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Abstract. Internet of Things (IoT) is a technology paradigm where mil-
lions of sensors monitor, and help inform or manage, physical, environ-
mental and human systems in real-time. The inherent closed-loop respon-
siveness and decision making of IoT applications makes them ideal can-
didates for using low latency and scalable stream processing platforms.
Distributed Stream Processing Systems (DSPS) are becoming essential
components of any IoT stack, but the efficacy and performance of con-
temporary DSPS have not been rigorously studied for IoT data streams
and applications. Here, we develop a benchmark suite and performance
metrics to evaluate DSPS for streaming IoT applications. The benchmark
includes 13 common IoT tasks classified across functional categories and
forming micro-benchmarks, and two IoT applications for statistical sum-
marization and predictive analytics that leverage various dataflow pat-
terns of DSPS. These are coupled with stream workloads from real IoT
observations on smart cities. We validate the benchmark for the popular
Apache Storm DSPS, and present the results.

Keywords: Stream processing · Benchmark · Workload · Internet of
Things · Smart cities · Fast data · Big Data · Velocity · Distributed
systems

1 Introduction

Internet of Things (IoT) is a technology paradigm where ubiquitous sensors num-
bering in the billions will be able to monitor physical infrastructure, humans and
virtual entities in real-time, process both real-time and historic observations, and
take actions that improve the efficiency and reliability of systems, or the comfort
and lifestyle of society. Besides affordable sensing and pervasive communications,
Cloud and Big Data platforms have contributed to this rapid growth.

Currently, the IoT applications are often manifest in vertical domains, such
as demand-response optimization and outage management in smart grids [5],
or fitness and sleep tracking by smart watches and health bands [19]. The IoT
stack for such domains is tightly integrated to serve specific needs, but typically
operates on a closed-loop Observe Orient Decide Act (OODA) cycle, where sen-
sors communicate time-series observations of the system to a Cloud data center
for analysis, and the analytics drive recommendations that are enacted on, or
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notified to, the system to improve it, which is again observed and so on. In fact,
this closed-loop responsiveness is an essential characteristic of IoT applications.

This low-latency cycle makes it necessary to process data streaming from
sensors at fine spatial and temporal scales, in real-time, to derive actionable
intelligence. In particular, this streaming analytics has to be done at massive
scales (millions of sensors, thousands of events per second) from across distrib-
uted sensors, requiring large computational resources. Cloud computing offers a
natural platform for scalable processing of the observations at globally distrib-
uted data centers, and sending a feedback response to the IoT system at the
edge. This complements Fog Computing that puts the onus on edge devices to
collaboratively collect, process and analyze data with low latency by reduced
reliability.

Recent Big Data platforms like Storm [18], Flink [2] and Spark [20] provide
an intuitive programming model for composing and executing scalable stream-
ing applications on commodity clusters and Clouds. These Distributed Stream
Processing Systems (DSPS) are becoming essential components of any IoT stack
to support online analytics for IoT applications. In fact, reference IoT solutions
from Cloud providers1,2 include their own stream and event processing engines.

Shared-memory stream processing systems [9] have been investigated for
wireless sensor networks, with community benchmarks being proposed [6]. But
there has not been a detailed review of, or benchmarks for, distributed stream
processing for IoT domains. In particular, the efficacy of contemporary DSPS,
originally designed for web and social network traffic [18], have not been rigor-
ously studied for IoT data streams and applications. We address this gap here.

We develop a benchmark suite for DSPS to evaluate their effectiveness
for streaming IoT applications. The proposed workload is based on common
building-block tasks observed in various IoT domains for real-time decision mak-
ing, and the input streams are sourced from real IoT observations from smart
cities.

Specifically, we make the following contributions:

1. We classify different characteristics of streaming applications and their data
sources, in Sect. 3. We propose categories of tasks that are essential for IoT
applications and the key features that are present in their input data streams.

2. We identify performance metrics of DSPS that are necessary to meet the
latency and scalability needs of streaming IoT applications, in Sect. 4.

3. We propose an IoT Benchmark for DSPS based on representative micro-
benchmark tasks, drawn from the above categories, in Sect. 5. Further, we
design two reference IoT applications – for statistical analytics and predictive
analytics – composed from these tasks. We also offer real-world streams with
different distributions on which to evaluate them.

4. We run the benchmark for the popular Apache Storm DSPS, and present
empirical results for the same in Sect. 6.

1 https://aws.amazon.com/iot/how-it-works/.
2 https://www.microsoft.com/en-in/server-cloud/internet-of-things/overview.aspx.

https://aws.amazon.com/iot/how-it-works/
https://www.microsoft.com/en-in/server-cloud/internet-of-things/overview.aspx
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2 Background and Related Work

Early data stream management systems (DSMS) were motivated by sensor net-
work applications, that have similarities to IoT [9]. They supported continuous
query languages with operators such as join, aggregators similar to SQL, but
with a temporal dimension using windowed-join operations. These have distrib-
uted implementations [8] and have evolved to complex event processing (CEP).

Current DSPS like Apache Storm and Apache Spark Streaming [18,20] lever-
age Big Data fundamentals, running on commodity clusters and Clouds, offer-
ing weak scaling, ensuring robustness, and supporting fast data processing over
thousands of events per second. They do not support native query operators and
instead allow users to plug in their own logic composed as dataflow graphs exe-
cuted across a cluster. While developed for web and social network applications,
such fast data platforms have found use in financial markets, astronomy, and
particle physics. IoT is one of the more recent domains to consider them.

Work on DSMS spawned the Linear Road Benchmark (LRB) [6] that was
proposed as an application benchmark. In the scenario, DSMS had to evaluate
toll and traffic queries over event streams from a virtual traffic monitoring sys-
tem, with parallels to current smart transportation. However, there have been
few studies or community efforts on benchmarking DSPS, other than research
evaluations against popular DSPS like Storm or Spark. These papers define their
own metrics of success – typically just throughput and latency – and use generic
workloads like the Enron email dataset and custom micro-benchmarks [15].

Stream Bench [14] has proposed 7 micro-benchmarks on 4 different synthetic
workload suites generated from real-time web logs and network traffic to eval-
uate DSPS. Metrics including performance, durability and fault tolerance are
proposed. It covers different dataflow patterns and common tasks like grep and
wordcount. While useful as a generic streaming benchmark, it does not con-
sider aspects unique to IoT applications and streams. SparkBench [3] is specific
to Spark, and includes four categories of applications from domains spanning
Graph analysis and SQL queries, and one application for Spark Streaming. The
benchmark metrics include CPU, memory, disk and network IO, with the goal
of identifying tuning parameters to improve Spark’s performance.

In contrast, the goal for this paper is to develop relevant micro- and
application-level benchmarks for evaluating DSPS, specifically for IoT workloads
for which such platforms are increasingly being used. Our benchmark is designed
to be platform-agnostic, simple to implement and execute within diverse DSPS,
and representative of both the application logic and data streams observed in
IoT domains. This allows for the performance of DSPS to be independently and
reproducibly verified for IoT applications.

There has been a slew of Big Data benchmarks for processing high volume
(i.e., MapReduce-style) and enterprise/web data, that complement our work.
The Yahoo Cloud Serving Benchmark (YCSB) [10] was developed to compare
different key-value stores on the Cloud. Hibench [13] is a workload suite for eval-
uating Hadoop with popular micro-benchmarks like Sort, WordCount and Tera-
Sort, MapReduce applications like Nutch Indexing and PageRank, and machine
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learning algorithms like K-means Clustering. This is a general purpose workload
for MapReduce platforms at large. BigBench [12] uses a synthetic generator to
simulate online retail enterprise data. It combines structured data from the TPC-
DS benchmark [16], semi-structured data on user clicks, and unstructured data
from product reviews. Queries cover data velocity by processing periodic data
refreshes, variety by including free-text reviews, and volume by querying over a
large click logs. We take a similar approach to benchmark fast data platforms,
targeting the IoT domain and using real public data streams.

There has been some recent work on benchmarking IoT applications. Gener-
ating large volumes of synthetic sensor data with realistic values is challenging,
yet required for benchmarking. IoTAbench [7] provides a scalable synthetic gen-
erator of time-series datasets using a Markov chain model for scaling the time
series. It uses a limited number of inputs to ensure that important statistical
properties of the stream is retained in the generated data. This has been demon-
strated for smart meter data. Their emphasis is on the data characteristics and
content, which supplements our focus on the systems aspects of the platform.

CityBench [4] is a benchmark to evaluate RDF stream processing systems.
They include different generation patterns for smart city data, such as traffic
vehicles, parking, weather, pollution, cultural and library events, with changing
event rates and playback speeds. They propose fixed set of semantic queries over
this dataset, with concurrent execution of queries and sensor streams. Here, the
target platform is different (RDF database), but in a spirit as our work.

3 Characteristics of Streaming IoT Applications

In this section, we review the common application composition capabilities of
DSPS, and the dimensions of the streaming applications that affect their per-
formance on DSPS. These semantics help define and describe streaming IoT
applications based on DSPS capabilities. Subsequently in this section, we also
categorize IoT tasks, applications and data streams based on the domain require-
ments. Together, these offer a search space for defining workloads that meaning-
fully and comprehensively validate IoT applications on DSPS.

3.1 Dataflow Composition Semantics

DSPS applications are commonly composed as a dataflow graph, where vertices
are user provided tasks and directed edges are refer to streams of messages that
can pass between them. Messages (or events or tuples) from/to the stream are
consumed/produced by the tasks. DSPS typically treat the messages as opaque
content, and only the user logic may interpret the message content.

Selectivity ratio, also called gain, is the number of output messages emitted
by a task on consuming a unit input message, expressed as σ = input rate :
output rate. Based on this, one can assess whether a task amplifies or attenu-
ates the incoming message rate. It is important to consider this while designing
benchmarks as it can have a multiplicative impact on downstream tasks.
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Fig. 1. Common task patterns and semantics in streaming applications.

There are message generation, consumption and routing semantics associated
with tasks and their dataflow composition. Figure 1 captures the basic compo-
sition patterns supported by modern DSPS. Source tasks have only outgoing
edge(s), and these tasks encapsulate user logic to generate or receive the input
messages that are passed to the dataflow. Likewise, Sink tasks have only incom-
ing edge(s) and these tasks react to the output messages from the application,
say, by storing it or sending an external notification.

Transform tasks, sometimes called Map tasks, generate one output message
for every input message received (σ = 1 : 1). Their user logic performs a transfor-
mation on the message, such as changing the units or projecting only a subset of
attribute values. Filter tasks allow only a subset of messages that they receive
to pass through, optionally performing a transformation on them (σ = N : M ,
N ≥ M). Conversely, a FlatMap consumes one message and emits multiple mes-
sages (σ = 1 : N). An Aggregate pattern consumes a window of messages, with
the window width provided as a count or a time duration, and generates one or
more messages that is an aggregation over each message window (σ = N : 1).

When a task has multiple outgoing edges, routing semantics on the dataflow
control if an output message is duplicated onto all the edges, or just one down-
stream task is selected for delivery, either based on a round robin behavior or
using a hash function on an attribute in the outgoing message to decide the target
task. Similarly, multiple incoming streams arriving at a task may be merged into
a single interleaved message stream for the task. Or alternatively, the messages
coming on each incoming stream may be conjugated, based on order of arrival
or an attribute exposed in each message, to form a joined stream of messages.

Tasks may be data parallel, in which case, it may be allocated multiple
threads/cores to process messages in parallel by different instances the task.
This is typically possible for tasks that do not maintain state across multiple
messages. The length of the dataflow is the latency of the critical (i.e., longest)
path through the dataflow graph, if the graph does not have cycles. This gives an
estimate of the expected latency for each message and also influences the number
of network hops a message on the critical path has to take in the cluster.

3.2 Input Data Stream Characteristics

We list a few characteristics of the input data streams that impact the runtime
performance of streaming applications, and help classify IoT message streams.

The input throughput in messages/sec is the cumulative frequency at which
messages enter the source tasks of the dataflow. Input throughputs can vary
by application domain, and are determined both by the number of streams of
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messages and their individual rates. This combined with the dataflow selectivity
will impact the load on the dataflow and the output throughput.

Throughput distribution captures the variation of input throughput over time.
In real-world settings, the input data rate is usually not constant and DSPS need
to adapt to this. There may be several common data rate distributions besides
a uniform one. There may be bursts of data coming from a single sensor, or a
coordinated set of sensors. A saw-tooth behavior may be seen in the ramp-up/-
down before/after specific events. Normal distribution are seen with diurnal (day
vs. night) stream sources, with bi-modal variations capturing peaks during the
morning and evening periods of human activity.

3.3 Categories of IoT Tasks and Applications

Here, we attempt to categorize common IoT processing and analytics tasks that
are performed over real-time data streams to support domain applications.

Parse. Messages are encoded on the wire in a standard text-based or binary
representation by the stream sources, and need to be parsed upon arrival at
the application. Text formats in particular require string parsing by the tasks,
and are also larger in size on the wire. The tasks within the application may
themselves retain the incoming format in their streams, or switch to another
format or data model, say, by projecting a subset of the fields. Industry-standard
formats that are popular for IoT domains include CSV, XML and JSON text
formats, EXI and CBOR binary formats, and serialization protocols like Google’s
Protocol Buffer and Apache Thrift.

Filter. Messages may require to be filtered based on specific attribute values
present in them, as part of data quality checks, to route a subset of message types
to a part of the dataflow graph, or as part of their application logic. Value and
band-pass filters that test an attribute’s numerical value ranges are common,
and are both compact to model and fast to execute. Since IoT event rates may
be high, more efficient Bloom filters may also be used to process discrete values
with low space complexity but with a small fraction of false positives.

Statistical Analytics. Groups of messages within a sequential time or count
window of a stream may require to be aggregated as part of the application.
The aggregation function may be common mathematical operations like average,
count, minimum and maximum. They may also be higher order statistics such
as finding outliers, quartiles, second and third order moments, and counts of
distinct elements. Statistical data cleaning like linear interpolation or denoising
using Kalman filters are common for sensor-based data streams. Some tasks may
maintain just local state for the window width (e.g., local average) while others
may maintain state across windows (e.g., moving average). When the state size
grows, here again approximate aggregation algorithms may be used.

Predictive Analytics. Predicting future behavior of the system based on past
and current messages is an important part of IoT applications. Various statistical
and machine-learning algorithms may be employed for predictive analytics over
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sensor streams. The predictions may either use a recent window of messages
to estimate the future values over a time or count horizon in future, or train
models over streaming messages that are periodically used for predictions over
the incoming messages. The training itself can be an online task that is part of
an application. For e.g., linear regression use statistics to predict uni- or multi-
variate attribute values. Classification algorithms like decision trees and neural
networks can be trained to map discrete values to a category, which may lead
to specific actions taken on the system.

Pattern Detection. Another class of tasks are those that identify patterns
of behavior over several events. Unlike window aggregation which operate over
static window sizes and perform a function over the values, pattern detection
matches user-defined predicates on messages that may not be sequential or even
span streams, and returned the matched messages. These are often modeled as
state transition automata or query graphs. Common patterns include contiguous
or non-contiguous sequence of messages with specific property on each message
(e.g., high-low-high pattern over 3 messages), or a join over two streams based
on a common attribute value. Complex Event Processing (CEP) engines [17]
may be embedded within the DSPS task to match these patterns.

Visual Analytics. Other than automated decision making, IoT applications
often generate charts and animations for consumption by end-users or system
managers. These visual analytics may be performed either at the client, in which
case the processed data stream is aggregated and provided to the users. Alterna-
tively, the streaming application may itself periodically generate such plots and
visualizations as part of the dataflow, to be hosted on the web or pushed to the
client. Charting libraries like D3.js or JFreeChart may be used for this.

IO Operations. Lastly, the IoT dataflow may need to access external storage
or messaging services to access/push data into/out of the application. These
may be to store or load trained models, archive incoming data streams, access
historic data for aggregation and comparison, and subscribe to message streams
or publish actions back to the system. These require access to file storage, SQL
and NoSQL databases, and publish-subscribe messaging systems. Often, these
may be hosted as part of the Cloud platforms themselves.

The tasks from the above categories, along with other domain-specific tasks,
are composed together to form streaming IoT dataflows. These domain dataflows
themselves fall into specific classes based on common use-case scenarios, and
loosely map to the Observe-Orient-Decide-Act (OODA) phases.

Extract-Transform-Load (ETL) and Archival applications are front-line
“observation” dataflows that receive and pre-process the data streams, and if
necessary, archive a copy of the data offline. Pre-processing may perform data for-
mat transformations, normalize the units of observations, data quality checks to
remove invalid data, interpolate missing data items, and temporally reorder mes-
sages arriving from different streams. The pre-processed data may be archived
to table storage, and passed onto subsequent dataflow for further analysis.
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Summarization and Visualization applications perform statistical aggrega-
tion and analytics over the data streams to understand the behavior of the IoT
system at a coarser granularity. Such summarization can give the high-level pulse
of the system, and help “orient” the decision making to the current situation.
These tasks are often succeeded by visualizations tasks in the dataflow to present
it to end-users and decision makers.

Prediction and Pattern Detection applications help determine the future state
of the IoT system and “decide” if any reaction is required. They identify patterns
of interest that may indicate the need for a correction, or trends based on current
behavior that require preemptive actions. For e.g., an unsustainable growing load
on a power grid cause load to be shed preemptively, or a detection that the heart-
rate from a fitness watch is very high may trigger a treadmill to slow down.

Classification and notification applications determine specific “actions” that
are required and communicate them to the IoT system. Decisions may be mapped
to specific actions, and the entities in the IoT system that can enact those be
notified. For e.g., the need for load shedding in the power grid may map to
specific residents to request the curtailment from, or the need to reduce physical
activities may lead to a treadmill being notified to reduce the speed.

3.4 IoT Data Stream Characteristics

IoT data streams are often generated by sensors that observe physical systems
or the environment. As a result, they are typically time-series data that are
generated periodically. The sampling rate for these sensors may vary from once
a day to hundreds per second, depending on the domain. The number of sensors
themselves may vary from a few hundred to millions as well. As a result, we may
encounter a wide range of input throughputs from 10−2 to 105 messages/sec.

At the same time, this event rate itself may not be uniform across time. Sen-
sors may also be configured to emit data only when there is a change in observed
value, rather than unnecessarily transmitting data that has not changed. This
helps conserve network bandwidth and power for constrained devices when the
observations are slow changing. Further, if data freshness is not critical to the
application, they may sample at high rate but transmit at low rates but in a
burst mode. Example smart meters may collecting kWh data at 15 min intervals
from millions of residents but report it to the utility only a few times a day,
while the FitBit smart watch syncs with the Cloud every few minutes or hours
even as data is recorded every few seconds.

Message variability also comes into play when human-related activity is being
tracked. Diurnal or bimodal event rates are seen with single peaks in the after-
noons, or dual peaks in the morning and evening. For e.g., sensors at businesses
may match the former while traffic flow sensors may match the latter.

4 Performance Metrics

We identify and formalize commonly-used quantitative performance measures
for evaluating DSPS for the IoT workloads.
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Latency. Latency for a message that is generated by task is the time in seconds
it took for that task to process one or more inputs to generate that message.
When we consider the average latency λ of the dataflow application, it is the
average of the time difference between each message consumed at the source
tasks and all its causally dependent messages generated at the sink tasks.

The latency per message may vary depending on the input rate, resources
allocated to the task, and the type of message being processed. While this task
latency is the inverse of the mean throughput, the end-to-end latency for the
task within a dataflow will also include the network and queuing time to receive
a tuple and transmit it downstream.

Throughput. The output throughput is the aggregated rate of output messages
emitted out of the sink tasks, measured in messages per second. The throughput
of a dataflow depends on the input throughput and the selectivity of the dataflow,
provided the resource allocation and performance of the DSPS are adequate.
Ideally, the output throughput ωo = σ × ωi, where ωi is the input throughput
for a dataflow with selectivity σ. It is also useful to measure the peak throughput
that can be supported by a given application, which is the maximum stable rate
that can be processed using a fixed quanta of resources.

Both throughput and latency measurements are relevant only under stable
conditions when the DSPS can sustain a given input rate.

Jitter. The ideal output throughput may deviate due to variable rate of the
input streams, change in the paths taken by the input stream through the
dataflow (e.g., at a Hash pattern), or performance variability of the DSPS. We use
jitter to track the variation between the expected and observed output through-
put, defined for a time interval t as, Jt = ωo − σ × ωi

σ × ωi
, where the numerator is the

observed difference between the expected and actual output rate during interval
t, and the denominator is the expected long term average output rate given a
long-term average input rate ωi. In an ideal case, jitter will tend towards zero.

CPU and Memory Utilization. Streaming IoT dataflows are expected to
be resource intensive, and the ability of the DSPS to use distributed resources
with minimal overhead is important. This also affects the VM resources used
and price to be paid to run the application on the DSPS. We track the CPU
and memory utilization for the dataflow as the average of the CPU and memory
utilization across all the VMs that are being used by the dataflow’s tasks. The
per-VM information can also help identify which VMs hosting which tasks are
the potential bottlenecks, and can benefit from data-parallel scale-out.

5 Proposed Benchmarks and Workload

We propose IoT benchmark workloads to help evaluate the metrics discussed
before for various DSPS. The benchmarks have two parts: the dataflow logic
that is executed on the DSPS and the input data streams that they consume.
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5.1 IoT Input Stream Workloads

Sense your City (CITY) [1]. This is an urban environmental monitoring
project3 that crowd-sourced deployment of sensors at 7 cities across 3 conti-
nents in 2015, with about 12 sensors per city. Five timestamped observations:
temperature, humidity, ambient light, dust and air quality, are reported every
minute by a sensor along with the sensor ID and location. Besides urban sensing,
this real-world data also captures the vagaries crowd-sourcing for IoT (Table 1).

Table 1. Smart Cities data stream features and rates at 1000× scaling

Dataset Attributes Format Size (bytes) Peak rate (msg/sec) Distribution

CITY [1] 9 CSV 100 7, 000 Normal

TAXI [11] 10 CSV 191 4, 000 Bimodal

We use a single logical stream that combines the data from all 90 sensors.
Since practical deployments of environmental sensing can easily extend to thou-
sands of sensors per city, we use a temporal scaling of 1000× the native input
rate to simulate a deployment of 90, 000 sensors. Figure 2a shows a narrow nor-
mal distribution of the event rate centered at 6, 400 msg/sec with a peak of
7, 000 msg/sec. We use 7 days of data from 27 Jan to 2 Feb, 2015 for our bench-
mark.

(a) CITY @1000× msg/sec (b) TAXI @1000× msg/sec

Fig. 2. Frequency distribution of input throughputs for CITY and TAXI streams at
1000× temporal scaling used for the benchmark runs.

NYC Taxi cab (TAXI) [11]. This offers a stream of smart transportation
messages that arrive from 2M trips taken in 2013 on 20, 355 New York city
taxis equipped with GPS4. A message is generated when a taxi completes a
3 http://map.datacanvas.org.
4 http://www.debs2015.org/call-grand-challenge.html/.

http://map.datacanvas.org
http://www.debs2015.org/call-grand-challenge.html/
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trip, and provides the taxi and license details, the start and end coordinates and
timestamp, the distance traveled, and the cost, including the taxes and tolls.

Considering that events may be generated from the GPS sensors periodically
rather than only at the end of the trip, we use a temporal scaling factor of 1000×
for our workload. This data has a bi-modal event rate distribution that reflects
the morning and evening commutes, with peaks at 300 and 3, 200 events/sec. We
use 7 days of data from 14-Jan-2013 to 20-Jan-2013 for our benchmark runs.

5.2 IoT Micro-benchmarks

We propose a suite of common micro-benchmark tasks that span various IoT
categories and types of streaming task patterns as well. Their goal is to evalu-
ate the performance of the DSPS for individual IoT tasks, using the peak input
throughput that they can sustain on a unit computing resource as the perfor-
mance measure. This offers a baseline for comparison with other DSPS, as well
as when these tasks are used in application benchmarks with variable input rates
(Table 2).

Table 2. IoT micro-benchmark tasks with different IoT categories and DSPS patterns

Task name Code Category Pattern σ ratio State

XML parsing XML Parse Transform 1:1 No

Bloom filter BLF Filter Filter 1:0/1 No

Average AVG Statistical Aggregate N:1 Yes

Distinct appox. count DAC Statistical Transform 1:1 Yes

Kalman filter KAL Statistical Transform 1:1 Yes

Second order moment SOM Statistical Transform 1:1 Yes

Decision tree classify DTC Predictive Transform 1:1 No

Multi-variate linear reg. MLR Predictive Transform 1:1 No

Sliding linear regression SLR Predictive Flat map N:M Yes

Azure blob D/L ABD IO Source/transform 1:1 No

Azure blob U/L ABU IO Sink 1:1 No

Azure table query ATQ IO Source/transform 1:1 No

MQTT publish MQP IO Sink 1:1 No

We include a single XML parser as a representative parsing operation within
our suite. The Bloom filter is a more practical filter operation for large discrete
datasets, and we prefer that to a simple value range filter. We have several
statistical analytics and aggregation tasks. These span simple averaging over a
single attribute value to and second order moments over time-series values, to
Kalman filter for denoising of sensor data and approximate count of distinct
values for large discrete attribute values.
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Predictive analytics using a multi-variate linear regression model that is
trained offline and a sliding window univariate model that is trained online
are included. A decision tree machine learning for discrete attribute values is
also used for classification, based on offline training. Lastly, we have several IO
tasks for reading and writing to Cloud file and NoSQL storage, and to publish
to an MQTT publish-subscribe broker for notifications. We see that these tasks
capture different dataflow patterns like transform, filter, aggregate and flat map.

5.3 IoT Application Benchmarks

Application benchmarks are valuable in understanding how non-trivial and
meaningful IoT applications behave on DSPS. Application dataflows for a
domain are most representative when they are constructed based on real or
realistic application logic, rather than synthetic tasks. In case applications use
highly-custom logic or proprietary libraries, this may not be feasible or reusable
as a community benchmark. However, many of the common IoT tasks we have
proposed earlier are naturally composable into application benchmarks that sat-
isfy the requirements of a OODA decision making loop.

We propose application benchmarks that capture two common IoT scenarios:
a Data pre-processing and Statistical summarization (STATS) application and
a Predictive Analytics (PRED) application. STATS (Fig. 3a) ingests incoming
data streams, performs data filtering of outliers on individual observation types
using a Bloom filter, and then does three concurrent types of statistical analytics
on observations from individual sensor/taxi IDs: sliding Average over a 90/10
event window for CITY/TAXI (∼15 min native time window), Kalman filter for
smoothing followed by a sliding window linear regression, and an approximate
count of distinct readings. The outcomes from these statistics are published by
an MQTT task, which can separately be subscribed to and visualized on a client.

The PRED dataflow captures the lifecycle of online prediction and classifi-
cation to drive visualization and decision making for IoT applications. It parses
incoming messages and forks it to a decision tree classifier and a multi-variate
regression task. The decision tree uses a trained model to classify messages into
classes, such as good, average or poor air quality, based on one or more of
their attribute values. The linear regression uses a trained model to predict an
attribute value in the message using several others. It then estimates the error
|p − o|

o between the predicted and observed value, normalized by the sliding aver-
age of the observations. These outputs are then grouped and plotted, and the file
written to Cloud storage for hosting on a portal. One realistic addition is the use
of a separate stream to periodically download newly trained classification and
regression models from Cloud storage, and push them to the prediction tasks.

As such, these applications leverage many of the compositional capabilities
of DSPS. The dataflows include single and dual sources, tasks that are composed
sequentially and in parallel, stateful and stateless tasks, and data parallel tasks
allowing for concurrent instances. The initial parse task for STATS uses a flat
map pattern to create observation-specific streams. These are further grouped
by their observation type using a hash pattern and passed to task instances.
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Fig. 3. Application benchmarks composed using the micro-benchmark tasks.

6 Evaluation of Proposed Benchmarks

We implement the 13 micro-benchmarks as generic Java tasks that can consume
and produce objects5. We validate our proposed benchmark by composing and
running these dataflows on the popular Apache Storm open source DSPS.

In Storm, each task logic is wrapped by a bolt that invokes the task for each
incoming tuple and emits response tuples. The dataflow is composed as a topology
that defines the edges between the bolts, and the groupings which determine
duplicate or hash semantics. We have implemented a scalable source task (spout)
that replays events from a CSV file with a scaling factor. We generate random
integers as tuples at a constant peak rate for the micro-benchmarks, and replay
the original CITY and TAXI datasets at 1000× scaling for the applications.

We use Apache Storm 1.0.0 running on OpenJDK 1.7 and CentOS, and
hosted on Microsoft Azure Cloud Virtual Machines (VMs). For the micro-
benchmarks, Storm runs the benchmark task on one exclusive D1 VM (1-core
Intel Xeon E5@2.2 GHz, 3.5 GiB RAM, 50 GiB SSD), while the source and sink
tasks and the master service run on a D8 VM (8-core Intel Xeon E5@2.2 GHz,
28 GiB RAM, 400 GiB SSD). The large VM for the supporting services ensures
that they are not the bottleneck when benchmarking the peak task rate on 1
VM. For the STATS and PRED application benchmark, we use D8 VMs for all
the tasks of the dataflow, while reserving additional D8 VMs to exclusively run
the supporting service. Each experiment runs for ∼10 min, which translates to
about 7 days of event data for the CITY and TAXI datasets at 1000× scaling6.

5 https://github.com/dream-lab/bm-iot.
6 Application runtime = 7 days× 24 h× 60min× 60 s

1000× scaling
secs = 10.08 min.

https://github.com/dream-lab/bm-iot
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6.1 Micro-benchmark Results

Figure 4 shows plots of the different metrics evaluated for the micro-benchmark
tasks on Storm when running at their peak input rate supported on a single D1
VM with one thread. The peak sustained throughput per task is shown in Fig. 4a
in log-scale. We see that most tasks can support 3, 000 msg/sec or higher rate,
going up to 68, 000 msg/sec for BLF, DAC, KAL, DTC and MLR. XML parsing
is highly CPU bound and has a peak throughput of only 310 msg/sec, and the
Azure operations are I/O bound on the Cloud service and even slower.

The inverse of the peak sustained throughput gives the mean latency. How-
ever, it is interesting to examine the end-to-end latency, calculated as the time
taken between emitting a message from the source, having it pass through the
benchmarked task, and arrive at the sink task. This is the effective time con-
tributed to the total tuple latency by this task running within Storm, including
framework overheads. We see that while the mean latencies should be in sub-
milliseconds for the observed throughputs, the box plot for end-to-end latency
(Fig. 4b) varies widely up to 2, 600 ms for Q3. This wide variability could be
because of non-uniform task execution times due to which slow executions queue
up incoming tuples that suffer higher queuing time, such as for DTC and MLR
that both use the WEKA library. Or tasks supporting a high input rate in the
order of 10, 000 msg/sec, such as DAC and KAL, may be more sensitive to even
small per-tuple overhead of the framework, say, caused by thread contention
between the Storm system and worker threads, or queue synchronization. The
Azure tasks that have a lower throughput also have a higher end-to-end latency,
but much of which is attributable directly to the task latency.

Fig. 4. Performance of micro-benchmark tasks for integer input stream at peak rate.
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The box-plot for jitter (Fig. 4c) shows values close to zero in all cases. This
indicates the long-term stability of Storm in processing the tasks at peak rate,
without unsustainable queuing of input messages. The wider whiskers indicate
the occasional mismatch between the expected and observed output rates.

The box plots for CPU utilization (Fig. 4d) shows the single-core VM effec-
tively used at 70% or above in all cases except for the Azure tasks that are
I/O bound. The memory utilization (Fig. 4e) appears to be higher for tasks
that support a high throughput, potentially indicating the memory consumed
by messages waiting in queue rather than consumed by the task logic itself.

6.2 Application Results

The STATS and PRED application benchmarks are run for the CITY and TAXI
workloads at 1000× their native rates, and the performance plots shown in Fig. 5.
The end-to-end latencies of the applications depend on the sum of the end-to-
end latencies of each task in the critical path of the dataflow. The peak rates
supported by the tasks in STATS is much higher than the input rates of CITY
and TAXI. So the latency box plot for STATS is tightly bound (Fig. 5a) and its
median much lower at 20 ms compared to the end-to-end latency of the tasks
at their peak rates. The jitter is also close to zero in all cases. So Storm can
comfortably support STATS for CITY and TAXI on 7 and 5 VMs, respectively.
The distribution of VM CPU utilization is also modest for STATS. CITY has
a 35% median with a narrow box (Fig. 5d), while TAXI has a low 5% median

Fig. 5. End-to-end latency and Jitter (top), and CPU and Memory utilization (bottom)
plots for STATS and PRED application benchmarks on CITY and TAXI workloads.
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with a wide box (Fig. 5e) – this is due to its bi-modal distribution with low input
rates, hence utilization, at nights, and high rates and utilization in the day.

For PRED, we see that the latency box plot is much wider, and the median
end-to-end latency is between 500–700 ms for CITY and TAXI (Fig. 5b). This
reflects the variability in task execution times for the WEKA tasks, DTC and
MLR, which was observed in the micro-benchmarks too. The Azure blob upload
also adds to the absolute increase in the end-to-end time. The jitter however
remains close to zero, indicating sustainable performance. The CPU utilization
is also higher, reflecting its more complex task logic relative to STATS.

7 Conclusion

In this paper, we have proposed a novel application benchmark for evaluating
DSPS for IoT domains. These help evaluate common IoT tasks, as well as fully-
functional applications for summarization and predictive analytics using with
two real-world workloads from smart cities. The benchmark has been validated
for the popular Apache Storm DSPS, and the performance metrics presented.
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