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Abstract. This paper presents a novel method to involve both spa-
tial and temporal features for semantic segmentation of street scenes.
Current work on convolutional neural networks (CNNs) has shown that
CNNs provide advanced spatial features supporting a very good perfor-
mance of solutions for the semantic segmentation task. We investigate
how involving temporal features also has a good effect on segmenting
video data. We propose a module based on a long short-term memory
(LSTM) architecture of a recurrent neural network for interpreting the
temporal characteristics of video frames over time. Our system takes as
input frames of a video and produces a correspondingly-sized output;
for segmenting the video our method combines the use of three compo-
nents: First, the regional spatial features of frames are extracted using
a CNN; then, using LSTM the temporal features are added; finally, by
deconvolving the spatio-temporal features we produce pixel-wise predic-
tions. Our key insight is to build spatio-temporal convolutional networks
(spatio-temporal CNNs) that have an end-to-end architecture for seman-
tic video segmentation. We adapted fully some known convolutional net-
work architectures (such as FCN-AlexNet and FCN-VGG16), and dilated
convolution into our spatio-temporal CNNs. Our spatio-temporal CNNs
achieve state-of-the-art semantic segmentation, as demonstrated for the
Camvid and NYUDv2 datasets.

1 Introduction

Semantic segmentation of video data is a fundamental task for scene understand-
ing. For many computer vision applications, semantic segmentation is considered
as being (just) a pre-processing task. Consequently, the performance of semantic
segmentation has a direct effect on subsequent computer vision solutions which
depend on it. Self-driving cars is one of the areas in technology that has received
much attention recently. These cars can detect surroundings using advanced
driver assistance systems (ADAS) that consist of many different systems such as
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radar, GPS, computer vision, and in-car networking to bring safety to driving
and roads. One of the main processes for the computer vision part of these
systems can be identified as being semantic segmentation of all objects in sur-
roundings to transmit accurate and complete information to the ADAS system
such that the system can make the best decision to avoid accidents.

Segmentation is typically approached as a classification problem. First, using
a set of labeled video frames, the characteristics of all segments (classes) are
learned. These characteristics are used for labeling the pixels of test frames [1,48].
Recently, deep learning methods, especially CNNs, ensured state-of-the-art per-
formance in different areas of computer vision, such as in image classification [23],
object detection [13], or activity recognition [38].

We consider the application of advanced features, extracted by using CNNs,
for semantic video segmentation. Semantic segmentation methods use both given
image data at selected locations as well as a semantic context. A set of pixels is
usually predicted as defining one class (or even one segment) if connected, and
also referring to one particular semantic interpretation.

Previous methods for video segmentation have efficiently exploited CNNs,
but they did not use temporal features; of course, temporal features can be
useful for interpreting a video semantically. For example, the authors of [1,48]
represented and interpreted video frames using a deep learning method, but
the main disadvantage of their methods is that they consider those frames as
being independent from each other. Neglecting the time dimension in video data
basically means that the given raw data are down-sampled without using fully
given information. Using temporal features can help the system to distinguishing,
for example, between two objects of different classes having the same spatial
features but showing differences in the time feature dimension.

Consequently, we propose a method which uses a similar paradigm for
extracting spatial features (as in the cited papers), but which differs by also
using temporal features (i.e., features of a continues sequences of frames). We
propose to identify components which can be embedded “on top” of spatially
extracted features maps in individual frames. Such a component can be seen
as being equipped with a set of memory cells which save the assigned regions
in previous frames. This allows us that relations between regions, available in
previous frames, can be used to define temporal features. We process the cur-
rent video frame by using the spatio-temporal output features of our processing
modules.

Similar to other segmentation methods, we use then some fully convolutional
layers to perform regional semantic classification. In our method, these fully
convolutional layers perform spatio-temporal classifications. Finally, we use a
deconvolution procedure for mapping (i.e., scaling) the obtained predictions into
the original carrier (i.e., the image grid) of the given frames for having a pixel-
wise prediction. See Fig. 1.

CNN-based methods usually combine two components, where one is for
describing and inferring a class of different regions of a video frame as a fea-
ture map, and another one for performing an up-sampling of the labeled feature
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Fig. 1. A spatio-temporal fully convolutional Alexnet architecture, later also to be
discussed in Sect. 4.1.

maps to the size of the given video frames. An advantage of our method is
that we can adjust and embed our proposed module into the end of the first
component (before inferring the labels) of current CNN-based methods as an
end-to-end network. We show that the proposed changes in the network lead to
an improvement in the performance of state-of-the-art methods, such as, FCN-8
[29] and dilated convolution [48].

The main contributions of this paper are as follows:

– The proposed method can be easily adapted for enhancing already published
state-of-the art methods for improving their performance.

– We propose an end-to-end network for semantic video segmentation in respect
to both spatial and temporal features.

– We propose a module for transforming traditional, fully convolutional net-
works into spatio-temporal CNNs.

– We outperformed state-of-the art methods on two standard benchmarks.

The rest of this paper is organized as follows. Top-ranked related work on seman-
tic video segmentation is reviewed in Sect. 2. Section 3 introduces the proposed
method. The performance of our method is shown in Sect. 4. Section 5 concludes
the paper.

2 Related Work

There is a wide range of approaches that have been published so far for video
segmentation. Some of them have advantages over others. These approaches can
be categorized based on the kind of data that they operate on, the method that
is used to classify the segments, and the kind of segmentation that they can
produce.

Some approaches focus on binary classes such as foreground and background
segmentation [2,4]. This field includes also some work that has a focus on anom-
aly detection [34,35] since authors use a single-class classification scheme and



496 M. Fayyaz et al.

constructed an outlier detection method for all other categories. Some other
approaches concentrate on multi-class segmentation [6,26,27,43].

Recently created video datasets provide typically image data in RGB format.
Correspondingly, there is no recent research on gray-scale semantic video seg-
mentation; the use of RGB data is common standard, see [11,21,26,27,46]. There
are also some segmentation approaches that use RGB-D datasets [16,17,30].

Feature selection is a challenging step in every machine learning approach.
The system’s accuracy is very much related to the set of features that are chosen
for learning and model creation. Different methods have been proposed for the
segmentation-related feature extraction phase.

2.1 Feature Extraction

We recall briefly some common local or global feature extraction methods in the
semantic segmentation field. These feature extraction methods are commonly
used after having super-voxels extracted from video frames [27].

Pixel color features are features used in almost every semantic segmentation
system [11,21,26,27,30]. Those includes three channel values for RGB or HSV
images, and also values obtained by histogram equalization methods. The his-
togram of oriented gradients (HOG) defines a set of features combining at sets
of pixels approximated gradient values for partial derivatives in x or y direction
[21,26]. Some approaches also used other histogram definitions such as the hue
color histogram or a texton histogram [46].

Further appearance-based features are defined as across-boundary appear-
ance features, texture features, or spatio-temporal appearance features; see
[11,21,26,27]. Some approaches that use RGB-D datasets, also include 3-
dimensional (3D) positions or 3D optical flow features [17,30]. Recently, some
approaches are published that use CNNs for feature extraction; using pre-trained
models for feature representation is common in [1,16,47].

After collecting a set of features for learning, a model must be chosen
for training a classifier for segmentation. Several methods have been provided
already for this purpose, and we recall a few.

2.2 Segmentation Methods

Some researches wanted to propose a (very) general image segmentation app-
roach. For this reason, they concentrated on using unsupervised segmentation.
This field includes clustering algorithms such as k-means and mean-shift [28], or
graph-based algorithms [11,17,21,45].

A random decision forest (RDF) can be used for defining another segmenta-
tion method that is a kind of a classifier composed of multiple classifiers which
are trained and enhanced by using randomness extensively [15,33]. The support
vector machine (SVM) [41] or a Markov random field (MRF) [36,44] are further
methods used for segmentation but not as popular as the conditional random
field (CRF) that is in widespread use in recent work [5,26,32].
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Neural networks are a very popular method for image segmentation, espe-
cially with the recent success of using convolutional neural network in the seman-
tic segmentation field. Like for many other vision tasks, neural networks have
become very useful [1,13,16,19,29,47].

Fully convolutional networks (FCNs) are one of the topics that interest
researchers recently. An FCN is based on the idea of extending a convolutional
network (ConvNet) for arbitrary-sized inputs [29]. On the way of its develop-
ment, it has been used for 1-dimensional (1D) and 2-dimensional (2D) inputs
[31,42], and for solving various tasks such as image restoration, sliding window
detection, depth estimation, boundary prediction, or semantic segmentation. In
recent years, many approaches use ConvNets as feature extractor [1,16,47]. Some
approaches turn ConvNets into FCNs by discarding the final classifier layer, and
convert all fully connected layers into convolutions. By this change, authors use
a front-end module for solving their vision tasks [1,13,16,19,29,47].

Recently, a new convolutional network module has been introduced by Yu
and Fisher [48] that is especially designed for dense prediction. It uses dilated
convolutions for multi-scale contextual information aggregation, and achieves
some enhancements in semantic segmentation compared to previous methods.
Kundu and Abhijit [24] optimized the mapping of pixels into a Euclidean feature
space; they achieve even better results for semantic segmentation than [48] by
using a graphical CRF model.

Many approaches that have been introduced in this field have not yet used
temporal features, especially in the field of deep CNNs [11,17,21,26,27,46].
These approaches cannot be identified as being end-to-end methods, which points
to an essential disadvantage when applying these approaches. Some approaches
use deep CNNs [16,24] by introducing an end-to-end architecture for also using
spatio-temporal features for semantic labeling. However, none of them can
change the size of time windows dynamically.

Long short-term memory (LSTM) is a memory cell module that was intro-
duced by [12,18]. It has many advantages such as the ability to support very
large time windows, the ability to change time windows dynamically, the ability
to handle noise, distributed representations, continuous values, and so forth. We
propose for the first time an approach that uses a deep CNN network with LSTM
modules as an end-to-end trainable architecture for semantic video segmentation
and labeling.

3 The Proposed Method

3.1 Overall Scheme

We have four key steps in our method as shown in Fig. 2. We feed the frame It
(i.e., the tth frame of a video), into a FCN network. This network down-samples
the input images and describes a frame It, defined on an image grid Ω of size
W × H, as a features set S1..m

t in m different maps. The input is It and the
output of the latest layer (i.e., of lowest resolution) of the FCN is S1..m

t of size
W ′ × H ′, where W ′ � W and H ′ � H. As a result, frame It is represented as
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Fig. 2. Overall scheme for our proposed end-to-end network architecture. The LSTMs
are used for inferring the relations between spatial features which are extracted from
the frames of the video. L is the number of LSTM units hidden nodes, and C is the
number of classes.

a feature set {S1..m
t }. Every point (i, j), with 1 ≤ i ≤ W ′ and 1 ≤ j ≤ H ′, in

S1..m
t is a descriptor of size m for a region (receptive field) in It.

We put our spatio-temporal module on top of the final convolutional layer.
So, feature set {S1..m

t } will be represented as a spatio-temporal feature set of
{ST 1..m

t }(i,j) by our spatio-temporal module. By applying an FCN classifier layer
on top of these features, we predict the semantic classes of these regions in the
video. Finally, we up-sample these predictions to the size of the It frame. In
following subsections, the methodologies that have been used in this approach,
will be described.

3.2 Fully Convolutional Network

Convolutional neural networks (CNNs) are applied for a large set of vision tasks.
Some researchers improve CNNs by changing its basic architecture and intro-
ducing new architectures. Recently, fully convolutional networks (FCNs) have
been introduced by discarding the final classifier layer, and by converting all
fully connected layers into convolutional layers. We follow this principle.

3.3 LSTM

A long short-term memory (LSTM) network is a special kind of recurrent neural
networks (RNNs) that have been introduced by [18] to solve the vanishing gradi-
ent problem and for remembering information over long periods. For an example
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Fig. 3. An example of a basic LSTM cell (left) and a basic RNN cell (right). Figure
follows a drawing in [8].

of a basic RNN and an LSTM cell, see Fig. 3. LSTMs are not confined to fixed-
length inputs or outputs, and this advantage makes them powerful for solving
sequential problems.

Each LSTM module consists of a memory cell and a number of input and
output gates that control the information flow in a sequence and prevent it from
loosing important information in a time series. Assuming St as the input of an
LSTM module at time t, the cell activation is as formulated in the following
equations:

it = σ(Wxixt + Whiht−1 + bi) (1)
ft = σ(Wxfxt + Whfht−1 + bf ) (2)
ot = σ(Wxoxt + Whoht−1 + bo) (3)
gt = φ(Wxcxt + Whcht−1 + bc) (4)
ct = ft � ct−1 + it � gt (5)
ht = ot � φ(ct) (6)

where σ and φ are symbols for a sigmoid and the tanh function, respectively.
Symbol ht ∈ RN denotes a hidden state with N units, and ct ∈ RN is the
memory cell. By it ∈ RN , ft ∈ RN , ot ∈ RN , and gt ∈ RN we denote the input
gate, forget gate, output gate, and input modulation gate at time t, respectively.
Symbol � stands for element-wise multiplication.

3.4 Spatio-Temporal Module

In regards to every W ′ × H ′ region of It, which is described by an FCN as an
Ω grid, an LSTM is embedded (see Sect. 3.1). Thus we have altogether W ′ × H ′

LSTMs. Element {S1..m
t }(i,j) defines a spatial characteristics of a region in the

It frame. These characteristics are given to LSTM(i,j) for processing; it infers a
relation with spatial features of equivalent regions in frames previous to frame It.
With this “trick”, both spatial and temporal features of a frame are considered.
(Note that LSTM(i,j)({S1..m

t }(i,j)) = {ST 1..m
t }(i,j)) where S and ST are spatial

and spatio-temporal features, respectively).
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We embed one LSTM for each region. Equation (7) shows a representation
of frame It with respect to our suggested spatial and temporal features:

Ω′
t(i, j) = (LSTM (i,j)(Ωt(i, j)) (7)

where the size of Ω′ is equal to that of Ω, and value m specifies a map which
assigns spatio-temporal features to every point for describing an equivalent
region (i.e., a segment) in It. Now, similar to other methods [1,29,48], the labels
for points in Ω′ are predicted and up-sampled to the frame at the original size.
The overall update function can be briefly specified as follows:

Ω′
t(i, j) = σ(Wxoxt + Whoht−1 + bo) � φ(ft � ct−1 + it � gt) (8)

Altogether, we introduced an operator layer to several LSTMs for properly rep-
resenting the temporal features.

This proposed network executes and processes the input frames as an end-
to-end network. Figure 2 shows the overall scheme of our method.

3.5 Deconvolution

Interpolation is a common method for mapping outputs into dense pixels. There
are several interpolation (or upsampling) algorithms such as bilinear, non-linear,
cubic, and so forth. Up-sampling by a factor k can be considered as being a
convolution with a fractional input stride of 1/k. As a result, a convolution
operator with input stride of 1/k can be applied backward (called deconvolution)
with a stride of k [29].

4 Experimental Results

For implementing our spatio-temporal fully convolutional network (STFCN) we
use the standard Caffe distribution [20] and a modified Caffe library with an
LSTM implementation.1 We merged this LSTM implementations into the Caffe
standard distribution and released our modified Caffe distribution to support
new FCN layers that have been described in [29]. Our code has been tested on
NVIDIA TITAN, and NVIDIA TITAN-X GPUs.2

To show the performance of our modified version of FCNs we use their imple-
mented models for two cases, with and without our spatio-temporal module. We
tested our STFCN networks on Camvid3 and NYUDv24 datasets. Our evalu-
ation methodology is as in other state-of-the-art semantic segmentation tests,
such as in [1,29].

1 Available at https://github.com/junhyukoh/caffe-lstm.
2 Our modified Caffe distribution and STFCN models are publicly available at https://

github.com/MohsenFayyaz89/STFCN.
3 Available at mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/.
4 Available at https://cs.nyu.edu/∼silberman/datasets/nyu depth v2.html.

https://github.com/junhyukoh/caffe-lstm
https://github.com/MohsenFayyaz89/STFCN
https://github.com/MohsenFayyaz89/STFCN
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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In the following, first we describe the way how we embed our spatio-temporal
module into FCNs and dilation convolution networks. Then we describe the
metrics used in the evaluation process. After that we report our experiments on
CamVid and NYUDv2. Finally, we discuss the performance of our method.

4.1 Embedding the Spatio-Temporal Module in FCN Networks

FCN-8 and FCN-32 [29] are fully convolutional versions of VGG-16 with some
modifications to combine features of shallow layers with more precise spatial
information with features of deeper layers which have more precise semantic
information.

As mentioned in Sect. 3, it is of benefit to embed the spatio-temporal module
on top of the deepest layers. Thus we embed our spatio-temporal module on top
of the fc7 layer of FCN-8 and FCN-32. The fc7 is the deepest fully convolutional
layer which has large corresponding receptive fields in the input image. This layer
extracts features which represent more semantic information in comparison to
shallower layers.

An example of this modification of an FCN-Alexnet is shown in Fig. 1. After
embedding our spatio-temporal module in FCN-8 and FCN-32 networks, we call
them STFCN-8 and STFCN-32. Our spatio-temporal module consists of LSTMs
with 30 hidden nodes and 3 time-steps for the CamVid dataset. We fine-tuned
our STFCN networks from pre-trained weights on PASCAL VOC [9] provided
by [29]. We used a momentum amount of 0.9, and a learning rate of 10e-5.

4.2 Embedding Our Module in Dilated Convolution Networks

A dilated convolution network is an FCN network which benefits from some
modifications such as reducing down-sampling layers and using a context module
which uses dilated convolutions. This module brings multi-scale ability to the
network [48].

The dilated8 network [48] consists of two modules, front-end and context.
The front-end module is based on a VGG-16 network with some modifications.
The context layer is connected on top of this module. The fc7 layer of the front-
end layer provides the main spatial features with 4,096 maps. This network has
an input of size 900 × 1, 100. Because of removing some of its down-sampling
layers, the fc7 layer has an output of size 66×91 which defines a high dimension
for spatio-temporal computations. For overcoming this complexity problem, we
down-sampled the output of this layer by a convolution layer to the size of 21×30,
and fed it to our spatio-temporal module. Then, the spatio-temporal features are
fed to a convolutional layer to decrease their maps to the size of the final layer
of the front-end module.

After resizing the maps, features are fed to a deconvolution layer to up-sample
them to the size of the final layer output (66 × 91). Finally, we fuse them with
the front-end final layer by an element-wise sum operation over all features.
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Fig. 4. Our STDilation8 model architecture

The fused features are fed to the context module. Let STDilated8 be the
modified version of dilated8; see Fig. 4. The spatio-temporal module of STDi-
lated8 consists of 30 hidden nodes of LSTMs with a time-step of 3. For training
this network, we fixed the front-end module and fine-tuned the spatio-temporal
and context modules with dilation8 pre-trained weights on CamVid. We used a
momentum amount of 0.9, and a learning rate of 10e-5.

For better performance of the spatio-temporal module, we down-sampled the
output of the fc7 layer of the dilation8 front-end module and fed it to the spatio-
temporal module. Then we reduced the feature maps by a fully convolutional
layer for a better description of the spatio-temporal features and make them the
same size as the final layer of the front-end module. Finally we up-sample and
fuse the spatio-temporal features with the final layer output and feed them into
the context module.

4.3 Quality Measures for Evaluation

There are already various measures available for evaluating the accuracy of
semantic segmentation. We describe most commonly used measures for accu-
racy evaluation which we have used to evaluate our method.

Mean Intersection over Union. Mean IU is a segmentation performance
measure that quantifies the overlap of two objects by calculating the ratio of the
area of intersection to the area of unions [22,46]. This is a popular measure since
it penalizes both over-segmentation and under-segmentation separately [36]. It
is defined as follows:

1
ncl

·
∑

i

nii

ti +
∑

j nji − nii
(9)

where nii is the number of pixels of class i that is predicted correctly as belonging
to class i, ti is the total number of pixels in class i, and ncl is the number of
classes.
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4.4 CamVid

The Cambridge-driving labelled video database (CamVid) [3] is a collection of
videos with object-class semantic labels, complete with meta-data. The database
provides ground truth labels that associate each pixel with one of 32 semantic
classes. Like in [39], we partitioned the dataset into 367 training images, 100 valida-
tion, and 233 test images. Eleven semantic classes are used in the selected images.

For FCN-8, FCN-32, STFCN-8, and STFCN-32, the images are down-
sampled to 400 × 400. For dilation8 and STDilation8, the images are
down-sampled to 640 × 480. As mentioned before, we used time-step 3 for our
spatio-temporal module which means that we feed a sequence of 3 frames to our
spatio-temporal networks.

The reason for choosing number 3 is that the annotated frames of CamVid
have a distance of 30 frames to each other. In fact when we use 3 frames as a
sequence, the first and last frame of the sequence have a distance of 90 frames.
Using more annotated frames is computationally possible because of the given
LSTM abilities, but it is semantically wrong because of the high amount of
changes in the frames.

Our results of FCNs and STFCNs tests on CamVid are shown in Table 1. It
appears that adding our spatio-temporal module into FCN networks shows an
improvement of their performance by close to one percent. Results for dilation8
and STDilation8 tests on CamVid are shown in Table 2. The effect of the spatio-
temporal module is here an improvement by 0.8%. Improvements are in both
cases not “dramatic” but consistent. Note that reports about improvements in the
semantic segmentation area are typically in the sub-one-percent range [24,29,48].

Table 1. Evaluating FCNs and STFCNs for video semantic segmentation on Camvid
(i.e., without or with our spatio-temporal module)

FCN-32s STFCN-32s FCN-8s STFCN-8s

Mean IU 46.1% 46.9% 49.7% 50.6%

Table 2. Evaluating dilated convolution networks, without or with our module on
Camvid

Dilation8 STDilation8 (90 Frames)

Mean IU 65.3% 65.9%

Dilation8 achieves the best results in comparison to other work, and this is
due to the power of multi-scale semantic segmentation. STDilation8 achieves
even slightly better results because of benefits from temporal features. Detailed
results on the CamVid test set are reported in Table 3. Our model outperforms
prior state-of-the-art work.
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Table 3 shows that some approaches are competitive to related work such
as Liu and He [26] with a performance superiority by 0.8 percent compared to
SegNet [1]. In contrast, other approaches with a new base architecture achieved
a better performance. Since our approach is based on FCN [29] or Dilation8
[48] methodologies, with our introduced spatio-temporal module, performance
enhancement is close to one percent on FCN network, and close to 0.8 percent on

Table 3. Our STDilation8 improves Dilation8 and outperforms prior work on Camvid

Building Tree Sky Car Sign Road Pedestrian Fence Pole Sidewalk Bicyclist Mean IU

ALE [25] 73.4 70.2 91.1 64.2 24.4 91.1 29.1 31.0 13.6 72.4 28.6 53.6

SuperParsing [40] 70.4 54.8 83.5 43.3 25.4 83.4 11.6 18.3 5.2 57.4 8.90 42.0

Liu and He [26] 66.8 66.6 90.1 62.9 21.4 85.8 28.0 17.8 8.3 63.5 8.50 47.2

SegNet [1] 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4

STFCN-8 73.5 56.4 90.7 63.3 17.9 90.1 31.4 21.7 18.2 64.9 29.3 50.6

DeepLab-LFOV [7] 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6

Dilation8 [48] 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3

Dilation + FSO [24] 84.0 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.1

STDilation8 83.4 76.5 90.4 84.6 50.4 92.4 56.7 36.3 22.9 75.7 56.1 65.9

Test
Samples

Ground
Truth 

Dilation8 

STDilation8

Fig. 5. Outputs on CamVid. Top to bottom rows: Test samples, ground truth, Dilation8
[48], and STDilation8
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Dilation8 architecture; both can be considered as a being a noticable enhance-
ment. Dilation + FSO [24] has been published recently based on Dilation8 archi-
tecture and became state-of-the-art video semantic segmentation method. Our
approach differs from FSO in several ways:

– Our approach does not need any pre-processing or feature optimization for
result enhancement. In contrast, FSO has used optical flow as a feature set
to be used by a CRF model. This is a computational operation which can
be considered as a weakness for a semantic segmentation method. Computa-
tion efficiency and speed is very crucial in some tasks, such as, online video
processing in advanced driver assistance systems. Some researches are ongo-
ing to resolve optical flow computational cost by using convolutional networks
[10].

– We used time-step 3 for our spatio-temporal module to use the CamVid
dataset annotations as-is without any preprocessing. This simplicity in design
and configuration, is one of the strengths of our work.

– Our approach proposes an end-to-end network for semantic video segmenta-
tion which consists of spatial and temporal features altogether.

– In our approach we proposed a neural network based module for transforming
traditional, fully convolutional networks into spatio-temporal CNNs. It can
also be used for other related video processing tasks.

Also, we embedded our spatio-temporal module into FCN-Alexnet and eval-
uated its performance with and without our spatio-temporal module. Our
spatio-temporal module improved its performance on CamVid dataset. Because
the basic FCN-Alexnet has a low performance for semantic segmentation as
described in [29], so we decided not to include details into this paper.

4.5 NYUDv2

The NYU-Depth V2 data set is comprised of video sequences from a variety of
indoor scenes recorded with an RGB-Depth camera [37]. It features 1,449 densely
labelled pairs of aligned RGB and depth images, including 464 new scenes taken
at three cities, and 407,024 new unlabeled frames (Fig. 5).

We selected this dataset to evaluate the effect of multi-modal learning on
our spatio-temporal module. Also, we tested our method on two totally different
datasets (outdoor vs. indoor) to evaluate its flexibility. One problem of this
dataset is that its annotated frames vary in length of sequences per subject
or location. Thus, for this dataset, we do not use a constant time step for the
spatio-temporal module. We fed sequences of different lengths based on their
location. This problem showed its effect on results by decreasing the amount of
improvements compared to none-temporal models.

Gupta et al. [15] coalesced NYU-Depth V2 into 40 classes. Similar to [29] we
report results on a standard split into 795 training images and 654 test images.
We selected our models based on [29] to be able to evaluate an embedding of our
spatio-temporal module into their models. We use FCN-32s RGB and FCN-32s



506 M. Fayyaz et al.

Table 4. Evaluating STFCNs, FCNs, and dilated convolution networks for semantic
video segmentation on NYUDv2

Network Pixel accuracy Mean accuracy Mean IU

Gupta et al. [14] 60.3% − 28.6%

FCN-32s RGB [29] 60.0% 42.2% 29.2%

FCN-32s RGBD [29] 61.5% 42.4% 30.5%

STFCN-32s RGB 60.9% 42.3% 29.5%

STFCN-32s RGBD 62.1% 42.6% 30.9%

RGBD models to embed our spatio-temporal module in the way as explained
before. Tests on NYUDv2 data are reported in Table 4.

Results show in this case the enhancement effect of the spatio-temporal mod-
ule on FCN-32s RGB and FCN-32s RGBD compared to the related networks
FCN-32s RGB and FCN-32s RGBD, respectively.

4.6 Discussion

We showed the power of our spatio-temporal module by embedding it into other
known spatial, fully convolutional networks. In fact we introduced a spatio-
temporal, fully convolutional network for extracting spatio-temporal features
from video data and evaluated it based on two semantic segmentation case
studies.

Our module benefits from the LSTM characteristics and is able to handle
long-short term sequences. In our tests we were only able to use a limited number
of video frames as being one sequence because of the limited number of available
annotated frames. The method should also be tested on datasets with more
extensive sets of annotated frames to check the effect of sequence length on the
performance of the system. It is possibly also of value to check the effect of
involving unannotated frames into input sequences by using prior or posterior
annotated frames in the system.

5 Conclusions

In this paper we proposed a new architecture for spatio-temporal feature extrac-
tion from video. We designed and used this architecture for semantic video seg-
mentation. First, a pre-trained CNN model was turned into an FCN model by
changing classification layers into fully convolutional layers. In this phase, spatial
features from input frames can be used for classification. But, in semantic video
segmentation, relationships between frames can provide very useful information
and enhance the accuracy of the segmentation program. Therefore, LSTM mod-
ules have been used to take advantage of temporal features. This architecture has
been proposed as an end-to-end trainable model and can also be used for other
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vision tasks. Also, it does not need to be a pre-processing or post-processing
module only, as we have seen in some other approaches.

We illustrated the performance of our architecture by embedding our spatio-
temporal module into some state-of-the-art fully convolutional networks, such
as FCN-VGG, and dilation convolution. Other types of LSTM modules have
been proposed recently and have shown promising results for some vision tasks.
Applying these newly proposed modules may enhance further the architecture
of our spatio-temporal module, e.g. for scene understanding, anomaly detection
in video, video captioning, object tracking, activity recognition, and so forth.
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