar ground. We rather aim to address observation theories of a
hitherto unfamiliar sort, namely, when the pertinent mathematical procedures are not
tied to specific physical circumstances or phenomena. Mechanics, electrodynamics,
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or thermodynamics are physical theories that are employed in registering mechan-
ical, electrodynamic, or thermodynamic quantities. By contrast, the mathematical
observation theories we turn to are independent of any particular realm of objects.
Using neural networks, statistical procedures, or Bayesian formulas for surveying,
exploring and interpreting the data, does not hook up with any properties of the
objects under scrutiny. In other words, these mathematical procedures do not follow
the causal path from the objects and their interactions to the display of certain values
(as in the case of substantive observation theories). Rather, certain patterns in the
data are identified irrespective of their physical nature and causal origin.

A paradigm case is represented by DNA-microarrays that assemble thousands
of different DNA strands fixed on a tiny grid. A substance is washed over the
grid, and the binding patterns the substance exhibits with respect to the DNA
strands reveals a lot of information about its ingredients. In this way, thousands
of measurements are performed simultaneously, and the information is displayed in
the pertinent configurations. The latter are color coded in heat maps and analyzed
by sophisticated mathematical techniques. The salient point is that these techniques
address the structure of the patterns obtained, not how the substance under scrutiny
has produced the patterns. A typical question to be answered is: How similar in
some relevant sense is an observed pattern of an unknown substance to a pattern of
a known substance (like tissue indicating a certain disease)?

Domenico Napoletani, Marco Panza, and Daniele Struppa (2011) view this
example as an instance of a new paradigm, the “microarray paradigm.” As they
argue, model-based scientific understanding typically proceeds by tying macro-
phenomena to their underlying micro-structures. These phenomena are interpreted
by tracing them to their micro-causes by appeal to mathematical observation
theories. However, the mirco-array paradigm remains at the macro-level and uses
mathematics for uncovering structures at this level. Napoletani et al. criticize that
this novel use of mathematics renounces causal understanding right from the start.
In this vein, they consider this approach to be superficial and call it “agnostic
science.” Yet it merits attention that such mathematized, computer-assisted methods
are capable of tracking patterns in data that would have gone unnoticed otherwise
and of identifying completely new kinds of phenomena. Such approaches are
fueled by a pragmatic attitude. A useful mathematical procedure does not need to
build on the causal processes that govern deep down the unfolding of the relevant
phenomena. Rather, it suffices to find some convenient short-cut that may thrive on
very particular conditions.

2.2 Data-Driven Research and the Use of Big Data

Generalizing these considerations leads to the phenomenon of ‘“data-driven
research” (cf. J. Jost’s contribution to this volume). Data-driven research can
be contrasted with “model-driven research,” in which theoretical expectations
or a micro-causal model distinguishes certain patterns in the data as significant.
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Data-driven research is purportedly different in that it starts off from the data
without an underlying model that decides about their significance. For instance, in
pharmaceutical research, large amounts of potential agent substances are scanned
automatically (high-throughput screening). The question posed merely is whether a
certain substance binds to a certain receptor with certain intensity. Masses of data
are produced by such a large-scale screening process, and the result always is that
certain patterns are selected.

Data-driven research involves two components: Large amounts of data are
produced or scanned and these data are sufficient for suggesting a tentative solution
to the problem at hand. That is, data are not gathered for examining a certain
theoretical hypothesis or for filling the gaps left by such hypotheses. In the model-
driven approach, data are essential, too. Often, models need to be adjusted to the data
which is done by measuring pertinent parameter values. By contrast, data-driven
research does not begin with such a theoretical model. It rather begins with the data
themselves. The goal is to identify or extract data patterns by bringing sophisticated
mathematical techniques to bear, i.e., the data are used for suggesting or generating
a hypothesis, rather than merely examining it.

Take the challenge of forecasting the future path of a hurricane. A model-
based approach draws on fluid dynamics and seeks to anticipate the development
of the pertinent storm. However, the performance of this method has proven to
be rather poor, and various data-driven alternatives exist. One is to use databanks
that store measurements of past hurricanes and sift out those that evolved under
similar conditions as the one under investigation. Based on these data, one can
make a statistically valid prediction without resorting to physical dynamics. Another
alternative is using artificial neural networks. Such a network can be regarded as a
mathematical function that transforms certain input strings of data into a certain
outcome. The function representing the network can be adjusted by having the
network run frequently over similar input strings and correcting the outcome. This
can be viewed as a training process. Yet the details of the processing scheme remain
obscure. The way in which certain input is transformed into certain output remains
opaque in detail. Yet it can safely be assumed that this transformation process is
a far cry from the atmospheric processes that make the storm develop the way it
does. The relevant causal factors are in no way mirrored in the network. However,
training neural networks by using past storm histories provides better forecasts
of the path and intensity of a given storm than the best available simulation of
the underlying atmospheric processes (Napoletani et al. 2011). It is the interplay
between computer-based learning algorithms and available data that determines the
value of this instrumental approach.

The crucial question in methodological respect is whether data-driven research
is really tantamount to shaking profoundly the heuristic and explanatory strategies
in mathematical science. The claim we wish to examine more closely is whether
the emergence of “big data” together with the availability of increasingly sophis-
ticated mathematical tools have produced an important alteration in the relevant
research strategies. More specifically, does data-driven research merely provide
an additional opportunity for developing and judging assumptions in science or
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have other strategies been sidelined in the wake of its emergence? Does data-
driven research push mathematical models and (micro-)causal theorizing out of their
central role in science? Does considering data structures replace analyzing micro-
causal structures?

2.3 Tuning Models Mathematically

Theoretical mathematical models are rarely perfect. Even if a model is very good, it
regularly provides a kind of mathematical skeleton that includes a number of param-
eters whose quantitative assignment has to be read off from empirical data. A case in
point is the gravitational constant that does not follow from mathematical arguments
though it does follow mathematically that there is a gravitational constant. Such
parameter evaluations are normal and not specific for using mathematics as a tool.
However, it is a different matter when important features of models are determined
by the particular problem at hand, using mathematical procedures for enriching
models with refinements, adjustments, and correction factors. These procedures are
to be distinguished from filling numerical gaps left in theory-based models.

An example is employing highly generic models and having their entire makeup
or constitution shaped by recourse to experience. Neural networks again provide a
case in point. Such networks embody highly arbitrary functions, and the particular
function selected for transforming given input strings into outcome is produced by
appeal to a particular set of data. In this case, the influence of the data on the model is
much stronger than in filling a gap by recourse to experience. Rather, the theoretical
framework is so malleable that arbitrary relations can be reproduced. The framework
normally poses merely weak constraints on the model; rather, it is the data that shape
the model. The extent to which the architecture matters, i.e., whether the data should
decide about everything, is discussed under the heading of shallow vs. deep learning.

There are many options in between in which the mathematical structure nei-
ther determines the behavior nor leaves learning or adaptation completely open.
Arguably, in the most common cases a theoretical mathematical structure calls for
essential additions to tune model behavior. Chemical process engineering provides
an example. Molecular structure and thermodynamic properties of substances
provide a rough approach to the chemical processes when certain substances
encounter under specific combinations of pressure, temperature, and the like. Such
top-down models are completed by bottom-up modeling. Mathematical features
(tuning knobs) are introduced that are inspired by observation or by trial and
error. Such features typically lack a theoretical foundation and sometimes even an
empirical interpretation. They help produce correct results, but they do not translate
into any coherent picture of the underlying chemical processes. For instance, adding
a certain substance to a chemical process may augment the yield of the reaction.
Such an influence is then modeled by inserting a corresponding factor into the
account. But the factor may not be understood and remain ad hoc (cf. the detailed
studies by MacLeod and also Hasse and Lenhard, chapter “Boon and Bane: On the
Role of Adjustable Parameters in Simulation Models”, this volume).
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As a result, the models crafted in this fashion typically contain elements that
lack any clear physical interpretation. They fail to represent relevant processes that
unfold in the corresponding system. A worry raised in this connection concerns
the limits of generalizing such makeshift models. If a model is tuned to specific
cases, does it extend to similar cases? If the applicability of tuned models is limited
to a narrow range of cases, does this pose a severe difficulty in practice? Or is
the limitation compensated by the availability of a greater variety of (specialized)
models?

2.4 Using Alternative Routes to Solving Equations

Solving differential equations by a computer simulation proceeds by not literally
solving these equations but rather by calculating values of its discretized proxy.
Solutions are calculated point by point at a grid and for specific parameter values.
As a result, using computational models does not simply mean to enhance the
performance of mathematical models but rather changes the ways in which these
models are constructed and the modes in which they operate. Digital computers
require discrete versions of all relevant objects and operations. This requirement
presents a kind of instrumental imperative that drives traditional mathematical
modeling into new pathways.

Most notably, traditional mathematics is full of continuous quantities and
relationships. Yet they need to be re-modeled as discrete entities so as to become
tractable by digital computers. Typically, the discretization produces unwanted
effects that have to be neutralized by “artificial” measures. An early example is
the “artificial viscosity” that John von Neumann came up with to re-introduce
the possibility of very steep wavefronts after discretization of super-sonic waves
(Winsberg 2003; for a case in meteorology, see Lenhard 2007).

The discretization of continuous equations is usually not a straightforward
process, since it can be accomplished in a number of different ways. Even if
these options seem to come down to the same thing when the space-time grid
is sufficiently refined and eventually approaching continuity, they can make a
big difference in practice. The reason is that any actual computation takes place
with finite resolution where the dynamical properties of the discrete versions can
differ considerably. One has to ensure computational stability as an extra condition
imposed by using the computer as a tool, and this demands guaranteeing that the
discrete models behave adequately, as compared to the observed phenomena and
the corresponding continuous model.

Parameterization schemes arise from the need to find discrete counterparts to the
quantities in continuous models. A telling example is the dynamics of clouds whose
(micro-)physical basis is to a large part not yet known. However, cloud dynamics
forms an important part of the general circulation models of the atmosphere. They
involve the calculation of this dynamics from values defined at grid points. Clouds,
however, are sub-grid phenomena (a typical grid may work with horizontal cells
of 100 km x 100 km). Hence the effects of clouds for the whole dynamics need
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to be expressed as a kind of net effect at the grid points, i.e., they have to be
parameterized. What are appropriate parameterization schemes? What are effective
parameters that adequately summarize cloud dynamics? How are these parameters
estimated reliably? These questions are interdependent and can be solved only by
extensive simulation procedures that assume parameter values, observe the model
dynamics, re-adapt the values, etc. Hence adequate parameterization has to find a
balance between accurate description and effective manipulability.

Parameters are defined and tuned, and become usable by computational strategies
of calibration. Typically, successful tuning parameters cannot be ascribed a partic-
ular meaning in terms of the pertinent theory such as meteorology. Rather, they
acquire their semantic role in the particular context, the particular discretization, the
particular embedding in a parameterization scheme, and the particular process of
adaptation. In general, one has to be aware of the following threat: The performance
achieved after extensive model adaptations does not necessarily reflect the adequacy
of the theoretical premises built into the model. The more parameters the model
contains, the higher the chance that a certain characteristic of the fitted model arises
solely from the instrumental adaptations rather than the underlying theory (see also
Sect. 2.3).

Another example is so-called multi-scale methods. To describe the binding
behavior of, say, an enzyme, researchers employ a couple of different models
that are based on different theoretical approaches. An enzyme is built from amino
acids and typically contains about 8000 atoms, but only a small fraction of those
atoms, maybe 50, is relevant for the binding behavior. These atoms are modeled
with quantum mechanical methods that provide the most detailed view and the
most precise results but are computationally too expensive to cover the entire
enzyme. Even for these about 50 atoms one has to resort to simplified modeling
strategies, like density functional theory. The remaining majority of atoms is
modeled via (classic) force fields, i.e., with so-called molecular dynamics methods.
This approach is much more coarse-grained and ignores quantum effects, but
experience has shown that this limitation does not result in a significant loss in
adequacy of model behavior.

The largest errors occur through the ways in which the quantum and the classical
regime are coupled together. The coupling cannot be determined theoretically as
the two regimes are not compatible. The only solution is to introduce a tentative
coupling and to adapt it so that the coupled model attains a good fit to already known
cases. Such loops of adaptations, checks, and re-adaptations treat the coupling
mechanism as a variable. Without these loops multi-scale methods could hardly be
used at all. A similar conclusion holds for the coupling of computationally simpler
and more complex methods that work on the same scale, like density functional
methods that are amended by more accurate but also computationally much more
expensive coupled-cluster methods for particularly sensitive regions. In examples
like those discussed, the issue is not to create a correct representation in the language
of mathematics, but rather to use the qualities of mathematics as a tool for adjusting
coupling mechanisms in a controlled way. In short, mathematics is used as a tool, a
good-enough, or even optimal, compromise between accuracy and tractability.
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The importance of computational modeling is underlined by an additional
example from theoretical physics. In quantum mechanics, so-called ‘Feynman
diagrams’ provide a key to numerical algorithms. Principled formal mathematical
theory has to be transformed into methods that allow one to effectively squeeze
out the relevant numbers. Historian of science David Kaiser has pointed out that
Feynman diagrams are among the most important calculation tools of theoretical
physicists (2005, 156). Both aspects, being theoretical and being a tool, are not
contradictory, but complement each other. Feynman diagrams have a formal basis in
path integrals and at the same time entail highly useful combinatorial features. These
features are used to break down overly complex computations into manageable
parts. The results of these simplification procedures are empirically adequate
but their theoretical justification remains somewhat shaky. Mathematically, the
“integration-by-parts” identities are the pivotal components. They were established
in the early 1980s, but only since around 2000 have computer-assisted methods been
developed that offer automated recursion procedures for fitting practical problems
(of particle physics) to the mathematical identities. The point is that these formulas
allow certain adaptations to fit concrete cases. They do not cover the relevant
problems exactly; hence a perfect fit cannot be achieved. The task to find an
optimal fit is tackled in a computational way; namely, the integration-by-parts
formulae are adapted to precision measurements by an automated procedure. These
precision measurements have become available only since around 2000, and thus
measurement and computational modeling are strongly interlinked here.

The performance of computational models can even run counter to theory-based
expectations. Linear programming, a method of numerical discrete optimization,
provides an illustration. The great popularity of linear programming methods did
not emerge along with mainframe digital computers, but only much later when
smaller machines had become easily available. The mathematical theory of linear
programming is well known, but the performance of a model in a concrete situation
depends heavily on particular conditions. The point is that linear programming
includes an essential part of trial-and-error, because the performance of algorithms
often hinges on tricks (or ad-hoc adaptations) that lack any theoretical justification.
Only since around 1990 has the exploratory use of such methods become feasible,
due to the cheap availability of computational tools (see also Johnson and Lenhard
2011). For instance, the dual simplex algorithm works much better than the primary
one, as has been observed in many cases, but this difference has no known
theoretical reason. Although it is arguably true that without theory one would
not have invented the dual algorithm, it is also true that one has “no idea about
performance from theory” (Martin Grétschel, personal communication). Hence one
is dependent on the (cheap) computer as a device that is able to work in a successful
way with linear programming as a mathematical tool.

The common ground among all these examples is the replacement of the
mathematically distinguished and correct approach to solving the relevant equations
with an alternative route. The reason for doing this is that the correct approach is
unfeasible under the conditions at hand. Yet the drawback is that the methods used
in its stead are not demonstrably adequate. They yield only approximate solutions
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whose adequacy cannot be, as the case may be, estimated reliably. (On the intricate
relation between solution and approximation in the context of computational
methods, cf. Fillion, chapter “The Vindication of Computer Simulations”, this
volume).

To what extent is using mathematics as a tool in this sense different from the
sense sketched in Sect. 2.3? This time the ersatz procedures pursued hook up
with the presumed causal dynamics. Neural networks admittedly fail to track the
underlying processes whereas discretized equations, Feynman diagrams, or the use
of density functionals reproduce to a certain extent the conceptual backbone and
causal image of the pertinent full-scale theories. Following the theoretical lead on an
alternative route is distinct from abandoning this theoretical lead altogether. But is
this difference a matter of degree or of principle? Are the two poles of the spectrum
linked to different modes of using mathematics as a tool?

2.5 Non-representational Idealizations

Idealizations are intimately connected to the role of mathematics in the sciences.
All mathematical operations inevitably deal with objects or models that are in
some sense idealized. The point is what sense of idealization is the relevant one
in our context. “According to a straightforward view, we can think of idealization
as a departure from complete, veridical representation of real-world phenomena”
(Weisberg 2013, 98). All mathematical models suit this description. They can be
adequate without having to be completely faithful representations. The interesting
point rather is in what ways they can deviate from the representational ideal.

We want to introduce a type of idealization that cuts across the various
suggestions to capture different sorts of idealized models. All these suggestions
deal with object-related idealizations. Idealizations create a simpler version of the
relevant objects and their relationships so that mathematical models of them become
more tractable. In principle, these simplifications could be removed by de-idealizing
the model step by step and thereby making the models more and more complex.
However, from our perspective, the most important distinction is a different one,
namely, between object-related and tool-related idealizations. The latter result from
the properties of the tool and make sure that the tool can be used in the first place.
Tool-related idealizations exhibit no clear relation to issues of representation. The
question of how adequate the tool works in a certain situation needs to be tackled
independently.

Philosopher of science Robert Batterman (2010) has pointed out that asymptotic
limits or singularities regularly destroy the representation relation, because the
objects covered by the model simply do not exist. So why should scientists be
interested in these objects? The main reason lies in the mathematical properties
of the objects. A key notion in this context is that of tractability. A large number of
efforts in mathematization are intended to enlarge the realm of tractability. Paul
Humphreys, for instance, has characterized computer simulation by the way it
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extends the realm of mathematical tractability (Humphreys 2004). We want to stress
that there also is another dynamics in play, namely, modeling systems in an idealized
way so that they can be treated mathematically.

Of course, object-related idealizations can be seen in this way, too. In thermo-
dynamics, for instance, assuming a heat bath serves to keep temperature constant
and thereby simplifies the pertinent equations in a crucial way. But there are also
tool-related idealizations that do not relate to the object-side in any clear fashion.
Examples are typically of a more technical nature, though they are not rare at all.
Quantum chemistry, for example, has developed strategies to cope with the com-
putationally extremely complex Schrodinger equation. One of the groundbreaking
strategies is to use a set of “linear basis functions” for approximation. Importantly,
these functions have not been introduced for some (quantum) theoretical reason,
nor do they idealize away certain features of the complex interaction of electrons.
Rather, these functions have mathematical properties that allowed computation in
the first place. Consequently, the justification of this modeling step had to be
checked by comparing the computed results to empirical data (cf. also Lenhard
2014).

Another illustration, and one with media coverage at that, is financial economics.
Stochastic analysis here works as a tool for the pricing of options and other
derivatives and for appropriately calculating hedging strategies. To be tractable,
most models have to ignore transaction costs. It is not clear, however, whether
these costs are indeed not relevant for a first approximation. Rather, their neglect
is necessary to be able to find solutions for the mathematically posed problems
of pricing. That is, this idealization is tool-related. Sociologist of science Donald
MacKenzie (2008) expressed a similar train of thought when he gave his book
about the role of the computer in financial economics the programmatic title that
the computer is An Engine, Not a Camera. That means the tool suggests modeling
steps that change the framework and the objects of the field. Rather than represented,
the objects are transformed. The application of instruments does not simply record
objects and their relationships, but changes the corresponding realm. In the case of
financial economics, many modeling assumptions come from the motive to access
the realm tractable for stochastic analysis. In this sense, the model idealizations are
tool-related. Which types of idealizations in scientific practice are of this sort? What
are the differences between recent computer-based methods and older approaches
to using mathematics?

2.6 Synthesis

We have discussed five modes of using mathematics as a tool which partly overlap
and are partly heterogeneous in kind. The instrumental use of mathematics is not
governed by a single scheme. Rather, the heterogeneity of tools and of tool usages
teaches lessons about mathematization, its dynamics and its limits. The examples
also suggest that the modes of instrumental use are manifold and contrasting. The
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emerging picture of the relevant approaches resembles a patchwork of tools. This
picture can be regarded as a contribution to the philosophy of mathematics, a picture
arguably in line with Mark Wilson’s metaphor of “facades” (Wilson 2006). He
argues that even classical mechanics does not form a single coherent realm, but
is rather grouped into different patches that are merely “glued” together so that they
create the impression of a (homogeneous) facade.

A look behind this fagade reveals a dynamic and non-homogeneous picture
which stands in contrast to accounts in the philosophy of science that concentrate
on success stories of a very peculiar kind, like Newtonian mechanics. In the
eighteenth century, rational mechanics seemed to be the royal road leading toward
unified science. Eminent figures in the early nineteenth century, like Adrien-Marie
Legendre, even held that scientific and mathematical knowledge were close to their
completion. This expectation proved to be mistaken. One hundred years later, in
the early twentieth century, the sciences had assumed an unprecedented dynamics
and brought forth an unparalleled variety of mathematical tools. Another century
later, in recent times, mathematical models and methods, especially computer-
related ones, are widespread in nearly every branch of the sciences. However,
we perceive a rather heterogeneous picture that looks like a far cry from the
older expectation that mathematization would lead to unification. There are great
examples of mathematically formulated theories that promise to govern large parts
of the world, such as those of Newton and of Schrodinger, but there are also great
exceptions — in the twofold sense of being admirable and rare.

We would like to highlight two findings that seem to be characteristic of the
instrumental use of mathematics: Control replaces explanation, and validation is
accomplished by use. Control often is a practical goal, for instance, when a satellite
has to be navigated into a stable orbit. The clincher of using mathematics as a
tool lies in providing knowledge about how to control processes or systems. In the
traditional understanding of the role of mathematics in the sciences, its usefulness
in formulating comprehensive, unifying accounts of the phenomena is stressed.
Mathematics provides the deductive links that connect the first principles with their
empirical consequences and thus produces a pyramid-shaped body of knowledge.
The rule of first principles over the phenomena is established by mathematical
derivation. In the present context of mathematics as a tool, however, the deductive
links are often tenuous, restricted to a narrow realm of conditions, forged in an
ad-hoc manner, or intransparent. As a result, the explanatory power conferred on
the principles by applying mathematics is considerably weakened (though there
are particular modes of explanation linked to the tool-perspective). Yet the power
of prediction need not be reduced at the same time. On the contrary, accurate
predictions are an essential criterion for judging the quality of mathematical tools.
One of the conclusions to be drawn from such considerations is that predictive
power may not be completely dependent on insights into the inner workings
of nature. Instead, predictive power is often established by using mathematics
as an instrument. Consequently, the validation of such tools is accomplished
by examining their practical achievements. The pivot of validation is practical
use.
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3 The Chapters

The contributions to this volume cover a wide array in terms of history, of
philosophical approaches, and also in terms of examples studied. They address a
broad spectrum of interdisciplinary perspectives. If some readers find one or another
passage too historical, philosophical, or mathematical for their personal taste, we
would like to reassure them. All texts allow readers to skim such passages, if they
prefer to do so. We agree with all contributors to the book — and hopefully with all
our readers — that this kind of interdisciplinary variety (and ambition) is what the
topic of mathematics as a tool requires, and that the price of difficult accessibility of
some parts is worth paying.

The chapters are organized into three major parts, each one exemplifying a
particular perspective on mathematics as a tool, though this clustering does not
exhaust the topical richness of the chapters. The first part addresses the organization
of science and explores how tool development and use, on the one hand, and the
social and conceptual organization of science, on the other, mutually influence
each other. Ann Johnson focuses on the role of mathematics in engineering over
a wide historical time span and juxtaposes a rational with an empirical culture of
prediction. She assesses the value of mathematics as a tool in several dimensions,
in particular regarding prediction and explanation, and explains how these goals
exhibit a tension with each other. Tarja Knuuttila and Andrea Loettgers deal
with contemporary synthetic biology. They show how practices of mathematical
modeling are imported from other disciplines and how they are influential in
organizing the interdisciplinary work in this new field. This work is reconstructed
as being geared toward design principles rather than concrete regulatory networks.
Ido Yavetz takes us back to ancient times. He presents a dense investigation of
the Almagest and elucidates the mathematical methods used by Ptolemaios. Yavetz
argues that two different methods were available at the time, namely, trigonometry
and numerical computation, and that Ptolemaios chose numerical computation for
practical, tool-related reasons, rather than for conceptual ones. Henrik Sgrensen
completes the first part. He picks up the notion of “cultures of mathematization”
and characterizes a culture by the ways tools are adjusted to phenomena. He
addresses the discovery of quasi-crystals, where mathematical models were pivotal
to conceptualize — not merely to represent — new phenomena.

Part II gathers contributions that re-evaluate established concepts of scientific
methodology and bring to light how mathematical tools transform these concepts.
Hans Hasse and Johannes Lenhard investigate the role of adjustable parame-
ters, concentrating on the use of thermodynamics in engineering. They argue
that simulation methodology fundamentally alters the significance of adjustable
parameters. They are transformed from a subordinate detail into a key factor of
(predictive) success. Miles MacLeod follows a similar line in investigating the
newly developing field of systems biology. MacLeod underlines the crucial role
of parameter adjustments for constructing predictively accurate models. They rely,
however, on measurements that are often difficult to conduct, if they are feasible at
all. Quite in line with Knuuttila and Loettgers (chapter Mathematization in Synthetic
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Biology: Analogies, Templates, and Fictions), he stresses the heuristic advantages of
instrumental mathematical models and the problems emerging with respect to their
validation. Nicolas Fillion’s chapter tackles numerical methodology. He capitalizes
on a thorough examination of the approximate nature of numerical solutions and
elaborates the large practical impact of the latter. His conclusion is a warning against
conceiving the numerical part of simulation as too simple a tool. Anouk Barberousse
rounds off the second part with her study on what is called “Empirical Bayes,” a new
and widely used statistical strategy. Her main point is that computational methods
have not only made this strategy possible and have thereby modified statistical
practice, but that these tools have also transformed the basic concepts and hence
challenge the principles of the Bayesian approach.

The third part reflects on the tool character of mathematics from various per-
spectives. In his study on mathematical tools in astronomical observatories, David
Aubin analyzes the evolving and discrepant conceptions of tool and instrument
and how mathematics changes from a particular tool into a powerful instrument.
What turns a tool into an instrument, Aubin argues, is mainly its active role in
shaping a research field. Michael Eckert examines the notion of idealization in
the context of hydrodynamics and hydraulics. He highlights how idealizing away
fluid resistance provided the key to understanding the phenomenon of fluidity. This
shows that tool-related practice and development of theory interact. In this case,
dropping fluid resistance is the first step of developing ways for dealing with it
mathematically. What happens when established mathematical tools are subjected
to mathematical analysis, i.e., when such tools are themselves conceived as objects
for mathematical analysis and improvement? Domenico Napoletani, Marco Panza,
and Daniele Struppa investigate such processes in new approaches to optimization
that are “forced” and not related to the structure of the problem at hand. They point
out that benchmark problems and comparisons are crucial for the methodology and
also point out the problems raised by social effects of black box methods, i.e.,
methods for problem-solving that do not require a thorough understanding of the
problem. Jiirgen Jost, finally, reflects on how computing technology, having both
tremendously increased the rate of data acquisition and enabled new methods of
analyzing them, makes us re-think the role of mathematics. He discusses a fine
sample of recent developments in mathematics and, like Napoletani et al. above,
discerns a new wave of mathematization that now has mathematical tools as objects.
Mathematics thus is developing from a tool for science into a science of tools.

The chapters tightly interlock not by chance, but because they arose out of
a three-year cooperation group at the Center for Interdisciplinary Studies (ZiF),
Bielefeld University, with Philippe Blanchard, Martin Carrier, Jiirgen Jost, Johannes
Lenhard, and Michael Rockner as permanent members. This group’s work com-
prised historical and philosophical workshops as well as extensive small-group
discussion-interviews with practitioners in a variety of scientific disciplines that all
use mathematical tools in one way or another. We want to thank them for devoting
their sparse time to our project, thus giving us the opportunity to widening our
horizon and adapting our position more than once.

The authors gratefully acknowledge support by the DFG SPP 1689.
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Part I
Organizing Science



Rational and Empirical Cultures of Prediction

Ann Johnson

Mathematics plays a self-evidently important role in making scientific predictions.
The rise of science as an epistemically superior mode of knowledge production over
the past four centuries has depended on making accurate predictions; the apparent
certainty of scientific knowledge has often been borne out by accurate predictions.
Mathematics has been unarguably ‘effective’ in this sense. The question I want
to explore here is how predictions have improved, that is how mathematics has
become more effective, if effectiveness is measured in terms of producing accurate
predictions.

The easy answer is that predictions improve when the underlying mathematics
change. Some mathematical approaches yield better predictions for certain systems
than do other approaches—there is a question of ‘fit” with regard to mathematical
models. However, changing mathematical approaches constitutes something other
than simple positivism, i.e., a consistent march of progress, yielding better and
better predictions. Changes in underlying mathematical techniques can also be
destabilizing; apparently better predictions can generate profound questions about
why they predict more accurately. Asking why predictions are improving often
calls into question what appears to be known about the systems being modeled.
Therefore even as predictions improve, mathematical ontologies can become less
secure. Modelers often fear that there is no underlying mathematical explanation—
are accurate predictions anything more than elaborate coincidences? Specifically,
do good predictions explain anything if they are merely extrapolations of empirical
data? Does the mathematics need to offer an ontological statement about the truth
of the model or is a good match good enough?

In this paper I look at engineering mathematics (also referred to as engineering
science or simply ‘theory’) in the late eighteenth and early nineteenth centuries. This
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was a period in which competing mathematical approaches were epistemologically
destabilizing. Engineering science was changing in the hunt to produce better
predictions, but in doing so engineers were questioning the certainty (and ontology,
thought they would never have thought of it as such) of their knowledge. Rational
mechanics (also called mixed mathematics) dominated engineering mathematics
(and natural philosophy) in the eighteenth century. More and more sophisticated,
often calculus-based, models aimed to provide better predictions of real world
phenomena, like ballistics, kinematics, and statics and the strength of materials.
While models got more complicated and harder to solve, and were therefore often
considered more sophisticated mathematically, in many cases they failed to produce
accurate predictions at all.

Engineers had two general responses to this failure. In one set of responses they
focused on making the real world more predictable, for example, by producing
materials that behaved in more predictable ways. There was an effort to categorize
and standardize materials and machines. They sought to design technologies that
acted more rationally—i.e., that produced a narrower array of phenomena. This
meant materials that had a smaller set of responses, e.g., cannon that shot projectiles
more consistently to the same distance. In other words, they focused on making the
real world more precise; accurate predictions depended on predictable behavior.
Measuring precision and predictability was part of an experimental problem; it
represented engineers taking an empirical tack. There was also a mathematical
dimension to the question of making the technologies act the “same” way each
time. What did “the same” actually mean? How much deviation in the responses
was too much? At the end of the eighteenth century, questions about the regularity
of responses were not yet statistical for engineers; they were ontological and deeply
practical.

In dealing with real materials and phenomena, engineers tried different math-
ematical approaches in addition to their efforts to make the material world more
predictable. By firing cannon repeatedly they could create charts of the responses,
distances, trajectories, and measureable external factors like wind direction and
speed. No mechanics equations in the eighteenth century produced better pre-
dictions than these data arrays. The same went for strength of materials. They
tested the responses of material after material, found out where materials yielded,
deformed, or broke, and then charted those results and used simple arithmetic and
algebraic formulae to predict the responses of structures. As much as they wanted
to design sophisticated mathematical equations, the accuracy of their data tables
was impossible to duplicate. But data wasn’t unproblematic to manage. Imagine
testing the bending strength of a beam. Some beams might have knots in the timber
and break easily, while others might be perfectly clear and hold much larger than
expected loads. Which data outliers should be discarded? Too many weak beams
would mean an inefficient use of timber; too many strong ones would mean beams
breaking. Neither was going to improve the reputation of the engineer. The data
used in the tables needed to be representative, but engineers at the turn of the
nineteenth century had no mathematical methods for eliminating error; Gauss,
Laplace, Legendre and others were only beginning to develop these techniques for
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astronomy and geodesy. Least squares and other methods wouldn’t be commonplace
in engineering for generations. Still, in spite of their accuracy, the approach of data
tables raised real questions about the ontology and epistemology of their work—was
empiricism a legitimate route for mathematization, especially in the decades/century
before the development of robust statistical methods? The development of statistics
in the early nineteenth century extended this empirical path and started to stabilize
some of the underlying epistemological concerns.

The case primarily explored here is statics and the strength of materials — strength
of materials being one of Galileo’s “Two New Sciences.” They were chosen here
to show some of the conflicts between what I will term two different cultures of
prediction: the rational and the empirical. In this paper I will compare and contrast
two different paths used by engineers to predict the behavior of the material world.
Rational approaches derived from the rational mechanics of the seventeenth century.
Rational mechanics was a seductive idea; figuring out equations, derived from
Newtonian laws of motion and force promised to elevate engineering questions to
real philosophical status. Finding the right equation that would predict the flight
of a projectile or the displacement of a beam seemed an engineer’s dream. The
problem was that these equations, as they were constructed in the eighteenth century,
produced universally poor predictions. Engineers knew that equations needed more
variables to be able to take known phenomena like wind resistance into account;
analysis provided the mathematical framework, but engineers struggled to model
phenomena beyond Newton’s variables of mass, force, velocity, and acceleration.
Engineers of the eighteenth and nineteenth century usually knew why rational
mechanics produced inaccurate predictions, but they were rarely positioned to solve
the problems.

As a result, engineers were more comfortable making predictions based upon
empirical testing. Often this meant that the mathematics were unsophisticated, based
on long tables of raw data, and that standardizing testing methods was important.
In addition, it pushed engineers into a taxonomic vein, where different technologies
and materials had to be characterized and classified as similar in order to produce
useful tables. Still, empirical predictions offered a number of ancillary benefits.
Empirical predictions were not only being more accurate, they were also easier to
communicate and teach. The growing importance of cheap paper and printing made
table-filled handbooks much more accessible than they would have been a century
earlier. While engineers might have liked to produce Newtonian equations that were
practically useful, in the end they needed to produce practically useful predictions
more than they needed to participate in the culture of rationality.

1 Mathematics in Engineering

The role of mathematics in engineering is neither an inevitable nor natural devel-
opment, although it often seems so. From the perspective of the twentieth and
twenty-first centuries the use of mathematics in engineering is now so pervasive
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that it is hard to see it as contingent at all. Historians have gone back to many
episodes in the history of engineering to uncover the use of mathematics, in say,
the building of the cathedrals, the pyramids, and Roman aqueducts. In most of
these cases some underlying mathematically principles have been found, even
some useful calculations. However, in looking for the precursors of mathematical
thinking, scholars are telling, perhaps unintentionally, a normative story, a story of
how it could have been, had mathematics been privileged as a way of knowing in
the past as it is in the present. It is too hard to imagine an epistemology in which
structures as grand and complex as, say, the Pantheon or the Duomo were built
without mathematical predictions using experiential methods. As a result seekers of
mathematical justification find them, in principles, just not in the archival evidence,
such as it is, of large, pre-modern building projects.

Resisting the temptation to understand the use of mathematics after the scientific
revolution as contingent is equally difficult. The story of the mathematization of
mechanics is paradigmatic in the history of science and follows a well-known
arc from observational science to awkward mathematization (Copernicus) to more
elegant mathematics (Kepler) to the generalized axioms of Newton’s Principia, all
the way to Lagrange’s sophisticated extension of celestial mechanics. Practitioners
in the seventeenth through nineteenth century also saw and approved of this story.
The story seems to tell us what we want to believe about the way mathematization
should be. It becomes a normative story and other episodes are fit into its
pattern, a pattern that explains nothing less than the emergence of physics as
paradigmatic mathematical science. Engineering practitioners also believed that the
mathematization of their work would and has followed a rational and progressive
pattern. As a result of the widespread (aspirational) belief in the natural course of
mathematization in mechanics and engineering, some scholars have imposed this
story. (Heyman 1998; Narayayan and Beeby 2001)

Claiming that mathematization was contingent is not a claim that engineers in
the eighteenth century weren’t trying to make engineering a more mathematical
endeavor. A number of historians have explored especially French efforts in the
eighteenth century to impose mathematics on engineering practice. France is
the center for these efforts because the French state build the social and proto-
professional infrastructure needed to be able to teach aspiring engineers how
to use mathematics. Ken Alder argues persuasively that the French state also
used mathematical knowledge and skills to qualify students for admission to the
engineering academies. (Alder 1997, 1999) Janis Langins’s history of fortifications
engineering in France in the eighteenth century shows the deep-seated mathematical
beliefs that repeatedly shaped what engineers thought they were doing. Jean Errard,
a fortifications engineer from Lorraine, wrote a treatise in 1600 titled, “Fortification
Reduced to an Art and Demonstration.” In this treatise he claims mathematical rigor
and contempt for mere “empirics.” But there is no real rigor in his treatise. He cannot
calculate any of the design principles he lays out. Langins argues, “it is not always
clear what engineers mean when they talk of mathematics.” (Langins 2004) Later, in
describing the non-use of mathematics in one of Augusto Ramelli’s works, Langins
writes, “mathematics seems nothing more than a rational approach to nature and
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problem solving.” (Langins 2004) Langins’ argument is engineers wanted recourse
to the mathematical (geometric) virtues of demonstrability and certainty and felt that
a rational science of fortress designed based on geometry could posses those same
virtues, as mechanics did. The fact that mechanics was still only an “in principle”
science that did not produce good coherence with the behavior of real objects and
materials did not worry these engineers.

Mathematics offered engineers what Peter Galison and Lorraine Daston term
epistemic virtues, and engineers wanted to claim them for their own work, so
they did. (Galison and Daston 2007) In Objectivity, Galison and Daston focus
on representations, mostly in scientific atlases as the kinds of objects to consider
when constructing epistemic virtues, but do different epistemic virtues attach to
different schemes of mathematization? Are the virtues of geometry different from
those of the calculus or of statistics? More to the point, are there different virtues
in advancing rational mechanics versus testing materials to produce more accurate
and useful strength of materials tables? I will argue that these modes do represent
different epistemic virtues and follow Galison and Daston’s claims that “science
dedicated above all to certainty is done differently—not worse but differently—
from a science that takes truth-to-nature as its highest desideratum.” (Galison and
Daston 2007) The certainty/truth-to-nature dichotomy doesn’t exactly map onto
rationalism/empiricism, but it offers important parallels. The different epistemic
goals of rationalism and empiricism in the hands of engineers present different
epistemic virtues and different mathematical tools are methodologically appropriate
for achieving these ends.

2 Navier, Ponts des Invalides, and the Challenge
to the Analytical Ideal

Eda Kranakis makes an even bolder set of claims for the rhetorical value of
mathematics in engineering in her comparative study of French and American
bridge designers. She writes, “In France, the prevailing view was that mathemat-
ical theory should precede and guide both experimental research and empirical
practice . ..In the US the prevailing view was that experimental research should
guide design efforts and that they should emerge from experimental and empirical
work.” (Kranakis 1997) French engineers wanted to deduce technological solutions
from mathematical theory. (Kranakis 1997) Engineers like Navier believed that
constructive practice could be fully deduced from mathematical theory. Antoine
Picon calls this the “analytical ideal.” (Picon 1987-1988) When Navier’s models
failed to predict the behavior of real materials, he blamed the engineers who needed
to “give more careful attention to how necessarily idealized theories could be made
to yield useful information with minimum distortion and error.” (Kranakis 1997)
Navier put his own mathematical approach to the test with the Pont des Invalides
suspension bridge in 1826. When the anchors of the bridge failed (following some
flooding caused by a broken water main), Navier’s mathematical model failed to
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predict the problem (strain in the buttresses’ anchors that led to cracking). Kranakis
writes, “He evidently felt confident that he could determine the resultant force
accurately enough to position a comparatively slim buttress at just the right point
to provide the necessary resistance. Yet he gave no indication of how to ensure
that in practice such buttresses would be placed exactly where theory said they
should be.” (Kranakis 1997) Kranakis rightly points out that Navier’s error was
not inevitable—the shear and lift forces on the buttress that failed were predictable,
but only through empirical means. Navier dismissed the need to test his design,
and did not compensate for his lack of empirical knowledge by strengthening the
buttress. He trusted the analysis, yet after the fact he admitted that his theory could
not predict the behavior of the anchorage. Navier’s superiors had also made the
anchorage much stronger and larger than Navier had specified.

Navier’s unquestioning belief in his mathematics was the problem. Not all French
contemporaries felt sympathy for Navier. In Le Curé de Village Balzac wrote
critically of both Navier and his Ponts et Chaussées apologists, “All France knew
of the disaster which happened in the heart of Paris to the first suspension bridge
built by an engineer, a member of the Academy of Sciences; a melancholy collapse
caused by blunders such as none of the ancient engineers—the man who cut the
canal at Briare in Henri IV’s time, or the monk who built the Pont Royal—would
have made; but our administration consoled its engineer for his blunder by making
him a member of the Council-general.” (de Balzac 1899; Kranakis 1997)

3 American Responses and the Empirical Turn

The experience of Navier’s bridge came quickly to the US. As Kranakis shows, most
American engineers were brutally empirical, experiential even, and once they found
a design that worked they often used it everywhere, hence the attraction of patented
bridge truss designs. Materials might change based on local availability of materials,
and some engineers would do tests on the new materials, but by the 1840s there
were dozens of material property handbooks that provided arithmetic calculations of
material strength for use in the field by engineers with limited mathematical training.
However, there was a group of engineers concerned with Navier’s failure, and who
shared his belief in the certainty and deductive utility of mathematical models. West
Point (US Military Academy) engineers were trained in primarily French methods
from 1802 through the 1850s. Claudius Crozet, a polytechnicien, first brought his
textbooks to West Point in the first decade of its existence. After a period of some
instability, Sylvanus Thayer took over the Academy in 1817, fresh from an 18 month
course at the Ecole Polytechnique.! Upon assuming the superintendent’s position he

'It is worth noting that while Thayer used the Ecole Polytechnique as a golden engineering
credential, the Ecole des ponts et chaussées and Ecole du génie de mézieres probably offered
more relevant, if less elite, training.



Rational and Empirical Cultures of Prediction 29

re-dedicated the Academy to French rational mechanics. Then in the 1830s French-
trained Dennis Hart Mahan took over the cadets’ instruction in statics and wrote
his own treatise, following French standards. Mahan first introduced calculus-based
theory.

There was a full generation of West Pointers working on American infrastructure
when Navier’s bridge collapsed in 1826. They wrote extensively about the accident
in their preferred publishing venue, The Journal of the Franklin Institute (hereafter,
JFI). Alexander Dallas Bache had recently taken over the Franklin Institute and
reformulated the Journal. The JFI then in turn shaped the kinds of things engineers
knew or were expected to know. Bache—a West Point trained engineer, probably
best known for his efforts to secure government patronage for American science,
and the later director of the U.S. Coast Survey— immediately raised the technical
literacy of the papers published in the Journal. Bruce Sinclair, in his history of the
Franklin Institute, discusses Bache’s aspiration toward publishing in this way:

To Bache research always implied publishing. Publishing was infused with the same
values the same ambitions as original investigation in science. Publication was the way to
reputation for men with career aspirations. But it was also the yardstick of a man’s talents,
because it revealed whether or not he had the ability to frame important questions and
provide conclusive results. Publication was the most positive means of erecting standards
for the form and content of science. (Sinclair 1974)

Prior to Bache taking over the JFI, under editor Thomas Jones, the JFI had been
characterized by its efforts to render science “useful in plain language.” (Sinclair
1974) But Bache wanted to reach a different audience, so when he took control of the
Journal he sought out different authors, usually outside the Franklin Institute. The
kinds of articles they produced were markedly different from those Jones published.
For Bache, interested in making science and engineering professional activities,
professionalism meant, at least in part, specialization. Articles were increasingly
technical, increasingly mathematical, and written for an increasingly narrow audi-
ence with particular technical knowledge. No longer were there wide ranging, but
mainly descriptive articles like Jones’ own “Observations on the connection of
mechanical skill with the highest attainments in science: an introductory course on
mechanics” or English engineer Thomas Treadwell’s empirical tract on strength of
materials, “Observations on the use of Cast Iron &c.” The series of articles which
best characterizes the changes Bache made was a long series on the experiments
undertaken at the Franklin Institute on the strength of boilers. Running for six
consecutive issues and taking over 100 pages these articles laid out a significant
research program in the strength of materials producing results which were useful
in application to mechanical construction with wrought iron. This series of articles
was written for the specialist—one had to know quite a bit about working with iron
as well as quite a bit of mathematics in order to find the boiler experiments series
useful.

One of Bache’s favorite JFI contributors was Joseph Totten, a member of the
US Army Corps of Engineers and one-time mentor of Bache’s. Totten had been
trained at West Point in the first decade of the nineteenth century and was stationed
at Fort Adams in Newport, Rhode Island in the 1820s and 1830s. When Totten
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failed to receive the funds he needed to actually build and arm the fort, he took the
opportunity to create a kind of post-graduate school for West Pointers. He would get
the highest ranked graduates for a year or two, and they would come to Fort Adams
to help him undertake experiments to determine the properties of American stone,
mortar, timber and other materials. Given their sophisticated mathematical training
at West Point, this experimental experience was the corrective that Navier himself
lacked. This educational system, combining the rational and empirical, was created
in the 1820s in a joint effort between Totten and Thayer, as they became increasingly
aware that West Pointers weren’t ready to undertake the kinds of projects that they
were needed for. Certainly, they knew about Navier’s accident in 1826 because of
its coverage in the JFL.

The research Totten undertook during his 15 years at Fort Adams ultimately
proved to be just as important for Bache’s career as it did for the dozens of other
West Pointers who passed through the Fort. The partnership between Totten and
Bache was mutually beneficial to the two men, especially through their record of
publication. Prior to Bache taking the helm at the JFI, Totten had published little of
the important Strength of Materials work he oversaw at Ft. Adams. There were a
couple of articles published in the JFI prior to Bache’s editorship and two articles
were published in the journal edited by Yale’s Benjamin Silliman, the American
Journal of Science. However, Totten and his group produced dozens of articles for
the JFI. Totten’s own articles contained not only his research; he also translated
several French works with important notations referring to the differences one might
find in native American materials.

Totten’s efforts reveal the shortcomings of the engineering theories West Pointers
were learning as well as a turn toward the empirical as a solution. When French
equations produced poor predictions, Totten and his engineers focused on generating
new data about materials. Working with Lieutenant Thomas Brown, Totten under-
took a series of experiments on pine and spruce timbers. The equations textbooks
contained might work but the tables they contained derived from French timbers
were inaccurate for American materials. Totten took this, in part, as a patriotic act
to show the superiority of American materials, but primarily he was interested in
making better predictions of beams’ and columns’ behavior. Using very simply
equations like

bd? _
al?
or
bd*c _
=

w

Brown and Totten created simple, arithmetic formulae into which their new data
could be inserted and results calculated. In this equation, b and d represent the
dimensions of the timber (its breadth and depth dimensions), ! represents the
beam’s length and W is the weight applied (in a point load). The first equation
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calculates how much weight the beam can hold before unacceptable deformation
(which Brown and Totten do not clearly define as a ratio of deformation to span,
as would have been common then and now; I think they assume the reader knows
this, and it is a standard ratio). The second equation calculates the load or length
at which the beam will break—W or L will be much larger in this equation than in
the deformation calculation. In the article, Totten and Brown offered tested values
for a, a “constant” of stiffness and ¢, a “constant” of strength. In the equations,
the empirical values are called “constants” because they are dimensionless. It is
important to note that neither of these equations analyze dimensionally into the
correct units; such formalities were ignored by Brown and Totten.> To mathemati-
cians and mechanicians, this could be nothing other than sloppy mathematics. But
dimensional analysis could be solved by giving the empirical values the right units.
This simply wasn’t a concern of Brown and Totten; to them the equations generated
acceptably accurate predictions of the load capacity of timber beams. West Pointers
definitely had the algebraic skills to manipulate the equations to solve for whichever
variable was unknown, whether solving for load or for length of the member. (Brown
1831)

American engineers did not seem to worry about dimensional analysis in the
antebellum period. What this means is that formulae could be combined in very
unique ways—but purists would object. Such combinations were anathema for
polytechniciens. Combining formulae meant that American engineers had far more
tools at fingertips than others did. What these kinds of formulae did was to
produce outcomes that have been empirically determined to be relatively accurate
predictions. In some (many) cases, they were simply curve-fitting exercises with
some physical rationale messily tacked on. But they worked for the purposes
of prediction, which was valorized. Rather than marking American engineering
practices as immature or unsophisticated, such efforts showed that flexibility and
modification in the field was more important than fidelity to principle.

Totten believed his statics was an engineering theory that was useful and useable
by not only West Point trained engineers, but also non-university trained engineers,
who by the 1803s and the railroad boom would begin to dominate the profession,
at least in America. These empirically-based approaches would fortify American
engineers against the Navier errors. Simple algebraic expressions, plus well-tested
empirical values represented the epistemic virtue of early nineteenth century Amer-
ican engineers, and they can be contrasted against the epistemic virtues of Navier
and the polytechnicians. Totten valued prediction and representing the materials at
hand accurately. This entailed a taxonomic project to classify building materials
of different kinds and origins. Navier valued a mode of engineering calculation

2Dimensional analysis is a common enough engineering technique—it means making sure that the
dimensions of a problem will cancel out to leave the answer in the desired units, whether pounds,
kilos, inches, or newtons.
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that represented theoretical mechanics of the highest order and was expressed in
sophisticated mathematical forms, including the calculus and analysis.> (Heyman
1972; Gilmour 1971) The epistemic virtues of the two approaches contrast clearly.

4 Social Causes and Consequences of Mathematization

Denaturalizing mathematics in engineering highlights the question of why engineers
mathematized at all and why they mathematized in different ways in different
places. Perhaps engineers presented their work as theoretical and scientific in
order to impress their audiences; mathematization was characteristic of a grab for
professional status. While this makes sense to a twenty-first century audience, there
is little historical evidence to support it in the eighteenth and nineteenth centuries,
even in France. Frederic Graber’s article on the Ourcq canal actually points to the
liability of presenting sophisticated mathematics to audiences who lack the skills
to assess the veracity of the mathematics. (Graber 2008) Graber argues that the
Ecole and Corps des Ponts et Chaussées were far less mathematically sophisticated
than the military engineers educated at Mézieres or the graduates of the Ecole
Polytechnique. Governed by the Ponts et Chaussées Assembly, a group of older
engineers, they often found proposals stacked with cutting edge mathematics They
were unswayed by mathematics that was unfamiliar to them. The analytic ideal
apparently did not extend to them; their epistemic virtues were likely closer to the
empiricism of the American engineers like Totten.

Ken Alder also argues that even in eighteenth century French military engi-
neering the social status of sophisticated mathematics was not the motivation
for implementing them in French engineering schools. (Alder 1997) As a result,
simpler, empirical methods, when they produced more accurate predictions, earned
the confidence of engineers and their patrons, and did not have inherently lower
status among their users.

Useful rational mechanics created demands that could not be met in the American
(or colonial) world. They demanded an extensive system of mathematical education,
which itself required the capacity to sort potential students. Ancien Regime France
was seeking these to build the capacities in order to strengthen the military by
making it less dependent on the aristocracy and more open to other social classes.
(Alder 1999) In the US, labor sorting was also an interest of the state and of
nascent engineering institutions, but the problem was not breaking the lockhold of
the upper classes, but rather determining ways to expand the number of engineers,
especially during the years of the early railroad building boom. These differing
social class and national priorities clearly pushed in different directions on systems
designed to produce engineering and expert knowledge. Epistemic virtues were

3Coulomb had introduced the calculus into statics in the 1770s. Military and civil engineering
academies taught these methods in the period following the French Revolution.
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measured not only by practicing engineers, but also by the states that valued these
experts. Methods like Totten’s that were relatively easily taught were attractive
in the US; whereas methods that appeared to offer openness and meritocracy, as
the analytic ideal did, were politically useful in France, both before and after the
Revolution.

What the Ponts de Invalides collapse and other episodes with poor predictions
showed was that rational mechanics could fail to produce exactly the predictions
that would be most interesting and useful to know. In some obvious sense poor
predictions weren’t the math’s ‘fault;’ rather, they were produced by models that
lacked salient details. But those details were available to empirical engineers, who
built models and discovered material behaviors they did not expect. In terms of
producing accurate predictions, the rational could not compete with the empirical.
The project of combining the rational and the empirical would dominate further
developments in the statics and strength of materials of the nineteenth and twentieth
centuries. The development of statistical methods also played a key role in reducing
empirical data to fit into rational, analytical frameworks.

S Engineers’ Ways of Knowing: Numeracies

By the late eighteenth century it is clear that engineers in different settings had
different preferences, with different epistemic virtues, regarding what types of
mathematical models to use. American Army Corps of Engineers men were seduced
as West Point cadets by French mathematical sophistication, but found out that
on the job their predictions were not as good as they expected. They moved to
supplement, and eventually throw over, rational mechanics with empirical testing
of materials and models. Others, lacking the introduction to French methods,
though empirically derived formulae were more than sufficient. Engineers who
chose patented truss bridges from catalogs went one step further and let someone
else do the calculating altogether. What is clear is that engineers had (and have)
what John Pickstone would call multiple ‘ways of knowing’ and multiple ways of
knowing mathematically. (Pickstone 2000) Pickstone uses the notion of ‘ways of
knowing’ to describe are four-fold: natural historical; analytical; experimental; and
technoscientific. Engineers have lots of ways of knowing: mind versus hand; shop
versus school; Rational versus empirical. But there are also multiple ways within
Pickstone’s ‘analytical’ category, including arithmetic, geometrical, analytical,
computational. These ways all have different advantages and disadvantages. Some
engineers were omnivorous; they would readily combine different ways of knowing.
Others were true believers and purists in understanding different mathematical
approaches in epistemically hierarchical ways, usually with the calculus at the
top. We can see polytechnicians like Navier as a purists about rational, analytical
methods. On the other hand, handbook authors were true believers in plug-and-chug
methods, empirically derived and effective in the field and useable by nearly anyone
with a grade-school education.
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Rather than refer to these different approaches as mathematical ways of knowing,
I prefer to think of them as numeracies.* Literacy as a concept only makes
sense in the context of particular language. I would not refer to myself in the
United States as illiterate because I cannot read Russian—the concept of literacy
assumes the subject knows a language for communication purposes but is unable
to read or write it. Numeracy can and should be developed as a parallel concept.
Mathematics educators do address these ideas when they worry about ordering
the secondary mathematics curriculum. Students may learn calculus but doing so
will not necessarily help them understand statistics.’ (Hacker 2016; Phillips 2014)
Like language literacy, numeracies can also be unproblematically plural — one
can use both geometry and calculus to solve equations, but only if one possess
numeracy in each mathematical mode. Numeracies must also be seen in context;
at times some numercies are higher status than others, but status is dynamic and
changing. Like language literacies, numeracies shape and are shaped by the way
the world looks. To a world in which land was the most powerful form of wealth,
geometrical numeracy was important. Surveyors’ skills and the accuracy of their
work depended their command of geometry. To statistician (or, say, insurance
actuary), aggregate behavior defines a world outlook. Numeracies themselves
espouse and offer different, and not necessarily hierarchical, epistemic virtues. Still,
in the context of education and institution building, hierarchices are often claimed,
as in claims for the superiority of analysis and calculus versus arithmetic and simple
algebra.

6 Conclusion

Since the eighteenth century, engineering culture has held two epistemic virtues in
productive tension.® (Akera 2008) One value is the rationalist dream of calculating
the behavior of the physical world through first principles. This dream rests on the
classic definition of a scientific explanation as a mathematical description that can
produce an observable verification. Prediction is a subordinate to explanation in this
rationalist dream. Engineers in France and Francophile engineering schools bought
into these virtues—they believed them. On the other hand, working engineers
recognized that their status and livelihoods depended on quick, accurate predictions
of (limited) real world phenomena.” They did not need to hold fidelity to first

“Here the British tradition of referring to “maths” makes this easier to explain than the American
word “math.”

This is a recent controversy in the United States.

%Here T highlight two epistemic virtues, but I do no mean to imply there were only two epistemic
virtues in play in this tension.

"Limited, because they didn’t need to predict all possibilities. This wasn’t Hume’s problem of
induction. They knew the bridge wasn’t going to lift off the ground spontaneously, turn into an
apple, or vanish.
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principles in high regard. Theoretical robustness was a low priority because it
didn’t produce what was most valuable. If testing produced the best results, the
only question was whether empirical data could be extended to non-local situations,
situations where the data wasn’t a perfect replica, such as scaled models (but did the
resultant phenomena scale?). The tension between these two values was productive
in that throughout the nineteenth and twentieth centuries better and better methods
were developed for improving the accurate or grounded rational models through the
use of empirically-determined data.
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Mathematization in Synthetic Biology:
Analogies, Templates, and Fictions

Tarja Knuuttila and Andrea Loettgers

1 Introduction

In his famous article “The Unreasonable Effectiveness of Mathematics in the
Natural Sciences” Eugen Wigner argues for a unique tie between mathematics and
physics, invoking even religious language: “The miracle of the appropriateness
of the language of mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve” (Wigner 1960: 1). The
possible existence of such a unique match between mathematics and physics has
been extensively discussed by philosophers and historians of mathematics (Bangu
2012; Colyvan 2001; Humphreys 2004; Pincock 2012; Putman 1975; Steiner
1998). Whatever the merits of this claim are, a further question can be posed
with regard to mathematization in science more generally: What happens when
we leave the area of theories and laws of physics and move over to the realm
of mathematical modeling in interdisciplinary contexts? Namely, in modeling the
phenomena specific to biology or economics, for instance, scientists often use
methods that have their origin in physics. How is this kind of mathematical modeling
justified?

In the following we will shed light on these questions by focusing on the
interdisciplinary research practice of synthetic biology. Synthetic biology is a
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relatively novel field of research located at the interface of physics, biology,
engineering, and computer science. Being situated in this complex disciplinary
environment makes model building in synthetic biology a highly interdisciplinary
task: Methods, techniques, strategies, and concepts from various, even distant fields
enter into and get intertwined in the modeling practice of synthetic biology. One
unique characteristic of this practice is due to how synthetic biologists combine
various kinds of models: model organisms, mathematical models and synthetic
models. The latter ones comprise a novel type of models that are constructed from
biological components such as genes and proteins on the basis of mathematical
modeling. To understand the rationale of this combinational modeling approach one
needs to take a closer look at the strategies of mathematization in synthetic biology.

We will discuss two interrelated means through which synthetic biologists
study models of gene regulatory networks: analogies and mathematical templates.
Synthetic biologists, we argue, proceed to mathematize gene regulatory networks by
compound analogies that draw inspiration from engineered artifacts on the one hand,
and model systems with non-linear dynamics on the other hand. Engineered artifacts
provide material analogs for biological systems, whereas the theory of complex
systems offers formal analogs in the form of various mathematical templates
for analyzing oscillatory phenomena.! A kind of patchwork model results from
such compound analogies that, as we will discuss, consists of elements that may
even draw into opposite directions. These mathematical models nevertheless allow
synthetic biologists to conceptualize biological regulation in terms of positive and
negative feedback loops side-by-side with mathematical templates and methods
that have been applied in various contexts dealing with rhythmic/cyclic behavior
resulting from non-linear dynamics (e.g., physics, chemical kinetics, ecology,
economics). In the modeling process the general templates for describing various
forms of interaction are adjusted to the subject matter in question, but they remain
nevertheless rather abstract, lacking many known empirical details. This contributes
to one typical problem constraining the use of template-based mathematical model-
ing: such models are usually underdetermined by data.

Interestingly, this does not worry synthetic biologists too much. One reason may
be that they do not consider their models to be representations of any specific
naturally occurring gene regulatory networks. Instead, they consider themselves
to be in the business of studying general design principles or network motifs
of gene regulatory systems (i.e., genetic circuits). Being very aware of the fact
that the conceptual and mathematical means they use are often transferred from
other disciplines, they consider their models to depict only possible mechanisms
underlying biological regulation. Such principles could have evolved in natural sys-
tems but biological systems might have implemented different kinds of regulatory
mechanisms. As a consequence the design principles studied mathematically are
best conceived of as fictions and their very fictionality has led synthetic biologists

'For a discussion on material and formal analogies, see Hesse (1966), and Knuuttila and Loettgers
(2014).
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to construct synthetic models on the basis of mathematical models. Built from
biological material, synthetic models can be considered as experimental objects
constructed to study the assumptions and credibility of mathematical models. Yet,
as we will show, the relationship between mathematical modeling and synthetic
modeling is anything but direct—and synthetic models themselves can also be
regarded as fictions, albeit concrete ones. In what follows we will first briefly
introduce the field of synthetic biology and then go over to the discussion of the
means and process of mathematization in this particular field.

2 Synthetic Biology: A Nascent Interdisciplinary Field

Synthetic biology focuses on the design and construction of novel biological
functions and systems. It is often understood in terms of the pursuit for well—
characterized biological parts to create synthetic wholes, and as such it has typically
been understood as a kind of engineering science in which engineering principles are
applied to biology (Church 2005). This view is shared by the public understanding
of synthetic biology as well as the practitioners themselves. According to Jim
Collins, who introduced one of the first synthetic networks, a toggle-switch, in
2000: “[...] synthetic biology was born with the broad goal of engineering or
‘wiring” biological circuitry — be it genetic, protein, viral, pathway or genomic —
for manifesting logical forms of cellular control” (Khalil and Collins 2010).

However, a more basic science oriented branch of synthetic biology has devel-
oped alongside the more engineering and application oriented approaches. This
basic science oriented branch of synthetic biology targets our understanding of
biological organization by probing the basic design principles of life by various
strategies of modeling (see above). The design and exploration of synthetic models,
i.e. engineered genetic circuits constructed from biological material and imple-
mented in natural cell environment, provides the most recent strategy of this kind of
approach (Sprinzak and Elowitz 2005).

The two branches of synthetic biology are not isolated but overlap and interact in
several important ways. First, both make use of compound analogies to engineered
artifacts and abstract model systems showing rhythmic/cyclic behavior. Second, the
scientists in both branches employ largely the same theoretical tools and techniques.
Third, the results gained in the basic science approach are utilized by the engineering
oriented branch and the other way around. The main differences between the
two branches thus lie in the primary aims of the scientists working in them, that
is, whether they probe design principles in order to learn about the mechanisms
operating in biological organisms or in search of design principles, which could be
used in the engineering of novel biological parts and systems. These differences
in aims are largely rooted in the different scientific backgrounds of the scientists.
For example, the majority of scientists belonging to the first group probing the
basic design principles of biological organization come from physics, whereas most
of the scientists belonging to the second, more application oriented group have a
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background in engineering. Moreover, synthetic genetic circuits are so far largely
in their proof of principle phase, and the actual applications of synthetic biology,
like the synthetic malaria drug artemisinin, have in contrast resulted from laborious
tinkering processes in the lab.

2.1 Modeling Biological Mechanisms

Biological systems have an inherent complexity given by the number of the
different components and their interactions embodied by them. Metabolic and gene
regulatory networks provide examples of biological systems that are extensively
studied in synthetic biology (e.g., Bujara et al. 2011; Zhang et al. 2011; Elowitz
and Leibler 2000; Nandagopal and Elowitz 2011). In what follows, we will focus
on gene regulatory networks. Such networks consist of interacting genes and
proteins. Genes and proteins interact via transcription and translation processes.
Figure 1 shows a simplified picture of the main steps of these translation and
transcription processes. Following the central dogma of molecular biology the
DNA (deoxyribonucleic acid) carries all the genetic instructions necessary for
the development, reproduction and functioning of an organism. The information
stored in DNA is transcribed in the process of RNA (ribonucleic acid) synthesis
into individual transportable cassettes, the so-called messenger RNA (mRNA). The
individual cassettes carrying the blueprint of a protein as sequences of amino-acids,
leave the nucleus and enter a complex protein machinery, the ribosome. In this
machinery the transcribed information is translated and used in the formation of
the protein.

The transcription process is activated or inhibited by so-called transcription
factors. These are proteins binding to the promoter site of the gene. Figure 2 shows
an example of such an activator binding to the promoter site of a gene. In the upper
part of the picture the transcription factors binding to the promoter site inhibit RNA
polymerase. In the lower part of the picture the transcription factor gets released by
proteins moving into the cell and the transcription process starts.

Many important biological functions are based on gene regulatory networks. A
prominent example is the circadian clock, which regulates day and night rhythm in
biological organisms. The early modelers of biological organization had suggested
already in the 1960s that the rhythmic behavior observed in the circadian clock is
controlled by a molecular feedback mechanism (Goodwin 1963; Winfree 1967). For
example, Colin Pittendrigh, who studied circadian rhythms on Drosophila wrote that
the: “[...] commonest device in installing regulators—from the control of heartbeat
to that of protein synthesis—is negative feedback. And one of the innate tendencies
of such feedback systems is to oscillate” (Pittendrigh 1961: 122). Yet it has remained
an open question as to whether gene regulatory networks in biological systems
implement control in the same way as human engineered systems.

Synthetic biologists have followed the tradition of modeling the organization
of biological systems in terms of feedback systems, although the relationship of
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Fig. 1 The diagram shows the main elements of the transcription and translation processes
according to what is called ‘the central dogma of molecular biology’ (https://nanohub.org/
resources/17701/watch?resid=17812) The central dogma was introduced by Francis Crick in 1958.
The dogma states that genetic information, which is transcribed from DNA into RNA and used in
the production of proteins, cannot flow in the reverse direction

this modeling paradigm to experimental results is far from straightforward. The
exploration of regulatory networks in model organisms is very complicated even
in the case of such “simple” organisms as the bacteria Escherichia coli. It requires
a lot of experience and skill to determine the constituent elements (genes, proteins)
of the network, its structure and the interaction between the elements. Although
the results of experimentation with model organisms are interpreted in terms of
design principles adapted from engineering, recent results in synthetic biology
show that gene regulatory networks can function in rather counter-intuitive ways.
Nature seems to make use of different kinds of principles than human engineers,
exploiting, for example, stochastic fluctuations (i.e., noise) in a functional way
(cf. Cagatay, Turcotte, Elowitz, Garcia-Ojalvo, and Suel 2009). Engineers typically
try to eliminate noise from their systems (see below). Such results as these are bound
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to question the basic concepts and assumptions made by mathematical modeling
of genetic circuits. This friction between the work on mathematical models vis-a-
vis model organisms has led synthetic biologists to introduce a novel, additional
model type, a synthetic model, which is located between mathematical models and
model organisms. In the next sections we will study how the mathematical models
of gene regulatory systems are constructed and the way these mathematical models
are related to synthetic models.

3 Analogical Reasoning and the Use of Templates

As discussed above, scientists have assumed for some time that negative and/or
positive feedback mechanisms play an important role in controlling biological
functions (Jacob and Monod 1961; Goodwin 1963; Winfree 2001). This assumption
was to a large part based on drawing analogies to engineered systems and it also
formed the basic idea on which the mathematical models of biological regulation
were built. The starting point of such mathematical model consists often of what
synthetic biologists call a foy model. It is a model of a stylized abstract mechanism,
such as a simple negative feedback mechanism, which is then being extended and
refined taking into consideration some subject specific empirical knowledge. Below
we will discuss some essential steps of designing a mathematical model from an
initial toy model.

Negative feedback loops provide a control mechanism of a very general char-
acter: models of negative feedback can be found from many different contexts
such as engineering, biochemistry, and physics. In a negative feedback loop the
output feeds back into the input of the system repressing the further output and by
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Fig. 3 Two network motifs: b
b depicts a negative feedback

loop and ¢ a positive feedback

loop (Alon 2006: 451)

doing so stabilizes the system. In designing mathematical models of gene regulatory
networks an oft-used motif is autorepression. In the case of autorepression, the gene
product of a gene A suppresses its own function by binding to its (transcription)
site.

The process of autorepression in gene regulatory networks is shown on the
left hand side of the picture and the right hand side shows a sketch of a positive
feedback loop. The simple diagram (Fig. 3) omits all biochemical details, the
structure of genes and proteins as well as such essential parts of the mechanism
as the binding of the activator to the promoter site etc. As discussed in the last
section, the gene regulatory mechanism is comprised of a transcription and a
translation part. During transcription the protein functions as a transcription factor
binding to the transcription site of the gene. In the first step one observes an
initial rise in the production of the gene product. But when the concentration
reaches the repression threshold, which means that the transcription of the gene
product becomes repressed, the production rate decreases and the system locks
into a steady-state level. This locking into a steady state can be accompanied with
oscillations in the protein level. Finding the conditions for sustained oscillations is
one of the aims of mathematical modeling because many biological phenomena are
periodic/rhythmic, and oscillations are thought to underlie the organization of such
important gene regulatory systems as the circadian clock.

However, such oscillations also mark an important difference between feedback
mechanisms in engineering and biology. Whereas oscillations in protein levels are
essential for controlling biological rhythms, in engineered artifacts oscillations are
typically regarded as unwanted and the systems are designed in such a way that
oscillations are suppressed. For example, all kinds of electronic control systems
typically have to avoid such oscillations in order to function reliably. Familiar
examples of such devices are thermostats and cruise controls. This shows that the
dynamic features of the regulation mechanisms are different in the case of biological
systems despite the initial analogy to engineering. Brian Goodwin described this
point in his influential book Temporal Organization in Cells (1963) in the following
way: “The appearance of such oscillations is very common in feedback control
systems. Engineers call them parasitic oscillations because they use up a lot of
energy. They are usually regarded as undesirable and the control system is nearly
always designed, if possible, to eliminate them” (Goodwin 1963: 5).

Once the simple sketch of a feedback mechanism has been designed, it has to be
translated into a mathematical model. Such mathematical model typically consists
of a set of differential equations, one modeling the production and degradation
of a protein and a second one modeling the mRNA synthesis and degradation.



44 T. Knuuttila and A. Loettgers

The model then gets adjusted to the particularities of the biological system under
study. This modeling approach is very common in kinetic theory and the differential
equations are essentially kinetic equations. The challenge is how to choose the
relevant biochemical parameters and to determine their values. These limitations
are of both of a practical nature (i.e., how to measure the values of the biochemical
parameters, which are part of dynamical processes), as well as theoretical, regarding
the lack of knowledge and theoretical insight that would guide the search for the
most relevant parameters.

Clearly, this process of model construction disregards most biochemical details
as well as the rich structures of genes and proteins. Goodwin discussed this
abstract character of mathematization accordingly: “[...] in the study of the dynamic
properties of a class of biological phenomena such as we are attempting, it is
necessary to extract a manageable number of variables from the very large array
which occurs in biological system. Is it ever possible to make such an extraction or
simplification without doing violence to the very basis of biological organization,
its inherent complexity? There is certainly no a priori answer to this question, and
the only procedure is to try to find some set of variables which appear to constitute a
reasonably self-contained system? and see if one can get meaningful and useful
results relating to its behavior.” (Goodwin 1963: 9). The work by Goodwin on
temporal organization in cells has been fundamental in modeling cyclic processes
in biological systems such as the circadian clock. He provided the elementary
mathematical model that functioned as a basic template for the construction of such
synthetic models as the Repressilator, nearly four decades later.

Let us finally note how the quote by Goodwin mediates the lingering sense of
not knowing much of the details. And even after the 1980s when experimental
data on genes and proteins involved in circadian clocks in various model organisms
started to accumulate, the situation has not changed too much. The limits to what
the scientists know about the components, organization and biochemical details
of biological systems such as the circadian clock are still pressing. Because of
this the already established conceptual frameworks from other areas, such as
negative and positive feedback loops, provide at least a starting point for the first
modeling attempts. And a corresponding mathematical framework is provided by
the computational templates and methods that are used in modeling non-linear
dynamic systems. These initial mathematical models for representing and studying
various kinds of abstract feedback systems need mathematical articulation and
adjustment in view of the systems at hand, yet modelers have to simultaneously
take into account the mathematical constraints on how much detailed information
can be expressed and studied by these models.

2This notion of a “reasonably self-contained system” bears an interesting link to the theme of
fiction discussed below in Sect. 5.
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3.1 Mathematical Templates for the Study of Gene Regulation

The general equations used by many systems and synthetic biologists (e.g., Good-
win 1963; Elowitz and Leibler 2000; Alon 2006) to describe the processes of
transcription and translation are of the following form:

d
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where m is the concentration of RNA and p the concentration of protein, ¢, and
the production, and §,, and B, the degradation rates of RNA and the protein. This
set of differential equations is called rate equations. It is used in chemical kinetics
to describe the rate of reactions. These equations provide an example of what Paul
Humphreys (2004) calls a computational template. With the concept of a compu-
tational template Humphreys refers to genuinely cross-disciplinary computational
devices, such as functions, sets of equations, and computational methods, which can
be applied to different problems in various domains. An example of such a template
is the Lotka-Volterra model, which provides one of the simplest templates for
modeling non-linear dynamics. In fact, the rate equations are at a formal level close
to Lotka-Volterra equations.’> The equations are of such a general character that
without knowing that they are describing transcription and translation in a genetic
network one could as well take them to describe something else, for instance some
chemical reaction. In other words, these differential equations are able to describe
the general dynamic behavior of various kinds of systems independently from many
particularities of these systems. In addition to generality, Humphreys explains the
cross-disciplinary usability of computational templates by their tractability. This
is one important reason for the introduction of the rate equations from chemical
kinetics to the study of genetic regulation: one can easily calculate the steady states
of the system.
The steady states are calculated in the following way:
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— =0
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dt

3For Lotka-Volterra equations as computational templates, see Knuuttila and Loettgers (2011,
2016).
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the condition for the steady state is fulfilled by:
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On the basis of these general equations it is possible to specify in more detail the
kind of regulation process one is going to study. For example, if the protein p in the
set of general equations (1) functions as a repressor one has the case of negative
autoregulation/ negative feedback loop. In this case the protein p inhibits the
transcription process and therefore its own production. This will lead to oscillations
in the protein level.

A first possible step in the adjustment of the differential equations consists in
making the assumption that RNAp (RNA polymerase) binds fast to the transcription
site being represented by the promoter activity function. This simplifies the problem
in such a way that one does not need to take explicitly into consideration the binding
of RNAp.* The differential equations for the process of autorepression are then of
the following form:

dm

dt =0y gR(r) ﬂm'
dp

& =, -m—PB,-r

with gg(r) as the promoter activity function and r the number of repressors. The
differential equations are non-linear and coupled. The change in the number of m
(mRNA) depends on the number of the repressors r, and the other way around,
the number of repressors on the number of mRNA. The resulting set of non-linear
coupled differential equations cannot be solved analytically.

In sum, in mathematizing biological circuit systems synthetic biologists typically
start from the analogies drawn to electric circuits and render the network motifs
that describe various kinds of feedback loops into equations by using the toolbox
of modeling complex systems, especially the non-linear differential equations.
However, as a result the models arrived at are abstract in that they lack a lot of
details, and furthermore, there is the problem that the formalisms have not typically

4QOther scientists such as Brian Goodwin take the binding of the RNAp into account. This makes
the differential equations more difficult by adding a further variable.
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been developed with biological systems in mind, although they have been adjusted
to take into account some features of the subject matter in question. This abstract,
hypothetical and interdisciplinary nature of the mathematical models of genetic
circuits has led synthetic biologists to develop a novel modeling method, synthetic
modeling. Synthetic models probe to what extent it is legitimate to suppose that
gene regulatory networks function on the basis of feedback mechanisms of some
kind. Synthetic models are biological networks that are engineered from genes and
proteins on the basis of mathematical models. In that sense they can be considered
epistemic tools that are constructed to study the design principles depicted by the
mathematical models.’ In a sense this strategy can be seen as a way to materially
embody and recontextualize the template-based, sparse and “foreign” mathematical
models into the actual biological conditions where the dynamic, mechanism or
function under study is located.

4 Synthetic Modeling — The Repressilator

The Repressilator is a simple engineered gene regulatory network. It is one of the
first and most famous synthetic models, introduced in 2000 by Michael Elowitz and
Stanislas Leibler (Elowitz and Leibler 2000). The Repressilator consists of three
interacting genes connected via a negative feedback loop creating oscillations in
the protein level. In gene regulatory systems, as we have seen, oscillating proteins
are the essential part of the control. The basic network design is taken from
electronics: The Repressilator is a biological version of a ring oscillator. Before
the Repressilator was built, Elowitz and Leibler designed a mathematical model
of it utilizing mathematical tools that had been developed to study the biological
feedback systems (discussed in the previous section).® One particular book was
of special importance for the design of the Repressilator: Biological Feedback by
Thomas and D’ Ari (1990), which presents a formal methodology for analyzing the
dynamic behavior of complex systems.” In this book feedback systems are analyzed
and described in a very general way—that is, it provides computational templates
for analyzing different kinds of feedback systems.

30n the notion of an epistemic tool, see Knuuttila (2011).

SFor example, the properties and dynamic features of network motifs describing recurrent
structures in genetic networks (e.g. feedforward and feedback loops) can be analyzed by making
use of the Michaelis-Menten equations (Berg et al. 2002).

"Personal communication by Michael Elowitz.
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Fig. 4 The main structure of the Repressilator

4.1 The Mathematical Model of the Repressilator

Already the seemingly simple set of differential equations presented in the Sect. 3
leads to complex dynamics. More complicated models of gene regulation can be
built on this basic template. The mathematical model underlying the Repressilator
provides an example of such a model (Elowitz and Leibler 2000). The Repressilator
consist of three genes, TetR, Lacl and Acl, which are arranged in such a way that they
inhibit each others’ activity (see Fig. 4). The fourth gene used in the construction of
the Repressilator is a Green Fluorescent Protein (GFP). The GFP gene is not part
of the differential equations, as it does not contribute to the dynamic of the system
(as discussed below). The dynamic of the Repressilator results from the following
mechanism: The protein related to each gene represses the protein production of its
neighboring gene. This leads to oscillations in the protein levels of the respective
genes. The mathematical model Leibler and Elowitz constructed was based on
the two differential equations for autorepression. In the case of the Repressilator,
instead of one gene and its protein, one has 3 genes and proteins—and therefore 6
coupled differential equations of the following form:
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The three proteins lacl, tetR, cl are produced by the genes of the Repressilator.
The set of differential equations is basically of the same form as the one discussed
above. It consists of a production and a degradation term. As before, p; denotes the
number of proteins and m; the number of mRNA. In the case of a saturating number
of repressors, the number of proteins is given by o because of some leakiness
at the binding side. In the case of no repressors, the number of proteins is given
by o + ag - B, which denotes the ratio of the protein over the mRNA decay rate.
The Hill coefficient denoted by n describes the binding strength of the proteins
to the transcription site. Thus the differential equations take into account specific
biomolecular properties such as leakiness and binding strength.® However, those

8Even if all the active sites of the proteins are occupied by repressors one observes some production
of proteins, which is expressed by « . This is what is meant by leakiness.
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parameters are usually not known and have to be estimated by computer simulations.
In those computer simulations a stability diagram is produced marking regions of
stable and unstable solutions of the differential equations for different values of
a, B and n. Only when the studied state becomes unstable, sustained oscillations
may occur. Since Elowitz and Leibler were interested in regulation by oscillations
they focused on the latter case. Only sustained limit-cycle oscillations could provide
the rhythm for controlling day and night rhythms in biological organisms.

The computer simulations performed by Leibler and Elowitz gave them more
insight into the biochemical conditions of sustained oscillations: “We found that
oscillations are favoured by strong promoters coupled to efficient ribosome-binding
sites, tight transcriptional repression (low ‘leakiness’), cooperative repression char-
acteristics, and comparable protein and mRNA decay rates” (Elowitz and Leibler
2000: 336).

To sum up, the preceding discussion on mathematical modeling in synthetic
biology shows how a mathematical model of gene regulation is constructed: by
introducing rate equations from chemical kinetics and combining them with a
special control mechanism adopted from electrical engineering one can arrive at
a general form of coupled differential equations. These differential equations need
then to be adapted to the subject matter under investigation by specifying parameters
such as binding strength and by exploring different possible dynamics related to the
parameters. All these modeling activities can be best described as developing and
exploring a blueprint for the construction of the subsequent synthetic model.

4.2 The Repressilator

The synthetic model, the Repressilator, was constructed on the basis of the
mathematical model and consists of two parts (Fig. 5). In the diagram the synthetic
genetic regulatory network, the Repressilator, is shown on the left hand side. The
outer part is an illustration of the plasmid constructed by Elowitz and Leibler. The
plasmid is an extra-chromosomal DNA molecule integrating the three genes of
the Repressilator. Plasmids occur naturally in bacteria. In the state of competence,
bacteria are able to take up extra chromosomal DNA from the environment. In the
case of the Repressilator, this property allowed the integration of the specifically
designed plasmid into E.coli bacteria. The inner part of the illustration represents
the feedback loop between the three genes, TetR, Lacl nd \ cl, whose dynamics was
studied in advance by the mathematical model. The left-hand side of the diagram
shows the Reporter consisting of a gene expressing a green fluorescent protein
(GFP), which is fused to one of the three genes of the Repressilator.

The construction of the Repressilator critically depended on the development of
new methods and technologies, such as the construction of plasmids, Polymerase
Chain Reactions (PCR) and Green Fluorescent Proteins (GFP). GFP became
available in the mid-1990s (Chalfie et al. 1994) and very soon also fluorescent
proteins with yellow (YFP) and red channels (RFP) were introduced (Elowitz et al.
1997). By fusing GFPs into a gene regulatory network, implemented within for
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Fig. 5 The main components of the Repressilator (left hand side) and the Reporter (right hand
side) (Elowitz and Leibler 2000: 336)

Fig. 6 The picture shows
E.coli bacteria into which
next to GFP’s also yellow and
red fluorescent proteins have
been introduced (Elowitz et
al. 2000 1184)

example E. coli, the expression of genes becomes visible and can be analyzed.
Figure 6 shows a picture of “blinking bacteria” from the work of Michael Elowitz
(Elowitz et al. 2000). In analyzing the intensity of the light emitted by the GFP, YFP,
and RFP of the E.coli, synthetic biologists like Elowitz and his co-workers, try to
get insight into the dynamic of such networks and how they give rise to specific
biological functions. This kind of analysis comes with several challenges and
difficulties. For example, the measurements may indicate that two genes interact,
but this does not necessarily mean that one can assign in a straightforward fashion a
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mechanism underlying that interaction. Moreover, even if the two genes interacted,
this does not indicate that this interaction would play any functional role in the
biological system.

The GFP oscillations in the protein level of the Repressilator made visible the
molecular behavior of transformed cells, i.e. the cells in which the Repressilator
was implanted. It turned out that the Repressilator was indeed able to produce
oscillations at the protein level but these oscillations showed irregularities. Interest-
ingly, to find out what was causing such noisy behavior Elowitz and Leibler reverted
back to mathematical modeling. In designing the Repressilator, Elowitz and Leibler
had used a deterministic model. A deterministic model does not take into account
stochastic effects such as stochastic fluctuations in gene expression. Performing
computer simulations on a stochastic version of the original mathematical model,
Elowitz and Leibler were able to reproduce similar variations in the oscillations
as observed in the synthetic model. This led researchers to the conclusion that
stochastic effects may play a role in gene regulation—which gave rise to a new
research program attempting to identify sources of noise in biological systems
and the effect of noise on the dynamics of the system (e.g., Swain et al. 2002).
This research program makes extensive use of combinational modeling: the role
of noise in biological systems was not only studied and explored by making
use of mathematical and synthetic modeling but also by comparing the network
architectures in model organisms such as B. subtilis and in synthetic systems (e.g.,
Stiel et al. 2007). Model organisms have become an increasingly important part of
the modeling practice of synthetic biology laboratories.

5 Fictions: Abstract and Concrete

Above we have described the complex interplay of mathematical modeling and
synthetic modeling in synthetic biology. Due to the way mathematical models
are constructed they remain abstract and describe only possibilities. However, this
is also an advantage of mathematical modeling as the abstract general templates
make it possible to study several possible scenarios by adjusting them accordingly.
This gives modelers a handle on how things could be and what reasons might
underpin why these things might be organized in this or that way. The case of the
Repressilator showed how synthetic modeling can probe the biological realisticness
or implementability of the possible mechanisms depicted by mathematical models.

It is already evident how synthetic modeling has affected synthetic biology:
Biology in all its complexity has occupied the central stage. Important engineering
notions on which synthetic biology has been grounded, such as noise and modu-
larity, have been reinterpreted and some analogies drawn to engineering have been
questioned (see Knuuttila and Loettgers 2013, 2014).

Yet, in order to study the new questions raised by synthetic modeling, researchers
typically revert back to mathematical modeling. A good example of this is provided
by a recent study by Tatiana T. Marguéz-Lago and Jorg Stelling (2010) who, by
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employing a series of what they call “minimal models,” studied some counter-
intuitive behaviors of genetic circuits with negative feedback. As discussed above,
the Repressilator and related studies made synthetic biologists seriously consider
how noise could have a functional role in biological organization (cf. Loettgers
2009). Marguéz-Lago and Stelling have further analyzed the implications of
stochastic fluctuations (i.e., noise) by mathematical modeling. They write: “It has
often been taken for granted that negative feedback loops in gene regulation work
as homeostatic control mechanisms. If one increases the regulation strength a less
noisy signal is to be expected. However, recent theoretical studies have reported the
exact contrary, counter-intuitive observation, which has left a question mark over
the relationship between negative feedback loops and noise” (Marguéz-Lago and
Stelling 2010: 1743). Marguéz-Lago and Stelling’s article is a telling example of
how mathematical models are used to explore different possible explanations for
such unexpected behaviors. Starting out from a simple foy model, one that cannot
represent realistically any biological system, the scientists explore the conditions
for different observed behaviors. They create different possible design principles,
which could occur but do not necessarily exist in any natural systems. Thus the way
mathematical models are designed and used in synthetic biology serves to highlight
their fictional character.

This exploration of possible natural design principles resonates interestingly
with the recent philosophical discussion on the fictional nature of modeling (cf.
Suédrez 2009). For instance, Peter Godfrey-Smith approaches the contemporary
model-based theoretical strategy in terms of imagined non-actual objects which
are investigated and explored in order to learn something about real-world objects.
An important property of these imagined non-actual objects is that they could be
concrete if real. Or in the words of Godfrey-Smith: “[ . .. ] what I see model-builders
are after is trying to describe and understand systems that are only imaginary, but
which would be concrete if real” (Godfrey-Smith 2009: 101). Synthetic biologists
proceed in this way, taking this process even a step further by constructing concrete
fictions. The mark of fiction is thus not in its imaginary non-concrete nature but
its being a self-contained system that can be manipulated and explored (Knuuttila
2009; Rouse 2009). By engineering gene regulatory networks from biological
components synthetic biologists design concrete fictions, which can be tested by
and compared with mathematical models—or even transferred into an engineered
object fulfilling a specific task.

It is not difficult to uncover the fictional features of a synthetic model such as
the Repressilator although it is a biological construct functioning in a living cell: Its
components (and their number and arrangement) had to be chosen in view of what
would be optimal for the behavior under study. The genes used in the Repressilator
do not occur in such a combination in any known biological system but are chosen
and tuned on the basis of the simulations of the underlying mathematical model and
other background knowledge’—in such a way that the resulting mechanism would

9This draws synthetic modeling close to simulation modeling, which brings to mathematical
modeling exploratory and experimental features (e.g., Lenhard 2007).
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allow for sustained oscillations. These technical constraints imply a constraint on
what can be explored by such synthetic models: they also study possible design
principles in biological systems. In that synthetic models are like mathematical
models, they still only provide “how-possibly” explanations. This emphasis is clear
from the writings of synthetic biologists.

Leibler and Elowitz did not claim that their synthetic system corresponds to
any actual mechanism at work in biological systems. On the contrary, they were
very much aware of the limitations of their procedure of drawing analogies to
mechanisms, which have been proven to work in engineering but not necessarily in
biology. Elowitz and Leibler described their expectations concerning the outcome
of the Repressilator: “We did not set out to describe precisely the behaviour of the
system, as not enough is known about the molecular interactions inside the cell
to make such a description realistic. Instead, we hope to identify possible classes
of dynamic behaviour and determine which experimental parameters should be
adjusted to obtain sustained oscillations” (Elowitz and Leibler 2000: 337). Sprinzak
and Elowitz in turn write in the introduction of their review article on synthetic
biology: “They [synthetic models] fail to operate as reliably, but they provide
a proof of principle for a synthetic approach to understanding genetic circuits”
(Elowitz and Sprinzak 2005: 443). Accordingly, synthetic models could provide
a proof of principle for the possibility that such a mechanism as negative feedback
could function as a control mechanism in biological systems. This is due to the
fact that, despite their fictional character, synthetic models are closer to the actual
biological organisms, in so far as they are expected to function under the same
material constraints as biological systems. This feature draws synthetic models
closer to experimentation and because of this they can be seen as partly bridging the
gap between experimentation in model organisms and mathematical modeling. But
such a proof is of course far from definite, which is precisely the reason synthetic
biologists make use of the combinational approach.

Finally, the fictional nature of synthetic models shows also what goes unrec-
ognized if one takes too literally the idea of mathematical models as blueprints
for the design and construction of synthetic models. Namely, when talking about
mathematical models, synthetic biologists often refer to them as blueprints. Yet
the notion of a blueprint gives the impression of a ready-made, fixed thing that
would function in a more definite manner, like architectural plans for a house. To
describe the mathematical model underlying a synthetic model as a blueprint partly
misses the explorative role of mathematical models. They provide tools for studying
possible realizations or scenarios, or what synthetic biologists call design principles
or motifs, emulating engineering scientists.

6 Concluding Remarks

Above we have studied the ways in which synthetic biologists make use of
compound analogies by invoking engineering notions such as feedback system,
and utilizing computational templates from the study of complex systems. We
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have argued that because the mechanisms underlying biological functions such
as the circadian clock are largely not known, scientists probe them by using
control mechanisms, which have been proven to work in other scientific contexts.
This makes mathematical modeling, we suggest, inherently fictional (cf. Weisberg
2007)—but it simultaneously enables scientists to make use of cross-disciplinary
computational templates and modeling methods. Indeed, the tools and templates that
have been developed over the last decades by the study of complex systems provide
an important reason why synthetic biologists make use of feedback mechanisms in
describing and designing mathematical models of gene regulatory networks. Here
also the advancement of computer technologies and the possibility of simulating the
non-linear dynamics of feedback systems played a prominent role. Only with the
availability of computer technologies and simulations could the space of possible
dynamic behaviors of mathematical models be explored, and made use of in the
construction of synthetic models.

But of course this analogical procedure of transporting concepts and tools from
other fields of study is bound to introduce some uncertainties in the new terrain of
application. As we have seen, such engineering-inspired control mechanisms may
not resemble those that have evolved in natural processes. They are, indeed, merely
possible design principles. This then comes close to the present philosophical
discussion on the fictional nature of modeling—moreover by providing a rationale
for it, something that the philosophical discussion on fictions largely lacks. This
fictional character is also affirmed by synthetic biologists themselves who envision
that, as a result of the synthetic approach, the entire field of biology might undergo
an important change “from a discipline that focuses on natural organisms to one that
includes potential organisms” (Elowitz and Lim 2010: 889).

In this paper we have concentrated on the basic science-oriented branch of
synthetic biology that seeks to understand the general design principles of biological
organization on the level of their minimal, or sufficient, components and features.
Let us note, however, the double meaning of the quest for design principles in
synthetic biology. On the one hand, as we have discussed, synthetic biologists
consciously create fictional systems in order to try out various design principles.
In electrical engineering, for example, these design principles have well-understood
properties and the challenge is to find out whether, and to what extent, they
apply in the context of biology. On the other hand, the study of possible design
principles aims for engineering novel biological parts or systems. Even if such
design principles may not have evolved, they could be constructed and used for
various purposes, for example for vaccines (e.g., the work of Jay Kiesling).

Last but not least, the testing of whether a design principle can operate in
natural systems requires a laborious combinational use of mathematical models,
experimentation on model organisms, and synthetic models. This approach has
already led to a change in our understanding of how biological systems function
and served to underline their differences vis-a-vis engineered artifacts. It will be
interesting to see what kind of impact this will have on the mathematical methods
and techniques used in modeling biological organization.
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Trigonometry, Construction by Straightedge
and Compass, and the Applied Mathematics
of the Almagest

Ido Yavetz

1 Introduction

The earliest surviving trigonometric tables used to compute numerical values for
geometrical magnitudes occur in Ptolemy’s Almagest (composed in the 2nd century
AD). Current historical evidence cannot fix with precision the exact origins of such
trigonometric tables. However, it seems likely that the Greek astronomer Hipparchos
of Nicaea (2nd Century BC) was among the first, if not the very first to compute
the ratio of chord to radius for a series of central angles in a circle, and to set
the example of their use in astronomy for Ptolemy’s later work. By comparison,
geometrical methods for the determination of magnitudes are considerably older,
and have become highly formalized no later than the end of the 4th century BC, in
Euclid’s Elements. This raises questions with regard to the comparative advantages
of trigonometry over the older geometrical methods, and the particular emphasis
that they received in the context of Greek mathematical astronomy.

From the point of view of repeatability and communication, numerical solutions
of geometrical problems possess distinct practical advantages over the equivalent
Euclidean constructions by straightedge and compass. The division of a given
length by straightedge and compass, for example, identifies a single point as the
required solution with the full confidence and precision of a rigorously justified
procedure. In practice, an individual is not very likely to obtain the exact same
division of a given length twice in a row, let alone two different individuals following
the procedure with different tools for the same given length. The mechanical and
material properties of straightedges, compasses, and drafting media together with
the “personal equation” of different individuals set practical limits to repeatability,
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and make it difficult to set a precise value for the procedural error. On the other hand,
barring computational mistakes, for a given quantity the procedure of long division
by two would yield the same practical result exactly, whether repeated by the
same individual or by different individuals. This alone would recommend Ptolemy’s
preference of trigonometric tables and numerical evaluation of parameters over the
Euclidean procedures of construction by straightedge and compass. However, in the
case of Greek mathematical astronomy, of which the Almagest is the culminating
achievement, some inherent special features add further practical incentives to
abandon the straightedge and the compass in favor of trigonometric tables and
numerical calculation. To obtain values for the parameters of his planetary models
in the Almagest, Ptolemy needed to solve a set of essential problems, which he
managed by numerical procedures based on a precalculated trigonometric table of
chords. This paper examines one of these essential problems in order to show that in
principle it has a straight-forward Euclidean solution in the form of geometrical
construction by straightedge and compass with no recourse to trigonometry. In
practice, however, the geometrical solution encounters severe difficulties, revealing
the practical limits of a Euclidean approach to the mathematical astronomy that
Ptolemy sought to establish.

Figure 1 illustrates the basic model that serves the three exterior planets (Mars,
Jupiter, and Saturn) in Ptolemy’s planetary system. The coordinate system that

~ Ecliptic

Fig. 1 The basic structure of a Ptolemaic model for the planets Mars, Jupiter, and Saturn. The
epicycle plane is parallel to the ecliptic, as instructed in Planetary Hypotheses
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Ptolemy uses is based on the relative orientations of the celestial equator and the
ecliptic — two planes that pass through the centrally located earth and cut the celestial
sphere into equal domes. The equatorial plane is perpendicular to the axis around
which the stellar sphere turns in one sidereal day, while the sun’s motion relative
to the stellar background defines the ecliptic plane. The line along which the two
planes cut each other also passes through the earth, and its ends mark the spring
and fall equinoxes (only when the sun is at one of these points are days and nights
equal everywhere on the earth). Still in the ecliptic plane, the end points of the line
through the earth perpendicular to the equinoctial line mark the summer and winter
solstices. These are respectively the sun’s position on the longest and shortest days
of the year in the northern hemisphere, and the greatest departures of the sun north
and south of the celestial equator.

The basic model consists of an eccentric deferent, whose plane is tilted relative to
the ecliptic, and an epicycle whose center the deferent carries on its circumference.
The center of the deferent bisects the eccentricity, which is the distance between
the earth and the equant point, from which the center of the epicycle appears to
move at constant angular speed. As for the plane of the epicycle, Ptolemy has two
versions: in the Almagest, the plane of the epicycle oscillates about an axis that
remains always parallel to the plane of the ecliptic while it is tangent to the deferent
at the epicycle’s center. Book 13 of the Almagest describes the oscillation principle
in detail. In the Planetary Hypotheses, Ptolemy abandoned the oscillating epicycle
in favor of an epicycle whose plane is always parallel to the plane of the ecliptic,
and this is the situation depicted in Fig. 1. The mean sun is a theoretical point that
serves all of Ptolemy’s planetary models in one way or another. It moves at constant
angular speed in a circle centered on the earth, with a period of 365.25 solar days.
For the exterior planets, the mean sun determines the revolution of the planet on
the epicycle’s circumference, under the condition that the line of sight from the
epicycle’s center to the planet is always parallel to the line of sight from the earth to
the mean sun. The position of an exterior planet relative to the fixed stars requires
the specification of two angles — a longitude and a latitude — and since angles do
not depend on the length of their rays, the absolute dimensions of the deferent and
epicycle are not required. Recognizing this, Ptolemy sets the size of each deferent
to 60 for ease of computation with his sexagecimal system, and then needs only to
fix the size of the epicycle in the same units. Altogether, each model requires the
specification of seven independent parameters in order to be fully defined. They are
as follows (see Fig. 1):

1. The rotational period of the deferent.

2. An initial position of the epicycle center at a particular point in time. (The
rotational speed of the epicycle is not an independent parameter, being fully
determined by the requirement that at all times the line of sight from the epicycle
center to the planet must remain parallel to the line of sight from the earth to the
mean sun).

3. The size of the epicycle (assuming a standard size of 60 for the deferent).

4. The size of the eccentricity (the distance from the earth to the equant point).
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. The angle a that defines the orientation of the eccentricity.

6. The angle B that defines the orientation of an axis that lies in the plane of the
ecliptic and passes through the earth, about which the plane of the deferent is
tilted.

7. Finally, the angle y defines the tilt of the deferent relative to the ecliptic. Because

this angle is very small (never more than a few degrees), no further corrections

are indicated for parameters 2-5, which Ptolemy computes as if the deferent lies
in the plane of the ecliptic.

Ptolemy’s masterly way of showing how to break down into stages the com-
putation of these parameters is the key to the Almagest’s dominant influence over
the field of mathematical astronomy for about 1300 years. In the framework of a
medium sized treatise, he teaches how to plan the minimal number of observations
required for each stage, and proceeds to use the results of such observations
in detailed computation of each and every parameter. To render the discussion
completely self-contained, the Almagest includes a derivation of the trigonometric
relations that it uses, and a full set of trigonometric tables for the practical work.

In the following pages we look only at parameters 4 and 5 — the size and
orientation of the eccentricity — in order to show how they may be obtained by
construction with straightedge and compass, and why the construction is not likely
to satisfy the Almagest’s practical ends. Given the rotational period of the deferent,
and an initial position of the epicycle’s center at a given point in time, the size and
orientation of the deferent’s eccentricity determine all the subsequent positions of
the epicycle’s center. The two parameters must be evaluated together, and Ptolemy
solves the problem trigonometrically by three successive approximations. Each
approximation takes off from the previous one and approaches more closely the
exact, but directly incomputable solution. This is one of several iterative solutions
in the Almagest, which provides the earliest documented instances of such methods
in the history of mathematical physics. Ptolemy’s iterative procedure for the size and
orientation of the eccentricity of the outer planets has been studied extensively in the
modern literature,' so there is no need to repeat it here. For the present purposes,
we set aside Ptolemy’s trigonometric procedures, and show how to employ the
same observational data that he specifies in order to evaluate the two parameters by
successive approximations using purely Euclidean constructions with straightedge
and compass.

"Toomer (1998, H321-H347). Pedersen (1974), discusses the procedure as applied to Saturn, for
which two iterations prove sufficient. Besides one more computational cycle, the procedure for
Mars is essentially the same.
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2 Astronomical Observations and Prerequisite Theoretical
Considerations

Following Ptolemy’s procedure, let the deferent lie in the plane of the ecliptic,
represented in Fig. 2 by the plane of the paper. T marks the earth, at rest in the
center of the universe. C, at a distance e from the earth, is the center of the deferent.
E, at a distance e from C, is the equant from which the epicycle’s center appears to
move at uniform angular speed on the deferent’s circumference. Assuming that the
deferent’s radius is 60 units, the length TE = 2e and its angular separation from the
direction of the spring equinox (marked by 0° in the figure) need to be calculated.

The model’s motion always keeps the line of sight from the epicycle’s center
to the planet parallel to the line of sight from earth to the mean sun. Therefore,
when the planet’s observed position is exactly opposed to the mean sun’s calculated
position, the extended line of sight from the earth to the planet must pass through
the invisible center of the epicycle, and the measurable longitude of the planet is
also the longitude of the epicycle’s invisible center. Ptolemy provides data for three
oppositions, as follows?:

Fig. 2 Three observations of
Mars at mid-retrogression
provide the data needed to
calculate the direction and
magnitude of the deferent’s
eccentricity

2Ibid., p. 484 [H322]. Ptolemy gives the dates relative to the ruling years of the Roman emperor
at the time. Thus he gives T; as “fifteenth year of Hadrian, Tybi 26/27 in the Egyptian calendar, 1
equinoctial hour after midnight, at about Gemini 21°.” The rendition into modern dates is included
in Toomer’s translation.
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1. Ty = 01:00, night of Dec. 14/15, 130 AD; L; = 21° in the sign of Gemini.
2. T, = 21:00, Night of Feb. 21/22, 135 AD; L, = 28°50’ in the sign of Leo.
3. T5 = 22:00, Night of May 27/28, 139 AD; L3 = 2°34/ in the sign of Sagittarius.

From these, he extracts two timed angular intervals, (¢, &) and (¢;, 8), (one
Egyptian year = 365 solar days):

t) = T, — T} = 4 Egyptian years, 69 days, 20 hours (1529.833 mean solar days).
a = 67°50' beyond complete revolutions.

t) = T3 — T, = 4 Egyptian years, 96 days, 1 hour (1556.042 mean solar days).

B = 93°44/ beyond complete revolutions.

The angular intervals o and 8 are measured from the earth, where the rotational
speed of the deferent appears irregular. From the equant, however, the deferent’s
rotation appears uniform. Therefore, given the deferent’s period in addition to the
times #;, t, in which « and § are covered, one can calculate the angles y and
8 that subtend from the equant the chords that o and B subtend from the earth.
For the periods of both the deferent and the epicycle, Ptolemy uses the following
observation:

For Mars, 37 returns in anomaly correspond to 79 solar years (as defined by us) plus about
3;13 days, and to 42 revolutions of the planet from a solstice back to the same solstice, plus
3ie,

6

This requires some terminological and conceptual clarifications.

1. The “solar year” in this context refers to the tropical year, defined as the time
between successive arrivals of the sun to the spring equinox. Ptolemy uses a value
of 365;14,48 mean solar days in the sexagecimal standard, namely, 365+ % + %,
which is about 365.2467 days (compared to the modern value of 365.2422 days).

2. By “motion in anomaly” Ptolemy refers to the motion of the planet around its
epicycle.

3. For the motion of the epicycle’s center around the deferent, he uses the term
“motion in longitude.”

Therefore, the period of motion in longitude, which is the rotational period of the
deferent, is the time between successive returns of the epicycle’s center to the same
ecliptic longitude, e.g., the spring equinox. For the period of return in anomaly,
namely the period of the epicycle’s rotation, Ptolemy takes the time for the epicycle
to complete one revolution relative to the line of sight from the equant to the
epicycle’s center. The basic planetary model requires that the line of sight from
the epicycle’s center to the planet must remain parallel to the line of sight from
the earth to the mean sun. Therefore, the period of return in anomaly is equivalent
to the planet’s mean synodic period, e.g. the average period between successive
oppositions to the mean sun relative to the terrestrial observer, which is the time
between any two successive oppositions to the mean sun relative to an observer at
the equant. Had the deferent been stationary, the mean synodic period would be
exactly equal to the mean solar year. However, since the deferent turns in the same
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direction as the epicycle, the following relationship must hold between the mean
solar year, yy, the epicycle’s period, p,, and the deferent’s period, p;:

1 1 1
=
Vs Pe  Dd

Equivalently, as Ptolemy puts it, during the time it takes for the sun and either Mars,
Jupiter or Saturn to return to the exact same ecliptic coordinates,

... the number of revolutions of the sun during the period of return is always, for each
of them, the sum of the number of revolutions in longitude and the number of returns in
anomaly of the planet. ..

With this in mind, if it takes 79 mean solar years plus 3;13 days for the epicycle to
complete exactly 37 rotations, the synodic period rounds off to 779.94 mean solar
days (modern value: 779.94). The mandatory relationship between the mean solar
year, the epicycle’s period and the deferent’s period rounds off to p; = 686.94 mean
solar days (compared to a modern value of 686.97 for the tropical period of the orbit
http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html). Using this value, both
t; and 1, contain more than two and less than three complete revolutions of the
deferent. Therefore, the rotation past complete revolutions for either of them can be
calculated according to:

i —2pq o a;
pa 360

yielding a; = y = 81°44/, and a, = § = 95°28’ which are the values that Ptolemy
gives in the Almagest.

3 Constructing the Solution: First Iteration

Ptolemy’s first iteration assumes that the center of the deferent coincides with the
equant. Rather than following him, we begin by assuming that the deferent’s center
coincides with the center of the earth (although the construction shown here could
also begin with Ptolemy’s first approximation, with no appreciable difference after
two further iterations). Draw a circle, and let its radius represent 60 units of length.
Draw a horizontal diameter through the circle, and mark its right end as pointing in
the direction of the spring equinox (see Fig. 3 below, laid out with the drafting
utilities of 3ds MAX instead of mechanical tools to produce Ptolemy’s angular
data).

From the spring equinox, mark the arcs L, L,, and L3 to the three oppositions
cited by Ptolemy. Draw the chord L;L,, and at L; and L,, construct equal angles
of 90 — y/2 degrees, that meet at an angle y, to complete a sum of 180° for the
resulting isosceles triangle. Construct the circle that circumscribes the triangle, and
from any point on the arc of this circle inside the circle of radius 60, points L; and
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Fig. 3 First iteration — direction and eccentricity of the equant constructed geometrically on the
initial assumption that the deferent’s center coincides with the earth

L, will be seen at angle y (because all peripheral angles that subtend the same chord
are equal). For points L, and L3, construct an isosceles triangle with apex angle &,
and draw the circle that circumscribes it. The only point from which L; and L, are
subtended by y while L, and L are subtended by § is where the two circles intersect
inside the circle of radius 60. This is the only point that can serve as the equant. Its
distance from the center and its orientation relative to the spring equinox can be
directly measured on the drawing. However, the center of the deferent should not
coincide with the earth, but rather bisect the distance from the earth to the equant.
Therefore:

4 Constructing the Solution: Second Iteration

Keeping the angles L;, L, and L3 relative to the horizontal line through the earth to
the spring equinox, reproduce the circle of radius 60 not around the earth as before,
but around the midpoint between the earth and the equant found in the first iteration
(marked by a dashed line in Fig. 4).

Use the points where the original lines to L;, L, and L3 intersect the new
eccentric deferent as the vertices from which to construct the isosceles triangles with
apex angles y and 8, and as before, circumscribe them by circles. Figure 5 shows
the result of the second iteration, with the deferent bisecting the new eccentricity.
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Fig. 4 Second iteration — direction and eccentricity of the equant reconstructed geometrically after

the deferent’s center has been moved to the midpoint between the earth and the equant in the first
iteration

The size and orientation of the equant can be measured directly on the diagram,

and the table below compares the measurements to Ptolemy’s final result in the
Almagest:

Graphic measure | Ptolemy

e =15097 ex 6

0 = 115°47

0 —L; =34°47 |0 —L;, =34°30

Numerical computation using Ptolemy’s data yields 6 for e, and 34°29'31" for
0 — L, so Ptolemy’s result for the angle is better than the graphically evaluated one,
but he also performed three iterations, as compared to only two here. In principle, a
third graphical iteration should close the gap to Ptolemy’s result. However, a third
constructive iteration would prove impractical. The constructed orientation of the
equant differs from Ptolemy’s by 17 minutes of arc. An angle of 17 minutes of arc is
drawn across the bottom of Fig. 5, but the actual length of line relative to which this
small angle must be drawn is 2e = 12, where the radius of the deferent is 60. For any
useful drawing of 17 minutes of arc, the diagram’s linear dimensions must be at least
15-20 times larger, making the deferent’s radius about two meters long. Hand held
compasses are out of the question at this scale, and one would probably be better
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Fig. 5 The second iteration comes to within 17 minutes of arc of Ptolemy’s third iteration for the
eccentricity’s direction, making a third iteration with straight-edge and compass impractical

served drawing the required straight lines with a carpenter’s chalk line (indicated in
Homer’s Illiad, book 15:410-415) rather than a straightedge. Ptolemy’s numerical
procedure, on the other hand, suffers from no such limitations. As observational
data becomes more precise, a fourth and fifth iteration may be added, requiring only
more numerical calculations and additional references to the trigonometric table.
The practical difficulty that emerges in light of this exercise is not unique to
the case of Mars, and many other calculations in the Almagest run up against
similar practical barriers. Therefore, in addition to the advantages in communication
and repeatability that numerical computations enjoy over equivalent geometrical
constructions, it appears that Greek astronomy posed problems that overtaxed the
practical limits of geometrical construction by compass and straightedge.’

3 As T have shown elsewhere (Yavetz 2010), a similar difficulty emerges already in Aristarchus of
Samos’s computation of the sizes and distances of the sun and moon. All four quantities can be
found by a single construction, which is much simpler in principle than Aristarchus’s complicated
geometrical argument leading to the upper and lower bounds of the desired results. In practice,
however, the distance from the earth to the sun must be drawn around twenty meters long on a good
flat surface, in order to consistently obtain close results to the mean values between Aristarchus’s

boundaries.
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Shaping Mathematics as a Tool: The Search for
a Mathematical Model for Quasi-crystals

Henrik Kragh Sgrensen

1 Introduction

The relation between mathematics and the sciences is a historically complex one
that is difficult to analyze philosophically in all its nuances. Famously, in 1960
the Nobel laureate Eugene Wigner (1902-1995) considered the applicability of
mathematics to the natural sciences to be miraculous since, to him, mathematics
was a purely formal science which had produced results that when later used by
physicists were stunningly apt to describe and understand physical phenomena and
theories (Wigner 1960). During the past half-century, historians of mathematics
have scrutinized Wigner’s argument and, in particular, pointed out that he unduly
neglected the extent to which (pure) mathematical theories were developed in
interaction with their possible applications (see e.g. Gelfert 2014; Grattan-Guinness
2008; for historical perspectives on the interplay between mathematics and physics,
see also Kragh 2015; Schlote and Schneider 2011). These historical analyses reveal
that the application of novel mathematics in the sciences often does not take the form
of application from the shelf but rather takes place as a dialectical and temporally
extended process. Once established as a viable research strategy, the application of
such mathematical theories and results may prove effective in domains outside, but
typically bordering on, the domain for which they were first used. By elaborating
this contrast between the development of novel mathematical theories, recognizable
as such by the mathematical community, and the application of established practices
in new domains, I propose to nuance the meaning of using mathematics as a tool in
situations where the proper mathematical conceptualization is still lacking.
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In particular, and perhaps especially in contemporary science, the relation
between mathematics and science is not always well conceptualized as “applica-
tions of (ready-made) mathematics”. This paper discusses the relations between
mathematics and the sciences through a case-study of the early phase in the
mathematical modeling of so-called “quasi-crystals”. These are materials produced
in the laboratory — first by the Israeli materials scientist Dan Shechtman and
his collaborators in 1982 (Shechtman et al. 1984) — which violate the age-old
mathematical model of crystals, in particular the “crystallographic restriction” that
rules out five-fold rotational symmetry (see below).! Subsequently, during the
1980s and early 1990s different approaches were pursued in order to produce a
mathematical model of this new phenomenon that would satisfy the expectations of
mathematicians, physicists, and crystallographers. And in so doing, the interactions
between these disciplines were at many times bi-directional in negotiating the
concerns arising from these different disciplinary backgrounds.

Different suggestions were brought forward from different groups of researchers.
These suggestions took into account different promises such as analogy with known
models, efficiency in explaining phenomena, or generalization of known methods.
In the process, the very nature of the thing modeled had to be redefined —
new definitions were produced for such basic notions of the theory as “crystal”
and “symmetry”. This in turn allowed mathematicians and scientists to pursue
different avenues in modeling the new phenomenon: Some have chosen to work
on the properties of these new definitions, often in a low-dimensional restriction
— sometimes just one dimension. Others have sought to model how quasi-crystals
grow and how their large-scale non-periodic structure comes to emerge from their
regular nuclei. And yet others have tried — sometimes from a combination of these
approaches — to derive interesting quantitative predictions such as melting points
and the like from these models.

At present, a certain consensus seems to have been established about the basic
notions, but work in the directions suggested above is still ongoing. Therefore, this
paper applies a historical approach to analyze the development of mathematical
models of quasi-crystals during its first decade in order to discuss roles for
mathematics in the sciences that both draw upon and extend beyond the notion of
“mathematics as a tool”.

This paper therefore falls in three parts: In the first part, I outline a framework
for analyzing ways in which mathematics enters into contemporary interdisciplinary
collaborations in the sciences. In the second part, I present and discuss the case
study from the mathematical modeling of quasi-crystals from which, in the third
part, I draw my philosophical and historical analyses.

'Shechtman’s discovery and the subsequent study of quasi-crystals is described and outlined in
many publications, some of which are explicitly referred to in the following. The reader may also
consult e.g. Brecque (1987/1988) and Steinhardt (2013).
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2 Interdisciplinarity and Cultures of Mathematization

With the recent focus — institutionally, politically and philosophically — on
interdisciplinary collaboration, the case of mathematization may offer a nuancing
perspective. For centuries, mathematicians have applied their discipline to various
sciences, and yet such mathematization is rarely described as interdisciplinary. This
paper elucidates and discusses this point through a case study of a recent set of
cultures of mathematization, their epistemic division of labor, and their different
desiderata of mathematical models. Thus, it addresses philosophical and historical
issues of what happens to scientific enquiry when mathematics is used — or rather
developed — as a tool.

Although almost ubiquitous in modern science, the notion of mathematization is,
itself, loaded with ambiguity (see, for instance, Epple et al. 2013). Mathematization
shares commonalities with applied mathematics, yet it encompasses more than
a body of knowledge: It is a process undertaken by disciplinary mathematicians
and scientists sharing a collaborative culture. In the past, a variety of modeling
and numerical perspectives were involved in mathematizing scientific problems
and theories. Thus, mathematization has been a historically contingent enterprise.
And at times, the processes of mathematization were opposed by existing disci-
plinary structures. Thus, the parties involved did not unanimously accept the drive
towards mathematization. To allow for this complexity, I present in the following
a preliminary framework for analyzing interdisciplinary collaborations that involve
mathematics.

The history of mathematics shows that the mathematization of a problem
is not a straight-forward matter and that the very desire to mathematize may
encounter opposition. To recall just one example, as shown in (Abraham 2004), the
efforts of Nicolas Rashevsky (1899—-1972) to treat biological cell division from the
perspective of mathematical physics was initially opposed by biologists who in part
questioned Rashevsky’s modeling for its idealizations and in part found the model to
lack in the kinds of questions that it provided answers to: In particular, it was argued,
cells are not perfect spheres, and cell division is such a complex phenomenon
that is does not reduce to membrane potentials. The short-term resolution to this
conflict was a hybridization of disciplines in the form of Rashevsky’s efforts to
institutionalize “mathematical biophysics” (see ibid.) based on the principles of
mathematical physics which were eventually thwarted as a “premature birth of
mathematical biology” (Keller 2002, pp. 82—-89).

This paper asks a basic and rather simple question: “What happens to some of
the most interesting discussions about interdisciplinarity when cases are considered
where mathematics is involved?” If interdisciplinary research is simply character-
ized as involving multiple disciplines, the use of mathematics in other fields ought
to be the primary example of interdisciplinary research — so why isn’t that the first
example to be come to mind?. Part of the answer may have to do with the notion of
applying preexisting mathematics in the sciences which supposes a chronological
ordering of theoretical mathematics and its application. In contrast to such a view,
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this paper seeks to understand how mathematics is employed in situations where it is
not possible to use pre-existing mathematical tools and theories but rather necessary
to develop sophisticated theoretical mathematics as the application to another field
is already going on. In order to begin to analyze such a broad question, I outline
what I consider a promising avenue for investigation and discuss its application to a
recent case-study.

2.1 Cultures of Mathematization

In order to approach the process of mathematization as an interdisciplinary col-
laboration, it is fruitful to introduce the notion cultures of mathematization to
encapsulate the epistemic culture involved in using mathematics as a tool for the
particular problem under consideration. The philosophical study of interdisciplinary
collaboration in science has been very active for the past decade, and among its
achievements has been the elaboration of how such collaborations are based on
epistemic divisions of labor and trust (see e.g. Andersen and Wagenknecht 2013).

The framework of cultures of mathematization in envisioned here to analyze
certain kinds of interdisciplinary collaborations that involve mathematics. To enable
historical and philosophical analyses, these collaborations are to be studied in their
contexts, which are, however, not necessarily characterized by geographical prox-
imity such as a laboratory. Indeed, the division of labor in these collaborations can
be such that collaborators may rarely if ever meet. Nevertheless, the collaborators
need to be temporally proximate for the process to involve the following two
characteristics setting it apart from applications of mathematics from the shelf:

First, the collaboration must involve mathematics and mathematicians. These
categories are used as defined by their disciplinary structure and their primary
disciplinary expertise. For the collaboration to be inferdisciplinary in nature, the
separation of expertise is required. Otherwise, the collaboration will often change
into a structure where the scientists become their own mathematicians.

Second, the involvement of mathematics must go beyond that of a mere pre-
existing tool; in particular, the collaboration must offer roads to new mathematical
insights. More specifically, for the present analyses, some of the added mathematical
insights should belong to mainstream mathematics.

Although these criteria are flexible enough to be met by a great number of
specific cases, some historical caution is invited by considering the various forms of
applications that mathematics can have and have had to other branches of sciences.

Central to the usefulness of the framework of cultures of mathematization is the
plasticity of the notion of mathematical models and, in particular, the potential of
mathematical models to function as boundary objects bridging different cultures.
When combined with the notion of epistemic cultures defined by Karin Knorr
Cetina as “amalgam[s] of arrangements and mechanisms — bonded through affinity,
necessity and historical coincidence — which in a given field, make up how we
know what we know” (Knorr Cetina 1999, p. 1), the mathematical model can
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be seen as the nexus for a variety of cultural concerns and exchanges (see also
Morgan and Morrison 1999). In his seminal book, Peter Galison explained the
importance of pidgin languages and creoles in exchanges and collaborations across
paradigms (Galison 1997). By constructing ‘“contact languages”, collaborating
partners can “hammer out a local coordination, despite vast global differences”,
Galison suggests (ibid., p. 783). Although explored by Galison in relation to the
construction of physical apparatus and technology, this notion of contact languages
can be adapted to mathematical models, I suggest. These, too, can function as
central boundary objects that enable communication between different groups with
different backgrounds, interests and disciplinary matrices.

This view of mathematical models hinges on an understanding of the mathemat-
ical modeling process as an iterative and dialectic process (see Fig. 1). It consists of
an underlying clockwise process during which a segment of reality is delineated,
simplified, structured and abstracted into a verbal model. This verbal model
is further abstracted into a mathematical description from which mathematical

MATHEMATICAL MODEL

mathematical mathematical
description consequences

representation
abstraction

interpretation

VERBAL MODEL

concepts

. predictions
relations
delineation
simplification decisions
structuring theory control

abstraction

“REALITY”

A “system” of objects, properties and relations

Fig. 1 Mathematical modeling as an iterative, dialectic process



74 H.K. Sgrensen

consequences can be deduced, typically in the form of one or more equations linking
the parameters to the modeled outcome. These mathematical consequences can,
in turn, be interpreted into a verbal model, which can be used to make decisions
or conduct theory control against reality. Importantly, the underlying iteration
is superimposed with repeated dialectic negotiations as pragmatic and epistemic
concerns and objectives are balanced. The resulting modeling process is not linear,
but consists of multiple steps that go in both directions and may initiate at various
points along the underlying process. On this account, the mathematical modeling
process features an intrinsic verbal level, intermittent between the modeled part
of reality and the formalized mathematical representation. And that verbal level,
I suggest, can be adapted as the pidgin description of the mathematical model,
suitable for various audiences.

2.2 Expectations and Critique of Models

In the quote given above introducing the notion of an epistemic culture, Knorr
Cetina includes all those factors that “make up how we know what we know”.
In the present context, this can be specified into what may be called cultures of
mathematization which includes those amalgams that constitute how mathematical
modeling is conducted, again “bonded through affinity, necessity and historical
coincidence”. In particular, this allows attention to be focused on the various
attitudes towards the mathematical model and towards model assessment and
critique. Thus, when different cultures of mathematization critically review their
boundary objects of mathematical models, they may look to different parts of the
modeling process. Some will criticize the assumptions, others the idealization, yet
others the mathematical apparatus and its application, and some will focus on the
interpretations back into reality. Yet most or all of these aspects can coexist as
cultures sharing the same boundary object.

Again, we may look to the many examples of conflicting stances towards
mathematical models to illustrate that what counts as being in need of explanation
and what counts as a good explanation can be highly controversial and specific to
disciplines. One such example can be found in the debate over the determination
of the age of the Earth as it unfolded in the nineteenth century. William Thomson’s
(1824-1907) (later, Lord Kelvin) mathematical model of the cooling of the Earth
and his resulting estimate of the age of the Earth was steeped in religious contro-
versy, and in the history of science it is also referred to as an example of the power
of prestige in winning scientific arguments (see, in particular, Burchfield 1975).
Yet, in the present context, Thomson’s mathematization raises some additional
issues: Thomson’s model was based on an application of an already very successful
technique, namely Joseph Fourier’s (1768-1830) theory of heat conduction, and
Thomson applied it to assumptions about the structure of the Earth that allowed
him to compute the time it would have taken for the planet to cool to its present
temperature known from observations. This mathematization was met with criti-
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cism from geologists as, for instance, when Thomas Mellard Reade (1832-1909)
argued:

Sir W. Thomson, however, infers, that as the Sun must have been hotter in former ages, the
atmospheric agencies were then more potent; but this is all pure hypothesis, no proofs that
they were being adduced. [ . .. ] [W]e know absolutely nothing of the Sun’s heat, and cannot
safely reason on conjectures. (Reade 1878, p. 153)

To Reade, this part of geology was concerned with explaining phenomena
from empirical facts, and Thompson’s mathematical model was criticized for the
untestable hypotheses that it introduced.

On the other hand, Thomson’s assistant John Perry (1850-1920), who as a
mathematician would also criticize and eventually improve on Thomson’s estimate,
was also critical about the overlap of mathematics and geology (see also England
et al. 2007a, b):

I dislike very much to consider any quantitative problem set by a geologist. In nearly every
case the conditions given are much too vague for the matter to be in any sense satisfactory,
and a geologist does not seem to mind a few millions of years in matters relating to time.
Therefore I never till about three weeks ago seriously considered the problem of the cooling
of the earth except as a mere mathematical problem, as to which definite conditions were
given. (Perry 1895, p. 224)

In the view of the mathematician Perry, geology was not concerned with precise
quantitative descriptions such as treated by Thompson’s mathematical model. Perry
did not see the exercise in differential equations as having a bearing on geology
until he realized that through mathematical modeling, various hypotheses for the
development of the universe could be formulated and compared. This mathematical
geology was, however, quite far from the discipline of geology that Reade had
envisioned.

This brief example serves to illustrate the use of mathematics in many fields
has been controversial. Part of the contention may be due to discipline formation
and boundary work, but the very role of the mathematical model — its explanatory
power, in particular — was also genuinely questioned as concerns and goals of the
discipline were not always encoded in the model from the outset.

The two examples presented so far — the mathematization of cell division and
the debate over the age of the Earth — illustrate that the notion of cultures of
mathematization can capture important aspects of the disciplinary conflicts and
the formation of new interdisciplinary fields. Importantly, the cases are not merely
disciplinary controversies; they point to central methodological and epistemic
differences in the view of mathematical modeling for the benefit of biology and
geology, respectively. As such, viewing the mathematical model as a boundary
object that can be appropriated and criticized enables us to appreciate the conflicts
involved and points towards their resolution and the formation of new interdis-
ciplinary fields focused on a specific culture of mathematization. For instance,
Rashevsky’s approach was pursued in the hybrid discipline of “mathematical
biophysics” centered on his conception of the mathematical modeling process.

In both these cases, the mathematics that went into the modeling had been pre-
viously established in other fields of mathematical modeling, in particular as basic
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principles in physics. So they are classical examples of applications of mathematics
and, as such, fail to reveal much of how mathematics is developed in the process.
Therefore, the main case will address what can happen when the mathematical
apparatus and even conceptual framework is not available on the shelves but has
to be designed anew. This can lead to situations in which the production of the
mathematical model may become a co-production between disciplines so as to
imbue the model with greater sensitivity to the various expectations raised by
different cultures.

3 Mathematical Modeling of Quasi-crystals, 1984-1995

The history of quasi-crystals could read like a standard story about a scientific
revolution; and the pivotal figure, Shechtman who was awarded the Nobel Prize
in Chemistry 2011, has indeed framed it in Kuhnian terms. In his Nobel lecture and
in the Nobel interview, Shechtman explained his discovery in terms of a revolution
against the existing, well-entrenched paradigm. Shechtman furthermore cast Linus
Pauling (1901-1994) as the last protagonist of the old paradigm to die out before
the discovery of quasi-crystals could be acknowledged through the Nobel Prize (see
e.g. Kuhn 1962/1996, p. 151).2

However, as will become clear, the efforts to mathematize quasi-crystals also
shed an intriguing light on the process of developing a new mathematical model to
serve as the shared interface around which a new field can develop. Thus, a number
of collaborative cultures have emerged with distinct, yet partially overlapping
notions about the function and explanatory role of the mathematical model. This
plurality of cultures of mathematization points to the centrality of a mathematical
model as a boundary object while negotiating different desiderata.

3.1 The Crystallographic Restriction

In order to appreciate the necessity for a new mathematical model in the wake
of Shechtman’s discovery, it is instructive to review the standard mathematical
model of crystals in terms of lattices. The modern science of crystals can be said to
have begun in 1912 when scientists around Max von Laue (1879-1960) in Munich
sent a narrow beam of X-rays through a crystal and onto a photographic plate
(for a history of X-ray crystallography, see Authier 2013). What they discovered
was a pattern of bright spots resulting from the diffraction of the beam by the
constituents of the crystal. Later William Henry Bragg (1862-1942) and his son

2Shechtman’s Nobel interview can be found online: http://www.nobelprize.org/nobel_prizes/
chemistry/laureates/2011/shechtman-interview.html
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William Lawrence Bragg (1890-1971) refined the method, utilizing it to determine
the inner arrangements of atoms in crystals. The findings confirmed the generally
held conviction dating back centuries that solid crystal structures were characterized
by continuous 3-dimensional order of their constituent particles: In other terms, the
atoms, ions, ionic groups or molecules inside crystals were organized in lattices
that exhibit translational and rotational symmetries (see also Burke 1966, pp. 1-9).
Provided with this mathematical model which identifies crystals with lattices, some
mathematical theorems can be deduced; for instance, certain rotational symmetries
can be ruled out by the following argument:

Assume that A and B are two points of the lattice with minimal distance between
them, |A — B| =d, and assume that the lattice possesses a rotational symmetry
with the angle a. Now, fix a plane containing A and B and the rotation that is a
symmetry of the lattice, and rotate A around B through the angle o and, likewise,
B around A through the same angle but in the opposite direction (see Fig. 2). The
two new points A and B’ are also lattice points, and we let d =|A — B'| denote
the distance between them. It may be that A=B" (i.e. d =0) which corresponds
to 3-fold rotational symmetry of the lattice. If d is non-zero, we notice that it
must be an integer multiple of d, since if it is not, 0 <d — kd <d for some integers
k, and by the translational symmetry we would be able to produce two lattice
points closer to one another than A and B, which is a contradiction. Thus d =md
for some integer m, and completing the rectangle in Fig. 2, we find the relation
d = —2dcosa +d. From this it follows that cosa = 15" and thus |1 —m| <2

2
leading to the solutions « € {2n,n, .5, 3}. This proves that a lattice can
only possess rotational symmetries of order 2, 3, 4 or 6. In particular, rotational
symmetry of order 5 is prohibited by this elementary mathematical argument which
has become known as the “crystallographic restriction”.

This mathematical model served the study of crystal structures successfully for
more than a century after it became established, in particular through the works of
René-Just Haiiy (1743-1822) in the late eighteenth century. Based on it, Johann F.
C. Hessel (1796-1872) in 1830 and Auguste Bravais (1811-1863) independently
in 1848 could prove that only 14 Bravais-lattices and only 32 combinations of
crystallographic symmetry elements are possible which provided a mathematical
foundation for the classifications of crystals (Burke 1966, pp. 164-165, 171; Authier
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2013, pp. 367-369, 375-382). Furthermore, the model supplied a foundation for
explaining various physical and mechanical phenomena of crystals, for instance
through considerations of density and packing factors.

3.2  Shechtman’s Discovery

Shechtman’s revolutionary experimental discovery was made in the spring of 1982
during a sabbatical which he spent at the National Bureau of Standards (NBS) in
Washington, D.C. at the invitation of John W. Cahn, who is an expert on thermody-
namics (see Blech et al. 2012; Hargittai and Hargittai 2012). At the NBS, research
into the rapid solidification of dilute Al-Mn alloys was pursued for their potential
to produce alloys free of micro-segregation. But when Shechtman chose to explore
higher manganese content, the electron diffraction patterns showed the forbidden
icosahedral (ten-fold) symmetry of AlgMn (see Fig. 3). Shechtman’s observations
were discussed in the group at NBS, but it would take two years before he found
them ready for publication. The delay in publication was caused by a complex set of
concerns, some of which were directly linked to the status of the mathematization.
First, it was well known that translational symmetry would cause discrete diffraction
patterns, but the converse was also widely (and falsely) believed: In particular,
since his findings contradicted strongly established paradigms, alternative ways
of explaining the phenomenon were considered which did not involve icosahedral
symmetry. What finally convinced Shechtman to publish his results in 1984 was a
mathematical model developed by Ilan Blech which could computationally produce
diffraction patterns similar to those observed experimentally. The results were
published in two papers — one with the entire group announcing the experimental
results (Shechtman et al. 1984) and one with Blech on the mathematical model of
the microstructure (Shechtman and Blech 1985).

Almost immediately after the announcement by Shechtman and his colleagues,
a more comprehensive mathematical model was presented by Dov Levine and Paul
Steinhardt. Among other important contributions, they defined the notion of quasi-
crystals and introduced Penrose tilings into the discussion (Levine and Steinhardt
1984). Penrose tilings are non-periodic tilings of the plane or of 3-dimensional
space, first discovered by the mathematician and physicist Roger Penrose in the

Fig. 3 Five-fold rotational
symmetry as reported in
1985. Reproduced from
Schwarzschild (1985, p. 17),
with the permission of the
American Institute of Physics
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1970s (see Penrose 1974; Penrose 1979). In 1982, Alan L. Mackay proved that
the diffraction patterns obtained from particles arranged in 2-dimensional Penrose
tilings would exhibit ten-fold rotational symmetry (Mackay 1982; see also Mackay
1987). Although Mackay proposed to speak in terms of “quasi-lattices”, the explicit
combination with quasi-crystals was first suggested by Levine and Steinhardt after
Shechtman’s discovery was made public. Yet, although the diffraction patterns of
quasi-crystals were remarkably like those obtained by Mackay, experiments soon
showed that the direct generalization to three dimensions was not the proper way
forward (Senechal and Taylor 1990, p. 61) Throughout the second half of the 1980s,
numerous experimental studies reported producing quasi-crystals of various kinds,
and sought to determine their structure (see, for instance, Bursill and Lin 1985;
Coddens 1988; Lidin 1991). In order to understand the new phenomena, Penrose
tilings were frequently employed, as were other mathematical tools and theories
such as almost-periodic functions studied in the 1930s by Harald Bohr (1887-1951)
and others.

3.3 Redefining Crystals

Among the flurry of activities sparked by Shechtman’s announcement, certain
institutional aspects merit attention. In March 1989, a ten-day conference on
Number Theory and Physics organized at the Centre de Physique in Les Houches
in the French Alpes brought together practitioners interested in quasi-crystals. The
venue has since been used for further winter schools devoted to quasi-crystals, some
of which have resulted in books of lectures published by Springer. The general
ambition of the meetings in Les Houches is captured in the following quotation from
the volume of lectures of the winter school in 1994 entitled “Beyond Quasicrystals™:

The School gathered lecturers and participants from all over the world and was prepared
in the spirit of a general effort to promote theoretical and experimental interdisciplinary
communication between mathematicians, theoretical and experimental physicists on the
topic of the nature of geometric order in solids beyond standard periodicity and quasi
periodicity. (Axel and Gratias 1995, p. v)

Among those present at the 1989 school in Les Houches was the American
mathematician Marjorie Senechal, who together with Jean Taylor would report on
the meeting and the state of affairs in the mathematical treatment of quasi-crystals
in a short article in the Mathematical Intelligencer (Senechal and Taylor 1990). In
that paper, they provided a subjective view of where research could be heading, for
as they write:

[L]ike the view of the Mont Blanc massif from the conference centre, the general outline

and size of the problem is rather clear, but features that are prominent from our perspective
may mask others, including the summit. (ibid., p. 55)

In particular, their approach was of the more abstract and general flavor as it
pertained to the mathematical side of the study of quasi-crystals. They identified
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three different sets of questions, delineated by the disciplinary background if not by
the individual interests of those who pursue them:
1. Crystallography: How are the atoms of real quasi-crystals arranged in three-dimensional
space?
2. Physics: What are the physical properties of substances with long-range order but no
translational symmetry?
3. Mathematics: What kinds of order are necessary and sufficient for a pattern of points to
have a diffraction pattern with bright spots? (ibid., p. 55)

The mathematical question of characterizing the kind of order that produces
discrete diffraction patterns was a general one, and in order to work on it, Senechal
and Taylor suggested that mathematicians “must draw on a variety of techniques
from many branches of mathematics, including tiling theory, almost periodic
functions, generalized functions, Fourier analysis, algebraic number theory, ergodic
theory and spectral measures, representations of GL(n), and symbolic dynamics and
dynamical systems” (ibid., p. 55). Thus, the study of quasi-crystals was inherently
doubly interdisciplinary: On the one hand, different scientific disciplines were
involved in studying the same phenomenon, and on the other hand, different
branches of mathematics were expected to be crucial in formulating, characterizing,
and exploring the mathematical model of quasi-crystals.

In 1991, the International Union for Crystallography (IUCr) set up a Commission
on Aperiodic Crystals (CAC) and charged it with formulating a new definition of
the very notion of crystal that would be inclusive enough to take into account the
new substances discovered in laboratories all over the world following Shechtman’s
initial announcement (International Union of Crystallography 1992, p. 928). In a
striking move to shift focus towards the instrumental detection through diffrac-
tion patterns and the highly general mathematical approach outlined above, the
commission stipulated that by a crystal one should understand “any solid having
an essentially discrete diffraction diagram” (ibid., p. 928). Thus, the notion of
crystals was redefined so as to include quasi-crystals, and the notion of “aperiodic
crystals” was introduced for those crystals in which 3-dimensional lattice periodicity
is absent (ibid., p. 928). By this swift change of basic terminology — which
was strongly supported by Senechal (Senechal 2006, p. 886) — the mathematical
modeling question above had become the center stage for the very definition of a
crystal.

3.4 Senechal’s View of Mont Blanc

By 1995, the field had developed to a state such that Senechal endeavored to write
her book on “Quasicrystals and geometry” (Senechal 1995). In it, she presented —
again and in much more elaboration — her viewpoint as a geometer of the state of
the field and the methods involved. As she wrote in the preface:
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Although the number of new and important results is increasing rapidly, there is still no
agreement on how aperiodic crystals should be modeled mathematically, and most of the
major problems raised by any of the proposed models are still open. (Senechal 1995, p. xii)

Nevertheless, she believed that a book was overdue as a way of explaining what is
not known in order to attract and direct efforts into solving these problems. In order
to facilitate this convergence of efforts, she presented and integrated methods and
results from numerous different mathematical groups to the study of quasi-crystals.
She was, however, neither willing nor able to unequivocally prefer or recommend
any one approach in particular. Thus, in a sense, her previous feeling of watching the
massif with the view of summit obstructed was still present, although some contours
were gradually becoming discernible.

In accordance with the mathematical problem of characterizing and studying
aperiodic crystals, Senechal’s book starts by exploring the mathematical funda-
mentals of so-called Fraunhofer diffraction patterns derived from first principles.
These diffraction patterns were, themselves, based on a mathematical model for the
process of interference of waves encountering an obstacle or a slit that is comparable
in size to the wave length. And Senechal showed how the diffraction pattern is
the Fourier transform of the generalized density function of the object under study
(ibid., pp. 86 sqq.). Thus, the problem of describing those structures that can give
rise to discrete diffraction patterns becomes one of obtaining the inverse Fourier
transformations for generalized functions.

The second part of Senechal’s book was devoted to methods of constructing
quasi-crystals — but from a very mathematical point of view. In other words, the
question is how structures can be mathematically constructed which will exhibit
discrete diffraction patterns. Various constructions were discussed, but among them
the so-called projection method (also sometimes called the cut-and-project method)
was prominent. Since this technique raises some issues about modeling, it merits
attention here without going into any mathematical detail.

The projection technique involves projections from a higher-dimensional struc-
ture which under certain restrictions produce non-periodic structures in lower
dimensions; precise criteria can be given to ensure that the resulting construction
is a quasi-crystal. And examples can be described in which the projection from a 6-
dimensional structure into three dimensions result in a non-periodic structure with
5-fold symmetry (see ibid., chapter 2).

Much effort has been invested in coming to understand the simplest case which
is 1-dimensional quasi-crystals. Such objects can be constructed in numerous ways,
both by projection and by so-called Fibonacci sequences (see ibid., chapter 4). The
latter arise for instance from certain 2-letter substitution rules, and precise criteria
can again be given under which quasi-crystals result.

Thus, at least two different avenues to better understand quasi-crystals were
outlined by Senechal: We can try to understand real-world, 3-dimensional quasi-
crystals by viewing them through the higher-dimensional formalism, or we can
try to obtain a firmer grasp on simpler, 1-dimensional quasi-crystals and hope to
extend such insights into the realm of physical quasi-crystals. Senechal was, herself,
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content to outline the mathematical theory, but she did open discussions of whether
the higher-dimensional projection formalism was necessary (ibid., pp. 71-72) and
whether the formation of actual crystalline aperiodic phases is in any way related to
the growth of tilings (ibid., pp. 235 sqq.). These questions were, however, open and
important ones at the time of her book, and to a large extent they remain so to the
present (see also below).

A third part of Senechal’s book — and a recurring theme throughout — was
the description of what she called the “zoo” of quasi-crystals (ibid., pp. 207
sqq.). This zoo was intended to showcase the variety of aperiodic structures and
tiling transforms discovered so far and function as a catalogue against which
new structures could be compared for reference and classification. However, since
the precise classifying principles were still not firmly established, the zoo would
provisionally be ordered according to the techniques of construction and the variety
of diffraction patterns obtained. In a later summary of the state of affairs in 2006,
Senechal reflected how:

Penrose tilings, the Drosophila of aperiodic order, don’t tell us what the structures of real
aperiodic crystals are, but they do tell us what aperiodic order can look like. (Still, we
are missing something. For suitable choices of lattice, dimension, and other parameters,
we get cut-and-project sets with (diffraction) rotational symmetry of any finite order. Yet
the symmetries of real aperiodic crystals found so far are only pentagonal, decagonal,
dodecagonal, and icosahedral. Evidently, the real crystallographic restriction is yet to be
discovered.) (Senechal 2006, p. 887)

As this quotation also suggests, in the absence of a firm understanding of the
underlying relations between mathematical model and physical reality, exemplars
and rough classifications of the mathematical possibilities were pursued as useful
and valuable for the further development of the mathematical model.

3.5 Debates Over Modeling Criteria

As indicated above, Senechal’s book was intended to attract attention to the new
and emerging field. And she was certainly not alone in her efforts to stimulate
interest and collaboration. A NATO Advanced Study Institute was set up under
the auspices of the Fields Institute devoted to the study of aperiodic long range
order from perspectives of mathematics and mathematical physics. This led to a
subsequent semester program in the fall and 1995, and a book was produced under
the editorship of some of the other pioneers in the field:

The goal of both events was complementary: to help establish into the mainstream of

mathematics and mathematical physics this new, emerging field of study. (Patera 1998,

p. xi)

This ambition to develop a mathematical framework for (mathematically) con-
structing and studying quasi-crystals that could be relevant both to mathematicians
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and to mathematical physicists draws attention to some of the features mentioned
above. As later summarized by Senechal and Taylor:

In the early days of quasicrystals, mathematicians hoped to characterize their broad
structural features in one (or more) of three ways: as aperiodic tilings with matching
rules; by inflation rules; or through high-dimensional interpretations. Each of these three
approaches has generated much interesting new mathematics — and at least partial answers
to the fundamental challenge. But only the third method has proved truly useful in
describing the structure of physical quasicrystals. (Senechal and Taylor 2013, p. 4)

Yet, despite its success from a mathematical point of view, if the mathematical
model was to be of value not just for the purely mathematical approach, it might
be desired to address the relationship between 3-dimensional, physical quasi-
crystals and the higher-dimensional spaces from which they were projected (see
also Senechal and Taylor 1990, p. 63). Obviously, hidden variables were not new
to physics as they had featured into many mechanistic theories of the nineteenth
century. Yet, they most frequently stand out as being in need of some explanation
or interpretation. Similarly, if the tiling approach was to be adopted, it would be
desirable to have a better understanding of the individual tiles, since they were given
no physical interpretation and thus appeared as rather artificial from the perspective
of physics (ibid., p. 61).

Perhaps more importantly, the issue of explaining growth of physical quasi-
crystals in terms of the mathematical model was profoundly difficult. As explained
by Senechal, Penrose tilings were attractive in large part because they allowed
for the adaptation of the old idea that crystals grow by accretion of building
blocks under strictly local forces (Senechal 1995, pp. 235-236). Thus, this would
correspond to well-entrenched notions within the physics community. Yet, this issue
was clearly not settled by the mathematical treatment as it stood, and numerous
other modes of growth were also being considered by the physicists working on
the problem. In retrospect, Senechal explained how the interdisciplinarity of the
research field had, and least by 2006, mainly been pursued through largely parallel
developments of more traditional, disciplinary approaches, methods, and goals
which, it was hoped, would eventually turn symbiotic:

Meanwhile the burgeoning mathematical field of long-range aperiodic order and the

experimental study of real aperiodic crystals are symbiotic and mutually stimulating. Their

cross-fertilization has been more metaphorical than practical, but no less valuable for that.
(Senechal 2006, p. 887)

The mathematical community subsequently addressed these challenges in a
number of ways, some of which included the generalization of the model, the
extension of the methods and perspectives employed, and the occasional change of
perspective. For example, the idea of extending the study of aperiodic solids beyond
quasi-crystals already signaled at the 1994 school in Les Houches was followed up
by another school in 1998 resulting in a volume entitled “From Quasicrystals to
More Complex Systems” (Axel et al. 2000).

The first quasi-crystals discovered were metastable binary alloys, but in 2007
the first complete structure solution for a icosahedral quasi-crystal was produced
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from a stable binary alloy (Takakura et al. 2007). This discovery played a central
role in the retrospective article that Senechal and Taylor published in 2013, after
Shechtman had also been awarded the Nobel Prize (Senechal and Taylor 2013).
The structural description of the Cd-Yb quasi-crystal is, to Senechal and Taylor,
particularly attractive because it answers a number of the concerns that were raised
more than 25 years earlier: It not only describes where the individual atoms are
placed but does so in a way that can be easily visualized based on ideas deriving
from classical geometric solids (ibid., p. 3). Senechal and Taylor report on the way
the structural description was obtained as follows:

Takakura et al. [i.e. the authors of (Takakura et al. 2007)] worked backwards from the two
observed sections (which correspond to different choices of R)) to estimate a single 6D
periodic density giving rise to both. To get the physical structure, they used the section
method, and their data, creatively. (Senechal and Taylor 2013, p. 5)

Further, Senechal and Taylor notice that the projection methods from higher-
dimensional spaces (‘“hyperspaces”) have become the standard approach:

Materials scientists use hyperspace descriptions so frequently now that spots in the

diffraction pattern are routinely given six indices instead of the once-standard three. Indeed,

the section version of the cut-and-project method is so popular that we are concerned
researchers may consider it to the exclusion of other types of order. (ibid., p. 5)

This illustrates that although the higher-dimensional model contains un-
interpreted, hidden variables, this circumstance does not impede on its usefulness
and applicability in research and modeling. Indeed, its usefulness is such that it may
overshadow the provisional and plastic nature of the model, itself — or at least so it
was feared.

Although mathematical frameworks for characterizing quasi-crystals were in
existence by the beginning of the twenty-first century, and numerous physical
exemplars had been produced in laboratories all over the world, many questions
remained open. Concerning the important question of how quasi-crystals grow, one
survey explained:

Quasicrystals, like crystals, form via nucleation and growth, where a microscopic ‘nucleus’
of the solid phase spontaneously arises in the supercooled liquid and spreads outward,
converting the system from liquid to solid. A fundamental puzzle in quasicrystal physics
is to understand how the growth phase of nucleation and growth can lead to a structure with
long-range aperiodicity. (Keys and Glotzer 2007, p. 1)

Ideally, the growth of quasi-crystals as well as their physical and chemical
properties should be linked to their mathematical description and the mathematical
model. Indeed, preferably, these questions would be answerable from a joint
conceptualization of quasi-crystals encoded in a mathematical model that would
possess similar potential as the discarded crystallographic restriction. However, this
is no easy task, and reaching predictions and explanations of physical phenomena
about quasi-crystals from the mathematical description remains a major on-going
research field (see Senechal and Taylor 2013, p. 7). But combined with the advances
in computer software and visualization techniques (see also ibid., p. 9), the study of
quasi-crystals has not only “fundamentally altered how chemists conceive of solid
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matter” as the announcement stated when Shechtman was awarded the Nobel Prize.
The study of quasi-crystals is also altering the way mathematicians, physicists and
crystallographers look at their shared mathematical models.

4 Shaping Mathematics as a Tool

The early history of the search for a new mathematical model for quasi-crystals in
the two decades following Shechtman’s discovery is full of complexities. Yet, even
the brief and restricted case-study outlines numerous interesting points about the
epistemic relations between mathematics and the sciences.

Confronted with empirical data that refuted an old and established mathematical
model, and without any viable alternative at hand, the mathematical, physical and
crystallographic communities had to revise and redefine their methods and concepts.
This process led to an instrumental redefinition of the very concept of crystals.
It sparked new mathematical ideas and investigations into symmetry at large and
aperiodic tiling patterns. And it meant the revival of interest in Penrose tilings
which had hitherto mainly been considered for their aesthetic qualities. These tilings
seemed promising as they exhibit high degrees of order while being aperiodic in the
large, since they possess no translational symmetry. They were therefore pursued as
a fix to the classical theory: The new quasi-crystals were seen and treated as excep-
tions that defied the characterizing crystallographic restriction. At first, the crystals,
themselves, were indeed rare, but they have now been reproduced in numerous
laboratories and have even been identified in very old meteors. Thus, scientists have
come to recognize that quasi-crystals are not only mathematically and physically
possible, they are naturally occurring and even more normal (in the sense of more
general) than the traditional crystalline structures. In order to treat these phenomena,
the theory of quasi-crystals required a comprehensive mathematical model capable
of addressing a multitude of interrelated, interdisciplinary research questions.

The mathematics — the theorems and their proofs — that had gone into describing
ordinary crystals was, of course, not invalidated by Shechtman’s discovery. Instead,
the model had proved to be insufficient in dealing with phenomena that from a
physical or chemical perspective would seem to fall in its domain. Yet, perhaps
because of the entrenched and paradigmatic status of the crystallographic restriction,
no alternative was at hand when Shechtman made his discovery. Instead, mathemati-
cians, physicists and crystallographers had to return to their desks and laboratories
to devise new conceptualizations and mathematical models for describing and
explaining the newly discovered phenomenon. In doing so, different but overlapping
cultures of mathematization pursued the quest of modeling quasi-crystals. These
different cultures originated from different concerns and disciplinary backgrounds.
And they had different visions and emphases for the modeling process. In particular,
views varied on the degree to which the new conceptualization should be able
to answer and explain questions about physical and chemical properties of quasi-
crystals. And even the fundamental physical notion that the conceptualization of
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quasi-crystals should be based on a model that focused on local, rather than global
geometry, was suspended for some of the process as the mathematization of non-
periodicity was quickly realized to be not (only) a local matter.

During the first two decades, a number of mathematical models were thus
developed from different perspectives. Not only were there disciplinary differences
between the approaches; there were also different mathematical theories and
machineries being suggested and pursued during the early phase. Penrose tilings
were but one among a number of avenues explored. And although they had an
initial appeal to physical interpretation, much of the mathematical research effort
was actually directed at developing construction methods for quasi-crystals that
would eventually render Penrose tilings as just one (simple and beautiful) exemplar
in the “z00” of quasi-crystals.

The mathematical models were by necessity more complex than the traditional
lattice model of old-fashioned crystals. And in this respect, the mathematization
coincided with a general trend towards increased complexity made possible by tech-
nological developments in software and hardware and by advances in mathematics.
As early as twenty years before Shechtman’s discovery, the crystallographer (and
historian of science) J. D. Bernal (1901-1971) had observed that the mathematical
modeling of liquids was guided by pragmatic and perhaps tacit concerns over the
simplicity and convenience of the model:

There is no reason, other than convenience, for mathematical treatment of long-range order

as being the only kind of order. It is clearly very much less probable than short-range order
and long-range disorder. (Bernal 1964, pp. 320-321)

By the time Shechtman first saw quasi-crystal structures, the vastly increased
computational power at the disposal of scientists and mathematical modelers and
advances in visualization software had allowed for a new set of ambitions in
modeling long-range disorder. These technical and conceptual advances allowed for
the exploration of the “zoo” of quasi-crystals through new mathematical techniques
and numerical simulations that could visualize their effects.

Faced with this immense and open-ended task of formulating a new theory to
encompass the phenomenon of quasi-crystals, mathematicians did draw on existing
knowledge applied from the shelf. In particular, Penrose tilings or almost-periodic
functions were well-known mathematical theories that were explored in the new
context. Thus, existing mathematics was of course relevant to the modeling process.
Yet, impacts of the modeling approaches on mainstream mathematics are also
discernible in (at least) two ways: Many of the questions that arose in the search
for the new mathematical model were, themselves, of a mathematical nature. In
particular, questions about relations between technical mathematical concepts such
as whether all repetitive sets are Meyer sets belong to mainstream conceptual
mathematics (see Senechal 2006, p. 887). Similarly, different questions presented
themselves to mathematical research when concepts that were introduced for a
rather specific use were abstracted and generalized. In working with an almost
intractable set of questions, some of the mathematical research was pursued by
restricting attention to simpler cases such as 1-dimensional quasi-crystals. This has
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proved to be a fruitful approach because of the relative simplicity of the model
and the fact that the mathematical construction of 1-dimensional quasi-crystals was
found to be related to fields of automata theory or Diophantine approximations.
As such, the search for a mathematical model fed back into mathematical research
in a variety of fields. But the influence also extended in a second, more social
direction. Deliberate attempts were made to attract the attention of mathematicians
and mathematical physicists towards the modeling of quasi-crystals. And books
like Senechal’s promoted the field of quasi-crystals and the related fields of
geometry, generalized functions, Diophantine approximations, etc. into prominence.
Thus, fields of mathematical research were given a new legitimization and new
impetus through their perceived relevance to the modeling of a fascinating scientific
phenomenon.

The case-study of efforts to model quasi-crystals during the first two decades
after Shechtman’s discovery has thus brought out issues of a richer and deeper
interaction between mathematics and various scientific disciplines interested in the
new phenomenon. Thus, the case illustrates that mathematics can be involved in
interdisciplinary research efforts, and that “application from the shelves” does not
capture all ways in which mathematization can take place. Yet, a few words of
caution might be required. The chosen example of quasi-crystals is, on the one hand,
arich, complex, and on-going case where a certain division of labor has taken place
from the early phase. Here, this has been illustrated mainly through analyses of
the mathematical community represented by Senechal and her collaborators. Thus,
at least provisionally, the main case may be rather unique. And at the same time,
this case-study does not address some of the interesting features of interdisciplinary
mathematical modeling present in other cases such as e.g. quantum theory or small-
world networks. These other examples also show bi-directional interaction, although
in different historical, institutional, and epistemic contexts. Yet, as the analysis of
the case of quasi-crystals is intended to be exploratory, the following conclusions
would seem not to contradict further studies along the same lines.

Firstly, through the brief presentation of two historical cases and the more
elaborate example of quasi-crystals, I have presented three examples where math-
ematics was involved in other branches of science. Located in different social and
epistemic contexts, they exhibit different set-ups for interdisciplinary collaborations,
which in a sense extend the laboratory or research group. Such an extension of the
notion of collaboration seems to be one of the necessary prerequisites for rendering
interdisciplinary efforts that involve active mathematical research amenable to the
vocabulary and analysis of studies of interdisciplinarity. This in turn would seem to
allow for new perspectives on key questions about interdisciplinary research such
as the division of labor with a formal science such mathematics, the negotiation of
different desiderata for the modeling process, or the role of mathematical models as
boundary objects.

Secondly, the framework of cultures of mathematization is intended as a step
towards analyses focusing on the co-production of mathematical models as bound-
ary objects in interdisciplinary collaborations that involve mathematics. Further
study and discussion about the actual use of the mathematical model and its role in
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day-to-day research in other branches of the interdisciplinary study of quasi-crystals
will be required to expand on the analysis of the model as a boundary object beyond
the focus on the different desiderata (or the neglect of same) by different agents in
the collaboration.

Finally, the discussion of an ongoing endeavor to shape a new mathematical
model for a phenomenon that is not yet well understood has served to illustrate
how the complex and open-ended process of mathematical modeling may actually
take place when there is no firm candidate for a proper mathematization. In other
words, the case of quasi-crystals nuances the notion of “mathematics-as-a-tool”
by showing some of the dynamics involved in shaping the pieces of mathematics
that are developed, placed on the shelf and, eventually, used as tools. During the
extended modeling process, new conceptualizations and mathematical results were
produced which can take up a life of their own as research objects and techniques in
various branches of mathematics. As noted in the literature discussing Wigner’s
bewilderment at the applicability of mathematics, such phases of co-production
were historically important for shaping the mathematics we know today. What this
example shows is that the process involves epistemic as well as social concerns that
give rise to different interests in the model. Possibly, this negotiation would not be as
surprising if the domain being mathematized did not already put so much emphasis
on mathematization: Various fields, at various times, have different expectations for
their mathematical models. What is striking is then, perhaps, that it is was (and is)
very difficult to develop a new, adequate model for quasi-crystals given that it was
to replace a firmly entrenched and successful model for crystals.

This discussion and case-study has provisionally revisited the notion of interdis-
ciplinary collaboration as it pertains to mathematics: When mathematics is involved,
such collaborations are neither specifically new nor do they strictly follow the
epistemic division of labor suggested by theoretical accounts of interdisciplinary
expertise. If mathematics is to be seen as a ool in these collaborations, it is a very
dynamic, plastic and evolving tool, indeed. And the best way to bring to the fore
such perspectives is, I believe, the philosophically informed historical case study
such as outlined here for the early history of quasi-crystals. Thus, the examples
chosen and the framework employed may hopefully have added to the complication
already involved in the topic of mathematics as a tool.
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Boon and Bane: On the Role of Adjustable
Parameters in Simulation Models

Hans Hasse and Johannes Lenhard

1 Introduction

Simulation brings together the important notions of model, theory, and experiment.
Each of these notions has been discussed extensively in the philosophy of sci-
ence. Consequently, the philosophy of simulation debates whether and how these
established conceptions have changed with the rise of simulation technology.! We
do not enter the discussion of what, in that context, an adequate conception of a
simulation experiment is, nor what an appropriate notion of a theoretical model
is. Instead, we focus on the interface of model and experiment. Here, adjustable
parameters enter the picture. They might appear as a minor detail, a technical matter
of smoothing out imperfections of a model. However, we argue that they are of
central importance in simulation methodology, though they are a two-edged affair.
They help to enlarge the scope of simulation far beyond what can be determined
by theoretical knowledge, but at the same time undercut the epistemic value of
simulation models. In short, adjustable parameters are boon and bane of simulation
models.

"Humphreys (2004) contributed the first monograph to the field. Parker (2013) or Winsberg (2014)
provide valid overview articles that include many references.
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Let us motivate this claim in more detail. Experimentation is a key element when
characterizing simulation modeling,? exactly because it occurs in two varieties. The
first variety has been called theoretical model, computer, or numerical experiments.
We prefer to call them simulation experiments. They are used to investigate the
behavior of models. Clearly simulation offers new possibilities for conducting
experiments of this sort and hence investigating models beyond what is tractable
by theoretical analysis. We are interested in how simulation experiments function
in simulation modeling. Importantly, relevant properties of simulation models can
be known only by simulation experiments.? There are two immediate and important
consequences. First, simulation experiments are unavoidable in simulation model-
ing. Second, when researchers construct a model and want to find out how possible
elaborations of the current version perform, they will have to conduct repeated
experiments.

The second variety is the experiment in the classical sense. When comparing
simulations to their target system, such classical experiments will usually provide
the data to compare with. The situation gets interestingly complicated, since the
influence of simulation on these experiments is growing. There is a beginning
debate on the changing face of experimentation due to computer use (cf. Morrison
2009, 2014; Tal 2013). It is indeed striking to what extent supposedly classical
experiments make use of simulation in their experimental setup; examples range
from the Large Hadron Collider at Cern to scanning tunnel microscopes.

Our claim is that adjustable parameters play a crucial role in the process of
building and applying simulation models. Two interconnected aspects make up our
claim: First, both varieties of experiments, or if you prefer another terminology:
simulation and classical experiment, cooperate. Second, this cooperation makes use
of a feedback loop and works via adjusting parameters.*

The outline is the following. In the next section, we start with a brief introduction
into mathematical simulation models, their implementation on computers and their
application. In addition, equations of state in thermodynamics are introduced, as we
will use examples from that area throughout the paper. We chose this field, because
it is a theoretically well-founded field of both science and engineering. It provides us
with excellent material to illustrate our claims as the parameters of equations of state
are of very different nature. They range from the universal gas constant, which can
be considered as an adjustable parameter, but one that is found to be valid in a very
broad range of situations and closely linked to theory, to mere correlation parameters

2 A variety of good motivations are given in, for instance, Axelrod (1997), Barberousse et al. (2009),
Dowling (1999), Galison (1996), Humphreys (1994), Hughes (1999), Keller (2003), Morgan
(2003), Morrison (2009), Rohrlich (1991), Winsberg (2003).

3If you want to avoid talking about experiment in this context, these properties can be known only
by actually conducting simulations. Mark Bedau (2011) has highlighted properties that can be
known only by actually conducting the computational process of a simulation and has aptly called
them “weakly emergent.”

“In this respect, our work elaborates the notion of “exploratory cooperation” in simulation
modeling, put forward in Lenard (2007).
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which are useful only in special situations and epistemologically worthless. We
also argue that choosing examples from a theoretically well-founded field provides
a stronger argument than choosing them from a field on which little is known
and which, hence, has to rely on data-driven models. In the latter field adjustable
parameters are important a fortiori. Thus, it is more demanding, and hopefully more
fruitful, to show their role in examples taken from the former field.

The topic of parameterization of models has received surprisingly little attention
from philosophers. Of course, there is an intense discussion of parameters in the
context of curve-fitting and simplicity (see, for instance, Forster and Sober 1994,
DeVito 1997, or Kieseppd 1997). There, parameters play the role of degrees of
freedom in a quite abstract mathematical sense. In the present paper, however,
we assume a physical context in which parameters might have physical meaning.
Notable exceptions that discuss this (large) area are those arguing about climate
science. Parameterization schemes build a main component in complex climate
models (Gramelsberger 2011; Parker 2014) and contain parameters that have to
be tuned. The discussion about practices of tuning is just about to start in the
climate community (cf. Mauritsen et al. 2012). With thermodynamics, we add a
substantially different topic to the applications discussed in this context.

We focus on the development of simulation models and on the decisive role
experiments play. Here, experiments include both classical experiments, in which
the real world is studied, as well as simulation experiments, in which the imple-
mentation of the simulation model on computers is investigated. The importance
of the feedback loop in simulation model development is highlighted in Sect.
3, which is based on the comparison of results of computer experiments and
classical experiments. This feedback loop is the means by which modeling and
experimentation can cooperate closely. Many extant pictures of simulation suggest
a “downward” direction (Winsberg 2014) from theoretical model to simulation,
or a “bottom-up” direction from phenomena to simulation models (Keller 2003),
whereas we underscore that simulation model development is a feedback loop
process in which both directions interact.

Section 4 is devoted to a closer look on parameters and feedback and presents
the central piece of our argument. We discuss different types of parameters and
various situations in which the feedback loop is involved. Typically, simulation
models are only simplified representations of their real world targets: parts of the
underlying physics may be unknown or so complex that they cannot be incorporated
in a tractable simulation model. Thus, workarounds are needed: these often come in
the form of models in which parameters are left open — to be adjusted in the feedback
loop. One could criticize this from a fundamental standpoint arguing that this is only
a poor remedy for a lack of knowledge, and, hence, bane. On the other hand, one
can argue that it is boon, because it allows modeling and simulation which otherwise
would not be possible. This shows that a critical discussion is needed, to which we
want to contribute, namely, by studying the epistemic and practical value of various
classes of parameters. We also address the issue of the influence computerization
has had on the use of parameters in models. It turns out that it is important and that
also in this, there is boon and bane.
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Finally, in Sect. 5, we sum up and draw conclusions from the fact that adjustable
parameters are boon and bane of simulation. We argue further that simulation
modeling adds a new experimentalist twist to mathematical modeling.

2 A Primer on Thermodynamics, Simulation,
and Experimentation

Throughout the present paper, we will use examples from thermodynamics to
illustrate our arguments. They are chosen from the well-known field of the so-called
equations of state. We will only consider equations aiming at describing fluid states
(gas as well as liquid) — but not solids. This field lends itself for this purpose as it
is fundamental and well known to many scientists and engineers, and it can also
be understood by others. Many other areas of science and engineering would have
provided equally useful illustrations.
The best known equation of state is that of the ideal gas

pv=RT (D)

where p is the pressure, v = V/n is the molar volume (volume per mole of substance),
and T is the temperature measured in Kelvin. All these quantities are measurable in
classical experiments. R is a universal constant (8.314 J mol~' K~!). Equation (1)
has been used before to illustrate issues of philosophy of science, for example, quite
recently by Woody (2013) for discussing concepts of explanation. It is known that all
substances fulfill Eq. (1) if the density p = 1/v is low enough (or the molar volume
v is large enough).

The broader concept behind Eq. (1) is that for a given amount of a given
substance, p, v, and T are not independent: there is a function which describes the
relation between these quantities. Hence the general form of the equation of state is:

f(p,v,T)=0 2)

In the low density limit the function f is given by the simple Eq. (1) which is
universal in the sense that it holds for all substances. Unfortunately, the relation
between p, v, and T is more complicated at higher density and different results
are obtained for different substances. The reason for this is simply that at higher
densities the interactions between the molecules start playing a role, and hence, the
individuality of the molecules matters. We note already here, that while Eq. (1) has
substance-wise the widest possible range of application and the “parameter” R has
the same value for all substances, there must be ways to tune Eq. (2) to represent a
given substance. That tuning is done by adjustable parameters.

Well known examples of such equations are the van der Waals Equation and the
Virial Equation of state. In Eq. (2) a pair of independent variables can be chosen
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(e.g., p and T). The third (dependent) variable (then v) can then be calculated from
Equation (2). There is a plethora of proposals for equations describing the p,v,T —
behavior of substances for a wide range of conditions. Depending on the form of the
function f, their evaluation may only be possible numerically. Furthermore, several
solutions may be found and algorithms have to be applied to select the desired one.
Different solutions may correspond to different physical states (e.g., gas and liquid)
or may be unphysical.

The results from the equation of state can be compared directly to p,v,T — data
obtained in laboratory experiments. A good equation of state will describe those
experimental data well for a wide range of conditions. But the equation of state can
do more. If it describes both gaseous and liquid states, it also describes boiling and
condensation. Hence, for example, from Eq. (2) also the so-called vapor pressure
curve can be found which describes the dependence of the boiling temperature on
the pressure. These results can be compared to experimental data as well. The same
holds for results on the heat of vaporization, which can also be obtained from Eq.
(2). Calculating these properties, though well-based on general thermodynamics,
usually requires algorithms, numerical schemes and a suitable implementation on
computers.

It should be noted that mathematics serves as a powerful tool. Once the Eq. (2)
is written down together with its parameters, which can easily be done on a piece of
paper, a wealth of information on the fluid is specified, like its vapor pressure curve,
or caloric quantities. The retrieval of that information can, however, be tedious. In
practice, it will depend on the availability of software tools for the evaluation of
the given type of equation of state, whether desired results can be obtained with
reasonable effort. Although many codes in this field are well tested and considered
to be reliable, there is no strict guarantee that the simulation result x*™ agrees with
the (theoretical) model value x™¢. Let us move from thermodynamics to a general
consideration of simulation.

Simulations are based on simulation models. We will assume here that they are
given by some set of mathematical equations, which relate input to output. We
acknowledge that there are other classes of simulation models, like artificial neural
networks, which do not fit into that definition. Their point is exactly to connect
input and output in a highly implicit way that is based on extensive parameter
adjustments — “learning algorithms” — instead of explicit mathematical equations.
The more standard case, where a theory in the form of mathematical equations,
thermodynamics in our examples, is at hand, is discussed here. This is the harder
case for our argument, because it seems to be less dependent on experimentation
and parameter adjustment — but let us see.

In most cases, today, the computer is mandatory to study the model, which is
too complex to yield the desired output for a given input in any other way. This is
generally true already for our Eq. (2) above. Addressing problems by simulation,
hence, connects three important issues: setting up the theoretical model (suitably
based on the theory of thermodynamics in our examples) on the one side, and
implementing and executing it on computers as well as analyzing the results on the
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other. The implementation includes steps like discretization, algorithms for solving
the equation, coding, and compilation. In practice, there often exist different imple-
mentations of the same model on different computers. With the simulation, only the
specific model implementation (on the chosen computer) can be studied. There are
many situations in which the implementation must inevitably give different results
compared to the mathematical model, for example, due to discretization. In other
cases differences may simply result from an erroneous implementation. In many
cases, the quantity x™°¢ — which results from the theoretical model for a given input —
is not directly accessible and we can only retrieve numbers for the corresponding
result x*™ of the simulation.

Scientists can vary the model input or other parameters and “observe” how x*™
changes. This is an experimental activity, but one that does not deal with nature
or some system in the laboratory, but rather with the model implemented on a
computer, that is, with the simulation model. It is important to note that what is
observed in computer experimentation is M not x™°4. However, in many cases,
including our case of thermodynamics, one also has a target system, that is, an object
of the real world, which is described somehow by the model. Comparison with this
system is not only possible, but is an essential part of the simulation activity. Only
then, application becomes a topic and a potential problem. The view of simulation
presented above then has to be embedded in a wider perspective which includes the
real world,” the modeling process and the application of the simulation results (cf.
Fig. 1).

Model .| Model
Model quantity xmod "| implemention
A ‘
Simulation

‘ Simulated quantity x*™
Comparison

4 Measured quantity x°*

Experiment

?

Real world
Real quantity x

Fig. 1 Scheme showing relations between the real world, modeling, simulation, and experiments

3Qur claim is open to many guises of how “real” is spelled out in philosophical terms. People
concerned with issues of realism might want to resort to “target system,” which is a less laden term
(though it does not solve any of the questions).
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We start with a quantity x¥ in the real world we want to model. The corre-
sponding entity in the (theoretical) model is x™*¢. As the model is too complex
to be evaluated directly, it is implemented on a computer and simulations are
carried out as described above. These simulations yield a quantity x*™ which can
eventually be compared to results of experimental studies of the real world x**P.
In general, we cannot know x*¥ nor can we know x™¢, we can only compare the
corresponding properties of x**P and x*'™. There are two types of experiment in
play. One from “below” that provides measured values, the other from “above” that
provides simulated values.® Up to this point, the picture coincides with prominent
schemes of modeling, like R.I.G. Hughes’ DDI account (1997), or Reichenbach’s
(1964, 102/103) appreciation how mathematical deduction (on the model level) and
observation work together in science.

The discussion around Eq. (2) presented above highlights the role theory plays
in this context and reminds us not to interpret Fig. 1 too literally: Eq. (2) describes
a priori only p,v,T properties. But based on arguments which combine some very
basic physical statements with mathematics, it can be shown that it describes
also properties which are at first glance unrelated to p,v,T properties, like boiling
conditions, caloric properties, and many more. It is the success of such predictions
that convinces students of taking the effort of studying the theory which enables
them.

Up to now, simulation was a means for revealing what the model says about
the property x under investigation. This is regularly a task for which there is no
alternative to using a computer. Still, the basic rationale is the standard one: The
analysis and evaluation of the theoretical model via comparison to the target system.

In general, the quality of a model depends on two aspects that counteract each
other. It depends both on adequacy of representation, else the model would not
yield results revealing anything about the target system, and tractability, which is
prerequisite for obtaining some result at all. Here is where computers have changed
the picture. They can handle very long and convoluted iterative algorithms that
would be intractable for human beings and, hence, make models tractable which
otherwise would be useless.

Figure 1 is rich enough to account for our illustrative case. Equations of state
(Eq. 2) have parameters which need to be adjusted to some data on the fluid that
they are meant to describe. That data is usually taken from laboratory experiments.
An alternative is results from computer experiments. In most cases, for that purpose
molecular simulations based on force field are used in which the latter describes
the interactions between the molecules. In the molecular simulations, the p,v,T —
behavior or other macroscopic thermodynamic properties can be studied based on
a model of the interactions between the molecules. The results of these simulations
always fulfill Eq. (1) in the low density limit where the molecules are so far apart

6 Addressing the intricate questions about correspondence and representation, we refer to Weis-
berg’s recent work (2013), which offers a taxonomy for the relationships between model and target
system.
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that the interactions play no role. But at higher densities, when the interactions
start playing a role, they deviate from Eq. (1) but open the door to formulating
equations of the type (2) which depend on the interaction model. Thus, the computer
experiments yield new opportunities compared to classical experiments. The type
and strength of intermolecular interactions can be systematically varied and the
effect of that variation on the p,v,T — behavior can be studied. This is widely used in
developing new mathematical forms of equations of state (see, e.g., Wei and Sadus
2000).

3 Simulation Model Development as Feedback Loop Process

For our claim about the significance of adjustable parameters, we need a more
complex picture of experimentation. In this section we highlight a particular feature
of simulation model development, namely, a feedback loop of model adaptation. It
is depicted in Fig. 2, which derives from Fig. 1 by adding one arrow that closes
the modeling loop. It is basically a classical feedback control loop which aims at
minimizing the differences between a variable (here: x*™) and a set value (here:
x®*P). The two quantities which are compared need not be scalar quantities but may
have many entries or be, for example, trajectories over time. There are also many
ways of carrying out the comparison.

This feedback loop easily appears as marginal, as a pragmatic handle for fine-
tuning and correcting imperfections of the (theoretical and simulation) models. We
argue that it is not. Adjusting parameters fulfills essential functions in simulation
modeling. Repeated comparison of the two types of experiment guides the modeling

Model .| Model
Model quantity xmed "|implemention
[ ‘
Simulation

} Simulated quantity xs™
Comparison

Modeling |«
4 Measured quantity x®
Experiment
Real world

Real quantity xr!

Fig. 2 Same as Fig. 1, but one arrow added, pointing to the left and closing the feedback loop of
modeling
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process. During this phase, the process consists in adjusting parameters. The model
is explored via (simulation) experiments, motivated by comparison with (classic)
experiments. We have hence a cooperation of both types of experiments that is the
nucleus of model development via adjusting parameters. However, the cooperation
gets even more intertwined when one takes into account that the measured quantities
themselves might be partly determined with the help of simulation.

Basically two sorts of actions can be taken in modeling when the comparison
of the simulation results and the experiments do not yield the desired results: a)
the model structure can be adapted, that is, the set of equations is modified, for
instance, to change a description or include a previously neglected effect, or b)
model parameters are changed. It is this second option that we are interested in here.
Parameterization schemes can be considered as a sort of auxiliary constructions that
are intentionally used for dealing with missing knowledge and the inaccuracies of
existing knowledge. The simulation model is designed, so that it contains parameters
that can be adjusted in the course of the further development.

The remainder of the paper focuses on the role of adjustable parameters. The
reasons for using adjustable parameters are discussed in more detail, and it is shown
that adjustable parameters form an essential component of simulation modeling.
While models with adjustable parameters have been around much longer than
computers, practical hurdles had limited their use in the past. The easy availability of
computers and optimization software has tremendously lowered these hurdles. It has
become much easier to utilize the adaptability of models, so that it has become much
more tempting to succumb to the lure of making models fit by adjusting enough
parameters.

Parameter adjustment is only one way of model adjustment. Besides adjusting
the model parameters, the structure of the model (the mathematical equations) can
be adjusted to obtain a better fit to experimental data. The latter procedure is very
closely related to parameter adjustment if the equations are changed without any
other physical reasoning than obtaining a better representation of some data. The
equations themselves then are seen as a sort of parameters that can be adjusted.” We
will also address this issue in the present work.

The equations of state, which we use as examples here, contain adjustable
parameters which are usually determined from experimental data. The exception
is the equation of state of the ideal gas (Eq. (1)). But even in that case, it can be
argued that R was once not more than an adjustable parameter. But it is no longer,
R has turned out to be a universal constant. It is beyond the scope of the present
work to discuss the far reaching consequences of that universality which include
the definition of temperature and the atomistic nature of matter. By the way, these
relations provide again an excellent example for the success of the combination of

7We will not discuss classes of simulation models like artificial neural networks. Arguably, they
have a very generic structure and extraordinary adaptability. Essentially, they are a proposal to
parameterize the entire behavior (if in an opaque, or implicit way).
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mathematical deduction with observation. We will rather focus on the consequences
of the adjustment of parameters in equations of state and the role the computer plays
in this.

As simple examples, we use the van der Waals equation:

RT a

= - = 3
P=TT, "2 3

and the Virial equation of state in the following form:

pv 1 1
RT_1+Bv+Cv2 (C))

The researchers who have introduced these equations, J.D. van der Waals and
H. Kammerlingh Onnes, received Nobel prizes in 1910 and 1913. These equations,
though both with strong foundations in physics and mathematics, contain adjustable
parameters, namely, a and b in Eq. (3) and B and C in Eq. (4). These parameters
are needed to account for the individuality of different fluids, that is, water is
different from nitrogen. The parameters are not necessarily simple numbers but can
be functions of variables. For example, the theory behind Eq. (4) yields that B and
C are functions of the temperature, but not of pressure. In the original version of Eq.
(3) a and b were numbers. However, in later versions of Eq. (3), a was considered
to be a function of temperature. Adjusting functions is obviously more flexible than
adjusting numbers.

4 Adjusting Model Parameters: A Closer Look

Speaking about adjustment of parameters invokes a field of similar terms with (only)
slightly differing connotations. Calibration, for instance, is used in the context of
measuring instruments. Hence, using calibration of parameters makes models look
a bit like precision instruments. Tuning, on the other side, has a slightly pejorative
meaning, though it is used in some areas of science as the standard term. Anyway,
we chose adjusting because it seems to be neutral and does not appear to be a good
or bad thing from the start — though we do not claim our terminology is without
alternative. Adaptation, for instance, has an equally neutral flavor.

In this section, we discuss a spectrum of situations in which parameters get
adjusted. We adopt here a simple scheme of a simulation model, which is based
on systems theory (cf. Fig. 3). The process model aims at describing a certain set
of quantities y, which we will call output variables here. The output depends on
the input, which is described by another set of quantities u, the input variables.
Both y and u belong to the quantities which occur in the model. The latter will
be called model variables x here. The set of the model variables x may contain
quantities which are neither input nor output (i.e., internal variables). The question
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Fig. 3 Parameter adjustment in models

which subset of x is considered as input and which as output may depend on
the application. In the models in which we are interested here, y and u describe
properties of the target system. Ideally, y is a measurable quantity and u can be set
in experiments.

4.1 Model Parameters

Besides the input variables u#, many models require the specification of model
parameters p. These do not necessarily correspond to anything in the real world.
Cleverly setting the model parameters allows improving the quality of the model
regarding its outputy. The parameter adjustment involves some kind of optimization
procedure. The goal of the optimization is to improve the agreement of the model
output y with some reference data, usually experimental data y**P (cf. Fig. 3). We
do not presuppose some elaborated formal algorithm for optimization. A simple
trial-and-error method is eligible for “method,” too. We should point out, however,
that mathematical optimization methods reach far beyond what can be handled by
simple trial-and-error. Such methods often act like black boxes for thermodynamics
modelers. We leave the detailed consideration of the optimization part for another
paper.

For example, in the van der Waals equation (3), the input variables may be
chosen to be the temperature 7" and the molar volume v, and one may be interested
in the result for the pressure p at those chosen conditions. The calculated result
will depend on the choices made for the parameters a and b. Obviously, if some
p,v,T data points are available for a given substance, the parameters a and b can
be adjusted to these data. Thus, the results obtained for a and b will depend on the
choice of the data set to which they are fitted, and also on the way they are fitted. For
parameterizing equations of state different types of data are used (e.g., besides p,v, T
data also data on vapor pressures, data on the critical point of the fluid, or caloric
data). The calculation of such properties regularly involves numerical procedures
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and as a consequence computers are needed. This becomes especially important in
the parameterization which is an optimization task that regularly involves a large
number of evaluations of each property. Computers enable adjustments which were
not feasible before.

On the one side, adjusting model parameters is obviously a boon, as it can make
models work. In many cases it is the key to making them work. Even an otherwise
poor model could be augmented by a suitable parameter fit so that it gives fair
representations of y. In a community which is used to judging models solely by
their ability to describe certain properties y, this is clearly attractive.

In the case of equations of state, there is an obvious need for an adjustment
of parameters. With only a few exceptions, we are not yet capable of predicting
properties of real fluids from first principles. Hence, models describing such
properties must be trained by some experimental data. The way to do this is
by adjusting model parameters. In the field of fluids, the predictions from first
principles are presently basically limited to calculating ideal gas properties from
Schrodinger’s equation. But equations like (3) and (4) are far more than some
mathematical form which is fitted to data. We mention only some examples:

(a) by virtue of their derivation they contain Eq. (1) as limiting case,

(b) the B parameter of Eq. (4) can directly be related to intermolecular pair
interactions and was for a long time the most important source for quantitative
data on them,

(c) the simple Eq. (2) predicts the existence of phenomena like critical points or
metastability of fluid phases and relates them to other fluid properties in a
consistent way.

These examples highlight the unifying power of the thermodynamic theory and
are examples for the benefits of combining theory and experiment.

On the other side, the adjustment is a bane, since it does not remove flaws of
models; it rather disguises them. Even an obviously wrong model, that is, one with
internal logical contradictions, can give fair representations of y after a suitable
adjustment of parameters. For a scientist, who is interested in obtaining insights
from models, this is scary. He may be inclined to discard models as worthless if they
only work after adjusting parameters to data which the model aims to describe. What
is the use of a description of properties of something which can only be established
based on the knowledge of the same properties?

This point is illustrated again using equations of state as an example. These
equations can be used for describing mixtures. The key to this is finding expressions
for the parameters of the equation (like ¢ and b in Eq. (2)) which hold for the
mixture. These mixture parameters are usually calculated from the corresponding
pure component parameters and the composition of the mixture via so-called mixing
rules. With the exception of the mixing rules for the parameters of Eq. (3), which
can be rigorously determined from the principles of statistical thermodynamics,
these mixing rules are empirical. They contain parameters which usually have to
be adjusted to mixture data. Nevertheless, they can be submitted to some tests
which can be of logical nature (i.e., if a pure component is formally split up in
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two identical components, the pure component result should be obtained also from
the mixture model) or based on fundamental findings of thermodynamics like those
from statistical thermodynamics mentioned above. It is known that mixing rules
which fail both in the logical tests and those from statistical thermodynamics, can
nevertheless turn out to work well in practice, if the parameters are suitably adjusted.
For examples, see Mathias et al. (1991).

4.2 Proliferation of Variants

Moreover, adjusting parameters leads to what we call a “flood of flavors,” because
the results for the parameters and hence all results obtained with the model will
depend on the choice of the data set to which the parameters are fitted, and on
the way they are fitted. The flood may turn into a deluge if also variants of the
mathematical form are included, which are only introduced to improve some fits
and have no other basis.

In fact, computers have opened the gates to that flooding. The possibility to
easily create and check variants of some model on empirical grounds is at first
sight positive. Upon closer inspection, the picture changes. Firstly, the plethora
of variants of a given model will rarely have epistemic value. But even from an
entirely instrumental standpoint, it may be detrimental. A plethora of versions of a
model will create an obstacle for anybody who wants to use the model. Which one
to choose? By facilitating the creation of sprawling mutations of models, computers
have contributed to the fragmentation of research.

Let us only consider the van der Waals equation, Eq. (3), as an example. It was
developed in 1873. Meanwhile there are more than 400 equations of state (so-
called cubic equations of state) which can be considered to be variants of that
single equation (Valderama 2003). While this gives, of course, enormous credit
to the ground-breaking work of van der Waals, it is also distressing. The variants
can hardly be classified on theoretical grounds. Rather, historical (when were they
developed?), sociological (how well are they received?) or pragmatic arguments
(what practical benefits are offered?) and classifications are used. There are some
very successful variants which are widely used, and there are certainly elder versions
which have technical drawbacks, but there is a plethora of variants that are very
similar. Many of these have been used only by the group which has proposed the
equation. This danger has nicely been captured by D. Frenkel in his paper on the
“dark side” of simulations: “In the past, we had to think about the role of simulations
because they were expensive, now we have to think because they are (mostly) cheap”
(2013).

Note that the above discussion only addresses the number of mathematical forms
of the equation. For each of these there exists a plethora of specific variants. For
example, for describing mixtures, one can combine a given equation of state with
many different mixing rules. Due to the combinatorial explosion, most of the options
have never been explored and never will. And there is very likely no loss in not doing
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so. Furthermore, we have not addressed that, even in the simpler case of a single pure
component, there is a practically unlimited number of options for choosing the data
set used for the parameterization — each of which will yield a different set of model
parameters.

This sprawling of variants cannot be solely attributed to the use of computers
but it is certain that computers have strongly accelerated that development. They
have also favored the increase of the number of parameters in a model of a given
object. While the van der Waals equation (Eq. 3) only has the two parameters a and
b, modern equations of state may have 30 or more adjustable parameters.®

4.3 Necessity of Adjusting Model Parameters

What are the reasons that make this parameterization problem so endemic and in
a sense unavoidable? In general, any mathematical model presents an idealized
version of the real world target system. There is always more abundance in the
target system than in some mathematical model equations. Mathematics can be
seen as a science which works with objects that are so simple that they can be
fully described — which is never possible for an object of the real world.® Hence,
there may be unknown properties of the target system that should be included in
the model, but are not. Leaving open some model parameters and adjusting them to
experimental data can be considered as a pragmatic remedy for this.

Even if all properties of the target system which have an influence are known,
it can still be prohibitive to explicitly account for their influence in the model.
There may simply be a lack of theories, or existing theories might be so complex
that they would make the model intractable. Adjustable parameters are of prime
importance in this context. They enable using simplified but tractable models. Such
models may only be loosely related to the real object and may be obvious over-
simplifications. But leaving open some parameters in such models and adjusting
them in a clever way can make them work. This is at the core of engineering.
Engineers look for simple models which will “do the job,” that is, produce good
results in a certain application. Their main interest is in the application, not
in the physical interpretation. Carefully parameterized simple models can give
astonishingly reliable and useful results. As the parameterization involves some
comparison with experimental data, it even guarantees a certain quality of the model
(at least for the representation of the data that was used for the parameterization). All
this is relevant not only in engineering but in many parts of science. Furthermore,

8The coincidence of computer modeling, exploratory setting of parameters, and proliferation of
models has been discussed by Lenhard (2016) in the context of computational chemistry.

° Actually, even the objects of mathematics kept ready surprises. The development of the discipline
has been accompanied by an extraordinary — and often unexpected — malleability of objects.
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accuracy matters and for the reasons mentioned above even good models will never
be perfect. Parameterization can be used for alleviating this too.

For example, in the van der Waals equation (1), the parameters a and b have
a physical meaning. They are associated with attractive (a) and repulsive (b)
interactions between the particles. It is well known that there are many different
types of attractive forces, which are all lumped into the a parameter. It can, hence,
be considered as an “effective” parameter. Such parameters are meant to describe
the influence of a certain class of physical phenomena within a given model.
In addition, the parameter b can be considered as such an effective parameter
describing repulsion. Despite the crude simplifications in the assumptions on the
intermolecular interactions, the van der Waals equation and its mutants have been
extremely successful in describing real fluids. There are two main reasons for this.
The first is that the structure of the equation (which comes from theory) is able to
reproduce qualitatively the most important features of the behavior of fluids like the
coexistence of vapor and liquid at certain conditions, the ideal gas limiting behavior
etc. The second reason is that the equation contains the parameters, which can be
suitably adjusted. Both reasons act together.

Above, we have discussed how simulation takes advantage of the possibility to
iterate the feedback loop. It is the very point of the feedback modeling loop that the
model is adapted to yield some global behavior. Consequently, the parameters which
are used to achieve this do not necessarily follow their physical interpretation — and
they do not even need to have such an interpretation at all.

4.4 Parameters with and Without Independent
Physical Meaning

In principle, any variable in a model can be used as adjustable parameter. Two cases
should be distinguished, depending on the question whether the parameter has an
independent physical meaning or not. Independent physical meaning is used here
in the sense that there is a physical interpretation outside of the context of the
parameter fitting. For reasons of illustration, consider a model for describing the
dependence of a physical property y (output) on some other physical property u
(input). In the model, it is simply assumed, without any physical argument, that the
relation is linear, hence:

y=au+b (®)]

where a and b are adjustable parameters. The parameter a describes the sensitivity
of y on changes of u, which is a physical property in the example. Whether the
parameter b has a physical interpretation depends on the range that the input values
for u have. If u = 0 is a physically reasonable scenario, then b is simply the result
for y for that case. All this is trivial and not the case we want to make, because here
the physical interpretation is no more than some curve discussion in high school
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mathematics. The case we are interested in is when the linear relation of Eq. (5) is
resulting from some physical theory; and there could be a possibility for calculating
a from properties that are not y and u. Still, a could be used as adjustable parameter
in the fit using data on y and u.

We use the van der Waals equation for a further illustration of the above: assume
its parameters are fitted to experimental p,v,T - data of some liquid. On closer
inspection of Eq. (2), one finds that the liquid density at high pressures is determined
by the b parameter. Hence, one can physically interpret the b parameter as describing
the liquid density at high pressures. This is considered here as an interpretation
in the context of the parameter fitting, and hence not an independent physical
interpretation. However, as stated above, by virtue of the derivation of the van
der Waals equation, the b parameter has a deeper meaning. It describes repulsive
intermolecular interactions. These obviously become very important in liquids at
high pressures, where the distances between the particles in the fluid become
very low. Repulsive interactions can in principle also be determined independently,
namely, from quantum chemistry. Unfortunately, the derivation of the van der Waals
equation is based on such crude simplifications that there is no way to relate or
predict the b parameter from independent sources of information, like quantum
chemistry.

The above shows different things: while it is fair to say that b is related to
repulsive interactions, there is no way to establish such a correlation quantitatively.
An important consequence of this is that the numbers for b obtained from fitting
should not be over-interpreted as carrying useful quantitative information on
the repulsive interactions. That this is not possible becomes also evident when
considering that the numbers obtained for the b parameter of a given real fluid
will depend strongly on the choice of the data set used for the fit. Nevertheless,
it is obviously a merit of the van der Waals equation that it gives structural insight
into the importance of certain interactions at certain conditions, in our example the
repulsive interactions in liquids at high pressures. We now return from the example
to our main line of argumentation.

First, consider the case where the variable, which is used as parameter, has an
independent physical meaning. By using it as adjustable parameter that physical
meaning is given up in the first place. A number is assigned to that variable
in the feedback loop based on pragmatic considerations of the overall model
quality, and disregarding the physical interpretation that the resulting number
may have. However, one may try to recover the physical interpretation after the
parameterization by comparing the result with some independent information on
the property, if such information is available. The result of the comparison may well
be disastrous without compromising the usefulness of the overall model. But such
an outcome will shed a bad light on the explanatory power of the model. On the
other hand, it might turn out that the fit has produced a number which is “physically
reasonable,” that is, which meets some expectations based from considerations that
were not included in the fit. This would be a clear sign of the epistemic value of
the model, even in a strong sense where it not only predicts physical phenomena
qualitatively but also quantitatively.



Boon and Bane: On the Role of Adjustable Parameters in Simulation Models 109

If independent information on a variable (parameter) is available, one may
ask why that independent information was not used right away in the model. A
good answer to that question would be the lack of accuracy of the information. If
the output of a model strongly depends on a variable which cannot be measured
accurately, the variable cannot be used as input variable straightforwardly. In such a
situation, the procedure which we have called parameter fit here could be a part of a
scheme for data estimation. Pushing this point further, the use of physical variables
as adjustable parameters can be considered as a part of a measuring scheme for
the associated properties which involves both classical experiments, modeling and
simulation. '

Let us now turn to the second case where the variable which is used as parameter
has no independent physical meaning. At first glance, that case may seem to be
trivial. One simply obtains some numbers from the fit and there is no need nor
possibility to interpret the results for these numbers. All there is to do is to check
the overall model quality. Maybe some kind of curve discussion of the fit can be
added (cf. the example around Eq. (5)).

Things become more interesting if we consider why adjustable parameters with-
out physical meaning are used. Basically, this results from operative requirements
in the modeling process in which highly complex target objects have to be described
with models that are still feasible. This may make it attractive to represent a complex
real situation by a model which was initially developed for describing a much
simpler physical situation. These models have parameters which describe physical
quantities in the simple context for which they were initially developed. They
therefore also carry names of physical properties. But in the complex context in
which they are used as fitting parameters, the original physical meaning is lost, they
degenerate to empirical parameters. However, this is disguised by the fact that they
carry names of physical quantities. This has caused much confusion. One should
refrain from physical interpretations of results of fits of such parameters, despite the
fact that they often carry names of physical variables. An example might clarify the
point.

For instance, for modeling liquid mixtures, there is an entire class of models,
the so-called lattice models, in which the liquid is represented by particles at
fixed positions on a lattice. In the simplest version, each particle occupies one
lattice site. This picture is taken from an ideal crystal. For describing liquids, in
which molecules are constantly moving around, changing their neighbors, this is
a bold simplification. The key parameters in such models are those describing the
interaction energies of neighbors on the lattice. For example, in a mixture of two
components A and B, there are three such energies, those of the AA, the BB, and
the AB interaction. If such simple models were applied to describe some crystal
solid, one could hope to interpret the results for the interaction energies determined
from a fit to some data in a physical way and compare them to independent data.

10Here, our paper ties in with recent accounts of how simulation influences the standard notion of
experiment and measurement (cf. Morrison 2009, 2014, Tal 2013).
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In the context of modeling liquids, there is no hope in such an endeavor. The
numbers obtained for the interaction energies from fits to liquid mixture data have
no meaning, even though they are still called interaction energies.

On the other hand, parameters of models which were chosen for entirely
mathematical reasons (e.g., coefficients of Taylor series expansions) may turn out to
have a strong independent physical meaning. For example, Eq. (3) can be considered
as a Taylor series expansion around the state of the ideal gas and B and C are just
the first two coefficients of that expansion. The theory of statistical mechanics shows
that these coefficients are directly related to the energy of pair interactions in the gas.

In developing computer models, also hybrid schemes are applied in which model
parts with a strong physical background and parameters that have an independent
physical meaning are combined with empirical parts. Here, the parameters are
merely there to improve some model results, which without the use of these
parameters would be inacceptable.

Again, the van der Waals equation provides an example. Originally, the parameter
a was a number with a certain value for each fluid. But it was soon realized that
for accurate descriptions of the thermodynamic behavior over a large temperature
range, namely, of the vapor pressure curve, substantial improvements could be
achieved by allowing for a temperature dependence of a. The mathematical forms
for describing a(T) are empirical and so are the adjustable parameters in these forms.

4.5 Parameters in the Implementation

So far, we have only discussed model parameters. We have neglected the fact
that the (theoretical) models often cannot be studied directly. They first have to
be implemented on computers. Different implementations of the same model will
usually not yield exactly the same results. As a consequence, the implementation,
which is a part of the feedback loop of modeling, will influence the model param-
eterization. Aside from implementation errors, the differences between different
implementations of one model are luckily often small enough to be neglected.
Model parameters determined in one study are regularly and successfully used in
other studies, even though the model implementations differ. However, there is no
guarantee that this is the case.

There is more concern about parameters which occur in the model implemen-
tation. Prominent examples of such parameters are those used in the discretization
of models or those used to control numerical solvers. Ideally, these parameters are
chosen from ranges in which the influence of the parameter on the simulation result
is negligible (e.g., the grids used for the discretization must be “fine enough”). But
it may be very difficult to guarantee this.

When there is an influence of such parameters on the simulation results, they
can actively be adjusted in the modeling feedback loop to improve the simulation
results. This is much more problematic than adjusting model parameters, as it
is implementation-dependent. It forecloses the discussion of the model without



Boon and Bane: On the Role of Adjustable Parameters in Simulation Models 111

referring to the specific implementation. It also may be misused to feint a success of
the model, which cannot be attributed to the model but just to a deliberately tuned
implementation.

We think that adjusting parameters of the implementation should always be
done based on the consideration of minimizing the influence of those parameters
at acceptable simulation effort. It must never be used for tuning simulation results
in the modeling feedback loop.'!

4.6 Models and Correlations

Both the term “model” and the term “correlation” are used for referring to descrip-
tions of objects of the real world. Model has a better reputation than its counterpart
correlation. Correlations are often considered as “some kind of (empirical) model,”
but one where physical theory is not invoked. Rather, statistical considerations play
the leading role — largely independent from the physical properties of the particular
target system under investigation.

In the framework that we have presented here, a correlation is just an extreme
version of a model. In Fig. 3, the term model could be replaced by correlation and
nothing else would have to be changed. The feedback loop is even more essential
for the correlation than it is for the model. This is due to the fact that the correlation
relies on adjustable parameters, either fully or at least in essential parts. It does not
even have to have any physical background. A correlation can, for example, just be
a mathematical form, which is taught to describe a physical situation by adjusting
its parameters. Artificial neural networks provide a telling example, since they work
with a generic structure, while the parameter adjustments determine the behavior
nearly completely. It is noted here that most physical phenomena can be described
by suitably parameterized mathematical expansions around a given point (Taylor
series, Fourier series etc.).

From this we conclude that there is a continuous transition between physical
models and correlations, depending on the degree in which they rely on adjustable
parameters and whether the parameters of correlations are open to a physical
interpretation as in the van der Waals equation (see 4.4. above). The number of
adjustable parameters in a physical model should never exceed the number of
adjustable parameters in a purely mathematical (statistical) correlation of the studied
phenomenon, which yields a similar quality of the description. Else the physical
theory does supposedly not work.

1Cf. Oberkampf and Roy (2010, section 13.5.1) for a systematic proposal of how parameters
influence the validation of simulations from an engineering perspective.
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5 Conclusion: Boon and Bane

The cooperation of experiments, that is, of simulation and classical experiments,
plays a crucial role in simulation modeling. This cooperation thrives on the
feedback loop in modeling which provides the basis for adjusting parameters.
Notably, we monitored the significance of parameter adjustments even in the area of
thermodynamics and equations of state where theory is highly developed and well-
grounded. Adjustable parameters will arguably not be less significant in fields with
less support from theory.

Adjusting parameters is often the clue that makes a model work, it is a boon.
Using the term applicability in an engineering sense, which can broadly be identified
with usefulness for solving practical problems, it is fair to say that adjusting
parameters is often the prerequisite for the applicability of a model. At the same
time, the adjustment of parameters limits the applicability of models. The model
will often only be useful for describing scenarios which are not “too far away”
from the scenarios that were used for the fit. We cannot enter into the interesting
discussion of this in detail here and just mention that the question how far a model
carries beyond the range where it was parameterized is closely related to the quality
of the theory behind it, that it is by no means trivial to establish metrics to measure
what “far” means, and that the answers to the latter question will be strongly case-
dependent. In any case, it must be clear that the adjustment of parameters can simply
not replace a sound theory.

Let us consider the equation of state of the ideal gas (Eq. 1) as an example. We
start by simply considering it as a model to describe p,v,T data of gases at low
densities, and state that the region of the applicability of the model is extremely
large as it holds for all substances. The model allows far-reaching predictions as
the “parameter” R does not depend on the substance. Equation (1), which is often
also called “Ideal Gas Law” would obviously lend itself to a closer discussion of
the relation of the terms model and theory, but we must refrain from this here. We
rather move to other equations of state, for which the picture changes. Let us use the
van der Waals equation (Eq. (3)) as an example and assume first that we are merely
interested in using it for describing properties of a certain pure fluid. For this, we
need to have numbers for the parameters a and b of that fluid. They must be obtained
from an adjustment to some experimental data. Once this is done, we can make all
sorts of predictions using Eq. (3) but the quality of these predictions will strongly
depend on the relation between the data that were used for the fit and the data which
are to be predicted. Interestingly, there are common notions in the thermodynamic
community as to which data are to be used for parameterizing equations of state
for fluids. For example, as a rule, experimental data on the so-called critical point
are used, if they are available. The reason is that parameterizations based on such
data are found to be more broadly applicable than competing parameterizations.
To summarize, the following issues are inextricably entwined: the model with its
parameters, the way the parameters are determined, and the applicability of the
model in certain situations. Taking this into account, a scheme for comparing the
quality of different models would be to use the same data for the parameterization,
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to apply the models for studying the same quantities, and to compare the quality of
the results.

The limitation of the applicability of a model by its parameterization is not a bane
in itself. But it becomes a bane when it is overlooked. We must get used to never
think of models without considering the way they were parameterized.

In a sense, adjusting parameters is strongly guided by predictive quality over a
certain — and maybe very limited — range. While enabling application, this procedure
diminishes the explanatory capacity of simulations, because the iterated adjustments
tend to obscure or convolute what can be attributed to general theory, parameteri-
zation strategy, and particular parameter adjustment. In brief, adjustable parameters
are boon and bane of simulation. Empirical, theoretical, and computational aspects
complement each other.

Though our results belong to the philosophy of simulation, they point toward a
more general philosophical perspective. Let us take simulation in terms of mathe-
matical modeling. Simulation then does not merely extend mathematical modeling,
but adds a new twist to it. Now classical and simulation experiments cooperate,
building on the feedback loop and on adjustable parameters. Our investigation thus
adds a new twist to the so-called “new experimentalism” of Hacking, Franklin
and others. They highlighted the importance of experimental (instead of solely
theoretical) knowledge in the sciences. Philosophy of science would then examine
how experimental knowledge actually arrived at and how this knowledge functions.
The rationality of science then is not distilled from some logic, but from actual
scientific practices. Our paper contributes to this line of reasoning and extends
to practices of simulation. The interesting twist then introduces an empiricism
that is different from earlier accounts of modeling in an important way. It neither
explores the theoretical model, nor inserts measured values (as in semi-empirical
methods) for parameters hard to calculate. The cooperation of experiments and the
exploratory/ empiricist nature of adjusting parameters extend well into the home
territory of theory.
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Systems Biology in the Light of Uncertainty:
The Limits of Computation

Miles MacLeod

1 Introduction

In many fields there is a growing expectation that the power of modern computation
will supplant the limitations of traditional modeling methods when dealing with
highly complex phenomena like biological and climate systems. Computational
methods, and the mathematical methods on which they are based, are conceived
of as a powerful resource for stepping around human cognitive limitations, and also
practical limits on experimentation, through combinations of brute numerical force
and subtle mathematical analysis. The methods being developed are increasingly
more than just extensions of traditional modeling methods, often employing novel
types of argumentative and inferential strategies which help derive information
from complex uncertain phenomena. These strategies include for instance ensemble
strategies. Ensemble strategies were impossible before accessible high-powered
computation became available. As in the case of climate change (Parker 2010a,
b; Lenhard and Winsberg 2010) many of these have yet to be properly studied
and their limits understood. Yet it is imperative that computational fields properly
adapt their aims and goals to fit realistic expectations about what these new tools
can do.

One field for which this imperative is particularly relevant is computational
systems biology. In systems biology the rhetoric of what computational and
mathematical methods can achieve has arguably got ahead of what is actually being
accomplished. The promise that such methods could provide large-scale predictively
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robust models of complex metabolic and gene-regulatory systems, suitable for
medical and other purposes, still seems far off despite at least 15 years of work.
In this chapter we will investigate one of main limitations on computational and
mathematical methods in systems biology, which makes it particularly difficult
for modelers to produce the high-validity models required for predictive purposes.
This is the problem of measuring and globally fitting parameters of large-scale
models of biological systems. The uncertainty over parameter values that results
from imprecise and incomplete data, and bio-variability — the natural variability
of biological systems — creates substantial uncertainty over the ranges for which
models are valid. Researchers are developing ways of working around this problem
using computational and mathematical techniques such as sensitivity analysis and
ensemble reasoning. However many questions can be raised about whether these
can and do always improve model validity.

These problems suggest there are limits to how well current models using
computational and mathematical methods really can produce predictively robust
models of highly complex biological systems. The field itself has not yet engaged
in significant open discussion of these issues. I will show that even though
computational methods like ensemble methods do not necessarily grant accurate
enough representations for robust prediction, they can nonetheless be used to
contribute to the investigation and understanding of biological systems. These uses
have less to do with the brute force construction of widely valid representations
of biological systems and more to do with the powerful roles methods like
ensemble methods can have facilitating search and discovery. These uses suggest
that in order for philosophy of science to develop more realistic images of what
computational and mathematical methods can do in systems biology, and elsewhere,
we should concentrate on their roles as fools of investigation. The concept of tool
provides important metaphorical resources for developing our understanding of
what computational resources contribute to scientific practice. Importantly it helps
identify the roles that research contexts and users play in methodological design and
decision-making.

Some of the insights raised in this paper are drawn from the research and
educational literature in the field, and also from a 4-year ethnographic study of
model-building practices in two systems biology labs led by Professor Nancy
Nersessian. Our group performed laboratory observations and interviews of lab
participants, some over the course of their graduate research projects. Some of
the case examples drawn on below are taken from this study. The names of these
researchers have been encoded to protect their identities."

I'This research was funded by the US National Science Foundation which requires following human
subjects’ regulations. Identities are concealed for this reason.
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2 Systems Biology: Aims and Goals

There is substantial enthusiasm in the life sciences for computational approaches,
and their potential to implement more complex statistical and mathematical models,
and more sophisticated methods for analyzing such models. Systems biology is just
one of a set of recent fields that includes genomics, bioinformatics and synthetic
biology, which treat computation as essential to tackling biological complexity.
There has been no shortage of articles heralding the novelty, power and necessity
of a computational systems approach to modeling the dynamic properties of large
complex human gene regulatory, metabolic and cell -signaling systems (see for
instance Hood et al. 2004; Kitano 2002; Ideker et al. 2001). Modern systems
biology, often called computational systems biology to distinguish it from older
non-computationally intensive attempts to model biological systems, aims to build
dynamic mathematical models of such systems. These systems are identified as the
units of organization that control and implement particular biological functions.
They are generally composed of large networks of interacting genes and metabolites.
They are for the most part highly nonlinear. Elements within networks often play
multiple functions, and there are frequent feedback and feed-forward interactions.
A key argument for a computational and mathematical approach is that only
quantitative modeling and analysis is sensitive and powerful enough to represent
these complex dynamical relationships amongst system elements.

Modelers however are not typically biologists but come from engineering and
other quantitative fields. Systems biology borrows concepts and techniques in
turn from engineering, some of which we will talk about below like sensitivity
analysis. The field positions itself against molecular biology, which is characterized
as reductionistic and overly qualitative in its approach to investigating biological
networks and pathways through, primarily, controlled experimentation (Westerhoff
and Kell 2007).

In the language of the field systems biology aims at a “systems-level understand-
ing”. The concept is a multifarious and somewhat vague concept (see MacLeod and
Nersessian 2015). However one of its most important dimensions is encapsulated
by the idea that computational modeling will enable the accurate manipulation or
control of biological networks (Kitano 2002). Control requires the generation of
predictively robust models, or models that have a wide-range of validity and remain
accurate when perturbed along dimensions which push a system outside its natural
operation. Mathematical analysis of such models can then yield predictions of where
and how to intervene on these networks to engineer desirable results in order for
instance to prevent or cure disease or to produce a desirable chemical (Hood et
al. 2004). The belief that models of the order of validity required to achieve these
aims are now possible given the power and availability of modern computation, is
the basis of some of systems biology’s most profound and significant claims. These
claims have undoubtedly played a part in its ability to establish itself in the academic
landscape.
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3 Building a Model and the Problems of Parameters

However these predictive goals face a substantial obstacle in the form of parametric
uncertainty. To understand why parameter uncertainty is such an issue in systems
biology it is wise first to have some idea of how models are constructed in the field.
There are different approaches amongst systems biologists and we concentrate only
on one, the bottom-up approach. Bottom-up systems biologists start from available
experimental data and knowledge of particular biochemical interactions to assemble
biological pathways and construct models. Top-down systems biologists, although
they do rely on experimental data and information, ostensibly reverse engineer
network structures themselves using high-powered data collection techniques and
analysis (see Westerhoff and Kell 2007). For the most part modelers in systems
biology (of at least the bottom-up version) aim to construct ordinary differential
equation (ODE) models of their systems. The components of these models represent
the regulation states or chemical concentrations of particular elements in a cell
like genes and metabolites over time. A system is first visually represented as a
pathway diagram that captures the specific interactions between these elements and
the order in which they happen. One choice a modeler has to make once he or she
has assembled a pathway is how to mathematically represent these interactions as
terms within an ODE system of equations. Choices range from more mechanistic to
less mechanistic representations. For instance in the case of metabolism, Michaelis-
Menten or Hill representations of enzymatic kinematics are considered more
mechanistic options, being derived from models of the processes by which an
enzyme converts a substrate molecule to another. Other more complex options
also exist that can incorporate the dependence of enzymatic reactions on multiple
substrates (rather than just one) like ordered bi-bi or Ping-Pong representations.
On the other hand more abstract generic or canonical representations like power
law representations are available that can capture a wide range of possible inter-
action behavior within the degrees of freedom of the representation’s parameters
(Savageau 1969; Voit 2000). These representations ignore the mechanistic details
behind for instance enzymatic interactions, but are more mathematically tractable.
They afford better possibilities for mathematical analysis and are easy to optimize
thus reducing the computational work required in parameter fitting processes. For
many systems biologists, the only way to achieve high-validity models is to build
detailed mechanistic representations of biological systems that capture well the
underlying processes. At the same time computational and mathematical tractability
considerations, particularly with respect to parameter fitting, force them to walk
a tightrope between building the detailed representations required and relying on
mathematical strategies of abstraction and simplification that remove detail that
may, in the end, be relevant to the overall predictive robustness of a model, as we
will see below.

Once representations are chosen it is an easy task to translate a pathway diagram
into a set of ordinary differential equations. The main remaining task is to calculate
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the parameters governing each interaction in the model. When modeling metabolic
systems, interactions are governed by kinetic parameters (e.g. rate constants,
kinetic orders, Michaelis-Menten constants and other parameters), depending on
the representations chosen. Parameter estimation and fitting are steps around which
much error and uncertainty over the validity of these models is introduced.

Many of the problems of deriving parameters have been identified in our group’s
ethnographic studies (see MacLeod and Nersessian 2013a, b, 2014). They are
common throughout the field and are often commented on (for instance see Wahl
et al. 2006; Turkheimer et al. 2003; Brown et al. 2004). Here is a list. In the first
place the experimental record constructed by molecular biologists often does not
contain specific parameter values, but just measurements from which modelers must
estimate individual parameters using regression or graphical estimation techniques.
The data is often noisy, part of which is caused by bio-variability (see below) and
part by experimental error. Secondly the measurements that are available have often
been performed in vitro. Effects that occur at very low metabolic concentrations
may not be replicable in a test-tube. But in vitro measurements are problematic
for systems biologists. Most advocates of systems biology believe that parameter
values are partly determined by the systemic contexts in which the interactions
they govern occur. In vitro testing cuts these interactions out thus producing skewed
measurements that do not necessarily reflect reality. Further measurements that have
been made are often on related but not necessarily the same cell-types or on cells
from related but different species. These measurements may have been made using
different experimental protocols.

All these situations mean that parameters that have been estimated have both
measurable (in form of error bars) and unmeasurable or unknown degrees of
uncertainty associated with them. Finally the experimental record is often very
incomplete, leaving many parameters impossible to calculate from the data. Some-
times this is because the interactions involved have not been of interest to molecular
biologists. Sometimes it is because accurate measurements of the reaction kinetic
profile of single parts of a biochemical network are technically impossible with
current experimental techniques (Wahl et al. 2006). Modelers gather whatever they
can find from whatever sources they can get them. These problems are hard to
resolve given present technology and are accentuated by the fact that systems
biologists generally do not have the access to the experimentation they require to
reduce parameter uncertainty. As one lab PI we interviewed put it....“and I still
maintain, I’ve said it for 20 years, you need 10 experimentalists for every modeler”.
This is certainly not going to happen anytime soon.

The modeling strategies modelers use are almost completely dependent on the
data they have available and modelers look for schemes that are tractable given
the available data. If only steady-state and flux-data are available then modelers
will build steady state models and use linear techniques like flux balance analysis
and metabolic control analysis to estimate unknown parameters. The former works
for instance by imposing plausible biological optimization constraints on networks
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and finding an optimal solution for parameters that satisfies these constraints. Such
results can only be helpful however for finding certain parameters. Parameters that
control dynamic behavior cannot be recovered this way. In general much hard work
goes into understanding a problem and then transforming it into a form that can
actually be solved given the data.

Nonetheless the lack of measurements which modelers can use for even approx-
imate estimation of parameters leaves them with many undetermined parameters,
sometimes as many as 50. A fraction of labs, such as one our group studied, are
fully equipped wet-labs. Modelers in these labs may develop their own experimental
skills, and thus can more directly resolve such parameter problems. For the most
part modelers in the field however have to rely considerably on computationally
intensive global fitting algorithms to determine remaining parameters. A global
fitting process will sample combinations of unknown parameters across a prescribed
range (in this case a range which is considered biologically plausible) and try
to identify the combination that gives the best fit between the model and the
available data on how the system actually behaves. Often some of this data is left
out of fitting process, in order to test the model later. Various basic algorithmic
techniques for exploring parameter spaces are adapted for this problem, including
comprehensive grid searching techniques, genetic or evolutionary algorithms, and
simulated annealing.” These techniques try to balance the computational costliness
of exploring a parameter space against the risk of ending up in a local minimum
which is not in the neighborhood of the best fit. A significant proportion of
researchers in fact work specifically on improving algorithmic techniques for
systems biological models.

In theory if the model is accurate in its structural details the best fit should
serve as a mechanistic representation of the underlying system. However global
fitting, and the moves required to get it to work computationally, introduce
considerable uncertainty. Firstly modelers usually try to estimate search regions
of their complex parameter spaces in order to limit their search, often relying on
biological information about what might be plausible. Such judgments can be wrong
given the complexity of these spaces. Secondly these spaces may contain many
local minima that produce models similarly consistent with the data and there is no
guarantee that a parameter combination will be found that represents the best fit.
Part of the reason for this is parameter compensation, which is a common aspect
of nonlinear ODE models and nonlinear systems. Within a certain range pairs or
other combinations of parameters can be varied such that the model will produce
the same fit with the data. Unfortunately the problem of such multiple fits is that
there is no guarantee that the models will still give the same predictions outside
the range of the available data. In philosophical terms the correct or most accurate
model is underdetermined by the available data, even if the structural account of the
network is right (see further the problem of sloppiness below).

These various levels of parametric uncertainty compound with the result that
model validity becomes difficult to assess and reliable models difficult to find.

2T use “parameter space” here to refer to the space that plots parameters values against performance
or fitness (measured by a set of performance conditions like fit to the data).
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For instance uncertain estimates of parameters affect the global fits that are found
for the remaining parameters. Uncertainty intervals create space for parameters to
compensate each other in more alternative ways. Models might be well fitted to
the data, and may even give some correct predictive results. Yet given the very real
possibility of alternative fits within the range of parameter uncertainty that can do
the same job (and make the same predictions), there is no guarantee that the model
found is the best or most reliable option over a wider range of perturbations. It is
thus very difficult to produce models that be relied upon as predictively robust.

Additional to all these sources of uncertainty is the basic problem of biovariabil-
ity. Parameters formulated with respect to one cell-line or cells within one individual
organism may not capture the right parameter sets for others. Whereas parameter
sets derived using parameters estimated from data from different organisms or cell-
lines (using average or median values for instance) may not represent a population
well (Marder and Taylor 2011). Unless the range of variability is well understood,
can be difficult to generalize a successful model as representative of the population
at large.

These problems make the task for modelers of finding predictively robust models
that work for individuals or populations highly challenging and frustratingly difficult
even with the aid of computation (see Hasse and Lenhard, chapter Boon and Bane:
On the Role of Adjustable Parameters in Simulation Models, this volume). In the
next section we will focus on two kinds of novel computational and mathematical
methods we have observed that modelers use to try and overcome these uncertainty
problems and generate robust solutions.

4 Negotiating Parameter Uncertainty — Sensitivity
and Ensemble Techniques

The two techniques I will describe here operate at two different stages of the model
building process. The first is often used to reduce the complexity of the parameter
fitting task such that more robust best-fit solutions can be found without getting
stuck with a computationally intractable problem or a bumpy parameter space. The
second is a technique that is more novel in systems biology. It is used to try and
generate sound inferences from multiple models that fit the data. One of its purposes
is improving prediction. We consider whether such methods really do help achieve
the kinds model validity needed for robust prediction.

4.1 Sensitivity Analysis

Sensitivity analysis broadly construed is not a new technique. It has a long history
in engineering and other fields, and has multiple purposes including for instance the
analysis of a model to identify sensitive parts of a system or to measure uncertainty
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in predictions from a model. In systems biology it is also increasingly used as a
technique for simplifying model-building tasks by trying to filter out just those
parameters that have most effect or control over the particular dynamic relationships
researchers might be interested in. Such techniques enable modelers to confine the
parameter-fitting problem to a more limited set of parameters.

Sensitivity analysis applied this way is very common and almost essential to
the model building process for many modelers. As mentioned, with such complex
systems fitting all the parameters might be computationally intractable with the
resources (usually PCs) modelers have available. Given the complexity of parameter
landscapes resulting from these systems one can be much less confident that a
parameter-fitting algorithm will find a good fit and not get stuck in inadequate local
minima. This kind of analysis should help construct models that can capture the
dominant dynamic behavior of a system at least.

One modeler we interviewed for instance, G10, was modeling lignin synthesis in
two plant species. Lignin, a structural material in cells, interferes with attempts to
get plant metabolism to produce biofuel chemicals from biomass. G10’s goal was
to try to understand how to effectively control lignin production to make biofuel
production more efficient. His experimental collaborators provided him with some
data, but he had to assemble the synthesis pathways himself. His original pathways
represented something like a consensus of biological opinion on lignin synthesis.
During the model-building process he inferred more possible interactions in the
network that seemed plausible in order for the model to be capable of capturing the
system. For one modeling task, performed on the poplar tree species, his network
contained about 20 interacting metabolites. He aimed specifically to discover robust
dynamic relationships between particular input variables and particular output
variables, which should guide effective manipulation and control of the lignin
system. The ratio of two lignin monomers S and G were his target output variables.
He had a total of 27 unknown parameters. To reduce this problem he calculated how
variations in individual parameters (associated with particular network elements or
variables) across his network affected the output from the model (in the form of the
S/G ratio), running his model with thousands of different parameter sets (sampled
using Monte Carlo techniques). He calculated the Pearson correlation coefficient (a
measure of sensitivity) for the effect of variations of each parameter on variations
in the S/G ratio. This informed him of which parameters were most crucial to fit
well with respect to getting a good model fit. With this information he was able to
simplify his parameter-fitting problem significantly to fitting just 8 parameters. The
other insensitive parameters were set to biologically reasonable values. As a result
he was able to find equations connecting target input variables in the system to the
S/G ratio that fit the available data very well.

Such approaches represent creative and powerful uses of computation for finding
routes to simplify complex problems. However while approaches like these certainly
do generate easier parameter fitting problems, optimizing a model in this way is
likely to have consequences for how valid a model is when trying to predict a
broader range of responses of a system to perturbation. Sensitivity analysis so used
is designed to simplify the problem of getting a model to replicate a limited set of
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system functions or relationships among only particular variables in the system. The
model is abstracted and simplified to meet this goal. As we saw in G10’s case the
statistical analysis he uses contrives to select-out just specific parameters from the
network model that reproduce the experimental behavior of just one variable, the
S/G ratio, rather than other variables in the system. Only the uncertain parameters
that are sensitive with respect to those relationships are fitted. The rest are just very
roughly approximated. This builds quite a significant constraint on the parameters
selected and fitted, and those that are not. Such a technique can work very well at
getting a model to fit a set of data that map how this variable changes over a certain
domain. But there may well be other sensitivities amongst other variables in the
system, which are lost due to this narrow selective procedure. These methods raise
very reasonable questions about the extent to which they might be geared to find fits
that do not represent a system well overall when larger ranges of manipulation and
perturbation are required.

4.2 Ensemble Reasoning

Borrowing from cases in other sciences, like climate modeling, systems biologists
are developing ensemble methods in order to draw inferences given both structural
and parametric uncertainty (see Wahl et al. 2006; Tran et al. 2008; Turkheimer et
al. 2003). G10 used his own ensemble strategy, which he hoped would improve
the predictive accuracy of his models despite the parameter uncertainty he was
confronted with. Having performed the sensitivity analysis mentioned above to
reduce the number of unknown parameters that needed to be calculated, G10 ran
a simulated annealing process to fit these significant parameters. In his words he
“collected 20 GMA [generalized mass action] models with similar training errors
by running the optimization 20 times as there is no guarantee that a global optimum
could be found” (dissertation presentation). These models had different parameter
calculations but these were nonetheless thought to cluster on the same fitness
peak in the parameter space, varying according to the width of that peak. G10
calculated the error bars for the mean values of these parameters of about 33% of
the parameter value for most parameters to within a 95% certainty. These models
all gave nonetheless highly consistent predictions of the S/G ratio in response to
particular experimental observations of its response to changes in the concentrations
of five enzymes in the system. Further all ensemble members predicted the results
of two experiments that were not used to fix the model. Using this ensemble G10
calculated a strategy for minimizing the S/G ratio of the monolignol biosynthetic
pathway in order to obtain a higher yield of the desired biofuel component xylose.
“Now, since we had a valid model, we could use it to find out which enzymes should
be targeted to, for example, decrease the S/G ratio. And here’s what we found. So,
if you knock down just one enzyme, you could get a 25% decrease in the S/G ratio.
But if you’re allowed to change the expression of as many as three enzymes, you
could get a 38% decrease in the S/G ratio, which is huge compared to the natural
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variation that is about 5 to 10%.” (dissertation proposal). The ensemble technique
thus allowed G10 to illustrate that his predictions were robust despite uncertainty
over the correct parameter values. Modelers also have the option of averaging over
ensemble results or using other statistical techniques to try to produce predictions
that represent at least approximately what would be expected of the system in the
wild (Turkheimer et al. 2003).

In the case of ensemble modeling, justification of how and why ensemble
modeling can be relied upon to overcome parameter uncertainty and enable robust
prediction is still limited. Most new ensemble methods are tested on published
models from one or a few case studies rather than justified using mathematical
arguments. “Experimental” strategies like these are common throughout systems
biology as a way to demonstrate the efficacy of a new parameter or structure
fitting mechanism, but are not necessarily good bases for drawing conclusions
about the general applicability of ensemble methods. The nature of a problem can
indeed play a large part in how well a method might perform. For example an
ensemble technique might be designed to give sets of models that, when averaged
over, provide predictively robust results for a given system. When tested against
an uncertain parameter space — a space with many unfitted parameters and few
constraints on their potential values — its performance may look very poor if the
parameter landscape is flat or very bumpy, and very good if the landscape has one
well-defined peak. Testing on one or a few cases might not be strongly informative
about how good a method generally is.

However the central problem is that while it is intuitive to expect that a
convergent ensemble might help unearth classes of models that fit the data equally
well within relatively confined parameter ranges this does not necessarily imply that
all models in the ensemble will maintain consistent behavior under perturbation.
Variations between parameter sets may still have consequences when a model is
pushed outside the domains used to test model performance. Indeed ensemble
ranges even within convergent ensembles may still vary significantly. As mentioned,
G10 estimated the mean values of his significant parameters to vary by on average
33% within a 95% confidence interval. He does not however provide in his
dissertation or interview comments any analysis that suggests that we should not
expect, given these parameter ranges, that model behavior might vary substantially
outside the data used for fitting and testing.

As it turns out finding a set of models that have relatively consistent behavior
through collective fitting within some domain is not necessarily a good indication
that such models will behave similarly outside that domain (Brown et al. 2004;
Gutenkunst et al. 2007; Apgar et al. 2010). Recent work by these authors analyzes
the so-called sloppiness — as opposed to stiffness — of many systems biology models.
The sloppiness of a model, which is a model robustness concept, measures the
degree to which a model is insensitive to certain parameter changes or combinations
of changes (defined by vector directions in parameter space) by measuring the
degree to which a model maintains the same overall behavior despite these changes.
Stiff directions in a parameter space represent directions of parameter change for
which model behavior is highly variable. Sloppiness is calculated by the measuring
the divergences in model behavior from a “true model” over parameter space. The
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variations in model behaviors with respect to this model are summed for each
different parameter set in the space. A hessian matrix then records how responsive
model behavior is to variations in pairs of parameters over the space. For systems
biology models this matrix elicits sets of ellipsoidal eigenvectors over the parameter
space that represent spaces in which two parameters can vary with respect to one
another while model-behavior remains almost invariant (given some upper bound on
variation). The long and short axes of an ellipsoid represent stiffness and sloppiness
respectively. Along sloppy directions parameters can vary over substantial orders
of magnitude and still compensate each other to achieve similar model behavior.
Gutenkunst et al. find few eigenvectors in their test case that run along the directions
of single parameters, illustrating the importance of compensation relationships as
the basis of sloppiness. “The ellipses are skewed from single parameter directions.”
(p. 1873)

Gutenkunst et al. analyzed 17 published models from systems biology published
in the top journals of the field. They treated each as the “true model” for the
purposes of this analysis, and used their analysis to explore variation in model
behavior for parameter sets around the “true set”. They discovered that all these
models contained sloppy parameter relationships that would produce consistent
behavior with the collectively fit true model. Hence given the same set of data,
numerous models with different parameter sets could be found that accurately gave
approximately the same output. These parameter sets are the sets which ensemble
methods like G10’s are primed to pick out. Critically however Gutenkunst et al.
found that if certain measured parameters are known with less certainty then this
uncertainty creates space for more parameter combinations which fit the model to
the data, but do not produce consistent behavior. Parameter set combinations found
through collective fitting will no longer align along a sloppy direction, but rather
spread out along the uncertainty intervals of the most uncertain parameters. Hence
predictions from such models are no longer reliable. This raises large questions
about the robustness of many models in systems biology, which invariably do
involve parameter measurements of different certainty. If a model can yield many
parameter-fits with given data, which yield different model behavior otherwise, then
it becomes entirely problematic to assume that these models will be capable of
giving accurate robust predictions of the kind systems biology needs.

This problem is not an easy one to resolve. One might expect, as Gutenkunst et
al. state, that stiff directions in parameter space should represent the most important
for model-building, since changes in them affect the error of the model substantially.
Rather than using ordinary sensitivity analysis model parameters could be reduced
effectively by aggregating parameters along these directions. However discovering
these directions requires having fitted models in the first place. This is the problem
that initially inspired doing this kind of sensitivity analysis in the first place. Large-
scale models in most cases cannot be fit without simplification.

As an upshot it seems unlikely that reasoning with ensembles of models fitted
with different parameters really improves the chances of finding high-validity
models. If some parameters are known with less certainty than others, then it is likely
that consistent collective fits will not align along a sloppy direction, and predictions
from different parameter combinations within the ensemble will vary despite fitting
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the data equally well. The result, inevitably, is large uncertainty over the validity
of the model. Averaging over an ensemble given this variation will be no necessary
indication of what the best option is or even that an averaged parameter set will be
found within the set of best fits.

Researchers like G10 however often motivate ensemble techniques alternatively
on more explanatory or representational (rather than strictly predictive) grounds.
Such ensembles capture or represent well individual variability in populations.

“This notion of finding not just a single best model, but an entire class
of competent fits, is inspired by the argument that inter-individual differences
among organisms are reflected in slightly or even moderately different parameter

profiles . . . .. The search for classes of solutions has also been supported in other sci-
entific domains as diverse as simulations of climate change, . . . and models of gene
regulatory networks ... ... and cell signaling pathways . . ....” (G10: dissertation)

In this way the sloppiness properties of models explain the physical capability
of biological systems to produce similar behavior despite variations between
individuals in many cases. Ensemble results help illustrate this robustness (Brown
et al. 2004). However these arguments, which are mainly motivated by pointing
to the sloppy structure of models, do nothing to help ensure that the models
being produced generate parameter ensembles that co-occur because they capture
the underlying robustness of systems rather than because parameter-uncertainty
facilitates many compensating solutions on any collective fitting task.

Issues like these raise definite concerns over the ability of systems biology to use
computational and mathematical methods to overcome uncertainty and complexity,
and achieve robustly predictive models. There are limitations to the degree to
which computational and mathematical methods really can overcome parametric
uncertainty (see also Lenhard and Winsberg 2010). If we take these kinds of
concerns with uncertainty seriously, then there is a question mark over the purpose
and value of computational modeling in any field. However it is possible to identify
practices in systems biology that work productively within these limitations by
applying computational modeling more pragmatically as a tool of investigation.

5 Systems Biology in an Uncertain World

While systems biology may have built its status and importance at least partially
around prediction and control goals, systems biologists generally fashion more
limited goals in the contexts of their own projects. In fact researchers frequently
demonstrate in their unpublished work how to use novel computational techniques
like ensemble methods, to extract useful information about a system out of a
model despite parameter uncertainty. These kinds of insights provide a good basis
for building a more refined perspective on what computational and mathematical
methods actually can bring to the study of highly complex biological systems.
Indeed many modelers in the context of research papers promote the idea that the
value of their work is not in the short term at least to provide high-validity models
which can be used for predictive purposes. Instead their more explicit aim is to use
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computation to augment investigation of system structure. For example Kuepfer et
al. (2007), in a study using ensemble methods to model the structure cell signaling
systems, “stress that this study does not present a single ‘correct’ model”, and should
not be interpreted that way producing, “instead a family of improved models as a
tool for further detailed elucidation of TOR signaling.” (p. 1005). Wahl et al. (2006),
when proposing their own method for testing model ensembles, describe their goals
as a “systematic model-building process for data-driven exploratory modeling”, that
aims to discover “essential features of the biological system.” (p. 283) Testing large
numbers of models can help reveal “the most probable candidates for designing
further experiments.” (p. 283).

Pronouncements from these authors are invariably accompanied by statements
that true models do not exist and that best-fit selection processes are unreliable or
“intrinsically unstable”. (Turkheimer et al. 2003, p. 490). Viewpoints like these see
the role of models as a valuable part of an “explorative cooperation” between models
and experimentation (see Lenhard 2007; MacLeod and Nersessian 2013b). Models
help identify and weigh up the plausibility of different hypotheses, which can guide
experimenters towards efficient routes of investigation. Such philosophical views
have become embedded quite deeply in the way some labs are organized and operate
in systems biology. For instance one of the labs our group studied is a fully equipped
wet-lab. Modelers still come from engineering but most of them learn experimental
skills over the course of their graduate studies and do their own experimentation
(MacLeod and Nersessian 2014). Our analysis of their practices and objectives put
them closer to this goal of explorative cooperation. Models are used to guide and
augment experimental decision-making (MacLeod and Nersessian 2013b). For these
purposes models do not need to achieve the standards of predictive robustness to be
informative. What they need to do rather is help filter out plausible from implausible
possibilities for making cost-effective decisions about likely areas in which current
pictures of pathways break down and more experimental work is required. Systems
biology has a definite contribution to make here because models of these complex
systems can support inferences about system structure that would be impossible
otherwise given system complexity. This way of operating shifts the focus from
treating computation as a brute force way to construct high-validity representation,
to treating it as a sophisticated way to identify, explore and assess hypotheses.

For example Kuepfer et al. (2007) in a paper titled “Ensemble modeling for
analysis of cell signaling dynamics”, motivate the need for ensemble modeling
due to structural uncertainty. Using an example they illustrate how reasoning with
ensembles can help resolve hypotheses about the structure of pathways. Their case
was that of the TOR pathway in S. cerevisiae the regulatory mechanism of which
is not completely known, although the elements involved in the pathway mostly
are. They posed three ensemble groups (with 19, 13 and 13 models respectively).
Each group represented an important possible difference in the overall mechanism
of regulation. Within each group other variational possibilities were represented.
Each of these were weighted according to how well they could be fit to the data
and how well the fits performed in predictive tests. The different hypotheses about
the regulatory mechanism which each ensemble represented were then be tested by
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comparing how these ensembles performed overall. As they carefully emphasize,
their results should only be taken to single out hypotheses for further experimental
testing. They claim to provide no single valid representation of the pathway.

Another example of using ensemble reasoning in such a manner comes from
the work of G12, another researcher we tracked (see MacLeod 2016). One of
G12’s problems were data sets on specific variables which were inconsistent with
one another, suggesting there was either a problem with her underlying pathway
representation or a problem with one or more of her data sets. These variables
represented elements of a signaling cascade, occurring in sequence upstream and
downstream of one another. The signaling cascade was integrated with a much
larger model of a regulatory metabolic system (called the Nox1 system). To debug
this problem she built three different models, two of them truncated by starting the
cascade at the elements downstream. For each model she combined the available
data set on each element with data on the entire metabolic system. Given the amount
of unknowns, G12 was in no position to find best fits of each model and then hope
to test each model’s performance. Instead G12 decided to examine each model’s
performance over a large parameter space, to see how many model candidates
representing each alternative could replicate behavior well, and how robustly they
could do so. This space of possible parameters was widely explored using Monte
Carlo methods with 10,000 samplings of the parameter space for each model. Each
alternative model was then tested against four (biologically plausible) conditions
that captured how Nox1 regulation was expected to operate, as well as against two
conditions ensuring accuracy with the available data on system operation. Over this
parameter space only one of the model alternatives was able to produce fits which
satisfied all these conditions. G12 concluded that only this alternative correctly
captured at least that part of the signaling cascade it represented. She hypothesized
in turn that to build a complete picture of the signaling would require adding
unknown elements into the account of that cascade to capture its mechanism and
bring the data into alignment. She posited one herself which gave good simulation
results.

It is very important to note that G12 was left without a single model or best
fit of the alternative that had good solutions. She had derived twelve parameter set
candidates from the Monte Carlo sampling some differing with respect to some
significant parameters. Her intention however was not to use these to somehow
derive predictions of manipulations to the Nox1 system. In this respect it was not
so important that she had potentially divergent solutions. What mattered was that
her computational exploration of parameter space told her that only one of her
representations of the signaling cascade was capable of producing a model that
could fit the data and the performance conditions she imposed. The problem that her
parameters were uncertain did not prevent her reaching her goals in this case. G12
contrived to draw her inferences based on massive computational work sampling
large ensembles of alternatives, with very little substantial data and considerable
uncertainty.

Uses of computational modeling like these concentrate on sorting through
hypotheses about system structure and using computation to decide what is possible
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and what might not be. Other researchers also shy away from representing the value
of computational and mathematical methods strictly in terms of the production of
high-validity representations. They rationalize the current value of modeling rather
as the generation of abstract schematic representations that can build understanding
and focus a modeler’s attention on the incremental steps needed to improve
model performance (MacLeod 2016). Models produced this way have been called
“mesoscopic” (Voit et al. 2012; Voit 2014). These models represent all individual
biochemical interactions in a network using one tractable mathematical formulation,
thus abstracting away much lower-level detail about each specific interaction. At the
same time they only aim to approximate certain aspects of system function. Not all
interactions within a system are represented, but only those thought most dominant
for a particular set of functions. Hence a mesoscopic model is a very simplified, but
very tractable representation. Such models Voit and his collaborators argue represent
in fact the vast majority of models in current systems biology. Their value as they
see it lies not in their high fidelity but in their ability, when constructed with the
right mathematical frameworks, to facilitate a middle-out modeling process. As
long as these models are partially accurate, modelers can treat them as heuristic
platforms that allow them to understand how to develop these models to provide
more mechanistically accurate and complete accounts of their systems. They can
do this for instance by expanding the model internally, by taking apart interactions
black-boxed in the network or by adding to the network more external components.
Such reasoning processes are facilitated by the experimental platform a working
model provides, allowing a modeler to manipulate variables and simulate different
additions or changes to the network representation over large ensembles if required
and thus explore effective ways to improve the model. This can be done, as in the
G12 case, without needing to work with just one parameter set, but with a variety
that can represent genuine uncertainty about parameter values.

In these cases the value of computational methods (and the underlying math-
ematical methods on which they depend) lies not with the ability of computation
to produce high-validity representations. Rather it lies with its ability to help
modelers draw out information from their models or classes of models about
various hypotheses they have that shed light on the problems they are interested
in addressing. I have called these elsewhere “heuristic uses” (MacLeod 2016).
Computational models can help do this without needing to satisfy the rigorous
constraints required for robust prediction in order to be successful, but simply by
providing the power to examine large numbers of alternatives.

6 Analysis — The Tool Perspective

It should not be doubted that computational and mathematical methods are powerful
tools for biological research the potential of which is just starting to be fully
realized, but the ways in which they are effective tools is not so visible nor publicly
understood both in the field and outside it. This paper has been an attempt to show
that the common expectation that raw computation will allow us to crash through
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complexity and build high-validity predictively robust models is problematic and
hampered by some substantial constraints, especially in the form of parameter
uncertainty. While powerful methods like ensemble and sensitivity methods are
continually being developed, the problem of limited data and parameter uncertainty
cannot be easily resolved through computational power alone. There are deep
questions to be answered about just how possible it might be to build models
reliable for predictive purposes for complex nonlinear systems given that data
uncertainty creates such large underdetermination problems. When scaled up to
apply to complex systems through computation, mathematical modeling gets more
slippery than we might have expected.

However when practices in the field are examined closely we find a variety of
uses of computational simulation models for which the aim is not so much to fashion
highly accurate representations, but rather to bring computational and mathematical
power to bear on investigation by allowing modelers to derive and search through
hypotheses about system structure in ways impossible without this power. These
uses suggest that in order for philosophy of science to develop realistic images
of what computational and mathematical methods can do in systems biology, and
indeed elsewhere, we should concentrate on their roles as fools of investigation
rather than as representational machines that can capture or emulate through their
sophistication and power any level of complexity and detail. The faith in prediction
and control as reasonable goals for systems biology, and throughout science in
general, no doubt has gained some of its credence from beliefs in the power of
computational and mathematical methods, and the belief that modern computational
power alone can wash away many long-standing obstacles to building accurate
models of complex systems. This attitude has put systems biology in particular in
a somewhat awkward position, since despite almost 20 years of activity, models
are not being produced to anything like the fidelity required for instance to capture
disease processes (Voit 2014).

Recasting computational and mathematical methods in systems biology as
primarily “investigative tools” is an important philosophical step in this respect, and
wherever computation is being applied to generate leverage over complex systems
with limited and incomplete data. Philosophers can help replace naive and optimistic
presuppositions about the reach and validity of computational simulation models, a
problem policy makers are often confronted with (see for instance Petersen 2006),
with more reasonable accounts of what computational models can do. Further we
can provide computational researchers like systems biologist philosophical means to
present and understand more accurately what the principal benefits of these methods
are to themselves and to outsiders like experimental biologists.

However treating simulation models in this context as investigative tools has
further importance. Part of the aim of contemporary philosophy of science is not just
to deconstruct and analyze the epistemological or ontological elements underlying
a theory or method, but to understand why that method or theory is chosen and
designed the way it is given the context of practice in which it occurs. If we wish
to explain or rationalize a chosen method or theory we should not neglect the
fact that some of this rationalization depends on how well the method or theory
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accommodates local scientific practices composed of teams of human agents with
particular expertise and technological resources, each bound by various ontological
and epistemological commitments.

Support for this broader explanatory agenda in philosophy of science comes
from Chang (2014). Scientific actions according to Chang occur within systems of
practice, sets of interconnected epistemic activities (physical and mental operations)
which are coherent with respect to given sets of purposes and constraints. Purposes
are defined by the system, and the particular role a methodology is supposed to
play within it. However a methodology should also be adapted to (designed for)
both its purpose but also the capacities of its users. Indeed when a methodological
strategy is described as an investigative tool it evokes investigative purposes as a
central part of its rationale or design, but also the capacities of its users. Both
factors should play a role when it comes to rationalizing methodological choices.
Yet while philosophy of science is used to talking about whether particular theories
or methods meet their purposes on the basis of epistemological principles, they
are much less used to seeing where the user fits in. Chang (2014) for instance
has argued that in our accounts of scientific practice the user or the human or
epistemic agent is often neglected or characterized as just a vessel of beliefs, rather
than a creature with practical and cognitive capabilities and limitations (p. 70).
In the context of computation, it is somewhat natural to construe computation
as an independent automatic process free of human limitations. Therein lies its
essential power — the ability for instance to do numerical calculations at enormous
speeds impossible for humans. But humans need to be able to understand what a
computer is doing to some degree in order to for instance to debug problems and
verify the operations are working correctly, but also arguably to interpret what the
computer is finding. Machine learning techniques are often criticized as removing
human control and insight from the problem-solving process. For example one of
the researchers studied by our group when asked about machine learning labelled
it a “blind process” of optimization insufficient for producing the understanding
required to model systems effectively.

“So you gotta have insight, then there’s a lot of —as [lab director] puts it, ‘elbow
greasing’ ... ... Cause it’s easy to fit everything in and say, this is how it works.
But then if you really want to get the results afterwards, like have the model — let the
model have the predictive power you want it to have, you gotta be sure about what
you are doing.”

“Being sure about what you are doing”, requires the development of computa-
tional methods that meet the constraints of users enough to give them control and
insight over how a computational process explores a problem and the information
it reveals about the operation or organization of the system it represents. As
Humphreys puts in most simulation model-building situations, “one cannot com-
pletely abstract from human cognitive abilities when dealing with representational
and computational issues.” (Humphreys 2011, p. 314).

Although we can only touch on these issues briefly, it is worth reflecting on
how the concept of investigative tool invites deeper insights in the design of
computational strategies in systems biology. Indeed when it comes to unpacking
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and understanding the uses of computational simulation models in systems biology,
both the context and user are essential factors in their construction and operation.
Firstly as tools of investigation they are integrated into systems of practice which
are designed to expose or shed light on a problem. Carusi (2014) and Carusi et
al. (2012) have argued that in systems biology the roles and uses of simulation
and mathematical models are often constructed within fluid research contexts in
which the constraints and structure of a problem are not well-understood. Biological
variability and mismatches between the capabilities of experimentations and the
demands of models, as well as different scales of biological organization, require
strategies of computational simulation which are tailored to serve roles as parts of
complex problem-solving strategies which shift back and forth between computa-
tional simulation, experimentation and other epistemic resources. These roles aim
to bring forth information about a system to help simplify aspects of a problem
and calibrate the relations between different epistemic resources (such as existing
data sets, experimental design, existing models, statistical techniques). They may
be used as we saw to test the consistency of data sets, to test parameter-fitting
methodologies, optimize experimental procedures, or explore the consequences
of an abstract model. Simulation models are constructed and applied narrowly
and technically in these contexts, without the end of producing high fidelity
predictions. In one case Carusi documents the use of model ensembles to establish
“comparability between the variability in the population of models, and that in the
experimental data set”, through repeated process of simulation, parameter fitting
and experimentation (Carusi 2014, p. 33).

The uses of computational strategies we documented above all have the feature of
being designed for just particular investigative functions which contribute to larger
problem solving strategies. Indeed researchers like Voit conceive of mesoscopic
modeling in just this way as a step in an ongoing process, not as a final outcome.
For philosophy of science then it is important when understanding and evaluating
computational models to be aware that their uses and value may be defined
by research contexts and problem-solving processes, and the various constraints,
affordances and uncertainties of these. These uses may be technical and narrow,
designed to serve particular investigative functions. These functions may fall
well short of representing phenomena with high fidelity, and cannot properly be
rationalized with respect to such a goal.

Secondly, computational strategies in systems biology are designed with the
cognitive constraints and capacities of the user in mind. The uses cited above by G12
and those advocating mesoscopic modeling are designed to facilitate cognitively
manageable processes of investigation and discovery. Voit and his collaborators
advocate mesoscopic modeling precisely because it facilities what they call “hier-
archical learning.” We learn best by beginning from simplified representations and
building in complexity in a step-wise fashion. Mesoscopic models are simplified
enough that modelers can learn the dynamic relations within the model and in
turn recognize or predict pathways to improvement. In this respect they are tools
optimized for their users for developing better representations over long courses
of investigation by negotiating the tightrope between uninformative abstraction and
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uninterpretable complexity. The goal is to work towards high fidelity representations
of systems, but only in the long-run.

Both these aspects of tool-use and tool-choice or design can be studied further
in the context of systems biology and elsewhere. These are only the briefest of
hints of what this kind of analysis might tell us. The importance of the tool
conception is that it helps identify the roles that research contexts and users play
in methodological design and decision-making. While I do not want to suggest that
all uses of computational models in science should be analyzed as investigative
tools, where it is appropriate it promises a rich and more informative framework for
analyzing computational methods and understanding their function and design.
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The Vindication of Computer Simulations

Nicolas Fillion

1 Introduction

The relatively recent increase in prominence of computer simulations in scientific
inquiry gives us more reasons than ever before for asserting that mathematics is a
wonderful tool to acquire knowledge of the world. In fact, a practical knowledge (a
‘know-how’) of scientific computing has become essential for scientists working in
all disciplines involving mathematics. Indeed, a scientist can only reap the benefits
of the use of simulation with a practical understanding of the basic numerical
algorithms used to implement computational models in computer codes, such as
the basic methods to evaluate polynomials and truncated series, to find zeros of
functions, to solve systems of linear equations, to solve eigenvalue problems, to
interpolate data, to differentiate and integrate functions on small domains, and to
solve ordinary differential equations. Understanding even a small, select group of
algorithms to accomplish such tasks numerically can lead to astounding results, that
have seemed “unreasonably effective” to even accomplished numerical analysts:

My first real experience in the use of mathematics to predict things in the real world was
in connection with the design of atomic bombs during the Second World War. How was
it that the numbers we so patiently computed on the primitive relay computers agreed so
well with what happened on the first test shot at Almagordo? There were, and could be, no
small-scale experiments to check the computations directly. [...] this was not an isolated
phenomenon—constantly what we predict from the manipulation of mathematical symbols
is realized in the real world. (Hamming 1980, p. 82)

The successes of mathematics are numerous and impressive but, especially when
it comes to computer simulations, we should not succumb to an “optimization of
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enthusiasm and misjudgment” (Kadanoff 2004). Indeed, any good discussion of the
astounding success of mathematics in science is not unmitigated, and an examina-
tion of its less successful or failed employments is a fruitful avenue for dissipating
the “unreasonability” of the successes.! Indeed, despite their incontestable success,
it must be emphasized that the numerical methods underlying simulations provide
at best approximate solutions and that they can also return very misleading results.
Moreover, an overconfidence in simulation and computational methods can have
dramatic effects. The delicate task of designing simulation models must thus go
hand-in-hand with an ever more delicate task of analysis of the simulation results.

Accordingly, epistemological sobriety demands that we clarify the circumstances
under which the simulations can be relied upon. Even if many scientists and philoso-
phers of science are now familiar with some of the basic computational methods
I have referred to above, it remains an incontestable fact that the circumstances
underlying the success and failure of simulations is much less well understood. After
clarifying the nature of the problem in the next section, I will examine many ways
in which this question can be approached, including the appeal to data and physical
intuition, the use of benchmark problems, and a variety of a priori and a posteriori
methods of error analysis. This will lead to a realization that a sound perspective on
the justification of results obtained by computer simulation rests on a sound balance
between qualitative asymptotic analysis and quantitative a posteriori measurement
of error.

2 Justifying Computer Simulations

Since the United States’ Department of Energy and the Department of Defence
adopted the terminology in the 1990s, it has become standard to distinguish two
aspects of the justification of computer simulations known as verification and
validation.> There are minor variations in the definition of those two justificatory
processes in various publications, but the core idea remains by and large the same.
Oberkampf et al. (2004) define verification as the “assessment of the accuracy of
the solution to a computational model” and validation as the “assessment of the
accuracy of a computational simulation by comparison with experimental data.” As
they explain, in verification “the relationship of the simulation to the real world
is not an issue,” although in validation “the relationship between computation and
the real world, i.e., experimental data, is the issue” (p. 346). They acknowledge,
however, that “the state of the art has not developed to the place where one can
clearly point out all of the methods, procedures, and process steps that must be

'For more details on the relation between the unreasonable effectiveness of mathematics and
computational issues, see Fillion (2012).

ZNote however that despite the broad use of this terminology in computational mechanics, it
remains comparatively rare in the field of numerical analysis.
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undertaken for V&V.” In what follows, I will discuss a number of options that are
at one’s disposal in thinking about V&V of simulations. In particular, I will focus
on the stage of verification since it has received little attention in the philosophical
literature. I will adopt a numerical analysis point of view to examine verification in
a way that can enlighten aspects of the philosophy of computer simulations.

Some philosophers have made the apt suggestion that the justification of simu-
lations can be thought of exactly as we think about the justification of inferential
patterns more generally (e.g., Wilson 2006). At least, it seems apt to the extent that
one focuses on the process of verification as defined above, whereas validation is
more plausibly understood as a judgement about the truth or accuracy of a statement.
Let us explore the basic implications of treating simulations as inferences.

The fundamental epistemological function of good arguments is that they give us
the knowledge that something follows from a set of premises, or at least that it is
made more likely by the premises. In deductive logic, we have grown accustomed to
showing that an argument is good by indicating that it is an instance of an argument
form that can be shown to be valid by means of a deduction that relies on primitive
rules of inference or by a soundness proof. This procedure must of course be altered
significantly to analyze non-deductive arguments. Nonetheless, in both cases, we are
typically given a set of premises and a conclusion, and the task consists in justifying
the inferential step. However, in the context of simulations, we are not given the
conclusion because the mathematical models we seek to analyze typically fail to
be inferentially transparent. To illustrate this point, suppose that we are given an
initial-value problem

X (1) =f(x,1) X(to) = Xo

for which no elementary or convenient closed-form solution is known on a given
time interval [#;, #/].> In such a case, we hope that our use of a numerical method
will give us two things:

1. a computed solution x(7) (the conclusion we seek);

2. some guarantee that x(¢) approximates x() to some degree of accuracy (provided
x(t) exists and is unique; if it doesn’t, we would appreciate that the method point
it out to us with an error flag).

Thus, in this case, the discovery of the conclusion is often obtained with a method
that also provides the justification of the inferential step. In a good-case scenario, it
is plausible that the context of discovery and the context of justification be handled
all at once. As we will see, the situation is rarely that simple, and yet it must
be acknowledged that the discovery of a conclusion and the justification of the
inferential step are closely intertwined when it comes to simulations.

3For an excellent discussion of such complications, see Borwein and Crandall (2010). For a more
philosophical discussion, see Fillion and Bangu (2015).
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This difference being understood, Reichenbach’s (1949) famous distinction®
between two types of justification will help us to clarify the respects in which it is
appropriate to discuss various approaches to justifying the results of computer simu-
lations (and, in particular, its verification step). He introduced the term “vindication”
to describe the process of justification of a rule, as opposed to the justification of a
factual proposition by showing that it is true or probable. Interestingly, Feigl (1950)
introduced the term ‘validation’ for the second type of justification, which echoes
the V&V terminology. Since vindication consists in justifying not a proposition
but instead an inferential practice, Reichenbach considered this type of justification
to be fundamentally a pragmatic affair. For instance, a rule of deductive inference
would be justified pragmatically by means of an argument showing that it leads us
to true conclusions, provided that the premises are themselves true. Similarly, his
distinction was introduced as part of an argument meant to show that using a certain
rule of induction would lead to certain benefits characterized in terms of predictive
accuracy. If it is correct to treat particular simulations as inference and numerical
methods as inferential patterns, then it appears that discussion of their justification
would also take the form of a pragmatic vindication.

Even if the point will be substantiated later, I also want to point out that the
pragmatic nature of inferences arising from simulations is more thorough than what
relates to Reichenbach’s problem. Indeed, in both cases the justification is pragmatic
in that the justification is that of a practice and not of a proposition. However, in
the case of simulations, whether a particular inference is to be deemed successful
is also a pragmatic affair; different instances of a pattern might be assessed
differently depending on various contextual elements, and this sets simulations apart
from deductive inferences. In fact, the very criteria used to assess the quality of
computed solutions have a context-sensitivity to the modelling situation that adds
an unavoidable pragmatic dimension to the vindication of inferences resulting from
simulations.

3 Vindication by Data and Physical Intuition

The status of the justification being clarified, let us now turn to various approaches
employed to vindicate simulations. A very natural proposal is to simply appeal
to ‘physical (or biological, chemical, financial, etc.) intuition’ or to compare
the simulated results with data; these are two senses in which simulations are
assessed on the basis of empirical information. The latter approach suggests that
it is beneficial to think about simulations in analogy to experiments, since they
are justified in similar ways. I will argue that to the extent that verification is
concerned, this is incorrect. Moreover, to the extent that validation is concerned,
the experimental justification for the model equations has very little to do with the

4See also, e.g., Feigl (1950) and Salmon (1991).
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epistemology of computer simulations per se. However, in addition to V&V, I will
identify a third stage of model development and analysis for which the comparison
of simulations to experiments is beneficial. The other approach will instead assess
the correctness of an inferential pattern based on its agreement with physical
intuition. Whereas the first approach sheds little light on the problem of vindication
I have outlined above, the second does shed some light, although in a limited way.

3.1 Simulation as Experiments

To begin, a common idea in the philosophical literature is to suppose that the results
of computer simulations could be justified on the basis of various methods that have
traditionally been central to confirmation theory. Thus, for the same reasons that the
scientific method prescribes that we test whether hypotheses, predictions, theories,
etc., are true based on comparison with experimentally acquired data, we should
assess the justification of the results of simulations based on a comparison with
data. However, even if this is something that scientists certainly do, it cannot be
the whole story. Some have emphasized that computer simulations are particularly
important when data are sparse (e.g., Humphreys 2004; Winsberg 2010). But in such
cases simulations can obviously not be vindicated by a comparison with data. A
particularly compelling example is proposed by Winsberg: If we simulate convective
flow within a star, surely we will not be able to physically probe the convective
process, so the result of the simulation must be sanctioned independently. Another
more earthly example was noted above in the quote from Hamming.

This suggests that we should examine the justifiability of simulation results in a
different way. However, even if the particular mathematical descriptions that result
from simulations cannot always be assessed by direct comparison with data, there
is another sense in which simulations (as inferences) can be justified in a way that is
analogical to experiments. This is in fact what Winsberg seems to have recently
proposed. He suggests that computational models are self-vindicating, in a way
analogous to the claim by Hacking (1992) that experiments are self-vindicating:

Whenever these [simulation] techniques and assumptions are employed successfully [...];

whenever they make successful predictions or produce engineering accomplishments—their
credibility as reliable techniques or reasonable assumptions grows. (Winsberg 2010, p. 122)

It is certainly the case that the justification invoked for the results of simulation is
sometimes analogous to experiments as explained. However, I maintain that when a
simulation is successful in one kind of applications, it says very little about whether
they will be successful in other applications as well.

If we focus on the vindication of computer simulations in the sense explained
in the previous section, it must be acknowledged that past successes in themselves
are insufficiently projectble to provide the sort of inferential justification we seek.
The results of a (collection of) simulation(s) may be sufficiently accurate to lead to
strikingly accurate predictions and to excellent engineering accomplishments, even
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when the computational method used to solve a particular set of model equations
is very poor. Indeed, if the equations are extremely stable (as is the case for the so-
called “stiff” problems, for instance) under all kinds of perturbations—whether they
are physical or due to numerical error—huge amounts of computational error will
be simply dampened and the computed results will still be accurate. However, using
the same method for a moderately (un)stable problem would lead to unacceptable
results.

The problem comes from the fact that an argument based on success in
applications does not allow one to infer that the very same computational method
would pass the verification test in another application. It is possible to say that the
computational inference accomplished by the simulation is vindicated for the set of
applications for which it is known to be successful, since it certainly satisfies our
pragmatic objectives. Nevertheless, to the extent that Winsberg’s approach is about
verification—and [ must admit that it is not entirely clear to me to which extent this
is the case even if he uses this terminology—it aims to justify not only particular
instances of the more general inferential pattern, but the inferential pattern itself. If
it is to guarantee success across applications, the vindication of an inferential pattern
must be established independently, by examining the mathematical circumstances
in which the computational methods used can be expected to be equally successful.
This, however, relies on rigorous mathematical error analysis, and not on past
successes. I will have more to say about this sort of analysis in Sect. 4.

But before we move to this topic, there is another aspect of the justification of
the results of computer simulations that is by-and-large independent of validation
and verification, namely, calibration. The step of validation often focusses on the
justification of the use of certain equations as schemata for the construction of
our model. For a collection of intended applications, we would for example show
that it is reasonable to treat a certain fluid flow as incompressible, as having no
drag, as being inviscid, etc. This is typically done with perturbation methods that
characterize the local asymptotic behaviour of a fluid satisfying a certain set of
idealizing conditions (see, e.g., Batterman 2002a,b, 2009). To justify his use of
idealizations in physics along such lines, Galileo (1687, p. 67) claimed that he
was following the example of Archimedes who made the same false assumptions
“perhaps to show that he was so far ahead of others that he could draw true
conclusions even from false assumptions.” In fact, perturbation theory could be
very aptly described as a methodology to draw true (or accurate) conclusions from
(sometimes unabashedly) false assumptions. As a method of rational justification,
this sets it apart from logic and probability.

However, this step concerns predominantly the justification for representational
schemata, and determining the actual value of many of the parameters still has to
be done. Determining such parameters is what I am referring to as ‘calibration.’
Calibrating a model typically requires many rounds of simulation with updating
based on previous successes (Oberkampf et al. 2004), and there are many similarities
between experiments and calibration (see, e.g., Tal 2011). Nonetheless, it is typically
the case that a certain success in validation and verification must be achieved before
a model can be successfully calibrated.
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So, to summarize, of the three aspects of the justification of a computer
simulation, i.e., validation, verification, and calibration, the latter is the most similar
to experiments, and verification is the least similar. However, to the extent that
‘vindication’ is used to justify an inference pattern (in a pragmatic way), the only
aspect of the justification that the term ‘vindication’ applies to is verification. As
a result, there are important limitations to the claim that computer simulations are
self-vindicating in a way that is analogous to experiments. This point will be further
exemplified with the case of numerical integration in Sect. 4.2.

3.2 Disagreement with Physical Intuition

Experience is sometimes used in a different way to assess the quality of numerical
solutions. Instead of comparing the dynamical behaviour predicted by the simula-
tion of the calibrated model to actual data, scientists often reject solutions on account
of a disagreement with “physical intuition.” The notion of physical intuition is often
readily admitted to not be prima facie a very rigorous one. In such cases, intuition
is often associated with an understanding, based on experience, of the more general
qualitative dynamical features of the system’s behaviour. Typically, this approach
will thus be used as a way of discarding results rather than as a way of vindicating
them. Let us examine an example of this mode of vindication, namely, the solution
of Duffing’s equation.

Duffing’s equation characterizes a weakly nonlinear unforced oscillator. The
situation is similar to that of a simple harmonic oscillator in which Newton’s second
law is combined with a Hookean linear restorative force F' = —kx, except that there
is a cubic component ex? added to the restorative force (Bender and Orszag 1978).
So, Duffing’s equation is

X +x+ex* =0, (1)

with initial conditions x(0) = 1 and x'(0) = 0 and it is assumed that 0 < ¢ < 1.

A natural way to solve this equation would be to use series methods and to use the
first few terms of the asymptotic expansion for the sake of numerical computation.
The classical perturbation analysis supposes that the solution to this equation can be
written as the power series

x(1) = x0(1) + x1(De + 120 + x3()e’ + -+ )
Substituting this series in Equation (1) and solving the equations obtained by

equating the coefficients of matching powers, we find x((¢) and x; (f) and we thus
have the first-order solution

N 1 1 3.
X(t) =cos(t) + ¢ (ﬁ cos(3t) — ﬁ cos(f) — gtsm(t)) . 3)
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The problem with this solution is that it contains a term (namely, #sin¢) that
approaches 0o as t — o0; such a term is known as a secular term. The fact that
X(t) contains a secular term conflicts with physical intuition. More precisely, the
presence of this secular term shows that our simple perturbative method has failed
since the energy conservation prohibits unbounded solutions.

A slightly different argument used to discard this solution is that, mathematically,
the secular term 7 sin # implies that our method has failed since the periodicity of the
solution contradicts the existence of secular terms. Either ways, we assume some
knowledge of the qualitative character of the system, i.e., the global boundedness
or the periodicity of the solution. Many working scientists base these assessments
directly on physical intuition, although they may also be based on mathematical
theorems. So, this characterization is correct, but it requires foreknowledge of what
is physically meaningful or of whether the solutions are bounded. This is not a
categorical objection to this approach, since it is an incentive to better understand
qualitative features of the systems studied. However, in practice, it is often better
to rely on a direct assessment of the error resulting from a given computational
method.

4 Vindication by Error Analysis

The discussion above suggests a number of reasons for which numerical analysts
do not rely on the self-vindicating virtues of simulation techniques on the basis
of empirical information, but rather on rigorous error analyses of computational
methods founded on one of the most important branches of applied mathematics,
namely, perturbation theory. Accordingly, it is customary to accompany the design
of a numerical algorithm and the decision to adopt it for the simulation of the
behaviour of a system with theorems bearing on the convergence of the method
for the relevant parameters, on the numerical stability of the implementation of this
algorithm in computer arithmetic, and on the sensitivity of the model equations to
perturbations of arbitrary nature.

There are to my knowledge only three ways of measuring computational error.
Mathematical problems can be thought of as maps from a set of input data to a set
of output data, i.e., as ¢ : &/ — €. The mapping itself will typically be given as

5

x5y [ pley) =0}, )

SFor a similar claim, see Grear (2011). For a more extensive explication of the notions introduced
below, see Corless and Fillion (2013). Higham (2002) and Deuflhard and Hohmann (2003) are also
excellent alternative presentations.
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where x is the input data, y is the solution sought, ¢ is the defining function, and
¢(x,y) = 0 is the defining equation (or condition). Here are two examples of how
this notation works:

1. You want to solve a system of linear equations Ax = b for the unknown vector
x. The input data is the matrix A and the vector b, and the output is the vector x:

(A,b) - {x| Ax = b}

2. You want to solve a system of differential equations x'(¢#) = f(x, #) with initial
value x(fp) = X¢ for the unknown x(#). The input data is the differential vector
field f and the initial condition x,, and the output is the solution vector x(¢): x(¢):

(F, x0) — {x(1) | X (1) = f(x, 1)}

Even if it may seem a little pedantic, this notation makes clear the three possible
ways of measuring error, as we will see shortly.

Now, when we use a computer for computations, we engineer the problem so that
it can be implemented and efficiently executed on a digital computer. Thus, in our
first example, instead of actually computing x = A~'b, we would solve a modified
problem ¢ that we could define as follows:

N X is the result of Gaussian elimination without
2 I L . . . .
(A, b) — { X | pivoting in double-precision floating point arithmetic
for the floating-point representation of A and b

Essentially, this engineering process transforms an exact algebraic problem involv-
ing real or complex numbers into a computationally simpler series of finitary
operations of limited precision but greater tractability. Notice that x and X will only
exceptionally be identical. In general, for a problem such as the one in Equation (4),
the difference between the exact solution y and the approximate solution y will be
denoted Ay and will be called the forward error. The concept of forward error is
typically the one that is referred to when people talk about error; when they refer
to a computed solution as being “accurate” or “approximately true,” one means that
the forward error is small. This can be represented in a diagram as follows:

X —)

Ay

RSN

Y

Even if the forward error is the most common measure of error, in many contexts
this is by no means the most insightful, and so there are two other ways of measuring
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error. When we compute y = ¢(x), we may ask: when I computed J, for what
data x + Ax have I actually solved the problem ¢? Again, a convenient graphic
representation is as follows:

o
/ <

PN
=
>
PN
<

y

S

Ax is known as the backward error. In effect, we are asking: when I modified the
problem ¢ to get ¢ and a typically unknown error Ay resulted, to what perturbation
of the input data was this equivalent? If the backward error is smaller than the
modelling error and the experimental error that we are aware of, then for all we
know, y could be exactly representing the target system. This approach allows us to
determine not whether the solution is “approximately true” but rather whether it is
true to our assumptions, i.e., compatible with what we know to be the case. This
measure of error is advantageous, since it is directly interpretable in the modelling
context.

Here is an example. Consider again the solution of a system of linear equation
Ax = b using Gaussian elimination without partial pivoting, and suppose that it
leads to a computed vector X. In a landmark result that illustrated the power of
backward error analysis, Wilkinson (1963) showed that there exists a matrix E—an
“error” matrix—with “relatively small” entries such that

A+EX=b.

That is, the method exactly solved a slightly different problem. As a result, instead
of saying that we have approximately solved Ax = b, we say that we have exactly
solved the modified problem (A + E)x = b. Here, you could interpret the entries of
E either as a computational error or as a physical error, so the computational error
is tied back to modelling error. If |e;;| < 1078, say, and the a;; were measured with
4 significant digits, then for all you know, you might have found the exact solution
for the actual system! Clearly, in this case, there is a context-dependence to the
modelling context that adds an additional pragmatic dimension to the vindication
of simulations by error quantification. That is, in addition to recognizing that the
vindication of such a computation is pragmatic in the sense that it is goal-directed,
it is essential to emphasize that the modelling context plays an essential role in

SFor more details on this, see Fillion and Corless (2014).
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determining whether the goal is achieved. As such, the vindication of computer
simulations importantly differs from the vindication of other kinds of inference (e.g.,
deductively valid inferences).

A third measure of error is known as the residual. I will have more to say about it
toward the end. For now, let it suffice to say that when we have a mathematical of the
form ¢ : x — {y | ¢(x,y)}, but such that y cannot be obtained in any straightforward
way, we can instead use an approximate method that will compute some “solution”
y. Using the residual, we do not need to antecedently justify the use of our method;
rather, after the fact, we will now compute

r=¢(x.5).

i.e., the quantity that results from replacing the exact solution y by another value y
in the defining function. The quantity r is what we call the residual. The smaller the
residual, the closer y is to actually satisfying the defining equation of the problem. In
the case of our system of linear equations, the defining equation is just Ax —b = 0,
and so the residual is the vector

r=Ax-b.

In addition to the three measures of error introduce above, it is important to draw
a distinction between two modes of error analysis: a priori and a posteriori error
analysis. An a priori error analysis consists in finding bounds on the maximum
error that can result from using a certain method by examining the details of the
algorithm and of its implementation. Thus, we can estimate the maximum error
prior to the actual computation or simulation. Forward error analysis and backward
error analysis are usually understood to be of this kind, but as we will see in our
first subsection, there are more or less satisfactory ways to do a posteriori forward
error analysis. In a posteriori error analysis, we do not attempt to estimate the error
beforehand. Instead, we use a readily available method to compute something, and
then after the fact we use the something in question and attempt to determine how
close to the exact solution it is. The most natural measure of error for a posteriori
analysis is the residual.

4.1 Direct Assessments of the Forward Error

A useful method to assess the reliability of computational methods in terms
of their forward error is to simply compare the results it provides to carefully
selected problems for which the exact solution is known. Such problems are known
as benchmark problems. This approach is very widespread. In fact, Oberkampf
et al. (2004) claim that verification is done “primarily by comparison with known
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solutions.” Nonetheless, this approach to verification has significant weaknesses.
Decades ago, Clifford Truesdell had already identified the problem:

[...] benchmark problems are simple. The fact that a code is accurate for a known and
simple instance then breeds confidence, merely emotional, that it will be accurate also for
hitherto unsolved problems. The risk of such inference is plain and great. The true solution
of the unsolved problem need not be even roughly like the solution of the simple, classical
instance. The unsolved problem may well be unsolved just because its solution is in essence
different, far more complicated and far more delicate. (Truesdell 1980, p. 598)

Comparison with benchmark solutions may sometimes provide a gain in confidence
that is more than emotional, but only to the extent that it is juxtaposed with a more
systematic type of analysis.

What such a more systematic analysis must look like, however, is often misun-
derstood by working scientists. Let me use an example in which a naive approach
was used in an attempt to vindicate a method to interpolate data and subsequently
solve a quadrature problem in medical sciences. The data in question is a collection
of measured glucose levels in patients afflicted with diabetes; the area under the
curve that interpolate those data points is used to compute metabolic indices that
help clinicians in various tasks, e.g., to determine treatment dosage.

Tai (1994) introduce a formula humbly called “Tai’s mathematical model” to
find such areas under curves. For a collection of points (x;,y;),i = 1,2,...,n, the
proposed formula is as follows:

1 n
Area = 3 Z(x,- =X+ 1) Qi+1 + i)

i=1

Tai claims that “other formulas tend to under- or overestimate the total area under
a metabolic curve by a large margin.” Moreover, it is claimed that “Tai’s model
was developed to correct the deficiency of under- or overestimation of the total area
under a metabolic curve.”

Strikingly, neither Tai nor the reviewers seem to have noticed that this formula is
just the venerable trapezoidal rule for quadrature, already known in Newton’s time. I
could only verify one of the alternative formulas discussed by Tai, the one proposed
by Wolever et al. (1991), and it is just the Midpoint Rule, which was known even
earlier. As Corless remarks, it “might seem humorous that someone could think
reinventing a method that is at least hundreds of years old was publishable, but it
seems less funny when you realize that she was correct, and count the number of
citations” (Corless and Fillion 2013, p. 421).

This being said, the question remains: can the formula in question do what is
claimed? As I will explain below, there is a rigorous asymptotic type of a priori
error analysis that can be used to settle the issue. But instead, the author used a
different, a posteriori calculation of the forward error:

The validity of each model was verified through comparison of the total area obtained from
the above formulas to a standard (true value), which is obtained by plotting the curve on a
graph paper and counting the number of small units under the curve. The sum of these units
represent the actual total area under the curve. (Tai 1994)
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The author makes her case by looking at a data set and compare the result with the
“true value” by the method above, and conclude that Tai’s model is doing better. This
would be amusing if the method had not been used in medical research, where one
would hope that higher standards are in place. Shortly after the publication, Allison
et al. (1995) correctly identified the rule as the trapezoidal rule, and criticized Tai’s
“error analysis”:

Tai offers a “proof” entailing a comparison with areas computed by addend up boxes on

graph paper. However, this is unnecessary. The trapezium method is closer to a “gold
standard” than the box-counting approach, which she uses as a validation.

Thus, a danger with such naive a posteriori methods is that, in fact, they rely on
methods for the estimation of error that are even less reliable than the method
that is being tested. Therefore, it cannot seriously be considered as a sound way
of vindicating the result of numerical computations.

4.2 Asymptotic Error Analysis

To introduce the methodology of error assessment that is based on asymptotic error
analysis, I will follow up on the problem that Tai attempted to tackle. The paper
demonstrates the technique for a set of data that appears to be sampled from a
downward parabola. Can such a set of data show that the trapezoidal rule reduces
the error, and in particular the overestimation error?

One of the alternatives that Tai compares the trapezoidal rule to is the midpoint
rule, according to which the area under the curve is estimated by the formula

b b
[ 1o~ @ -ar 30 ©
In contrast, the trapezoidal rule says that
b b
/ f)dx ~ (b— a)w . (6)

Assuming that f is convex upward and sufficiently differentiable, one easily can
show that

fla) +f(b)

5 )

b b
b-ar 30 < [ fwdc=b-a)

by simply noticing that on [a, b], t(x) < f(x) < s(x), where t(x) is the tangent at the
midpoint and s(x) is the secant connecting (a,f(a)) to (b,f(b)). This is known as
the Hermite-Hadamard integral inequality (see Fig. 1).
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Fig. 1 The Hermite-
Hadamard inequality

)

In other words, for a convex upward curve f(x) (on the interval [a,b]), the
midpoint rule underestimates the area under the curve while the trapezoidal rule
overestimates the area under the curve. However, Tai’s data is sampled from a
convex downward curve; but the same result holds, except that “<” must be replaced
by “>" in Equation (7), in which case the midpoint rule overestimates the area under
a curve and the trapezoidal rule underestimates it. So, for the data she used, Tai
was right that the midpoint rule generally overestimates the area under the curve,
and that the trapezoidal rule does not. However, this is certainly not the case for
a general curve f, since such a curve will alternate between convex upward and
convex downward intervals, making it impossible in general to say whether or not
the midpoint or the trapezoidal rule will overestimate the are under the curve. Thus,
we can expect Tai’s results not to be replicable in general, and we have a principled
criterion to do so. Such considerations show clearly that mathematical results can
be much more powerful than past successes at showing when we can expect a
numerical method to perform well.

But what can we say about the error in itself, whether it is an overestimation
or an underestimation? Perhaps it is still true that the trapezoidal rule does better?
To demonstrate such a fact, however, no empirical information or a posteriori error
analysis is required. The vindication of a method as compared to another one can
be done without any appeal to past successes or similar modes of justification that
have been discussed before. In fact, it is common in computational mathematics to
perform an asymptotic analysis of the error generated by a numerical method. It is
worth examining the details of the methodology used to prove such results as it does
not seem to have penetrated the epistemology of computer simulation literature to
a sufficient degree, but we relegate it to “Appendix: An Example of a Comparative
Asymptotic Analysis of the Error of Computational Methods”. In the case of the
midpoint and trapezoidal rules, such an analysis reveals that both rules are accurate
to order O(h*)—i.e., the error equals k - h* where k is some coefficient depending
on the derivatives of f and 4 is the abscissa spacing between data points—but the
coefficient of the dominant term for the error of the midpoint rule is smaller than
that of the trapezoidal rule by a factor of 2 in favour of the midpoint rule. So, on this
account, Tai’s claim is also shown to be incorrect.

Note, however, that this does not mean that the error will be sufficiently small for
some intended application, since the derivatives of f at 0 can be very large. Thus,
it is important to not only know the order of accuracy of a method, but also the
estimate of the error. Such methods of error analyses tell us which methods give
comparatively better results, but as is the case for all methods of forward error
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analysis, they do not tell us when the error is small enough. This is why such
analysis should be supplemented by a backward error analysis that will find the
size of physical perturbations of the input data that would have the very same effect.
Having such a measure of error thus allows us to interpret the error in the modelling
context and determine, based on our modelling objectives, whether the error is
small enough. This, again, is the second pragmatic dimension of the vindication
of computations in simulation that I have alluded to earlier.

For such methods of error analysis, whether or not the series converge is mostly
irrelevant. What we need to have is a residual or a forward error that goes to zero
as the interval becomes increasingly small, approaching zero. Whether there is
convergence far away from the point of expansion is irrelevant. This is why the limit
of what happens to the truncated series as N — oo has little relevance for this sort
of methods. Instead, we use the idea of homotopy (or analytic continuation) and
reapply our procedure based on an asymptotic expansion about a new point, and
slowly march along with the dependent variable to find an approximate computed
solution.

However there is another big family of numerical methods known as iterative
methods for which convergence matters. The problem will arise if the function we
are attempting to compute using approximation schemes is not sufficiently smooth,
or when the convergence is limited to very small radii of convergence. This is
why proving that a method converges for a certain collection of circumstances is
a useful way of vindicating computations; it provides an a priori sufficient condition
of success, i.e., a condition that must be satisfied for the reliability of the error
estimates generated by series methods.

But what happens when convergence fails to obtain? Is there a way to assess the
error in the hope of vindicating computations or of showing them to be untrustwor-
thy? In his otherwise excellent discussion of the importance of appreciating the role
of numerical methods for a sound philosophical appraisal of science, Wilson (2006,
p- 217) suggests that mathematicians may be “unable to certify [their] conclusions”
when the aforementioned convergence conditions fail, and that “they have no other
means of guaranteeing that its calculations will be accurate.” This remark ignores
the fact that convergence conditions are (sometimes, but not always) only sufficient
conditions of success; they are not necessary conditions. One can always proceed to
a direct quantitative, a posteriori assessment of the magnitude of the error using the
residual measure of error. In some cases, even when there is a failure of convergence,
the residual will turn out to be small enough for the demands of the modelling
context.

5 Conclusion

We have seen that it is important for the epistemology of computer simulation
to characterize the circumstances under which the results of simulations can
be considered trustworthy. Using terminology commonly used in the field of
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computational mechanics, we have emphasized three aspects of the justification
of simulations, namely, validation, verification, and calibration. I have stressed
that to the extent that verification is concerned, it is beneficial to realize that the
computational steps involved in simulations are inferences. Thus, the problem of
justifying computation in simulations is analogous to the justification of inferences
and inferential patterns in general. Using Reichenbach’s distinction between two
types of justification—validation and vindication—I have argued that what we seek
is a pragmatic vindication of computations in simulation.

We have seen that the vindication of computations in simulation can be
approached in many ways. In particular, there are three different measures of error
that we can attempt to gauge in order to establish that the results of a simulation
are reliable, namely, the forward error, the backward error, and the residual.
Given that the pragmatic dimension of the vindication of computer simulation
demands that we assess the results within a modelling context, we have seen the
advantage of backward error analysis in that it provided physically interpretable
measures of error. On the other hand, direct assessment of the forward error, though
often useful and readily available, are often advantageously substituted for more
principled forms of error analysis. In particular, asymptotic perturbation methods
typically provide the deepest insights in the general reliability (or lack thereof) of a
computational method.

This multifaceted depiction of computational error analysis shows that, from
the point of view of the epistemology of simulations, the computational methods
simulations rely on can be vindicated or disproved in a number of ways, and that the
rich circumstances that can be encountered make it unlikely that we will ever have
“one vindication to rule them all.” Nonetheless, it appears that the best approach is to
recognize that a sound balance between asymptotic error estimate supplemented by
an a posteriori estimate of the error (using, for example, a calculation of the residual)
is in most cases the most promising approach. The analogy between simulations and
experiments, though useful in some situations, should accordingly not be seen as a
pivotal element in the vindication of computer simulations.

Appendix: An Example of a Comparative Asymptotic Analysis
of the Error of Computational Methods

The following appendix exemplifies how numerical analysts quantify the error
resulting from computational methods by means of asymptotic analyses. Let us
return to the two methods of numerical integration discussed by Tai. To find the
error in the midpoint approximation M, we take the Taylor expansion about the
midpoint of the interval [—4/2, h/2], which is O (note that for convenience we make
the standard change of variable a = —h/2 and b = h/2):



The Vindication of Computer Simulations 153

h/2 h/2 00 (n) (n) h/2
1= f(x)dx— / (0) X'dx _Zf © X'dx

_ —h/2

f(n) (0) h/2

h/2

= hf(0) + Z

Note that, when 7 is odd, fi’sz x"dx vanishes to 0 (by symmetry about the point 0).
Thus,

_ [P0 fP0)n 7
I = hf(0) + 1 T o0 + O(h")

Now, for this interval, the midpoint approximant M is hf(0). Thus, the error E,(IM)
resulting from the midpoint rule on an interval of width 4 is

(n) n+1
M) _ SPO)R
Eh =I-M= Z (n+1)|2n
n=2
JkeZ.2k=n

Taking the first two terms of E,(lM), we have

oo _SOOR OO
g 24 1920 '
Now, we will find the trapezoidal error, E}(IT) = [ — T, by expressing T as a

combination of Taylor series. Let us first find the Taylor series about x = 0 (the
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Because of the alternating sign in f (—g), we find that the odd powers of n vanish
when we calculate 7"
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As a result,
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So, both rules are accurate to order O(h?), but the coefficient of the dominant term
for the error of the midpoint rule is smaller than that of the trapezoidal rule by a
factor of 2.

References

Allison, D. B., Paultre, F., Maggio, C., Mezzitis, N., & Pi-Sunyer, F. X. (1995). The use of areas
under curves in diabetes research. Diabetes Care, 18(2), 245-250.

Batterman, R. W. (2002a). Asymptotics and the role of minimal models. British Journal for the
Philosophy of Science, 53, 21-38.

Batterman, R. W. (2002b). The devil in the details: Asymptotic reasoning in explanation, reduction,
and emergence. Oxford: Oxford University Press.

Batterman, R. W. (2009). Idealization and modeling. Synthese, 169(3), 427-446.

Bender, C., & Orszag, S. (1978). Advanced mathematical methods for scientists and engineers:
Asymptotic methods and perturbation theory (Vol. 1). New York: Springer.

Borwein, J., & Crandall, R. (2010). Closed forms: what they are and why we care. Notices of the
American Mathematical Society, 60, 50-65.

Corless, R. M., & Fillion, N. (2013). A graduate introduction to numerical methods, from the
viewpoint of backward error analysis (868pp.). New York: Springer.

Deuflhard, P., & Hohmann, A. (2003). Numerical analysis in modern scientific computing: An
introduction (Vol. 43). New York: Springer.

Feigl, H. (1950). De principiis non disputandum. . . ? In Inquiries and provocations (pp. 237-268).
Dordrecht: Springer. 1981.

Fillion, N. (2012). The reasonable effectiveness of mathematics in the natural sciences. PhD thesis,
London: The University of Western Ontario.

Fillion, N., & Bangu, S. (2015). Numerical methods, complexity, and epistemic hierarchies.
Philosophy of Science, 82, 941-955.

Fillion, N., & Corless, R. M. (2014). On the epistemological analysis of modeling and computa-
tional error in the mathematical sciences. Synthese, 191, 1451-1467.

Galileo (1687). De motu. In I. Drabkin (Ed.), On motion and on mechanics. Madison: University
of Wisconsin Press. 1960.

Grecar, J. (2011). John von Neumann’s analysis of Gaussian elimination and the origins of modern
numerical analysis. SIAM Review, 53(4), 607-682.



The Vindication of Computer Simulations 155

Hacking, 1. (1992). The self-vindication of the laboratory sciences. In A. Pickering (Ed.), Science
as practice and culture. Chicago: University of Chicago Press.

Hamming, R. (1980). The unreasonable effectiveness of mathematics. The American Mathematical
Monthly, 87(2), 81-90.

Higham, N. J. (2002). Accuracy and stability of numerical algorithms (2nd ed.). Philadelphia:
SIAM.

Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific
method. New York: Oxford University Press.

Kadanoff, L. P. (2004). Excellence in computer simulation. Computing in Science & Engineering,
6(2), 57-67.

Oberkampf, W., Trucano, T., & Hirsch, C. (2004). Verification, validation, and predictive capability
in computational engineering and physics. Applied Mechanics Review, 57(5), 345-384.

Reichenbach (1949). The theory of probability: An inquiry into the logical and mathematical
foundations of the calculus of probability. Berkeley: University of California Press Berkeley.

Salmon, W. C. (1991). Hans Reichenbach’s vindication of induction. Erkenntnis, 35(1-3), 99-122.

Tai, M. M. (1994). A mathematical model for the determination of total area under glucose
tolerance and other metabolic curves. Diabetes Care, 17(2), 152—-154.

Tal, E. (2011). How accurate is the standard second? Philosophy of Science, 78(5), 1082—1096.

Truesdell, C. (1980). Statistical mechanics and continuum mechanics. In An idiot’s fugitive essays
on science (pp. 72-79). New York: Springer.

Wilkinson, J. H. (1963). Rounding errors in algebraic processes (Prentice-Hall series in automatic
computation). Englewood Cliffs: Prentice-Hall.

Wilson, M. (2006). Wandering significance: An essay on conceptual behaviour. Oxford: Oxford
University Press.

Winsberg, E. (2010). Science in the age of computer simulation. Chicago: University of Chicago
Press.

Wolever, T. M., Jenkins, D. J., Jenkins, A. L., & Josse, R. G. (1991). The glycemic index:
Methodology and clinical implications. The American Journal of Clinical Nutrition, 54(5),
846-854.



Empirical Bayes as a Tool

Anouk Barberousse

1 Introduction

Within the mathematical realm, statistics looks as if it were a tool par excellence.
It does not seem to have a proper object, as number theory or complex function
theory do, their objects being respectively natural numbers and complex functions.
It is used in a bunch of applications without being defined by its own domain: it is
often associated with probability on the one hand and with theories of inference on
the other, thereby fluctuating, as it seems, between mathematics per se and logic, or
even applied logic. As a result, it looks as if it could adapt to a variety of tasks, as a
good tool that would not be too specialized.

The purpose of this paper is to investigate the hypothesis that statistics is a tool
by focusing on a recent trend called “Empirical Bayes”. Empirical Bayes is a set
of statistical methods that rely on machine computation. Its recent development
and success has partly transformed the whole field of statistics as several scientific
domains, like phylogenetic, image analysis, and climate science make a heavy use
of these new methods. Even though part of its inspiration is Bayesian, its connection
with historical Bayesianism, as a philosophical doctrine, or even with Bayesian
statistics as it has developed before the computer age, is rather loose.

In order to assess whether Empirical Bayes is a tool, I will first give a non-
technical presentation of these methods. Then I will illustrate them by presenting
how they are used in climate statistics. In the third part of the paper, I will discuss
the global hypothesis of mathematics as a tool and argue that in the case of Empirical
Bayes, what can be said a tool is a more complex set both including a mathematical
part and a stochastic model.
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2 Empirical Bayes

Empirical Bayes (EB), also called “empirical Bayesianism” or ‘“pragmatic
Bayesianism” is a new trend in statistics characterized by a heavy reliance on the use
of computers. It might also be called “computerized Bayesianism”, except that, as
we shall see, its relationship with older forms of Bayesianism is not straightforward
at all. Moreover, EB can appear under different forms according to the scientific
domains to which it is applied. The expression “EB” is more an umbrella covering
a multiplicity of particular, rapidly evolving methods than a unified approach. As a
result, it is not easy to present it in any simple way.

In this section, I first present what is common to EB and other forms of
Bayesianism, namely, Bayes updating. Then, I give a brief and simplified account
of EB techniques. This allows me to enter into some details in the question of
the elusive foundations of these techniques. Switching from foundational issues to
practical ones, I then emphasize the role stochastic computer models play within
EB, and at last I present its main advantages.

2.1 Empirical Bayes and Other Varieties of Bayesianism

In order to introduce EB, it may be useful to recall that as its name indicates, it
is inspired by older forms of Bayesianism, even though it is different. What is
common to EB and older forms of Bayesianism is Bayesian conditioning, according
to which the probability attributed to a hypothesis has to evolve when new relevant
information occurs. The crudest form Bayes conditioning rule can take is:

P(H|E) = P (E|H) .P(H)/P(E) (1

where P is the probability function, P(A|B) is the conditional probability of A given
B and is defined as P(A A B) / P(B), H is the hypothesis under consideration, and E
is the newly available information or evidence that is viewed as relevant to H. Bayes
conditioning has a long history in classical science where it has been used, especially
by Laplace, to find out causes when only their effects were known. In the trends of
Bayesianism that have developed at the beginning of the twentieth century, Bayes
conditioning is only one part of Bayesianism, a whole philosophical doctrine that
may also include views about beliefs and rationality. These views, however popular
they may have been, are absent from most versions of EB. As the name “pragmatic
Bayesianism” indicates, its proponents, like Jim Berger, José M. Bernardo, Andrew
Gelman, Robert E. Kass, Christian Robert, George Casella, and others, are not
keen on philosophical debates but rather look for efficient statistical methods and
operational techniques. This is the reason why they are eager to implement Bayes
conditioning (under more sophisticated forms) on computers.

“Bayesian” is also the name of a currently popular theory of confirmation. Does
EB have anything common with the Bayesian theory of confirmation? The answer to
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this question is twofold. First, as a set of statistical methods, it is not unified enough
to pretend to the title of a “theory”. But second, it has do to with confirmation of
hypotheses, and its main tool is one form or other of Bayes conditioning. More
precisely, within EB, hypotheses are attributed probabilities and these can evolve as
new evidence occurs. Thus, within EB, confirmation has to do with probability of
hypothesis going up or down in face of new evidence, not with statistical testing-
even though, as we shall see, some EB versions are so eclectic as to include elements
of classical statistics.

2.2 An Overview of EB Techniques

Now to the point. The aim of EB is to perform statistical inferences, namely, to
assess the plausibility of hypotheses when confronted with data. Here is a general
description of the problem EB methods are designed to solve. Based on a sample
of n observations whose sampling distribution is described by the known function
fO1, ..., yn | 0), one wants to estimate the value of the unknown parameter 6. As
is well-known, the field of statistics divides up according to the way 6 is conceived
of. In classical statistics, 8 is assumed to have one true value that the statistician
tries to estimate as closely as possible given available data. Within the Bayesian
camp, 6 is conceived as a random variable whose variability can be described by
the distribution  (6).

Usually, (6) depends on other parameters A, so that () is expressed as
(0 | A), from which a posterior distribution (6, A | y1, ..., Vo) X V1, -+.» Vn
| 6)(0 | A)(A) can be inferred. This procedure, which can be iterated, ends up with
hierarchical Bayes models. The process reaches an end when the prior distribution
does not depend on any previously unmentioned parameter. As clear from this
description, the notion of a hierarchical Bayes model has no formal definition. Any
such Bayesian network with more than three levels of random variables is usually
called a hierarchical model.

For readers who are familiar with the usual Bayesian framework, the most
important point to add to the above description is that the last introduced parameter
is estimated classically. EB can thus be analyzed as as an approximation to a fully
Bayesian treatment of a hierarchical model as the highest-level parameters are given
their most likely values, instead of being integrated out.

Let us now go into the details of one of the procedures, called “maximum
marginal likelihood”, that is used to estimate an unknown parameter 6. We start
from a variable x whose likelihood function is p(x |#). Let us suppose that 6’s
prior distribution is g(6 | A) where A is a higher level parameter. E(f |x) is the
quantity to minimize; it is called “Bayes estimator”. First, Bayes formula (1) is used
to determine the posterior distribution:

pOx.}) =p(x[0)g®[A)/m(x]A) 2

where m(x | A)= [ p(x | 6) g(] 1)d0 is the marginal distribution of x.
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Then E(0 | x) = [ Op(x|0)g(8] 1)dO/ [ p(x|6)g(0] A)db.
When 6 is unknown, a new distribution 4(1) is introduced, as mentioned above,
so that the posterior distribution on 6 is obtained by marginalizing on A:

p(9|x)=/p(x|9>g<eM)h(x)dx///p(x|e)g<9|x)h(x)dxd9 3)

It is usually difficult to integrate this quantity. For this reason, the marginal
distribution of x is often used in order to estimate A with the help of the marginal
maximum likelihood estimation (MMLE) of “A, which is a classical way to estimate
“A. Thus (3) allows one to draw inferences on p(8 |x, “A). To put it in a nutshell,
a marginal posterior distribution is set on 6 by taking the weighted average of
estimated parameters on the whole range of possible values for all noise parameters,
the weight being given by the posterior distribution (a “noise” parameter in this
context is a parameter one is not directly interested in estimating but whose value
is unknown or uncertain). The main advantage of the MMLE method is that the
estimate is robust with respect to the uncertainty affecting the noise parameters of
the problem.

To sum up, EB approaches constrain parameter values by combining prior
distributions that account for uncertainty in the knowledge of parameter values
with information about the parameters estimated from data (Kennedy and O’Hagan
2001). Whereas the first part is common with older forms of Bayesianism, the last
part is distinctive of EB, whose proponents are willing to draw on all available
means to fix priors, as we shall see in the next section.

2.3 Unclear Foundations

The MMLE method is just one example of a large variety of techniques for
parameter estimation that are currently used within EB. Other examples involve
techniques that would be conceived as anti-Bayesian in more strict Bayesian
frameworks, for eclectism is the key word in EB. For instance, whereas the “old
Bayesians” rejected confidence intervals and statistical significance, EB proponents
include them in their toolkit because they commonly use them in practice when no
other means is available to perform parameter estimation. Thus, from a practical
point of view, “everything goes” for EB proponents, who are willing to describe
their new way / approach as based on the common ground between classical and
Bayesian statistics. Once this common ground is identified, methods can be built
up that benefit from both approaches. As one of the first defenders of EB has
it, “EB methods attempt to borrow the strengths of each [classical and Bayesian]
approaches”; EB is “a compromise between classical and Bayesian approaches”
(Casella 1992). Others also claim that the old debate between orthodox Bayesianism
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and classical (frequentist) statistics is outdated. In the field, the practices are not
as divided as the terms of the old debate suggest. Maximum (of) likelihood and
Bayesian estimators are often used together: “confidence, statistical significance,
and posterior probability are all valuable inferential tools.” (Kass, 2011). From the
perspective of the debate between classical and Bayesian statistics, this patchwork
of practices seems inconsistent. This is the reason why Deborah Mayo (2013), for
one, points out the “conceptual confusion” with respect to the foundations of EB,
which do not match the quickly evolving practices of the field.

A striking example of the surprising way EB relates to older debates is the
attitude of its proponents toward the interpretation of probability. A major feature
of older forms of Bayesianism was that they were strongly associated with either a
subjective or an epistemic interpretation of probability. By contrast, proponents of
EB now consider that the question of how to interpret the probability concept can
be neglected. For sure, most of them conceive of probability as a natural measure of
uncertainty or plausibility, although/but they do not automatically adopt a subjective
interpretation of such a measure. On the contrary, even though they oppose the view
that probability is given its meaning by frequencies in an ideal, infinite population
from which our observed data are a sample, they may adhere to the view that
the meaning of probability is given by frequencies emerging when the statistical
procedure is applied many times on the long run. This attitude is grounded in the
idea that the use of epistemic probability is not in principle incompatible with the
wish to reach good frequentist properties. Among the frequentist properties that are
considered important within EB, calibration plays a major role (Robert 2016). When
applying EB procedures, one hopes that the frequency (in a series of applications of
the statistical procedure) at which the value will fall within the confidence interval
will be at least 95% and that the average error within a series of applications
of estimator A will never be systematically higher than the average error with
any other estimator B. As we shall see in the next section, computer simulations
of stochastic models embody the very essence of the frequentist calibration of
epistemic probability.

As should now be clear, EB is by no means a unified field, whose main tenants
could be easily identified. However, when one does not try to characterize EB from
a statistical point of view but discover how it is implemented in practice, a major
feature can emerge, namely, explicit modelling (cf. Kass 2011, p. 6). For sure, EB
aims at performing statistical inference, but not only by designing new statistical
techniques that would have a unique justification and efficiency. On the contrary, EB
is mostly efficient because of the modelling practice it is based upon. Proponents of
EB consider it an efficient statistical method not so much because it uses a variety
of statistical techniques in a new way, but above all because this method forces
scientists to be as careful and explicit as possible in their modelling decisions. The
scientific burden is thus switched from statistical inference to explicit modelling
(Kass 2011, p. 7).
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2.4 Modelling as a Main Component of the Method

As explained above, parameter estimation is obtained from available data. The heart
of the method is to draw as much information as possible from the data and this is
obtained by building up stochastic models allowing for further averagings among
new “data”, i.e., model-generated data. As it is necessary to explicitly formulate
what the components of the stochastic model are, all the assumptions of the analysis
are themselves made explicit. This is a well-known advantage of Bayesian methods
in general, because once assumptions are made explicit, they can be discussed,
criticized, and improved.

The stochastic models involved in EB methods represent the exhaustive collec-
tion of all possible scenarios that are a priori (i.e., before conducting statistical
inference) conceivable about the investigated phenomenon. Each scenario corre-
sponds to a set of definite values for the model parameters. These stochastic
models are computer models. EB is indeed a computer intensive method whose
development is mainly due to the recent availability of computational power.
Computational power allows for large sample sizes, repeated Bayesian updating,
and removing the restriction to conjugate priors that was holding when computer
power was lacking. Whereas updating is often difficult to process by hand, its being
implemented on computer makes it an easy and rapidly performed task. This in turns
allows for the computation of hierarchical models with several layers.

EB scientists like Christian Robert, Andrew Gelman and George Casella insist
that the computational difficulty of Bayesian updating was a major obstacle to the
development of Bayesian methods in the past. Now that this obstacle has been
overcome, this has opened an opportunity for the invention of new algorithms. At
the heart of most algorithms are Monte Carlo Markov Chains (MCMC) modules
that allow for a posteriori sampling of the distribution of interest. Sampling is done
by rejecting every simulation (i.e., implementation of the stochastic model) whose
outcomes are incompatible with observations. The effect of stochastic modelling
via MCMC modules is thus to expand the set of “data” that are compatible with
observations. Here, the “data” are the outcomes of the simulations that are consistent
with observations. They can be statistically processed in the same way as data
provided by observations. The availability of these new “data” allow statisticians
to focus on the frequency of occurrence of certain parameter configurations within
the remaining set of possibilities. The realization that Markov chains can be used to
model a large variety of situations has be a turning point in the development of EB.

2.5 Advantages of EB Methods

Proponents of EB describe an impressive list of advantages that are specific to
these methods and are mostly dependent upon the fact that EB allows for different
modelling strategies. Thus the flexibility of this approach is often put forward as
an opportunity to try out different models and test them for efficiency. Flexibility
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mostly depends on the modular character of the approach, which allows for the
combination of hierarchical models, thus permitting the articulation of different
levels. This possibility not only occurs when the investigated phenomenon lends
itself to decomposition into hierarchical layers, but also when it does not at first
sight. The opportunity offered by the approach invites scientists to find out how
to model complicated situations by means of a hierarchy of simple layers. This
modelling strategy, which calls for the specification of simpler sub-models, can
result in estimates with improved precision.

Associated with modularity is the possibility of representing various sources of
uncertainty, a major topic in the study of complex systems. This in turn allows for
more robust estimations when the models include a large number of parameters.
The reason for this comparative advantage is as follows. In maximum of likelihood
methods, the treatment of noise parameters is done by co-maximisation: likelihood
is first maximized with respect to all parameters at the same time, and then one
gets rid of noise parameters. This amounts to betting on a unique value for noise
parameters, that is, to ignoring that they may be uncertain. This may be unsafe in
case there are many noise parameters. The end result is that the potential richness
of the models is limited. By contrast, EB techniques allow for flexibility in the
treatment of uncertainties.

The representation of uncertainty is a central topic in older Bayesianism as well,
where it was sometimes criticized as being a door open to subjective elements
creeping in scientific activity. For non-Bayesian statisticians, the main problem
of older Bayesianism is the interpretation of prior distributions, supposed to be
unscientific, or at least scientifically suspect if they are understood as related
to degrees of belief or of ignorance. Some EB proponents, accordingly, have
tried hard to construe prior distributions as some sort of mathematical quantities
used to obtain posterior distributions. This trend has led to the development of
“conventional priors”, namely, priors that have the least influence on resulting
inferences, letting the data dominate. The debate over how prior distributions are
chosen and interpreted is still open, even within the context of EB.

To sum up, MCMC modules provide EB modellers with a generic, powerful
computational framework, which allows for the relatively easy implementation of a
wide range of models. Last but not least, computational power allows for much more
data to be statistically processed. All these features explain why EB methods are
rapidly developing in the following scientific domains: phylogenetic reconstruction,
climate study, interpretation of neuroscience imaging, etc.

3 Empirical Bayes in Climate Science

In order to illustrate how EB methods are used in scientific practice, I will now
focus on the example of climate statistics. This domain is especially exciting for
anyone interested in EB because climate science, as it is nowadays carried out,
contains a huge statistical part. For sure, climate scientists rely on many physical
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laws in order to build up their models, in particular hydrodynamical laws, but also
on vast quantities of observational data. The latter need to be processed statistically.
Statistics are not only necessary for input data, though, for the outputs of the
models also have to be subjected to statistical analysis or they would tell nothing
understandable.

As it happens, even though most statistics performed in climate science are
classical, EB methods are rapidly developing, as testified by the increase in
references to EB papers in the last two IPCC assessment reports. EB methods are
used in three main domains within climate modelling: detection and attribution of
climate change, estimation of climate sensitivity, and regional projections. I will
briefly present each domain and describe how EB methods are actually implemented
to solve the statistical problems at issue.

3.1 Detection and Attribution of Climate Change

The problem of the detection of climate change is to find out a very weak signal
in the global evolution of climate indicating that its recent evolution has departed
from its previous course. For sure, in order for this task to be feasible, it is
necessary to have some knowledge of ancient climate evolution. Now, observation
data like temperature and humidity records are only available since a very short
time, compared to the relevant temporal scales. Knowledge of past climate is
however rapidly growing so as to constitute a sufficient basis to find out differences
between present-day and past evolution. This knowledge both comes from indirect
observations (e.g. observation of ice cores) and from simulations of past climate,
whose outputs are statistically processed.

The problem of attribution is to identify the causes of climate change, i.e., of the
difference between past and present evolution. This problem has received a general
answer: climate change can be attributed to the effects of greenhouse gas produced
by human activity. This general answer still needs to be made more precise in order
to get quantitative understanding.

The difficulty of the detection and attribution problems is enhanced by the fact
that the natural variability of the climate is large and its magnitude unknown. This
basic problem has other worsening features: the observation data are recent, scarce,
and heterogeneous.

Let us know briefly present the procedures that are carried out in order to
overcome the above-mentioned difficulties. In order to solve the detection problem,
the first task is to reconstruct the mean values of the most important variables, like
temperature at different heights, for the last two millennia. Why “reconstruct”?
Because we only have measurement results for the last ten decades or so, which
means that previous values have to be calculated from the models’ outputs. The
available observation data are moreover partial and have themselves be completed
and homogenized via statistical procedures. They are however valuable because they
can be used to partially calibrate the models.
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The next task is to scrutinize those huge sets of data in order to find out
whether their evolution pattern has been recently modified. As mentioned before,
the statisticians’ way to formulate this task is to find out whether a signal indicating
climate change can be detected against loud noise. There are two ways to fulfill
this task. The first is by defining a null hypothesis and testing it against data
(both observational and model-generated). This is the classical way. The null
hypothesis is for example that there is no climate change currently occurring. This
approach has been heavily criticized by the EB proponents (Berliner et al. 2000)
The second way is the EB way. It amounts to answering the following question:
do “initial conditions” (describing an old state of climate (Hasselmann 1998)) raise
the probability of a positive signal when recent data are taken into account? Both
ways are used for the detection and attribution tasks. The classical way was the first
whereas the EB approach is more recent but quickly developing.

The main problem facing EB scientists is that they have to find out ways to
impose constraints on the prior distributions because the observation data fail to
do so. As a result, the choice of the prior distribution has an important impact on the
computation of the posterior distribution. Whatever the importance of this difficulty,
it does not outweigh the main advantage of EB methods, which is that they allow
for an explicit description of the modellers’ state of knowledge, the basis on which
one can try to detect the signal of climate change. The evolution of this state of
knowledge is thus taken into account as models progress.

3.2 The Study of Climate Sensitivity

Climate sensitivity is the degree to which climate responds to perturbation. In
the context of the present focus on human-induced climate change, the relevant
perturbation is the increase in the concentration of greenhouse gases within the
atmosphere. This is the reason why the study of climate sensitivity is focused on the
following question: How does climate change when atmospheric CO, concentration
is doubled with respect to its value before the industrial revolution? Doubling of
atmospheric CO, concentration is called “forcing”. It might be asked why CO,
concentration has been chosen in the definition of forcing whereas other gases have
the same green-housing effect when their atmospheric concentrations increase. The
answer is that the computation being already very heavy with one greenhouse gas,
it has been judged unnecessary to make them more complicated, so that focusing on
CO; concentration is a good proxy for studying climate sensitivity.

The main difficulty in trying to answer this question is that there exist retroactive
mechanisms whose effect is to stabilize temperature increase due to forcing. It is
thus extremely difficult to assess the hypothesis that climate reacts in such and
such a way to forcing. The very formulation of this hypothesis calls for a Bayesian
approach as the outputs of the models implementing forcing can readily be used to
update the probability of the hypothesis. As the updating process can be iterated as
often as permitted by available computational power, it looks as if the EB approach
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is likely to be successful for this task. As a matter of fact, the study of climate
sensitivity is indeed dominated by EB approaches.

The main advantage of EB approaches in the study of climate sensitivity is
that multiple and independent lines of evidence about climate sensitivity from,
for example, analysis of climate change at different times, can be combined by
using information from one line of evidence as prior information for the analysis of
another line of evidence (Annan and Hargreaves 2006; Hegerl et al. 2006). However,
it is still unclear to what extent the different lines of evidence provide complete
information on the underlying physical mechanisms and feedbacks.

In order to take the effect of feedback mechanisms into account, it is necessary
to consider the outputs of several models, because many individual models contain
highly idealized representations of these mechanisms. The best way to overcome
these poor representations is to try and compensate their defects by combining
several models (for criticisms see Parker 2010). This approach consists in building
up statistical ensembles of different models and averaging over their outcomes.
Each model instantiates a specific scenario defined by a determined different
distribution of the most uncertain parameters that are relevant to the study of
sensitivity and feedback mechanisms. Traditional statistical estimators, like means,
are then processed on the ensemble’s outputs. The expected next step is to assess
the likelihoods of these distributions against data. However, the available data are
not good enough to provide sufficiently strong constraints on the distributions. The
difficulty is thus to find out further constraints on the distributions. The EB approach
is comparatively more efficient than the classical one because it better manages
the relation between models’ outputs and empirical data and allows for stricter
control of this relation. EB approach to multi-models ensembles is thus rapidly
developing.

3.3 Regional Projections

As a third and last illustration of how EB is used in climate statistics, I now turn
to regional projections. “Projections” designates predictions relative to possible
“scenarios”. A scenario in this context is a possible future defined relative to a
determined level of greenhouse gas emission. Modellers compute predictions in
different cases, whose extremes are the case in which nothing is done in reducing
greenhouse gas emissions and the case where the emissions are so reduced as to
avoid increase of global mean temperature above 2°C. Besides the fact that the latter
is definitely out of reach, an important feature of the notion of projection is that as
the currently available models are different, they can compute different projections
for the same scenario. Divergences are usually higher in more distant time. However,
projections for the next few decades are very similar among most models.

The most publicized and debated projections are the global ones, concerning
the entire planet. Until recently, these were the only computable ones. However,
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some models (and associated super computers) are now able to compute regional
projections, that is, projections dealing with smaller scales, continental or even
smaller. Reducing projection scale demands heavy computational power as much
more details have to be put into the models in order to account for local peculiarities,
like land cover. Such amount of computational power is only recently available.

EB methods are not used by all modellers computing regional projections, but
there is one case in which these methods have been chosen as the best, unique
tool allowing modellers for coherent and understandable projections: Great Britain.
The British climate agency has indeed decided to used EB throughout, both in the
computations and in the presentation of the results to decision makers (UK Climate
Projections science report: Climate change projection, http://ukclimateprojections.
metoffice.gov.uk/media.jsp?mediaid=87893&filetype=pdf).'

As the last point, communication to decision makers, is a major challenge for
climate scientists, let me now emphasize the importance of the dual aspect of climate
projections, which are both science-based and directed toward expertise. On the
one hand, climate scientists try to better understand climate as a huge complex
system governed by hydrodynamic and thermodynamical laws, sensitive to a large
number of atmospheric chemical reactions, influenced by the local behaviour of the
biomass, and, unfortunately, by industrial activity. This is complex system science,
based on computer models, statistics, a lot of work devoted to articulating small-
scale to larger-scale models, etc. On the other hand, most climate scientists are
engaged, besides their scientific work, in an entirely original expertise strategy
aimed at policy makers. Why is this expertise strategy original? Because it emerged
as whistle-blowing whereas usual expertise work is an answer to a question asked
by someone outside the scientific community. In the case of climate, the demand for
expertise did not come, at the beginning, from outside the scientific community, but
from inside, in the sense that climate scientists themselves were feeling that it was
of utmost importance to make policy makers, and virtually everybody, know that
human activity induced climate change was very likely happening and that public
action was very desirable. Climate scientists also believed that much more scientific
work had to be done, and thus funded, in order to know more about climate. As a
result, IPCC has been created as an expertise providing group whose first aim is to
provide policy makers, and virtually everybody, with the best available knowledge
about climate, and to regularly update this information.

The upshot of urgency, the global dimension of the scientific problem, necessitat-
ing efforts from as many scientific teams as possible, and high resistance level from
industrial players, is that most climate scientists are double-hatted and devote part of
their work to expertise and communication. Why is this distinctive feature of climate
science relevant to the use of EB? Because some EB proponents claim that climate
scientists would be better off by adopting an overall Bayesian framework both for

IThis report has triggered a harsh debate within the philosophy of science community: cf. Frigg
et al. (2014) and Winsberg and Goodwin (2016).
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their scientific work and when speaking as experts, out of coherence. One major
form of this coherence argument is that because the Bayesian framework is more
easily understandable by non scientists, especially when dealing with uncertainties,
climate scientists would be better off with a unified approach to probability and
uncertainty that allows for incorporation of imperfect information in the decision
process. This is at least what the current leader of British climate statisticians,
Jonathan Rougier, is claiming (2007, 2012).

3.4 Summing Up: Main Reasons to Adopt EB in Climate
Science

Let us now recapitulate the main reasons why some statisticians support EB within
the context of climate science. These reasons hold for the three above-presented
domains where EB has been actually implemented but also on a more general basis.
Some of them could be found in other scientific fields, but others are specific to
climate science.

One of the reasons presented as soon as the 1990s by Bayesian statisticians is
that the study of climate is so huge an enterprise that the practices associated with
traditional statistical cause-effect analysis are very difficult or even impossible to
implement. For instance, due to the singularity of the actual climate, it is impossible
to have even remote analogues of controlled experiments comparing responses
to treatments. An important aspect here is that even though climate simulations
can be iterated, their results cannot replace measurements on the actual course of
climate with respect to statistical cause-effect analysis, because assumptions about
the cause-effect relations are built up within the model and thus cannot be tested by
multiple iterations thereof.

A related reason with more technical content is that according to EB proponents,
the notion of statistical significance is unable to formalize the notion of significance
that is relevant to the climate case. When performing the detection task, classical
statisticians are looking for statistically significant indicators of climate change
whereas finding out the practical significance of these indicators would be much
more relevant and useful. One might object that this would be an entirely different
purpose in the first instance. In a way, this is exactly what EB proponents are
claiming. They believe that traditional statistics does not fit the purpose of climate
science as it has to be done in the emergency situation that we are currently facing.

However, EB proponents’ arguments are not all along this practical line, as
they claim that EB statistics are more efficient than traditional statistics in the
resolution of certain specific problems, like the management of uncertainty, as
already mentioned.
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4 Empirical Bayes as a Tool

Now that the above general presentation of EB has been illustrated by examples
from climate statistics, let me come back to the question What is EB? by arguing
in favour of the hypothesis that EB is a tool. This will allow me to discuss Carrier
and Lenhard’s proposals in the introduction to this volume. I shall first present some
comments on the notion of a tool as used in the context of describing and analyzing
scientific activity. Then I shall use these comments to investigate into the senses in
which EB can be said to be a tool.

4.1 Scientific Tools

Let me first emphasize that the notion of a tool is so large that many elements of
scientific activity could be called tools, from measurement operations, data sets,
theories, to models, templates, statistical procedures, computers, simulations, etc.
However, there is a way to make the notion more precise; it is by distinguishing
between two components of its meaning. The first component is that a particular tool
is usually defined by a purpose it has to fulfill, like driving nails or screwing bolts.
Some purposes may themselves be very large, like “computation”, allowing com-
puters to be called “tools” in this sense. However, purpose-directedness seems to be
an important aspect of being a tool. The second component of the notion of a tool is
that nothing would be called a tool without being useful or being actually used.

An important aspect of the first component above is that a tool in this purpose-
directed sense is neutral with respect to what it is applied to in order to fulfill
its purpose. Whatever the metal in which the nails are made, if sufficiently hard,
the hammer will drive them equally. Whereas this kind of neutrality may have
interesting consequences for material tools, like being equivalently efficient over
a range of different materials, its importance in the epistemic domain is often
overlooked. In order to better see this point, I will take the example of mathematics.

Among the reasons why mathematics may be called a tool for empirical scien-
tists, its neutrality with respect to what it is applied to is a major one. Mathematics
is as efficient in solving problems in (some parts of) biology as it is in physics. Here,
neutrality is relative to topic. The tool-nature of mathematics is also revealed by its
neutrality with respect to theory or model, as differential equations, for instance, are
both used in celestial mechanics and in quantum mechanics. Thus, with respect to
purpose-directedness, it seems that mathematics satisfies the associated neutrality
constraint.

Focusing on mathematics as an example allowing us to better understand the
notion of a tool in science, we can now realize that there may be a tension
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between the two components of the notion of a tool. It seems that in order to
be actually useful, and used as a tool, mathematics has to be complemented with
something else. It is indeed not mathematics as such that is used for fulfilling
common scientific purposes, like predictions, but mathematics plus physical or
biological content under the form of hypotheses, however general. On the one
hand, purpose-directedness comes with topic neutrality, but on the other, usability
cannot be obtained without complementing mathematics with empirical hypotheses.
Moreover, it is also necessary to be provided with some sort of methodological
guides or recipes in order to be able to use mathematics in the right way. Without
relevant training, you could not find out the approximate solution of the Hamiltonian
you have designed up to represent the quantum system you are interested in, for
instance.

Taking into account the necessity of complementing mathematics with empirical
hypotheses and methodological guidance amounts to situating oneself in the
“perspective from within”, according to van Fraassen’s expression (2008). The
perspective from within involves the scientific agent’s point of view when trying
to find out solutions to her problems. It opposes the perspective from above, or
the philosopher’s perspective who tries to categorize the items she is not interested
in herself, but which she is describing from a detached point of view. To put it in
a nutshell, considering mathematics, as separated from empirical hypotheses and
methodological guidance, as a tool is to adopt the perspective from above, whereas
considering usable tools by actual scientific agents implies adopting the perspective
from within and avoids detaching mathematics from associated items.

The view of tools I have just presented is consistent with the common idea that
models are tools. Now, models are usually considered as complex wholes the parts
of which are not easily isolated from each other. In particular, the mathematical part
cannot be easily detached from the remaining of the model in the sense that it is
inert, so to speak, without the other components.

4.2 EB Approaches from a Methodological Point of View

As we have seen in Sect. 1, EB is difficult to characterize because of its heterogenous
and rapidly evolving nature. Is it a scientific method by itself, or just a statistical
method? Should we apply to it the even more general expression of “a new way to
perform statistics”, or is it a new technique for computing statistical results? Still
another option is to link it with the philosophical foundations of older Bayesianism
and describe it as a general, perhaps philosophical, theory of scientific reasoning.
Asking for the nature of EB involves reflecting upon the nature of statistics from
the “tool” perspective. This task is known to be full of philosophical loopholes as it
involves hypotheses about the relationships between logic and mathematics as well
as the nature of inference. Therefore, I shall not endeavour to present any hypothesis



Empirical Bayes as a Tool 171

about the nature of statistics, but rather focus on EB as it used in practice. I am aware
that a complete argument about EB as a tool would involve taking position about
statistics, inference, and the relationships between mathematics and logic, but the
best I can do is to let such a position emerge from my analysis of EB-in-practice.

For sure, EB as it is used in practice is a powerful statistical method, but what
is responsible for its success is not only the mathematics within it, but also the
associated stochastic models and the way priors are computed. Maybe EB is more
a toolbox that a tool, as suggested by the variety of tasks it is said by its proponents
to fulfill. It is indeed described as a methodology both for estimation and inference,
but also as a modelling technique, and as a approach to problem-solving aiming at
analyzing data, finding regularities, establishing links between data and hypotheses,
establishing causal claims.

Beyond EB’s efficiency, there is still another aspect of this approach that relates
it with the notion of a tool, namely, that it is mostly viewed as useful and not as
any theoretically well-grounded methodology. In brief, the justification of why its
use is rapidly developing does not rely on principles of rationality or reasoning but
only on its usefulness. It is an instrument, no more no less. This would be fine in
another context in which the tasks this instrument is fulfilling were not considered
fundamental. The problem is that analyzing data, finding regularities, establishing
links between data and hypotheses, and establishing causal claims are considered
fundamental tasks whose fulfillment should rely on well-justified principles. This is
the reason why the debate between classical and Bayesian statisticians was so hot
and the philosophy of statistics such a battlefield. From this perspective, EB appears
as just a tool without the status of a well-grounded method.

As a concluding remark, I should emphasize that the view of EB as just a
tool partly dovetails with Carrier and Lenhard’s theses about the tool-character
of mathematics. According to Carrier and Lehnard, there is a growing tendency
to use mathematics as tools without caring whether this use is theoretically well-
justified. The need for producing well-grounded representations of natural of social
phenomena has been fading in the same time as new mathematics, or a new use of
mathematics, allowed for short-circuiting theoretical representations. As a result, the
traditional hierarchy opposing well-grounded theoretical representations to merely
useful ones can be dispensed with, so that it is now clear that mathematics can
be used without (much) theory. By using mathematics without relying on theories,
scientists are not only saving the phenomena but also producing good science.

My former analysis of EB as a toolbox agrees with Carrier and Lenhard’s theses
to the extent that, as Mayo strongly emphasizes, EB’s foundations lack conceptual
clarity, to say the least. However, as I have myself emphasized, EB is not only
mathematics, it is also about modelling. I claim that the mathematical part within EB
cannot be detached from the modelling part so that EB is no example of mathematics
as a tool, but of modelling plus statistical inference as a tool. I also claim that
the engine of EB’s efficiency is probably not mathematics per se, but machine
computation, which seems to me a somewhat different topic from mathematics.
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5 Conclusion

In this paper, I have presented a new trend in statistics called “Empirical Bayes”
and I have illustrated it by examples from climate statistics. I have tried to avoid
technicalities in the presentation of EB in order to focus on its methodological
aspects and its involving the construction of stochastic models. Throughout the
paper, I have also kept EB separated from its old-Bayesian ancestors in order to
focus on the efficiency of this approach, a feature old-Bayesian statistics usually
lack. A different story could have been told on EB by looking more closely at its
Bayesian origin. I have rather chosen to focus on its entrenchment in computational
science.

In Sect. 3, I have made clear how my analysis of EB relates to Carrier and
Lenhard’s theses about mathematics as a tool. On the one hand, EB is a nice example
of a tool whose use is not strongly based on theoretical justifications, but on the
other hand, EB is not only a mathematical tool but has other constituent parts that
go beyond mathematics.
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Part I11
Reflections on the Tool Character



On the Epistemic and Social Foundations
of Mathematics as Tool and Instrument in
Observatories, 1793-1846

David Aubin

1 Introduction

The astronomer is dependent on his tools; the observatory is but the receptacle of his tools,
his tool-chest so to speak (Harrington 18831884, 249).

One night, in June 1782, the Astronomer Royal Nevil Maskelyne (1732-1811)
suddenly felt “much out of love with his instrument.”! William Herschel (1738-
1822) had come to Greenwich to stargaze in his company. But to realize that
all telescopes in the Royal Observatory were so much inferior to Herschel’s new
reflector was disheartening to Maskelyne. Observatory scientists indeed loved their
instruments. In their publications, they devoted hundreds of pages to the description
of telescopes. They drew them in exquisite details. They lobbied for years to obtain
the requisite funds to buy the most precise instruments, only to wait even longer
for the most reputable makers finally to provide them. Then, they spent hours and
hours chasing and charting their inevitable defects. They discussed at great lengths
the operations required for their perfect calibration, attended to their proper care,
and improved them constantly (Carl 1863; Bell 1922; King 1955; Chapman 1996).
Much more rarely, however, did tools command their attention. Astronomers, as we
know, also loved mathematics. “Every part of the operations of an observatory is

'William Herschel to Caroline Herschel, June 5, 1782 (Lubbock 1933, 115).
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mathematical,” wrote one of Maskelyne’s successors, George Biddell Airy (1801—
1892), in a memo dated December 4, 1861.2 In the practice of observatory scientists,
mathematical theories and methods often were as central as their instruments.
As the Konigsberg Observatory director Friedrich Wilhelm Bessel (1784—1846)
famously commented, mathematical corrections themselves improved the precision
of telescopes:

Every instrument is made twice, once in the workshop of the artisan, in brass and steel, but
then again by the astronomer on paper, by means of the list of necessary corrections, which
he determines in his investigations. (Bessel 1848, 432); trans. (Crowe 1994, 156).?

In view of examining how scientists use mathematics as a tool, we therefore see
that the specific cultural and epistemological spaces delineated by astronomical
observatories provide a promising terrain for a careful study of attitudes with
respect to mathematics, tools, and instruments, and to their interactions. Observatory
scientists themselves compared mathematics to their most cherished instruments.
Logarithms, for example, were seen as an “admirable artifice that, by shortening
computations, extends astronomers’ lives [just as] the telescope ha[s] increased their
sight” (Biot 1803, 26). The link between the telescope and the logarithm echoed
Kepler’s striking frontispiece to the Rudolphine Tables (1627) where “in the upper
part, inventions that were the most useful to Astronomy are represented: Galileo’s
telescope, Napier’s logarithms, and Kepler’s ellipse” (Delambre 1821, 1:558) (see
Fig. 1). In astronomical context, the comparison between a mathematical device, the
logarithm, and a physical instrument, the telescope, was explicit.

Of course, one has to remember that the word “instrument” is ambiguous (Van
Helden and Henkins 1994). In the Novum Organum, Francis Bacon (1561-1626)
described the way in which “Man, Nature[’]s Minister and Interpreter,” was able
to act and understand through experience and reason. In its original seventeenth-
century English translation, Bacon’s second aphorism read:

Things are performed by instruments and helps, which the Understanding needs as much as
the Hand. Now as Mechanick Instruments assist and govern the Hands motion, likewise the
instruments of the Understanding prompt and advise it. (Bacon 1676, 1); quoted in (Taub
2011, 691).

In this sense, it is self-evident that telescopes, logarithms, and ellipses should
be thought of as different types of instruments for the eye or for the mind.*
But, going beyond this simple identification, can we situate more precisely the

2«Remarks on the neglect, by the Junior Assistants, of the course of education and scientific
preparation recommended to them.” Airy Papers, Cambridge University Library, RGO 6/43, 235.
About this memo, see Aubin (2009), 273 and 276-277.

3Jedes Instrument wird auf diese Art zweimal gemacht, einmal in der Werkstatt des Kiinstlers von
Messing und Stahl; zum zweitenmale aber von dem Astronomen aud seinem Papiere, durch die
Register der nothingen Verbesserungen, welche er durch seine Untersuchung erlangt.

“In this article, T shall not refer to the “mathematical instruments” tradition, which obviously played
a role in shaping the conception of instruments in the observatory culture. By the late eighteenth
century, astronomers were relying on highly skilled makers, such as Jesse Ramsey and Edward
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Fig.1 On the top of the allegorical kiosk pictured on the frontispiece of Johnannes Kepler’s
Rudolphine Tables (1627). Muses are holding some of the principal tools and instruments used
by Kepler, from left to right: what looks like a representation of an eclipse; a telescope with line
drawing used in optical theory inside; logarithms represented by Napier’s computing rods and the
number 6931492, a close approximation of log 2; geometry holding a compass and a set square in
her hands with a representation of an ellipse; an unequal-arm balance, and magnetism represented
by loath stone and compass. On this image, see (Jardine et al. 2014)

astronomer’s mathematical practices with respect to their instrumental practices?
In earlier publications, we have offered a synthetic discussion of “observatory
techniques” over the long nineteenth century (Aubin et al. 2010; Aubin 2015).
Characteristic of the observatory culture, such techniques involved instrumental
technology and observation practices, the social organization of working practices,
and cognitive tools such as mathematical theories and methods. Whether they
originated or not in this culture, observatory techniques formed a coherent set of
practices and technologies. A specific aspect of the observatory culture was the role
played by numbers and their collection, manipulation, storage, and transformation.
Mathematics, I argued elsewhere, was just another instrument in observatory
scientists’ panoply (Aubin 2009, 282).

The present chapter is intended as a contribution to the philosophical debate
regarding the “‘unreasonable effectiveness,” or applicability of mathematics to the
natural sciences (Wigner 1960; Steiner 1998; Bangu 2012). If we take seriously the
idea that mathematics was conceived as a tool or as an instrument—and, as I try
to show, I believe that we must—then we need to pay attention to a few things.
First, as Steiner has argued, this conception of the applicability of mathematics will
slide the problem away from concepts, laws, and language to practice.”> On what
ground indeed could a telescope be applied to the understanding of astronomical

Troughton, fellows of the Royal Society whose names were, as we shall see, routinely attached to
the high-precision instruments they produced (Bennett 2011; Chapman 1995).

5 As expressed by Gottlob Frege in 1884, there is a simple solution to the applicability problem:
“The laws of numbers, therefore, are not really applicable to external things; they are not laws of
nature. They are, however, applicable to judgments holding good of things in the external world:
they are laws of the laws of nature” (Frege 1980), quoted by (Withold 2006, 74). For another
visions of mathematics as a language in this context, see Sarukkai (2005).
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phenomena? This had very little to do with the way the instrument expressed
scientific truths, but everything to do with the way it was devised, built, maintained,
studied, and used. Second, to make the comparison with mathematics effective
and culturally meaningful, I believe it is essential to pay a closer attention to
the variety of material tools and instruments one encounters in relevant scientific
environments. Documenting the case of the Paris Observatory in 1793, I am led
to distinguish, for the sake of my argument, between scientific instruments and
mere tools, and among the latter between simple tools and high-precision tools.
Third, as I show, such distinctions necessarily involved social criteria regarding
users and the conditions of their use of devices. There were therefore high stakes
in terms of users’ status in designating their equipment as tools or instruments.
Fourth, these distinctions also applied to the way mathematics was used by various
people as tool and as instrument. Like in the philosophy of mathematical practice
(Mancosu 2008), this approach shifts the focus of our attention from mathematical
foundations to a wider range of practices. Looking at the computers’ daily routine
at Greenwich in 1839, I exemplify the various meanings mathematics as a tool
can have there. Finally, pursuing this approach raises new questions: How far can
the analogy between mathematics and tools or instruments go? Have the notions
of care, improvements, maintenance, and fixes corresponding meanings as far as
mathematical instruments are concerned? Did astronomers develop with regards
to their mathematical instruments the same kind of personal attachment, intimate
knowledge about the ins and outs, and attention to the life history of their most
prized material instruments? To provide extensive answers to such interrogation
would be enough for a whole research program. With the perspective I adopt here,
there are a number of cases in the history of mathematics that might be revisited with
profit. Astronomers tinkered over and over again with the mathematical instruments
that were handed down to them in order to increase their precision.® In the last part
of this paper, I will illustrate the fruitfulness of this approach by considering the
case of Bessel functions.

2 Tools vs. Instruments in the Paris Observatory, 1793

To try and make sense of the distinction between tools and instruments in the
context of the observatory, one may look at inventories. Take the case of the
“inventory of instruments of the National Observatory in Paris” from 1793.” This

%One may think, among other cases, of the Gauss—Laplace theory of errors (Sheynin 1973) or
Poincaré’s qualitative dynamics (Roque 2015).

7See “Piece justificative N ° X: Inventaire des instrumens de 1’Observatoire national de Paris en
1793,” Archives nationales F17/1219; Archives de 1’Observatoire D.5.38; repr. (Cassini 1810),
208-217). The date of this report is uncertain, but September 19, 1793 is a reasonable estimate
(Wolf 1902, 349). Dated “19 of the first month of Year II”’ [which should be 19 vendémiaire, that
is, October 10], the report was said to be completed when discussed by the Commission temporaire
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report was drafted in rather dramatic circumstances. Following the abolition of the
Academy of Sciences by the Republican Government, the traditional organization
of the Paris Observatory under the Cassini dynasty was overturned. A decree
stated that the Observatory was to be “republicanized” and that the former director
Jean-Dominique Cassini, also known as Cassini IV (1748-1845), would loose all
prerogatives over his former assistants. As a result Cassini resigned from his position
and, on September 19, 1793, a delegation was sent to the Paris Observatory in order
to draw a list of all its instruments.

With respect to the distinction between instruments and tools [outils], this
inventory is highly revealing, in part because it was written, not by astronomers,
but by the delegates appointed by the Revolutionary Commission temporaire des
arts, set up by Government following the suppression of the Academy of Science in
August 1793.8 These delegates were the physicist Jacques Charles (1746-1823), and
the instrument makers Etienne Lenoir (1744—1832) and Jean Fortin (1750—1831)
who unlike scientists were not highly experienced as writers. Fully conscious of
what was at stake, Cassini however oversaw the inventory with keen eyes, as well as
Jean Perny de Villeneuve (1765-?), Cassini’s former assistant and now temporary
director of the Observatory, and the young Alexis Bouvard (1767-1843), who would
stay at the observatory for the next fifty years.’

The inventory of instruments drafted by the commissioners was divided in several
sections: clocks (17 items), refracting telescopes (13), achromatic objectives (4),
simple objectives (26), reflectors (5), micrometers (13), generic instruments (26),
and—interestingly—"tools and bits of machines” [outils et débris de machines]
(24). As we can see, “tools” were listed here as a special kind of “instruments,”
but perhaps not as highly valued as the others, as can be inferred from their showing
up pell-mell with other bits and pieces at the end of the inventory. Astronomers’
knowledge about their instruments was rather intimate: their dimensions, origins,
flaws, and present states were all precisely established. The most valuable ones had
proper names attached to them and in fact often were the combination of several
instruments. The first refracting telescope was described as such:

N° 1. Achromatic telescope by Dollond, objective with three glass [pieces] of 42 lines of

aperture, 3 feet and half of focal length; it has three oculars, one terrestrial and two celestial
ones; it is mounted on a mahogany stand with cupper columns with all its motions; to this

des arts on September 26. According to his biographer, Cassini left the Observatory never to come
back, on October 3rd (S.-Devic 1851, 205).

8Informations about the Commission and these commissioners can in particular be found in its
proceedings (Tuetet 1912). On scientific instruments at this time, see also Daumas (1953). On
Charles, see Blondel (2003).

9Under the Terror, Cassini was jailed in the English Benedictine Convent on February 14, 1794. He
was freed after Robespierre’s downfall, on August 5, 1794, but never returned to the Observatory.
For more information on the history of the Paris Observatory during the French Revolution, I refer
to Chapin (1990) and Aubin (2013); more complete accounts in French can be found in Cassini
(1810), S.-Devic (1851), Wolf (1902).
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telescope an heliometer by Bouger can be fitted, simple objective, plus a wire micrometer
by Hautpois (Cassini 1810, 209).!°

Let us emphasize the individuality of such instruments. Cassini for example
remembered having used Dollond’s refractor to observe the phases of Saturn in
1774 (Cassini 1793, 153). Also known as the lunette du prince de Conti because
the Prince had bought it after the Duke of Chaulnes’s death in 1769, the Dollond
refractor was rented to Cassini III on several occasions and sold to the Observatory
in 1778 (Wolf 1902, 242-243); (Barty-King 1986, 92). Found to have serious
defects, it had fallen in disrepair at the time of the inventory.'!

“Tools” in contrast were more generic, even when they were better built. In
fact, the tools mentioned in the inventory were not simple tools like hammers or
screwdrivers, but rather high-precision special-purpose tools, like three long steel
rulers, which had been “worked for an infinite [amount of] time and with infinite
care to obtain a straight line,” and drawing marble tables “polished in mirror-like
manner” (Cassini 1810, 215-216). These tools, Cassini explained in a footnote
added later, had been acquired to equip the workshop set up at the Observatory
in 1784 in an ill-fated attempt at fostering the development of high-precision
instrument making in Paris (Wolf 1902, 277-286; Daumas 1953, 358-360). Only
the most notable tools therefore were deemed worthy of mention in the inventory,
as they already were in Cassini’s detailed account books, which indicated the rather
steep price paid for the steel rulers and the marble tables (respectively, 480 and
368 livres Wolf 1902, 279-280). Although much higher, the cost of furnishing
and equipping the workshop with common tools was significantly given in bulk
in Cassini’s accounts. While there was no entry for the word instrument in Diderot
and D’ Alembert’s Encyclopédie a generic definition was given to outil by Louis de
Jaucourt, one of the most prolific contributors to the encyclopedia. He provided a
similar distinction between tools and instruments:

TOOL, ... an instrument used by workmen and artisans to work on the different tasks of their
professions, crafts, and trades; thus are hammers, compasses, planes, squares, braces, etc.
...Let us simply add that workmen distinguish somewhat between tools and instruments,
and that not all instruments are tools (Diderot and D’ Alembert 1751-1765, 11:718, orig.
emphasis).'?

Jaucourt’s definition echoed the inventory made by Charles, Fortin, and Lenoir who
agreed that tools were a specific genre of instruments, albeit less noble, not all

0N © 1. Lunette achromatique de Dollond, objectif a trois verres de 42 lignes d’ouverture, 3 pieds
et demi de foyer ; elle a trois oculaires, un terrestre et deux célestes ; elle est montée sur un pied
d’acajou a colonne de cuivre avec tous ses mouvemens; a cette lunette s’adapte un héliometre de
Bouger, objectif simple, plus un micrometre filaire de Hautpois.

1 About instruments in state of disrepair, see Schaffer (2011).

20QUTIL, (...) instrument dont les ouvriers & artisans se servent pour travailler aux différens
ouvrages de leur profession, art & métier ; tels sont les marteaux, les compas, les rabots, les
équerres, les villebrequins, &c. (...) Nous ajoutons seulement que les ouvriers mettent quelque
différence entre les outils & les instrumens ; tout outil étant instrument, & tout instrument n’étant
point outil.
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instruments being tools. In a book by Louis Cotte (1740-1815), one finds more
complex and more interesting webs of meaning around those terms.'* Intent of
showing in his Vocabulaire portatif des mécaniques that the beauty of God’s work
was no less present in the products of human art and industry than in Nature, Cotte
explained the differences among the terms machine, instrument, apparatus, and
tool:

We understand by machine a combination of several simple machines, such as the lever, the
winch, the pulley, etc. whose action is to stand in for man’s strength and to produce great
effects in little time and at little expanse in all mechanical operations in which they are
employed. ... The instrument is a kind of machine, but [one] susceptible of great precision,
to be employed in scientific operations which require accuracy, like astronomy, practical
geometry, surgery, etc. The apparatus is a combination of different instruments whose
combination contributes to the demonstration of physical, mathematical, and chemical
truths. The fool is a simple instrument, often of the sort of the wedge, which is useful
in the manual and common operations of the crafts and trades (Cotte 1801, viii-ix, orig.
emphasis).'*

In Cotte’s view, tools were simple instruments, which themselves were a special sort
of machines. The distinctions he established were based on two criteria: dichotomy
between simplicity and precision, on the one hand, and the kinds of operations they
were employed in, on the other. Instruments were characterized by precision and
their use in operations geared at discovering new truths about nature, whereas tools
were necessary simple and to be used by craftsmen in their daily and mundane
occupations.'?

Going back to the Paris Observatory inventory, we see that Cotte’s criteria
apply well, but not completely. In the inventory, the only explicit distinction was
social. “Instruments” were high-precision objects used by savants in their scientific
operations in order to uncover scientific truths, whereas “tools” were to be used
by craftsmen and makers in the workshop. But there was nothing common or

13Father Cotte, a cleric, is known for his work on meteorology and on the popularization of natural
history, physics, and astronomy (Pueyo 1994).

1“On entend par Machine une combinaison de plusieurs machines simples, telles que le levier, le
treuil, la poulie, etc. dont le résultat est de suppléer aux forces de I’homme et de produire de grands
effets en peu de tems et avec peu de dépense dans toutes les Opérations mécaniques ou elles sont
employées (...). L' Instrument est bien aussi une espéce de machine, mais susceptible d’une tres-
grande précision, pour pouvoir étre employée dans les Opérations scientifiques qui demandent
de I’exactitude, comme I’astronomie, la géométrie pratique, la chirurgie, etc. L’Appareil est une
combinaison de différens instrumens dont la réunion concourt a démontrer les vérités physiques,
mathématiques, chimiques, etc. L’ Outil est un instrument simple, le plus souvent de 1’espece du
coin, qui sert dans les Opérations manuelles et habituelles des arts et des métiers.

3Tt is interesting to note that, in the definition of the word instrument, the Oxford English
Dictionary today explains, similarly, that the distinction between tools, instruments, and machines,
is based on social, rather than lexicographical, grounds: “Now usually distinguished from a tool,
as being used for more delicate work or for artistic or scientific purposes; a workman or artisan has
his tools, a draughtsman, surgeon, dentist, astronomical observer, his instruments. Distinguished
from a machine, as being simpler, having less mechanism, and doing less work of itself; but the
terms overlap.” Note added to the definition of “Instrument” (www.oed.com).
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mundane about the tools listed, and their precision seemed highly valued. At the
Paris Observatory, fools were specialized instruments acquired to help artisans
make the optical instruments required by astronomers. Instruments surely lay both
literally and figuratively at the center of the observatory, but the place of tools was
ambiguous in this cultural space. While simple tools went unmentioned, some of
the high-precision tools found their place in the list side by side with instruments.
Like instruments, such tools possessed their own history and individuality, but they
were to be used primarily by different people, not astronomers.

There is a final twist we need to take into account. In a culture that praised
inventiveness, to design one’s own tools might however be good ground for claiming
some degree of recognition from the astronomers’ part. At the end of the seventeenth
century, Abraham Sharp, John Flamsteed’s assistant at Greenwich, thus was highly
praised for his skill as an observer and as a mathematician, but also for his talent
as a mechanic, having “made himself most of the tools used by joiners, clock-
makers, opticians, mathematical-instrument-makers, &c.” (Anon. 1781, 462). When
the Dudley Observatory was built in Albany, New York, in 1856, the overseeing
board duly noted the director Benjamin Apthorp Gould’s technical ingenuity with
his tools: “Great difficulties were encountered in boring or drilling the horizontal
holes through the stone piers of the meridian circle, a difficulty attributed by Dr.
Gould in great measure to the inefficiency of the tools. He changed the whole
character of the drills, using cast iron instead of steel; and with much simpler
appliances has accomplished the work successfully” (Henry et al. 1858, 23).!6 The
use of tools was reserved to people with a lower status in the observatory, but
inventively tinkering with them could help assistants and astronomers alike gain
some degree of recognition.

3 The Eight-Hour Day: Mathematics as a Tool at Greenwich,
1839

In this context, whether observatory mathematics could be seen as a simple tool,
a high-precision tool, or an instrument crucially hinged on the way it was put to
use: Who would use it? How? And to what purpose? To examine this issue, let us
focus on the Royal Observatory Greenwich under Airy’s directorship. In the memo
quoted above, Airy explicitly spelt out his view of the place of mathematics in an
observatory.

The action and faults of telescopes and microscopes require for their understanding a

knowledge of Mathematical Optics. Every discussion and interpretation of the observations
requires Mathematical Astronomy. The higher problems, such as the discovery of the ele-

10n the history of the Dudley Observatory, see Wise (2004).
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ments of a comet’s orbit from observations, require the high Mathematics of Gravitational
Astronomy.'”

In short, mathematics was everywhere. Moreover, in Airy’s understanding, formal
hierarchies among personnel hinged on their level of mathematical knowledge
much more than anything else.'® At the bottom of the scale, were supernumerary
computers. In addition to being able to “write a good hand and good figures” and “to
write well from dictation, to spell correctly and to punctuate fairly”, computers were
to have rudimentary mathematical knowledge, essentially restricted to arithmetic,
including vulgar and decimal fractions, extraction of square roots, use of logarithms,
and the use of £. Next came the Assistant, first, second and third grades, whose
competencies were mostly evaluated through their knowledge of mathematics, from
simple Euclidean geometry to analytical mechanics “especially in reference to
Gravitational Astronomy.” In Airy’s organization, computers were the mathematical
artisans of the observatory, and, as such, I would like to say that they used mathe-
matics as a tool, and not as an instrument. They used mathematics like apprentices
in optical workshops handled the basic unspoken tools such as drills and bores,
and not like astronomers manipulated telescopes in observatories. To illustrate this
point, let us focus on a significant episode of the labor history of computing: the
way in which Greenwich computers earned the eight-hour day.'” It all started on
Monday afternoon, January 21, 1839. Computers were chitchatting in the Royal
Observatory’s Octagon Room. Rain had fallen nearly all day and the Astronomer
Royal had left for London.?’ One of them started to complain about their working
conditions. His was a new face in the room: some H. W. Bowman who had just been
hired. His age is unknown, but like most of the other computers there, he must have
been very young, twenty years old at the most. Less than two weeks earlier, Airy had
described what Bowman’s new job would be about: “The work is almost entirely of
calculation, and it is highly important that the computer should understand the use of
the 4 and — signs in the various operations of additions, subtraction, multiplication
and division.”?! Before a formal offer could be made to Bowman, it was agreed that
the head of the computing bureau, J. W. Thomas, would check the value of his work.
Now, Bowman seemed unhappy with the job. If he were to work so many hours, he
lamented to his colleagues, he could not possibly live long. Typically, computers
at Greenwich worked from 8 a.m. to 8 p.m.; they had a one-hour break for dinner,

17Airy, “Remarks on the neglect, by the Junior Assistants, of the course of education and scientific
preparation recommended to them” (Dec. 4, 1861). RGO 6/43, 235.

18Several slightly different copies of this memo are extent in Airy’s papers at the Cambridge
University Library. A first draft was written on November 20, 1856 and a slightly revised version
was adopted on May 10, 1857. In the following I quote from RGO 6/43, 170-175. For a more
detailed analysis of this memo, see Aubin (2009, 277).

190n the division of computing labor at Greenwich, see Grier (2005).

20RGO 6/24/33: Airy’s Diary

2l Airy to Bowman, January 8, 1839. RGO 6/526, 86.
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while Saturday afternoons and Sundays were free. Therefore, Bowman went on,
“time must have some weight in making [him] an offer.”??

Brought in the observatory as a computer, Bowman however seems to have
had few skills worth bragging about. At first he had trouble with additions and
subtractions: “He knew nothing of either,” his superior Thomas reported. “The — he
called a stroke and the + he called a cross and he considered the sign x equally the
same.” Asked to find the logarithm of the sine of 42°19’ in Jean-Francois Callet’s
Tables portatives (published in 1783 on the basis of William Gardiner’s), Bowman
did not know where to begin. But despite foreboding beginnings, two weeks later
Thomas was forced to aver that Bowman “has come pretty middling—he can add
—, X, and <+ very well providing the numbers be of one denomination.” All in
all, depending on whether he was willing to study or not, the new recruit could
“be valued equal Mr Richard Dunkin.’>* This comparison spoke highly in favor of
Bowman. Richard Dunkin was the son of William Dunkin, himself a computer of
considerable experience who had worked for the Nautical Almanac for more than
twenty years. Hired at twenty-three, he was allowed to stay in Truro, Cornwall,
working in his home. In 1832 when the Nautical Almanac Office was established
in London by its new superintendent, Lieutenant William Samuel Stratford, to his
regret Dunkin Sr. was forced to leave with his family his “semi-independent position
at Truro,” and accept a “daily sedentary confinement to an office-desk for a stated
number of hours in the company of colleagues all junior to himself in age and
habits” (Dunkin 1999, 45).2* William Dunkin never ceased to regret his previous
life. Like many in his cohort who reluctantly saw the industrial age forced upon
them, Dunkin wished his sons to do better. Having worked as a miner in his youth,
he remembered that: “the underground tributer’s work was occasionally far more
lucrative than the scientific work to which his after-life was devoted” (Dunkin 1999,
42-43). He thus took great care of his sons’ education which he expected would
help them get a foothold in business: “His great desire was that they should be
educated for a mercantile life, and that they should not become computers. As a
computer all his life from youth, he always, and perhaps truly, considered that it
was not a profession that gave much prospect of advancement in social position”
(Dunkin 1999, 46). In Camden Town, where the Dunkins had their house, the boys
were schooled at Wellington House (where Charles Dickens had been a pupil in
1824—1827). Later, at least two of them were sent to a French boarding school,
near Calais. But sorrows repeatedly stroke the Dunkins. William’s first son died in

22Thomas to Airy, January 21, 1839. RGO 6/525, 29, orig. emphasis; (Dunkin 1999, 72).

23 All quotations in the above paragraph from Thomas to Airy, January 21, 1839. RGO 6/524
File 10bis, 352, orig. emphasis. “Units of the same kind but of different magnitudes, as
pounds, shillings, pence, and farthings, which are units of value ...are called units of different
denominations” (De Morgan 1836, 25).

2*Stratford (1791-1853) entered the Navy on February 10, 1806; he was the first secretary of the
Royal Astronomical Society in 18261831 and superintendent of the Nautical Almanac from 1830
to his death. On the story of this institution up to that point, see Dunkin (1898) and Croarken
(2003).
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March 1832. Three years later, an abscess formed on one of his feet, which would
not go away. The walk to the Nautical Almanac Office got harder and harder until
William was allowed to compute at home again. Meanwhile, in less than five weeks
in the spring of 1836 two more of Dunkin’s children, a boy and a girl, had died.
On July 3, 1838, William Dunkin also passed away, leaving his wife alone with two
boys: Richard aged 15 and Edwin two years his elder. Lieutenant Stratford knew the
Dunkin family was in duress when he recommended the boys to Airy. Richard and
Edwin were recalled from their boarding school (Dunkin 1896, 197), and in August
of that year, both joined Airy’s team of computers, where the boys quickly proved
to be excellent. On January 21, 1839, after having reported Bowman’s complaints
to his boss, Thomas nonetheless warned Airy that if working conditions remained
too harsh, the Dunkins might lend receptive ears to offers they might receive from
elsewhere—“and to lose these two would be a great loss.”>> Bowman indeed was
not the only one to whine about the practical aspects of his new job. Earlier, a
young computer named Thaddeus Foley also had had his conflict with Thomas:
he “condemns the place. He styles it a beastly place, a slavery, and that no one
but a half starved beggar would stop in it.”® Consulted on the matter, Lieutenant
Stratford could not hide his surprise at Airy’s readiness to “binding persons” for so
long every day.?” How could the Astronomer Royal expect work to be done well in
such conditions? “As to myself,” Thomas the overseer went on, “I complain not,”
but like Stratford he supported his computers’ complaints, if only for fear of injuring
the work.

Being constant at work a person becomes stupefied and although still working at the same
rate now begins to commit blunders and the examiner will with the same state of mind run
over them and mark them as correct—such has been the case and such will be the case. And
I am confident that to continue to work 11 hours a day much longer will not answer the
purpose.?®

In the culture of the nineteenth observatory, precision was everything (Wise
1995). The paradox of the computer’s work therefore was posed as such: how could
one rest assured that a low-skilled employee with a small pay would be carrying out
a tedious and repetitive task for several long hours every day without making any
error; and when errors inevitably occurred, how could they be promptly detected? In
the event, the Astronomer Royal was sensitive to Thomas’s argument. He agreed to
reduce working hours from 8 a.m. to 5 p.m. with an hour break, or from 8 p.m. to 4
p-m. if the computers were to take no break at all. Everyone agreed they preferred to
finish at the earliest time possible. The Greenwich computers had earned the eight-
hour day.

25 All quotes are from Thomas to Airy, January 21, 1839. RGO 6/525, 29.

26Thomas to Airy, undated [1838]. RGO 6/525, 15, orig. emphasis. Esq. Mathematical Master at
the Royal Naval School, Camberwell, Foley was later elected a Fellow of the Royal Astronomical
Society; see Monthly Notices of the Royal Astronomical Society 6 (1844), 52.

?TStratford’s opinions about computers are in Thomas to Airy, January 21, 1839. RGO 6/525, 29.

2Thomas to Airy, January 21, 1839. RGO 6/525, 29.
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Social progress notwithstanding, this episode—perhaps more than the case of the
personal equation to which we shall come back—illustrates the way in which Airy’s
observatory was transformed into a factory with a strict discipline (Schaffer 1988).
The mathematics mobilized by computers consisted of simple tools indeed and their
work was mostly manual. Mathematics was for sure used as a tool at Greenwich:
it was a tool, and perhaps a machine-tool, used by computers to perform a task
assigned to them under the constant supervision of their boss; it was a tool used by
assistant to climb up the hierarchy; it was a tool used by the observatory director
to assert his authority over his staff and the general public. But, as a simple tool,
it hardly deserved special attention. These aspects of the use of mathematics in the
observatory leaving few public records are therefore rather hard to study historically.
There are however instances when mathematics ceased to be a simple tool and
became one of the most powerful instruments at observatory scientists’ disposal.

4 Improving Instruments with Mathematics and
Mathematics as an Instrument in Konigsberg, 1815-1824

In the observatory context, using mathematics as an instrument is a whole other
matter than using it as a simple tool. Like all other instruments—or, rather, in
combination with them—mathematics used as an instrument was put to the service
of increasing precision. At the end of his life, Bessel was already terminally ill
when on October 5, 1854 he wrote a touching letter to Airy.>” Referring to the
publication over which Airy’s computers had toiled for years, Bessel expressed his
great pleasure “in the evening of my scientific life to see a work completed on whose
advancement I have bestowed a great part of the morning and noon of that life.”3°
He praised the Astronomer Royal for having “brought through to an end the great
and still extending labour” and recalled how at the beginning of his career he had
set on the similar task that would be Airy’s main inspiration:

When, forty years ago, I entered upon my astronomical course, and found myself in the full
possession of the bodily strength and activity which are indispensable to render a life useful
to science, I found myself naturally obliged to consider carefully the state of astronomy, and
to exert myself to make out clearly what must be done in order to establish it more firmly
than it appeared to be established: in order to give it a form which should not withdraw
itself from the ever-advancing improvement (founded on the very nature of science) in our
knowledge of the heavenly movements, but should rather enable us to increase progressively
the correctness of the earlier determination by the use of the later observations, so that they
might asymptotically draw near to the truth which never can be reached.

20n Bessel, see Hammel (1984) and Lawrynowicz (1995), as well as Olesko (1991).

30Bessel to Airy, October 5, 1845. RGO 6/530, 75-76. I quote from one of the two (nearly identical)
English translations in Airy’s papers (ibid., 76—78 and 79-80).
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To improve the correctness of observations made earlier led Bessel to study
carefully every source of errors he could think of. Errors of astronomical obser-
vation, he wrote, formed two classes: those that “are dependent on innumerable
accidental causes and therefore can be considered to follow the general propositions
of the calculus of probability” and those “that are provoked by constantly acting
causes and which are to be ascribed to the deviation of the instruments from
their mathematical ideal or from their manner of treatment.”*! Skirting around the
issue of the personal equation, Bessel had first believed that the second class of
errors could be diminished “through the insight of the observer and rigour in the
investigation of the instrument and in the method of observation” (Bessel 1819, 19,
orig. emphasis). By carefully tracking down Bessel’s role in the well-visited history
of the personal equation, Christoph Hoffmann has reminded us that in this case the
observer was not considered as a human laborer in need of discipline, but rather as
a source of errors among others.*?

For our purpose, Bessel’s final treatment of the personal equation rather points
toward the conclusion that mathematics served in the hand of the skilled astronomer
as a high-precision tool that would improve the accuracy of observation, whether
by investigating the instrument, the physical conditions in which it was used, or
even physiological differences between observers. Bessel’s Tabule Regiomontance
(1830) were a masterwork of error analysis based on Greenwich observations of
fundamental stars (including Maskelyne’s) and gave the mean and apparent motions
of 38 stars from 1750 to 1850. About these tables, John Herschel (son of William’s)
wrote: “It affords the first example of the complete and thorough reduction of great
series of observations, grounded, in the first instance, on a rigorous investigation,
from the observations themselves, of all the instrumental errors, and carried out on
a uniform plan, neglecting no minutiee which a refined analysis and a perfect system
of computation could afford” (Herschel 1847, 203-204). Herschel also quoted
the Danish astronomer Heinrich Christian Schumacher (1780-1850) according to
whom: “One may almost assert that one exact and able calculator is capable of doing
better service to astronomical science than two new observatories” [ibid., 203]. In
this sense, mathematics was an instrument that truly replaced optical instruments.

In Bessel’s practice, mathematics was thoroughly used as a specialized tool,
like the expensive rulers and marble tables found at the Paris Observatory, and his
innovative use of such tool drew attention to his work. In a letter to Airy about
his method (November 9, 1833), Bessel commented that: “[i]Jt would be useless,
to enter here into the particularities of the computations” (Bessel 1875-1876,
3:462). There was no need to discuss such simple tools as mere computation. To
improve the precision of the observations by means of the mathematical treatment

31(Bessel 1819), 19; trans. (Hoffmann 2007), 346, my emphasis: “die eine enthilt die eigentlichen
Beobachtungsfehler, die von unzihligen zufilligen Ursachen abhingen und deshalb den allge-
meinen Sdtzen der Wahrscheinlichkeitsrechnung folgend angesehen werden konnen; die andere
begreift die von bestindig einwirkenden Ursachen herrithrenden, der Abweichung der Instrumente
von ihrer mathematischen Idee, oder ihrer Behandlungsart zuzuschreibenden.”

32See Hoffmann (2007). On the personal equation, see also Schaffer (1988) and Canales (2001).



190 D. Aubin

of raw data, Bessel however emphasized some high-precision tool coming from
practical astronomy, in particular the computation of elements, that is, the main
constants (aberration, nutation, refraction) to take into account in the reduction
of astronomical data. “Every new inquiry, increasing the weight of the result,
issueing [sic] from the combination of this and former inquiries, the remaining
error, probably will diminish continually; but this error, never vanishing entirely,
it will (generally speaking) be necessary, to exhibit the result of a computation,
depending upon some assumed values of certain Elements in a form open to further
corrections” (Bessel 1875-1876, 3:463). In other words, as a high-precision tool,
mathematics could be used to reduce the errors, but remained dependent on a set of
theoretical and observational assumptions.

Bessel went further and also explored various uses of mathematics that take us
even closer to the astronomer’s idea of instrument. When he set up his observatory
in Konigsberg, Bessel received a Dollond telescope of 4 feet of focal length and
2.7 inches of aperture (Bessel 1815, iii). As he wrote to Carl Friedrich Gauss on
30 December 1813, this was “one of the best instruments in existence,” believing
he would be able to observe with it angles with a precision of 1” to 2” (Gauss
and Bessel 1975, 181). However, it was not perfect. In his letter to Gauss, Bessel
tellingly described in the same breath a modest shade he had devised to protect
his telescope from sun warmth and new methods in mathematical analysis he had
come up with to improve the precision of his instrument by analyzing its small
defects. Having undertaken the microscopic investigation of the small ellipticity and
eccentricity of the pivot, Bessel explained that he used what he called an application
of Gauss’s least-square method, which he had come upon on another occasion and
which he felt was “very elegant.” In his later publication, Bessel explained: “Before
giving the detailed investigation of this and other errors of the circle, I allow myself a
digression about the solution of a class of equations frequently occurring in practical
astronomy, which will find their application here.”*3

In my view, Bessel’s “digression” represents the moment when he ceased to view
mathematics as a tool, even a high-precision one mobilized to improve his Dollond
refractor, and started to consider mathematics itself as an instrument. Mathematics
as an instrument should also be submitted to the same inquiry as physical instru-
ments and observers. In doing so, mathematics itself would be perfected not for its
own sake, but for the sake of improving the precision of astronomical observations.
Let us briefly say what Bessel’s digression was about. It concerns Bessel’s own
approach at determining the coefficient of a finite trigonometric series representing
a function, developed independently from Joseph Fourier’s (Dutka 1995, 127). On
July 2, 1818, Bessel read a paper at the Berlin Academy of Sciences where he
extended his earlier digression to infinite trigonometric series, therefore providing a

3Bessel (1819), ix; Bessel (1875-1876), 2:24: “Ehe ich die nihere Untersuchung dieses und der
iibrigen Fehler des Kreises mittheile, erlaube ich mir eine Abschweifung iiber die Auflosung
einer hiufig in der praktischen Astronomie vorkommenden Classe von Gleichungen, die ihre
Anwendung finden wird.”
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first formal treatment of what came to be called Fourier series. When a function of
U is expanded in the series (Bessel 1819); (Bessel 1875-1876, 1:18):

U=Asinu+A"sin2u+ -+ A9 siniu+ . ..
+B cosu+ B"cos2u+---+ BDcosiu+ ...

then, in general, the coefficients could be expressed as
) 1 2
A = — / U siniu du,
T Jo
) 1 2
BY = — / U cos iu du
T Jo

Pointing out that this type of series expansion was useful in a variety of astronomical
questions, he went on to describe the way these developments could be used to
give an analytic solution of what he called the “Keplerian problem,” that is, the
computation of the true variation (or anomaly) of an elliptic orbit perturbed by
another body. Bessel explained that the difference between the true and mean
anomalies could be expressed as a trigonometric series of the mean anomaly, whose
coefficient would be expressed as a power series of the eccentricity.

Pursuing his studies on that problem, Bessel presented a paper titled “Study
of the Part of Planetary Perturbations Arising from the Motion of the Sun” at the
Berlin Academy of Science on January 29, 1824. In this remarkable communication
(Bessel 1824), he considered that when the motion of a planet around the sun was
perturbed by another planet, this perturbation had two parts: the direct action of
the perturbing planet and the indirect action of the sun whose trajectory was also
perturbed. To tackle this problem, Bessel followed Laplace’s method and expressed
the problem in polar coordinates. Extending his earlier approach to this case, he
found that results could be given as a function of two integrals he noted I and J7.
Exploring further mathematical properties of these integrals, he established several
of their mathematical properties, for example the recursive property:

K — 201 + kI = 0.

Typically, for an observatory scientist, Bessel also provided several pages of tables
giving numerical values of the functions I and 1} for different values of k. These
expressions came to be called Bessel functions. Of the mathematical tools developed
by astronomers in the early nineteenth century, they certainly are among the most
prominent.>* But if Bessel functions are a high-precision tool for mathematical
physicists and engineers, I want to argue that, in the observatory culture, they
had more similarities with instruments than with tools. Indeed, Bessel did not

3See, e.g., Watson (1966) and Hochstadt (1986), ch. 8.
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develop this analysis by tinkering with existing mathematics in order to improve the
efficiency of an existing instrument but rather invented new mathematical theories
to test Newton’s theory of universal gravitation. Bessel indeed saw the finality of
his investigations as addressing the question “whether astronomical theories are
everywhere in such great agreement with the observations so as to reject all doubts
regarding the truth of Newton’s hypothesis.”* Just like telescopes, mathematical
analysis itself was in Bessel’s hands an instrument that could be perfected in order
to probe the very foundations of the Newtonian theory.

5 Conclusion

As Bessel himself had intuited, mathematics would soon literally become an
instrument for the discovery of new celestial bodies (Lawrynowicz 1995, 219). On
September 23, 1846, the planet Neptune was discovered at the place computed by
Urbain Le Verrier (1811-1877), who would soon declare that “[t]he great instrument
with the help of which all these [astronomical] questions will be solved will be none
other than the study and computations of perturbations.”*® Struck by this discovery,
Alexander von Humboldt (1769-1859) was curious to know what great development
of the human thought, what new “organ” (like the telescope, algebra, or analysis)
to use his own term, had made this discovery possible and asked his friend the
mathematician Carl Jacobi (1804—1851) for his opinion.?’ In a “thunderous letter,”
Jacobi replied: “Good God!” This was not the result of any “deep thought, but [that
of] a nimble hand.” No deep mathematical thinking was involved in Le Verrier’s
discovery. The only reason why mathematicians did not themselves take care of all
astronomy was because this science relied on numerical results: it was “boring to
have to escort any thin idea with 10,000 logarithms .3

This exchange underscores discrepant conceptions of mathematics as a tool
and as an instrument. It nicely illustrates the slippage that could ensue from too

3Bessel (1824); repr. Bessel (1875-1876), 1:86: “Ob aber die astronomischen Theorien allen-
thalben in so grosser iibereinstimmung mit den Beobachtungen sind, dass dadurch jeder Zweifel
an der Wahrheit der Newton’schen Annahme zuriickgewiesen wird, dieses ist eine Frage, welche
wohl Niemand bejahen wird, deren genaue Erorterung jedoch sehr wichtig ist und die grossten
Fortschritte der Wissenschaft verheisst.” For a study of Bessel’s cosmological understanding of
Newton’s law, see Merleau-Ponty (1983), 119-122.

36Excerpt from Le Verrier inaugural lecture at the Sorbonne; quoted in Revue scientifique et
industrielle 28 (1847), 131.

Humboldt to Jacobi, December 22, 1846 (Humboldt and Jacobi 1987, 103).

38Jacobi to Humboldt, December 26, 1846; (Humboldt and Jacobi 1987, 104): “Du lieber Gott!
Hier heifit es nicht, Gedanken tief, sondern Hand flink.” Below, Jacobi added: “dieser Sachen
kriegen erst durch die wirkliche numerische Ausfiirung Werth, und es ist langweilich, jeder diinnen
Gedanken sogleich mit 10,000 Logaritmen escortiren so miissen” (Humboldt and Jacobi 1987,
105-106). Humboldt himself called Jacobi’s a “donnerdend Brief” (Humboldt and Jacobi 1987,
109).
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close an association with material devices. While in the hands of Le Verrier and
Bessel, mathematical analysis and computation had become powerful instruments
for astronomical research, others like Jacobi relegated this to mere manual work
of deskilled computers. By emphasizing the boredom of computational work in
the observatory (Donnelly 2014), Jacobi was degrading astronomers’ status to that
of menial workers, and the use of mathematics to the mere handling of a tool—a
high-precision tool to be sure, but just a tool. “[I]f Leverrier has seen a new planet
with the eye of mathematics,” Jacobi added, ‘I have myself given a new eye to
mathematics.”*® The mathematician found that toying with the instrument itself
was more fun than using it. The design, care, and maintenance of such tools, he
seemed to say, was of a higher purpose. Only this work ensured that mathematics
remained applicable to astronomy and able to provide the required level of precision.
A new conception of mathematics as Instrumentenkunde (Carl 1863) was emerging,
according to which mathematics could and should be developed autonomously from
the needs of astronomical workers, or any other user of mathematics, for that matter.
As Jacobi famously wrote about Fourier, a question about numbers was worth as
much as a question about the system of the world and mathematics ought solely to
be pursued “for the honor of human spirit.”*’
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The ideal and the real appear most often as antagonists. The former transforms
the target of an investigation into an object that is amenable to the laws of physics
and further mathematical analysis; the latter abstains from undue simplification
and aims at a close correspondence between theory and observation. Ideal gas
theory, for example, approaches reality by replacing a real gas with a hypothetical
counterpart described by a simplified gas law. Real gases require more complex
descriptions for a precise agreement between theoretical and observed behavior.
Ideal flow theory is another example. By the neglect of fluid resistance it dismisses
a crucial feature of real flows of water, air or other fluid media. According to ideal
flow theory a body moving at constant speed through a fluid does not experience a
resistance (D’ Alembert’s Paradox). Therefore, such an idealization is inappropriate
for investigating the drag of a body in the real flow of water or air. At least this
seems to be the obvious lesson from the failure to cope with real fluids in terms of a
theory that regards fluids as inviscid.

Yet ideal flow theory, together with the associated mathematical tools of potential
theory, paved the way for the understanding of fluid resistance. In this chapter I
trace the history of this paradoxical juxtaposition of idealization versus practice in
fluid mechanics. Already the birth of ideal flow theory in the eighteenth century
was deeply rooted in practical concerns. Leonhard Euler’s conception of ideal flow
theory (Euler’s equations) was preceded by a practical request: the analysis of
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pipe flow for fountains at Frederick the Great’s summer palace Sanssouci. Another
idealization was introduced in the nineteenth century by the Scottish engineer
William Rankine who developed the notion of streamlines — originally perceived as
“ship-lines” in an attempt to determine the optimal shape of ship hulls with minimal
resistance. Rankine’s idealization involved the so-called “method of sources and
sinks,” a powerful tool for optimising streamlined bodies. In the twentieth century
this method was found useful for the design of Pitot tubes (instruments to measure
flow velocities in terms of pressures) and for the comparison of theoretical and
experimental results concerning the flow around airship models in a wind tunnel.
These investigations became instrumental for discriminating between various kinds
of resistance (form drag, skin friction, lift-induced drag).

In this chapter I analyse idealization in fluid mechanics as a tool for practical
ends. Although the proverbial gulf between hydrodynamics, perceived as pure
physics, and hydraulics, its engineering counterpart, is often regarded as the result
of idealization, I will emphasize here the uses of idealization for practice. In Sect. 1
I briefly illustrate how real flow problems in the eighteenth and nineteenth centuries
were idealized in order to obtain mathematical tools for practical applications.
Section 2 is dedicated to Ludwig Prandtl and the birth of boundary layer theory
widely perceived as a bridge between theory and practice in fluid mechanics.
Section 3 is focused on a device for measuring flow speed, the Pitot tube, which was
optimized by applying the theory of ideal flow. Section 4 deals with the shedding
of vortices in the wake of an obstacle in a flow, where ideal flow theory was
instrumental for explaining the stable arrangement of alternating vortices (“Karmén
vortex street”). Section 5 is concerned with the aerodynamics of wings where ideal
flow theory sheds light on the phenomenon of “induced drag” — a resistance caused
by vortices trailing away from the wing tips. All these cases illustrate how Ludwig
Prandtl and his school of applied mechanics (Heinrich Blasius, Georg Fuhrmann,
Theodore von Karman) developed useful theories for hydraulic and aeronautical
engineering from idealized concepts.

1 The Practical Roots of Ideal Flow Theory

In the eighteenth century the term hydraulics was not yet distinct from hydrody-
namics. Both denoted the science of moving water in its broadest sense — including
mathematical analysis as well as practical application (Zedler 1735; Chambers
1738; Rees 1819). Bernoulli’s law, for example, today regarded as the law of energy
conservation in flows, was discovered in the course of practical investigations of
pipe flow. It is named after Johann Bernoulli (1667-1748) and Daniel Bernoulli
(1700-1782), father and son. The father, Johann, introduced it in his treatise
Hydraulica; the son, Daniel, in his Hydrodynamica. In an attempt to claim priority
over his son, Johann antedated his Hydraulica to “Anno 1732” in the printed title,
while Daniel’s Hydrodynamica appeared in 1738. But Hydraulica was published
only five years after Daniel’s Hydrodynamica (Rouse 1968; Mikhailov 2002; Szabo



Approaching Reality by Idealization: How Fluid Resistance Was Studied by. . . 199

1987; Calero 1996). Disregarding their priority dispute, neither the father nor the son
aimed at a general law of energy conservation. Bernoulli’s law, as it appears first in
Daniel’s Hydrodynamica, refers to the outflow of water from a container through
an attached pipe with an orifice of given size; the problem was to find the pressure
against the wall of the pipe as a function of the height of water in the container and
the size of the orifice. Problems like these belonged to the “art of raising water”
including “the several machines employed for that purpose, as siphons, pumps,
syringes, fountains, jets d’eau, fire-engines, etc,” as a contemporary encyclopedia
categorized them (Chambers 1738).

It was left to Leonhard Euler (1707—-1783) to give Bernoulli’s law its now familiar
form. In 1755, he derived the equations of motion for ideal (i.e. frictionless) fluids,
the Euler equations (Truesdell 1954). Although his treatise appears unrelated to
practice, this impression is misleading. Euler’s work on hydrodynamics was deeply
rooted in the same eighteenth century water art problems that gave rise to the
treatises of the Bernoullis.

Yet modern scientists and historians ridiculed Euler’s idealization as the origin
for the schism between theory and practice. “Unfortunately, he omitted the effects
of friction, with embarrassing practical consequences. When Euler applied his
equations to design a fountain for Frederick the Great of Prussia, it failed to work,” a
physicist argued about a famous mishap at the summer palace of the Prussian King at
Sanssouci (Perkovitz 1999). I have analysed Euler’s alleged failure elsewhere Eckert
(2002, 2008). Here it may suffice to contrast the widespread slander of Euler as a
mathematician who was “letting his mathematics run away with his sense of reality”
(Bell 1937, pp. 168—169) with the opposite view that Euler revealed in his work “a
highly perceptive engineering mentality that illustrates the depths of his technical
knowledge” (Steele 2006, p. 290). It is true that the hydraulic design for the pumps
and pipes at Sanssouci was doomed to failure, but Euler was not responsible for
this flawed design; he was only asked to analyse the cause of its failure. In the
course of this analysis he established what finally entered the textbooks of hydraulic
engineering as the non-stationary pipe flow theory. Euler correctly explained why
the Sanssouci water art system failed. The design for pumping water to a reservoir
involved a great distance between the pumps and the reservoir which necessitated
the application of high pressures in order to set the water in the pipes in motion. The
inertia of the water in the pipes—not friction—was the culprit. By approaching the
problem from an idealized perspective Euler arrived at a basic understanding of the
nature of the problem. The neglect of friction allowed him to focus on the inertial
motion of water flow in pipes which enabled him to discern the major deficiencies
of the design. Euler derived from this ideal pipe flow theory practical suggestions
that could have been used to avoid further failure. But his advice was ignored.

The Sanssouci affair illustrates how Euler used idealization in order to cope
with practical problems. By the same token he had solved other problems in naval
architecture, ballistics, and hydraulic machinery, before he arrived at the general
equations of fluid motion that established ideal flow theory.

Another contribution to ideal flow theory is due to the Scottish engineer William
John Macquorn Rankine (1820-1872): the “method of sources and sinks” for
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constructing streamlines around bodies in ideal flows. It originated from Rankine’s
interests in naval architecture. Rankine attempted to construct “the paths in which
the particles of a liquid move past a solid body,” as he explained to the British
Association for Advancement of Science in 1864. Originally he had considered
these paths “as figures for the horizontal or nearly horizontal water-lines of ships,”
but in the course of his mathematical analysis he preferred the notion of “Stream-
Lines” for this graphical representation of flow patterns “as being a more general
term” (Rankine 1864, p. 282).

In a subsequent “Mathematical Theory of Stream-Lines” (Rankine 1871, p. 287)
he explicitly referred to George Green’s famous Essay from the year 1828 in which
the methods of potential theory had been developed and applied to electricity
and magnetism (Cannell and Lord 1993). Rankine was not the first to apply the
mathematical apparatus of potential theory in hydrodynamics, as earlier studies of
ideal flow problems by Hermann von Helmholtz and others demonstrate (Darrigol
2005), but Rankine’s use of this tool resulted in a display of stream-lines that was
mathematically constructed from the superposition of a uniform flow with a given
distribution of point-like flow sources and sinks (“foci”). If the total flow ejected
from the sources equaled that sucked up by the sinks, the resulting flow resembled
that around a closed body. The shape of this body was dependent on the distribution
of sources and sinks. The method was applicable “not only to bifocal, quadrifocal,
and other stream-line surfaces having foci situated in one axis, but to all stream-line
surfaces which can be generated by combining a uniform current with disturbances
generated by pairs of foci arranged in any manner whatsoever, or having, instead
of detached focal points, focal spaces” (Rankine 1871, p. 291). In other words,
the method could be used to compare the ideal flow generated by an appropriate
distribution of sources and sinks with actual flows around bodies with corresponding
shapes.

Potential theory limited the use of Rankine’s method to ideal flow, but this did not
prevent him from considerations on friction. He closed his theory of stream-lines
with “Remarks on the Skin-resistance” in which he referred to the “well known”
observations among engineers in naval architecture, “that the friction between a ship
and the water acts by producing a great number of very small eddies in a thin layer
of water close to the skin of the vessel.” Thus he anticipated a boundary layer as
the site of skin friction. He also coined the notion of “eddy resistance” for what was
later named vortex drag or form drag. However, he was aware that such a resistance
was beyond the scope of his method (Rankine 1871, p. 291) (see also Darrigol 2005,
pp. 274-277).

2 Prandtl’s Boundary Layer Concept

By the end of the nineteenth century hydrodynamics had developed into a sophis-
ticated mathematical theory. The equations of motion had been extended from
Euler’s equations to the Navier-Stokes equations by adding a term that was
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supposed to account for friction. However, actual flow phenomena often eluded
the efforts of mathematical theory to such an extent “that technology has adopted
its own procedure to deal with hydrodynamical problems, which is usually called
hydraulics,” as the author of a textbook on hydrodynamics observed in 1900. “This
latter specialty, however, lacks so much of a strict method, in its foundations as well
as in its conclusions, that most of its results do not deserve a higher value than that
of empirical formulae with a very limited range of validity” (Wien 1900, p. III).

The gap between hydraulics and hydrodynamics—by now perceived as the
epitome for the gulf between down-to-earth engineering and ivory-tower science—
was most pronounced when fluid resistance in pipes was analysed with regard to
the flow velocity and the diameter of the pipe. “Physical theory predicts a frictional
resistance proportional to the velocity and inversely proportional to the square of
the diameter, according to the technical theory it is proportional to the square of
the velocity and inversely proportional to the diameter.” Thus Arnold Sommerfeld
(1868-1951) alluded to the gap between hydraulics and hydrodynamics in a public
talk at the Technical University Aachen in 1900. “The physical theory agrees
splendidly in capillary tubes; but if one calculates the frictional losses for a water
pipeline one finds in certain circumstances values which are wrong by a factor of
100” (Sommerfeld 1900).

Although the discrepancy was not resolved for at least another decade, the
concept by which the solution would finally be found took shape only four years
later. “I have posed myself the task to do a systematic research about the laws of
motion for a fluid in such cases when the friction is assumed to be very small,”
Ludwig Prandtl (1875-1953) introduced in 1904 a paper which became famous
as the starting point for the boundary layer concept (Prandtl 1905, p. 485). The
occasion for this presentation was the Third International Congress of Mathematics,
held in August 1904 in Heidelberg, but Prandtl’s performance was unusual with
regard to the audience at this event. The paper contained little mathematics. Prandtl
was then a young professor of mechanics at the Technical University Hanover.
His primary interest in fluid mechanics was engineering, not mathematical. At
the time of his Heidelberg presentation he had just accepted a call to Gottingen
University, where the mathematician Felix Klein (1849-1925) considered him an
ideal candidate to add technical mechanics to the academic fields of a university.
Klein’s effort was motivated by the contemporary tension between academic and
technical universities (Manegold 1970). Prandtl was at first hesitant whether he
should accept the Gottingen offer because of his affiliation with engineering. “The
gravest doubt emerged from my sense of belonging to technology,” he wrote to Klein
in May 1904, but the prospect of “the beautiful scientific Gottingen intercourse”
helped to overcome his doubts (quoted in Rotta 1990, p. 297).

Prandtl’s motivation for his Heidelberg talk, therefore, was rooted in practice
rather than theory. When he had finished his study of engineering at the Technical
University Munich in 1900, his first employment (before he was called to the
Technical University Hanover in 1901) was as engineer in a machine factory where
he had to design an exhaust system for wood shavings and swarf. “I had arranged a
tapered tube in order to retrieve pressure,” Prandtl recalled many years later, “instead
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of a pressure retrieval, however, the flow of air became detached from the walls”
(Prandtl 1948). When Prandtl was called to Hanover he made this phenomenon the
subject of further study. Why would a flow become detached from the wall? He
constructed a water canal with a camera for visual observation of flow detachment.
At the Heidelberg Congress he presented photographs of flow detachment obtained
from this canal-quite an unusual performance for the attending mathematicians.
Prandt] sketched the central idea behind his boundary layer concept as follows
(Prandtl 1905, p. 486):

By far the most important part of the problem concerns the behaviour of the fluid at the
walls of solid bodies. The physical processes in the boundary layer between the fluid and
the solid body is addressed in a sufficient manner if one assumes that the fluid does not slip
at the walls, so that the velocity there is zero or equal to the velocity of the solid body. If
the friction is very small and the path of the fluid along the wall not very long the velocity
will attain its free stream value already at a very close distance from the wall. Although
friction is small, within the small transitional layer, the abrupt changes of velocity result in
considerable effects.

If the influence of friction is limited to a thin layer, the flow beyond this layer
at greater distance from the wall can be assumed as ideal flow—thus the theory
of inviscid fluids could still be used outside the boundary layer. For the flow in
the boundary layer along a flat plate Prandtl derived approximate equations (by
cancelling terms from the Navier-Stokes equations) from which he obtained a
numerical result for the skin friction coefficient. However, he did not disclose what
mathematical method he had invoked to arrive at his result, nor did he discuss the
problems involved with the derivation of his boundary layer equations from the
Navier-Stokes equations. From a mathematical vantage point Prandtl’s boundary
layer approach was justified only many years later by the method of matched
asymptotic expansions (see, e.g. Schlichting and Gersten 2000, chapter 14.2).

Disregarding qualms about the mathematical justification of his approach,
Prandtl asked his first doctoral student, Heinrich Blasius (1883—-1970), to elaborate
the (laminar) flow in the boundary layer along a flat plate in more detail (Blasius
1907; Hager 2003). Blasius reduced Prandtl’s boundary layer equations by a suitable
transformation of variables to an ordinary differential equation that could be solved
in terms of a power series. Thus he was able to derive the velocity profile in the
laminar boundary layer along a flat plate (“Blasius flow”) and to improve Prandtl’s
first estimate for the ensuing friction coefficient. Albeit limited to laminar flow only,
this was the first successful computation of skin friction based on rational mechanics
combined with empirical observation.

3 How to Shape Pitot Tubes and Air-Ships?

The boundary layer concept provided a rehabilitation of ideal flow theory for many
practical cases. For fluids with small viscosity like water and air, the thickness of the
laminar boundary layer is extremely thin in many practical applications. Therefore,
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the ideal flow regime reaches close to the actual surface of a body that moves
through such a fluid. In other words, the tools of ideal flow theory, such as Rankine’s
method of sources and sinks, would be applicable in order to compute the flow
velocity and pressure in the vicinity of bodies constructed by this method.

It is therefore not accidental that the first computation of this kind is due to
Blasius. After his doctoral work under Prandtl he was employed as a physicist at
the Berlin Testing Facility for Hydraulics and Naval Architecture (Versuchsanstalt
fiir Wasserbau und Schiffbau). One of his first tasks was to improve so-called
Pitot tubes—devices for determining the flow velocity by measuring the pressure
difference between the “stagnation point” in front of the tube and at a site where
the flow is tangential to the opening. But Pitot-tubes with different shapes yielded
different results. “The Pitot-tubes are here discredited very much,” Blasius wrote
in a letter to Prandtl shortly after he had started his new job in Berlin (Blasius to
Prandtl, 29 July 1908, GOAR 3684).

In his Géttingen laboratory, Prandtl used a similar device, combined with a high-
precision liquid column manometer, for measuring the airspeed in a wind tunnel.
“Designed with the appropriate shape, the difference of pressure [measured at the
openings at the front and on the sides] corresponds to the velocity head,” Prandtl
explained the principle of this instrument (Prandtl 1909). Thus he expressed the
well-known result from ideal flow theory, h = v?/2g, where g is the gravity constant
and the “velocity head” # is the height of a water column generated by the pressure
difference between the stagnation point at the front opening (where the flow velocity
is zero) and the free stream velocity v measured at the opening on the side. The
Gottingen device was later called “Prandtl tube” (Prandtlsches Staurohr, see Rotta
1990, p. 48). The velocity head measured with different Pitot-tubes differed by a
“gauge factor” from the ideal value. As Blasius confided to Prandtl, the instrument
originally used in the Berlin laboratory had a gauge factor of 1.82. In order to bring
this factor close to 1, the appropriate shape was crucial.

‘When Blasius began to analyse different shapes of Pitot-tubes with regard to their
gauge factor, the “Gottingen shape” served him as a role model (Blasius to Prandtl,
13 August 1908, GOAR 3684). It was close to a tube, for which Blasius measured a
gauge factor of 1.08 and which he named after the French hydraulic engineer Henry
Darcy (Brown 2003). “We obtain a mathematical expression for the distribution
of velocities in this flow by placing a source in parallel flow,” Blasius resorted to
Rankine’s method, “the water of the source is carried downstream and we get the
stream-line S shown in the figure which we can consider as the boundary of a Darcy
tube” (Blasius 1909). Thus he started a detailed analysis of the “Rankine half-body”
(Fig. 1), as this shape became known in the textbooks on fluid mechanics.

By the same time, Prandtl asked Georg Fuhrmann (1883-1914), who had studied
engineering at the Technical University Hanover, to analyse various airship models
in the Gottingen wind tunnel in order to find a shape with minimal air resistance.
In order to compare experiment with theory, Fuhrmann used Rankine’s method for
the construction of theoretical shapes by an appropriate distribution of sources and
sinks. As he wrote in a letter to Prandtl in September 1909, he combined sources
and sinks in such a way that the resulting stream-lines enclosed bodies with equal
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Fig. 1 Sketch of a “Rankine
half-body” as the ideal shape
for a Pitot tube (Blasius 1909,
Fig. 3)

Fig. 2 Fuhrmann designed airship shapes by Rankine’s method of sources and sinks (/eft). The
airflow around models of the same shapes (right) was measured in a wind tunnel; the model with
minimal drag was the third from below

diameter and equal volume (Fuhrmann to Prandtl, 19 September 1909, GOAR
2628). “The shape of the models was determined by a mathematical procedure
that allowed us to compute by a special approach the flow and particularly the
distribution of pressure under the assumption of a frictionless fluid in order to arrive
at a comparison between these hydrodynamic methods and the measurements,’
Prandtl reported about Fuhrmann’s use of Rankine’s method. “It may be added that
the agreement between theory and experiment is very satisfactory” (Prandtl 1911,
p. 44).

In his final treatise on this subject Fuhrmann compared six different airship-
models (Fig.2) with respect to the distribution of pressure and velocity according
to Rankine’s method with measurements in the wind tunnel. Around the front part
of the models there was close agreement between theory and experiment, but at the
stern there were more or less severe differences dependent on the respective shape.
“According to the theory of flow detachment by Prof. Prandtl this is completely
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understandable,” Fuhrmann explained these discrepancies, “because in the rear part,
where the flow is slowed down by friction and enters a region of higher pressure,
the conditions for flow detachment and vortex formation are fulfilled; these vortices
correspond to what is called backwash at ships.” (Fuhrmann 1912, p. 105)

Thus two different sources of flow resistance were discerned: In the front part
of the models, the distribution of flow velocity and pressure outside the boundary
layer obeys the laws of ideal flow theory, i.e. the flow resistance is only due to
skin friction exerted inside the boundary layer. When the flow becomes detached
from the surface, the resistance is due to vortex shedding. Unlike skin friction, this
resistance depends largely on the shape of the model; therefore it is called form
drag.

4 Vortex Streets

Another incentive to apply ideal flow theory in combination with the boundary
layer concept resulted from the doctoral work of Karl Hiemenz (1885-1973) whom
Prandtl had asked to investigate the flow around a cylinder placed perpendicularly in
a uniform flow of water (Hiemenz 1911). Hiemenz built a canal where he measured
the pressure around the cylinder and in its wake. He used Prandtl’s high-precision
Pitot-tube for measuring the pressure and designed the canal so that he could control
the uniformity of the water flow, but “the vortex tail which forms in the wake of
the immersed obstacle is a rather unstable fabric. On the side of the tail vortices are
separating which, as they move away from the body, drift to the side and, by reaction
from the close walls, cause an irregular oscillation of the entire tail.” (Hiemenz 1911,
p. 12)

Prandtl’s assistant, Theodore von Karman (1881-1963), became curious in this
wake oscillation and analysed the stability of rows of vortices detached from
opposite sites at the cylinder’s perimeter. He used ideal flow theory so that he could
apply the mathematical tools of potential theory for his analysis. In this idealized
view the vortices were moving away from the cylinder with an opposite sense of
rotation along parallel rows (Fig. 3). Kdrman compared an arrangement where the
vortices of one row were situated exactly opposite to the vortices of the other row,
with one where they were staggered to another in both rows. He found that only the
latter configuration is stable with regard to a small disturbance. Although the result
was obtained with ideal flow theory, it implied an important consequence about

Fig. 3 Kéarman vortices in | |
the wake of an obstacle | . L
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the fluid resistance: The trailing vortices transport a momentum that allows one to
compute the form drag of the cylinder (Karman 1911, 1912).

Experiments performed in Prandtl’s laboratory largely confirmed Kérman’s
theory which predicted a universal vortex arrangement with a ratio 4// = 0.283,
where £ is the distance between the vortex rows and / the separation of vortices in
each row (Fig. 3); the experimentally observed value was 0.305. Furthermore, the
resistance by vortex shedding derived for a flat plate (placed perpendicularly in a
stream) and a cylinder resulted in friction coefficients which roughly agreed with
experimentally observed values (Karman and Rubach 1912).

Karman, however, was not the first who investigated these vortex rows. Henri
Bénard (1874-1939), famous for his discovery of regular patterns in horizontal
layers of fluid heated from below (Bénard cells), studied the rows of alternating
vortices in the wake of obstacles by means of sophisticated optical methods since
1904. He even filmed this phenomenon and described it in several papers published
after 1908. No wonder he was annoyed about the “Karméan vortex street”. He
considered Kdrman’s analysis as too idealistic. In 1926 he published a paper with
the title “About the Inaccuracy for Fluids in Real Conditions of the Kdrman’s
Theoretical Laws Regarding Alternated Vortex Stability” in which he blamed
Karman for inappropriate comparisons between theory and experiment. When they
met in the same year at a congress, Karman, according to a later recollection of
Bénard, admitted that the Gottingen experiments from the year 1912 could not rival
with Bénard’s own experiments (Wesfreid 20006, pp. 23—27). In his own recollection,
Karman dated their meeting four years later and ridiculed the priority dispute. “All
right,” he recalled his response to Bénard, “I do not object if in London this is called
Karman Vortex Street. In Berlin let us call it Karmansche Wirbelstrasse, and in Paris,
Boulevard d’Henri Bénard.” (Karman and Edson 1967)

5 The Induced Drag of Airfoils

It is remarkable that ideal flow theory—even if only under certain conditions and with
input from experimental measurements, such as the frequency of vortex shedding—
could be used as a tool for the determination of a fluid resistance due to vortex
shedding. Karman’s theory could not explain how vortices are detached from an
obstacle in a flow, but it could account for the stable arrangement of these vortices
and the momentum transferred to the obstacle by vortex shedding.

Another remarkable application of ideal flow theory concerns the lift and drag
of airfoils. By 1912 Prandtl’s research began to focus on airplanes, in particular
the determination of the lift and drag of airfoils (Prandtl 1912). For airfoils with
infinite span, ideal flow theory appeared as a powerful tool in order to compute
the lift, as Wilhelm Martin Kutta (1867-1944) and Nikolai Joukowsky (1847-
1921) had shown in 1902 and 1906, respectively, by what became known as the
circulation theory. The flow around the profile of an airfoil of infinite span could
be perceived as the superposition of a uniform and a circulatory flow, with the
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Fig. 4 Lanchester perceived
the airflow at the wingtips
like drilled ropes (fop, from
(Lanchester 1907, p. 127));
Blasius imagined (below) that
this flow is “rolling up like a
bag” (GOAR 3684)

circulation responsible for the lift. In other words, lift could be imagined as the
result of a vortex traveling with and circulating around the airfoil.

Prandtl and others attempted to extend this concept to wings of finite span (Bloor
2011). The British engineer Frederick Lanchester (1868—1946) had speculated in
1907 that the vortex around the airfoil gives rise to vortical pigtails trailing away
from the wingtips (Lanchester 1907, 127). Lanchester’s book was translated into
German in 1909 and stirred vivid debates among Prandtl and his disciples. “The
question about the constitution of the vortical pigtails (Wirbelschwénze), which are
drawn in Lanchester’s fig. 86 like drilled ropes, suggested to me the following,”
Blasius alluded to this debate in a letter to Prandtl in November 1910. Instead
of drilled ropes he perceived the flow at the wingtips as “rolling up like a bag”
(“tiitenformig aufrollen™) (Fig. 4). He recalled that Prandtl had already mentioned
earlier that “such a spiral vortex” was trailing away from a wingtip. But he regarded
a mathematical analysis of such wingtip vortices as hopeless (“Durchrechnung
hoffnungslos™) (Blasius to Prandtl, 17 November 1910, GOAR 3684).

Prandt]l had presented a similar sketch presumably already in a lecture in the
summer of 1909 (Rotta 1990, pp. 188-193). In November 1911 he made a step
forward in order to render the mathematical analysis less hopeless. He idealized the
wingtip vortices as a pair of vortices whose vortex threads could be perceived as
parallel straight lines originating at the wingtips and extending against the direction
of flight to infinity (Fig.5). “Their distance is equal to the span of the wing, their
strength equal to the circulation of the flow around the wing” (Prandtl 1912, pp.
34-35).
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Fig. 5 Prandtl’s idealization
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Thus the analysis was reduced to the computation of the strength of horseshoe-
like vortices—one vortex fixed to the wing and a pair of parallel vortices left in the
air by the wingtips. Viscosity played no role in this idealized scheme. In 1914, a
collaborator of Prandtl explained the V-shaped formation of bird-flight in terms of
the horseshoe vortices of this scheme. He argued that outside the downwash area
of the horseshoe vortex of a leading bird the wingtip vortices on the left and on the
right generate an upwind for the succeeding bird. If each succeeding bird moved in
the upwind of his predecessor, the whole group of birds would fly in a V-shaped
formation. The computation of the flow of air in the vicinity of horseshoe-shaped
vortex threads was analogous to the computation of the strength of the magnetic
field in the vicinity of an electric current (Wieselsberger 1914).

Although this was only a first step towards a full-fledged airfoil theory (Bloor
2011; Epple 2002; Eckert 2006), the scheme of the horseshoe vortex involved an
important consequence which was recognized long before the theory was ripe for
publication in 1918. The vortices trailing off from the wingtips exert a resistance
on the airfoil! Unlike the lift in the Kutta-Joukowsky theory for an airfoil of
infinite span, the lift of an airfoil with finite span is accompanied by a drag that is
unrelated to the viscosity of the air and depends on the wing span. After Fuhrmann’s
comparison of ideal and real flow around airship models and Kdrmén’s theory of
drag due to vortex shedding, the drag induced by the lift of a wing was another
example for the rehabilitation of ideal flow theory for practical goals. Further
elaboration of airfoil theory yielded a formula how this lift-induced drag depends
on the wing span and how the coefficients of lift and drag for wings of different
planform and span are related to another. Wind tunnel tests confirmed this formula
and thus provided confidence that the airfoil theory indeed turned out practical
results. When Hugo Junkers, one of Germany’s leading manufacturers of airplanes
in the First World War, learned about these results in April 1918, he was “very
surprised” and exclaimed: “Had we known them earlier we could have spared all our
test runs” (DMA, NL 123, no. 11). Nothing could have demonstrated more clearly
to what extent ideal flow theory had become a practical tool that was useful even
for the design of airplanes—despite its limitation on inviscid fluids. But it should
be emphasized that this practical use was confined to basic insights concerning the
dependence of induced drag on the wing span. Like Euler’s pipe flow theory or
the construction of Rankine’s bodies, the airfoil theory was “useful” in a specific
sense—not as a blueprint for engineering design but as a guide for the experimental
and theoretical investigation of otherwise inaccessible phenomena.
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6 Conclusion

The lift-induced drag of airfoils belongs to the category of form drag (like the
resistance due to the shedding of Kadrméan vortices). In order to account for the total
drag of an airfoil, one has to add the drag due to skin friction. Without the
idealization of the theory of inviscid fluids with its mathematical techniques from
potential theory, it would not be possible to understand the underlying physical
causes of different kinds of fluid resistance. Ideal flow theory, combined with the
boundary layer concept, was instrumental in order to discern the realms of viscous
from inertial forces.

Of course, ideal flow theory by itself fails to account for fluid resistance. Prandtl
left no doubt that “the hydrodynamics of the frictionless fluid leads to completely
useless results regarding the resistance problem” (Prandtl and Tietjens 1934, Vol.
II, p. XV). But contrary to the popular myth of the antagonism between the ideal
and the real, ideal flow theory was—and still is—an important tool for practical
applications.

This lesson is particularly pertinent for the education of engineers. No textbook
about engineering fluid mechanics may afford to ignore ideal flow theory and the
associated mathematical tool box of potential theory and complex analysis. From
Prandtl’s lectures in the early twentieth century to modern engineering courses in
the twenty first century it has been regarded as essential to devote a considerable
part of the courses to ideal flow theory. A contemporary textbook on Applied
Hydrodynamics, for example, devotes half of its content to ideal flow theory because
it provides the techniques to study “two-dimensional flows in regions where the
effects of boundary friction are negligible: e.g., outside of boundary layers. The
outcomes include the entire flow properties (velocity magnitude and direction,
pressure) at any point. Although no ideal fluid actually exists, many real fluids
have small viscosity and the effects of compressibility may be negligible. For
fluids of low viscosity the viscosity effects are appreciable only in a narrow region
surrounding the fluid boundaries.” Therefore, the theory “is applicable with slight
modification to the motion of an aircraft through the air, of a submarine through the
oceans, flow through the passages of a pump or compressor, or over the crest of a
dam, and some geophysical flows.” (Chanson 2009, p. 4)

At least in fluid mechanics, therefore, the ideal and the real are no antagonists.
The study of ideal flow is not only not opposed to the analysis of real flow, but to
the contrary crucial for understanding the latter.
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Idealizations in Empirical Modeling

Julie Jebeile

1 Introduction

In empirical modeling, mathematics has an important utility in transforming
descriptive representations of target system(s) into calculation devices, thus creating
useful scientific models. Descriptive representations in this context are pieces of
knowledge about the properties and the behavior of target system(s) which are not
yet expressed in mathematical terms. They are one form of models that, when
mathematized, become inferentially useful. Mathematics thus allows models to
fulfill their inferential role which can be to predict, explain or design experiments.
In other words, if they are not mathematized, models would be partially descriptive
representations of little impact and use.

Because mathematics here transforms descriptive representations into calculation
devices, the transformation may be considered as the action of a tool or, more
exactly, of several tools. In this paper, I assume that the idealizations involved in
the transformation going from descriptive representations to a useful model could
be such tools. I then examine whether these idealizations have the usual expected
properties of tools, i.e., whether they are being adapted to the objects to which they
are applied, and whether they are to some extent generic.

Ordinary tools—such as pliers, screwdrivers and wrenches—transform the
objects on which they are used for a given purpose. They do so by virtue of
having physical properties which are adapted to the objects.! That said, tools cannot

"Mutual adaptedness seems to be a specific property of some ordinary tools. Here, not only the
tool is adapted to the object on which it is used, but also the object is adapted to the tool. This
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be idiosyncratic (or they would lose their utility) and must rather apply to a certain
range of objects. For example, an Allen key is a tool of hexagonal cross-section that
is used to drive a range of bolts and screws as soon as they have a hexagonal socket
in the screw head. What about idealizations in empirical modeling?

One might hope that, by contrast, mathematics applies identically to descriptive
representations whatever they may be. In this way, it would be a very efficient tool
in the modeling field because it would be universal. I will put forward the claim
that this cannot be true and assess to which extent the transformation of models into
mathematical terms is actually adapted to the specific empirical nature of the target
system(s).

In this paper, I will first describe how models are built, focusing on their
transformation into mathematical terms. This transformation has two phases: the
first is about expressing the initially representational content of the model in
mathematical equations. The second is about making these equations tractable. As
we will see, idealizations are involved in both phases of transformation.

I will then argue that, for the model to be useful, its transformation into
mathematical terms has to be adapted to the target system(s). Thus, the idealizations
involved in the process must be constrained by the specificity of the target(s). Not
only are these idealizations designed for models to be inferential, but they must also
be chosen in such a way that models preserve at least a minimum amount of relevant
accurate information about the systems under study. For my argument to be general
enough, I will consider transformations that result in both analytically solvable and
numerically solvable models.

That said, I will further argue that adaptedness here does not mean restriction
to the sole systems under study. I will show that the idealizations involved in a
transformation may well be suited for modeling other empirical systems as well.
In that sense they function as mathematical tools that have a certain scope of
application, as one would expect from tools in the ordinary sense of the word.

2 Model Building

In this section, I will describe the process of building models and will place special
emphasis on the transformation into mathematical terms. My aim is to show that
idealizations play a central role in this transformation.

I shall specify that my way of describing model building differs dramatically
from the mapping accounts although they are important contributions in the
discussions about the role of mathematics in empirical modeling (e.g., Batterman
2010, Bueno and Colyvan 2011, Pincock 2007). As the proponents of these accounts

is a case of screwdrivers and screws, Allen keys and bolts, or hammers and nails. Some ordinary
tools do not share this property, however (e.g., rakes, scissors and shovels). Because this property
is specific, it will not be considered in this paper.
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identify something called the mathematical structure of models, they treat as one
the formal feature and the representational content of models. It may be a relevant
philosophical approach to study in some way the mathematical role in scientific
models. Here, however, I want to emphasize and to characterize the action of
mathematics as a tool on a descriptive representation to make it a calculation device.
Thus, a diachronic presentation of model building is preferred instead.

In this presentation, I offer a conceptual account of the stages in empirical model-
ing. It is inspired by Cartwright’ account of theory entry proceeding (1983, Essay 7)
but also differs from her account in that hers is more descriptive (mine is more
idealized). According to Cartwright, scientists start with an unprepared description
which contains everything they know about the system under study, including infor-
mation they think relevant in whatever available form; information can be theoretical
components, observations or measurements. From this a prepared description is
established in preparation for mathematically formalizing the physical phenomenon
under study. It contains theoretical principles applied to idealized cases, as well as
boundary conditions and ad hoc terms used to match the empirical data.

The account of empirical modeling, as proposed here (see Fig. 1), is a revised and
idealized version of Cartwright’s conception in that it re-scales the transformation
into mathematical terms within empirical modeling. In this account, I deliberately
magnify the mathematical process so that it becomes clear how mathematics
actually transforms initially descriptive representations into models.

In my account, I suggest that, at the very beginning, model building consists of an
initial description of the target system(s) involved in the phenomenon under study.
The situation is likely to be the same as what Cartwright describes as the phase of
the unprepared description, except that, here, the description is supposed to still not
have a mathematical form.

Then, scientists have to make a choice among all the information within the initial
description, and select the relevant aspects about the phenomenon under study to be
included in the model that is to be built. In other words, they have to make some

initial description of the target system(s)
theoretical components,observations or measurements

making abstractions
omissions of irrelevant aspects of the target system(s)

writing down the equations
with mathematical idealizations transformation into

mathematical terms
making the equations tractable
with formal idealizations

Fig. 1 Conceptual account of empirical modeling
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abstractions.> Without this selection, modeling would not be possible. For Godfrey-
Smith (2009), abstracting is required whatever the nature of the description may
be (scientific or literary, for example) because there is no useful description which
would exhaustively contain all the aspects of a system. For instance, there is no point
in specifying the Moon phase for describing the motion of a body, or, of including
the presence of oxygen or the average temperature for describing the trajectory of
planets.’

The description, once cleared of the less relevant details, contains all the relevant
representational aspects but does not yet have the desired inferential power (of
predicting, explaining or designing experiments).* For the model to be a calculation
device, this description must be transformed into a useable set of mathematical
equations. This corresponds to what I have earlier called the transformation of
models into mathematical terms.

The transformation (which could be also called mathematization) consists in
two phases: the first is about expressing the initially representational content of
the model in a first set of mathematical equations, and the second is about making
this set of equations tractable. Both phases are necessary for the model to become
a calculation device. The first phase aims at creating a preliminary version of
the calculation device, and the second aims at making this device useable for
inferential tasks. That said, building a mathematical model often starts from another
mathematical model. This situation can be expressed as feedback loops in my
schema of modeling phases.

The transformation involves, in its two phases, idealizations, which are simplify-
ing assumptions expressed mathematically in the equations’ (see e.g., Cartwright
1983; McMullin 1985; Hacking 1983; Laymon 1980, 1985, 1989a, b, 1995 for
discussions on idealizations):

In the first phase, the expression of equations consists in translating the initially
representational content into a mathematical language, i.e., in terms of mathematical
symbols (e.g., numbers, variables, constants, vectors, matrix), operations (e.g.,

2 Abstractions differ from idealizations in that they are omissions of some aspects in the target
system which are not relevant for the problem being studied (e.g., to neglect gravitational force in
subatomic phenomena), whereas idealizations are distortions (Jones 2005; Godfrey-Smith 2009).
Idealizations can be omissions but, in this case, these omissions distort the representation in that
they are omissions of relevant aspects.

3Abstracting can sometimes later be part of mathematization. For instance, difficulties in formulat-
ing equations might occur and lead to a different abstraction. This is, however, an additional aspect
that I do not treat in this paper.

“What is relevant might actually depend on the final success in constructing a useful model, and
therefore be identified as such at later stages of modeling. In such cases, there might be some back
and forth in the process of model building.

51 shall stress that this way of defining idealization differs from the view on which model as a
whole is an idealization. It is considered here that idealizations are only parts of a model. Unlike
models, idealizations have no inferential power on their own. For instance, the Ising model will
not be considered as an idealization but as being composed of idealizations. A mass point is an
idealization, but is not a model in that, alone, it has no inferential power.
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addition, integration, derivation) and functions (e.g., cos, sin, log). This translation
is required because mathematical language enables to perform afterwards the
expected inferential tasks. Mathematical language is generic in that the symbols,
the operations and the functions may well be used to describe any empirical system.
It therefore constitutes the formal part of the model that is clearly not specific to the
system(s) under study.

That said, the linguistic translation of the initially representational content
requires to make mathematical idealizations which fit this content to the con-
straining adopted mathematical language. Mathematical idealizations can be about
taking some of the spatio-temporal properties out of the target system(s), thus
abstracting away the “imperfections” of matter from the target system(s), for the
final description of these systems to match ideal geometrical forms. For example, a
wooden wheel or a balloon may be represented as a perfect circle.

The equations obtained in the first phase may be intractable—either analytically
or numerically. In this case, one must proceed, in the second phase, to formal
idealizations.® This is done either by considering the physical problem under study,
or by considering the mathematical form of the equations.

In the former case, one tries to simplify the physical problem by omitting or by
distorting some aspects of the system(s) in order to get results from calculation:
“Complicated features of the real object(s) are deliberately simplified in order to
make theoretical laws easier to infer, in order to get the process of explanation under
way” (McMullin 1985, p. 258). Examples of formal idealizations are results from
considering a body as being a mass point, an infinite surface or a frictionless surface,
from replacing non-linear interactions by linear interactions, or from assuming an
oscillation as being small. In some cases, considering the physical problem and
trying to simplify its description are, however, not enough.

Because the equations remain intractable or complicated to solve, additional
formal idealizations—which are sometimes called “approximations” in this context
(Ramsey 1990, 1992; Laymon 1989a, 1989b)—are conceived based on the mathe-
matical form of the equations. Here, formal idealizations do not always correspond
with familiar idealized physical situations. Let us consider the example of a body of
unit mass falling in a weakly resisting medium.” It is described by dv/dt = g — kv,
with g the acceleration due to gravity and k a friction coefficient. Let us assume that
the speed is zero when the body starts to fall ( = 0). Then v(r) = (g/k)(1 — exp(—k?))
= gt — gkt*/2 + gk?£/6 — .... When the friction resistance is insignificant (i.e., k
is small), the terms with k can be removed and the speed is approximately described
by the first term in the power series v(#) = gt. This formal idealization corresponds to
a conceptually well-identified distortion—i.e., the absence of air—that is associated
with a familiar idealized physical situation—i.e., a free fall in vacuum. That said, a
formal idealization may consist in removing the terms after the second or the third
order (or any superior order) of the power series. Here, the idealization would hardly

%] borrow the distinction mathematical vs. formal idealizations from McMullin (1985).
"I take this example from Norton (2012) for a different purpose though.
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correspond with a familiar idealized physical situation. In our language and division
of the world into concepts, we lack an expression to identify an aerial space which
exerts on a body a resistance such that its speed equals exactly gt — gkt*/2 + gk*£'/6,
for example.

In a nutshell, mathematical idealizations make it possible to express the model
in terms of mathematical equations. Formal idealizations are required to make
these equations tractable and thereby useable. Without mathematical and formal
idealizations, the model would not be a calculation device but merely a partial
description of the system being studied.

I'have shown how important idealizations are in the transformation of models into
mathematical terms. It follows that the transformation is adapted to the empirical
nature of the systems under study if the choice of the involved idealizations depends
on the specificity of the systems. In the next section, I will contend that these
idealizations should actually be constrained by the nature of the systems so that
the transformation should be adapted to it.

3 Adaptedness of Idealizations

I will now argue that idealizations are tool-related in that they make the model
useable. I will further argue that they are adapted to the kind of phenomena to which
they are applied if the model is expected to be not merely useable, but useful.

Idealizations are tool-related. Following Carrier and Lenhard, this means that
“they result from the properties of the tool and make sure that the tool can be used
in the first place” (cf. the general introduction). Let me briefly clarify in what sense
idealizations are tool-related. In the transformation of models into mathematical
terms, idealizations are used to shape initially representational components into
a mathematical form, so that models become tractable and therefore usable. In
constraining the representation by a mathematical language, idealizations give
models a new property, i.e., inferential power. In other words, idealizations make
it possible to create a device from which calculations can be done.

I suggest that their capacity to give models inferential power results from the
fact that they essentialize the features of the target(s) that they denote. They
essentialize in the sense that they reduce the features to something formally and
representationally essential. It is formally essential in that it is a mathematical object
making tractable the equation that contains it. It is representationally essential in that
it represents a feature of the target that is relevant for building the representation one
needs.

One might think that, since idealizations are tool-related, they must meet mere
mathematical constraints but no representational constraint. In the first phase,
mathematical constraints are due to the mathematical language that the model
must fit. In the second phase, mathematical constraints are due to the available
mathematical means of solving equations (i.e., whether we know how to solve
them). This would be true if the model is expected to be useable. A model is useable
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in that it is mathematically tractable and can be used to make calculations and to
provide results. That said, in empirical science, a model is expected to be more than
useable; it should be useful. A useful model has to be useable and has to provide
reliable results for answering the questions the scientist is asking. My aim is to
show that, for a model to be useful, the choice of the idealizations involved in the
transformation must depend on the nature of the target systems.

Idealizations transform the initially representational content from the unprepared
description into a calculation device by distorting this representational content.
Thus, models become calculation devices to the detriment of their representational
function. That is why a lot of philosophical attention has been paid on whether, once
idealized, models can teach us something about the world (e.g., McMullin 1985;
Laymon 1989a, b; Bokulich 2008, 2009; Strevens 2007; Weisberg 2007). Thus,
idealizations are internally stressful concepts. Employing idealizations involves a
trade-off between making a model useable and making a model useful. Therefore,
the scientist has to find a compromise when choosing the idealizations to be included
in the model.

For a model to be useful, I suggest that idealizations must be selected in a
way that makes the model sufficiently accurate for the purpose at hand. I thus
follow van Fraassen when he writes that “A representation is made with a purpose
or goal in mind, governed by criteria of adequacy pertaining to that goal, which
guide its means, medium, and selectivity” (2008, p. 7). He further claims that
a “representation useful for particular purposes will involve selective distortion,
and representation is closely involved with useful misrepresentation. Even when
likeness is crucial to the purpose, we must look for likeness only in respects that
serve the representation’s purpose—and only to the extent that they do so” (2008, p.
87). Hence, idealizations that are the distortions in a model are allowed to the extent
that they are selected adequately for the purpose at hand.

I will show that the choice of idealizations relates to issues of representation,
and choosing an adequate idealization hinges on considerations about the specific
empirical nature of the target system(s). As I will elaborate with the example
of Prandtl’s model, the choice of adequate idealizations is constrained by the
specificity of the targets. Idealizations must not make the model deviate too much
representationally from the actual description. Thus, I will claim that not only
are idealizations in the transformation tool-related but they are also object-related.
Object-related idealizations “create a simpler version of the relevant objects and
their relationships so that mathematical models of them become more tractable” (cf.
the general introduction) and, I shall add, so that mathematical models become of
real utility in empirical science.

Let me illustrate this with the story of Prandtl’s model. The study of a flow past
an obstacle has long been an important industrial issue, dating back to the rise
of steamboat navigation during the Victorian times. It was imperative that British
engineers know how to assess the resistance of water on a boat in order to design
optimal hull shapes. However, such a study is mathematically difficult. D’ Alembert
(1782), as well as other physicists and engineers studying fluid mechanics such
as Poncelet, Saint-Venant, Boussinesq, Ranquine or Froude, suggested, tested, and
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tried to improve models of fluid resistance. But all of them faced the same thorny
problem: one of the required idealizations leads to unacceptable aberrations.

Two important formal idealizations were introduced in the models. The first was
an incompressible flow condition, which leads to the assumption that the influences
of pressure and temperature on mass density are negligible. This idealization was
unproblematic. The second idealization neglected all effects of viscosity (i.e.,
internal friction in the fluid). This idealization seems prima facie justified for
applications involving fluids like air and water, which have a low viscosity. It results
in equations with explicit solutions, which are known as the Euler equations. Thus,
the idealization helps to provide a useable model. Nevertheless, the Euler equations
lead to absurd results, at least if interpreted physically. One such result, discussed
by d’Alembert, is the cancellation of the drag of a moving body. In other words,
there would be no force exerted by the fluid on the body, which contradicts our
most familiar observations: air slows down a balloon that was initially thrown
horizontally, for example. The Euler equations raise other difficulties since they
cannot provide explanations of phenomena such as pressure loss in a pipe or
separating flow past an obstacle. These phenomena are the result, directly or
indirectly, of fluid viscosity. The no-viscosity assumption is therefore too strong,
even when modeling low viscosity fluids. It is not a harmless idealization in the
sense of Elgin and Sober (2002); it jeopardizes the representational adequacy of a
model that contains it.

If the idealizations in the transformation were only constrained by mathematics,
such an issue would not appear. This example illustrates that, for a model to be
useful, idealizations need to be sensitive to the nature of the target system(s). Thus,
other idealizations are required which take into account viscosity in low viscosity
flows. What are they?

With the objective of solving d’ Alembert’s paradox in mind, Navier and Stokes
both contributed in establishing the fundamental equations of Newtonian fluid
mechanics in a continuous medium in which they both introduced terms of fluid
viscosity. In 1845 the final version of the Navier-Stokes equations was established.
These equations derive from balances of mass, momentum, total energy and entropy
applied on a fixed or mobile volume of fluid. Unfortunately, they form a complex
system of equations with non-linear partial derivatives whose analytical resolution
is still today a real challenge for mathematicians. Their resolution is one of the seven
Millennium Problems raised by the Clay Mathematics Institute.

In order to get a useful model that is both inferential and representationally good
enough, idealizations must be found which are more subtle than the no-viscosity
assumption. Prandtl’s model illustrates this achievement. Before Prandtl’s model,
successfully applying the Navier-Stokes equations was practically impossible.
During the 19" century, engineers and fluid mechanists were forced to establish
phenomenological laws in order to solve their problems (Darrigol 2005). More than
150 years after the first work of d’ Alembert (1782) who discussed the forces exerted
by a fluid on a solid body, Prandtl made a significant contribution in the use of these
equations. His model is explicitly presented as a means of applying the Navier-
Stokes equations to the concrete problems of a flow past a solid (Heidelberger 2006).
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Ludwig Prandtl himself introduced the model in 1904 in these terms at the third
international congress of mathematicians at Heidelberg (Darrigol 2005, p. 283).

In his model, Prandtl assumed the influence of forces induced by low viscosity
as confined in the wake behind the obstacle as well as inside a layer, i.e., the
boundary layer. Low viscosity fluid around an obstacle is conceived of as the
interaction between two components. The first component is the boundary layer
which is around the obstacle and whose viscosity is not zero and whose velocity
profile evolves linearly. The velocity profile starts from zero at the interface
fluid/obstacle—this is called the no slip condition—and reaches a maximal value
equal to the viscosity in the second component. The second component is the wake.
Within the wake, the viscosity is zero and the mean velocity remains constant. For
this component alone, the Euler equations apply. With such an idealization, it has
been possible to describe the trajectories of bodies in a flow—e.g., plane flight in
the atmospheric air—or the fluid flow past an obstacle—e.g., flow of a river against
a boat—, and thus to study hydrodynamic behaviors such as the onset of vortices.

The idealization conceived by Prandtl is more subtle than the simple omission
of the terms of viscosity in the Euler equations. Idealizing for building Prandtl’s
model is not about automatically omitting or modifying certain terms in the Navier-
Stokes equations that do not meet mathematical expectations. Because, even if the
boundary layer is thin in ordinary fluids such as water and air, it has significant effect
on flow in virtue of the high gradient of velocity that it implies. In this case, the
right idealization is constrained by the specificity of the system being studied. Here
the specificity is that the viscosity, albeit low, plays a crucial role to describe drag,
pressure loss or flow separation. Understanding the relevance of this physical aspect
is more important than merely considering its low numerical value, for instance. In
other words, for a model to be useful and not just useable, it seems that idealizations
cannot be made without considering the physical problem.

Another aspect of the story reinforces the idea that idealizing properly requires
the consideration of the specificity of the physical problem. The concept of
boundary layer was obtained by Prandtl through observations, i.e., visualizations
of experiments that he conducted in a water tunnel. Morrison claims that since
the boundary layer concept is the product of direct observations, it is what
she calls a phenomenological abstraction. She writes indeed that “The model is
phenomenological not because there is no theory from which to draw but because it
is motivated solely by the phenomenology of the physics; in fact, once the model is
developed theory does play an important role in its application” (Morrison 1999, p.
54). It seems that Prandtl even developed a certain intuition through the visualization
of the phenomena before even setting the equations of his model. On that subject,
Prandtl says: “Herr Heisenberg has [ . . . ] alleged that I had the ability to see without
calculation what solutions the equations have. In reality I do not have this ability,
but I strive to form the most penetrating intuition [Anschauung] I can of the things
that make the basis of the problem, and I try to understand the processes. The
equations come later, when I think I have understood the matter” (quotation taken
from Darrigol, 2005, p. 287).

The difficulty scientists may have in finding appropriate idealizations has been
overlooked by the philosophical discussions about idealizations. It is rather often
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assumed that scientists know well in advance the empirical consequences of the
idealizations contained in a model (exceptions are notably Laymon and Ramsey).
A famous example is a freely falling object. It is often suggested that scientists
only use the assumption of zero air resistance for predicting the velocities of heavy
bodies because they know that the assumption becomes inadequate when studying
low-mass objects for which air resistance cannot be neglected. (They also know
that, in that case, they need to provide an approximate phenomenological term
for the air resistance force.) It may be sometimes true that scientists know the
scope of idealizations especially when they use them for a long time. Prandtl’s
model, however, exemplifies a case where it is not true. The model also shows that
there is no unique recipe that may help one to automatically make the following
inference: “the fluid viscosity has a low value” then “the term of viscosity can
be omitted in the equations.” Such a point is even made in textbooks on fluid
mechanics: “Approximation is an art, and famous names are usually associated
with successful approximations: Prandtl wing theory, Karman-Tsien method for
airfoils in subsonic flow, Prandtl-Glauert approximation for subsonic flow, Janzen-
Rayleigh expansion for subsonic flow, Stokes and Oseen approximations for visas
flow, Prandtl boundary-layer theory, Kdrmdn-Opohlhausen boundary-layer approx-
imation, Newton-Busemann theory of hypersonic flow” (Van Dyke 1975, p. 2).

In a nutshell, not only are idealizations designed for models to be inferential, but
they also must be chosen in such a way that models preserve at least a minimum
amount of relevant accurate information about the systems under study. Hence, this
indicates that the idealizations in the transformation have to be both tool-related and
object-related. Thus, the transformation is adapted to the nature of the target(s).

In the next section, I will generalize this claim in studying different transforma-
tions of the representation of a same phenomenon. I shall emphasize that distinct
transformations are related to distinct possible tasks.

4 Plurality of Transformations

The computational turn, which is the historical conjunction between the devel-
opment of numerical analysis and the advent of computers, offers new means of
writing and solving model equations, i.e., new transformations. It is possible to
use numerical methods for expressing and solving equations. In this section, I will
consider the case where different transformations are used to build a model of a
same target system. In this descriptive part, I will emphasize, through the study
of a flow past a cylinder, that each transformation involves its own idealizations,
thus being adapted in a unique way to the target system. It will follow that, since
idealizations involved in a transformation are both tool-related and object-related,
each transformation transforms the initially descriptive representation into a model
that can be more or less adequate for the purpose at hand.

I will further investigate the example of low viscosity and incompressible flow
past a cylinder. It can be studied under analytic method—e.g., Prandtl’s model—
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or numerical methods applied on computer—i.e., discretization-based method,
computational method of molecular dynamics, Monte Carlo method or cellular
automata. All the models that are created based on these methods have in common
that they express in their own way the fundamental principles of fluid mechanics,
i.e., conservations of momentum, mass and energy (except nevertheless the Monte
Carlo method which violates conservation of momentum as we will see). In these
models, the problem is considered as two-dimensional. A first difference, however,
is that some are based on a macroscopic description of the fluid while others are
based on a microscopic description. The fluid is therefore idealized as a continuous
medium for some models and as a set of discrete entities for the others. Let me
further present the five transformations in the following.

4.1 Transformation 1: Prandtl’s Model

When they describe the fluid macroscopically, hydrodynamics models necessarily
contain approximate versions of the Navier-Stokes equations. Since these equations
describe the behavior of the fluid idealized as a continuum, as said before, they
derive from balances of mass, momentum, total energy and entropy applied on
a fixed or mobile volume of fluid. Thus, they contain the fundamental principles
of fluid mechanics. Two additional idealizations are often used. First, a boundary
condition near the cylinder is established, which is the no slip condition: at the
interface with the obstacle, the fluid velocity is supposed to be zero. Second, the
fluid is considered as incompressible.

The system of equations thus obtained—composed of constraint equation,
boundary condition and incompressible flow assumption—cannot be solved as such.
Indeed, the system contains non-linear terms. A first analytical approach allows one
to solve it nevertheless. This is the Prandtl model. As seen earlier, in this model,
the fluid is supposed to have two interacting components. The first component is
the boundary layer which is around the obstacle and whose viscosity is not zero
and whose velocity profile evolves linearly. Within the second component, i.e., the
wake, the viscosity is zero and the viscosity is constant.

4.2 Transformation 2: Discretization of the Navier-Stokes
Equations

A second transformation allows one to avoid the two idealizations made by Prandtl,
thus making the model more accurate. It is the numerical resolution of the Navier-
Stokes equations by a discretization-based method. In this computational model, the
numerical scheme is based on the integration of equations by finite element method.
First, finite element method consists in discretizing the physical domain into finite
elements. Then the partial differentials of the equation variables are replaced by the
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formal idealizations obtained with the values of the variable at the nodes of each
finite element. Lastly, the obtained equations are integrated on each finite element
of the meshing, and for each time step when the module of temporal dependence
is required. This approach is less idealized than Prandtl’s model and can therefore
provide more precise results.

4.3 Transformation 3: Molecular Dynamics Model

The macroscopic representation of fluid—on which the Navier-Stokes equations
are based—is not valid if the assumption of fluid as continuum does not hold. This
situation corresponds to a Knudsen number superior to 0.01.% Here a microscopic
description of fluid is required. This is the case of trajectories of spatial vehicles
(Meiburg 1986). Because the fluid in which these vehicles move has three different
regimes: continuum fluid regime, transitional flow regime and collisionless flow
regime. Yet, in the two latter regimes, the fluid cannot be considered as a continuum.
Consequently, it must be represented as a discrete set of entities. In this case it is
required to use the Boltzmann equation in order to describe the average behavior of
fluid particles. Furthermore, it is expected that conservation of linear momentum,
conservation of kinetic energy and conservation of angular momentum are satisfied.
From this, two methods can be used, namely, the molecular dynamics model and
Monte Carlo method.

In the molecular dynamics model it is generally assumed that there are several
thousands of particles. The initial distribution of these particles is randomly
determined in the space or is explicitly set. It is the same process with their initial
velocities. The particles then evolve with their own velocities. They can also interact
between each other following the ‘potential well” model. In this model, the collision
is represented as if a particle fell in a potential well, i.e., in a local minimum of
potential energy. At each new time step the instant of the next collision is calculated.
This is done by examining all the pairs of fluid particles. Then all the particles are
moved forward at the same time in accordance with the laws of classical physics,
and the new velocities of the particles involved in a collision are calculated (Meiburg
1986, p. 3108).

4.4 Transformation 4: Monte Carlo Method

Like the molecular dynamics model, the numerical approach based on a Monte
Carlo method proceeds on the calculation of the trajectories of particles. In this

8Knudsen number is a dimensionless parameter. It indicates the flow regime depending on the fluid
continuity (while Reynolds number indicates the flow regime depending on the turbulence).



Idealizations in Empirical Modeling 225

transformation, the fluid is represented as a lattice of cells. At the initial step,
particles are randomly located on the cells or determined beforehand. Like in the
molecular dynamics models, at each time step, the new positions of the particles
are calculated in the space depending on their respective velocities. The Monte
Carlo method differs nevertheless in the way the interactions between particles
are handled. The position and the instant of a collision are here not determined
by the calculation of the trajectories of the particles, but meet merely statistical
considerations. In each cell, among all the particles, two particles only are selected
randomly, independently of their positions. A collision between two particles is then
considered: the new positions and velocities of the two particles are calculated; they
are supposed to be rigid spheres rather than potential wells as they are in the case of
the molecular dynamics model.

The statistical assumption that concerns the assessment of collisions makes it
possible to greatly facilitate the calculations. This is the reason why, compared to
the molecular dynamics model, the Monte Carlo method allows for a much higher
speed of calculation running on computer. The side effect, however, is the violation
of the conservation of angular momentum for the interactions between particles (see
Meiburg 1986, p. 3109). In the model, recall that the calculation of the collisions is
done independently of the position of the particles. One can assume that all the
directions are equiprobable for the velocity of the two particles after collision. In
the calculation, the direction of this velocity is therefore randomly set in selecting
an azimuthal angle and a polar angle. Consequently, two components of the velocity
after collision are determined by the chosen Monte Carlo method. They therefore do
not remain possible variables. Moreover, the four other variables of the problem—
namely, the coordinate of the velocity after collision and the three coordinates of the
velocity before collision—are set when the conservations of linear momentum and
kinetic energy are satisfied. Consequently, they are not available in order to meet the
conservation of angular momentum.

4.5 Transformation 5: Cellular Automata-Based Model

Another transformation is based on cellular automata (Rothman and Zaleski 2004,
D’Humiéres and Lallemand 1986).° The principle in cellular automata consists in
representing the fluid as a lattice. At each node of the lattice stands a site. The state
of each site received a value among a finite number of possible states. At time t,1,
it depends on the value of the states of the neighboring sites at time t, with which

9The development of cellular automata is more recent than the development of differential
equations since it started in the 1940s with the work of Ulam and von Neumann at Los Alamos.
For a general philosophical discussion on cellular automata, see e.g., Fox Keller 2003 and Rohrlich
1990. There are also different hydrodynamics models based on cellular automata. For an exhaustive
presentation of these models, see the forthcoming paper of Barberousse, Franceschelli and Imbert
entitled “Cellular Automata, Modeling, and Computation” and Barberousse and Imbert (2013).”
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the site is connected. In the representation of the fluid, the fictive particles of the
fluid possess the same mass and the same velocity. They only differ to each other
in the direction of their velocity; the velocity can receive only six possible values
(for a hexagonal lattice) (see Rothman and Zaleski 2004, chapter 1, p. 1-2). At each
time step, the particles move from one site of the lattice to another site of the lattice
following the direction of their velocity. They can collide if two particles or more
arrive at the same site at the same time. Some collisions can produce the scattering
of the particles. In this case, the velocity vector of the particles is modified. The
total number of the particles and the sum of the velocity vectors do not change. This
means that the mass and the momentum are conserved.

4.6 Idealizations for the Purpose at Hand

Each of the presented methods implies a specific transformation which, as I want to
emphasize, involves its own idealizations:

First, the macroscopic representations—i.e., Prandtl’s model and the discretized
version of the Navier-Stokes equations—are in some way more idealized than the
microscopic representations—i.e., the molecular dynamics model, Monte Carlo
method and cellular automata-based model—in that they include the assumption
of fluid as continuum.

Among the macroscopic representations, Prandtl’s model is a more simplified
version than the discretized version of the Navier-Stokes equations insofar as the
latter does not need to assume somewhere that the viscosity is zero.

Among the microscopic representations, the Monte Carlo method includes a
statistical assumption about collisions. This assumption is an idealization that
the molecular dynamics model does not need to contain. Furthermore, while the
molecular dynamics model and the cellular automata-based model are derived
from the same fundamental physical principles of mechanics—i.e., conservations
of momentum, number of particles and energy—, these two models differ from
each other in their degree of idealization. In the molecular dynamics model, the
fluid particles are conceived as rigid spheres and their positions and velocities can
take a high number of possible values. In the cellular automata-based model, the
fluid particles are considered as points; the possible values of their positions and
their velocities are forced to evolve within a discrete hexagonal lattice. Therefore,
in a certain sense, the cellular automata-based model is an idealized version of the
molecular dynamics model in which differences of mass are canceled and possible
directions of velocity are limited.

The analysis of the different methods has shown that each method applies its
own transformation with its own set of idealizations. Let me now illustrate that each
transformation transforms the initially descriptive representation into a model that
can be more or less adequate for the purpose at hand.

First, the macroscopic representations are not suitable for situations where
Knudsen number is superior to 0,01, but can be sufficiently accurate for other cases.



Idealizations in Empirical Modeling 227

Second, unlike the discretized version of the Navier-Stokes equations, Prandtl’s
model is not sufficiently accurate for contemporary highly computerized studies in
aeronautics or aerospace, but may be used to get an analytic understanding of how
vortices appear at a rear of an obstacle.

Third, among microscopic representations, the Monte Carlo method enables one
to make more rapid calculations, which can be sometimes required, but is not
appropriate when it is about studying the onset of vortices. The statistics assumption
that the Monte Carlo method involves has no major consequence when it is about
modeling flows of Rayleigh-Stokes type (Meiburg 1986), but, as it fails to meet
conservation of angular momentum and as angular momentum plays a central role
for describing vortices, it may not be adapted for reproducing the onset of vortices
at the rear of the obstacle. Here, molecular dynamics simulations are more adequate
in order to reproduce the distributions of vortices (Meiburg 1986).

Fourth, cellular automata-based model is not adapted in cases where differences
of mass within the fluid matter or where all directions of velocity must be taken into
account. It may, however, be helpful in other cases.

Until now, I have argued that, for a model to be useful, the transformation has to
be adapted to the nature of the target systems, and that, depending on the purpose at
hand, it may be more adequate or less adequate. The question then arises: does this
make the transformation idiosyncratic? I will offer an answer to this question in the
final section.

5 Scope of Application

Another usually expected property of tools is that they are to some extent generic.
In other words, a tool is supposed to apply to some range of objects (rather than to
a unique object). And yet if the transformation of models is idiosyncratic, i.e., if it
is excessively adapted to the target system, it cannot be considered as the action of
a tool. Note that the question is about the starting point, i.e., the systems to which
it is applied, not the endpoint of the tool, i.e., into what it transforms. In this final
section, I will argue that, even though a similar transformation does not strictly
apply identically to all systems, the idealizations involved in the process may well
be suited for a range of empirical systems. In that sense, idealizations may function
as mathematical tools that have a certain scope of application.

I have suggested that idealizations give models inferential power in that they
essentialize the features of the target(s) that they denote. They essentialize in the
sense that they reduce the features to something formally and representationally
essential. Therefore, an idealization that has been used in a model can be used
in another model as soon as the two models share similar features to which the
idealization is adapted.

This is the case with models used to study similar systems. In the previous
example, the boundary layer applies to a class of hydrodynamics systems that share
a certain physical feature, i.e., physical singularity. Examples are flow past a circle,
flow over airfoil and flow over flat plate.
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The boundary layer was initially used in a particular case as an idealization in
order to make the Navier-Stokes equations analytically solvable. Today, the scope
to which it adequately applies is much larger. It survived Prandtl’s model and is
now commonly used to describe concrete cases in fluid mechanics. It actually now
belongs to the standard vocabulary of fluid mechanists and is a single-handedly
research topic (see e.g., Khujadze et al. 2010).

The boundary layer has thus been mathematically defined as “a narrow region
where the solution of a differential equation changes rapidly. By definition, the
thickness of a boundary layer must approach 0 as [the perturbing parameter] ¢ —>
0” (Bender and Orszag 1978, p. 419). Therefore, as soon as a system has such a
narrow region, the boundary layer may be an adequate idealization depending on the
purpose at hand. This has also led to the development of the boundary layer theory
which is “a collection of perturbation methods for solving differential equations
whose solutions exhibit boundary-layer structure” (Bender and Orszag 1978, p.
420). The boundary layer is conceived more generally as leading to the following
mathematical simplifications:

There are two standard approximations that one makes in boundary layer theory. In the
outer region (away from a boundary layer) y(x) is slowly varying, so it is valid to neglect
any derivatives of y(x) which are multiplied by ¢. Inside a boundary layer the derivatives of
y(x) are large, but the boundary layer is so narrow that we may approximate the coefficient
functions of the differential equation by constants. Thus, we can replace a single differential
equation by a sequence of much simpler approximate equations in each of several inner and
outer regions. In every region the solution of the approximate equation will contain one
or more unknown constants of integration. These constants are then determined from the
boundary or initial conditions using the technique of asymptotic matching [ ...] (Bender
and Orszag 1978, p. 421).

The boundary layer is here defined in a general way which includes the definition
given by Prandtl in his model. This shows that the boundary layer is certainly not
idiosyncratic but actually applies to a range of systems which share a common
physical feature, i.e., discontinuity, that can be expressed mathematically in the
previous terms.

On the same grounds, the scope of application of the boundary layer may actually
extend beyond the range of hydrodynamics systems. It may also be a relevant
idealization to describe the skin effect in electromagnetism, since this effect displays
high variability. The skin effect is produced by an alternating electric current which
has a high density within a conductor and is largest near the surface, while it
decreases with greater depths in the conductor. The boundary layer can be associated
with the skin depth in which the electric current flows.'”

The scope of idealizations can more generally extend in case of formal analogy.
In such a case, idealizations contained in a model A are transposed in a model B

10The fact that idealizations have a certain scope of application may explain why some models are
repeatedly used within and across scientific domains, e.g., the harmonic oscillator, the Ising model,
a few Hamiltonians in quantum mechanics, the Poisson equation, or the Lokta-Volterra equations
(see Barberousse and Imbert (2014) for an analysis of such recurring models).
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in that the equations in A are algebraically identical to the equations in B. This is a
case of the analogies between waves of light, sound and water (Hesse 1966, p. 10—
12) where the same equation y = a sin (2y/fx) can be employed in the three cases, !
between the atom and the solar system, between nuclear fission and the division
of a liquid drop, or between electrostatic attraction and the conduction of heat (see
Bailer-Jones 2009).

Therefore, idealizations function as tools in that they are adapted to typical
empirical features of the investigated phenomena, which may be redundant in nature
(e.g., oscillation, stochastic feature, discontinuity, etc.). They can thus be transposed
to other cases which share a certain representational similarity. This should come
as no surprise since, as said before, they reduce features of the phenomena to
something formally and representationally essential. In their “toolbox,” scientists
may choose such or such a mathematical tool, ready to be used, depending on the
system(s) under study.

In arguing that idealizations have a scope of application because they essentialize
features of the target system, I do not want to suggest that they are parts of some
mathematical structure of the empirical world or to support a platonic conception
of idealizations. Rather, I want to claim that they can be used as tools because they
have a story in the building of models and, as such, are recognized by scientists as
being adequate for such or such modeling. A model is never built from scratch, but
based on what is known to work in other models. For example, idealizing fluid as
a continuum (rather than a discrete set of molecules) is a very common assumption
in fluid mechanics models, as it is for other idealizations (e.g., incompressible flow
assumption), since it has proven to be an adequate one. In other words, idealizations
could be seen as tools in the scientific toolkit. Depending on the kind of target
system, scientists could choose such or such idealization that is known to be
adequate for modeling the system.

De-idealization may sometimes be required, however, in order to make the model
sufficiently accurate (and therefore useful). It consists in adding features of the target
(that were originally left out) back into the models and/or correcting idealizations
that originally appear in the models (McMullin 1985; Laymon 1995). When de-
idealization is required, it means that an additional aspect of the system is relevant
for the purpose at hand that was not captured (or not properly captured) by the
idealized model. This is the purpose at hand that determines which components are
relevant to include in the model. Let me give an example.

In order to derive the ideal gas law (PV = nRT) from a molecular model, gases
are assumed to be perfectly elastic spherical molecules. These molecules exert no
force and their volume is negligible in comparison with the volume occupied by the
gas. These assumptions limit the application domain of the law which applies only

"n the case of waves of water, the equation describes the height of the water at the point x, with a
being the maximum height or amplitude of the ripples, and f their frequency. In the sound model,
it describes the amplitude of a sound wave at the point X, with a being the loudness and f the pitch.
In the light model, it describes the amplitude of a light wave, with a being the brightness and f the
color.
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to ranges of normal temperature and pressure. Thus, it is not possible to predict
the properties of biphasic systems or monophasic systems that evolve towards a
biphasic state (state transitions) with this law, which instead requires the use of van
der Waals’ equation. Van der Waals’ equation, which is given by, P + (a/V2) (V-
b) = RT (where a and b are associated with the intermolecular forces), is viewed
as an improvement upon the ideal gas law because it takes into account attractive
and repulsive intermolecular forces (see the chapter “Boon and Bane: On the Role
of Adjustable Parameters in Simulation Models” by Hasse and Lenhard which
discusses the ideal gas law and the role of adjustable parameters in great detail). By
adding the intermolecular forces, it yields more accurate results at high temperatures
and low pressures than the ideal gas law, and therefore it applies to a wider domain
than does the ideal gas law. The introduction of intermolecular forces into the new
model is a genuine de-idealization (McMullin 1985).!2

To conclude, scientists may choose such or such idealization, depending on the
system(s) under study and the purpose at hand. They can also decide to de-idealize
in case the model is not sufficiently accurate.

6 Conclusion

I have first described how models are built, with special emphasis on the transfor-
mation. I have then argued that the transformation is always adapted to the target
systems. The reason is that the idealizations involved in the process are both tool-
related and object-related for the model to be useful. That said, I have further argued
that adaptedness does not mean restriction to the sole systems under study. I have
shown that the idealizations involved in a mathematical transformation may well be
suited for other empirical systems as well and are in that sense mathematical tools
that have a certain scope of application.
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Forcing Optimality and Brandt’s Principle

Domenico Napoletani, Marco Panza, and Daniele C. Struppa

1 Introduction

In a series of previous papers (Napoletani et al. 2011, 2013a,b, 2014) we described
what we called the ‘microarray paradigm’ and we showed that there are specific
methodological motifs that structure the approach of data analysis to scientific
problems. By ‘microarray paradigm’ we referred to the belief that sufficiently
large data collected from a phenomenon allows answering any question about the
phenomenon itself. Answers are then found through a process of automatic fitting of
the data to models that do not carry any structural understanding beyond the actual
solution of the problem. This is a practice we suggested to label ‘agnostic science’.

We argued as well in Napoletani et al. (2011) that, in data analysis, mathematics
is “forced” onto the data. By this we mean that there are techniques expected to be
useful, even when the assumptions under which these techniques should be applied
do not appear to hold for the phenomenon under study. This process, which we
called ‘forcing’, can be viewed as a direct, coarse, and willful attempt to bridge
the gap between data and mathematics. This agnostic approach displays a role
of mathematics in science that is essentially different from the traditional one:
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rather than offering a structured interface between our problems and the raw data,
mathematics now provides a rich repository of techniques for forcing. The extent
to which forcing is possible, and therefore the relation between specific classes of
phenomena and specific mathematical techniques to force onto them, suggests a
shift in the focus of our understanding: from the phenomenon itself and its inner
structure, to the structure of the algorithmic processes that are privileged in data
analysis. The consequence is that the link between reasonable heuristic assumptions
and successful problem solving through data analysis can be broken without impact
on the effectiveness of the problem solving itself.

Here, we will show the implications of this shift by dissecting one of its most
pervasive aspects: the search for optimization and the belief that optimization as
such is always useful and necessary. For our purposes, to solve an optimization
problem means to find the minimum of a fitness function F(x) on a given domain
.7 (usually a subset of R” for some n > 0). We explore how forcing appears in the
ways the fitness function F(x) is built starting from a specific empirical problem,
and in the methods used to approach the optimization problem itself.

We also propose that the way optimization techniques are used in practice
often hints at a more basic methodological principle in data analysis, what we call
‘Brandt’s Principle’, which can be expected to have wide applicability in problems
from life and social sciences. The articulation of this suggestion goes through
three sections. In Sect.2 we explore how optimization can be seen as forcing. In
Sect. 3, we draw the extreme consequence of regarding optimization as forcing;
we suggest that, quite often, the local behavior of optimization algorithms is more
important than its ultimate convergence to any optimal solution to a problem, and
we introduce Brandt’s principle, an operative principle of this approach. In Sect. 4,
we speculate on the reasons of the effectiveness of this principle, particularly when
applied to solve problems about what we suggest to call ‘historical phenomena’, i.e.
phenomena significantly constrained by their past development. To this end, we first
analyze a recently proposed principle of morphogenesis in developmental biology
(Minelli 2011), and then explore its strong analogy with Brandt’s principle.

2 Forcing Optimality

When using optimization to solve an empirical problem, there are two levels at
which we may have forcing.

At one level, it is possible that the optimization method is forced upon the
empirical problem: though the fitness function may or may not encode significant
information on the problem and the underlying phenomenon, the method used to
solve the optimization problem does not actually find the global extrema of the
function, but nevertheless the original empirical problem is solved by the (non-
optimal) output of the algorithm. To show an example of this situation, we analyze
in Sect.2.1 a popular method of optimization in data analysis, particle swarms
optimization (PSO). Specifically, we show that its effectiveness is not bound to the
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actual ability of this algorithm to find a globally optimal solution to a problem,
rather, PSO can be seen as a collection of local explorations of the solution space.

At another level, the fitness function is forced upon the empirical problem, even
when poorly related to it. The more complex the empirical problem, the more the
associated fitness function will be ad hoc, and many fitness functions, not all leading
to the same optimum solutions, are possible. And yet, despite the ad hoc nature
of the fitness function, the empirical problem is successfully solved. To explore
this second level of forcing, we show in Sect. 2.2 how important problems, such as
image processing, lead to entire families of fitness functions with different choices
of parameters.

In Sect. 2.2 we also show that the complexity of these problems and associated
fitness functions is such that the whole variety of optimization methods used to solve
the corresponding optimization problems often reduce to a local, point by point
search for solutions, with no hope in general for the identification of the global
optimum, similarly to what we argued in Sect. 2.1 for the restricted case of PSO
methods. We can imply therefore that forcing the fitness function usually leads to
forcing the optimization method itself.

We conclude that, in data analysis, what is generally relevant in the use of
optimization is not a special significance of global optimum, but rather its capacity
to give mathematical form to the problem itself, and its effectiveness in generating
local search algorithms acting on the space of potential solutions to the problem.
It is in light of this conclusion that we claim that in data analysis, the following is
typically true:

Using optimization methods to solve empirical problems is a form of forcing.

In the remaining part of the present section, we will support this claim through
examples. This will allow us to distinguish the two relevant forms of forcing
optimality most frequently used in data analysis. We are then left to understand
in Sects. 3 and 4 the reasons of the effectiveness of forcing optimality.

2.1 Forcing Optimization Methods

In one of the early examples of computational methods inspired by biological
systems, Kennedy and Eberhart motivated an innovative optimization method in
Kennedy and Eberhart (1995) by assuming that birds move in a flock to optimize
their search for food. Modifying some preexisting models of birds flocking behavior
(Reynolds 1987), they built virtual particles that try to stay cohesive, while
individually searching for optimality of a fitness function. The resulting searching
method, called particle swarm optimization (PSO), turned out to be extremely
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popular in solving optimization problems, partly because of the attractiveness of
a technique, such as PSO, that does not require much effort to be adapted to specific
problems.

Here we want to show how the structure of this technique relies heavily on
heuristic rules, to the point that PSO loses its original goal of finding a global
optimum of a fitness function. PSO methods starts by setting (possibly randomly)
position and velocity of multiple virtual particles, each of them associated with
the evaluation of the fitness function at its position. The position and velocity of
each particle is then slightly modified, taking into consideration both the location
of its best evaluation up to that moment, and the location of the best evaluation of
a set of neighboring particles. This updating process is justified by the hope that,
as the particles move in the domain of the fitness function, and communicate their
respective evaluations with each other, at least one of them will eventually settle
its position to the sought for location of the global minimum. To which extent this
assumption is true will be discussed shortly, after giving some details on the actual
implementation of PSO methods.

Consider a swarm composed by N distinct particles, each of which is defined by
a position x; = x;(¢) € R" and a velocity v;(f) € R", (i = 1,...,N), depending on
the value of a temporal parameter 7. Let f(x), with x € R", be a fitness function that
we wish to minimize on a domain . C R”, and let x;(0) € R" and v;(0) € R" be
the initial position and the initial velocity vector of the i-th particle, respectively.

We define b;(7) as the best position that the i-th particle achieved up to time f,
which means that we have f(b;(r)) < f(x;(¢)) for all ¥ < t and b;(t) = x;(T)
for some 7' < r. Assuming that each particle has a well defined neighborhood .4}
(either a small set of particles within a given distance, or a set of particles that
are a priori considered to be close to each other), we also define /;(f) as the best
position within the neighborhood, which means that f(/;(r)) < f(b;(¢)) for allj € A}
and [;(t) = xy(T) for some T < rand j/ € .4;. We then update the velocity and
position of each particle according to the following rules (Kennedy and Eberhart
1995; Dorigo et al. 2008):

it + 1) = woi(t) + @1 U1 () (bi(1) = xi(1)) + 92 U2() (li(1) — xi(1)
xi(t 4+ 1) = xi(0) +vit + 1)

where w > 0 is a parameter called ‘inertia weight’ which gives a measure of the
tendency of a particle to keep its direction of motion, ¢, ¢, are also positive and
are called acceleration coefficients, and U}, U, are random diagonal matrices with
values in the interval [0, 1) regenerated at each iteration. The choice of w, ¢;, and
@, is crucial to ensure that the algorithm output does not diverge. The whole term
©1U; (2)(b;(¢) — x;(2)) is referred to as ‘cognitive component’, as it quantifies a sort
of memory of the particle, that keeps track of the location of its own best past or
current evaluation of the fitness function. The effect of this term is to contribute to
the velocity vector v;(# + 1) a component that always points to b;(7), and that, the
further x;(¢) is from b;(¢) the larger it is (not withstanding the variability of U, (¢)).
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The term @, U, (¢) (1;(f) — x;(¢)) is referred to as ‘social component’, since it involves
a local comparison within a set of neighboring particles, and it gives the particle a
tendency to stay close to the location of the best past or current evaluation of the
entire set of neighbors. Like the previous term, it contributes to the velocity vector
a component that is always pointing in the direction of the best location ever found
by the neighbors.

The purpose of local optimization is encoded in the structure of the PSO
algorithm through these two components that decide the direction of the movement
of the particle. The halting of the algorithm updating the positions and velocities of
the particles is usually done either by setting a very large number of iterations before
running the algorithm, or by terminating the iterative updating when the velocities
of all or most particles get close to zero (presumably because they are close to the
global minimum). In both these cases the estimate of the global minimum will be the
minimum among the values of the fitness function at the location of the particles.
The use of several particles allows to explore widely the fitness function on the
domain ., while maintaining a certain coherence among their evolution. However,
there is no evidence in general that running the PSO algorithm will indeed lead to
some global optimum in ..

While there are many variants of PSO methods, they broadly respect the structure
sketched above, and they turn out to be effective on a large variety of optimization
problems, including many in image and signal processing, and in control theory
(Poli 2008). Here we broadly summarize an image processing application that
approaches the issue of image denoising using PSO methods (Bhutada et al. 2012).
This is a particularly interesting example because it will introduce a way to build
fitness functions that we will further explore in Sect. 2.2.

Let I be a discrete image, given as a real valued function defined on a grid of N
discrete points. It is often more useful to represent / as a weighted sum of simpler
images, that encode some specific characteristics we may expect in the image, for
example, such simpler images could be oscillating patterns with fixed frequency,
or they could be sharp spikes that are nonzero only over a few points on the grid.

Let us call such collection of images a dictionary &4 = {g1, ... gu}, and assume that
1= ZZ=1 cmgm for some coefficients c,,, so that, in a given dictionary ¢, our image
can be represented by the list of coefficients ¢ = {c, ... cy}. We note that in general

we need more dictionary elements than the size of the image, i.e. M > N (see Mallat
2008, chapter 5). In practice the image could be contaminated by noise, and in an
idealized scenario we can assume that such noise is additive, that is, we have access
only to the noisy image I =1+ W, where W is a set of values drawn from some
probability distribution. Under these conditions, the dictionary coefficients that we
have access to are those of the noisy image I, i.e. ¢ = {¢1, ...y}

How can we reconstruct the original image from these noisy coefficients? It turns
out that, if the dictionary is well chosen, we can set to zero or shrink the smallest
coefficients (threshold them) without losing the most important characteristics of
the original image, for example its edges and texture. Wavelet representations
are among the dictionaries that allow this thresholding operation (Mallat 2008).
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Without going into the details of their structure, we can say that they entail a
way to decompose the image that encodes information at large scales (say, the
rough contours of the objects in the image) and information at much finer scales
(information on local textures and noise). Then it is possible to build a threshold
function T(¢,,) that, according to the magnitude of each ¢,,, decides whether that
coefficient needs to be replaced by zero, or, possibly, by some other value smaller
than ¢,,. For example, early in the development of this field, it was proposed the
threshold function defined by 7(¢,,) = 0 if |¢,,| < C, T(¢) = ¢ if |C| > C,
for a carefully chosen value of C (Donoho and Johnstone 1994, 1995). This turned
out to be too crude in some applications where more information is available on the
type of images of interest, and more complex threshold functions, depending non
linearly on several extra parameters, were suggested. In particular one recent type,
developed in Nasri and Pour (2009) and used in Bhutada et al. (2012), depends from
three parameters p, ¢, r. We denote it here by T(¢,,, p, g, r). This threshold function
can be seen, for each choice of parameters p, g, r, as a piecewise smooth function
very close to zero in a symmetric neighborhood close to the origin, and almost linear
outside that neighborhood.

The parameters in T(¢,,, p, g, r) are chosen to keep the new reconstructed image
as close as possible to the original one, and one way to do that is to assume that
the error (fitness) function E(p, g,r) = ||[I— Zﬁle T(Cm. P, q, 1)gml|3, is minimized,
where we denote by || *||§ the square of the L, norm of a discrete image (i.e. the
sum of the squares of the values of the image at each of the N points on which it is
defined). Alternatively, under some restrictions on the type of dictionary used, one
could minimize the simpler error function E(p, q,r) = Zﬁle [T @ P, g, 7) — Cm)?s
as it is done in Bhutada et al. (2012). Assuming we know one representative image
with and without noise, it is possible to minimize the function E(p, ¢, r) above, with
the hope that, once optimal parameters p, g, r are found, the threshold 7'(¢,,, p, g, r)
with that choice of parameters will effectively denoise other noisy images.

Now, the complex dependance of the threshold function from its parameters
causes a proliferation of local minima for the error function E. Having several
local minima makes it very difficult to have a good, single initial estimate for the
approximate location of the minimum, that is, a selection of values py, qo, ry that are
close enough to the globally optimal values. Such good estimate would be necessary
if the global minimum on the domain .¥ is searched with more traditional gradient
descent methods (Arfken and Weber 2005, Sect.7.3), which essentially modify
the location of an evaluation of a fitness function in the direction of the steepest
negative change of the function. What is more troubling, these methods depend on
an estimation of the derivative of the error fitness function, which, in turn, depends
from the coefficients c,, of the original image (with potentially very wide variations)
making a numerical estimate of the derivative difficult.

PSO methods can overcome these difficulties thanks to the following two
properties: they do not need a good initial estimate for the global minimum, since
an entire population of initial evaluations is used instead; they do not need the
computation of the derivatives of the error fitness function, and therefore their
performance is robust with respect to variations in the image. In fact, in Bhutada
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et al. (2012) it is shown that PSO methods can be used successfully and quickly to
minimize the error function E, either in the basic setting of uniform threshold across
all the dictionary, or even the more computationally intensive sub-band setting,
where the parameters are chosen independently for subgroups of the dictionary
elements. The threshold parameters found by PSO are then shown to give effective
image reconstructions, when confronted with other denoising techniques.

The preponderance of applications of PSO methods in image processing is not
casual, as optimization problems derived in this setting often display the complex
dependance from their parameters argued in the image denoising example (see
Sect. 2.2). But despite the wide applicability of these methods, they are known to
perform poorly when applied to combinatorial optimization problems (Poli 2008)
where the true optimum is one of a finite number of discrete possibilities that,
possibly, grows exponentially with respect to the number of the variables involved
in the problem. However, these optimization problems are exactly those that are
hardest to solve (many combinatorial optimization problems are NP-complete
Wegener 2005), and for PSO methods to be a significant advance in optimization
we would expect them to perform well when applied to these problems. As noted in
the conclusion of (Poli 2008):

most people will not care as to whether their new tool is guaranteed to give the absolute
best performance on problem. What they want is something simple and reliable. Finally,
probably the PSO has, at the moment, in the mind of many people the sort of magical
black box flavor that attracted so many researchers to other area of artificial/computational
intelligence before.

This black box belief was briefly discussed in Napoletani et al. (2013a) when
we suggested that the microarray paradigm has a counterpart, in the use of
computational processes, in the belief that a sufficiently complex machine should
be able to solve any scientific problem.

The work in Pedersen and Chipperfield (2010) suggests that PSO methods can
be conceptually and effectively simplified by recognizing the heuristic nature of the
social and cognitive components in their implementation. Under this interpretation,
they are methods of space exploration whose implementation is guided by a fitness
function (to be optimized). However, they do not use in an essential way the
analytical properties of the fitness function (for example its derivatives) and they
are not expected to eventually converge to a global minimum. It is argued instead
that only the actual performance of PSO methods on benchmark problems, where
there is a consensus of what constitutes a solution, can discriminate those variants
that are faster and more robust.

This means that the effectiveness of PSO methods does not depend on their
having been conceived as optimization techniques. In fact, what counts here is
not the optimization, but the capacity of the algorithm to appropriately modify the
relevant values (position and velocity of each particle). Even if a fitness function f
needs to be appealed to, for the algorithm to work, once this is done, optimization is
no more a central concern of the resulting recursive algorithmic procedure. A PSO
algorithm is accepted as suitable simply as long as, by following it, some solution
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to the original empirical problem is found, in a way that does not exceed some
predetermined time and resources constraints, rather than in the best possible way.

It is true that a choice of a fitness function to be used by PSO methods might
not be effective for a specific problem, and this would require it to be replaced by
another function, until an appropriate fitness function is chosen. Still, this does not
imply that we have a trial and error procedure, or some sort of hypothetico-deductive
approach. PSO methods are shown to be effective, in a very specific algorithmic
form, for entire classes of very different empirical problems even though they may
not truly optimize sufficiently complex fitness functions. What happens is that a
fixed mathematical technique, or better, a well specified algorithm, is forced onto
the problem; if trials and errors occur, it is at the level of the fitness function,
and always within the framework of PSO methods, which is mostly fixed under
the passage from each trial to another. This is not to say that the fitness function
itself is never forced onto the problem. Rather the contrary is often true, both in
the application of PSO, and in other optimization methods used in data analysis:
the specific choice of the fitness function (and its corresponding extrema) does not
hinge on a structured heuristic insight into the empirical problem, which prefigures
another sort of forcing. This is what we shall see in the next section.

2.2 Forcing Fitness Functions

The way image denoising is phrased as an optimization problem in Sect.2.1 is
exemplary of the way in which an optimization framework is used to phrase other
complex problems about natural phenomena, irrespective of the specific method
used to solve the resulting optimization problem. The emphasis in Sect. 2.1 was on
how to solve an optimization problem, already derived from an empirical problem.
Here instead we explore, in the context of more sophisticated image processing
problems, the difficulties in the preliminary process of translating the empirical
problem into an optimization one by choosing a fitness function.

A first consideration in image processing is that a natural image has important
features that are relevant to its recognition and classification, for example overall
contours, or different uniform textures in different regions, or different objects
superimposed to each other. Capturing this structure involves first of all having
a compact representation for the image. For dictionaries that efficiently encode
edge information (Mallat 2008, chapter 9), this requirement can be approximately
satisfied by requiring the minimization of E; = Z%:l |T(¢n)|. By T(c,) we
indicate here symbolically the coefficients of the reconstructed image (without
being concerned with the analytical shape of the function T), and we enforce that
1= Zm 1 T(Cn)&m- Minimizing the function E; has been shown to lead to a sparse,
compact, representation for the reconstructed image where only a few coefficients
are nonzero (Donoho and Johnstone 1994, 1995). Suppose now that we wish to
have a sparse image reconstruction and a denoising of the image at the same time. A
way to proceed would be to look at the minimization of the overall fitness function
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E = AE| + E», where E; = ||i - Z%:l T(Em)gm”% (a modification of the fitness
function seen in Sect. 2.1 with respect to the noisy image I) and A > 0 determines
the relative strength of the two fitness terms in £ (Donoho et al. 2006). What is
important for our discourse, is that there is now an entire family of fitness functions,
parameterized by A. While under certain restrictive conditions on the dictionary it
is possible to select heuristically a specific good value of A (Chen et al. 2001), this
is not the case in general, and we are left with the problem of choosing which, if
any, of the fitness functions is truly the most suitable for the specific noisy image to
represent sparsely.

More sophisticated image processing problems are associated to ever more com-
plex fitness functions. Consider for example the problem of identifying incomplete
contours of objects in an image. One of the most efficient method to solve it goes
under the name of ‘active snakes’ (Kass et al. 1987). These algorithms are based
on the idea of superimposing contours (snakes) on the image, and of subjecting
these snake contours to some internal forces (minimizing the complexity of the
shape of the contours) and some external forces (maximizing the fit of the contours
on features of the image). Starting from some initial snake contour guess, these
forces slowly change the shape of the snake on the image until it stabilizes on some
significant feature within the image (usually the actual contour of an object).

The effect on the snake of internal and external forces is determined by a fitness
function depending on several parameters that encode the relative strength of the
forces, and to each choice of parameters (to adjust heuristically on the specific
problem) corresponds a distinct fitness function. Effectively, we have an entire
family of fitness functions, all suitable in principle to solve the problem of finding
contours of objects in a given image. However, the dynamics of the snake on the
image can be very complex, and different choices of fitness functions lead the snakes
to stabilize on very different contours.

The tentative ways in which image processing problems translate into difficult
optimization problems makes it clear that fitness functions are often ad hoc, and
several parameters and fitness terms constraining the optimal solution need to be
determined to make them plausible candidates to solve them. The significance of
any specific fitness function is weakened, even though we need to have one such
function to apply optimization methods. This is in line with the general fact that
any application of forcing reduces the significance of our structural understanding
of a phenomenon and a related problem. Which of these potentially distinct, but all
equally plausible, fitness functions should we optimize? As Brandt notes in (Brandt
2001):

this combination of penalty terms creates a monstrous minimization problem [...] It is
extremely difficult to solve — and unnecessarily so.

The difficulty that Brandt highlights is due to the fact that for a general fitness
function F there are no closed, analytical methods to solve the related optimization
problem. The only way to look for a solution is often a local search, what he calls
‘point by point minimization’, an iterative method that, given a point x;, gives as
output a point x;4 in a neighborhood of x; such that F(x;11) < F(x;). The iterative
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process is started by selecting an initial guess x( for the potential solution and it is
terminated when the distance |x; 41 — x;| between successive outputs of the process
is smaller than some preset small § > 0, in which case we say that the point by point
minimization has converged.

We have seen this local approach to optimization already in PSO methods, and
indeed for all fitness functions used in the image processing problems above the
solution is usually found with one of several recursive local optimization methods,
such as gradient descent and Euler-Lagrange methods (Kass et al. 1987; Bresson
et al. 2007), or interior point methods (Donoho et al. 2006; Boyd and Vandenberghe
2004). We suggest that for a sufficiently complex optimization problem and related
fitness functions, arising from any empirical problem, a computational method that
attempts to solve the problem is generally bound to be some type of point by
point minimization. In particular, for a general fitness function, a point by point
optimization process may not converge at all, may not converge quickly enough, or
may converge to a point that does not minimize the fitness function on its domain;
this limitation is intrinsic to these methods, rather than being incidental to some
of the specific examples we have seen. Even more important, there is no guarantee
that choosing slightly different fitness functions, with different parameters, will lead
to similar solutions. In the next section we will see how “unnecessarily” difficult
optimization problems and fitness functions can be reinterpreted and simplified by
looking closely at the structure of point by point minimization processes.

3 Brandt’s Principle

In this section we suggest that both PSO and the other methods developed by
forcing optimization onto empirical problems are governed by one methodolog-
ical principle, which we call ‘Brandt’s principle’ (derived and generalized from
considerations of Achi Brandt in 2001) which clarifies the role and appropriate
usage of point by point minimization. We argue moreover that this principle shows
a specific, operative way in which the link between structural understanding of a
phenomenon and successful problem solving through data analysis can be broken,
without apparent impact on the effectiveness of the problem solving itself. In
particular, we show that the actual implementation strategies of Brandt’s principle,
while depending on partial, fragmented information on the phenomenon, are an
expression of the microarray paradigm.

The starting point of our analysis is the strategy suggested in Brandt (2001),
Brandt and Livne (2011) to solve image processing problems. Those reviews show
how direct multiscale algorithms, that satisfy a whole set of contrasting criteria at
different stages, by focusing on different scales at each of these stages, can perform
as well as global regularization techniques in finding solutions of some ill posed
problems (i.e. problems where the solution is not uniquely defined, and/or such that
the solution is not robust under variations of the input of the problem). The relevance
of multiscale methods is not surprising for image analysis, given what we have said
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in Sect. 2.1 concerning the way information about the relevant image are encoded
differently at different scale of detail (contours versus texture for example). The
main focus and interest in Brandt (2001), Brandt and Livne (2011) is to understand
how to approach optimization problems pertaining to image processing and to
partial differential equations with multiscale methods, and how to build, case by
case, such methods. Here we would like to expand the scope of this insight to wider
classes of problems and methods.

According to Brandt, in many cases, the search for optimization can be replaced
by “a more universal and often far easier”” approach, which just consists in admitting:

a solution which is just the end product of a suitable numerical process not necessarily
designed to satisfy, even approximately, any one governing criterion. (Brandt 2001, page 60)

The problem with this highly agnostic approach (in our sense) is how to identify
suitable numerical processes. A criterion Brandt suggests for this purpose is this:

the amount of computational work [in a numerical process] should be proportional to the
amount of real physical changes in the computed system. Stalling numerical processes must
be wrong. (Brandt and Livne 2011)

It would follow that what truly distinguishes a solution of a problem, or decides
that the time has come to switch to a different solving algorithm, is a near-steady
state of the algorithm output over successive iterations of the algorithm itself;
stalling algorithms are wrong either because we have found a solution and we
should terminate the algorithm (as it is the case for point by point optimization
algorithms that have converged), or because we need to switch to a new algorithm.
We state succinctly the radical idea that underlies the two quotations above in the
following principle, which we name after Achi Brandt. And we claim that its domain
of applicability is far more encompassing than the field of multiscale methods, and
that it can be taken as the organizing principle of most data-driven computational
methods:

Brandt’s principle: An algorithm that approaches a steady state in its output
has found a solution to a problem, or needs to be replaced.

This principle proposes a fundamental shift away from the search of best
solutions to problems. This shift underscores the data-driven nature of the methods
in data analysis, and complements it. Since Brandt’s principle does not have a built-
in criterion to establish when a solution has been found (instead of having reached
a stage in which one has to switch from an algorithm to another), the output of the
relevant numerical process is to be checked, by external validation means, for its
usefulness: a fuzzy concept in general, which nevertheless does have quite precise
renderings in many specific applications. For many empirical problems, a precise
task has to be achieved, and any method that can achieve such a task would be
suitable. Think, for example, of the problem of having an autonomous, driverless
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car travel from one location to another in rough terrain; achieving this task, in any
way, is the really interesting problem, because of the dangers of the car getting
overtopped, or otherwise incapacitated. Finding the very best route in terms of
shortest distance, or fuel efficiency is secondary. In general, the distinction we make
here is between optimality, which usually designate some singular points in the
space of solutions, and usefulness, which rather designate entire regions in the space
of solutions.

While Brandt’s principle deemphasizes the search for optimal solutions to
problems, it is satisfied by local, point by point optimization methods. We have
already seen in Sect.2 that wide classes of computational methods, including
PSO and image processing methods, can ultimately be expressed in this way.
Moreover, most data analysis methods attempt to fit a model on data by minimizing
some suitable error function (Hastie et al. 2009). Because the fitness functions
that correspond to such methods are usually both ad hoc and complex, local
minimization techniques are preferred in this context. This is true in particular
for artificial neural networks, currently some of the most powerful data analysis
techniques (Izenman 2008, chapter 10). As we pointed out in Napoletani et al.
(2013b), the success of artificial neural networks can be ascribed in great part to the
effectiveness of a particular local recursive process to estimate their parameters, the
backpropagation algorithm. In turn, this algorithm is essentially a form of gradient
descent algorithm (Hastie et al. 2009, Sect. 11.4).

In light of the pervasiveness of local optimization techniques in data analysis,
we can therefore claim that most of its methods satisfy Brandt’s principle when
implemented in an effective algorithmic form. Moreover, some of the most impor-
tant types of classification methods, such as committee machines (Izenman 2008,
chapter 14) can be shown to satisfy Brandt’s principle without an explicit local
optimization implementation. This is particularly significant when we consider that
boosting algorithms, singled out in Napoletani et al. (2011) as one of the most sig-
nificant embodiments of the microarray paradigm, are a type of committee machines
(Izenman 2008, Sect. 14.3). In fact, committee machines are built starting from
more basic, structurally similar classification algorithms (classifiers). A standard
committee machine switches among these basic classifiers, each attempting to find
a solution for a slightly different version of some initial classification problem,
and it eventually combines them into a single, potentially more accurate classifier
(we refer to Napoletani et al. (2011) for a general methodological analysis of
classification problems and classifiers). Crucially, the decision of switching among
the basic classifiers is made on the basis of the convergence to a stable tentative
solution to the classification problem at each iteration of the process. A similar,
sequential approach is also used in hybrid classification methods (Delimata and
Suraj 2013). The difference with respect to committee machines is that the basic
classifiers utilized by hybrid methods do not necessarily share a common structure.

We did not emphasize so far the aspects of an algorithm that are uniquely related
to a specific problem. Brandt talks about “suitable” algorithms, but what does it
mean in the context of a specific problem? To begin to answer this question, we
recall that, in Sect. 2.2, the fitness functions for image processing problems are built
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piece by piece on the basis of partial assumptions on the images. While individually
these assumptions do encode some understanding of the structure of images, the
resulting fitness functions, with all their parameters to be chosen, do not offer a
transparent way to interpret the solution to a given problem, and their complexity
does not generally allow for a convergence to the optimum. Fitness functions are
forced on the problem and they can, at best, be justified as rough quantitative a
priori constraints on the form of a solution.

More generally, in image processing the a priori constraints are our assumptions
on what constitutes a natural image or a contour, and these assumptions affect
the choice of image dictionaries. It is possible however to make this choice,
and establish our assumptions on images, automatically, for example by allowing
sparsity to be the governing criterium of image representation, and using large
databases of natural images to search for the best dictionary elements that, on
average, optimize sparsity on a given image of the database (Olshausen and Field
1996; Field 1999). This process is computationally intensive, but it can be achieved
in many cases, and the resulting choices of dictionaries can then be used for further
image processing problems. Of course, the assumption of sparsity is not justified
from the data per se, but is required by our limited resources.

‘We note also that the use of specific prior assumptions on a phenomenon to force
optimization is similar to the basic approach of pattern theory (Grenander and Miller
2007) and Bayesian analysis (Berger 2010) (other very powerful theories to model
and classify complex phenomena), where the solution to empirical problems is
contingent on the identification of appropriate priors on the probability distributions
of the stochastic processes used to model the underlying phenomena.

From this analysis, we can conclude that the building blocks of methods that
respect Brandt’s principle are based on the unavoidable inclusion of partial pieces
of prior information (what, following a customary usage, we can call ‘priors’, fout
court) on a phenomenon. This is an important point that we need to clarify, as
apparently the presence of priors proper to a particular phenomenon may be seen to
be in contradiction with the microarray paradigm, and the whole agnostic approach
to data analysis. One could argue indeed that, if for each problem we should identify
the exact prior information that is necessary to solve it, we would have no reason to
say that the microarray paradigm is at work.

Still, as we have seen in Sect. 2.1, even the use of specific priors (fitness functions
in that case) does not guarantee that we can understand the reason a specific output
of an optimization method solves the relevant empirical problem. If this is not the
case, and it happens very often, the problem solving is still agnostic in our sense,
and the microarray paradigm applies. In other terms, the fact that some priors are
proper to a certain problem does not mean that their identification depends on a
structural understanding of the subjacent phenomenon.

In data analysis we assume a huge quantity of data about a phenomenon, and
from these data we can extract many significant features of the phenomenon, in an
entirely data driven way if necessary, to the effect that these features are generally
not structurally related to each other. More than that, it is often quite hard to guess
in advance which subgroup of the features so detected will be useful to solve a given
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problem. This large number of priors can be partially structured, for example in the
form of plausible guesses on the mathematical nature of the data (as in Bayesian
analysis, where we may have information on the shape of probability distributions
about the phenomenon), or it can be simply in the form of large collection of raw
data from the phenomenon. In both cases, it is the sheer size of priors that set us
squarely within the microarray paradigm: we need as many priors as possible to
solve a problem in a data driven way, and to have an excess of partially structured
priors is as opaque and agnostic as to have none.

We finally note that effective hybrid classification methods differ significantly in
the order and the type of the basic classifiers they use. Similarly, image processing
methods based on optimization allow for significantly different, equally suitable
fitness functions. This suggests that, when building a method based on Brandt’s
principle, the specific way the priors are put together is not essential: what counts
is the ability to distinguish when an algorithm produces dynamically changing
outputs, and when instead it gives nearly steady outputs. And the reason for the
usefulness of the alternating process advocated by Brandt’s principle is that it does
not explore the solution space randomly, but according to priors that, no matter how
they are combined, encode preferential ways to look at the problem itself. Therefore
the expectations on algorithms governed by Brandt’s principle are the following:
they have to be easy to build, starting from a large number of weak assumptions
on a phenomenon and a problem about it; their nearly steady outputs have to be
exceptional and clearly identifiable; and switching among steady states outputs has
to provide a fast exploration of the solution space of the problem at hand.

4 Data Analysis of Historical Phenomena

We have seen in Sect. 3 how the process of forcing optimality and its effectiveness
can be reinterpreted in light of Brandt’s principle, and we have argued that this
principle governs most agnostic, data-driven methods. In this section we explore
the appropriateness of using such methods, consistent with Brandt’s principle, to
solve problems about historical phenomena (introduced in Napoletani et al. 2014).
We perform this analysis by looking at one of the organizing principles that have
been suggested in recent years to make sense of biological processes, the so called
principle of developmental inertia (Minelli 2011). We will show the generality of
developmental inertia as an organizing principle of historical phenomena, subject
to morphogenesis (a term used here in the general and original meaning of change
of characteristics). Finally we will draw parallels between Brandt’s principle and
the principle of developmental inertia to find evidence of the relevance of the
former (and of data analysis in general) for the solution of problems about historical
phenomena.

In Napoletani et al. (2014) we suggested that biology and social sciences
could be preferred domains of exploration of data analysis, as sciences concerned
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with “historical phenomena”, i.e. phenomena significantly constrained by their
past, historical development. We briefly argued moreover that it is possible to
describe historical phenomena as “those phenomena whose development can only
be constrained locally (in time and/or space) by (potentially multiple) optimization
processes acting on subsets of variables, and in such a way that the functions to be
optimized change over long periods of time” (Napoletani et al. 2014). This charac-
terization was motivated by an analysis of fitness landscapes in evolutionary biology.
There are important relations between these phenomena and Brandt’s principle, in
particular in the way the latter allows to reinterpret point by point minimization
algorithmic processes. To understand these relations, we first explore the general
structure of historical phenomena, starting with ideas from developmental biology.

In Minelli (2011) Alessandro Minelli, in order to conceptualize the way organ-
isms structure themselves, suggests the principle of developmental inertia; generally
stated, it asserts that we can see:

[biological] developmental processes. .. as deviations from local self-perpetuation of cell-
level dynamics (Minelli 2011, page 119).

Similarly to the concept of inertial conditions in physics, the main purpose of
the notion of developmental inertia is to identify an appropriate singular state in
the relevant processes, the null (or inertial) state of these processes, this is the state
that the system would stay in, if no perturbations (external to this very state) had
occurred. The intrinsic nature of such null state is less relevant than the nature of
the perturbation acting on it, allowing the system to evolve along different lines. It
is argued in Minelli (2011) that:

[developmental] inertial conditions [...] do not represent origin, in the ordinary meaning
of the word, but only a convenient “zero” term of comparison for the study of something
that happens in time— a segment of history, without prejudice of what happened before it.

The identification of suitable inertial conditions in biological systems leads to
fruitful reinterpretations of asymmetry, segmentation and regeneration in complex
full-grown organisms, exactly by pointing out the appropriate, null state of bio-
logical development. A particularly simple example can be seen in the context
of embryo development, where the appropriate inertial state of embryos is the
reproduction, symmetrical in space and indefinite in time, of the same basic tissue
structure. However, in a real system, developmental inertia is constantly perturbed
(Minelli 2011, page 123), which allows complex, inhomogeneous and asymmetrical
organisms to form.

Developmental inertia may be a key principle in conceptualizing biological
developmental processes, but it would need to have much wider applications to be
an organizing principle of general historical phenomena. Since social phenomena
are arguably, together with biological ones, the most important type of historical
phenomena, the principle of developmental inertia should apply to these phenomena
as well. Showing case by case the usefulness and validity of this principle in this new
context would require a large survey in itself (which cannot be performed here).
However, it would appear that, if we look at a social system as a collection of
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interacting individual agents with their own decision rules for behavior (Epstein
2006), collective agreement among such individuals can be assumed to be an
inertial state. For example, social norms have been shown to have a tendency to
become entrenched and to be self-enforced (Epstein 2001), to the effect that their
entrenchment and their spreading across individuals could be taken, locally in time
and space, as an inertial state in a society.

A better, more general route to justify the principle of developmental inertia for
social phenomena is to rely on the broad, strong homology of social and biological
systems. This homology is made explicit in accounts such as the “living systems
theory” detailed in Miller (1978), that emphasize the notion of process in all living
systems, whether biological or social (Bailey 2006). Assuming its truth, it is likely
that general principles from biology transfer to social phenomena, and we can
conclude that the principle of developmental inertia applies to a wide range of
historical phenomena, both biological and social in nature.

We also note that, at any given time, there is accumulation of structures in the
states of historical phenomena; for example, accumulation of tissues differentiation
in the embryo, and accumulation of legacy social norms in societies. This accu-
mulation of structures gives clues about the inertial states that occurred along the
history of a phenomenon: we can identify a structure as distinct from the whole
(for example a specific tissue in an embryo) only because some inertial state (the
repeated proliferation of that tissue) is replaced by some other inertial state (the
differentiation into a new tissue). This suggests focusing on those characteristics of
an historical phenomenon that can be ascribed to some unperturbed developmental
inertial state that occurred in its past. We shall refer to them as the developmental
structures of such a phenomenon.

In light of the broad applicability of the principle of developmental inertia to
historical phenomena, it is striking how similar this principle is to Brandt’s principle.
Both principles identify appropriate null states: self-perpetuating cell dynamics for
developmental inertia; near-steady state outputs of algorithms for Brandt’s principle.
Both principles see the breakdown and deviation from a null state as essential:
to morphogenesis processes in complex organisms in the case of developmental
inertia; to computational processes that solve problems in the case of Brandt’s
principle. Moreover, to have a near-steady state output of an algorithm implies that
its (dynamical) computational processes are nearly repeating themselves, so that we
can speak of self-perpetuation of dynamical processes also in the context of Brandt’s
principle. We believe this strong similarity is fundamental to the understanding of
the effectiveness of data analysis, and we highlight it in the following proposition:

The principle of developmental inertia, as applied to historical processes, and
Brandt’s principle, as applied to computational processes, are homologous.
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For historical phenomena, there is no compact description of the totality of
developmental structures, so that it is necessary to identify and collect as many
individual structures as we can to solve problems, which is in line with the
microarray paradigm. Indeed, each developmental structure of an inertial state
essentially differs from, and cannot be reduced to, the developmental structure
due to another, contemporary or subsequent, inertial state. If it is necessary to
focus on distinct developmental structures to solve a problem, these structures
have to be identified, and harnessed, independently of each other. The author
of Minelli (2011) talks of distinct centers of developmental dynamics that are
“everything everywhere”, so that the proliferation of developmental structure does
not reduce itself to a simple, unifying description. However, the collection of all
such developmental structures does encode, to some extent, the state of the historical
phenomenon.

Computational methods that respect Brandt’ principle, or ‘Brandt’s methods’,
are uniquely suitable to take advantage of the incoherent proliferation of devel-
opmental structures, since each of these structures can be used as a prior for a
corresponding algorithm, a building block for Brandt’s methods. Alternating among
these algorithms, when their output reaches a steady state, may be the preferred
way to successfully explore the solution space of a problem. For general problems
about historical phenomena, a suitable Brandt’s method may be as efficient a way to
search for solutions as any other method. The lack of global finality or optimality of
developmental structures frustrates any attempt at faster exploration of the solution
space.

As we have seen in Sect.3, Brandt’s principle offers a fruitful, theoretical
scaffolding for forcing optimization and, more generally, for data analysis. The
homology of Brandt’s principle with the principle of developmental inertia suggests
something more: data analysis, rather than being simply an heuristic, preliminary
set of tools, could actually be the privileged way to approach historical phenomena
and their problems with quantitative, theoretical tools.
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Object Oriented Models vs. Data Analysis —
Is This the Right Alternative?

Jiirgen Jost

1 Introduction: The Basic Issue

Traditionally, there has been the distinction between pure and applied mathematics.
Pure mathematics — so the story goes — discovers, creates and investigates abstract
structures (see Jost 2015) for their own sake, while applied mathematics applies
existing mathematical tools and develops new ones for specific problems arising in
other sciences. The interaction between pure and applied mathematics takes place
in both directions. Applied mathematics utilizes concepts and methods developed
in pure mathematics, and problems from diverse applications in turn stimulate the
development of new mathematical theories. And traditionally, those problems arose
within a clear conceptual framework of a particular science, most notably physics. In
this essay, I want to argue that this distinction between pure and applied mathematics
is no longer useful — if it ever was —, and that the challenge of large and typically
rather diverse data sets, typically arising from new technologies instead of theoreti-
cally understood and experimentally testable concepts, not only calls for new math-
ematical tools, but also necessitates a rethinking of the role of mathematics itself.
In fact, already in the past, what was called applied mathematics often developed
domain independent methods. And this domain independence typically led to a gain
in generality and mathematical depth. Statistics, for instance, has become so pow-
erful precisely because it developed methods and concepts that apply to essentially
any field, from particle physics to the social sciences. And the error estimates and
convergence rates provided by numerical analysis are valid for any application of a
particular numerical method in the engineering sciences or elsewhere. Nevertheless,
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such applications usually took place within a particular field with a well developed
theoretical framework that provided interpretations for the statistical or computa-
tional results obtained. And in other cases, like modeling with differential equations,
the specific properties of a concrete scientific theory yielded key ingredients for
the mathematical structures. The development of the underlying scientific theory
and the mathematical model often went hand in hand, and they deeply depended
upon each other. Mathematical modeling was an essential ingredient of the scientific
strategy, and in that sense, mathematics was more than a tool. In contrast, nowadays
mathematicians are often confronted with data sets of obscure quality, perhaps even
of dubious origin, and without any firm theoretical foundation. Even the distinction
between meaningful data and meaningless noise may not be clear at all.

Therefore, as data collection these days is typically ahead of theoretical under-
standing, mathematics should radically face the lack of theory and look at what
there is, the data, and see what it can do with them. And what I want to call for
are not ad hoc methods for every concrete data set, but rather an abstract analysis
of the deeper structural challenges. Of course, modern mathematics is developed
and sophisticated enough to provide appropriate and helpful tools for basically
any data set, but this by itself is too narrow a scientific perspective. For me as
a mathematician, mathematics is more than data analysis. We need a conceptual
rethinking.

Let us take a look at the situation from the perspective of the sciences. It seems
to me that in the presence of data, there are two different, but interwoven issues:

1. The epistemic question, or the role of theory: Can we have data without a theory?
And if not, does the theory have to be specific for the domain from which the data
are collected?

2. The ontological question, or the role of models: Do we need, or have to postulate,
specific objects underlying the data? What is it that the data tell us something
about, and how can we, or should we model that?

This distinction may sound a little like issues debated between scientific realists,
positivists, and empiricists. But even if we adopt the latter stance and use, for
instance, van Fraassen’s criterion that a “theory is empirically adequate if it has
some model such that all appearances are isomorphic to empirical substructures
of that model” where “appearances” are ‘“‘structures which can be described in
experimental and measurement reports” (van Fraassen 1980, p. 64), the problem
of data without such an empirically adequate theory remains.
Of course, there are some easy answers that seem rather obvious:

» Data that cannot be interpreted within some theoretical framework are meaning-
less. Much of current data collection is solely driven by particular technologies
rather than by scientific questions. As Sir Peter Medawar put it, “No new
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principle will declare itself from below a heap of facts”." And for “facts”, we
might want to substitute “data”.

* If we simply analyze data with intrinsic formal tools whose precise functioning
we may not even understand, then science becomes agnostic (Napolitani et al.
2011). We need to know first about what the data are telling us something. That
is, we need an underlying structure from which the phenomena revealed by the
data are derived. The meaning of data depends on the context from which they
are collected.

These concerns are clearly valid. Nevertheless, I think that the issues are
somewhat more subtle.

1. To what extent does theory have to be domain specific? Or more precisely, what
is the relationship between general theoretical issues — to be elaborated below —
and domain specific ones? Or more positively, will the current situation of “big
data” lead to new types of theories that start from a data intrinsic rather than a
domain specific perspective, and could that possibly lead to theoretical insights
at a higher level of abstraction?

2. What is the right balance between a purely phenomenological approach and one
that starts with a model involving underlying objects? Such objects could be
either the carriers of the properties revealed by the data or at least offer formal
structures to which quantities measured on the data are isomorphic.

A traditional perspective would consider mathematics only as a tool when —
possibly very large — data sets are to be analyzed. One of the theses of this essay
is that this process itself, data analysis, can and already has become an object of
mathematical research. Thus, mathematics not only serves as a powerful tool, but
by reflecting this role, gains a new perspective and lifts itself to a higher level of
abstraction. Then, the domain of such mathematical inquiry no longer is a specific
field, like physics, but mathematical technique itself. Mathematics then is no longer,
if it ever was, a mere formal tool for science, but becomes the science of formal
tools.

Another thesis of this essay is more concerned with the traditional role of
mathematics as the formal analysis of models arising from specific domains. I
shall argue here against the principle of reductionism. The thesis will be that in
the empirical domains where regularities have been identified that could be cast into
mathematical structures, the relations between the different levels at which such
structures emerge are very intricate. A simple formal structure at one level typically
can neither be derived from an even simpler structure at a lower level, nor can be
used to identify the relevant structure at a higher level. The structures at both lower
and higher levels can be substantially more complex. Again, it is a general task for
mathematical research to identify and more deeply understand the principles of such
transitions between different scales and levels. That is, what is at issue are not so

'T learned this quote from Peter Schuster.
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much the phenomena at the different levels, but rather the transition laws between
levels. Much is known here already, both from the side of mathematics and that of
physics, but a more abstract and fundamental mathematical theory is still missing.

There might even be unexpected connections between those two aspects, a
mathematics of and not only for data analysis on one side, and the principles of
transitions between different levels on the other side. At least, there is the question
of how such transitions can be inferred from the data. I regard this as a fundamental
question for any abstract theory of data.

Before addressing these issues in detail, I should point out that there is another,
perhaps even more fundamental and important role for mathematics in the sciences,
although that role will not be discussed in this essay. This consists in providing a
framework for conceptual thinking and formal reasoning. This is valid across all
disciplines, and actually badly needed in many of them. I shall address this aspect
elsewhere.

2 The Role Model of Physics

In some way or another, there is a particular role model behind many discussions,
that of classical physics. According to that perspective, every science should strive
towards such a model. We should have objects whose properties and interactions
can be formally described by mathematical relations, in particular, differential
equations. And we should be able to conduct experiments whose outcomes can be
understood within an encompassing theoretical framework. Deviations from that
role model are regarded as deficits.

Newton’s theory combined the terrestrial dynamics as developed by Galilei
and others and Kepler’s laws of celestial motions in a unified theory of gravity.
The basic objects were pointlike masses. Such a concept would have appeared
meaningless to Descartes who considered extension as the basic quality of matter. In
Newtonian dynamics, however, the essential feature is the mass of an object, and this
allowed him to work with extensionless points carrying a mass as idealized objects.
Newton’s theory allows for an exact solution of the two-body problem.’> Besides
points, there are other fundamental constituents of physical theories. These are the
fields, like the electromagnetic one. In physical theories, fields are considered to
be no less real than material objects. In particular, they also carry forces which
make physical interactions possible. Also, while the two-body problem admits
an exact solution in Newton’s theory, this is no longer true for the three-body

2The one-body problem, however, was eventually understood as being ill posed. As Leibniz first
saw, any physical theory has to be concerned with relations between objects, and an irreducible
point mass can only entertain relations with other such objects, but not with itself, because there
is no fixed external frame of reference independent of objects. The latter aspect is fundamental in
Einstein’s theory of general relativity. (See for instance the exposition by the author in Riemann
2016.)
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problem. Although that problem is perfectly well posed within Newton’s theory
of gravity, it can in general no longer be solved in closed form, unless particular
symmetries pertain. This was first realized by Poincaré. Nevertheless, one can
develop approximation schemes or compute numerical solutions of the differential
equations to any desired degree of accuracy with sufficiently large computer power.
At amore theoretical level, the stability against perturbations becomes a subtle issue,
as developed in KAM theory (after Kolmogorov, Arnol’d, and Moser), see Siegel
and Moser (1971), Treschev and Zubelevich (2010). Also, there are mathematical
examples (Xia 1992; Saari and Xia 1995) where internal fluctuations in such a
system can grow without bounds until one of the bodies is ejected to infinity.

The paradigmatic objects of this theory are the celestial bodies in the solar
system, and the theory is concerned with their orbits. Even when the theory is
restricted to the basic configuration of the sun, the earth, and the moon, there are
more than two such objects. And these objects are by no means pointlike, but rather
extended and possessing a non-homogeneous internal structure. If one models them
in more detail, the resulting theory becomes much more complicated, and at best
one may hope for numerical approximations, but these will inevitably be of limited
scope and validity.

But this then raises the question why such a simple theory as Newton’s is
applicable at all to such a complicated configuration, and in particular, why
numerical solutions of Newton’s equations lead to such accurate descriptions and
predictions of the movements of the planets. (For the sake of the argument, we
ignore here the corrections necessitated by Einstein’s theory.) When we change the
scale, either going down to the internal structure of the celestial bodies, or up to
configurations of many gravitating objects, no such simple theory applies.

Is Newton’s theory then a completely singular instance, and would we therefore
be ill-advised to consider it as a role model of a scientific theory? Well, it is not
completely singular, and in order to understand the issues involved better, let us
consider another example.

The fundamental equation of quantum mechanics is Schrodinger’s equation

2

J—_th = —h—Aqs(x, 1)+ V(X)p(x, 1) (1)
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for the quantum mechanical state ¢ (x, f) at position x and time ¢, where A is the
Laplace operator, a second order partial differential operator, V(x) is the potential at
x, and &, m are physical constants. The Schrédinger equation no longer describes the
deterministic behavior of pointlike objects, but rather the evolution of probabilities.
The dynamics of these probabilities are still deterministic. And in fact, for the
hydrogen atom, the Schrodinger equation is exactly solvable. For more complicated
atoms, we encounter the difficult numerical problems of quantum chemistry. The
reason why it applies so well to the hydrogen atom is that its nucleus consists
of a single proton which under normal conditions essentially behaves like an
elementary, indivisible (“atomic” in the literal sense) particle. In fact, however, the
proton is not elementary, but is composed of more elementary particles, the quarks
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(see e.g. Close 2004). That is, the fact that the hydrogen atom can be described by
the Schrodinger equation does not have a theoretical, but an empirical reason, the
so-called quark confinement. Of course, one may then try to derive this from the
standard model of particle physics, but that is a different issue. (For the theoretical
background, see e.g. Weinberg 2000.) What remains is the empirical validity of
Schrodinger’s equation. The standard model, in contrast, is a model whose deeper
justification still is a matter of intense debate. There are approaches like string theory
(see e.g. Green et al. 1995; Polchinski 1998; Jost 2001, 2009; Zwieback 2009)
which, however, are beyond the range of experimental testing for the time being.
Why Schrodinger’s equation applies so well (at least to the hydrogen atom) then
remains mysterious at a deeper level. And it even applies to other atoms, although
it is no longer exactly solvable already for the Helium atom. This is analogous to
Newton’s equation and the three-body problem.

The equations of Newton and Schrodinger may possess certain universal proper-
ties, and some aspects might be considered with the modern tools of renormalization
groups, see for instance Batterman (2002), but the question why such equations
appear at particular scales and not at others remains. Thus, my question is not why
a mathematical description of nature is possible, or why mathematics is so effective
as a tool for describing physical reality, but rather why it works so well at particular
scales or under certain circumstances, but not in other situations. Historically, when
the mechanical natural philosophy of the seventeenth century could capture so well
the movements of celestial bodies, explain the acceleration of falling bodies or the
parabolic trajectories of canon balls or identify the conservation laws of inelastic
collisions, it was expected that this success could easily be extended to other
domains and achieve, for instance, a mechanical explanation of animals, and, as
some, like La Mettrie, believed, even of humans. Of course, this scientific program
turned out to be a miserable failure, and biology as a modern science got off the
ground only in the nineteenth century, on the basis of completely different principles
than those of the mechanical natural philosophy of the seventeenth century.

I shall return in Sect. 3 to the difference between the theoretical validity of an
equation and its exact solvability, as this is important for our topic. Before that,
however, I'll proceed to larger physical scales. In the area of the physics of nano-
and microstructures, on the one hand, there are atomic or molecular models, and
on the other hand, there are continuum models. Either type of model can yield
accurate descriptions within its range of validity and make precise predictions.
One might then argue that the discrete (atomic or molecular) models are the
basic ones that capture the underlying objects whereas the continuum models are
purely phenomenological. This, however, will miss the fundamental mathematical
question, the relationship between these two types of models and the transition
between them when changing the scale. Again, this is an aspect to which I need
to return. For instance, it seems that in many respects, the Navier-Stokes equations
correctly — whatever that means — or at least adequately describe the behavior
of fluids. These are continuum equations. The numerical solution, that is, an
approximation by a numerical scheme, is one of the most important topics of
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scientific computation, and by now, there exist numerical schemes that can solve
them to a very high degree of accuracy. Nevertheless, within the mathematical
theory of partial differential equations, the general existence of a solution to date
has not been established, and in fact, this is considered to be a challenging and
difficult problem. The issue of turbulence which is still not understood reveals that
there are some deep problems lurking here. Interestingly, while turbulent flow seems
to be rather chaotic, there might exist some statistical regularities. In any case, the
Navier-Stokes equation serve as the most important model in fluid dynamics.
When we move further up with regard to the physical scale, we come to
the example already discussed, the dynamics of the orbits of the planets in the
solar system which (except for relativistic corrections) are so well described by
Newtonian mechanics. Planets, however, are no elementary bodies, but composite
objects. So, let us repeat the question why such complicated objects as planets, just
think of the geology of the earth, follow such elementary laws. If we go to a smaller
scale, everything breaks down, or at least becomes substantially more complicated.
For instance, which mathematical or physical theory can explain the rings of Saturn?
And if we go to configurations of large numbers of gravitating bodies, Newton’s
theory, although applicable in principle (modulo relativistic corrections, again),
becomes useless. We should need to change to a statistical description a la
(Boltzmann 2000). Such a statistical description would still be mathematical; it
would derive its power from ignoring the details of the lower level structure.
Physics then loses some of its special role. It seems to be a general phenomenon
that in many domains particular scales exist at which a rather simple mathematical
model can capture the essential aspects, sometimes even accurately in quantitative
terms, while that need no longer hold for smaller or larger scales. It might seem
that this occurs less often in domains other than physics, but there do exist
positive examples. In chemistry, we have the reaction kinetics. For instance, reaction
kinetics of Michaelis-Menten type are important in biochemistry. They depend on
important simplifications. In particular, they assume that the chemical substances
participating in the process in question are uniformly distributed across the cell.
The internal spatial structure of the cell is completely ignored. As another example,
the differential equations of Hodgkin-Huxley type model (Hodgkin and Huxley
1952) the generation of the spike of a neuron in a quantitatively exact manner, see
e.g. Murray (2008) and Koch (1999). The model operates at the cellular level and
describes the dynamics there in a deterministic manner. If one goes down to the
lower, molecular, scale, things get much more complicated, and the deterministic
quantities in the Hodgkin-Huxley equations become stochastic, that is, probabilities
for the opening and closing of certain ion channels. Similarly, if one moves up
and considers interacting systems of neurons, things become quite complicated,
and completely different types of models are called for. Thus, we have a relatively
simple, formally closed, and quantitatively accurate model at the cellular level, but
no such model at the smaller molecular or the larger tissue scale. I shall present
the mathematical structure of biochemical reaction kinetics and the biophysics of
the Hodgkin-Huxley model in detail below — and readers not interested in those
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mathematical or physical details can skip those —, but let me first emphasize again
the general point. Not only in physical, but also in biological systems, there may
exist one or more particular scales at which a gross simplification can lead to simple,
but nevertheless quantitatively accurate models, and these scales then correspond to
particularly useful levels of description. Typically, however, this is no longer so
when we move to either smaller or larger scales. This leads to the question why and
how such particular levels emerge, at which such simple quantitative models work.
And also, why are such levels apparently so rare?

Let us now describe the mechanism of biological reaction kinetics in some detail
to see what is involved. General references for biochemical kinetics are Murray
(2008) and Klipp et al. (2005), and we follow here the presentation in Jost (2014).
The basis is the law of mass action which states that the reaction rate of a chemical
reaction is proportional to the concentrations of the reactants raised to the number
in which they enter the reaction. That expression is proportional to the probability
that the reactants encounter and react with each other. Let us consider the simple
reaction

Sy 4+ S, = 2P 2)

that converts S; + S5 into 2P with forward rate k4 and backward rate k_. That is,
when a molecule of substance S; encounters one of S5, they react and form two
copies of P with rate k4. Conversely, two P-molecules together can decay into a
copy of S and a copy of S, at the rate k—. Thus, the chemical reaction can take
place in either direction, but at possibly different rates. If we denote the respective
concentrations by sy, 52, p and consider them as functions of time, then (2) leads to
the differential equations
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whose solutions s;(¢), s2(), p(¢) then give the respective concentrations at time ¢ as
functions of their initial values. In enzymatic reactions, there also is the complex
ES of the enzyme E and the substrate S. The Michaelis-Menten theory makes
the simplifying assumption of a quasi-steady state for the complex ES, that is, its
concentration is not changing in time, and this concentration can then be simply
computed. This assumption, that the concentration of an intermediate product
remains constant, reduces a multidimensional process to a single equation. The
resulting simple systems of ordinary differential equations capture the concentration
level of substances involved in biochemical reactions in the cell well enough for
many purposes. In contrast to the Schrodinger equation which considers the state
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¢ (x, t) as a function of the position x and time ¢, the chemical concentrations sy, 53, p
in (3) are considered as functions of ¢ only. That is, the model assumes that they
are homogeneously distributed in the cell. This means that the concentrations are
assumed to be the same across the cell at each fixed time . This is, of course, a gross
simplification, and the model can be refined by allowing for varying concentrations
and diffusion effects. The point I want to make here, however, is that even under
this (and the further Michaelis-Menten type) simplification, the solutions of systems
like (3) can effectively describe the values of concentrations of chemical reactants
in cells.

We next turn to the other example discussed above, the Hodgkin-Huxley model
(Hodgkin and Huxley 1952) for the generation of spikes in neurons,* and give a brief
description of the model and its dynamics, see e.g. Jost (2014) and Jost (to appear)
for more details. Formally, the model consists of four coupled (partial) differential
equations, but they are more difficult than those for biochemical reactions, and so,
we refrain from writing them down here. Instead, we only discuss the qualitative
features of the model. The basic dynamic variable is the membrane potential V of
the neuron. The potential is caused by the different densities of charged ions in-
and outside the cell. The boundary of the cell, the cell membrane, is impermeable
to most charged ions, except for channels that are selectively permeable for certain
specific ions. That permeability in turn depends on the membrane potential as well
as on the concentration of certain intracellular and extracellular substances. The
differential equations of Hodgkin and Huxley then link the temporal changes of
these quantities, that is, the membrane potential and three gating variables that
control the permeability of the cell membrane for specific electrically charged
ions. Concerning the evolution of the membrane potential, the idea is that the time
derivative of this potential is proportional to the derivative of the electrical charge,
hence to the current flowing. That current in turn is the sum of an internal membrane
current and an external current. The latter represents the external input to the cell.
The internal membrane current is a sum of specific terms, each proportional to the
difference between the potential and some specific rest term. These proportionality
factors then depend on the corresponding gating variables. Thus, the dynamical
interplay between the membrane current and the gating variables is the key point.
When the system is near its resting value and some positive current is injected
that lifts the membrane potential V above some threshold, then a positive feedback
between V and the fast one, m, among the gating variables sets in. That is, the
potential V rises, and positively charged sodium ions flow in, rising the potential
further. Soon, the neuron emits a spike. But then, the two slower gating variables,
h and n, take over, causing an inactivation of the inflow of the sodium ions and
reversing the potential by an outflow of potassium ions. The potential then drops
even below its resting value, but after some time, during which no further spike is
possible, recovers to that latter value, and the neuron is receptive again to repeat

3The original model was developed only for a particular type of neuron, the giant squid axon, but
similarly models have subsequently been developed for other classes of neurons as well.
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the process in response to some new external current. The interaction of two time
scales is important for these dynamical properties. The positive feedback between
the fast variables V and m triggers the spike, whereas the slow variable £ ultimately
stops the inflow of positive ions, and n causes other positive ions to flow outwards,
to reverse the effect and bring the potential back to (or, more precisely, below) its
resting value. As already mentioned, this particular model was conceived for the
giant squid axon. For this neuron, quantitative measurements were easier than for
other neurons, and therefore, Hodgkin and Huxley could carefully fit the parameters
of their model. Following the pioneering work of Hodgkin and Huxley, then also
models for other classes of neurons were developed. While the details are different,
the essential principles are the same. Thus, we have quantitative accurate models of
the biophysics of neurons that operate at the cellular level, even though the details at
the smaller, molecular level are much more intricate. No such simple models exist
at that scale.

3 Validity vs. Computability

We return to Poincaré’s insight into the impossibility of an exact solution (a solution
in closed form, that is, in the form of an explicit formula for the positions of the
bodies involved at every instance of time) of the three-body problem. Even if a
mathematical theory of nature were exactly valid in principle — let us ignore the
quarks and the internal structure of the planets for the sake of the argument here and
assume that for instance, Newton’s or Schrodinger’s equations were exactly valid —,
it could not offer an exactly solvable description of the dynamical behavior of its
objects. It is a mathematical question when and under which particular conditions
an exact solution by an explicit formula is possible. This has nothing to do with
the range of validity of the theory in question. Almost all differential equations
cannot be solved by an explicit formula (they do not constitute completely integrable
systems in the language of classical mathematics). The search for closed solutions,
that is, to demonstrate the complete integrability of a dynamical systems, was one
of the highlights of nineteenth century mathematics. In the twentieth century, in the
wake of Hilbert, mathematics turned to a different approach. Instead of attempting
to construct an explicit solution of a specific differential equation, the problem was
converted into showing the existence of solutions for large classes of differential
equations. This was the guiding theme in particular for partial differential equations,
see for instance Jost (2013). A key point was to separate the abstract question of the
existence from the explicit representation of a solution. Once the existence of a
solution had been demonstrated from abstract principles, it then became the task of
mathematics to understand the properties of such abstract solutions, and in particular
to find out under which conditions singularities can be avoided, and then to derive
approximation schemes for such solutions and to convert them into algorithms for
their numerical construction with a precise error control. This is basic for all the
modern applications of partial differential equations in the engineering sciences
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and elsewhere. This does not mean, however, that mathematics becomes purely
instrumental.

A similar issue arises for the weather forecast. Again, it was Poincaré who first
realized the specific aspects of chaotic dynamics. Some meteorological models
like the Lorenz equations indeed exhibit chaotic behavior. Therefore, we cannot
accurately predict next week’s weather, because of the amplifications of tiny
fluctuations by chaotic dynamics. It is claimed, however, that the global climate
50 years from now can be predicted within certain bounds, for any scenario of
greenhouse gas emissions. The reason why this is feasible is that on a longer
time scale, the daily weather fluctuations average out, and only the long term
trend remains, and that is precisely what the climate models try to capture. In
any case, the peculiarities of chaotic dynamics as exhibited by weather models
are not an artefact caused by any deficiency of a model, but are — according to
deep mathematical insights — rather grounded in specific structural features of the
pertinent equations. The mathematics of chaos goes much beyond the rather simple
exponential divergence of individual trajectories, and gains positive insight via such
concepts as invariant measures (for details, see e.g. Jost 2005). It can even elucidate
the universal nature of many aspects of chaotic dynamics, thereby going much
beyond any specific object domain.

In this section, I have described two different trends that distinguish twentieth
century from nineteenth century mathematics. On the one hand, the ideal of
writing down an explicit solution has been abandoned for the less ambitious aim
of approximating a solution to any specified degree of accuracy, or in practice
at least as accurately as the computing facilities permit. When one has a good
theoretical control of the numerical scheme, then higher accuracy simply requires
more computer power. In that regard, mathematics has become more instrumental,
concentrating on the computational tools rather than on the explicit formulae. On the
other hand, general structural insights into chaotic dynamics teach us that gains in
accuracy may require an exponential increase in computational effort and therefore
quickly become unrealistic. Thus, in most problems we cannot hope to be able to
write down an explicit solution of the mathematical model, and even a very accurate
approximation of a solution may not be computationally feasible.

4 What Are the Objects?

As described at length, the objects of Newton’s theory are modelled as points that
possess masses, but no extension. In solid state physics, physicists are working with
objects that have more internal properties and structure and therefore might appear
more realistic. Electromagnetic and other fields are objects of physical theories
with less material substrate. The nature of subatomic particles is not so clear,
even though one might grant them some reality because they produce discernible
effects (Hacking 1983; Falkenburg 2007). When we go to string theory, particles
are nothing but excitation modes of completely virtual “objects”, the strings (see
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e.g. Green et al. 1995; Polchinski 1998; Jost 2001, 2009; Zwieback 2009). Such an
excitation mode is similar to a Fourier coefficient. There is nothing material about
it, and it is a good question in which sense that should be considered as a physical
object. Clearly, however, it is a theoretical object, even though it might not possess
any independent reality.

Many biological structures are modelled as discrete entities, even though they
might be composed of atoms, molecules, cells, or individuals in a complex manner.
Mendel’s laws are a good example. Mendel conceived of genes as abstract entities,
without any clue about their physical implementation or realization. Although
Mendel’s laws are not exactly valid, for many purposes this does not matter. This
leads to the question how such discrete entities can emerge from some continuum
at a lower scale. Conversely, large ensembles of such discrete objects are often best
modelled by continuum models, as in population genetics, see e.g. Hofrichter et al.
(2017).

In any case, even though it has been discovered in molecular biology that
the material substrates of genes are nucleotide sequences, the modern biological
conception of a gene is more abstract than such a nucleotide sequence. We refer
to Scherrer and Jost (2007) and the discussion in the journal Theory in Biosciences
about this issue (Scherrer and Jost 2009). Similarly, the other fundamental biological
concept, the species, is more abstract than the collection of individuals composing
a population (see for instance Breidbach and Jost 2004). Thus, “objects” in modern
biology are abstracta like genes or species that do not directly correspond to physical
entities.

This is not fundamentally different in the social sciences, even though there
are fewer examples of successful mathematical models. At present, the validity
of the mathematical models of macroeconomic theory is somewhat controversial.
Likewise, it is an issue of debate to what extent game theory can adequately capture
human behavior (see for instance the discussion in Kabalak et al. 2015). On the other
hand, in recent years there has been definite progress in modelling traffic dynamics
with quasi-physical theories inspired by microscopic particle physics, gas kinetics or
fluid dynamics (see Helbing 2001), notwithstanding the fact that individual drivers
can behave very differently from each other.

Another issue that has been debated already 200 years ago by social scientists
and mathematicians is to what extent the law of large numbers provides not only
an empirical, but also a conceptual basis for mathematical modelling of social
phenomena and dynamics, see Hacking (1990). When the samples are large enough,
statistical laws can lead to arbitrarily precise predictions. This is the foundation
of such domains as demography or demoscopy. When we recall Boltzmann’s
description of statistical ensembles or the above scale transitions, this appears no
longer fundamentally different from what has been discussed above for physics and
biology.
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S Scales and Levels

In the preceding, I have already discussed the fact that the difficulty and feasibility
of a description or a model of a complex system can be rather different at
different levels. In this section, I want to analyze this issue more systematically,
drawing upon the collaboration with Nihat Ay, Nils Bertschinger, Robin Lamarche-
Perrin, Eckehard Olbrich and Oliver Pfante within the EU Project MatheMACS
(Mathematics of Multilevel Anticipatory Complex Systems). Let me start with the
terminological distinction between levels and scales. According to the definitions
that we propose

* Scales refer to observables. Scales are determined by the measurement process,
the data and their representations at different resolutions. For instance, con-
cerning the dimension of length, we might consider the scales of micrometers,
millimeters, meters, and kilometers, or other, smaller or larger ones.*

* Levels refer to descriptions or models. Levels arise in the modeling process
through the identification of entities that lend themselves to useful analysis.
Thus, we could model a biological system at the molecular, cellular, tissue or
organismal level.

Clearly, the two concepts are interdependent. Levels rely on measurements taken at
characteristic scales. They also rely on a choice of observables that are measured.
Scales can be chosen relatively arbitrarily, as long as the relevant measurements can
be performed, but a useful choice of scale should depend on the identification of a
level. Levels, however, should be distinguished by characteristic properties of the
model they allow. That is, at a given level, particular regularities should arise that
do not pertain at other levels.

First of all, there are the systems that do not possess any characteristic scale. Such
systems have been objects of research in both mathematics and physics. One of the
concepts proposed here is that of self-similarity. A self-similar structure looks the
same at any scale. Such structures were popularized by Mandelbrot (1982) under the
name of fractals. The relevant mathematical theory had already been created earlier,
by Hausdorff in 1918. Hausdorff had developed a general concept of dimension,
and many fractals possess a non-integer Hausdorff dimension. In particular, fractals
are in some sense highly irregular. Nevertheless, there also exist such fractals
with an integer dimension, and so, mathematically, a more subtle mathematical
characterization is necessary, see Steffen (1996) and the references therein. The
concept of a fractal also comes up in the theory of chaotic dynamics where the
attractors and the boundaries of their domains of attraction could have such a fractal

“In different fields, it may be different what is considered as a larger or a smaller scale. In
geography, for instance, larger scale means higher resolution, that is, a smaller reduction factor. In
other areas, like physics, a larger scale means the opposite. We shall follow the latter terminology.
Thus, at a larger scale, many details from a smaller scale may disappear whereas larger structures
might become visible.
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structure. The corresponding discoveries about iterations of polynomial maps were
also made in 1918/1919, by Julia and Fatou, see Devaney (1986) for a more recent
description. In the physics literature, scalefree structures are usually characterized
by a power-law behavior, as opposed to an exponential decay of correlations. That
is, we essentially find correlations at any scale. It turns out that such power-law
behavior is rather ubiquitous, from the financial data analyzed by econophysicists
to the degree sequences of empirical networks in different domains. From a more
theoretical perspective, such systems can even serve as some kind of universal
models, when arising as limits of renormalization group flows (see e.g. Cardy 1996),
and they are basic constituents of conformal field theory and the theory of critical
phenomena, see Di Francesco et al. (1997) and Zinn-Justin (1993).

Of course, no real system can be self-similar at all scales or possess correlations
of all orders. Such properties can only hold within a certain range of scales.
Nevertheless, as asymptotic idealizations, systems with such properties can be
quite useful as theoretical tools.> Scalefreeness, however, is not an aspect I want
to focus upon here. Let me rather return to a system with well-defined objects at
some particular scales. For instance, take a couple of Newtonian particles, at some
scale, for instance gas molecules or celestial bodies. When there are only a few
of them, their kinetic or dynamical interactions can be described by a mechanical
model. For the celestial bodies, that is, when gravity is the active physical force,
we have already seen above that for more than two particles, an explicit solution of
the equations of motion in general cannot be achieved. But even worse, when the
numbers of particles becomes large, like the stars in a galaxy or the gas molecules
in a container, the description in terms of classical mechanics is no longer feasible,
and we need to turn to a less explicit statistical description a la Boltzmann. Here, a
particular configuration of, say, gas molecules, given in terms of their positions and
momenta, is a microstate, but at the macrolevel, one only has collective observables
like entropy or temperature. These observables are not meaningful at the level of the
individual particles, because they represent statistical averages. More precisely, any
macrostate can be the result of many different microstates, and the more microstates
underlie a given macrostate, the higher the latter’s entropy, that is, the more likely
it is to occur. (There are some subtle issues here concerning the interpretation of
the probabilities involved, see Jaynes (2003), but we do not enter into those here.)
In summary, here a deterministic description at the level of individual particles
becomes unfeasible and useless due to their large numbers and the impossibility
of accurately measuring all their positions and momenta, and instead a statistical
description at a higher level is used. It can also be the other way around, that
a statistical description at a lower level yields to a deterministic description at a
higher level in terms of statistical averages. As fluctuations may average out, these
averages themselves may well obey deterministic laws. We see this, of course, in
the transition from the quantum level to that of micro- or mesoscopic physics, but

SBatterman (2002) and Lenhard (2013) emphasize the fact that such idealized systems that arise as
asymptotic limits in some theory are employed as models for empirical systems.
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for instance also in cells when we go from the molecular to the cellular level. Recall
our discussion of the Hodgkin-Huxley equations in Sect. 2.

Besides the dichotomy between deterministic and stochastic models, there also
is the dichotomy between discrete and continuous models. When we move up
or down the scales, or better, from one level to the next, again the relation can
go either way. Discrete particles (atoms, molecules, stars, cells, individuals, ...)
can give rise to continuum models at a higher scale. However, out of underlying
continua, also discrete structures can emerge. Partly, these are simply physical
processes, for instance when interstellar dust condenses into a star by the force of
gravity. Partly, the discrete entities are crucial constructs of models. The gene as a
concept in molecular or evolutionary biology emerges from some underlying level
of molecular interactions or reproductions of individuals in a population, see Jost
and Scherrer. The continuous dynamics of the Hodgkin-Huxley model gives rise
to the discrete event of a spike. Or putting it somewhat differently, the neuron as
a biological system transforms an analogous input into a binary output, that is, it
chooses between the alternatives of spike vs. no spike. Thus, models of information
transmission in neural systems can operate with discrete events as the carriers
of discrete bits of information. From a formal point of view, such phenomena
are genuinely nonlinear, and there exist theoretical concepts, like those of critical
threshold, bifurcation, or phase transition, to analyze them, see for instance (Jost
2005, 2014). Here, however, rather than analyzing the dynamical mechanisms that
give rise to such discrete events in a continuous setting, I want to utilize this
as an example of a higher level description in discrete terms with an underlying
continuous dynamics at a lower level. Interestingly, at the level of discrete events, the
spiking pattern of a neuron is often modelled as a Poisson process (see for instance
Dayan and Abbott 2001; Gerstner and Kistler 2002; Jost to appear), that is, as a
stochastic process, instead of a deterministic one. Here, the reason why one switches
from a deterministic to a stochastic description is somewhat different from the case
of the Boltzmann gas. In the latter case, a statistical description is called for because
of the larger number of particles involved and the infeasibility or impossibility to
measure all of them. Here, in contrast, we have a single event, the generation of
a spike by a neuron that at one level is modelled by a deterministic dynamical
system.® Also, this system does not exhibit chaotic behavior that would make long
term predictions impossible. Of course, near the critical threshold above which the
neuron spikes and below which it returns to rest, the dynamical behavior naturally is
unstable in the sense that arbitrarily small perturbations or fluctuations can induce
a switch from one state to the other. At another, more abstract, level it is instead
modelled as a stochastic process. This is not only simpler, because it dispenses
us of having to deal with the subtle nonlinear behavior of the Hodgkin-Huxley
system, but it also offers the advantage that we can now look at the relation between
the strength of the neuron’s input and the single parameter that characterizes the

SInterestingly, stochastic perturbations of this deterministic system produce genuinely nonlinear
effects, see Gutkin et al. (2009) and Tuckwell and Jost (2012).
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stochastic process, the firing rate of the neuron. Put simply, the hypothesis would be
that the neuron fires more frequently on average when it receives a stronger input.
(Whether, or perhaps more precisely, to what extent neuronal systems really employ
arate coding as the preceding might suggest is an unresolved and intensely debated
issue in the neurosciences, but here, I do not enter that discussion, and rather refer
to Griin and Rotter (2010) and Wibral et al. (2014) for the information theoretical
analysis of neuronal spike trains.)

I now turn to the formal analysis of the relation between different levels,
following (Pfante et al. 2014a). (Let me also mention earlier results in Shalizi
and Moore (2003) and Gornerup and Jacobi (2010) and many other papers, and the
case study in Pfante et al. 2014b.)

We consider a process

$:X—>X. “)

This could, for instance, be the transition from the state of a system at time ¢ to
its state at time 7 + 1. We assume that this is a Markov process, in the sense that
knowledge of the state at prior times r—1,#—2, ... does not contain any information
beyond that contained in the state at time ¢ relevant for the state at time 7+ 1. That is,
the future is conditionally independent of the past given the present. We also have
an operator

A

7:X—>X ()

that is considered as a projection, coarse graining, averaging, or lumping. This
simply means that the " indicates a description at a higher level, with less detail and
resolution. The question then is whether we can transform the transition directly at
the higher level, that is, whether there exists a process

v:X—>X. (6)

that is self-contained in the sense that it does not depend on anything in X that is not
already present in the upper level X. In other words, we ask whether we can close
up the following diagram (make it commutative in mathematical terminology Jost
2015).7

7A perhaps somewhat technical point concerning the representation by this diagram: Often, one
thinks of a projection as going down, instead of up, and one would then represent X in the top and
X in the bottom row. Since, however, we think of X as a higher, more abstract, level, we rather
represent that higher level in the top row of our diagram.
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F

(7

Expressed as a formula, commutativity means that

Y (7 (x) = 7(p(x)) ®)

forall x € X.

I

II

I

v

III,

There exist several criteria to make this precise.

Informational closure: All we need to know to determine the state X’ or
to predict its statistical properties is already contained in the state X. The
higher process is informationally closed, i.e. there is no information flow from
the lower to the higher level. Knowledge of the microstate will not improve
predictions of the macrostate. The upper level process is self-consistent in the
sense that it does not need to perpetually draw information from or about the
lower-level states.

Observational commutativity: It makes no difference whether we perform the
aggregation first, and then observe the upper process, or we observe the process
on the microstate level, and then lump together the states. In that sense, the
upper level process seems autonomous, as once initialized, it appears to unfold
on its own, without needing any further updating by details from the lower level
process.

Commutativity in the sense of (8): There exists a transition kernel i such that
the diagram (7) commutes.

Markovianity: X, X' forms again a Markov process. We recall that we assume
that X, X’ yield a Markov process, that is, the current state of lower level
process contains everything needed to compute its next state, and it does not
need to draw upon past states any further, as these have transmitted all relevant
information to the current state. But it does not follow in general that the upper
process is Markovian as well, and so, IV indeed is a nontrivial condition. It could
compensate a lack of information about the current lower level state by structural
constraints in order to also utilize information from past states. In particular, at
the upper level, information about past states can improve its prediction about
the next state, whereas such information is not useful at the lower level. See the
example in Pfante et al. (2014b), and also the discussion in Sect. 9.

We show in Pfante et al. (2014a) that I implies both II and IV, and II implies
whereas IV does not imply III in general. Also, for a deterministic process, but

not necessarily for a stochastic one, conversely III implies I which in turn implies
I. III of course is a formalization of I and II, and as we show, in the deterministic
case, they are equivalent. In the stochastic case, the notions turn out to be somewhat
different, as information concerns statistical properties, and these are different from
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the results of particular observations. IV, of course, is a condition that is meaningful
only for stochastic dynamics.

6 Data Without Underlying Objects?

When we start with data, then an object behind these data is first a hypothesis, a
construct. A well discussed example are the gigantic data sets created by modern
particle accelerators where the elementary particles that are supposed to produce
those data are postulated by theory, but where the only evidence for them has to be
extracted from those data (for a conceptual discussion, see Falkenburg 2007). More
generally, physics studies phenomena and data, like the scattering matrix in quantum
mechanics that records the input and output of a quantum mechanical system.
Physicists do not think in terms of objects, in contrast to the picture of Newtonian
physics depicted above. In fact, precisely these scientists are those that drive the data
analysis approach also in other domains. For instance, neoclassical economic theory
has developed elaborate models for describing the functioning of an (idealized)
economy, but then came the so-called econophysicists that simply took the data from
financial and other markets and searched for statistical regularities (Mantegna and
Stanley 1999). They used methods from nonlinear time series analysis, for instance.
Those methods are not sensitive to the origin of the data, nor do they depend on
any object oriented models. Rather, they look for intrinsic regularities in possibly
chaotic dynamics (Kantz and Schreiber 1997). For instance, they identify (chaotic)
attractors and determine their (possibly fractal) dimension. These, however, are not
ad hoc methods; they are based on deep insights from the theory of dynamical
systems. For example, the center manifold principle, see e.g. Jost (2005), (which,
for instance, is the basis of Haken’s slaving principle Haken 1983) tells us that
in a dynamical system, typically most directions are quickly relaxing to their
equilibrium, and the essential aspects of the dynamics are determined by very few
slow variables.

In fact, it had already argued by Koopmans (1947) in his review of a book
by Burns and Mitchell (1946) that measurements of economic quantities without
underlying economic concepts are useless; and that time, the criticism was directed
against a use of econometric techniques without a theoretical framework grounded
in economics, but the same type of criticism would also, and perhaps even more
forcefully, apply to the approach taken by econophysics.

We should also remember that Newton’s theory that can derive and predict
the motion of celestial objects is a rather exceptional feat even in the history
of astronomy. Astronomy started with data collection, and these data then were
typically organized by models with an ontological status that was dubious at best.
The old Babylonians simply interpolated between observational data by assuming
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that the positions of the celestial bodies varied linearly between the extrema and
then suddenly changed direction, see the systematic studies of Neugebauer (1967,
1969), who speaks of zigzag functions to describe this interpolation scheme. The
Ptolemaic model as described in the Almagest employed more and more epicycles
without really accounting for their ontological status. The Aristotelian system of the
celestial spheres was more explicit in that regard, but more difficult to reconcile with
the astronomical data. (In fact, Ptolemy also not only tried to represent data as in the
Almagest, but also developed a planetary hypothesis in which Aristotle’s celestial
spheres were fattened to provide space for the epicycles needed in Ptolemy’s system
to account for the astronomical data.) And Kepler had to labor painstakingly for
many years through the data compiled by Brahe. He first tried a preconceived
scheme, an organization of the solar system in terms of Platonic solids, which he
then abandoned because it did not fit the data. In particular, he was concerned with
the orbit of Mars. He tried many variants before he finally arrived at fitting the orbit
as an ellipse. Thus, by trying to account for the data, in the end he succeeded in
discovering his laws of planetary motion. As already discussed, the laws that Kepler
had empirically discovered were then derived by Newton from his law of gravity,
that is, within an explicit physical model. Of course, without knowing Kepler’s laws,
Newton might not have found his theory of gravity.

I should concede, however, that this picture of large data sets that are first
collected without an adequate theory and only subsequently inspire deep physical
theories is not without exceptions. At least one exception springs to mind, Einstein’s
theory of general relativity. This theory was developed on the basis of an abstract
principle, general covariance, and was only subsequently tested against and con-
firmed by empirical data.

Also, the traditional view of physics is that it does not collect more or less arbi-
trary data, but conducts specific experiments whose results acquire their meaning
within an established theoretical framework.

On the other hand, however, we should also discuss the approach of Alexander
von Humboldt. The novelty of his expeditions rests in the systematic and compre-
hensive collection of all kinds of data with all the measuring devices available at
his time, at a time when there was still very little theoretical understanding of the
processes shaping the ecology of the earth. His expedition in South America took
some years, but the evaluation of the data collected during that expedition took
him several decades. His work then launched the scientific discipline of physical
geography and helped and inspired several other scientific fields, even though no
single coherent and encompassing theory emerged from his data. Thus, Humboldt
had gathered huge amounts of data, but these data did reveal only very few coherent
patterns, like the dependence of climatic zones on altitude and latitude. In other
words, not only was the model missing, but also the data analysis largely failed in
discovering general structures.
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7 Towards an Abstract Theory

In fact, it is a quite general finding that there exist profound analogies between mod-
els in physically very different domains. It is actually one of the main driving forces
of mathematics to consider the corresponding structures and relations abstractly and
independently of any particular instantiation and to work out general theories. This
will then make it possible, in turn, to apply these mathematical theories to new
domains. It is then irrelevant whether such a domain constitutes some independent
reality or whether one simply has a collection of data. For instance, similar statistical
phenomena show up in quantum mechanics, in the analysis of biological high-
throughput data, or in the description of social phenomena.

Understanding the laws and regularities of the transition between scales (see
e.g. Pavliotis and Stuart (2008) for the mathematical background), or in a more
ambitious formulation, a mathematical approach towards the issue of emergence
(for instance, Jost et al. 2010), is a theoretical challenge that transcends individual
domains. Nevertheless, it should lead to fundamental insight into the structure of
reality, at an abstract level.

In particular, it is a fundamental question in the theory of complex systems to
what extent general laws apply across different domains and disciplines, and where
the applicability of a general theory ends and a more concrete modelling of the
details of the specific system is required. For instance, which analytical concepts
and mathematical tools apply simultaneously to cells, neural systems, psychological
systems, and societies, or at least to several of them, and where do the specific
peculiarities of each of these fields enter?

In a different direction, we may ask for a theory of structure in high-dimensional
spaces. As will be explained below, even though the data may possess a large
number of degrees of freedom, these degrees of freedom typically do not vary
completely independently in large data sets, but rather obey some nonlinear
constraints. Thus, we are dealing with intrinsically lower dimensional geometric
structures in high dimensional spaces. Since the particular structure will usually
not be known before having analyzed the data, we need to consider spaces of such
structures. This leads to new challenges for the mathematical field of geometry.
These spaces will then carry a probability density, telling us about the a-priori
likelihood of finding them in a particular data set. In statistical terms, we then have
some prior hypothesis about the data set, and such a prior then has to be turned
into a posterior by Bayes’ rule on the basis of the data observed. Of course, this
then should be done in an iterative manner. In a different direction, we may employ
methods from algebraic topology or metric geometry in order to discover robust
qualitative features of specific data sets, see Carlsson (2009), Bacdk et al. (2015).
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8 The Challenge of Big Data

Both the abundance of huge data sets in almost all disciplines and the availability of
the computational power to formally analyze them are quite recent developments.
We have the high-throughput data in molecular and cellular biology generated by
gene sequencing, microarrays or various spectroscopic techniques, the imaging data
in the neurosciences, the email or movement data of mobile phone users, the data
of transactions in financial markets at millisecond resolution, the linking patterns of
the world wide web, and so on.

And almost uniformly across disciplines, we see a major transition from model
driven to data driven approaches. The latter approaches typically depend on the
statistics of large data sets. These statistics are utilized automatically, and statistical
regularities within large data sets are only used in an implicit fashion, without
making them explicit. Examples abound. In molecular biology, the problem of
protein folding had for a long time been approached by explicit physical models.
The problem consists in predicting the three-dimensional folding pattern from
the linear sequence of the amino acids constituting a polypeptide on the basis of
molecular attractions and repulsions. As the energy landscape is quite complicated,
there are typically many metastable states, and finding the configuration of minimal
energy, i.e., the configuration supposedly assumed by the polypeptide in the cell,
therefore is computationally quite difficult, even though powerful Monte Carlo
type schemes have been developed. Recently, however, it turns out that the best
predictions are achieved by data bank searches without any physical model in the
background. One simply compares the sequence at hand with those sequences where
the folding pattern is already known, for instance by X-ray crystallography, and then
makes a statistical prediction based on sequence similarities.

Perhaps the preceding becomes clearer when we consider a hypothetical
approach to weather forecast. A model driven approach develops a detailed
dynamical model of cloud formation and movement, ocean currents, droplet
formation in clouds, and so on, and measures the many parameters of such a
model, or perhaps also tries to fit some of them on the basis of observations.
Such a model would be given by a system of coupled partial differential equations
(PDEs), for which one has to solve an initial value problem. The initial values
are determined by current measurements on a grid of measurement stations that is
dense as possible, naturally with a higher density on land than on the oceans. Since
the dynamics described by the PDE model tends to have chaotic aspects (see also
the discussion in Sect. 3), the precision of the measurements of the initial values
is of utmost importance in order to have somewhat accurate predictions for a few
days. Likewise, the details of the model and its parameters are crucial. In contrast,
a data driven approach would like depend on accurate measurements, but it would
then try to identify those constellations in the past whose values are closest to those
presently recorded, and then use the known weather dynamics from the past for
those constellations to predict the weather derived from the current values. This
would simply require large data bases of the past weather recordings, and perhaps
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some scheme of taking weighted averages over similar constellations in the past,
but it would not need any model of weather dynamics. Such an approach should
then naturally be expected to improve as the data base grows over time.

In the geosciences, the standard scheme consists now in estimating 2-point
correlators from noise correlations at different locations (see e.g. Ritzwoller et al.
2011; Garnier and Papanicolaou 2012), instead of using physical models of, for
instance, wave propagation in geological media. The noise sources can be physical
or caused by human activities. While the differences matter at a technical level
because of different noise characteristics, this does not affect the principle of the
method.

Or to present another example that plays a prominent role in Napolitani et al.
(2011), microarrays record the simultaneous expression of many different genes
in a particular cell condition by exposing the corresponding RNAs in the cell
simultaneously to an array of pieces of complementary DNA sequences and then
simply recording which of those DNA sequence pieces find RNA partners. The
underlying biological rationale is the following. The DNA pieces are part of
the genome that is selectively transcribed into RNA which may then be further
translated into polypeptides, the building blocks of proteins. Proteins carry out
most of the essential operations in a cell. Therefore, mechanisms of gene regulation
should ensure that precisely those proteins are manufactured that are needed by
the cell in a particular situation. Therefore, precisely those pieces of DNA should
be transcribed into RNA that encode the right proteins (there are some problems
with this oversimplified account, see Scherrer and Jost (2007), but the microarray
technology happily ignores them). Thus, a microarray tests the expression patterns
and intensities of many DNA segments — which stand for genes in this simplified
model — simultaneously, because the transcribed RNAs bind to the complementary
DNA pieces offered by the microarray.

In computer linguistics, for the purposes of automatic translation, models
grounded in syntactic and semantic theory are replaced by statistical techniques that
simply utilize cooccurence patterns of words in large corpora. In particular, Google
uses so-called n-gram models for the purpose of automatic translation. This simply
means that one derives the relative frequencies of strings of n words from databases
containing trillions of entries. n = 5 is a typical value. That is, the meaning of
a word — insofar as one should still speak about meaning here, in the absence of
any semantic concepts — is determined by the environment, that is, a few words
preceding and following it, in which it occurs. We shall analyze the conceptual
shifts that this implies in more detail in Sect. 9.

In economics, as already mentioned, techniques from statistical data analysis,
like nonlinear time series analysis, are applied to financial data sets in order to find
subtle patterns that do not follow from theoretical models. This is the new field
called econophysics. Recently, econophysicists also started to develop economic
models. They thereby depart from a purely statistical approach that solely analyzes
economic or financial data and now build models of economies or financial markets
themselves. Their models, however, are in contrast to the classical economic models
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that employ a so-called representative agent. The latter stands for models with
many identical typical agents that are ideally analytically tractable. The agent based
models of econophysicists instead utilize very simple, but possible diverse and
heterogeneous agents that fit well to large scale computer simulations. That is,
instead of a single type of agent that might be rather sophisticated and grounded
in economic theory, here many simple agents are employed. These agents depend
on a couple of parameters, and the parameter values can and typically do differ
between the agents. The representative agents of economics are usually assumed to
be fully rational — the argument being that non-optimal agents are quickly exploited
by their more clever competitors and thereby driven out of the market. The diverse
agents of agent based models are not at all assumed to be rational. They rather
follow relatively simple empirical rules, and the purpose of the models is to uncover
the collective effects of such behavior of many agents through systematic computer
simulations. The validity of the simulation results usually remains unclear, however.
An important issue is that the models of (neo)classical economic theory strive for
the ideal of exactly solvable equations, or at least for describing the economy by
a small and carefully specified set of explicit equations. On the basis of these
equations and their solutions, they want to achieve analytical insights into the
working of the economy. The agent based models of econophysicists, in contrast,
employ much less rigid models, possibly with many parameters, and large numbers
of equations that can only be numerically solved. Analytical insight no longer is
the foremost aim, and one rather wants to identify unexpected nonlinear effects and
critical transitions between different regimes triggered by small variations of crucial
parameters.

Even in elementary particle physics, after the confirmation of the Higgs boson,
that is, a prediction made by the standard model, at the LHC, in the future one will
probably move towards the automatic analysis of large scale scattering data in order
to find unpredicted events that may not fit into any current theoretical model. In any
case, already for finding evidence for the Higgs boson, to a large extent automatic
data analysis methods have been employed. Such methods may find patterns of
correlations or untypical events in huge data sets by completely implicit methods.
As described and analyzed for instance in Falkenburg (2007), the empirical evidence
is gathered in four steps. At the basis, there are position measurements. Adjacent
position measurements are then combined into tracks. Adjacent tracks in turn are
combined into events. Finally, statistical ensembles of scattering events contain
resonances. All this is done in a completely automated way. The tools have no
special affinity to particle physics, even though particle physicists are among the
people making the most advanced use of them. For instance, so-called neural
networks encode the patterns of their training sets in a rather indirect and completely
implicit manner in synaptic connection weights (see e.g. Bishop 1995). When they
are subsequently applied to the real data, they produce corresponding associations
which may then be interpreted as patterns in the data set. Neural networks and other
such schemes find applications in a wide range of data domains. In fact, the methods
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themselves also change, and for instance, neural networks are sometimes replaced
by other methods like support vector machines.®

This phenomenon, the transition from model to data driven approaches, occurs
not only in individual and specific domains, but also at the formal level. The field of
scientific computing currently undergoes a similar transition. The field of machine
learning is concerned with the development of techniques for the automatic analysis
of large data sets. Statistics, the science of finding structure in data, is moving into a
similar direction, and in fact a profound convergence between machine learning and
statistics seems to take place. In particular, the computer intensive Bayesian methods
take over much of more traditional parametric statistics. Often, such methods are
combined with stochastic search algorithms like Monte Carlo methods or Markov
type models. Lenhard (2013) also points out the interdependence between data
dynamics and computational modelling.

Big data are said to be characterized by large or even huge values of the three Vs,
that is,

* Volume: often petabytes (1000° = 10'° bytes)/day, possibly more
* Variety: heterogeneity of data types, representation, and semantic interpretation
* Velocity: arrival rate and reaction time

Processing big data requires adapted strategies and methods, and it can be decom-
posed into five phases

. Acquisition and recording: filtering, compression, metadata generation

. Information extraction, cleaning, and annotation

. Integration, aggregation, and representation; data base design

. Analysis and modeling; querying and mining the data

. Interpretation; visualization; possibilities of interaction of human observers with
machine processing

DN A W -

For our purposes, phase 4 is the most relevant. Although computer power is
rapidly growing, and cloud computing or even access to supercomputers becomes
ever more available, large data sets still may give rise to the “curse of dimen-
sionality”. This means that computer time will increase exponentially with the
number of degrees of freedom and therefore quickly exceed even the capacities of
supercomputers, unless clever use of specific structures within a data set is made.
Therefore, corresponding data analysis techniques are being developed. An example
is compressed sensing, see Donoho (2006), Candes et al. (2006), Fornasier and
Rauhut (2010) and Foucard and Rauhut (2013). Here, the idea is to use a specific
sparsity assumption, for instance that a large and complicated acoustic data set might
be generated by a small number of sound sources only. For instance, the sound
sources might be humans carrying on conversations in a crowd. Formally, sparsity

8Support vector machines are efficient classifiers that use a high-dimensional linear feature space
(see Christianini and Shawe-Taylor 2000; Scholkopf and Smola 2002; Steinwart and Christmann
2008).
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means that a high-dimensional vector or matrix possesses only few entries that are
different from 0. One does not know beforehand, however, which are the nontrivial
ones and how many of them there really are. Thus, there is a not very explicit, but
still rather powerful and constraining structural assumption. Or, in a similar vein,
one might assume that the data points one has in some high-dimensional space are
in fact constrained to some low-dimensional manifold (Belkin and Niyogi 2003).
This low-dimensional manifold, however, need not be a linear space, and therefore,
even though it possesses only few intrinsic degrees of freedom, it may still stretch
into many of the ambient dimensions (for the background, see Jost 2011). Thus, the
data are supposed to possess some rather constraining type of regularity, but again,
this regularity is not explicit, and it is the task of a machine learning scheme to use
such an abstract assumption in an efficient manner. When one incorporates such
an assumption, one may drastically reduce the number of computations needed to
identify the underlying structures from the data set, for instance the sound sources
in the above example. The mathematical techniques required are typically nonlinear
and therefore on the one hand more flexible in discovering and utilizing hidden
regularities and patterns in the data, but then, on the other hand, require more
specific, but ideally still automatic, adaptations to the data set at hand.

In many respects, human cognition is still superior to automatic data analysis
techniques. In order to utilize the power of human cognition, however, it is necessary
to convert the data into a format that is familiar to humans. This leads us into the
domain of visualization, a newly emerging scientific discipline between computer
science, mathematics, and psychology. Thus, the aim is to develop formal methods
that can convert a data set into a form in which humans can easily discern patterns.
At a more advanced level, the combination of machine learning tools and human
perception may become interactive, which was the goal of the EU funded research
project CEEDs (The Collective Experience of Empathic Data Systems).

9 Big Data and Automatic Translation, or a Paradigm Shift
From Linguistic Theory to Language Processing

Modern linguistic theory and philosophy is founded upon basic oppositions, for
instance between

* langue (the abstract system of a language) vs. parole (the concrete utterance) (de
Saussure 1995)

* diachronous (across time) vs. synchronous (simultaneous) (de Saussure 1995)

* competence (the ability for the correct syntax of one’s native language) vs.
performance (the actual production of utterances) (Chomsky 1965)

* deep structure vs. surface structure, i.e., a language independent representation
in an abstract structure is transformed into a sentence according to the syntax of
a specific language (Chomsky 1965), and this transformation obeys the general
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rules of abstract grammar; the latter have become more general and abstract
themselves in the course of Chomsky’s work (Chomsky 1981, 1995)

* spoken vs written language, again from de Saussure (1995) and emphasized more
recently by Derrida (1967).

Perhaps the most important opposition is that between de Saussure’s (1995)

* paradigmatic alternatives and syntagmatic series; this means that a word at a
given position in a sentence can be chosen paradigmatically from a list of words
that could grammatically occupy this position, but has to obey the syntactic rules
of the sentence. This is also an opposition between absence and presence, or
between selection and constraint; the alternatives that have not been chosen are
absent, but the syntactic constraints are present through the other words in the
sentence.

These oppositions are (more or less) formal, but not directly mathematical. They
gave rise to a formal theory of language, and for some time, one attempted to
utilize that theory for purposes of automatic translation. The idea was essentially
to automatically infer the grammatical relationships within a given sentence, that
is, the dependencies between the different words and grammatical tokens and the
internal references, like the referents of pronouns and anaphora. That grammatical
structure could then be transformed into the corresponding structure of another
language, and the meanings of the individual words could be correlated with the help
of good lexica. For instance, for some time (Pollard and Sag 1994) was popular as
a suitable grammatical theory for such purposes. All such attempts, however, have
more recently been brushed aside by the big data approach to automatic translation,
as developed and pushed in particular by Google. That approach completely ignores,
and often even ridicules, linguistic theory, and rather draws upon correlations in
huge linguistic corpora. My purpose here is to analyze the underlying conceptual
shift and to describe what mathematical structures are behind this approach. Those
mathematical structures are completely different from those developed from the
context of formal linguistics. And the people working on automatic translation
within this paradigm express little interest, if at all, in the conceptual basis of their
endeavor. Nevertheless, that will be important for this essay.

Thus, the oppositions sketched above no longer play a role. Instead, we see the
corpus, that is, a data base of texts in the language(s) in question, as the single
basic element. The corpus scales by size. Thus, a small corpus might be seen
as corresponding to parole, whereas big corpora can approach the langue side of
de Saussure’s dichotomy, and the same applies to Chomsky’s dichotomy between
competence and performance. More precisely, there no longer is any such abstract
thing as competence. The possibly huge collections of linguistic data are all there is.
Corpora do not care much whether they have been assembled from contemporary,
hence essentially simultaneous texts or whether they result from scanning texts
over longer periods of time. The only relevant criteria are of a practical nature,
digital availability and computational capacity. Also, corpora can as well be based
on automatically recorded spoken language as on written texts. The difference is
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again largely irrelevant, or at least plays no basic conceptual role. (More precisely,
what remains is the technical difference between off-line and on-line processing and
translation.)

More importantly and interestingly, the opposition between de Saussure’s
paradigmata and syntagmata is also resolved. This best explained through the
mathematical concepts of stochastic processes and Shannon information (see e.g.
Cover and Thomas 1981; Shannon and Weaver 1998; MacKay 2003; Jost 2005).
De Saussure talked about alternative words at a given position in a sentence. This
is qualitative, but not quantitative. Information theory, in contrast, would quantify
the probabilities of different words to occur at such a position. These probabilities
then will not only depend on the abstract properties of that position, but also on the
concrete words before and behind it in the sequential string forming the sentence
or the text. That is, we do not just have probabilities for the occurrences of words
at a given position, but we rather have transition probabilities from a word, or
more precisely, a segment of a few words, to the next. In fact, automatic translation
today mostly works with pentagrams, that is, overlapping strings of five words.’
Thus, we no longer have de Saussure’s qualitative opposition between selection
and constraints, but both aspects are combined and made quantitative within the
concept of a stochastic process. (In fact, this is a slight oversimplification. A
stochastic process would occur if one has to guess or produce the next word on
the basis of those preceding it. Thus, a process describes a temporal sequence
as in actual speech. A corpus, however, is not a process unfolding in time, but
is simultaneously given as a whole. Therefore, the probabilities are determined
not only by the preceding words, but also by the following ones. The underlying
mathematical principle, however, is not fundamentally different.) Thus, while the
big data approach to automatic translation does not care about an underlying
conceptual structure, its analysis nevertheless sheds some light on the limitations of
formal language theory, and it points towards mathematical structures that replace
the qualitative oppositions by quantitative probabilities. These probabilities are
nothing but relative frequencies of pentagrams, i.e., certain word constellations, and
they can be automatically computed from the corpora at hand. The larger the corpus,
the more accurately such probabilities can be determined, in the sense that further
additions to the corpus will likely change them only very little. In a certain sense,
this approach asks more precise questions than formal linguistics. When analyzing
a temporal sequence, like a spoken text, it would not simply ask at each instant
“what could come next?”, but rather “how well can I guess what comes next?”’, and
the latter is quantified by Shannon’s information (Shannon and Weaver 1998).

Of course, this approach to automatic translation has its limitations. It cannot
capture long range dependencies. In a nutshell, the basic assumption underlying the

°In the terminology of statistical physics, the correlation length of word sequences in texts becomes
relatively small after five words. In fact, one would expect that it never becomes exactly zero, that
is, there do exist correlations of arbitrary length, whatever small. Thus, in technical terms, when
moving from a word to subsequent ones in a text, we have a stochastic process that does not satisfy
a Markov property for strings of words of any finite length.
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approach is that the transition between overlapping pentagrams satisfies a Markov
property, that is, no information from more than five words back in the sequence is
needed for the probability of the next word. From the syntactic perspective, this for
instance does not adequately capture the structure of the German language where
the different components of the verb can be separated by many words in a sentence.
From the semantic perspective, the meaning of some sentence in a text may refer to
other, much earlier parts of that text, or even to a context outside the text itself. In
formal terms, let us recall also our discussion about Markovianity at different levels
in Condition IV in Sect. 5.

One of the central, but to a large extent still unresolved, issues of linguistics, that
between syntax and semantics, between structure and meaning, is simply bypassed
by automatic translation. A human translator would first try to extract the meaning
of a text and then express that meaning as well as she can in the other language.
Automatic translation, in contrast, simply transforms one structure into another one.

10 The Issue, Again and Hopefully Clearer

We are faced with the following alternative to which no general answer can be given,
but which needs to be evaluated in each individual situation.

1. The significance of data collected depends on the specific context from which
they are taken, and they cannot be fully understood without that context.

2. Data sets typically possess internal structure, and much of such structure
generalizes across different disciplines, domains and contexts, or is at least
accessible to context independent methods. Identifying and understanding that
structure with formal tools will then in turn enable us to use the data to learn
something new and insightful about their context.

This is nothing but the old alternative between specificity and generality, as, for
instance, already described by Kant. It is easy to deplore too much of an emphasis on
either side and support this by supposedly misguided scientific case studies, and to
declare a one-sided practice as agnostic or unscientific. The real challenge consists
in finding the appropriate balance between the two aspects in each case. Currently,
big data sets offer new opportunities for formal methods and computational models,
and this may shift the balance for a while.

Concerning the role of mathematics, this might transcend the alternative between
a mathematics of content that establishes and analyzes relations between the
concepts of a theory and a purely auxiliary mathematics that is relegated to the role
of data handling and preprocessing. What should emerge rather is a mathematics
that develops new abstract concepts for analyzing and representing data spaces.
For instance, a partial merging of the domains of statistics, high dimensional
geometry, information theory and machine learning might take place. Such a
mathematics would help to detect structures, as opposed to either formalizing
structures proposed and developed by other scientific disciplines or to offering tools
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for fitting given data into such a structure. This process can only enhance the role and
the importance of mathematics, as it becomes liberated from being instrumentalized
by conceptualizations that are externally imposed. Instead of accepting models from
particular domains, mathematics would itself propose abstract metamodels, like
sparsity, smoothness, or symmetry.

11 Some Consequences

The preceding has important implications for the role of models and hypotheses
in the scientific process. From the perspective of Bayesian statistics, we begin the
process of scientific inquiry with prior hypotheses constructed by us, in whatever
way we may find reasonable or on the basis of whatever prior experience we may
have. During the process, such a prior hypothesis gets transformed into a posterior
one on the basis of the observations made or the data acquired. This is achieved by
applying a fixed rule, that discovered by Bayes. The role of models then is relegated
to provide sets of parameters that have to be fitted to the data. This is in stark contrast
to the ideal of a model in physics. Such a model should contain only very few, and
ideally no free parameters at all that are not theoretically determined but need to be
measured. Even for such a nearly ideal model, one may question whether empirical
adequacy should constitute a proof of the correctness of the model. In a model with
many free parameters that need to be fitted to the data, certainly empirical adequacy
can no longer count as a proof of the correctness of the models, and indeed, in
complex situations, the term “correct model” may lose its meaning entirely. There
no longer is such a thing as a correct model. There may only be a superior fit of
the parameters to the data collected according to unknown probabilities. See Hasse
and Lenhard (2017) for a more detailed analysis of this issue. Alternatively, we
might be seeking regularities in data on the basis of certain structural hypotheses,
as described in Sect. 8. Again, such structural hypotheses like sparsity do not come
from the data at hand, but are applied by us in order to get some handle on those data.
In a certain sense, they constitute a structural prior, although that prior is usually not
updated in a Bayesian manner.

While all this may sound rather agnostic, in practice one might get quite far with
those schemes of Bayesian updates, parameter fitting, and structural hypotheses. It
is challenge for mathematics to analyze this issue theoretically.

Putting it somewhat differently: Data analysis depends on prior structural
assumptions. That could be the prior of a Bayesian approach, or it could be the
choice of a family of models as in parametric statistics. It could be a general
structural hypothesis like sparsity, a low-dimensional manifold (for instance arising
as the center manifold of a dynamical system), certain invariances or symmetries
etc. This is the epistemic side. At the ontological side, is there anything underlying
the data matching those assumptions? One may argue that these assumptions are our
constructions, and that therefore there is no guarantee of any correspondence with
the data source. However, a simple theory can sometimes enable us to discover
specific phenomena that would otherwise not emerge from beneath the heap of
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data. One may also argue, as I have tentatively done in this essay, that in some
situations, such assumptions could be justified by the structures from which the
data are derived, but there is no guarantee for that. The question then is whether
those instances where it holds — we have discussed Newton’s theory of planetary
motion, the Schrodinger equation, biochemical reaction kinetics, the Hodgkin-
Huxley equations or traffic dynamics — are just lucky coincidences, or whether there
are more systematic structural aspects of reality — whatever that is — that make our
speculations sometimes so successful.

12 The Dream of Mathematics

Does this bring mathematics closer to its dream of a science that is purely structural,
abstract, and independent of specific content? We have argued already above that
mathematics seeks regularities. Perhaps these regularities are discovered in specific
domains, but hopefully, they should apply also in other domains, and ideally, they
should be universal. For instance, while Lie’s theory of symmetry groups was
originally motivated by the symmetries of the systems of classical mechanics, the
theory as such is abstract. In particular, through the work of W.Killing and E.Cartan,
it lead to the classification of all possible continuous symmetries (see Hawkins
(2000) for the history). This turned out to be of fundamental importance for quantum
mechanics, and even further for quantum field theory. It permeates much of pure
mathematics. It is also relevant in all applications where continuous symmetries
arise. Even more generally, the notion of a group (Lie groups are a special type of
continuous groups), as developed by Gauss and Galois, first arose from studying
solutions of algebraic equations, that is, a specific mathematical problem, but it then
become something of a paradigm of a mathematical structure as such, and it is now
important in almost all fields of mathematics, as well as in many areas of physics
and other disciplines.

Perhaps data science enables further steps in this direction. Here, even the
original problems are no longer domain specific, as the symmetries and invariances
of the systems of classical mechanics, but by their very nature already general and
abstract when they apply to all kinds of large data sets. It is then natural that the
mathematical tools developed to investigate these problems are at least as abstract
as those problems themselves. Thus, data science may lead to an abstract theory of
structures, that is, the purest form of mathematics. Incidentally, this brings fields of
mathematics into focus that hitherto have been considered as applied and not pure
mathematics. Statistics is an example. On the one hand, it can be mathematically
treated in terms of the geometry of families of probability distributions, see e.g.
Amari et al. (2007), Ay et al. (2017), and on the other hand, high-dimensional
statistics and machine learning might also become a science of distributions of
geometric objects in high-dimensional spaces, again independent of any specific
content. But there should be mathematical structures even more abstract and general
than that.
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