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Abstract. Also recently, exciting strides forward have been made in
the area of image restoration, particularly for image denoising and single
image super-resolution. Deep learning techniques contributed to this sig-
nificantly. The top methods differ in their formulations and assumptions,
so even if their average performance may be similar, some work better
on certain image types and image regions than others. This complemen-
tarity motivated us to propose a novel 3D convolutional fusion (3DCF)
method. Unlike other methods adapted to different tasks, our method
uses the exact same convolutional network architecture to address both
image denoising and single image super-resolution. Our 3DCF method
achieves substantial improvements (0.1 dB–0.4 dB PSNR) over the state-
of-the-art methods that it fuses on standard benchmarks for both tasks.
At the same time, the method still is computationally efficient.

1 Introduction

Image restoration is concerned with the reconstruction/estimation of the uncor-
rupted image from a corrupted or incomplete one. Typical corruptions include
noise, blur, down-sampling, hardware constraints (e.g. Bayer pattern) and combi-
nations of those. After decades of research there is a large literature [1] dedicated
to restoration tasks, whereas the literature studying the fusion of restoration
results is thin [2]. In this paper we tackle such fusion as a means for further
performance improvements. Particularly, we propose a 3D convolutional fusion
(3DCF) method and validate it on image denoising and single image super-
resolution.

1.1 Image Denoising (DN)

Natural image denoising aims at recovering the clean image given a noisy obser-
vation. The most often studied case is when the image corruption is caused by
additive white Gaussian (AWG) noise with known variance. Also, the images are
assumed to be natural, capturing every-day scenes, and the quantitative measure
for assessing the recovery result is the peak signal-to-noise ratio (PSNR), which
stands in monotonic relation to the mean squared error (MSE).
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The most successful denoising methods employ at least one of the following

Denoising principles as listed in [3]: Bayesian modeling (coupled with
Gaussian models for noiseless patches), transform thresholding (assumes sparsity
of patches in a fixed basis), sparse coding (sparsity over a learned dictionary),
pixel or block averaging (exploits image self-similarity).

Most denoising methods work at a single image scale, the finest one, and often
a small image patch is the basic processing unit. The patch captures local image
information for a central pixel and a statistical amount of uncorrupted pixels.
Zontak et al. [4] recently opened up a fresh research direction by proposing a
method based on patch recurrence across scales (PRAS). Another partition of
the methods is based on whether only the noisy image is used, or also learned
priors and/or extra data from other (clean) natural images. This leads to internal
and external methods. Some well known examples of each are:

Internal denoising methods:
NLM (non-local means) [5] reconstructs a noisy patch with a weighted average
of similar patches from the same image. It uses the image self-similarity and the
fact that the noise is usually uncorrelated.
BM3D (block matching 3D) [6] extends NLM and the DCT denoising
method [7]. BM3D groups similar patches into a 3D block, applies 3D linear
transform thresholding, and inverses the transform.
WNNM (weighted nuclear norm minimization) [8] follows the self-similarity
principle, and applies WNNM to recover the noiseless patch from a matrix of
stacked non-local similar patch vectors.
PRAS (patch recurrence across scales) [4] creates (an)isotropic image scale pyra-
mids and extracts the estimated (noiseless) patch from the same corresponding
position but at a different scale.
PLE (piecewise linear estimation) [9] is a Bayesian restoration model, including
denoising, deblurring, and inpainting. PLE employs a set of 19 Gaussian models
obtained from synthetic edge images (as priors) and an estimation-maximization
iterative procedure.

External denoising methods:
EPLL (expected patch log likelihood) [10] can be seen as a shotgun extended
version of PLE. It learns a Gaussian mixture model with 200 components for 2
million clean patches sampled from external natural images, and tries to maxi-
mize the expected log likelihood of any randomly chosen patch in the image.
LSSC (learned simultaneous sparse coding) [11] adapts a sparse dictionary
learned over an external database by adding a grouping step to the noise image.
MLP (multi-layer percepton) [12] learns from an external database with clean
and noisy images, and was among the first to introduce neural networks to low
level image restoration tasks.
CSF (cascade of shrinkage fields) [13] proposes shrinkage fields, combining the
image model and the optimization algorithm as a whole. The time complexity
is greatly reduced by inherent parallelism.
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opt-MRF (Loss-Specific Training of Filter-Based MRFs) [14] revisits loss-
specific training and uses bi-level optimization to solve the image restoration
problem.
TRD (trained reaction diffusion) [15] extends the solving process of nonlinear
reaction diffusion to a deep recurrent neural network, outperforms many of the
aforementioned methods, while offering the lowest time complexity for now.

It is quite surprising that most of the recent top denoising methods (such
as BM3D, LSSC, EPLL, PRAS, and even WNNM) face a plateau. They per-
form equally well for a large range of noise, despite that they are quite different
in their formulations, assumptions, and information used. This is the reason
behind the recent work that fuses them, pushing the limits by combining differ-
ent approaches [16,17]. We refer the readers to [2] for a study of image fusion
algorithms of the past decades. Others investigated the theoretical limits for
denoising with natural image patch priors [18], and at least for the lower noise
levels, the gap between the most successful methods and the predicted limits
seems to rapidly diminish.

Fusion methods:
PatchSNR (patch signal-to-noise ratio). Mosseri et al. [19] propose a patch-wise
signal-to-noise-ratio to distinguish whether an internal or an external denoising
method should be applied. Their fused result slightly improves over the stand-
alone methods.
RTF (regression tree fields). Jancsary et al. [16] observe that depending on the
image content some methods perform better than other. They consider RTFs
based on a filterbank (RTFplain), also additional exploitation of BM3D’s out-
put (RTFBM3D), or a setting exploiting all the outputs of their benchmarked
methods (RTFall). The more methods the better their fusion result. The RTFs
are learned on large datasets. It is also worth mentioning that following [16],
Schmidt et al. [20] propose a cascade of regression tree fields (CRTF) working
on deblurring and denoising and obtain good performances in both cases.
NN (neural nets/multi-layer perceptron). Burger et al. [17] pursue the success of
MLP [12] in denoising, to learn the best fusion. They found the internal denois-
ing methods to suit better images with artificial (human-made) contents, and
external ones to work better for natural scenes. They argue against PatchSNR
and consider that there is no trivial rule to decide among internal or external
method on a patch-by-patch basis, and indeed their NN fusion produces the best
denoising results to date. Unfortunately, the learning is quite intensive.
AF (anchored fusion). Timofte [21] clusters the patch space and for each cluster
learns an anchored regressor from fused methods’ patches to the fusion output.

1.2 Single Image Super-Resolution (SR)

Single image super-resolution (SR) is another active area [22–27] of image
restoration aiming at recovering a high-resolution (HR) image from a low-
resolution (LR) input image by inferring missing high frequency contents. We
can roughly categorize the recent methods in:
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Non-neural network methods:
SR (sparse representation) [28] generates a sparse representation/coding of each
LR image patch, and then applies the coefficients of this representation to gen-
erate the HR image.
A+ (adjusted anchored neighborhood regression) [29], considered to be an
advanced version of ANR (anchored neighborhood regression) [30], learns sparse
dictionaries and regressors anchored to the dictionary atoms.
RFL (super-resolution Forests) [31] maps low to high-resolution patches using
random forests and anchored regressors as in A+.
selfEx (transformed self-exemplars) [32] introduces a self-similarity based image
SR algorithm by applying transformed self-exemplars.

Neural network methods:
SRCNN (convolutional neural network) [33] learns an end-to-end mapping
between the low/high-resolution images by a deep convolutional neural network.
CSCN (cascade of sparse coding network) [24] combines the key ingredients of
deep learning with those of the sparse coding model.

1.3 Contributions

In this paper, we study the patch-by-patch fusion of image restoration methods
with particular focus on recent top methods for both DN and SR tasks. To this
end, we propose a generic 3D convolutional fusion architecture (3DCF) to learn
the best combination of existing methods. Our three main contributions are:

1. We show the complementarity of different methods (e.g. internal vs. external).
2. We demonstrate that our method learns sophisticated correlation details from

top methods to achieve the best reported results on a wide range of images.
3. The generality of our 3DCF method for both DN and SR.

The paper is organised as follows. Section 2 provides some insights and empir-
ical evidence for the complementarity of the DN/SR methods and analyses oracle
bounds for fusion. Section 3 motivates and introduces our novel 3DCF method
with the necessary details and mathematical formulations. Section 4 presents the
experiments and discusses the results. Section 5 concludes the paper.

2 Insights

Our focus is fusion for improved image restoration results and particularly for
denoising in the presence of additive white Gaussian noise (AWG), with valida-
tion on single image super-resolution. Here we analyse the complementarity of
the restoration methods and fusion strategies.
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2.1 Complementarity of Top Methods

Jancsary et al. [16], Burger et al. [17], and Zontak and Irani et al. [4], among
others, already observed that each method works best for some particular image
contents while being worse than others for other image regions.

First, we pair-wise compare the PSNR performances of BM3D (internal
method), and MLP and TRD (external methods) on 68 images from the
Berkeley dataset for AWG noise with σ = 50. The relative improvements (PSNR
gain) are reported in Fig. 1. MLP is better than BM3D on all images but is worse
than TRD on ∼40% of them. Also, BM3D is better than TRD on some images. We
conclude there is no absolute winner at image-level.

Second, we compare pixel-wise or patch-wise and see that within the same
image there is no absolute winner always getting the best result either. In Fig. 2
for one image altered with AWG noise, σ = 50, we report pixel-wise selections
from BM3D (25.77 dB PSNR) and MLP (26.19 dB) to best match the ground
truth image. Despite MLP being significantly better (+0.41 dB) on denoising this
image, at pixel-level the results are almost equally divided between the methods.
At patch-level (sizes 5 × 5 and 17 × 17 pixels) we have a similar pattern.
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(a) MLP vs. BM3D (b) MLP vs. TRD (c) TRD vs. BM3D

Fig. 1. No absolute winner. Each method is trumped by another on some image.

Ground truth BM3D (25.77dB) MLP (26.19dB) pixel-wise (27.01dB)

5x5 patch (26.46dB) 5x5 patch overlapped (26.52dB) 17x17 patch (26.27dB) 17x17 patch overlapped (26.32dB)

Fig. 2. An example of oracle pixel and patch-wise selections from BM3D and MLP
outputs and the resulting PSNRs for AWG with σ = 50.
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2.2 Average and Selection Fusion and Oracle Bounds

As shown in Fig. 1 for images and in Fig. 2 for patch or pixel regions, the denois-
ing methods are complementary in their performance. Now we study a couple of
fusion strategies at image level.

Average fusion directly averages the image results.
Selection of non-overlapping patches assumes that the fusion result contains
non-overlapping (equal size) patches with the best image results of the fused
methods (see Fig. 2). One needs to learn a patch-wise classifier.
Selection of overlapping patches is similar to the above one in that a patch-
wise decision is made, but this time the patches overlap. The final fusion result
is obtained by averaging the patches in the overlapped areas (see Fig. 2).

We work with BM3D and MLP, partly because BM3D is an internal while
MLP is an external method, and partly because of the result in Fig. 1 where at
image level MLP performs better than BM3D. Therefore, the results from fusing
BM3D and MLP at patch-level are interesting to see.
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Fig. 3. Average PSNR [dB] comparison of
BM3D [6] and MLP [12], average fusion,
oracle selection of (overlapping or non-
overlapping) patches, and our 3DCF fusion
on 68 images, with AWG noise, σ = 50.
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Fig. 4. Average PSNR [dB] compari-
son of A+ [29] and CSCN [24], average
fusion, oracle selection of (overlapping or
non-overlapping) patches, and our 3DCF
fusion on Set14, upscaling factor ×2.

In Fig. 3 we report how the chosen patch size affects the performance of a
selection strategy, on the same Berkeley images corrupted with AWG noise, σ =
50. We report oracle results, an upper bound for such a strategy. In comparison
we report the performance of the fused BM3D and MLP methods, as well as the
results of the average fusion and our proposed 3DCF method. We note that (i)
overlapping patches lead to better results (while significantly slower) than non-
overlapping patches; (ii) the smaller the patch size the better the oracle results
become; (iii) the average fusion leads to poorer performance than the fused MLP
method; (iv) our 3DCF fusion results are comparable with those from the oracle
selection strategies for patch sizes above 9 × 9.

Complementary, in Fig. 4 we start from the A+ and CSCN methods for the
super-resolution (SR) task, where we use the Set14 images and an upscaling
factor ×2 (we use the settings described in the experimental section). As in the
denoising case, (i) the smaller the patch size is, the better the oracle selection
results get; (ii) the overlapped patches lead to better fusion results. However, for
SR, (iii) the average fusion improves over both fused methods; (iv) our 3DCF
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fusion is significantly better than the fused methods, the average fusion, and
compares favorably to the oracle selection fusion for patch sizes above 5 × 5.

From these experiments we can conclude that the average and (patch) selec-
tion strategies for fusion - while conceptually simple - are either not leading
to consistently improved results (case of average fusion) or their oracle upper
bounds are quite tight given the difficulty of accurately classifying patches (case
of selection strategy). Note that PatchSNR [19] is an example of a selection strat-
egy and that NN [17], a neural network fusion method, reported better results
than PatchSNR.

We therefore followed the combination paradigm for image fusion and design
and trained an end-to-end 3D convolutional network from the results of two
methods to the targeted restored image.

3 Learning Fine Features by 3D Convolution

3.1 Motivation and Related Work

Most of the existing neural network architectures apply spatial filters which
address inputs such as 2D images. When it comes to videos, thus 3D inputs, these
2D convolutional neural networks (2DCNN) do not employ crucial information
such as the temporal correlation. For example, in human action recognition, the
motion information is not captured by 2DCNNs and Ji et al. [34] introduced
a 3D convolutional neural network (3DCNN) method (see Fig. 5). The 3DCNN
architecture has 1 hardwired layer, 3 convolutional layers and 2 subsampling
layers. The spatial dimension of inputs 60 × 40 are gradually reduced to 1 × 1
by going through the network, i.e. 7 input frames have been converted into a
128-dimensional feature map capturing also the motion information. In the end,
each element of the 128-dimensional feature map is fully connected to each unit
in the last layer, then the action class is determined.

For performance improvements a brute force approach that proved successful
is to deepen the (neural network) architecture [15,24]. Yet, the improvements
decline significantly with the depth while the training time and the demand of
hardware (GPU) resources increase. For example, experiments reported in [15]
demonstrate that the bulk of the performance is achieved by the first stages
in their denoising TRD method while the last 3 stages (from 8) bring merely
0.01 dB to it. In [22] it is shown for SR methods that the first stages are the most

Fig. 5. 3DCNN proposed in [34] for human action recognition.
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important and that adding more stages only slightly improves the performance
(of A+) further.

On the other hand, for image restoration tasks such as SR it is common to
recover the corrupted luminance component instead of the RGB image directly,
and to interpolate the chroma. However, exploiting the correlation between cor-
rupted RGB or even extra channels such as depth (D) or near-infrared (NIR)
should be beneficial to the restoration task at the price of increased computation.
For example, for denoising, Dabov et al. [35] apply the same grouping method
on chroma channels as on the luminance, and they achieve better PSNR perfor-
mances than by using BM3D [36] independently on three channels. To sum up,
given several highly correlated (corrupted) channels/images, we have a better
chance to high quality recovery.

It follows that we can consider the outputs of state-of-the-art methods as
highly correlated images, which can be treated as the starting point of our pro-
posed novel 3D convolutional fusion (3DCF) architecture.

3.2 Proposed Generic 3D Convolutional Fusion (3DCF)

General Architecture. As the starting point, we obtain several recovered
outputs {Ii}i=1,...,n from the same corrupted image, with different methods. We
stack those highly correlated images along the channel dimension, which brings
us a multichannel image Ia = [I1, I2, . . . , In] (see Fig. 6).

Furthermore, since directional gradient filters are sensitive to intensity
changes and edges, and our task is about recovering fine image details based
on the results of existing methods, hence the correlation between the recovered
output image and its gradients can be exploited. To this end, we firstly have
the naive average input image Ī = 1

n

∑n
i=1 Ii, then filter it with the first- and

second-order gradients, in both the x and y direction,

F1x =
[
1 −1

]
= FT

1y,

F2x =
[
1 −2 1

]
/2 = FT

2y,
(1)

Fig. 6. Proposed 3D convolutional fusion method (3DCF).



Generic 3D Convolutional Fusion for Image Restoration 167

followed by stacking those gradient filtered- and average images along the channel
dimension, we have another input Ib as our second starting point,

Ib = [F2x ∗ Ī,F1x ∗ Ī, Ī,F1y ∗ Ī,F2y ∗ Ī]. (2)

Next, we intensively explore the correlation within Ia, Ib by introducing the
3D convolutional layer. Related recent works such as [15,24,33] mainly exploit
deep features with spatial filters. In that case, given the image has multiple chan-
nels, they are independently filtered and eventually summed up as the input for
the next layer, while the correlations among the channels may not be accurately
captured. That is the main reason behind our idea – to fully explore the fine
details along the channel dimension. As far as we know, this is the first time
that a 3D layer is introduced to address low level image tasks.

Our next step is to update the input images Ia,b1 with a 3D hidden layer,

Ha,b
1 (Ia,b) = tanh(Wa,b

1 ∗ Ia,b + Ba,b
1 ), (3)

where Wa,b
1 correspond n 3D filters with c×h×w kernel size and Ba,b

1 are biases.
In our design, due to a tradeoff between the memory constraint and speed, we
recommend n and c×h×w to be 32 and 3× 5× 5 for Ib, along with setting pad
to be 0, so that we have the output with same size as input. The default size
of filters regarding Ia showed in Fig. 6 are also determined for the same reason.
Besides we use hyperbolic tangent (tanh) as activation function because we allow
negative value updates to pass through the network rather than ignore them as
ReLU [37] does. In the following step, we use a naive convolutional layer with a
single 1 × 1 × 1 filter, which is equivalent to sum up the input Ha,b

1

Ha,b
2 (Ha,b

1 (Ia,b)) = tanh(wa,b
2

∑

k

Ha,b
1,k(Ia,b) + ba,b2 1), (4)

where wa,b
2 , ba,b2 are the scalar weights and biases, resp. We consider the above two

steps as one inference stage. Another important difference between our proposed
method and many other neural network methods is that we reconstruct the
image residue instead of the image itself (see Fig. 6). Normally, the perturbation
on image residues during the optimization is smaller than the one on image
values, which increases the odds that the learning process eventually converges.
Secondly, residue reconstruction substantiates the robust performance of our
general architecture for distinct image restoration tasks. After going through n
inference stages, we come to the reconstruction stage,

Ra,b(Ia,b) = (wa,b
2n+2

∑
Ha,b

2n+1 ◦ Ha,b
2n . . .Ha,b

2 ◦ Ha,b
1 (Ia,b) + ba,b2n+21), (5)

where Ra,b(Ia,b) are the image residues we want to predict. In order to robus-
tify the performance of our network, we simply duplicate the above mentioned
process for each input image array Ia and Ib n times, which gives us 2n separate
1 Here we abuse of notation, Ia,b indicates two inputs Ia, Ib.
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networks with the same architecture. In the end we sum up the residues and the
average image to obtain our output image F (I1, I2, . . . , In),

F (I1, I2, . . . , In) =
1
n

∑

k

Ik +
∑

k

(ckRk
a(Ia) + dkRk

b (Ib)), (6)

where ck, dk are the coefficients to weight the residues.

Training. Our main task is to learn the parameters Θ = (W,B) of the non-
linear map F . To this end, we minimize the loss function l(Θ), which computes
the Euclidean distance (mean square error (MSE)) between the output image
F (Ii1, I

i
2, . . . , I

i
n) and ground truth image Iig contained in our training set, i.e.,

l(Θ) =
∑

i

‖F (Ii1, I
i
2, . . . , I

i
n;Θ) − Iig‖22. (7)

The choice of the cost function is appropriate since PSNR is the main evaluation
method of image restoration tasks and stands in monotonic relation with MSE.
During the training stage, we update the weights/biases with standard back
propagation [38,39].

Currently, the optimization of the loss function is dominated by the stochastic
gradient descent (SGD) method [40], for example in [15,24,33]. Basically, at the
t+1-th iteration they update the parameters Θt+1 with the previous parameter
update Λt and negative gradient ∇l(Θ),

Λt+1 = aΛt − b∇l(Θt),
Θt+1 = Θt + Λt+1,

(8)

where a, b are the momentum and learning rate, resp. One weakness of SGD is
that the improvements gained from the optimization decrease rapidly with grow-
ing iteration steps. In such case, SGD may not be able to recover accurate details
from highly corrupted images. This is the main reason why we prefer adaptive
moment estimation (Adam) [41] as our optimization method. The Adam method
is stated as follows,

Λt = a1Λt−1 + (1 − a1)∇l(Θt),

Kt = a2Kt−1 + (1 − a2)∇l(Θt)2,
(9)

where a1, a2 are moments and Θt+1 is updated based on Λt,Kt,

Θt+1 = Θt − b

√
1 − (a2)t

1 − (a1)t
Λt√

Kt + ε
, (10)

here b is the learning rate and ε is used to avoid explosion. At the beginning of the
iterations, the cost of l(Θ) converges considerably faster than SGD. Moreover,
Eq. (10) shows that the magnitudes of parameter updates are independent of
the rescaling of the gradient, therefore it provides a relatively fast convergence
speed even after a large amount of iterations.
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4 Experiments

In the following we describe the experimental setup and datasets used to validate
our 3DCF approach on both the SR and DN tasks, then discuss the results.

4.1 Experimental Setup and Datasets

DN. Like most DN-related papers we add white Gaussian (AWG) noise to
ground truth images to create our corrupted images. 3 standard deviations
σ ∈ {15, 25, 50} are chosen to measure the performance of 3DCF. Under such
conditions, we compare our 3DCF with state-of-the-art DN methods as described
in the introductory Sect. 1: BM3D [6], LSSC [11], EPLL [10], opt-MRF [14],
CRTF [20], WNNM [8], CSF [13], TRD [15], MLP [12], as well as the NN [17]
fusion method.

We use the same training data mentioned in [15], i.e., 400 cropped images
with 180 × 180 size from the training part of the Berkeley segmentation dataset
(BSD) [42]. We evaluate our method on the 68 test images as in [43], a standard
benchmark employed by top methods like [13,15].

SR. For SR we use the same 3DCF architecture as for DN and test it on the
standard benchmarks Set5 [44], Set14 [45] (as proposed in [30]) and B100 [29]
with 5, 14, 100 images resp., which are widely adopted by the recent literature.
To obtain the LR images, according to many of the SR works, we firstly convert
the ground truth image into YCbCr color space, then downscale the luminance
channel with bicubic interpolation. Our training data is formed by the 200 train-
ing BDS images of size 321×481 from which we extract millions of LR-HR image
pairs. We report PSNR and SSIM results for the latest methods with top per-
formances: A+ [29], SRCNN(L) [33], RFL [31], SelfEx [32], CSCN [24].

4.2 Implementation Details

We implement our 3DCF method with Caffe [46]. 3DCF is used in the same
form for both DN and SR. For clarity and ease of understanding and deploy-
ment we prefer stacking two top methods along the channel dimension as our one
starting point Ia. For DN we use MLP [12], an external neural network method,
and BM3D [36], an internal method. Thus, such combination of two top meth-
ods increases our chance to take advantage of the strengths and overcome the
weaknesses of both worlds. For SR, the CSCN [24] and A+ [29] are our favorite
because of similar reasons – one from CNN and another from non-CNN type of
methods. The starting point Ib is simply obtained by the average image of two
methods as well as its corresponding first- and second order gradients along x/y
direction. To enable 3DCF to recover more accurate details, we use two networks
for each starting point Ia, Ib (See Fig. 6), while slightly perturbing the value as
the input of each activation, by multiplying −1. For the same reason we fix the
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coefficients c1, c2 to be 1 and 0.1. So are the coefficients d1, d2. Now Eq. (6) looks
as follows:

F (I1, I2) =
1
2
(I1 + I2) + R1

a(Ia) + 0.1R2
a(Ia) + R1

b(Ib) + 0.1R2
b(Ib). (11)

For the sake of time complexity and memory saving, each network showed in
Fig. 6 has 4 layers, and the filter size n × c × h × w is set to be (32 × 3 ×
5 × 5, 1 × 1 × 1 × 1, 32 × 3 × 5 × 5, 1 × 1 × 1 × 1) for Ia, while Ib has the
almost same settings except for the 3rd layer with 32 × 2 × 5 × 5. We also set
the channel-, height- and width stride to be 1 for all layers. It is expected that
our output is a single image with the same spatial size as the input image. To
this end, the channel-, height- and width padding size are determined to be
(1 × 2 × 2, 0 × 0 × 0, 0 × 2 × 2, 0 × 0 × 0) for Ia, and for Ib we follow the same
setup except the first layer parameters are determined to be 0 × 2 × 2. We also
initialize the weights by a Gaussian distribution with standard deviation 0.05
for convolutional layers, and put the weight to 1 for sum layers, and the bias to
0 for all cases.

Meanwhile, we simply use the default learning- and decay rate 1 when learn-
ing the weights/biases for each layer. In the end, for Eq. 10 the learning rate b for
the whole network is considered to be 0.001, the moments a1, a2 have the default
value 0.9, 0.999, and ε is also set to the default 10−8. It is worth mentioning that
all the parameters are exactly the same for the two tasks, DN and SR.

4.3 Denoising Results

We demonstrate our 3DCF method on 68 standard images [43] from BSD [42].
We apply the best setup for the compared methods, already described in the
introductory Sect. 1. CRTF [20] has 5 cascades, CSF [13] employs the 7 × 7 fil-
ter, the same as TRD [15] with 8 stages. Table 1 shows that our 3DCF method
achieves top performances compared to other methods for 3 different standard
deviations. For example, if we start our method with BM3D [6] and MLP [12],
we are 0.11 dB and 0.1 dB better than the top standalone method MLP for
σ ∈ {25, 50}. Due to the lack of an MLP model trained for σ = 15, we use
BM3D+TRD instead. Still, the performance of our 3DCF is consistent with the
other cases, 0.09 dB higher than TRD, the currently best method. Interestingly,
if we compare 3DCF with the NN fusion method under the same conditions, that
is, with the same starting methods BM3D and MLP, the proposed method out-
performs NN with 0.15 and 0.07 dB for σ ∈ {15, 25}. Such observation confirms
the non-trivial improvements achieved by 3DCF. Moreover, Fig. 7 indicates that
the naive average of MLP and BM3D is even worse than MLP. Besides, it is also
notable from Fig. 7 that the PSNR gradually increases with the growth of back
propagation. 3DCF is robust to the fused methods, TRD + MLP leads to rela-
tive improvements comparable with those achieved starting from BM3D + MLP
or BM3D + TRD.
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Table 1. Average PSNR values [dB] on 68 images from BSD dataset as in [43] for
σ ∈ {15, 25, 50}. The best is with bold. The results with (*) are obtained from [15].

Method σ

15 25 50

BM3D [6] 31.08 28.57 25.61

*LSSC [11] 31.27 28.70 25.72

*EPLL [10] 31.19 28.68 25.67

*opt-MRF [14] 31.18 28.66 25.70

*CRTF5 [20] 28.75

*WNNM [8] 31.37 28.83 25.83

CSF7×7 [13] 31.24 28.71

TRD8
7×7 [15] 31.42 28.93 25.99

MLP [12] 28.96 26.01

NN (BM3D+MLP) [17] 28.92 26.04

3DCF (BM3D+TRD) 31.51 29.03 26.10

3DCF (BM3D+MLP) 29.07 26.11

3DCF (TRD+MLP) 29.07 26.12

Fig. 7. PSNR versus backprops on 68 images for σ ∈ {25, 50}.

4.4 Super Resolution Results

The PSNR and SSIM results are listed in Table 2. Here our 3DCF fuses A+ [29]
with CSCN [24]. Note that we modify the steps of downscaling the image for
CSCN to be consistent with other methods including A+ and SRCNN(L). That
is the reason why we obtain different PSNR results for CSCN than in the original
work [24]. As in the case of DN, our 3DCF shows significant improvements over
the starting methods. The PSNR improvements vary from 0.11 dB on (B100,
×3) to 0.35 dB on (Set5, ×2) over the best result from SRCNN (L,with largest
model). The SSIM improvements follow the same trend. Note that for SR, the
naive average fusion of A+ and CSCN results improves over both fused methods.
However, our 3DCF results are on average 0.2 dB higher than the average fusion,
as shown in Fig. 8.
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Table 2. Average PSNR/SSIMs for upscaling factors ×2, ×3, and ×4 on datasets Set5,
Set14, and B100. The best results are with bold.

Dataset Scale A+ [29] SRCNN(L) [33] RFL [31] SelfEx [32] CSCN [24] 3DCF (CSCN+A+)

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set5 x2 36.56/0.9612 36.68/0.9609 36.52/0.9589 36.50/0.9577 36.55/0.9605 37.03/0.9631

x3 32.67/0.9199 32.83/0.9198 32.50/0.9164 32.63/0.9190 32.68/0.9197 33.11/0.9255

x4 30.33/0.8749 30.52/0.8774 30.17/0.8715 30.32/0.8728 30.44/0.8779 30.82/0.8865

Set14 x2 32.32/0.9607 32.52/0.9612 32.30/0.9599 32.27/0.9584 32.36/0.9593 32.71/0.9623

x3 29.16/0.8869 29.35/0.8886 29.07/0.8842 29.19/0.8873 29.19/0.8850 29.48/0.8907

x4 27.33/0.8277 27.53/0.8285 27.23/0.8251 27.43/0.8279 27.41/0.8256 27.69/0.8334

B100 x2 31.16/0.8857 31.32/0.8874 31.13/0.8842 31.15/0.8860 31.20/0.8836 31.48/0.8899

x3 28.25/0.7824 28.37/0.7853 28.20/0.7814 28.25/0.7821 28.28/0.7804 28.48/0.7881

x4 26.76/0.7073 26.86/0.7089 26.70/0.7068 26.81/0.7078 26.83/0.7072 26.99/0.7147

Fig. 8. PSNR versus backprops on Set5 dataset for upscaling factors ×2, ×3, ×4.

4.5 Other Aspects

Visual assessment. In general, the visual results are consistent with PSNR
results. Some image results are shown in Fig. 9 for DN and in Fig. 10 for SR. We
can observe that the 3DCF results have generally fewer artifacts and sharper
edges in comparison with the other methods.

Fig. 9. Denosing results for σ = 50. Best zoomed on screen.
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Ground truth A+ [29] CSCN [24] SRCNN(L) [33] 3DCFCSCN+A+

Fig. 10. Super-resolution results (×4). Best zoomed on screen.

Running time. 3DCF runs on roughly 0.04 second per 321 × 480 image on
nVidia TitanX GPU, which is quite competitive and shows that at the price
of slight increase in processing time one could fuse available image restoration
results. 3DCF needs about 5 h training time to obtain meaningful improvements
over the fused methods, and this is mainly due to the Adam method.

General. To summarize, our 3DCF method shows wide adaptability for two
important image restoration tasks, DN and SR, with non-trivial improvements.
Also, the training and running times of 3DCF are competitive in comparison
with other neural network architectures. For certain combinations of existing
methods our proposed fusion method only shows mild progress, for example for
the case of TRD+MLP (see Table 1). This sensitivity to the starting point drives
us to be careful of the choice of starting methods.

5 Conclusions

We propose a novel 3D convolutional fusion (3DCF) network for image restora-
tion. With the same settings, for both single image super resolution and image
denoising, we achieve significant improvements over the fused methods and other
fusion methods on several standard benchmarks. For speeding up the training,
we apply an adaptive moment estimation method. The testing and training times
are also competitive to other recent deep neural networks.
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(#273940), the ETH General Fund (OK) and by an Nvidia GPU grant.
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