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Abstract. This paper describes an efficient method for general norm
approximation that appears frequently in various computer vision prob-
lems. Such a lot of problems are differently formulated, but fre-
quently require to minimize the sum of weighted norms as the general
norm approximation. Therefore we extend Iteratively Reweighted Least
Squares (IRLS) that is originally for minimizing single norm. The pro-
posed method accelerates solving the least-square problem in IRLS by
warm start that finds the next solution by the previous solution over iter-
ations. Through numerical tests and application to the computer vision
problems, we demonstrate that the proposed method solves the general
norm approximation efficiently with small errors.

1 Introduction

In various tasks in digitally archiving cultural heritages including 3D reconstruc-
tion [1,2], numerical optimization plays a central role. More specifically, we often
optimize some £,-norm of the cost vector (equivalently, its p-th power £7) or the
combination of different vector norms. For example, in compressive sensing, an
unconstrained form of Lasso (least absolute shrinkage and selection operator) [3]

min | Az — b3 + Allz s (1)

is used for reconstructing sparse signal z while ensuring data fitting. As another
example, Tikhonov regularization (or ridge regression) [4],

min | Az — b3 + ATz, (2)

appears in image restoration, super-resolution, and image deblurring. These
objective functions can be further augmented by additional £,-norm terms that
represent further constraints for particular problems. For example, the elastic
net [5] is defined as

min | Az — b3 + Al|z |1 + Az]3 3)

by regularizing the solution using both ¢;- and fo-norm terms. Some special
cases are known to have closed-form solutions, e.g., the minimizer of Tikhonov
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regularization (2) is given by # = (AT A + AI'TT")~1 AT, or can be transformed
into a simpler expression, e.g., the elastic net problem (3) can be rewritten as an
equivalent Lasso problem (1) with some augmentation [5].

Generally, these £,(p > 1) unconstrained minimization problems can be
solved by any convex optimization methods'. To gain a greater computation per-
formance, typically problem-specific structures are exploited to design a tailored
solution method. For example, least-squares problems that consist of />-norms
can be solved analytically, or for a large-scale problem, conjugate gradient meth-
ods [6] are employed for faster computation. When the rank of the design matrix
is small enough, randomized singular value decomposition (R-SVD) [7] may be
employed for further acceleration. It is also understood that ¢; minimization
problems can be transformed into a linear programming problem [8], which can
be efficiently solved by an interior point method [9]. On the other hand, it is still
of broad interest to improve the performance of the general norm approximation
problem, because in practical situations there is a strong need for testing with
various formulations with different norms in designing computer vision applica-
tions. For example, one might initially formulate a regression problem with an
{o-norm but later might add an ¢ or {5 regularizer for stabilizing the solution.

This motivates us to develop a fast solver for the generalized norm approxi-
mation problem:

K
mxinZAk | Apz — i7", (4)
k=1

where k = {1,--- , K} is the term index, Ay € R™*™ and b, € R™* the the
design matrix and constant vector that define the k-th linear objective, and the
overall objective function is defined as a linear combination of py-th power of £, -
norm weighted by Ag. Our method is built upon a simple yet powerful iteratively
reweighted least-squares (IRLS) scheme. In the TRLS scheme, the problem can
be reduced to iteratively solving a linear system that is derived as a normal
equation of the sum of weighted squares of the terms.

In this paper, we present a fast method for deriving the approximate solution
for this problem that outperforms the state-of-the-art solution methods such
as [10,11]. Our method exploits the trait that the solution is gradually updated
in an iterative manner in the IRLS scheme, and achieves acceleration by taking
the previous estimate as an initial guess at each iteration for an LSQR solver [12].
The proposed method is faster and more stable than the previous state-of-the-art
approaches as we are going to see in the experimental validation. In addition, the
solution method for the general expression (4) has not been explicitly described
in the literature that we are aware of, and we show in this paper that the general
form can be solved in a unique manner regardless of the number of terms and
diverse £,-norm objectives and benefit from the proposed method.

! While it may be still valid even when p < 1, the problem becomes non-convex when
p < 1; thus they may be trapped by local minima.
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2 Related Works

The early studies of IRLS can be found back in 1960’s [13], developed for approx-
imating a Chebyshev or f,, norm. It has been later extended to approximate
a general £,-norm term [14]. While the early studies focus on convex approxi-
mations with p > 1 mostly with a single term, later, the focus has been shifted
to the case where p < 1 (non-convex cases). The original sparse recovery using
the IRLS scheme has been known as FOCUSS [15] prior to that shift, and it
has been known useful for robust estimation tasks. With the rise of compres-
sive sensing and sparse recovery, norm approximation with p < 1 has been
extensively studied. Chartrand and Yin [16] introduced a regularizer €, for aug-
menting the IRLS weight, that varies from large to small over iterations so that
it effectively smooths out the objective function and as a result avoids local
minima. Daubechies et al. [10] proposed an alternative method for updating the
weight over iterations and showed the convergence property in sparse recovery.
Candes et al. [17] introduced an iteratively reweighted ¢, minimization method,
which repeatedly solves 1 minimization problem, for further enhancing sparsity.
Wipf and Nagarajan [18] provided an extensive analysis on ¢5 and ¢; reweighting
schemes [16,17] and made distinction between separable (i.e, the weighting of a
particular coefficient depends only that in previous iteration) and non-separable
iterative reweighting schemes. The development of an effective numerical algo-
rithm for sparse recovery is still an active research topic, and there is a broad
interest in the area.

With these theoretical and algorithmic development, the IRLS scheme has
expanded its application domain. It has been used for various signal process-
ing applications, such as FIR filter design [19], image deblurring with ¢,-norm
(p = 0.8) minimization [20,21], denoising based on TV regularization [22], and
super-resolution [23]. The IRLS scheme has also been used for minimizing nuclear
norm [24] and structured sparse recovery [25]. These new applications widen the
use of IRLS scheme for even more diverse applications. This paper is motivated
by the background that accelerating the general sum of £5 terms is urgent because
of its increasing need in various computer vision applications.

Because the problem of (4) is unconstrained and convex when py > 1, it can
be also solved via a family of efficient quasi-Newton methods, such as limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, although such
general convex optimizers are typically not optimal in terms of their performance.

3 Fast General Norm Approximation

This section describes the proposed method for general norm approximation
using IRLS. In Sect. 3.1, we begin with briefly reviewing the IRLS and show
how the generalized form of Eq. (4) can be solved via IRLS. We then describe
an acceleration method using LSQR in Sect. 3.2.
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3.1 IRLS for Norm Approximation Problems

Since 1960’s, it has been understood that norm approximation problems can
be solved via IRLS [13,14]. With the IRLS framework, norm approximation
problems can be casted to iteratively solving weighted least-squares problem.
Let us take an example of minimizing the p-th power of £,-norm of a real-valued
vector (Az —b):

min f(z), f(z) = [|[Az —b]|) = (Az — b)"WTW (Az - b). (5)
The above can be expressed by a weighted squares of the vector as:
min f(z), f(z) = ||W(Az - b, (6)

with a proper diagonal weight matrix W, whose elements are all non-negative.
where W is a diagonal matrix of weights to be determined in IRLS. The problem
of (6) is a quadratic programming; therefore the minimizer z* is attained when

0
o IV (A — b)3 = 2p (ATWTW Az — ATWTWb) = 0. (7)
Therefore, the approximate solution z* becomes
z* = (ATWTWA) L ATWTWh. (8)

In the IRLS scheme, the weight matrix W is iteratively refined for a more focal
estimate. Let w; and e; denote the i-th diagonal element of W and the i-th
element of the residual vector e = Ax — b, respectively. Since

1Az bl = 3 leiP2eif? = > w?eif?, (9)

at each iteration, the weight matrix element w; is updated by w; «— \ei|(p/ 2-1)
if e; # 0 or w; <« 1/e otherwise where ¢ is a sufficiently small positive value.
Typically, the weight matrix W is initialized as an identity matrix.

IRLS for General Norm Approzimation. We have seen how £,-norm minimiza-
tion for a single term is achieved by IRLS. We now describe its extension to the
multiple terms for applying IRLS to the general norm approximation problem
(4). For a general norm approximation problem

K
min f(x), f(2) =3 el v — b2 (10)
k=1

there are K terms that are defined by ¢, -norm, where p, may be different
across the terms, each weighted by A;. With K weight matrices Wy, it can be
approximated by

K

flx) = Z M (Agx — bk)T WkTWk (Agx —bg), (11)
k=1
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in a similar manner to the single term case. From the normal equation of above,
the approximate solution can be determined by differentiating f(x) w.r.t. z as

K
82 ;@ =S 2phi (AT W Wi A — AFWEWiby) = 0. (12)
k=1

Therefore, the minimizer z* can be obtained by

K L/ k
k=1 k=1

The pseudo-code of IRLS for general norm approximation is summarized in
Algorithm 1.

Procedure 1. IRLS for general norm approximation

Input: Ay € R™kX™ and b, € R™k
Output: Solution =
// Initialize the weight matrix
Wi, Wa, oo Wg «— 1
// Concatenate matrices and vectors; A € RM*n b ¢ RM W ¢ diag (R+M) M =37 my
A — [A{, AQT, cee A};]T // Matrix of vertically stacked A1, -, Ax
b— [b?, bg, cee b};}T // Vector of vertically stacked b1, ,bx
while z is not converged do
W diag(v/A1p1 Wi, vV aep2Wa, - -+ , VA pe Wi )
// Solve the weighted least-squares problem: WAx = Wb
x «— LeastSquares(W A, Wb)
e— Az —b
// Update weight
for all k,n do
if ex(n) # 0 then
Wi(n) = 1/lex(m)| 1=Pk/)
else
Wi(n) =1/¢ // € is a sufficiently small positive value.
end if
end for
end while

3.2 Acceleration of IRLS

The major bottleneck of the IRLS algorithm is its need for solving the weighted
least-squares problem over iterations until convergence. In particular, when the
size of matrix Aj is large, the computation cost significantly increases if an
analytic solution method like Eq. (13) is used. To accelerate the whole algorithm,
it is needed to efficiently solve the weighted least-squares problem. We exploit
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Fig. 1. Growth of the condition number of A in each iteration. The plots show the
average condition numbers over ten trials for each setting.

the fact that the solution z and weight matrix W} are gradually updated over
iterations of IRLS and use the previous estimate of x for efficiently updating the
solution z using LSQR.

Previously, conjugate gradient methods have been applied to the least-
squares problem in an iterative framework [25,26] in a similar spirit. They are
effective when the design matrix A in || Az —b||3 is well-conditioned. Convergence
of the conjugate gradient method is analyzed by the relative error [27]:

Il (T
=0, =*\Vasi)

where ||-|| , indicates A-norm, & is matrix A’s condition number calculated by
K = Omax(A)/0min(A4), omax(A) and omin(A) are the maximum and the mini-
mum singular values of A, respectively. When the relative error in the left side
of Eq.(14) is large, convergence from z(© to z(™ through n iterations takes
much time. The upper bound of the relative error can be calculated with &,
and a greater k makes the convergence slower. Unfortunately, for the weighted
least-squares problem WAz = Wb in IRLS, the condition number of matrix
W A naturally increases as the iteration proceeds [26]. To depict this issue, we
show a preliminary experiment of running IRLS for solving min, [|Az — b||3 ten
times with randomly generated matrices A € R590%400 with vector b € R%%° and
also a larger scale setting, A € R1000%800 with vector b € R!°%°, Figurel shows
the variation of the average condition number over iterations plotted in a log
scale. As seen in the figure, the condition number grows exponentially over iter-
ations, which makes conjugate gradient methods slower and less stable in later
iterations.

To overcome this issue, previous approaches use preconditioning to yield the
equivalent least-squares problem with the small condition number of A by multi-
plying a matrix P called preconditioner [25,26,28]. However, the preconditioner
P is problem-dependent [25]; therefore, it is not straightforward to incorporate
the preconditioned conjugate gradient method into the generalized norm approx-
imation problem.

(14)
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To avoid these problems, we use the LSQR method [12], which is a stable
iterative method for ill-conditioned least-squares problems [29,30]. In LSQR,
the least-square problem is reduced to another least-square problem including a
bidiagonal matrix, and the reduced problem is solved by QR factorization. To
accelerate the LSQR computation in IRLS framework, we use a “warm start”
strategy by taking the previous estimate of the solution as the initial guess for
the next iteration. The pseudo-code of LSQR to find a solution z(t1) at the
(i 4 1)-th iteration from 2(* from the previous iteration in our context is shown
in Algorithm 2.

Procedure 2. LSQR

Input: A€ RM*" £ ¢ R* and be RM
Output: Solution z(*Y € R®
// Initialization
5 Ilb— AxDla, u — (b — Az)/B
a — ||ATu||2, v — ATu/a
p—B¢—a
while z is not converged do
// Bidiagonalization
6 |4 — aula, u — (Av — aw)/B
a — ||ATu — Bol|2, v — (ATu — pv)/«
// Construct and apply next orthogonal transformation
c—p/\/p*+B% s B/p
0 — sa, ¢ «— co
p— —ca, g — s¢
// Update the solution and weight
v+ wfp
w—v—wbh/p
end while
20D o

4 Performance Evaluation

To evaluate the computational efficiency of the proposed method, we test the
algorithm using the following weighted norms minimization problems:

(Problem 1) min ||Ajz — b1 |, (15)
(Problem 2) min ||Agz — b2||§ + ||Asz — b3, , (16)
xr

where A; € R500x400 3, R500 gnd Ay, Ay € RI000x800 5, po < R1000 Matrices
Ay, and solution x are randomly generated, and vector by is computed by by «—
Agz. To add outliers to the systems, the signs of 10% of elements in by are
flipped.

We implement the following methods to compare the computational times
on a PC equipped with Intel Core i7 930 @2.8GHz and 24 GB Memory.
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L-BFGS

— IRLS by QR decomposition with column pivoting (IRLS-QR)

IRLS by Jacobi-preconditioned Conjugate Gradient method (IRLS-CG)

— IRLS by Jacobi-preconditioned Conjugate Gradient method with warm start
(IRLS-CG-WS)

— IRLS by LSQR (IRLS-LSQR)

— IRLS by LSQR with warm start (IRLS-LSQR-WS) (proposed method)

We use ALGLIB [31] for L-BFGS and Eigen [32] matrix library for matrix opera-
tions. Because L-BFGS does not converge well on Problem 1 and Problem 2 that
include non-smooth ¢;-norms, we approximate || A1z — by||; to /(A1z — b1)? +~
with a sufficiently small positive value (= 10e~®) when applying L-BFGS.

Table 1 summarizes the average computation times and residuals of ten tri-
als, and Figs. 2 and 3 show computation times and residuals over iterations when
solving Problems 1 and 2, respectively. As shown in Table 1, IRLS-based methods
are faster and more accurate than L-BFGS, even though we use a relaxed toler-
ance for L-BFGS for faster convergence. Although IRLS-QR solves the smaller
problem fast with the smallest residual, the computation time rapidly grows as
the size of the matrix becomes larger.

The effectiveness of the warm start strategy is clearly seen in IRLS by Conju-
gate Gradient and LSQR, showing about 20 times faster convergence. As shown
in Fig. 2, while computation times for methods without warm start drastically
increase as the iteration proceeds, they are significantly reduced with warm start.
It is also shown in Fig. 3 that the warm start strategy is effective in reducing the
residual by providing a guide to solve least-squares with high condition numbers
at later iterations.

Table 1. Computation times and residuals of each method applied to problems 1 and 2.

Problem 1 Problem 2

Computation | Residual | Computation | Residual

time (sec.) time (sec.)
L-BFGS 710* 741 > 1.0€° -
IRLS-QR 5.6 642 1377 24567
IRLS-CG 43 763 9907 24687
IRLS-CG-WS 7.0 664 30 2468
IRLS-LSQR 54 721 6347 26207
IRLS-LSQR-WS (ours) | 2.6 682 14 2475

*Due to the enormous computational time of L-BFGS, we set the tolerance
greater (1.0e°) than usual (1.0e™%).

"Because these methods did not converge, the computational times and resid-
uals at 100-th iteration are shown.
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Fig. 2. Variation of computation times over iterations. Our method benefits from the
warm start strategy and the computation time quickly drops at the early stage of
iterations.
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Fig. 3. Variation of residuals over iterations.

5 Applications

The expression of the general norm approximation (4) offers flexibility of treat-
ing diverse objective functions in a unified manner, and they can generally ben-
efit from the proposed efficient computation method. As example use cases, we
show two applications in this section: Photometric stereo in Sect. 5.1 and surface
reconstruction from normals in Sect. 5.2.

5.1 Photometric Stereo

Photometric stereo is a method for estimating surface normal of a surface from
its appearance variations under different lightings. Let us assume that we have
an f x 3 light direction matrix L that contains f distinct light directions as
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row vectors. A scene is illuminated under these light directions, and it yields
corresponding observation vector o € Rf_ for each pixel. Assuming that the
scene reflectance obeys the Lambert’s law, the image formation model of a pixel
can be expressed as can be expressed as

o= Ln, (17)

where n is a surface normal vector that we wish to estimate scaled by diffuse
albedo. When the number of light directions is greater than three (f > 3), the
Lambertian photometric stereo [33] determines the scaled surface normal by the
least-squares approximate solution as

n* = argmin || Ln — o|3. (18)

The solution method for the above problem is rather straightforward and does
not even require our method, while it can still be represented as a special case
of (4).

In reality, scene reflectances may contain specularity that can be regarded as
unmodelled outliers. It motivated the previous work [34,35] to use an ¢;-norm
minimization as robust estimation as

n* = argmin ||Ln — o]|;. (19)
n

It corresponds to minimization of the residual e = o — Ln, as above can be
rewritten as the problem min, |le||; s.t. e = 0 — Ln. This hard constraint can be
relaxed as a regularizer as depicted in [34,35] as

n* = argmin A1 |lo — Ln — e||3 + [le]1 (20)

for allowing a certain magnitude of Gaussian error in the constraint.

In a special case, when we have an external method for determining surface
normal, e.g., surface normal obtained from a measured depth by structured
light, and can use it as prior for stabilizing the solution, the photometric stereo
problem can be formulated as

n* = argmin ||Ln — o||; +)\2||n—ng||§, (21)
n

in which n, is surface normal that are obtained by an external method.

These four different problem settings (18)—(21) can all be represented by
general norm approximation (4), and our method is applicable to any of the
settings. To demonstrate this, we render 40 images of Bunny and Caesar scenes
under different light directions and solve these four problems. We set A1, Ay =
10€®. n, in (21) is generated by adding 1% of Gaussian noise to every normal
elements in the ground truth normal vector. Figure4 shows estimated surface
normal and error maps of the proposed IRLS-LSQR-WS method. Putting aside
that there are variations in errors because of different formulations, it shows that
our method is applicable to diverse formulations.
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IRLS-LSQR-WS
(a) L,-norm (b) L;-norm (c) L,-regularized  (d) L,-regularized
Ground truth minimization minimization LS LS with n,

Error maps

Error

Time [sec.]

Error 0.14 0.12 0.14 0.04
Time [sec.] 1.5 24 430 12

Fig. 4. Surface normal estimates and error maps with photometric stereo. (a)-(d)
correspond to the settings (18)—(21). “Error” indicates the angular error in degrees,
and “Time” corresponds to the computation time.

5.2 Surface Reconstruction from Normals

Once the surface normal is obtained by photometric stereo or shape from shad-
ing, one may like to reconstruct a surface from the normal, e.g., by [36]. From
surface normal n = (ng,n,,n.)? defined in the image coordinates (u,v), the
gradients g, and g, are computed as
ng (u, v)
U, V) = ————=, 22
gw( ) n, (’LL, ’U) ( )
Let Gy,G, € R™*" denote matrices of g, and g,, respectively. These gradi-
ents corresponds to the 1-st order differentiation of the surface Z € R™*" to
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be reconstructed. Therefore, with a differentiation matrix D € R?™"Xmn the
relationship can be written as

Dz =g, (23)

-1 17 -11
-1 17 -11

-1 17 -11

L,-norm
Input Ground truth minimization IRLS-LSQR-WS

L, Residual from ground truth

Computational time [sec.]

L, Residual from ground truth

Computational time [sec.]

j

L, Residual from ground truth 49.5 5.7
Computational time [sec.] 2.2 56.2

Fig.5. Surface reconstruction from normal maps by the proposed method (IRLS-
LSQR-WS)
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with the identity matrix I and pixel size h. Similar to [37], we consider that
there are outliers in normals that are 10 times larger than true normals and
10% of pixels are corrupted by them. In this setting, we consider the ¢;-residual
minimization to reconstruct the surface in the presence of outliers as

min | Dz — gl (24)

This problem, again, is a special case of the general norm approximation problem
(4), and our method can be applied to derive the solution z. We use three
different scenes, Bunny, Dragon, and Happy Buddha as target scenes for testing
this scenario. For comparison, we show the result of surface reconstruction by
fo-norm minimization as reference.

Figure 5 shows the reconstructed surfaces, ¢5-residual from the ground truth,
and computation times. The accuracy indicates the strength of ¢;-residual mini-
mization, but more importantly, our method is capable of handling any of these
formulations because of the generalized form of norm minimization (4).

6 Conclusions

We presented a fast general norm approximation that can be applicable to diverse
problem settings in computer vision. The proposed method (IRLS-LSQR-WS)
is assessed in comparison to other state-of-the-art techniques and shows the
favorable computation efficiency and accuracy at a time. In addition to the
numerical tests, we show application scenarios by taking photometric stereo and
surface reconstruction as examples to illustrate the usefulness of the general
norm approximation.

During the experiments, we found that the proposed method is advantageous
over IRLS-CG-WS in terms of stability, i.e., IRLS-CG-WS occasionally becomes
unstable when the condition number of the problem grows rapidly, while the
proposed method does not suffer from this issue. On the other hand, TRLS-
CG-WS tends to converge slightly faster when the design matrix A is sparse
compared to the proposed method. We are interested in studying this trade-
off by characterizing the problem by looking into the design matrix structure.
In addition, further acceleration by preconditioning for LSQR [38] is another
interesting venue to investigate.

Acknowledgement. This work was partly supported by JSPS KAKENHI Grant
Numbers JP16H01732 and JP26540085.
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