
Lessons Learned: Performance Tuning
for Hadoop Systems

Manan Trivedi and Raghunath Nambiar(✉)

Cisco Systems, Inc., 275 East Tasman Drive, San Jose, CA 95134, USA
{matrived,rnambiar}@cisco.com

Abstract. Hadoop has become a strategic data platform for by mainstream
enterprises, adopted because it offers one of the fastest paths for businesses take
to unlock value from big data while building on existing investments. Hadoop is
a distributed framework based on Java that is designed to work with applications
implemented using MapReduce modeling. This distributed framework enables
the platform to pass the load to thousands of nodes across the whole Hadoop
cluster. The nature of distributed frameworks also allows node failure without
cluster failure. The Hadoop market is predicted to grow at a compound annual
growth rate (CAGR) over the next several years. Several tools and guides describe
how to deploy Hadoop clusters, but very little documentation tells how to increase
performance of Hadoop clusters after they are deployed. This document provides
several BIOS, OS, Hadoop, and Java tunings that can increase the performance
of Hadoop clusters. These tunings are based on lessons learned from Transaction
Processing Performance Council Express (TPCx) Benchmark HS (TPCx-HS)
testing on a Cisco UCS® Integrated Infrastructure for Big Data cluster. TPCx-
HS is the industry’s first standard for benchmarking big data systems. It was
developed by TPC to provide verifiable performance, price-to-performance, and
availability metrics for hardware and software systems that use big data.

Keywords: Hadoop · Tuning · Industry standard · TPCx-HS

1 Introduction

Big data is expected to fuel the next industrial revolution. An early sign is the wide
adoption of big data technologies across major market sectors, including agriculture,
education, entertainment, finance, healthcare, manufacturing, transportation, and
government. According to IDC, the big data technology and services market experienced
six times the growth rate of the overall information and communications technology
market in 2015 [1]. This market is expected to be US$34 billion in 2017, and it is
expected to be directly and indirectly responsible for US$300 billion in worldwide IT
spending. This exponential growth in big data is fueled primarily by several open-source
software initiatives and industry-standard infrastructure solutions.

The most prominent software platform by far is Hadoop. In fact, Hadoop and big
data are often considered synonymous. Hadoop adaption is predicted to grow at a
compound annual growth rate (CAGR) over the next several years across major industry

© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 121–141, 2017.
DOI: 10.1007/978-3-319-54334-5_9

vertical markets as a mainstream data management platform. Several tools and guides
describe how to deploy Hadoop clusters, but very little documentation tells how to
increase the performance of Hadoop clusters after they are deployed.

This document explains several BIOS, OS, Hadoop, and Java tunings that can
increase the performance of Hadoop clusters. These tunings are based on lessons learned
from Transaction Processing Performance Council Express (TPCx) Benchmark HS
(TPCx-HS) testing. The tests were conducted on a Cisco UCS® Integrated Infrastructure
for Big Data cluster, an industry-leading platform for enterprise Hadoop deployments.
However, these tuning parameters are applicable across most Hadoop deployments.

This document also presents the results of tests addressing eight of the most
frequently asked questions in tuning Hadoop systems. All test results reported are based
on fully compliant TPCx-HS testing based on the specification, but they have not been
audited or published.

2 TPC Express Benchmark HS

TPCx-HS is the industry’s first standard for benchmarking big data systems. It is
designed to provide verifiable performance, price-to-performance, and availability
metrics for hardware and software systems that use big data [2, 3].

TPCx-HS can be used to assess a broad range of system topologies and implemen‐
tation methodologies for Hadoop in a technically rigorous and directly comparable,
vendor-neutral manner. And although modeling is based on a simple application, the
results are highly relevant to big data hardware and software systems.

TPCx-HS benchmarking has three steps:

• HSGen: Generates data and retains it on a durable medium with three-way replication
• HSSort: Samples the input data, sorts the data, and retains the data on a durable

medium with three-way replication
• HSValidate: Verifies the cardinality, size, and replication factor of the generated data

The TPCx-HS specification mandates two consecutive runs to demonstrate repeat‐
ability, as depicted in Fig. 1, and the lower value is used for reporting [4].

TPCx-HS uses three main metrics:

• HSph@SF: Composite performance metric, reflecting TPCx-HS throughput, where
SF is the scale factor

• $/HSph@SF: Price-to-performance metric
• System availability date

TPCx-HS also reports the following numerical quantities:

• TG: Data generation phase completion time, with HSGen reported in hh:mm:ss format
• TS: Data sort phase completion time, with HSSort reported in hh:mm:ss format
• TV: Data validation phase completion time, reported in hh:mm:ss format

122 M. Trivedi and R. Nambiar

The primary performance metric of the benchmark is HSph@SF, the effective sort
throughput of the benchmarked configuration. Here is an example (using the summation
method):

HSph@SF =

⌊
SF

(T∕3600)

⌋

Here, SF is the scale factor, and T is the total elapsed time for the run in seconds.
The price-to-performance metric for the benchmark is defined as follows:

$∕HSph@SF =
P

HSph@SF

Here, P is the total cost of ownership (TCO) of the system under test (SUT).
The system availability date indicates when the system under test is generally avail‐

able as defined in the TPC-Pricing specification.

Fig. 1. TPCx-HS benchmark processing

Lessons Learned: Performance Tuning for Hadoop Systems 123

3 System Under Test: Cisco UCS Integrated Infrastructure
for Big Data

The tests were conducted on a Cisco UCS Integrated Infrastructure for Big Data cluster
with 16 Cisco UCS C240 M4 Rack Servers. The Cisco UCS Integrated Infrastructure
for Big Data is built using the following components:

• Cisco UCS 6296UP 96-Port Fabric Interconnect: Fabric interconnects are central to
the Cisco Unified Computing System™ (Cisco UCS). They provide low-latency,
lossless 10 Gigabit Ethernet, Fibre Channel over Ethernet (FCoE), and Fibre Channel
functions with management capabilities for the system. All servers attached to fabric
interconnects become part of a single, highly available management domain.

• Cisco UCS C240 M4 Rack Server: Cisco UCS C-Series Rack Servers extend Cisco
UCS in standard rack-mount form factors. The Cisco UCS C240 M4 Rack Server is
designed to support a wide range of computing, I/O, and storage-capacity demands
in a compact design. It supports two Intel® Xeon® processor E5-2600 v4 series
CPUs, up to 768 GB of memory, and 24 small-form-factor (SFF) disk drives plus
two internal SATA boot drives and Cisco UCS Virtual Interface Card (VIC) 1227
adapters.

The Cisco UCS Integrated Infrastructure for Big Data cluster configuration consists
of two Cisco UCS 6296UP fabric interconnects, 16 Cisco UCS C240 M4 servers with
two Intel Xeon processor E5-2600 v4 series CPUs, 256 GB of memory, and 24 SFF disk
drives plus two internal SATA boot drives and Cisco UCS VIC 1227 adapters, as shown
in Fig. 2. Table 1 lists the software versions used.

16 x Cisco UCS C240 M4 Servers (Data Nodes) with:
24 × 1.2-TB 6-Gbps SAS 10,000-rpm SFF HDD
2 × 120-GB 2.5-Inch Enterprise Value 6-Gbps SATA SSD (Boot)
10 Gigabit Ethernet
16 × 10 Gigabit Ethernet
2 x Cisco UCS 6296UP fabric interconnect
1 x Cisco Nexus® 9372PX Switch

Table 1. Software versions

Layer Component Version or Release
Computing Cisco UCS C240 M4 server Release C240M4.2.0.10c
Network Cisco UCS 6296UP fabric interconnect Release UCS 3.1(1 g)A

Cisco UCS VIC 1227 firmware Release 4.1(1d)
Cisco UCS VIC 1227 driver Release 2.3.0.18

Software Red Hat Enterprise Linux (RHEL) server Version 6.5 (x86_64)
Cisco UCS Manager Release 3.1(1 g)

Hadoop Cloudera Enterprise Version 5.3.2

124 M. Trivedi and R. Nambiar

4 Performance Tuning

Many factors come into play when tuning a system as complex as big data systems.
Performance tuning involves making modifications to hardware, software, and network
parameters.

This section lists parameters that can be tuned at the infrastructure, operating system,
and Hadoop levels.

Infrastructure

Infrastructure tuning helps achieve optimal utilization of resources. It also helps the
application run faster and perform better.

• Server
– BIOS

CPU parameters
Intel Turbo Boost Technology
Intel Hyper-Threading Technology
Prefetcher
C-states
Power control policy
Memory tuning

• Network
– Network tuning parameters
– Network interface card (NIC) bonding
– Jumbo frame (maximum transmission unit [MTU])
– Quality-of-service (QoS) settings

• Storage
– RAID 0

Write back
Read ahead
Stripe size

Fig. 2. Cisco UCS integrated infrastructure for big data cluster configuration

Lessons Learned: Performance Tuning for Hadoop Systems 125

– JBOD
– JBOD Versus RAID 0

Operating System
OS performance tuning is used to manage and improve resources that respond to indi‐
vidual requests. OS scalability is managed by monitoring the resource consumption of
varying volumes of requests, from low to very high, by changing default OS settings.

• File system
– XFS
– Agcount
– Mount
– Fstab

• Post-OS tuning
– sysctl.conf
– limits.conf
– CPU frequency and scaling governor
– Transparent huge pages
– Linux swappiness
– I/O scheduler

Hadoop
In addition to tuning the infrastructure and OS, you need to tune Hadoop settings for
best performance. Hadoop tuning can have a significant impact on the overall perform‐
ance of your Hadoop cluster.

• Hadoop
– Hadoop Distributed File System (HDFS)

hdfs-site.xml
– MapReduce

Java Virtual Machine (JVM) reuse
Compression
mapred-site.xml
core-site.xml

5 Performance Tuning in Detail

This section describes the infrastructure, OS, and Hadoop tuning parameters in detail.

Server Tuning
Hadoop is based on a new approach to storing and processing complex data, with data
movement reduced. Hadoop distributes across the cluster the data that each machine in
a Hadoop cluster stores, and it also processes the data. Therefore, it is important to tune
the processing, or computing, aspect of the system to achieve optimal performance from
the cluster.

126 M. Trivedi and R. Nambiar

BIOS settings can have a significant performance impact, depending on the workload
and the applications. Table 2 lists the optimal CPU settings for Hadoop based on the
tests reported in this document.

Table 2. Optimal CPU settings

Parameter Setting
Intel Turbo Boost Enabled
Enhanced Intel SpeedStep Enabled
Intel Hyper-Threading Enabled
Core Multiprocessing All
Executive Disabled Bit Platform default
Virtualization Technology Disabled
Hardware Prefetcher Enabled
Adjacent Cache Line Prefetcher Enabled
Data Cache Unit (DCU) Streamer Prefetcher Enabled
DCU IP Prefetcher Enabled
Direct Cache Access Enabled
Processor C-State Disabled
Processor CIE Disabled
Processor C3 Report Disabled
Processor C6 Report Disabled
Processor C7 Report Disabled
CPU Performance Enterprise
Maximum Variable Mean Time to Replace or Repair (MTRR) Setting Platform default
Local x2APIC Advanced Programmable Interrupt Controller Platform default
Power Technology Performance
Energy Performance Performance
Frequency Floor Override Enabled
P-State Coordination Hw-all
DRAM Clock Throttling Performance
Channel Interleaving Platform default
Rank Interleaving Platform default
Demand Scrub Disabled
Patrol Scrub Disabled
Altitude Platform default
Package C-State Limit Platform default

Table 3 lists optimal memory settings for Hadoop based on the tests reported here.

Table 3. Optimal memory settings for Hadoop

Parameter Setting
Memory RAS Configuration Maximum

performance
NUMA Enabled
Low-Voltage Double Data Rate (LV DDR) Mode Performance mode
DRAM Refresh Rate 1 time
DDR3 Voltage Selection Platform default

Lessons Learned: Performance Tuning for Hadoop Systems 127

Network Tuning
The impact of the network on big data is enormous. An efficient and resilient network
is a crucial part of a good Hadoop cluster because the network is what connects all the
nodes. The network is also crucial for writing data, reading data, and signaling and for
HDFS operations and operations of the MapReduce infrastructure. Therefore, the failure
of a networking device can have dire affects. A job may need to be restarted, or a work‐
load may be pushed to the remaining nodes, resulting in delay. Therefore, networks must
be designed to provide redundancy, with multiple paths between computing nodes, and
they must be able to scale.

Table 4 lists some network performance settings that can increase Hadoop perform‐
ance. These options increase the read and write cache sizes for the network stack. These
parameters can be tested with the systctl –w command or made permanent by adding
the variable to the /etc./sysctl.conf file.

Table 4. Optimal network tuning parameters for Hadoop

Parameter Tuned value Description
net.core.somaxconn 1024 Changing the net.core.somaxconn Linux kernel settings

from the default of 128 to 1024 helps with burst requests
from the name node and job tracker. This option sets the
size of the listening queue, or the number of connections
that the server can set up at one time.

net.ipv4.tcp_retries2 5 This variable helps forward the packets between
interfaces. This variable is special; its change resets all
configuration parameters to their default state.

net.ipv4.ip_forward 0 IP forwarding is disabled in most Linux distributions
because most of them do not set up a Linux router,
gateway, VPN server, or dial-in server.

net.ipv4.conf.default.rp_filter 1 This value influences the timeout behavior of a live TCP
connection.

net.ipv4.conf.all.rp_filter 1 This value enables route verification on all interfaces.
net.ipv4.conf.default.accept_source_route 0 This setting does not accept source routing.
net.ipv4.tcp_syncookies 1 This setting enables the use of TCP SYN cookies.
net.ipv4.conf.all.arp_filter 1
net.ipv4.tcp_mtu_probing 1 If there are multiple network interfaces on different IP

addresses, this setting will help achieve the desired
results.

net.ipv4.icmp_echo_ignore_broadcasts 1 This setting controls TCP packetization layer path MTU
discovery. It is disabled by default, and it is enabled
when an Internet Control Message Protocol (ICMP)
black hole is detected.

net.ipv4.conf.default.promote_secondaries 1 These settings prevent deletion of secondary IP
addresses when the primary IP address is deleted.net.ipv4.conf.all.promote_secondaries 1

net.core.rmem_max 16777216 These settings increase the TCP maximum buffer size.
The four options shown here increase the TCP send and
receive buffers, allowing an application to move its data
out faster so it can serve other requests. This adjustment
also improves the client’s ability to send data to the
server when it gets busy.

net.core.wmem_max 16777216
net.ipv4.tcp_rmem 4096 87380

16777216
net.ipv4.tcp_wmem 4096 65536

16777216
net.core.netdev_max_backlog 10000
net.core.netdev_max_backlog 10000

128 M. Trivedi and R. Nambiar

You can tune NIC bonding. A NIC is a computer hardware component that connects
a computer to a computer network. Network bonding is a method of combining (joining)
two or more network interfaces together into a single interface. This combination
increases network throughput and provides redundancy. If one interface is down or
unplugged, the remaining interfaces will keep the network traffic up and alive. Network
bonding can be used in situations in which you need redundancy, fault tolerance, or load
balancing.

Fig. 3. Single 10-Gbps Versus Dual 10-Gbps Connectivity with NIC Bonding

Linux allows bonding of multiple network interfaces into a single channel using a
special kernel module called a bonding module. The Linux bonding driver provides a
method for aggregating multiple network interfaces into a single logical “bonded” inter‐
face. The behavior of the bonded interface depends on the mode. In general, the mode
provides either hot-standby or load-balancing services. Additionally, link-integrity
monitoring can be performed.

Test Result 1: 10-Gbps Versus Dual 10-Gbps Connectivity with NIC Bonding
One frequently asked question relates to the impact of NIC bonding for Hadoop. In
older-generation servers, single 10-Gbps connectivity was sufficient. Since the intro‐
duction of Cisco UCS C240 M4 servers (based on Intel Xeon processor 2600 v3 CPUs)
with 24 SFF disks drives, we have observed significant performance improvements with
NIC bonding. In other words, Hadoop nodes can use more than 10-Gbps network band‐
width (Fig. 3).

Lessons Learned: Performance Tuning for Hadoop Systems 129

Table 5 lists detailed response times for each benchmark phase.

Test Result 2: 1500 Versus 9000 Maximum Transmission Unit
One the most commonly tuned parameters is the MTU, which defines the largest packet
size that an interface can transmit without the need to fragment the packet. IP packets
larger than the MTU require IP fragmentation.

The use of jumbo frames (an MTU value of 9000) improves performance because
jumbo frames reduce the number of individual frames that must be sent for a given
amount of data, and they reduce the need to separate data blocks into multiple Ethernet
frames. They also reduce host and storage CPU utilization.

Figure 4 shows the performance improvement with a larger MTU (9000).

Fig. 4. MTU of 1500 Versus 9000

Table 6 lists detailed response times for each benchmark phase.

Table 5. Single 10-Gbps versus Dual 10-Gbps with NIC Bonding

Phase No Bonding (Time in
Seconds)

2-NIC Bonding (Time
in Seconds)

Percentage
improvement

HSGen 173 102 41.0%
HSSort 286 218 23.7%
HSValidate 69 55 22.2%
Total Time 528 375 28.9%
HSph@SF at 1-TB
Scale Factor

6.72 9.45

130 M. Trivedi and R. Nambiar

Table 6. MTU of 1500 versus 9000

Phase Bonding (Multiple
NICs at 1500 MTU)

Bonding (Multiple
NICs at 9000 MTU)

Percentage
improvement

HSGen 140 95 32.1%
HSSort 264 217 17.8%
HSValidate 56 49 12.5%
Total Time 460 361 21.5%
HSph@SF at 1-TB
Scale Factor

7.71 9.81

Test Result 3: Two-vNIC Bonding Versus Three-vNIC Bonding
Cisco UCS VIC technology supports up to 256 virtual NICs (vNICs). Tests with three
vNICs provided slight performance improvement, as shown in Fig. 5.

[[PLS CHANGE THE CALLOUTS AS FOLLOWS:]]
Two-vNIC Bonding Versus Three-vNIC Bonding
Time in Seconds
(2 NICs)
(Multiple NICs)

Fig. 5. Two-vNIC Bonding versus Three-vNIC Bonding

Table 7 lists detailed response times for each benchmark phase.
Storage Tuning
Optimal configuration of the storage system is extremely important to achieve the best
application performance. In most cases, servers with internal direct-attached storage
(DAS) provide the best performance and price-to-performance ratios. Two popular
storage controller options are RAID controllers and host bus adapters (HBAs). In

Lessons Learned: Performance Tuning for Hadoop Systems 131

addition to RAID functions, RAID controllers offer advanced self-monitoring, analysis,
and reporting technology (SMART) features and write-back or flash-based write cache.
SMART features detect and report the health of the disk drives beyond the capabilities
of JBOD. Caching can improve data load performance in Hadoop deployments. This
section describes best practices based on the tests conducted on the Cisco UCS Integrated
Infrastructure for Big Data cluster.

Fig. 6. JBOD Versus RAID 0

Table 8 lists optimal settings for the Cisco 12-Gbps SAS modular RAID controller
for Hadoop deployments.

Test Result 4: JBOD Versus RAID
JBOD and RAID 0 work similarly. The main difference pertaining to performance is the
effect of controller caching. Figure 6 shows better performance with RAID than with
JBOD. The controller cache (a 2-GB module was used in these tests) optimizes writeback
operations when the workload is based on large sequential read and write processing.

Table 9 lists detailed response times for each benchmark phase.

Table 7. Two-vNIC Bonding versus Three-vNIC Bonding

Phase Bonding (2 NICs) Bonding (Multiple NICs) Percentage improvement
HSGen 102 95 6.86%
HSSort 218 217 0.45%
HSValidate 55 49 10.9
Total Time 375 361 3.73%
HSph@SF at 1-TB Scale
Factor

9.45 9.81

132 M. Trivedi and R. Nambiar

Table 9. JBOD versus RAID 0

Phase JBOD RAID 0 Percentage improvement
HSGen 111 95 16.84%
HSSort 237 217 9.22%
HSValidate 53 49 8.16%
Total Time 401 361 11.08%
HSph@SF at 1-TB Scale Factor 8.82 9.81

Operating System Tuning
Changing some system settings in Linux can increase overall performance. This section
discusses these changes and their benefits. Table 10 lists some of the OS performance
settings best for Hadoop.

Table 10. Operating system settings

Parameter Value
vm.dirty_background_ratio 1
vm.swappiness 0
vm.overcommit_memory 0
net.core.rmem_max 16777216
net.core.wmem_max 16777216
net.core.netdev_max_backlog 10000

In addition, the following settings for /etc./security/limits.conf are recommended:

• root soft nofile 64000
• root hard nofile 64000
• hadoop soft nproc 32768
• hadoop hard nproc 32768
• hadoop soft nofile 32768
• hadoop hard nofile 32768

File System Tuning
Different Linux distributions use different default file systems. Testing has shown that
XFS seems to be better than Ext3 or Ext4 for Hadoop. XFS is a high-performance

Table 8. Optimal RAID controller settings for Hadoop

Parameter Setting
RAID RAID 0 for individual disk drives
Controller Cache Always write back

NoCacheBadBBU
Read ahead

Stripe Size 1024 KB
Disk Drive Cache Enabled (read)

(Cisco firmware does not allow the write cache to be
enabled on disk drives.)

Lessons Learned: Performance Tuning for Hadoop Systems 133

journaling file system that was initially created by Silicon Graphics for the IRIX oper‐
ating system and later ported to Linux. XFS has a large number of features that make it
suitable for deployment in an enterprise-level computing environment that requires
implementation of very large file systems.

XFS has very bad performance out of the box. Unlike with Ext4, the file system
needs to be formatted with the right parameters to perform well. And if you don’t specify
the parameters correctly, you need to reformat the file system because you can’t change
the parameters later. The main parameter that the tests reported here found useful to tune
is agcount: the number of allocation groups. Allocation groups enable simultaneous
I/O processing by multiple application threads. XFS splits the file system into multiple
allocation groups to help increase parallelism, because each allocation group has its own
set of locks. It is important to create as many allocation groups as you have hardware
threads. If the server has a dual CPU configuration with 16 cores and 32 threads with
hyperthreading, an agcount value of 32 is recommended for best I/O performance.

Fig. 7. XFS agcount of 2 Versus 32

XFS supports several mount options that can influence behavior. XFS allocates
inodes according to their on-disk locations by default. However, because some 32-bit
user-space applications are not compatible with inode numbers greater than 232, XFS
allocates all inodes in disk locations that result in 32-bit inode numbers. This behavior
can lead to decreased performance on very large file systems (systems larger than 2
terabytes [TB]), because inodes are skewed toward the beginning of the block device,
and data is skewed toward the end. To address this scenario, the inode64 mount option
is recommended.

Linux records information about the time when files were created, last modified, and
last accessed. There is a cost associated with recording the last access time. The noatime
attribute tells the file system not to record the last-accessed time for the file and is
recommended for Hadoop deployments.

134 M. Trivedi and R. Nambiar

Test Result 5: XFS with agcount of 2 Versus 32
Tests for conducted with allocation groups of 2 and 32. As shown in Fig. 7, an optimal
allocation count is critical for optimizing XFS for Hadoop.

Table 11 lists detailed response times for each benchmark phase.

Table 11. XFS agcount of 2 versus 32

Phase Agcount = 2 Agcount = 32 Percentage
improvement

HSGen 126 95 32.63%
HSSort 246 217 13.36%
HSValidate 56 49 14.29%
Total Time 428 361 18.56%
HSph@SF at 1-TB
Scale Factor

8.27 9.81

Another important OS setting is the CPU frequency and scaling governor (Table 12).
The performance mode is recommended for high-performance Hadoop deployments.

Table 12. CPU Governor options in Linux

Governor Description
ondemand Dynamically switch between CPUs available if 95% CPU load is

reached.
performance Run the CPU at maximum frequency. This mode is recommended

for high-performance Hadoop deployments.
conservative Dynamically switch between CPUs available if 75% CPU load is

reached.
powersave Run the CPU at the minimum frequency.
userspace Run the CPU at user-specified frequency.

Transparent huge pages is a commonly used option that works well in most instances,
including with Hadoop. However, a problem arises with one feature of transparent huge
pages called compaction. This feature defragments memory at the cost of CPU cycles.
Testing has shown better performance with compaction disabled. This option can be set
with the following command:

Linux swappiness is a kernel process that finds memory content that has not been
used in a while and copies it to the hard drive. The swappiness value can be adjusted
from 0 to 100. In most versions of Linux, the default value is 60. The tests reported here
show that turning off swappiness (setting swappiness to 0) is optimal for Hadoop
deployments. This option can be set with the following command:

Lessons Learned: Performance Tuning for Hadoop Systems 135

The I/O scheduler is another important performance tuning option. The recom‐
mended I/O scheduler setting for Hadoop is Completely Fair Queuing (CFQ). CFQ is
the default setting in some Linux distributions, and it can increase performance by 2 or
3 percent. This option can be set with the following command:

Hadoop Tuning
Out of the box, many Hadoop settings are not optimized for best performance. HDFS
provides storage for all the data and is a core component of Hadoop. Fine-tuning the
settings here can produce significant performance improvements. The settings discussed
in this section have been tested and will provide improved speed for heavy workloads.

The Hadoop block size defines the number of input splits for a file. Each input split
is replicated three times (by default) across the cluster. Map tasks typically operate on
these input splits. The number of input splits determines the number of map tasks.

The total read time on hard disk drives consists of seek time (finding the first block
of the file) and transfer time (the time needed to read contiguous blocks of data). When
dealing with hundreds of terabytes or petabytes of data, these times become significant.
Hadoop handles this processing by having lots of map tasks reading and writing data in
parallel. However, processing can benefit by limiting the number of tasks running in
parallel, because having too many map tasks trying to read and write data is inefficient.
The best approach is a balanced number of input splits and map jobs, because having
too few map jobs also reduces performance, just as does having too many.

Fig. 8. Impact of Block Sizes

The recommended balance uses this calculation:
Number of launched map tasks = Total size/Input split size (or block size)
Using this formula, for a 1-TB data set with a 64-MB block size, Hadoop would run

15,120 map tasks; with a 512-MB block size, it would run 2160 map tasks.

136 M. Trivedi and R. Nambiar

Test Result 6: HDFS Block Sizes
Tests were conducted with block sizes of 64, 128, 256, and 512 MB. As shown in
Fig. 8, 512 MB provided the best performance for the TPCx-HS benchmark. Additional
tests conducted with customer workloads reached the same conclusion: that for MapRe‐
duce-based applications, larger block sizes provide the best performance.

The configuration is set in hdfs-site.xml as shown in Table 13.

Table 13. hdfs-site.xml Settings

Parameter Value
dfs.blocksize 512 MB
dfs.datanode.drop.cache.behind.writes True
dfs.datanode.sync.behind.writes True
dfs.datanode.drop.cache.behind.reads True

The general rule for memory tuning is to use as much memory as you can without
triggering swapping. The parameter mapred.*.child.java.opts can be used to set the
task memory. The recommended heap size for both map and reduce tasks is 2 GB, and
ulimit was set to 4 GB (double the heap size used by all JVM processes) for this work‐
load.

Another important tuning option is to reduce the map disk spill. Mappers generate
intermediate data output, which is stored in a memory buffer that is determined by the
io.sort.mb parameter. This chunk of memory is part of the map JVM heap space. As
soon as the threshold is reached (io.sort.spill.percent), the content is written to the local
disk. This content is called spill. To store the record, the Hadoop framework uses the
io.sort.record.percent value of the memory allocated by io.sort.mb. Performance
problems occur when you spill records to disk multiple times. The values of the map
output records counter and spilled record counters can be checked for each job, and you
can allocate the appropriate memory buffer and the io.sort.spill.percent value to use
nearly full capacity to enhance Hadoop job performance. These are the recommended
settings:

The number of mappers and reducers is critical to get the best performance. This
configuration is based on a 16-node cluster, with one server configured as the name node
and 15 servers configured as data nodes, and each server with two CPUs with a total of
48 threads. A slight oversubscription of the number of mappers and reducers to the
number of cores should be used, because reducers typically don’t start at the same time
as mappers. Given the 48 threads in the system under test, allocate 36 threads for mappers
and 30 threads for reducers for each node. (This number will vary based on the scale
factor of the workload and the system configuration.) The number of HDFS blocks in
the input files usually determines the number of mappers. The tuning goal of mappers
should be to control the number of mappers and the size of the job. When dealing with
large files, Hadoop splits the file into smaller chunks so that the mapper can run it in
parallel. However, initializing the new mapper job usually takes a few seconds, creating

Lessons Learned: Performance Tuning for Hadoop Systems 137

overhead that should be reduced. To determine the optimal number, several iterations
were run.. The configuration for mapred-site.xml is shown in Table 14.

Table 14. mapred-site.xml Settings

Parameter Value
Mapred.map.tasks 540
Mapred.reduce.tasks 450
mapred.tasktracker.map.tasks.maximum 36
mapred.tasktracker.reduce.tasks.maximum 30
mapred.map.child.java.opts -Xmx800 m -Xms800 m -Xmn256 m
mapred.reduce.child.java.opts -Xmx1200 m -Xmn256 m
mapred.child.ulimit 4096 MB
io.sort.mb 1024 MB
io.sort.factor 64
io.sort.record.percent 0.15
Io.sort.spill.percent 0.98
mapred.job.reuse.jvm.num.tasks –1
mapred.reduce.parallel.copies 20
mapred.reduce.slowstart.completed.maps 0
tasktracker.http.threads 120
mapred.job.reduce.input.buffer.percent 0.7
mapreduce.reduce.shuffle.maxfetchfailures 10
mapred.job.shuffle.input.buffer.percent 0.75
mapred.job.shuffle.merge.percent 0.95
mapred.inmem.merge.threshold 0
mapreduce.ifile.readahead.bytes 16777216
mapred.map.tasks.speculative.execution False

Also, in the hdfs-site.xml file, the io.sort.factor parameter controls the number of
concurrent streams from the map output that are merged and saved to disk. For heavy
workloads with many map tasks, this value should be increased from 10 to 64, to increase
the number of streams merged at the same time. This setting has been tested and shown
to increase performance, but it should be used with caution on other equipment because
it could lead to instability by overworking the system.

Under heavy workloads, Hadoop can launch many thousands of jobs, each of which
runs for only a short period of time, and each launching a separate JVM. By default,
each JVM must be started and torn down every time. Obviously, this approach is inef‐
ficient. It can be improved by changing the parameter mapred.job.reuse.num.tasks in
the mapred-site.xml file. Change this parameter to –1, and JVMs can be reused for an
unlimited number of jobs. This change also helps the platform take full advantage of
Java’s just-in-time (JIT) compilation, because the JVM does not need to be compiled
each time.

138 M. Trivedi and R. Nambiar

Compression can significantly improve Hadoop performance by reducing disk I/O
processing and network traffic. It also reduces the amount of disk space used. The TPCx-
HS requirements enforce the use of uncompressed job output, but intermediate map output
compression is allowed. Table 15 lists the recommended compression parameters.

Table 15. Compression Parameters

Parameter Value Description
mapred.output.compress False Compression allowed for the

MapReduce output
mapred.compress.map.output True Compression allowed for

intermediate map output
mapred.map.output.compression.
codec

org.apache.hadoop.io.
compress.SnappyCodec

Another important tuning parameter is file buffer size, a setting in core-site.xml. The
recommended setting for the io.file.buffer.size parameter is 131072.

Test Result 7: End-to-End I/O and Network Utilization
Sort workloads are popular in the Hadoop space. TPCx-HS enables fair comparisons to
be made between software and hardware systems. It also exercises various subsystems.
Figure 9 shows disk read, disk write, network read, and network write utilization from
one of the nodes for an end-to-end run.

[[PLS CHANGE CALLOUTS AS FOLLOWS:]]
…Resource Utilization Across Various Phases of Job Processing
Peak Write Throughput Is 2.81 GBps
…Is 1.74 GBps
…Peak Write Throughput Is 2.51 GBps
HSValidate Phase
HSSort Phase
Network I/O Send Peak Throughput Is 1.65 GBps, and Receive Peak Throughput Is
1.92 GBps
Network I/O Send Peak Throughput Is 1.65 GBps, and Receive Peak Throughput Is
1.68 GBps
Network I/O Receive
Network I/O Send

As shown in Fig. 9, in the HSGen phase, peak write throughput is 2.81 GBps, which
means that each drive is performing at 117 GBps. This equates to 2.81 × 15 = 42 GBps
write throughput per cluster. During the shuffle phase, aggregate read bandwidth is 26
GBps, and during the reduce phase, aggregate write bandwidth is 38 GBps. The peak
network bandwidth utilization was 1.8 GBps: about 75 percent of dual 10 Gbps connectivity.

Test Result 8: End-to-End CPU Utilization
One frequently asked question relates to CPU utilization. Figure 10 shows the CPU
utilization for an end-to-end TPCx-HS run. As noted, CPU utilization was about 97
percent peak at the shuffle and sort phase.

Lessons Learned: Performance Tuning for Hadoop Systems 139

As observed in the results from tests 8 and 9, the TPCx-HS benchmark exercises the
upper boundaries of I/O, network, and CPU processing with Hadoop. This feature makes
TPCx-HS a good benchmark standard that enables fair comparison of Hadoop systems,
and it also provides a good workload for stress-testing various technologies under
development.

Fig. 9. Resource Utilization across various Job Processing phases

Fig. 10. CPU Utilization Across Various Phases

140 M. Trivedi and R. Nambiar

6 Conclusion

This document provides a summary of lessons learned from performance tuning for the
TPCx-HS benchmark. The tuning parameters and test results have broad applicability
across Hadoop-based applications. The test results also address some of the most
frequently asked questions about Hadoop system tuning.

References

1. IDC Worldwide Big Data Technology and Services Forecast (2015)
2. Nambiar, R., Poess, M., Dey, A., Cao, P., Magdon-Ismail, T., Da Ren, Q., Bond, A.: Introducing

TPCx-HS: the first industry standard for benchmarking big data systems. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 1–12. Springer, Cham (2015). doi:
10.1007/978-3-319-15350-6_1

3. Nambiar, R.: A standard for benchmarking big data systems. In: IEEE Big Data Conference,
pp. 18–20 (2014)

4. TPCx-HS specification. http://www.tpc.org/tpcx-hs/

Lessons Learned: Performance Tuning for Hadoop Systems 141

http://dx.doi.org/10.1007/978-3-319-15350-6_1
http://www.tpc.org/tpcx-hs/

	Lessons Learned: Performance Tuning for Hadoop Systems
	Abstract
	1 Introduction
	2 TPC Express Benchmark HS
	3 System Under Test: Cisco UCS Integrated Infrastructure for Big Data
	4 Performance Tuning
	5 Performance Tuning in Detail
	6 Conclusion
	References

