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Abstract. With the surging significance of personal health care, driver’s
physiological state is no longer negligible nowadays. Among all the indicators
of health state in human, heart rate (HR) is one of the most cardinal indicators.
The commonly used HR measurement is contact-type, might result in driver’s
distraction and discomfort in the vehicle applications. To cope with this prob-
lem, remote photoplethysmography (rPPG) is utilized to monitor HR at a dis-
tance via a web camera. Nevertheless, the rPPG is not without its flaw. The main
concern of the rPPG technique is the potential not-robustness result from the
arbitrary motion. Consequently, the contribution of this paper is to conquer the
motion noise when the car is driving and the driver’s health state is well
monitored to enhance the public safety. The proposed algorithm is investigated
in not only the indoor environment but as well the outdoor driving, which
contains much more unpredictable motion. With k-nearest neighbor
(kNN) classifier on chrominance-based features, the mean square error can be
reduced from 30.6 to 2.79 bpm, approaching the medical instrument level. The
proposed method can be applied to human improving driving safety for
Advanced Driver Assistance Systems.

1 Introduction

Advanced Driver Assistance Systems (ADAS) are utilized to assist drivers in their
driving process and have gathered increasing attention in the public recently. With
external and internal imaging process algorithms, applications of computer vision in
ADAS provide a more convenient and effective way to improve the intelligence of
vehicles.

The imaging processing to detect the driving behavior and/or healthy condition of a
driver has generated relatively little discussion in the considerable amount of research
work for vision-based ADAS around the vehicle. Health care of drivers, as a typical issue
of driver’s behavior, can be of enormous value to public traffic safety. Consequently, this
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work is to address the monitoring the driver’s health state by a camera to enhance the
public safety.

Along with the surging significance of personal health care, driver’s physiological
state is no longer negligible nowadays. Among all the indicators of health state in
human, heart rate (HR) is one of the most significant indicators. In contrast with
conventional techniques such as Electrocardiography (ECG), Photoplethysmography
(PPG) is one of the technique that is capable of not only avoiding the skin irritation but
as well providing a non-invasive and user-friendly recording. PPG, first described by
Alrick Hertzman in 1937 [1], provides an electro-optic technique that detects the
transmitted light on human’s skin. The measurement sensed the periodic variation of
light, which caused by the absorption difference when blood flows through the vessel
under the skin (Zijlstra [2], Cheang [3], Allen [4]). Owing to PPG’s simple, low-cost
and non-invasive properties, contact sensors are commonly used to detect the variation
of blood volume (e.g. the finger clipping device). Nevertheless, PPG is not without its
flaw. As the skin contact is still required in practice, it may not suit for all scenario in
real life (e.g. burn or contusion patient). Furthermore, applying PPG in vehicles to
detect drivers’ HR might cause drivers’ distraction and discomfort.

Recently, several work have reported that even with a distance, blood volume
variations during the cardiac cycle can also be detected from human’s face with a web
camera. This non-contact, image-based method for monitoring driver’s HR is an
exceptional approach that provides driver better flexibility and comfort experience
during driving. In this paper, we apply the computer vision method on vehicles in order
to estimate the driver’s health and elevate the driving safety without interfering driver.

Lately, a non-contact and remote heart rate measurement has published by Poh et al.
[5] who analyzed cardiac pulse from the three channel color video based on Independent
Component Analysis (ICA), which is known as a Blind Source Separation (BSS) tech-
nique, leading to remote PPG (rPPG). The basic thought of BSSmethod has been applied
to recover a clean signal (or called source) from a set of observations that are the linear
combinations of the implicit source. This concept was expanded by Lewandowska et al.
[6], who utilized Principal Component Analysis (PCA), a BSSmethod aswell, claimed to
reduce computational complexity in compared with ICA method. From that time, ample
relative BSS based work has been reported to evaluate the retrieved HR signal more
robustly from the video (Benjamin D Holton [7], Daniel Wedekind [8]). Mannapperuma
[9] illustrated a comparison of different ICA methods (Fast ICA, JADE ICA, RADICAL
ICA) and recorded the limitations of ICA-based HR detection in rPPG. Nonetheless, the
accuracy of rPPG technique was highly affected by the motion of the subject up to now.
To conquer the arbitrary motion challenge, Wenjin Wang [10] implemented face
detection and tracking technique, Farneback dense optical flow algorithm [11] and PCA
method to overcome the influence of global motion (due to face shifting and the rotating)
and local motion (due to blinking and talking). Hamed Monkaresi [12] replicated Poh’s
ICA method and implemented the machine learning technique aimed to improve the
robustness of subject motion in three different scenarios (resting, naturalistic HCI, in door
cycling). Though these BSS-based methods retrieved independent and clean sources
from the compound observations, there was no immediate way to determine which
separated signal is the HR signal. All previously published BSS-based literatures selected

464 B.-F. Wu et al.



the most periodic signal from a collection of the independent signal as HR signal,
resulting in distortion when arbitrary motion occurred.

de Haan and Jeanne [13] presented a chrominance-based rPPG (CrPPG) that
focused on improving motion robustness. They eliminated the component selection
issue, which mattered in the BSS-based method, by constructing a linear combination
of the normalized color signals orthogonal to the assumed distortions, regardless the
color of the illumination. After that time, abound relative works (de Hann [14], van
Gastel M [15]) have continued improving motion robustness based on CrPPG in indoor
cycling and stepping device scenario. Ren-You Huang [16] extended the concept of
signal recovery from CrPPG and integrated with the ICA method, trying to separate a
cleaner HR signal in indoor treadmill scenario from observation of face’s x-position,
y-position and CrPPG. Yung-Chien Hsu [17] also based on CrPPG method and utilized
support vector regression (SVR), a machine learning technique, for predicting HR more
accurately in indoor naturalistic HCI scenario.

Most of the previous work aimed to enhance the motion robustness of rPPG or
CrPPG in the indoor and controllable scenario; nonetheless, the restriction of the
scenario environment will limit the application of this promising technique. Conse-
quently, the aim of this paper is to provide an enhanced motion-robust rPPG technique
in different scenarios, especially the outdoor driving vehicles scenario for monitoring
driver’s heart rate in real time. In this paper, we reduce the noise result from artificial
motion by conducting Empirical Mode Decomposition (EMD) based on CrPPG
method and predict the HR by k-Nearest Neighbors (kNN), a machine learning tech-
nique for classification problem. The results confirm that the proposed algorithm can
reduce the error between the predicted HR and actual HR, which is detected by Scosche
Rhythm+ [18] during the experiment as ground truth. The accuracy of the proposed
algorithm reduce the error from 30.6 to 2.79 bpm in the outdoor and uncontrollable
sunlight environment during driving. The proposed application of rPPG on vehicles can
be applied in intelligent vehicles system and monitor the driver’s heart rate continu-
ously, ensuring driver’s health and safety without drivers’ awareness.

The remainder of this paper is organized as follows. Sections 2 and 3 introduce our
HR method and the experimental scenario respectively. The experimental results and
comparisons are illustrated in Sect. 4. Ultimately, conclusions are summarized in
Sect. 5.

2 Our Approach

In this section, the details of our algorithms are depicted. In addition, the estimation
problems and corresponding solutions are introduced as well. The diagram of the
proposed algorithm is shown in Fig. 1 First, a video sequence containing the partici-
pants’ face is regarded as the input images. Then, a time domain raw signal, CrPPG,
was obtained from the linear combination of the input’s RGB channel. For reducing
noise of raw signal, bandpass filter and Empirical Mode Decomposition (EMD) were
utilized. Ultimately, k-nearest neighbor (kNN) classification, the machine learning
based method, estimates HR from the frequency domain features. Each algorithm is
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discussed in detail in the following sections. All the experimental videos were recorded
by a web camera (Logitech C920R).

2.1 Face Detection and HR Signal Recovery

Heart rate detection based on rPPG requires monitoring the skin region, especially the
face. Dlib [19], the open toolkit commonly used in both industry and academia for a
wide range of domains, was used for frontal face detection. At first, the whole frame is
detected to figure out the entire face region as our region of interest (ROI). To lessen
the computational load, the face region of the latter frame is based on the 20%
expansion of the previous face ROI (fROI). The following HR estimation regard
proportion of the fROI, which denoted as pROI, as input images. Then we compute the
mean value of all pixels in pROI on R, G, B channels, which denoted as
lðRÞi; l Gð Þi; lðBÞi, where i ¼ 1; 2; 3; . . . representing the different frames. A realiza-
tion of de Haan and Jeanne’s CrPPG method linearly combines the three channels as
follows:

Xi ¼ 3lðRÞi � 2l Gð Þi and ð1Þ

Yi ¼ 1:5lðRÞi þ l Gð Þi�1:5lðBÞi ð2Þ

HR signal, denoted as S, computed by Eqs. (1) and (2) and illustrated as follows:

S ¼ Xf � aYf ð3Þ

with

a ¼ rðXf Þ
rðYf Þ ð4Þ

where rðXf Þ and rðYf Þ are the standard deviations of Xf and Yf , respectively, and Xf

and Yf are the length-64 collections of Xi and Yi. Nevertheless, the algorithm suffers
from several limitations of face detection. First, the angle of the face rotation might
exceed the limitation of the face detection algorithm. To cope with this kind of missing
face problem, we use skin detection based on the previous fROI to ensure the HR
signal’s continuity. Secondly, as a result of arbitrary motion, the pROI is not certainly
the exact same portion of face. Consequently, the noise reduction algorithms are
implemented.

Fig. 1. Flowchart of proposed machine learning method for HR extraction from video
recording.
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2.2 Filtering and Noise Reduction

The original CrPPG signal is frequently polluted by unpredictable channel noise,
especially in arbitrary motion scenario. Consequently, the noise reduction process is a
must-have. Two steps to eliminate the noise are summarized as follow. First, since
human HR is in the range between 0.7 Hz and 3Hz, an FIR Band Pass Filter
(BPF) along with Hamming Window is utilized to extract the HR signal. Secondly, as
the noise of which frequency band is the same as HR cannot be eliminated by the BPF,
Empirical Mode Decomposition (EMD) is utilized to split the polluted signal into HR
and noise.

For the design of BPF, the cutoff frequencies are 0.7 Hz and 3Hz with 128 order.
The time domain and frequency domain results are illustrated in Fig. 2(a). If there were
little noise, the peak frequency would represent the HR. Nonetheless, although the BPF
singles out the signal of which frequency energy lay on the range from 0.7 to 3 Hz,
there could still be some short duration but strong noise in the same frequency band, as
shown in Fig. 2(b). This sort of noise appears frequently in the motion scenario and
would confuse the choice of peaks frequency, leading to low estimation accuracy.

So as to reduce the unpredictable noise caused by arbitrary motion, EMD serves as
a nice filter to extract the main component of the signal. EMD is used to decompose the
signal to several unique intrinsic mode functions (IMFs) and one residue function. The
iteration is shown in Eq. (5).

~gðtÞ ¼
Xn

i¼1

IMFiðtÞþRnðtÞ ð5Þ

Where IMFiðtÞ is the ith IMF at time step t, RnðtÞ is the residue function at time step
t, and n is the number of EMD iterative. The EMD ensures that every IMF is

Fig. 2. The comparison of band passed signal and IMF in static and motion scenarios.
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symmetrical with zero mean and the same amounts of peaks and zero-crossing points.
With the EMD process, the main component of signal in the Fig. 2(b) is extracted as
illustrated in Fig. 2(c), making the peak frequency more lucid. As a result, compared
with the original band passed signal, the extracted IMF signal serves as more reliable
input variables of the following kNN process.

2.3 k-nearest Neighbor Classification and Prediction

Most of the previous work estimate their accuracy by comparing the max peak among
all frequency band (MPA, Maximum Peak among All) as an indicator. Nevertheless,
the channel noise in motion would distort the frequency response, resulting in several
pseudo peak frequencies. The kNN classifier [20] which figures out the closest distance
between the testing data and the categories of the training data is implemented in our
method. In contrast with MPA, kNN based frequencies selection is more resistant to the
distortion of signal. Due to kNN’s high accuracy and strong ability to classify unknown
and non-Gaussian distribution data, it is of high suitability to our study. Also, its simple
and instant property enhances the feasibility of abound real-time applications such as
ADAS.

The top five peaks of the FFT spectrum are regarded as the features for the kNN
classifier (k = 1). Since kNN is a supervised learning model, the real HR as well as
frequency features are required for training. With the assistance of EMD and bandpass
filter, the better features are extracted in the frequency band and enhance our classifier.
For each volunteer, 40000–45000 training data and 12000–13000 testing data are
recorded. With the predicted HR, a Kalman filter is utilized to achieve the smooth and
optimal estimation of real HR and avoid the unreasonable huge variation between short
time duration. Ultimately, the accuracy of our method is investigated by mean square
error (MSE), maximum error (ME) and root mean squared error (RMSE).

3 Experiment Setup

Our experiment contains three scenarios. The first and the second scenarios were
evaluated in an indoor environment. First, the participants were allowed to sit in front
of the computer casually. In the second study, participants were asked to sway their
bodies that caused strong artificial motion. The third study was measured in the driving,
at which encountered unpredictable artificial motion.

3.1 First scenario—Sitting Casually

Seven volunteers (five males and two females, age between 22 and 25) participated in
our first and second studies. All participants are seated in front of the same computer
running Windows 10 in an indoor environment. Video recording was carried out using
a web camera (Logitech C920R) mounted on the screen in front of the participants at
80 cm (see Fig. 3). The only illumination source was the ambient ceiling light. All
videos were recorded at 30fps in 24-bit RGB color at 1280 � 720 resolution and saved
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in BitMaP (BMP) format. During the experiment, video sequences and the real heart
rate were recorded simultaneously. Participants wore Scosche Rhythm+, which
inseparably banded on their wrist and transmitted with Bluetooth in 30 Hz, to get the
heart rate data when being video recorded. The participants were allowed to either
talking on the cell-phone or eating in front of the computer during the measurement.
The experiment duration was about 10 min for each participant.

3.2 Second scenario—Strong Artificial Motion

This study was conducted using the same instruments used in the first study. All the
participants were asked to swing their body so as to conduct a strong motion scenario.
This study was conducted using the same instruments used in the first study. The
movement even caused the face’s location to be variable. The location of the face was
recorded as X-axis (horizontal position) and Y- axis (vertical position). We measured
the range and the standard deviation of the face’s position as the indicator of the
motion. This experiment duration was approximately 10 min for each participant.

3.3 Third scenario—Car Driving

In this study, two males from above studies participated in the car driving with different
road section. Same camera was mounted on instrument panel below the front of the
driver at the distance of 80 cm. The frames captured by the camera were the driver’s
face with a slight elevation. Participants as well wore Scosche Rhythm+ to get the heart
rate data when being recorded (see Fig. 4). The driving involved flat and slightly uphill
asphalt road section in Hsinchu. Driver’s face swung while turning the vehicle or
sometimes driving through a bumpy road. The illumination source was sunlight that
shines in at the windshield. Two participants drove 4.4 and 5.2 km respectively. We
divided the driving process to serval intervals and classified in two states, one is the

Fig. 3. The experimental environment of the first and the second studies. The camera was
mounted on the computer in front of the participants. Scosche Rhythm+ is banded on participants’
wrist to get the heart rate data simultaneously when being video recorded.
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interval while driving and the other is the interval while waiting at the traffic light. Two
participants drove in different road section and divided to separate intervals recorded in
Tables 1 and 2, respectively.

Fig. 4. The experimental environment of the third study. The camera was mounted on
instrument panel below the front of the driver. Scosche Rhythm+ is also banded on participants’
wrist to get the heart rate data simultaneously when being video recorded.

Table 1. Frames of each interval and the traffic states for the first participant are recorded as
below.

# of frames State

Interval I 5290 Driving
Interval II 4580 Stops at the traffic light
Interval III 4220 Driving
Interval IV 3810 Stops at the traffic light
Interval V 2500 Driving

Table 2. Frames of each interval and the traffic states for the second participant are recorded as
below.

# of frames State

Interval VI 2700 Driving
Interval VII 800 Stops at the traffic light
Interval VIII 7800 Driving
Interval IX 1700 Stops at the traffic light
Interval X 2100 Driving
Interval XI 800 Stops at the traffic light
Interval XII 9159 Driving
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4 Experimental Results

For each participants, the kNN model consisted of 200000–225000 training data. The
testing data used the user-dependent training model to estimate the HR. According to
the experimental setup, there are three scenario leaving for discussion. The mean
square error (MSE), maximum error (ME) and the root mean square error (RMSE)
between the predicted HR and the ground truth are regarded as performance criteria. In
the meantime, the comparison with MPA, which is commonly used in other rPPG
works to compare the efficiency, is illustrated.

4.1 Result for Sitting Casually

For the first scenario, participants were asked to act normally like eating or talking on
the cellphone in front of the camera, which is mounted on top of the computer. The
video sequence of each participant consists of 8800–12300 frames as testing data. The
standard deviation of the x and y coordinates, representing face’s movement of all
participants were 11.1 and 2.85 pixels respectively. Though the face movement of each
participant was quite small, the MSE of the MPA method still can up to 13.05. The
noise reduction method can eliminate the wrong feature for training the kNN model.
MSE of the model can be reduced to 2–4 bpm, compared to 3–13 bpm of MPA (see
Table 3).

Table 3. This table shows the motion level by recorded the face movement of each participant
in the first scenario. Therefore, the comparison of our proposed method and MPA was measured
in MSE, ME and RMSE.

ID #of frames Range of x Std of x Range of y Std of y Method MSE ME RMSE

1 9201 94 6.4 96 1.7 MPA 5.00 55.21 0.02
kNN 3.23 14.5 0.008

2 12310 203 16.3 123 2.4 MPA 13.05 42.01 0.02
kNN 4.32 12.41 0.048

3 8801 196 13.2 158 3.4 MPA 10.30 49.62 0.047
kNN 3.30 11.23 0.041

4 9101 179 10.2 193 4.2 MPA 3.61 15.62 0.037
kNN 2.00 6.89 0.024

5 9880 211 10.6 154 3.8 MPA 9.81 50.34 0.03
kNN 3.41 11.3 0.007

6 10300 262 11.3 169 2.9 MPA 11.61 44.50 0.04
kNN 2.29 12.68 0.013

7 9760 164 9.8 106 1.6 MPA 10.16 38.51 0.069
kNN 2.91 10.67 0.037
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4.2 Result for Strong Artificial Motion

For the second scenario, participants were asked to swing their body so as to conduct a
strong motion scenario with the same instruments in first scenario. The goal of this
experimental setup was to evaluate the robustness of our HR method with strong
artificial motion. The video sequence of each participant regards 9100–10500 frames as
testing data. The standard deviation of the x and y coordinates representing the face’s
movement of all participants were 46.1 and 14.37 pixels respectively, which were
much stronger than that in the first scenario. The strong motion of the face would lead
FFT spectrum of the time sequences into chaos. MPA regards the strongest but the
wrong peak in the distorted spectrum as HR and the MSE could arise up to 26 bpm.
With the user-dependent model, kNN method predicts the HR that’s more suitable for
corresponding user. The MSE of our proposed method can reduced to 2–8 bpm in
comparison with 15–26 bpm of the MPA method (see Table 4).

4.3 Result for Car Driving

In the third scenario, two participants drove the same vehicle in different road section.
One drove 4.4 km and the other drove 5.2 km, and the recorded video contains 20501
and 25326 frames respectively. Therefore, the driving was divided into serval intervals
and two states, one state is the intervals recorded in driving scenario and the other is the
interval recorded while waiting at the traffic light. The MSE, ME and RMSE for each
interval are regarded as the performance criteria. The same devices of the previous
scenarios are used, but the position of the camera was below the front of the participant

Table 4. This table shows the stronger motion level compared with the first scenario. Therefore,
the comparison of our proposed method and the MPA method was measured in MSE, ME and
RMSE.

ID #of frames Range of x Std of x Range of y Std of y Method MSE ME RMSE

1 10565 229 21.3 73 6.7 MPA 20.78 49.21 0.247
kNN 8.95 23.81 0.102

2 10400 361 49.6 196 15.3 MPA 15.19 54.01 0.179
kNN 2.75 13.10 0.03

3 9135 413 51.2 217 13.4 MPA 26.24 65.81 0.298
kNN 2.59 11.56 0.036

4 9700 395 56.1 226 16.2 MPA 15.23 59.21 0.214
kNN 7.79 27.12 0.116

5 10100 334 53.9 234 19.7 MPA 24.31 67.21 0.243
kNN 2.44 10.43 0.041

6 9665 449 54.6 236 17.0 MPA 15.62 51.30 0.164
kNN 6.62 19.6 0.093

7 9890 294 36.4 116 12.3 MPA 24.3 49.80 0.261
kNN 2.23 10.62 0.039
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that mounted on instrument panel. The goal of this experimental setup was to evaluate
the feasibility of the proposed algorithm in an outdoor driving scenario.

The standard deviation of the x-direction movement of the first and the second
participant were 20.54 and 13.7 pixels, and 6.59 and 10.6 pixels in y-direction
respectively. We used the same training model as the previous scenarios, and the
recorded data were tested by participants’ own model for predicting HR. With the
proposed algorithm, the result shows the advance of robustness in uncontrollable
motion during car driving. The MSE can reduce to 2–6 and 3–7 bpm for the first and
the second participant respectively. The corresponding intervals and the MPA method’s
MSE are recorded in Tables 5 and 6. Figures 5 and 6 depict the ground truth which

Table 5. We divided five intervals for the first participant’s car driving. The error measurements
for each interval were reported in this table.

Interval #of
frames

Range
of x

Std of x Range
of y

Std of y Method MSE ME RMSE

I 5290 143 22.6 38 6.47 MPA 30.6 68.0 0.46
kNN 2.79 7.27 0.04

II 4580 161 16.7 36 4.81 MPA 22.9 51.2 0.39
kNN 4.1 11.5 0.07

III 4220 130 20.4 38 5.97 MPA 28.1 64.2 0.50
kNN 3.57 12.6 0.06

IV 3810 145 21.2 86 9.32 MPA 20.5 60.2 0.41
kNN 5.62 14.0 0.10

V 2500 155 21.8 46 6.41 MPA 24.1 55.4 0.54
kNN 6.61 13.4 0.14

Fig. 5. The red bold line represents the first driver’s real HR and the blue dotted line is the HR
predicted by our method. The compared method, MPA, is illustrated in green solid line and
suffered abruptly drop and climb during the process (Color figure online).
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denoted as the red bold line, the HR predicted by our method and MPA method which
denoted as the blue dotted line and green solid line respectively for each participants.
According to the figures, the HR predicted by the MPA method suffered some suddenly
drop and climb during the car driving. While the HR evaluated by our method was not
exactly equal to the ground truth, it closely follows the trend of real HR with higher
accuracy. The final result and monitoring user interface was illustrated in Fig. 7.

Table 6. We divided seven intervals for the first participant’s driving. The error measurements
for each interval were reported in this table.

Interval #of
frames

Range
of x

Std of x Range
of y

Std of y Method MSE ME RMSE

VI 2700 100 12.9 54 9.19 MPA 11.3 40.4 0.27
kNN 6.48 17.3 0.13

VII 800 82 10.6 51 9.67 MPA 12.6 46.1 0.31
kNN 5.39 13.5 0.11

VII 7800 68 9.68 55 10.03 MPA 11.2 50.2 0.16
kNN 3.58 13.2 0.05

IX 1700 128 21.2 66 11.3 MPA 10.0 29.4 0.32
kNN 4.15 8.70 0.11

X 2100 74 11.0 64 10.9 MPA 14.3 33.4 0.36
kNN 3.87 11.2 0.10

XI 800 34 8.21 53 12.4 MPA 17.9 38.4 0.70
kNN 7.53 16.6 0.32

XII 9195 128 22.9 64 10.9 MPA 14.0 44.4 0.17
kNN 4.35 17.0 0.05

Fig. 6. The red bold line represents the first driver’s real HR and the blue dotted line is the HR
predicted by our method. Our method can predict the trend of HR with enhanced accuracy in
compared with MPA method, which is illustrate in green solid line (Color figure online).
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5 Conclusions and Future Work

In this paper, rPPG and our approach are investigated in three different scenarios: an
indoor room with the participants sitting static and with strong motion respectively, and
the outdoor car driving. To transfer the HR monitoring system from the indoor scenario
to an outdoor vehicle requires the stronger anti-interference ability. Consequently, the
goal of this paper is to improve motion robustness and increased the feasibility of rPPG
method in vehicle application, in which the motion is stronger and unpredictable. To
cope with the uncontrollable noise, the user-dependent kNN classifier can customize
the HR for each user and reduce abruptly drop and climb phenomena as seen in the
MPA method. The new approach of the machine learning based rPPG yields the more
accurate and reliable result, reducing the RMSE from 0.208 to 0.036.

Although the accuracy of the proposed approach is increased, we still need to
evaluate HR more precisely in other environment conditions. That is, the light changes
as well affect the time domain signal during the car driving. So our next investigation
will also determine the illuminance source variation in the outdoor environment. In
addition, kNN is user-dependent classifier; therefore, the training process for new user
is still required. The total solution of the classification model for every user should be
considered in our future progress.

In conclusion, with the proposed internal imaging process, the algorithm is bene-
ficial for ADAS. In contrast with contact-type HR sensors, the proposed rPPG can
estimate the HR without the concern of distraction and discomfort. The application of
computer vision in monitoring driver’s heart rate can ensure driver’s health and
enhance the safety in public.

Acknowledgement. This work was supported by Ministry of Science and Technology under
Grand no. MOST105-2622-E-009-013-CC2.

Fig. 7. This figure shows the user interface of the proposed HR monitoring system.
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