
Raghunath Nambiar
Meikel Poess (Eds.)

 123

LN
CS

 1
00

80

8th TPC Technology Conference, TPCTC 2016
New Delhi, India, September 5–9, 2016
Revised Selected Papers

Performance Evaluation
and Benchmarking
Traditional - Big Data - Internet of Things

Lecture Notes in Computer Science 10080

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Raghunath Nambiar • Meikel Poess (Eds.)

Performance Evaluation
and Benchmarking
Traditional - Big Data -
Internet of Things

8th TPC Technology Conference, TPCTC 2016
New Delhi, India, September 5–9, 2016
Revised Selected Papers

123

Editors
Raghunath Nambiar
Cisco Systems, Inc.
San Jose, CA
USA

Meikel Poess
Oracle Corporation
Redwood City, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-54333-8 ISBN 978-3-319-54334-5 (eBook)
DOI 10.1007/978-3-319-54334-5

Library of Congress Control Number: 2017932124

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

The original version of the cover and title page
were revised. The title was corrected from

“Performance Evaluation and Benchmarking.
Traditional - Big Data - Interest of Things” to
“Performance Evaluation and Benchmarking.

Traditional - Big Data - Internet of Things”. An
erratum to cover and frontmatter can be found

at DOI: 10.1007/978-3-319-54334-5_11

http://dx.doi.org/10.1007/978-3-319-54334-5_11

Preface

The Transaction Processing Performance Council (TPC) is a non-profit organization
established in August 1988. Over the years, the TPC has had a significant impact on the
computing industry’s use of industry-standard benchmarks. Vendors use TPC bench-
marks to illustrate performance competitiveness for their existing products, and to
improve and monitor the performance of their products under development. Many
buyers use TPC benchmark results as points of comparison when purchasing new
computing systems.

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement, and characterization of complex systems. The TPC remains committed
to developing new benchmark standards to keep pace with these rapid changes in
technology. One vehicle for achieving this objective is the TPC’s sponsorship of the
Technology Conference Series on Performance Evaluation and Benchmarking
(TPCTC) established in 2009. With this conference series, the TPC encourages
researchers and industry experts to present and debate novel ideas and methodologies
in performance evaluation, measurement, and characterization.

This book contains the proceedings of the 8th TPC Technology Conference on
Performance Evaluation and Benchmarking (TPCTC 2016), held in conjunction with
the 41st International Conference on Very Large Data Bases (VLDB 2016) in New
Delhi, India, during September 5–9, 2016, including selected peer-reviewed papers as
well as an invited paper and a keynote paper.

The hard work and close cooperation of a number of people contributed to the
success of this conference. We would like to thank the members of TPC and the
organizers of VLDB 2016 for their sponsorship; the members of the Program Com-
mittee and Publicity Committee for their support; and the authors and the participants,
who are the primary reason for the success of this conference.

January 2017 Raghunath Nambiar
Meikel Poess

TPCTC 2016 Organization

General Chairs

Raghunath Nambiar Cisco, USA
Meikel Poess Oracle, USA

Program Committee

Alain Crolotte Teradata, USA
Akon Dey University of Sydney, Australia
Berni Schiefer IBM, Canada
Chaitanya Baru SDSC, USA
Daniel Bowers Gartner, USA
Dhabaleswar Panda The Ohio State University, USA
Francois Raab Infosizing, USA
Harumi Kuno HP Labs, USA
Marco Vieira University of Coimbra, Portugal
Michael Brey Oracle, USA
Paul Cao HP, USA
Reza Taheri VMWare, USA
Tilmann Rabl University of Toronto, Canada
Yanpei Chen Splunk, USA

Publicity Committee

Raghunath Nambiar Cisco, USA
Andrew Bond Red Hat, USA
Miso Cilimdzic Microsoft, USA
Meikel Poess Oracle, USA
Reza Taheri VMware, USA
Michael Majdalany L&M Management Group, USA
Forrest Carman Owen Media, USA
Andreas Hotea Hotea Solutions, USA

About the TPC

Introduction to the TPC

The Transaction Processing Performance Council (TPC) is a non-profit organization
that defines transaction processing and database benchmarks and distributes
vendor-neutral performance data to the industry. Additional information is available
at http://www.tpc.org/.

TPC Memberships

Full Members

Full Members of the TPC participate in all aspects of the TPC’s work, including
development of benchmark standards and setting strategic direction. The Full Member
application can be found at http://www.tpc.org/information/about/app-member.asp.

Associate Members

Certain organizations may join the TPC as Associate Members. Associate Members
may attend TPC meetings, but are not eligible to vote or hold office. Associate
membership is available to non-profit organizations, educational institutions, market
researchers, publishers, consultants, governments, and businesses that do not create,
market, or sell computer products or services. The Associate Member application can
be found at http://www.tpc.org/information/about/app-assoc.asp.

Academic and Government Institutions

Academic and government institutions are invited join the TPC and a special invitation
can be found at http://www.tpc.org/information/specialinvitation.asp.

Contact the TPC

TPC
Presidio of San Francisco
Building 572B (surface)
P.O. Box 29920 (mail)
San Francisco, CA 94129-0920
USA
Voice: 415-561-6272
Fax: 415-561-6120
E-mail: info@tpc.org

http://www.tpc.org/
http://www.tpc.org/information/about/app-member.asp
http://www.tpc.org/information/about/app-assoc.asp
http://www.tpc.org/information/specialinvitation.asp

How to Order TPC Materials

All of our materials are now posted free of charge on our website. If you have any
questions, please feel free to contact our office directly or by e-mail at info@tpc.org.

Benchmark Status Report

The TPC Benchmark Status Report is a digest of the activities of the TPC and its
technical subcommittees. Sign-up information can be found at the following URL:
http://www.tpc.org/information/about/email.asp.

X About the TPC

http://www.tpc.org/information/about/email.asp

TPC 2016 Organization

Full Members

Actian
Cisco
Cloudera
Dell
DataCore
Fujitsu
HP Enterprise
Hitachi
Huawei
IBM
Inspur
Intel
Lenovo
Microsoft
Oracle
Pivotal
Red Hat
SAP
Teradata
VMware

Associate Members

IDEAS International
San Diego Super Computing Center
Telecommunications Technology Association
University of Coimbra, Portugal
CAICT

Steering Committee

Andrew Bond (Red Hat)
Michael Brey (Oracle)
Matthew Emmerton (HP)
Raghunath Nambiar (Cisco)
Jamie Reding (Microsoft)

Public Relations Committee

Andrew Bond (Red Hat)
Raghunath Nambiar (Cisco), Chair
Miso Cilimdzic, Microsoft, USA
Meikel Poess (Oracle)
Reza Taheri (VMware)

Technical Advisory Board

Andrew Bond (Red Hat)
Paul Cao (HP)
Matthew Emmerton (IBM)
John Fowler (Oracle)
Jamie Reding (Microsoft), Chair
Nicholas Wakou (Dell)

Technical Subcommittees and Chairs

TPC-ACID-AR: John Fowler
TPC-Pricing: Jamie Reding
TPC-C: Jamie Reding
TPC-DI: Meikel Poess
TPC-DS: Meikel Poess
TPC-E: Matthew Emmerton
TPC-H: Miso Cilimdzic
TPCx-V: Reza Taheri
TPC-VMS: Reza Taheri
TPCx-BB: Bhaskar Gowda
TPCx-HS: Tariq Magdon-Ismail

Working Groups and Chairs

TPC-IoT: Raghunath Nambiar

XII TPC 2016 Organization

Contents

Industry Standards for the Analytics Era: TPC Roadmap 1
Raghunath Nambiar and Meikel Poess

TPCx-HS on the Cloud!. 7
Nicholas Wakou, Michael Woodside, Arkady Kanevsky,
Fazal E Rehman Khan, and Mofassir ul Islam Arif

From BigBench to TPCx-BB: Standardization of a Big Data Benchmark 24
Paul Cao, Bhaskar Gowda, Seetha Lakshmi, Chinmayi Narasimhadevara,
Patrick Nguyen, John Poelman, Meikel Poess, and Tilmann Rabl

Benchmarking Spark Machine Learning Using BigBench. 45
Sweta Singh

Benchmarking Exploratory OLAP . 61
Mahfoud Djedaini, Pedro Furtado, Nicolas Labroche, Patrick Marcel,
and Verónika Peralta

Lessons from OLTP Workload on Multi-socket HPE Integrity
Superdome X System . 78

Srinivasan Varadarajan Sahasranamam, Paul Cao,
Rajesh Tadakamadla, and Scott Norton

Benchmarking Distributed Stream Processing Platforms
for IoT Applications . 90

Anshu Shukla and Yogesh Simmhan

AdBench: A Complete Benchmark for Modern Data Pipelines 107
Milind Bhandarkar

Lessons Learned: Performance Tuning for Hadoop Systems 121
Manan Trivedi and Raghunath Nambiar

Work-Energy Profiles: General Approach and In-Memory Database
Application . 142

Annett Ungethüm, Thomas Kissinger, Dirk Habich,
and Wolfgang Lehner

Erratum to: Performance Evaluation and Benchmarking E1
Raghunath Nambiar and Meikel Poess

Performance and Energy Analysis Using Transactional Workloads 159
Anastasia Ailamaki, Danica Porobic, and Utku Sirin

Author Index . 161

http://dx.doi.org/10.1007/978-3-319-54334-5_1
http://dx.doi.org/10.1007/978-3-319-54334-5_2
http://dx.doi.org/10.1007/978-3-319-54334-5_3
http://dx.doi.org/10.1007/978-3-319-54334-5_4
http://dx.doi.org/10.1007/978-3-319-54334-5_5
http://dx.doi.org/10.1007/978-3-319-54334-5_6
http://dx.doi.org/10.1007/978-3-319-54334-5_6
http://dx.doi.org/10.1007/978-3-319-54334-5_7
http://dx.doi.org/10.1007/978-3-319-54334-5_7
http://dx.doi.org/10.1007/978-3-319-54334-5_8
http://dx.doi.org/10.1007/978-3-319-54334-5_9
http://dx.doi.org/10.1007/978-3-319-54334-5_10
http://dx.doi.org/10.1007/978-3-319-54334-5_10
http://dx.doi.org/10.1007/978-3-319-54334-5_11
http://dx.doi.org/10.1007/978-3-319-54334-5

Industry Standards for the Analytics Era: TPC Roadmap

Raghunath Nambiar1(✉) and Meikel Poess2

1 Cisco Systems, Inc., 275 East Tasman Drive, San Jose, CA 95134, USA
rnambiar@cisco.com

2 Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065, USA
meikel.poess@oracle.com

Abstract. The Transaction Processing Performance Council (TPC) is a non-
profit organization focused on developing data-centric benchmark standards and
disseminating objective, verifiable performance data to industry. This paper
provides a high-level summary of TPC benchmark standards, technology confer‐
ence initiative, and new development activities in progress.

Keywords: Industry standards · Database benchmarks

1 TPC Benchmark Timelines

Founded in 1988, the Transaction Processing Performance Council (TPC) is a non-profit
corporation dedicated to creating and maintaining benchmarks which measure database
performance in a standardized, objective and verifiable manner. Looking back to the
1980s, many companies practiced something known as “benchmarketing” – a practice
in which organizations made performance claims based on internal benchmarks. The
goal of running tailored benchmarks was simply to make one specific company’s solu‐
tion look far superior to that of the competition, with the objective of increasing sales.
Companies created configurations specifically designed to maximize performance,
called “benchmark specials,” to force comparisons between non-comparable systems.

In response to this growing practice, a small group of individuals became determined
to find a fair and neutral means to compare performance across database systems. Both
influential academic database experts and well-known industry leaders contributed to
this effort. Their important work on the topic eventually led to the creation of the TPC.
Today 18 full members and five associate members comprise the TPC.

The most critical contribution of the TPC has been providing the industry with method‐
ologies for calculating overall system-level performance and price for performance [1, 2].

Over the years the TPC has changed its mission – from defining transaction-
processing benchmarks (when founded in 1988), to defining transaction processing
benchmarks and database benchmarks (1999), and now defining data centric bench‐
marks inline with industry trends (2015) [1, 2].

To date the TPC has approved a total of sixteen independent benchmarks. Of these
benchmarks, nine are currently active: TPC-C, TPC-H, TPC-E, TPC-DS, TPC-VMS,
TPC-DI and TPCx-HS. New benchmarks are under development is TPC-IoT. See
Fig. 1 for the benchmark timelines.

© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 1–6, 2017.
DOI: 10.1007/978-3-319-54334-5_1

Fig. 1. TPC benchmark timelines

A high-level summary of current active standard are listed below:

• Transaction Processing
– TPC-C: TPC-C simulates a complete computing environment where a population

of users executes transactions against a database. While the benchmark portrays
the activity of a wholesale supplier, TPC-C is not limited to the activity of any
particular business segment, but rather represents any industry that must manage,
sell or distribute a product or service.

– TPC-E: The TPC-E benchmark uses a database to model a brokerage firm with
customers who generate transactions related to trades, account inquiries and market
research. The brokerage firm in turn interacts with financial markets to execute orders
on behalf of the customers and updates relevant account information.

• Decision Support
– TPC-H: An ad-hoc, decision support benchmark widely popular in industry and

academia. Vendors continue to publish results on single node configurations as well
as large scale-out configurations.

– TPC-DS: A complex decision support benchmark representative of modern deci‐
sion support systems. TPC took several years to develop this benchmark and reach
consensus approval as a standard. No official publications have been made. TPC-
DS 2.0 is under development. A major change is removing the relational database
properties to support emerging platforms like Hadoop [3, 4].

– TPC-DI: A data integration benchmark (also known as ETL) combines and trans‐
forms data extracted from a brokerage firm’s OLTP system along with other
sources of data, and loads it into a data warehouse. No official publications have
been made [5].

• Big Data and Analytics
– TPCx-HS: The industry’s first Big Data benchmark standard is also TPC’s first

benchmark in the TPC Express benchmark category. The model is based on a
simple application that is highly relevant to hardware and software dealing with
Big Data systems in general [6].

– TPCx-BB: TPCx-BB measures the performance of both hardware and software
components by executing 30 frequently performed analytical queries in the

2 R. Nambiar and M. Poess

context of retailers with physical and online store presences. The queries are
expressed in SQL for structured data and in machine learning algorithms for semi-
structured and unstructured data. The SQL queries can use Hive or Spark, while
the machine learning algorithms use machine learning libraries, user defined
functions, and procedural programs [7].

• Virtualization
– TPC-VMS: A single system virtualization benchmark leveraging TPC-C, TPC-E,

TPC-H and TPC-DS benchmarks by adding the methodology and requirements for
running and reporting performance metrics for virtualized databases [8].

– TPCx-V: The TPCx-V benchmark measures the performance of a server running
virtualized databases. It is similar to previous virtualization benchmarks in that it
has many virtual machines (VMs) running different workloads. It is also similar
to previous TPC benchmarks in that it uses the schema and transactions of the
TPC-E benchmark. But TPCx-V is unique because, unlike previous virtualization
benchmarks, it has a database-centric workload, and models many properties of
cloud servers, such as multiple virtual machines running at different load demand
levels, and large fluctuations in the load level of each virtual machine [8].

2 TPCTC Conference Series

To keep pace with rapid changes in technology, in 2009, the TPC initiated a conference
series on performance analysis and benchmarking. The TPCTC has been challenging
industry experts and researchers to develop innovative techniques for performance eval‐
uation, measurement, and characterization of hardware and software systems. Over the
years it has emerged as a leading forum to present and debate the latest and greatest in
the world of benchmarking. The topics of interest included:

• Big data
• Data analytics
• Internet of Things (IoT)
• In-memory databases
• Social media infrastructure
• Security
• Hybrid workloads
• Complex event processing
• Database optimizations
• Disaster tolerance and recovery
• Energy and space efficiency
• Hardware innovations
• Cloud computing
• Virtualization
• Lessons learned in practice using TPC workloads
• Enhancements to TPC workloads
• Data integration

Industry Standards for the Analytics Era: TPC Roadmap 3

A short summary of the TPCTC conferences are listed below.
The first TPC Technology Conference on Performance Evaluation and Bench‐

marking (TPCTC 2009), held in conjunction with the 35th International Conference on
Very Large Data Bases (VLDB 2009) in Lyon, France from August 24th to August 28th,
2009 [9].

The second TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2010) was held in conjunction with the 36th International Conference
on Very Large Data Bases (VLDB 2010) in Singapore from September 13th to September
17th, 2010 [10].

The third TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2011), held in conjunction with the 37th International Conference on
Very Large Data Bases (VLDB 2011) in Seattle, Washington from August 29th to
September 3rd, 2011 [11].

The fourth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2012), held in conjunction with the 38th International Conference on
Very Large Data Bases (VLDB 2012) in Istanbul, Turkey from August 27th to August
31st, 2012 [12].

The fifth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2013), held in conjunction with the 39th International Conference on
Very Large Data Bases (VLDB 2013) in Riva del Garda, Trento, Italy from August
26th to August 30st, 2013 [13].

The sixth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2014), held in conjunction with the 40th International Conference on
Very Large Data Bases (VLDB 2014) in Hangzhou, China, from September 1st to
September 5th, 2014 [14].

The seventh TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2015), held in conjunction with the 41st International Conference on
Very Large Data Bases (VLDB 2015) in Kohala Coast, USA, from August 31st to
September 4th, 2015 [15].

The eighth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2016), held in conjunction with the 42nd International Conference on
Very Large Data Bases (VLDB 2016) in New Delhi, India, from September 5th to
September 9th, 2016.

TPCTC has had a significant positive impact on the TPC. TPC is able to attract new
members from industry and academia to join the TPC. The formation of working groups
on Big Data, Virtualization and Internet of Things (IoT) was a direct result of TPCTC
conferences.

3 Outlook

TPC remains committed to develop relevant standards in collaboration with industry and
research communities and continue to enable fair comparison of technologies and products
in terms of performance, cost of ownership. New additions to TPC standards in recent years
have been standards for Big Data and Analytics and Virtualization [7–9].

4 R. Nambiar and M. Poess

Foreseeing the industry transition to digital transformation the TPC has created a
working group to develop set of standards for hardware and software pertaining to Internet
of Things (IoT). Companies, research and government institutions who are interested in
influencing the development of such benchmarks are encouraged to join the TPC [2].

The TPC Pricing Subcommittee has been chartered to recommend revisions to the
existing pricing methodology to support the benchmark in public cloud environments.

Acknowledgements. Developing benchmark standards require a huge effort to conceptualize,
research, specify, review, prototype, and verify the benchmark. The authors acknowledge the work
and contributions of past and present members of the TPC.

References

1. Nambiar, R., Poess, M.: Reinventing the TPC: from traditional to big data to internet of things. In:
Nambiar, R., Poess, M. (eds.) TPCTC 2015. LNCS, vol. 9508, pp. 1–7. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-31409-9_1

2. Nambiar, R., Poess, M.: Keeping the TPC relevant! PVLDB 6(11), 1186–1187 (2013)
3. Nambiar, R., Wakou, N., Masland, A., Thawley, P., Lanken, M., Carman, F., Majdalany, M.:

Shaping the landscape of industry standard benchmarks: contributions of the transaction processing
performance council (TPC). In: Nambiar, R., Poess, M. (eds.) TPCTC 2011. LNCS, vol. 7144, pp.
1–9. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32627-1_1

4. Nambiar, R., Poess, M.: The making of TPC-DS. In: VLDB 2006, pp. 1049–1058 (2006)
5. Pöss, M., Nambiar, R., Walrath, D.: Why you should run TPC-DS: a workload analysis. In: VLDB

2007, pp. 1138–1149 (2007)
6. Poess, M., Rabl, T., Caufield, B.: TPC-DI: the first industry benchmark for data integration. PVLDB

7(13), 1367–1378 (2014)
7. Nambiar, R., Poess, M., Dey, A., Cao, P., Magdon-Ismail, T., Da Qi Ren, Bond, A.: Introducing

TPCx-HS: the first industry standard for benchmarking big data systems. In: Nambiar, R., Poess,
M. (eds.) Technology Conference on Performance Evaluation and Benchmarking, TPCTC 2014,
pp. 1–12. Springer, Heidelberg (2014)

8. Baru, C.: Discussion of BigBench: a proposed industry standard performance benchmark for big
data. In: Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 44–63. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-15350-6_4

9. Bond, A., Johnson, D., Kopczynski, G., Taheri, H.R.: Profiling the performance of virtualized
databases with the TPCx-V benchmark. In: Nambiar, R., Poess, M. (eds.) TPCTC 2015. LNCS,
vol. 9508, pp. 156–172. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31409-9_10

10. Nambiar, R., Poess, M. (eds.): Performance Evaluation and Benchmarking, TPCTC 2009. LNCS, vol.
5895. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10424-4. ISBN 978-3-642-10423-7

11. Nambiar, R., Poess, M. (eds.): Performance Evaluation, Measurement and Characterization of
Complex Systems, TPCTC 2010. LNCS, vol. 6417. Springer, Heidelberg (2011). doi:
10.1007/978-3-642-18206-8. ISBN 978-3-642-18205-1

12. Nambiar, R., Poess, M. (eds.): Topics in Performance Evaluation, Measurement and
Characterization, TPCTC 2011. LNCS, vol. 7144. Springer, Heidelberg (2012). doi:
10.1007/978-3-642-32627-1. ISBN 978-3-642-32626-4

13. Nambiar, R., Poess, M. (eds.): Selected Topics in Performance Evaluation and Benchmarking,
TPCTC 2012. LNCS, vol. 7755. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36727-4.
ISBN 978-3-642-36726-7

Industry Standards for the Analytics Era: TPC Roadmap 5

http://dx.doi.org/10.1007/978-3-319-31409-9_1
http://dx.doi.org/10.1007/978-3-642-32627-1_1
http://dx.doi.org/10.1007/978-3-319-15350-6_4
http://dx.doi.org/10.1007/978-3-319-31409-9_10
http://dx.doi.org/10.1007/978-3-642-10424-4
http://dx.doi.org/10.1007/978-3-642-18206-8
http://dx.doi.org/10.1007/978-3-642-32627-1
http://dx.doi.org/10.1007/978-3-642-36727-4

14. Nambiar, R., Poess, M. (eds.): Performance Characterization and Benchmarking, TPCTC
2013. LNCS, vol. 8391. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04936-6. ISBN
978-3-319-04935-9

15. Nambiar, R., Poess, M. (eds.): Performance Characterization and Benchmarking. Traditional
to Big Data, TPCTC 2014. LNCS, vol. 8904. Springer, Heidelberg (2014). doi:
10.1007/978-3-319-15350-6. ISBN 978-3-319-15349-0

16. Nambiar, R., Poess, M. (eds.): Performance Evaluation and Benchmarking: Traditional to Big
Data to Internet of Things, TPCTC 2015. LNCS, vol. 9508. Springer, Heidelberg (2016). doi:
10.1007/978-3-319-31409-9. ISBN 978-3-319-31408-2

6 R. Nambiar and M. Poess

http://dx.doi.org/10.1007/978-3-319-04936-6
http://dx.doi.org/10.1007/978-3-319-15350-6
http://dx.doi.org/10.1007/978-3-319-31409-9

TPCx-HS on the Cloud!

Nicholas Wakou1(&), Michael Woodside1, Arkady Kanevsky1,
Fazal E Rehman Khan2, and Mofassir ul Islam Arif2

1 Dell Inc., Round Rock, TX 78682, USA
{Nicholas.Wakou,C.Michael.Woodside,

Arkady.Kanevsky}@dell.com
2 xFlow Research Inc., Software Technology Park, Islamabad, Pakistan
{Fazal.Rehman,Mofassir.Arif}@xFlowresearch.com

http://www.Dell.com

http://www.xFlowResearch.com

Abstract. The introduction of web scale operations needed for social media
coupled with ease of access to the internet by mobile devices has exponentially
increased the amount of data being generated every day. By conservative esti-
mates the world generates close to 50,000 GB of data every second, 90% of
which is unstructured, and this growth is accelerating. From its origins as a web
log processing system at Yahoo, the open source nature and efficient processing
of Apache Hadoop has made it the industry standard for Big Data processing.
TPCx-HS was the first benchmark standard by a major Industry-Standard

performance consortium for the Big Data space. TPCx-HS is a derivative of
Apache Hadoop Workloads; Teragen, Terasort and Teravalidate. Ever since its
release by the TPC in August 2014, all the 18 results published (as of August
2016) have been based on on-premise, Bare-metal hardware configurations.
This paper will show how Hadoop can be deployed on an OpenStack cloud

using theOpenStack Sahara project and howTPCx-HS can be used tomeasure and
evaluate the performance of the Cloud under Test (CuT). It will also show how an
OpenStack cloud can be optimized to get the performance of TPCx-HS on the
Cloud to match as closely as possible that on a Bare-metal configuration. Lastly, it
will share results and experiences based on a Hadoop on Cloud Proof-of-Concept
(POC), a study that was undertaken by the Dell Open Source Solutions team.

Keywords: Apache Hadoop � OpenStack � Big data � Cloud � TPCx-HS �
Benchmark

1 Introduction

The complex nature of big data is primarily due to the unstructured nature of much of
the data that is generated by modern technologies such as that from web logs, RFID,
sensors, and smart phones [1]. This coupled with web scale operations of companies
like Google, Yahoo and Facebook exponentially increased the amount of data being
generated. This was the turning point in the big data life cycle which demanded the
need for a system to efficiently manage and process these large amounts of data.
Hadoop emerged from the efforts of these data giants and due to the open source nature

© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 7–23, 2017.
DOI: 10.1007/978-3-319-54334-5_2

of several of its key components, quickly became the standard for managing large
volumes of unstructured data. The two main components of Apache Hadoop platform
are Hadoop Distributed File System (HDFS) and MapReduce. A number of major
Computer companies now offer Hadoop-based solutions for analyzing big data
use-cases. An industry-standard benchmark was therefore required to compare and
differentiate these offerings. TPC Express BenchmarkTMHS (TPCx-HS) was developed
to provide an objective measure of hardware, operating system and commercial Apache
Hadoop File System API compatible software distributions, and to provide the industry
with verifiable performance, price-performance and availability metrics [2]. Tradi-
tionally Hadoop is deployed on customer premise and on physical servers. Due to its
inherently efficient nature in terms of resource allocation and utilization, there appears
little need for a cloud Hadoop deployment. This trend is changing with the advance-
ments of cloud technology. A cloud deployment offers the ability to conveniently scale
the cluster as needed. Multi-tenancy is also a big advantage when it comes to facili-
tating multiple users on the same physical hardware. Furthermore, a cloud deployment,
coupled with multi-tenancy, is greatly complimented by the resources and security
segregation. Each tenant has full control over their resources without incurring any risk
to the resources managed by the other tenants [3]. Hadoop can now be run in a cloud in
a way that is efficient and performance can be made comparable with physical hard-
ware after a few configurations and tweaks. This paper provides recommendations for
cloud configuration and Hardware options for running Hadoop workloads in the cloud.

2 Related Work

Google searches on Hadoop on Cloud show that some work has been done on running
Hadoop on a public cloud [4] and on private clouds [5]. For the most part, moving from
the traditional Bare-metal deployment of Hadoop to the Cloud is still seen as a challenge
by Enterprises mainly due to performance concerns in the Cloud. One of the most related
studies to this paper was work conducted by Accenture on a price-performance com-
parison of a Bare-metal Hadoop cluster and cloud-basedHadoop clusters. Accenture used
their own TCOmodel and the Accenture Data Platform Benchmark which provided three
real-world Hadoop applications to compare the execution-time performance of the
clusters [6]. The above mentioned references make the case for running Hadoop on a
cloud; the advantages and challenges. They show that despite performance challenges, it
still makes sense to run Hadoop on the Cloud. This paper shows that with appropriate
cloud configurations and settings, Hadoop performance on the cloud can match that on
Bare-metal. This study deployed TPCx-HS Big Data workloads on an OpenStack Cloud.

3 System Under Test

There were 2 main Systems under Test; Cloud and Bare-metal. The Bare-metal system
consisted of 4� Dell R730xd servers, the details can be found in Table 1.

8 N. Wakou et al.

The Cloud system was based on the Dell Red Hat OpenStack Cloud Solution
Reference Architecture (RA) version 4.0.1 based on Red Hat OpenStack Cloud Plat-
form 7 (OSP7). Details are provided in Fig. 1. The Cloud setup used 2 types of storage
configurations both shown in Fig. 1.

1. Ceph Storage for all Compute nodes; for both block and Nova ephemeral storage.
2. Local Storage on each Compute node; for both block and Nova ephemeral storage.

Sahara is an OpenStack project for deployment and management of Hadoop
clusters. Sahara was used to deploy Cloudera CDH 5.3 that in turn used OpenStack
APIs to manage Instances to run Hadoop. The Hadoop cluster consisted of Cloudera
Manager Instance (EdgeNode), Namenode Instance (Master) and Datanode Instances
(Workers). The physical resources allocated to these instances are listed in Table 2.
Each Compute node was configured as a separate OpenStack availability zone in order
to keep the Cloudera Manager and Namenode Instances on one Compute node and then
evenly distribute the Worker Instance(s) across all Compute nodes. Unless otherwise
stated, Datanode instances will be referred to as Workers.

Table 1. Bare-metal System under Test

Role Model Qty. CPUs Memory Storage Network
adaptor

Name
Node

Dell
R730xd

1 2� Intel
12-Core
E5-2690
v3

128 GB,
8 � 16 GB
DIMMS,
2133 MT/s

16 � 1 TB (2:500

, 7.2 K, HDD,
SAS, JBOD),
2 � 300 GB
(2:500,HDD,
SAS, RAID 1)

Intel 2P
10G X520,
Intel 2P
10G X520
+ 2P 1G
I350 rNDS

Data
Node

Dell
R730xd

3 2� Intel
12-Core
E5-2690
v3

128 GB,
8 � 16 GB
DIMMS,
2133 MT/s

16 � 1 TB
(2:500, 7.2 K,
HDD, SAS,
JBOD),
2 � 300 GB
(2:500, HDD,
SAS, RAID 1)

Intel 2P
10G X520,
Intel 2P
10G X520
+ 2P 1G
I350 rNDS

Table 2. Resource allocation

Role Number of instances vCPU Memory Compute node

Cloudera manager instance 1 2 8 GB Compute node 1
Namenode instance 1 6 16 GB Compute node 1
Worker instances 3–60 40 80 GB Compute nodes 1–3

TPCx-HS on the Cloud! 9

Fig. 1. Dell Red Hat OpenStack Platform

10 N. Wakou et al.

3.1 OpenStack Sahara

OpenStack Sahara provides a robust interface to easily provision and scale Hadoop
clusters. As an OpenStack component, OpenStack Sahara is fully integrated into the
OpenStack ecosystem; for example, users can administer the entire Hadoop data pro-
cessing workflow through the OpenStack dashboard (Horizon) – from configuring
clusters, all the way to launching and running jobs on them [7].

A cluster deployed by Sahara consists of node groups. Node groups vary by their
role, parameters and number of machines. In order to simplify cluster provisioning,
Sahara makes use of two kinds of templates: node group templates and cluster tem-
plates. A cluster template is made up of multiple node group templates, while a node
group template specifies the role and services that are needed in that group. The use of
these templates reduces the cluster deployment and configuration time.

Sahara uses different plugins to provision a specific data processing frame-work or
Hadoop distribution. There are several supported plugins for the OpenStack Kilo
release including Vanilla, Cloudera, Ambari and Spark. We used the Cloudera
(CDH) 5.3.0 plugin which allows the deployment and operation of a cluster with
Cloudera Manager.

OpenStack deploys instances of the cluster based on a pre-built image with an
installed OS. The image requirements for Sahara depend on the plugin and data pro-
cessing framework version. With the Cloudera 5.3.0 plugin, we used the Centos 6.6
based image with preinstalled packages of CDH 5.3.0 [8].

Fig. 2. Cloud architecture

TPCx-HS on the Cloud! 11

3.2 Cloudera Manager 5.3

Cloudera Manager makes it easy to manage Hadoop deployments of any scale in
production. Cloudera Manager 5.3 was used to configure and monitor the Hadoop
clusters through its intuitive UI [9]. This functionality enabled us to easily configure the
Hadoop clusters for testing different scenarios as discussed in Sect. 5: Performance
Testing. Cloudera Manager UI helps with clusterwide monitoring of all hosts and
services, cluster usage and health, and also with troubleshooting problems. The version
summary of Hadoop components deployed is listed in Table 3.

3.3 TPCx-HS

The results of this POC were derived from the TPCx-HS benchmark and as such are
not comparable to published TPCx-HS results. TPCx-HS proved to be a viable option
because of its focus on big data. TPCx-HS was developed to provide an objective
measure of hardware, operating system and commercial Apache Hadoop File Sys-
tem API compatible software distributions, and to provide the industry with verifiable
performance, price-performance and availability metrics [2]. Each run of the bench-
mark consisted of 2 iterations of HSGen, HSDataCheck, HSSort, HSValidate and
provided us with the job run time.

Table 3. Cloudera Hadoop version summary

Component Version Release CDH version

YARN 2.5.0+cdh5.3.0+781 1.cdh5.3.0.p0.54 CDH 5
HDFS 2.5.0+cdh5.3.0+781 1.cdh5.3.0.p0.54 CDH 5

hue-common 3.7.0+cdh5.3.0+134 1.cdh5.3.0.p0.24 CDH 5
Keytrustee Keyprovider 5.5.0+cdh5.5.0+0 1.cdh5.5.0.p0.1 Not applicable
hadoop-kms 2.5.0+cdh5.3.0+781 1.cdh5.3.0.p0.54 CDH 5

HBase 0.98.6+cdh5.3.0+73 1.cdh5.3.0.p0.25 CDH 5
Hue 3.7.0+cdh5.3.0+134 1.cdh5.3.0.p0.24 CDH 5

Crunch (CDH 5 only) 0.11.0+cdh5.3.0+16 1.cdh5.3.0.p0.24 CDH 5
Llama (CDH 5 only) 1.0.0+cdh5.3.0+0 1.cdh5.3.0.p0.26 CDH 5
HttpFS 2.5.0+cdh5.3.0+781 1.cdh5.3.0.p0.54 CDH 5

Hadoop 2.5.0+cdh5.3.0+781 1.cdh5.3.0.p0.54 CDH 5
sentry 1.4.0+cdh5.3.0+126 1.cdh5.3.0.p0.26 CDH 5

MapReduce 2 2.5.0+cdh5.3.0+781 1.cdh5.3.0.p0.54 CDH 5
Lily HBase Indexer 1.5+cdh5.3.0+23 1.cdh5.3.0.p0.18 CDH 5
Flume NG 1.5.0+cdh5.3.0+79 1.cdh5.3.0.p0.18 CDH 5

Cloudera Manager Management Daemons 5.3.0 1.cm530.p0.166 Not applicable
Supervisord 3.0-cm5.3.0 Unavailable Not applicable

Java 7 jdk1.7.0 67-cloudera Unavailable Not applicable
Cloudera Manager agent 5.3.0 1.cm530.p0.166 Not applicable

12 N. Wakou et al.

4 Configurations

4.1 Hardware Configurations

Below are the hardware configurations that were used for different test scenarios dis-
cussed in Sect. 5. Table 4 shows the hardware configurations for Instance and
Over-Subscription tests while Table 5 shows the hardware configurations for HDFS on
local Storage, CPU Pinning/NUMA with HDFS on Local Storage and Disk and CPU
Pinning/NUMA with HDFS on Local Storage tests. It should be noted that the hard-
ware configurations used for this study are under the control of the Cloud and its
administrator and are not visible to the user running the tests described in Sect. 5.

Table 4. Hardware configuration for instance and over-subscription tests

Controller
nodes

Compute nodes Ceph storage nodes

Server model Dell R630 Dell R630 Dell R730xd
CPU Intel E5-2650

v4
Intel E5-2650
v4

Intel E5-2650 v4

Memory 128 GB, 2400
MT/s

128 GB, 2400
MT/s

128 GB, 2400 MT/s

BIOS
version

2.0.1 2.0.1 2.0.1

Firmware
version

2.30.30.30 2.30.30.30 2.30.30.30

HDD 4 � 600 GB,
2:500, SAS,
HDD

8 � 600 GB,
2:500, SAS,
HDD

2 � 300 GB,
2:500, SAS,
HDD

3 � 200 GB, 2:500,
SAS, SSD
+13 � 2 TB, 3:500,
SAS, HDD

HDD
configuration

H730 RAID
10 with drives
0, 1, 2, 3;

H730 RAID 10
with drives 0,
1, 2, 3, 4, 5, 6,
7;

H730 RAID 1
with flex bay
drives 12, 13;

JBOD drives 0, 1, 2,
3, 4, 5, 6, 7, 8, 9,
10, 11, 14, 15, 16,
17

Read policy Adaptive read
ahead

Adaptive read
ahead

Adaptive read
ahead

–

Write policy Write back Write back Write back –

Disk cache
policy

Default Default Default –

TPCx-HS on the Cloud! 13

4.2 Hadoop Configurations

In order to implement different test scenarios, several of the Hadoop configurations
were varied. Some of the configurations that remained common for all the tests are
listed in Table 6 while the configurations that varied from test to test to find the
optimum performance are listed in Table 7.

Table 5. H/W configuration for HDFS on local storage, CPU & Disk pinning tests

Controller nodes Compute with local storage nodes

Server model Dell R630 Dell R730xd
CPU Intel E5-2650 v4 Intel E5-2690 v3
Memory 128 GB, 2400

MT/s
128 GB, 2133 MT/s

BIOS
version

2.0.1 2.0.1

Firmware
version

2.30.30.30 2.30.30.30

HDD 4 � 600 GB,
2:500, SAS, HDD

2 � 300 GB, 2:500,
SAS, HDD

16 � 1 TB, 2:500n, SAS,
HDD

HDD
configuration

H730 RAID 10
with drives 0, 1,
2, 3;

H730 RAID 1 with
flex bay drives 24,
25;

JBOD drives 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15

Read policy Adaptive read
ahead

Adaptive read ahead –

Write policy Write back Write back –

Disk cache
policy

Default Default –

Table 6. Common Hadoop configurations

S. No. Configuration name Value

1 dfs.replication 3
2 dfs.blocksize 512 MB
3 mapreduce.map.cpu.vcores 1
4 mapreduce.map.memory.mb 1024 MB
5 mapreduce.reduce.cpu.vcores 1
6 mapreduce.reduce.memory.mb 2048 MB
7 yarn.scheduler.minimum-allocation-vcores 1
8 yarn.scheduler.minimum-allocation-mb 1024 MB
9 yarn.scheduler.increment-allocation-vcores 1
10 yarn.scheduler.increment-allocation-mb 512 MB
11 yarn.app.mapreduce.am.resource.mb 2048 MB
12 mapreduce.map.sort.spill.percent 0.8
13 mapreduce.task.io.sort.mb 256 MB
14 mapreduce.job.reduce.slowstart.completedmaps 0.8

14 N. Wakou et al.

5 Performance Testing

Based on prior research and virtualization experience [10], a few OpenStack config-
urations that were known to have a high impact on performance were selected for
performance testing. These included over-subscription, use of local storage on Com-
pute nodes, NUMA nodes and Disk Pinning. Test cases were developed to run and
measure the performance of TPCx-HS workloads on these configurations.

5.1 Instance Configuration Tests

The goal of the instance tests was to understand the impact of Instance (VM) config-
urations on TPCx-HS performance.

First, the number of workers versus the resources allocated to them was tested. In
essence, it was necessary to determine whether a small number of instances, each with
a higher resource allocation, would work better than a greater number of worker
instances with relatively fewer resources allocated to each of them. In order to test the
above scenarios, an arrangement I1. . .I5ð Þ of vCPU, memory and number of instances
was specified as shown in Table 8. TPCx-HS tests were executed on Hadoop clusters
based on each of the specified instance configurations.

Table 7. Variable Hadoop configurations

S. No. Configuration name Range

1 yarn.nodemanager.resource.memory-mb 4 GB–96 GB
2 yarn.nodemanager.resource.cpu-vcores 2–40
3 yarn.scheduler.maximum-allocation-mb 4 GB–96 GB
4 yarn.scheduler.maximum-allocation-vcores 2–40

Table 8. Instance configuration tests

Test
ID

Nova
flavor

Worker per
Node/Total

vCPU per
Worker

Memory
per Worker

Storage per
Worker

Storage
type

I1 custom 1/3 40 96 GB 16 TB Ceph
I2 m1.

medium
20/60 2 4 GB 1 TB Ceph

I3 m1.
large

10/30 4 8 GB 2 TB Ceph

I4 m1.
xlarge

5/15 8 16 GB 4 TB Ceph

I5 m1.
cxlarge

4/12 10 20 GB 4 TB Ceph

TPCx-HS on the Cloud! 15

These clusters were deployed using OpenStack Sahara. Note that m1.cxlarge was a
custom flavor. These tests were run without resource over-subscription. In all tables,
unless otherwise stated, Node refers to Compute Node.

While the Bare-metal hardware configuration shown in Table 1 was different from
the cloud virtual machine configuration, its performance served as a datum point for
comparison of results. The relative performance on the y-axis of Figs. 3 and 4 is
performance compared to Bare-metal Hadoop performance datum. For the Instance
configuration iterative test it was found that instance configuration I5, as shown in
Table 8, provided best performance. Figure 3 shows that large-sized flavor configu-
rations perform better. The only exception is the single-instance custom flavor which
was configured with the largest size but performed poorest.

Secondly the number of Instances per node were varied from 1 to 20 while ensuring
that the number of vCPUs and YARN containers created remained constant. It was
observed that performance peaks at 4 instances per node and then it tapers downwards.
The result for this can be seen in Fig. 4 which shows performance with maximum
number of instances for each flavor type.

The results of the instance configuration tests show that provisioning 4 m1.cxlarge
configuration instances and allocating them the maximum amount of memory and
vCPU resources provides the best performance. From these results, the TPCx-HS
performance gain due to an optimal instance configuration can go up to 5%. The
optimal instance configuration (I5) determined in this test is used in subsequent tests.

Fig. 3. Performance per instance configuration

16 N. Wakou et al.

5.2 Over-Subscription Tests

In this section, the impact of resource over-subscription on aggregate performance was
determined. Over-subscription was controlled by a Cloud administrator through the
choice of Nova flavor.

CPU Over-Subscription Tests. In these tests, the number of instances and memory
per instance was fixed, while the vCPUs assigned to each instance were increased
according to the ratio shown in Table 9. For the test ID C1, the optimal configuration
obtained in Sect. 5.1, I5, was used. The iterative tests for the vCPU over-subscription
can be found below in Table 9.

The number of worker instances and memory per instance values were fixed while
the vCPUs per instance were increased to find optimal performance as shown in
Table 9. The performance of each test was normalized by the performance of Test ID
“C1”. 1:1 CPU subscription yielded the best performance and Fig. 5 shows that while
there is a performance cost with over-subscription, it is not so drastic. An
over-subscription ratio of 1:2 results in a 2.5% drop in performance and a 1:4 results in
a 23% drop.

Fig. 4. Performance per number of instances

Table 9. CPU over-subscription tests

Test
ID

Ratio Nova
flavor

Worker per
Node/Total

vCPU
per
Worker

Memory
per
Worker

Storage
per
Worker

Storage
type

C1 1:1 custom 4/12 10 20 GB 4 TB Ceph
C2 1:2 custom 4/12 20 20 GB 4 TB Ceph
C3 1:3 custom 4/12 30 20 GB 4 TB Ceph
C4 1:4 custom 4/12 40 20 GB 4 TB Ceph

TPCx-HS on the Cloud! 17

Memory Over-Subscription Tests. In these tests, the optimal arrangement of
instances and vCPUs from the CPU over-subscription tests was used, while the
memory per worker was increased according to the ratio shown in Table 10.

The performance of each test was normalized by the performance of Test ID “M1”
that has no over-subscription. As the ratio of vMem (virtual) to pMem (physical) was
raised by 10% through 30%, Fig. 6 shows that there was a drastic drop in performance
with memory over-subscription. A 10% memory over-subscription results in a 65%
drop in performance while a 30% over-subscription results in a 70% drop. This test
demonstrates that memory over-subscription should be avoided if performance is a
consideration. Based on over-subscription tests, it was determined that memory
over-subscription has a bigger impact on performance than CPU over-subscription.

Fig. 5. CPU over-subscription

Table 10. Memory over-subscription tests

Test
ID

Ratio Nova
flavor

Worker per
Node/Total

vCPU
per
Worker

Memory
per
Worker

Storage
per
Worker

Storage
type

M1 1:1 custom 4/12 10 20 GB 4 TB Ceph
M1.1 1:1.1 custom 4/12 10 22 GB 4 TB Ceph
M1.2 1:1.2 custom 4/12 10 24 GB 4 TB Ceph
M1.3 1:1.3 custom 4/12 10 26 GB 4 TB Ceph

18 N. Wakou et al.

5.3 HDFS on Local Storage Tests

Some phases of the TPCx-HS workloads particularly HSGen (Teragen) are IOinten-
sive. It was therefore important to use a storage configuration that would provide better
performance. In that respect, tests were undertaken to compare HDFS performance on
local storage to Ceph shared backend.

For HDFS on local storage tests, 3 Dell R730xd servers each with 16 � 1 TB SAS
data drives were added to the OpenStack Cloud. See Fig. 1 and Table 5 for the detailed
hardware configuration. Notice that for these Local Storage tests the same hardware
was used for Bare-metal and Cloud runs, thus it is a true comparison between Hadoop
on Bare-metal and Hadoop on OpenStack cloud performance. Each physical node was
configured as both OpenStack Compute and Cinder Volume node. On each server, all
16 SAS drives were added to a single volume group and then OpenStack Cinder was
configured to use that volume group with LVM iSCSI Volume Driver [11]. Each node
was configured as a separate availability zone to ensure that volume attachment comes
from the same zone and the cinder volumes are local to a Compute node.

A cluster of 12 worker instances (4 on each R730xd) was deployed and each
instance was attached to 4 � 1 TB Cinder volumes for HDFS provided by the local
volume server. Similarly, for Ceph-based configuration the same number (4) and size
(1 TB) of volumes were attached to each Instance. HDFS replication was set at 3 for all
the tests while Ceph replication was set at 1 to maintain the total replication factor of 3.
See Table 11 below for test configurations.

Fig. 6. Memory over-subscription

TPCx-HS on the Cloud! 19

The local storage arrangement resulted in better performance than Ceph shared
storage backend. Note that as shown in Fig. 1, the Compute hardware configuration
used for Ceph storage tests was of a newer generation. Figure 7 below shows a sig-
nificant performance improvement of 22% over Ceph shared storage with replica-
tion = 1 in spite of the newer Compute hardware used for Ceph Storage. The use of
local storage minimizes network traffic and improves performance in an IO-bound
environment. It should be noted that Ceph Storage has a lot of other advantages like
resiliency that might out-weigh performance considerations.

5.4 CPU Pinning/NUMA with HDFS on Local Storage Tests

The goal of this test is to understand the impact of NUMA awareness of the OpenStack
scheduler on performance. To test the performance of using dedicated vCPUs with
NUMA awareness, the 3 Compute Nodes (R730xds) in Sect. 5.3 above were config-
ured to support the pinning of virtual machine instances to dedicated physical cores
[12]. A cluster of 12 worker instances (4 on each R730xd) was then deployed where the
vCPUs of each instance pins and exclusively use the physical CPUs. Each instance was
attached to 4 � 1 TB Cinder volumes provided by the local volume server. See
Table 12 below for the test configurations. Test ID “Non-NUMA” in Table 12 used the
same configuration as HDFS on Local Storage described in Sect. 5.3.

Fig. 7. HDFS on local storage

Table 11. HDFS on local storage tests

Test
ID

Ceph
replicas

HDFS
replication

Nova
flavor

Nova
flavor

Nova
flavor

Nova
flavor

Nova
flavor

Ceph 1 3 custom 4/12 10 20 GB 4 TB
Local – 3 custom 4/12 10 20 GB 4 TB

20 N. Wakou et al.

An additional 2% performance improvement was observed by implementing CPU
pinning in a configuration with HDFS on Local storage as shown in Fig. 8. The ability
for the OpenStack scheduler to be aware of the underlying NUMA architecture typi-
cally optimizes the performance of individual Instances. In this test, processor affinity
(CPU pinning) did not have a significant impact on performance. This could be
attributed to the effects of the KVM hypervisor and should be a subject of further
investigation.

5.5 Disk and CPU Pinning/NUMA with HDFS on Local Storage Tests

The goal of this test is to understand the impact of disk pinning on performance. To test
the performance of using dedicated disks as compared to shared local disks, 3 Dell
R730xds were configured to implement the pinning of physical disks to the virtual
machine instances. Each server had 16 � 1 TB SAS data drives. 16 separate volume
groups were created and one physical disk was assigned to each volume
group. OpenStack Cinder was configured to use all of those volume groups, each as an
individual storage backend with LVM iSCSI Volume Driver. A cluster of 12 worker
instances (4 on each R730xd) were deployed and each instance was attached to
4 � 1 TB Cinder volumes provided by one of the volume groups from the local
volume server [13]. Additionally the vCPUs of each instance were pinned to the
physical CPUs. See Table 13 below for the tests configurations. Test ID “NUMA” used
the same configuration of “NUMA” as described in Sect. 5.4.

Fig. 8. CPU pinning/NUMA with HDFS on local storage

Table 12. CPU pinning/NUMA with HDFS on local storage tests

Test ID Nova
Flavor

Worker per
Node/Total

vCPU
per
Worker

Memory
per
Worker

Storage
per
Worker

Storage
type

Non-NUMA custom 4/12 10 20 GB 4 TB Local
NUMA custom 4/12 10 20 GB 4 TB Local

TPCx-HS on the Cloud! 21

Figure 9 below shows that a performance improvement of 15% is attributed to disk
pinning. TPCx-HS workloads are IO-bound during HSGen (Teragen) and shuffle phase
of HSSort (Terasort). In an IO-intensive environment, the ability by instances to access
and pin physical disks directly has a significant performance impact as this test has
shown. Further performance gains can be achieved by use of a raw device driver
instead of LVM. This test also shows that by implementing disk pinning in a con-
figuration that uses NUMA nodes with HDFS on local storage, TPCx-HS performance
on the OpenStack cloud almost matches that on bare metal.

6 Conclusions

Hadoop-on-Cloud POC has shown that it is possible for the performance of Big Data
workloads (like TPCx-HS on OpenStack) on the Cloud to match that on Bare-Metal.
This improvement was achieved by using an optimal Instance configuration that was
deployed on local storage and with the implementation of CPU and disk pinning. More
performance gains can be realized by implementing the use of a raw device driver by
Cinder instead of LVM used in this study. The net effect of the aggregation of opti-
mizations shown in this paper and those that have been recommended should lead to
better TPCx-HS performance on the Cloud than on Bare-metal. That has been shown to
be possible in virtualized environments [10] and from the results of this POC it should
be possible on the Cloud. Follow-up tests to this POC will strive to identify even more

Fig. 9. Disk and CPU pinning/NUMA with HDFS on local storage

Table 13. Disk and CPU pinning/NUMA with HDFS on local storage tests

Test ID Nova
flavor

Worker per
Node/Total

vCPU per
Worker

Memory
per Worker

Storage
per
Worker

Storage
type

NUMA custom 4/12 10 20 GB 4 TB Local
NUMA
& Disk

custom 4/12 10 20 GB 4 TB Local

22 N. Wakou et al.

optimizations. It is worth noting that in this paper, our recommendations for OpenStack
configuration and hardware choices were considered from a performance perspective.
In a production environment, Openstack and Hadoop data protection best-practices
should be considered. This includes use of persistent storage and raising the HDFS
replication factor to greater than the default (>3).

Acknowledgments. The authors would like to thank John Terpstra, Michael Pittaro, Randy
Perryman, Michael Tondee and David Grimes for participating in the technical review meetings
of the POC. Their input, feedback and guidance helped shape this investigation. Mr. Ashok
Malani is recognized for his technical leadership of the xFlow Research team that did such a
tremendous job performing the tests and drafting this paper.

References

1. Navint: Why is big data important? (2012). www.navint.com/images/Navint.BigData.
FINAL.pdf

2. TPC: Tpcx-hs (2016). http://www.tpc.org/tpcx-hs/
3. VMware: Virtualized hadoop performance with vmware vsphere 6 on highperformance

servers (2015). http://www.vmware.com/files/pdf/techpaper/Virtualized-Hadoop-
Performance-with-VMware-vSphere6.pdf

4. Stata, R.: Understanding hadoop-as-a-service offerings (2014). http://www.
datacenterknowledge.com/archives/2014/05/14/understanding-hadoop-service-offerings/

5. Hurtgen, A.: Using apache hadoop on rackspace private cloud (2013). https://support.
rackspace.com/how-to/apache-hadoop-on-rackspace-private-cloud/

6. Wendt, M.E.: Cloud-based hadoop deployments: benefits and considerations (2014). https://
goo.gl/re0Ov5

7. OpenStack: Openstack sahara user documentation (2016). http://docs.openstack.org/
developer/sahara/userdoc/overview.html

8. Mirantis: Openstack sahara kilo images (2016). http://sahara-files.mirantis.com/images/
upstream/kilo/

9. Cloudera, I.: Cloudera manager free edition user guide (2012)
10. TPC: Dell poweredge r720xd with vmware vsphere 6.0 (2015). http://www.tpc.org/5504
11. OpenStack: Install and configure a storage node - openstack kilo (2015). http://docs.

openstack.org/kilo/install-guide/install/yum/content/cinder-install-storage-node.html
12. RedHat: Cpu pinning and numa topology awareness in openstack compute (2015). http://

redhatstackblog.redhat.com/2015/05/05/cpu-pinning-and-numa-topology-awareness-in-
openstack-compute/

13. OpenStack: Openstack cinder multi-backend (2015). https://wiki.openstack.org/wiki/Cinder-
multi-backend

TPCx-HS on the Cloud! 23

http://www.navint.com/images/Navint.BigData.FINAL.pdf
http://www.navint.com/images/Navint.BigData.FINAL.pdf
http://www.tpc.org/tpcx-hs/
http://www.vmware.com/files/pdf/techpaper/Virtualized-Hadoop-Performance-with-VMware-vSphere6.pdf
http://www.vmware.com/files/pdf/techpaper/Virtualized-Hadoop-Performance-with-VMware-vSphere6.pdf
http://www.datacenterknowledge.com/archives/2014/05/14/understanding-hadoop-service-offerings/
http://www.datacenterknowledge.com/archives/2014/05/14/understanding-hadoop-service-offerings/
https://support.rackspace.com/how-to/apache-hadoop-on-rackspace-private-cloud/
https://support.rackspace.com/how-to/apache-hadoop-on-rackspace-private-cloud/
https://goo.gl/re0Ov5
https://goo.gl/re0Ov5
http://docs.openstack.org/developer/sahara/userdoc/overview.html
http://docs.openstack.org/developer/sahara/userdoc/overview.html
http://sahara-files.mirantis.com/images/upstream/kilo/
http://sahara-files.mirantis.com/images/upstream/kilo/
http://www.tpc.org/5504
http://docs.openstack.org/kilo/install-guide/install/yum/content/cinder-install-storage-node.html
http://docs.openstack.org/kilo/install-guide/install/yum/content/cinder-install-storage-node.html
http://redhatstackblog.redhat.com/2015/05/05/cpu-pinning-and-numa-topology-awareness-in-openstack-compute/
http://redhatstackblog.redhat.com/2015/05/05/cpu-pinning-and-numa-topology-awareness-in-openstack-compute/
http://redhatstackblog.redhat.com/2015/05/05/cpu-pinning-and-numa-topology-awareness-in-openstack-compute/
https://wiki.openstack.org/wiki/Cinder-multi-backend
https://wiki.openstack.org/wiki/Cinder-multi-backend

From BigBench to TPCx-BB: Standardization
of a Big Data Benchmark

Paul Cao1, Bhaskar Gowda2, Seetha Lakshmi3,
Chinmayi Narasimhadevara4, Patrick Nguyen5, John Poelman6,

Meikel Poess7, and Tilmann Rabl8,9(&)

1 Hewlett Packard Enterprise, Palo Alto, USA
2 Intel Corporation, Hillsboro, USA

3 Actian Corporation, Palo Alto, USA
4 Cisco Systems Inc., San Jose, USA

5 Microsoft Corporation, Redmond, USA
6 IBM, San Jose, USA

7 Oracle Corporation, Redwood City, USA
8 Technische Universität Berlin, Berlin, Germany

rabl@tu-berlin.de
9 DFKI GmbH, Berlin, Germany

Abstract. With the increased adoption of Hadoop-based big data systems for
the analysis of large volume and variety of data, an effective and common
benchmark for big data deployments is needed. There have been a number of
proposals from industry and academia to address this challenge. While most
either have basic workloads (e.g. word counting), or port existing benchmarks to
big data systems (e.g. TPC-H or TPC-DS), some are specifically designed for
big data challenges. The most comprehensive proposal among these is the
BigBench benchmark, recently standardized by the Transaction Processing
Performance Council as TPCx-BB. In this paper, we discuss the progress made
since the original BigBench proposal to the standardized TPCx-BB. In addition,
we will share the thought process went into creating the specification, challenges
in navigating the uncharted territories of a complex benchmark for a fast moving
technology domain, and analyze the functionality of the benchmark suite on
different Hadoop- and non-Hadoop-based big data engines. We will provide
insights on the first official result of TPCx-BB and finally discuss, in brief, other
relevant and fast growing big data analytic use cases to be addressed in future
big data benchmarks.

1 Introduction

Organizations are increasingly beginning to value big data analytics for improving
business, reducing the risks, and solving business challenges. At the same time, they are
faced with a number of big data technology and solution options such as: MapReduce,
Spark, NoSQL databases, SQL on Hadoop databases, and Flink. Choosing the right
technology (or set of technologies) is critical for their success. A standardized bench-
mark that can be used to evaluate the performance of different big data technologies can
greatly help organizations choose the right solution.

© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 24–44, 2017.
DOI: 10.1007/978-3-319-54334-5_3

Influenced by Moore’s law, the rapidly evolving computing and storage landscape
enables companies to analyze their data for half the cost every two years. Many
companies hope to improve their business model by collecting increasing amounts of
data and employing techniques related to big data. Although traditional database
systems provide means to store large amounts of data, these have to generally need be
in a structured format. In recent years, a large ecosystem of big data tools has evolved,
which is targeted at analyzing the growing amounts of data, structured, semi-structured,
or un-structured.

While database systems are well established and their performance is understood by
companies, there is no easy methodology to compare, the plethora of big data systems
with their many interfaces, APIs, and query languages. In certain situations a scalable
big data system can be outperformed by a laptop for real problem sizes [1], empha-
sizing the need to improve efficiency of scalable big data systems.

Trying to keep up with this rapidly moving trend, customers have the difficult task
on their hands to compare cross-platform solutions in order to select the right hardware
and software for their big data needs. They rely on industry standard benchmarks to
educate, inform and guide making these decisions. An absence of such performance
analysis tools in form of standardized benchmarks has magnified customer difficulties,
thus motivating the industry to take necessary actions to fill the void.

BigBench [2] was proposed to fill this gap, it set in motion efforts to create an end
to end benchmark for big data analytics systems. While it comes with a concrete default
implementation, the rules are very flexible regarding the type of systems this work can
be run on and how the workloads can be implemented.

Thanks to member companies in the benchmark sub-committee under Transaction
Processing Council (TPC), who contributed significant effort in drafting the specifi-
cation and provide a readily usable benchmark kit, TPCx-BB progressed from being a
scientific proposal [2] to an industry standard big data analytics benchmark in a span of
two and half years.

In this paper, we describe the process towards a standardized benchmark and show
how this process worked for BigBench. In particular, we have the following
contributions:

• We give a detailed update of the benchmark and the changes that we required for
the standardization.

• We present the first official benchmark submission and give an analysis on the
results.

• We give an overview of existing BigBench implementations and compare them
based on completeness.

The rest of the paper is structured as follows. In the next section, we give a brief
overview of different big data benchmarking proposals. In Sect. 3, we present
TPCx-BB and in Sect. 4, we describe its standardization process. Section 5 presents
TPCx-BB experiments using different big data frameworks. Section 6 gives an outlook
on future big data benchmarks and workloads. Section 7 concludes the paper.

From BigBench to TPCx-BB 25

2 Related Work

While several benchmarks for big data systems have been proposed, and discussed,
most of them are either simplistic (e.g., limited to sorting or counting) or collections of
simple use cases rather than end-to-end, application-level benchmarks. While these
component benchmarks are good to test individual parts of a big data system, they
cannot provide a holistic view of the performance of the system under test. And more
importantly, none of these benchmarks have been discussed and reviewed under the
umbrella of benchmark standardization organizations.

The Transaction Processing Performance Council1 (TPC) understood this need and
worked on several benchmarks for the big data space. As a stop-gap solution for
MapReduce systems, TeraSort was standardized in TPCx-HS [3]. It is capable of
indicating the basic I/O and network throughput of a MapReduce deployment but has
limited other information value. Another ongoing work is the revision of TPC-DS [4]
for big data systems. To this end, TPC-DS was adapted in Version 2 to accommodate
the limitations of current “SQL on Hadoop” systems such has Apache Hive, Apache
SparkSQL, and Apache Impala.

3 TPCx-BigBench (TPCx-BB)

Prior workshops on big data benchmarking have concluded that for successful adop-
tion, a benchmark should have some relevance to their use cases, simple to implement,
and easy to execute [5]. The TPC has a track record of publishing valuable and widely
adopted benchmarks for measuring the performance of database systems. TPC-C,
TPC-H, and TPC-DS are noteworthy enterprise benchmarks. Recently the TPC pro-
vides another option called as ‘TPC Express’ standard. Express benchmarks provide
ready to run workloads to be executed on specific products. Here workload is bundled
in the form of benchmark kits that are ready to run on a number of pre-selected
platforms. The express benchmark model is very promising as it will lower the entry
cost for test sponsors publishing the benchmark results. However, commitment of
resources is required from the kit sponsor to develop, maintain, support and ratify the
kit with in the sub-committee, for the lifetime of the kit. In designing the benchmark for
big data systems, the TPC applied the lessons distilled from the making of previous
successful and not so successful benchmark specifications. For example, with over 250
audited results publications and an even a larger number of publications that had used
the benchmark to quantify and demonstrate performance gains from specific HW/SW
enhancements, TPC-H is a widely successful benchmark, even though it has been
criticized for not being representative of real world decision support workloads at high
scale factors. In contrast, there has not been a single audited results published for
TPC-DS benchmark, a richer and more comprehensive decision support benchmark,
addressing the deficiencies in TPC-H and has been available since 2006. The success
and popularity of TPC-H can be attributed to its relative simplicity (8 tables and

1 Transaction Processing Performance Council – www.tpc.org.

26 P. Cao et al.

http://www.tpc.org

22 queries) and timeliness when the database industry was making rapid advances in
the data warehousing space and was in need of a relevant benchmark. On the other
hand, with TPC-DS, it is a daunting task for end users to comprehend all the 99 queries,
the rules for data refresh, the complex business problems designed to model and to
analyze their performance. There have been some research publications or competitive
analysis using only a subset (or modified versions) of the TPC-DS queries [6].

Balancing the thoroughness of an enterprise benchmark with the flexibility of an
express benchmark while keeping the benchmark complexity under check, the
TPCx-BB [7] took a middle of the road approach, in that it limited the number of
queries to 30. To keep the benchmark relevant for the big data analytics use cases, the
30 queries are distributed to operate on structured, semi-structured, or unstructured data
and using pure HIVE queries, MapReduce, natural language processing, or machine
learning libraries. Further, to promote easy and quick adoption of the benchmark, a
self-contained kit of the TPCx-BB is made freely available for download from the TPC
website2. This kit can be used to measure the performance of Hadoop based systems
including MapReduce, Apache Hive, and Apache Spark Machine Learning Library
(MLlib).

3.1 TPCx-BB Overview

TPCx-BB is a big data batch analytics benchmark inspired by TPC-DS. The bench-
mark which models aspects of commercial decision support systems for a retail busi-
ness. TPC-DS consists a snowflake schema representing three sales channels, (store,
web, catalog, and online. Each with a sales and a returns table) and inventory fact table.
The TPCx-BB uses the store and online distribution channels of TPC-DS and augments
it with semi-structured and unstructured data. The prototype proposal of TPCx-BB was
been discussed in detail [8].

3.2 Benchmark Kit

The kit is the first application-
level benchmark suite specifi-
cally designed to measure the
performance of big data analytics
systems. TPCx-BB measures the
performance of Hadoop-based
systems including MapReduce,
Apache Hive, and Apache Spark
and its machine learning library
MLlib, and is publicly available
for download as a self-contained
kit via the TPC Web site. Fig. 1. Benchmark kit

2 http://www.tpc.org/tpcx-bb.

From BigBench to TPCx-BB 27

http://www.tpc.org/tpcx-bb

TPCx-BB’s benchmark kit is self-contained to have minimal requirements on
external software dependencies and able to run ‘out of the box’ on the system under test
(SUT). The kit is modular and it supports extensibility to new frameworks (i.e. col-
lection of Big Data software/hardware components) can be easily added. The kit
consists of three major components as shown in Fig. 1, (i) the benchmark driver,
(ii) the workload (iii) the data generator.

Benchmark Driver. Implemented using Java and Bash scripts, the versatile bench-
mark driver is the heart of the kit. It orchestrates the workflow involved in executing
the benchmark on the SUT. Support for running multiple concurrent query streams,
automated answer set validation, SUT configuration details, and computing the
benchmark score are done seamlessly at various phases during the benchmark exe-
cution. Additionally, the driver exposes hooks for integrating new frameworks as
needed. An advanced mode the benchmark driver provides options to run the complete
benchmark or individual queries for testing and optimization purposes.

Data Generator. The kit includes a parallel data generator based on the Parallel Data
Generation Framework [9] to generate the input data set required for the benchmark. It
is implemented as a Java program that runs as a MapReduce job on the SUT and can
generate hundreds of terabytes of data in a relatively short time.

Workload. The kit is designed to have self-contained modules for each framework
capable of running the TPCx-BB. All necessary binaries, configuration files, and
answer set reside inside the framework module. This makes it easy for kit maintenance
and help minimize the impact of adding new frameworks on existing kit modules.
Addressing the complexity of big data frameworks and understanding the need to tune
and optimize the benchmark, various configuration files provide sufficient hooks to
tune the full benchmark or each individual queries by passing run time optimization
parameters. Spark machine learning library suite is used for those queries invoking
machine learning stages. OpenNLP framework is packaged with the kit for procedural
programs invoking natural language processing.

3.3 Supported Big Data Frameworks

Big Data Ecosystem. Big data has transformed industries and research, spawning new
solutions for addressing a wide range of technical challenges. Big data ecosystem today
offers different end-to-end analytic strategies, scale-up frameworks for operational
analytics, and scale-out platforms for advanced analytics.

Scale-up frameworks offer vertically integrated analytical workflows for medium
scale big data datasets, e.g. database, data warehousing and online analytical systems.
Scale-out frameworks on the other hand offer an array of frameworks closely mim-
icking high performance computing systems for analytics workflows requiring pro-
cessing large complex datasets, e.g., MapReduce, Spark.

There are a number of execution frameworks that are part of the Hadoop ecosys-
tem, including MapReduce, Spark, Tez, Flink, Storm, and Samza, each with its own

28 P. Cao et al.

strengths and weaknesses. Initially Hadoop was developed as a special-purpose
infrastructure for big data with MapReduce handling massive scalability across hun-
dreds or thousands of servers in a cluster. A number of vendors have developed their
own distributions, adding new functionality or improving the code base derived from
the Apache open source community. The most popular of these distributions are
Cloudera, Hortonworks, MapR and IBM BigInsights each with their unique set of
offerings.

SQL on Hadoop. One of the three V’s used to describe Big Data is “Variety.” Despite
the diversity of data stored in Big Data systems, much of it still structured or can be
transformed into a form with enough structure that a broad range of useful queries can
be expressed in SQL. Evidence that SQL is still popular in the big data space can be
seen in the plethora of SQL on Hadoop offerings available today. Some of these SQL
engines for big data were built from the ground up to address big data problems, but
many have a much longer history. For example, traditional database vendors including
Oracle, Teradata and IBM have come out with versions of their SQL engines that run
on Hadoop clusters.

One of the earliest and perhaps the most widely known SQL on Hadoop engines is
Apache Hive. Hive supports a SQL-like language called HiveQL. Hive can execute
queries using MapReduce2, Tez, or Spark. The TPCx-BB kit supports execution of the
benchmark using Hive in all three of these frameworks. Besides Hive, there are several
other SQL engines in open source, such as Apache Drill, Apache Phoenix, SparkSQL,
Cloudera Impala, Teradata Presto, and Pivotal Hawq. Work is being done to have
SparkSQL to fully support TPCx-BB, at the time of writing this paper, SparkSQL with
help of support patches can successfully run all 30 queries. With the release of Spark 2.0,
it is expected TPCx-BB should be able run on SparkSQL with no additional patches.

Non Hadoop Frameworks. TPCx-BB is a good fit for engines designed for pro-
cessing or aggregating large amounts of data and that can either natively execute the
machine learning and natural language processing required by BigBench, or can call
out to other engines or frameworks such as Spark.

Since TPCx-BB kit has a pluggable architecture, support for additional SQL
engines can be added over time. In fact, any engine capable of answering the 30
BigBench queries is a candidate for inclusion in the kit. The query syntax used by a
given engine does not matter, since TPCx-BB allows the 30 use cases to be expressed
in any SQL-like query language or natively written programs. However, since the
queries are already expressible and available in HiveQL, developing implementations
for SQL over Hadoop engines is usually straight forward and less involved than for
engines whose query syntax is not similar to SQL. The benchmark prototype was
implemented on two non-Hadoop frameworks, namely Apache Flink and Metanautix.
As a matter of fact, the first BigBench prototype was actually implemented in Teradata
Aster SQLMR.

Apache Flink is a big data streaming dataflow processing engine compatible to the
Hadoop stack. It is based on the Stratosphere project [10]. Flink combines MapReduce
functionality (e.g., schema flexibility and rich user defined functions) with techniques
from traditional relational database management (e.g., query optimization, custom

From BigBench to TPCx-BB 29

memory management, and pipelined processing) and adds dataflow and iterations.
While having a different architecture, it offers similar functionality as Apache Spark
and is, therefore, a candidate for a comparative benchmark implementation.

Quest is a massively distributed query processing engine offering from Metanautix,
part of Microsoft. Quest is fully ISO/ANSI SQL’99 compliant, with a several extensions.
It natively supports document data structures The Quest engine also connects to many
data sources and extends the industry-standard Parquet columnar format with statistics
for faster processing. User-defined functions can be written in LUA, C#, Java, Python, or
SQL. A SQL extension, called Pipelines, is used to group SQL statements for more
complex processing, such as the Pearson correlation, or K-Means (see Appendix A).

Prototype implementations of the benchmark on Flink and Quest, proves TPCx-BB
is capable of working on non-Hadoop frameworks. TPCx-BB are open to new
implementations, where TPCx-BB can be used to compare the performance and
scalability of big data offerings and drive innovation in this space.

TPCx-BB in the cloud. At the high level TPCx-BB does not differentiate running the
benchmark on SUT hosted in a datacenter or in the cloud. In the case of Infrastructure
as a Service (IaaS) offerings from various cloud vendors, the benchmark can run with
right framework and version requirements are met. In the past, the benchmark was run
in Amazon AWS using different Hadoop distributions. However, on Big Data as a
Service (BDaaS) offerings where the big data framework is an integrated offering, the
benchmark is yet to be tested, examples of such offerings are Amazon Elastic
MapReduce and theDatabricksCloud. For a fully valid result, where a test sponsors
uses TPCx-BB on BDaaS for results publication, it should be noted, that the benchmark
mandates adherence to the TPC pricing specification. TPC is working on amending
their pricing specification to include cloud based offerings and facilitate cloud based
TPC benchmark publications.

4 TPC Standardization of Big Bench

Founded in 1988, TPC’s goal is to create, manage and maintain a set of fair and
comprehensive benchmarks that enable end-users and vendors to objectively evaluate
system performance under well-defined, consistent and comparable workloads. Cur-
rently, the TPC offers six are enterprise benchmarks (TPC-C and TPC-E for OLTP,
TPC-DI for data integration, TPC-H for data warehouse, TPC-VMS for virtualization
and TPC-DS for big data) and three are express benchmarks (TPCx-V for virtualiza-
tion, TPCx-HS and TPCx-BB for big data). The TPC offers in parallel to the above
listed benchmark specification so called Common Benchmarks, i.e. TPC-Energy and
TPC-Pricing. These benchmark standards guarantee that energy consumption and
pricing is measured in a consistent way across all performance benchmarks.

One of the pillars on which the credibility of TPC benchmarks rests is its strict audit
rules. Audit rules guarantee that each benchmark publication was done according to its
specification. TPCx-BB result is certified either by an independent certified TPC
auditor or a TPCx-BB pre-publication board. The method to use is under the discretion
of test sponsor.

30 P. Cao et al.

4.1 Challenges During the Standardization

Standardizing an industry standard, involves framing set of rule and governance
models. The process of standardization is a complex, cumbersome and time consuming
process even for Greenfield benchmarks. Furthermore, the complexity was increased in
the case of TPCx-BB where the specification had to consider the existing benchmark
prototype during the process. This entire process posed unique set of challenges for the
TPCx-BB sub-committee. The sub-committee worked diligently to address each of
these issues, reached consensus and finally voted unanimously to launch benchmark. In
this section, we make an attempt to present few selected challenges occurred during the
standardization process, addressing previously uncharted areas in any TPC
specification.

Execution Rules. The benchmark specification defines a set of narrow rules to ensure
the results are consistent with the standard, auditable by an independent auditor and
close any potential for gaps, which could be exploited to create benchmark specials. In
TPCx-BB run rules requires the benchmark to be run two times for performance and
repeatability of the results. The lower (i.e., worse) result metric of the two runs is
reported. Each run must include, Data generation, load test, power test, throughput test
and result check. The benchmark also adds an additional test to validate the query
answer set for consistency by running scale factor 1 on the SUT. The results along with
supporting files are audited for correctness by a TPC auditor or the publication board
before publishing the result. The sub-committee spent considerable time in providing
various tuning, and optimization options for test sponsors to experiment and get the
best results possible, without breaking any of the rules. In addition to tuning the
framework, the benchmark kit provides run time tuning options at global level where
the tuning parameters are applied for the benchmark as whole and tuning individual
queries by passing explicit parameters for a query. The benchmark specification pro-
vides clearly defined areas with examples in the appendix for such tunings. In an effort
to keep answer sets for consistent for engine validation test, the sub-committee has put
in place a set of rules to accommodate the differences between various query engines.
This helps not only addition of future frameworks, but also fast evolving SQL on
Hadoop frameworks like Hive. The benchmark also applies TPC-Pricing specification
where necessary, which is mandatory for published results and provides the option to
report the TPC-Energy metric.

Scale Factor. TPCx-BB’s data set scales linearly with the scaling factor (SF). In order
to be realistic across a large bandwidth of data set sizes (1 GB to 1 PB), the individual
tables do scale in different ratios. While the large fact tables (sales and returns) scale
linearly, other tables scale logarithmic or are completely static. Although this is real-
istic, it means that the ratio of sizes of the table changes with scale factors, e.g., for SF 1
the ratio of fact tables to dimension tables is approximately 50:50, while for large SFs
the ratio becomes shifted to the fact tables. While BigBench scales continuously,
TPCx-BB only specifies specific scale factors similar to TPC-H and TPC-DS (1, 3, 10,
30 …). Minor adjustments were made to the individual table scaling to ensure very
close to linear scaling behavior for the full data set.

From BigBench to TPCx-BB 31

Metric. TPCx-BB’s metric underwent a series of changes along with the execution
model until its final version made it to the standard. The initially proposed metric was
specified as the geometric mean of the execution time:

BB ¼ ffi

TL � TD � TP � TB4
p ð1Þ

where TL is the time taken for loading the data into the system, TD is the time for
declarative queries, TP is the time taken to process all procedural queries, and TB is the
time to process mixed queries. The query type is based on the implementation of the
queries (declarative, procedural, or both).

However, since this is different for different kind of systems an alternative metric
was proposed.

BB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y30

i¼1
Pi

30

r

ð2Þ

which also uses the geometric mean, but rather than summing the queries according to
the classes uses each processing time individually. Both metrics only consider a power
test style setup, where each query is processed individually and do not account for
multi stream setups, where multiple users submit queries to a system. Also, they
measure the runtime directly, meaning a smaller result is better. To improve this, a new
metric was proposed in [20], which changed from a geometric mean to an arithmetic
mean for all parts and incorporated not only the stream use case (throughput test TT)
but also a data maintenance step (DM). The metric is scaled by the number of streams
(S) to compute the total number of queries processed per hour (3600 s) incorporating
regular updates (individual times are measured in seconds):

BBQph ¼ 30 � 3 � S � 3600
S � TL þ S � TP þ TTT1 þ S � TD þ TTT2

ð3Þ

Although easy to understand, the arithmetic mean is not ideal in the case of highly
skewed processing times. Since some queries process much less data than others and
the data size processed does not scale linearly with the scaling factor for all queries, this
is an issue in TPCx-BB. In this case, some queries will have very limited influence on
the result of the metric. Therefore, a combination of geometric mean and arithmetic
mean was finally incorporated in the standard:

BBQpm@SF ¼ SF * 60 �M
TLD þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPT � TTT
2
p ð4Þ

The load time TLD (reduced by a factor of 10) is added to the geometric mean of the
power test time TPT and the throughput test time TTT . Again, all times are measured in
seconds but the metric is reported per minute (60 s). The number of queries (M) is
divided by the sum of load and processing time, in order to get larger results for larger
scale factors, the metric is multiplied by the scale factor (SF). While the power test time

32 P. Cao et al.

is compute as the geometric mean of all individual query processing times, the
throughput time is the total processing time of all streams divided by the number of
streams. Although not as easy to understand as the second metric, the final metric finds
a good compromise for enabling useful optimizations.

Machine learning techniques. Three queries in TPCx-BB implement clustering,
regression, and classification at various stages to satisfy the use case requirements. The
benchmark kit uses algorithms bundled with Apache MLlib to invoke machine learning
stages. Differing from standard based SQL API’s where answer sets can be matched
with relative accuracy, in machine learning techniques it is expected to see changes in
answer set for two reasons, (a) changes to the algorithm in the same machine learning
library for different versions, (b) introduction of a new machine learning library which
may use a different method to implement an algorithm. TPCx-BB being an end to end
system performance benchmark, leaves validating accuracy of an algorithm outside the
scope of the specification. However, foreseeing these issues the specification provides
general guidelines to address answer set changes triggered by change in library ver-
sions. In case no other changes apart from library updates are in the code or parameters
in the benchmark kit the results are consider as valid and the reference results can be
updated. In the case of new machine learning library, the new implementation may
modify the code and parameters in the benchmark kit, but needs to use the same input
data set and needs to match or improve the algorithm accuracy provided in the existing
library. TPCx-BB addresses these variations in the specification of machine learning
for the first time and thus, eases extensions of the benchmark and integration of
changes during the lifecycle of the benchmark.

Determinism Requirements. SQL queries written for benchmarks are typically
reproducible. They always return the exact same result independent of the execution
engine. This is an important requirement for auditing since it enables verifying the
correctness of query results and ensures all SUTs actually have to perform the same
work. TPCx-BB contains several non-SQL workloads, some of which are machine
learning tasks. These are typically implemented in a non-deterministic way and dif-
ferent algorithms can produce different results. In fact, the result quality typically
depends on the number of iterations an algorithm has run for (up to the maximum
achievable quality for an algorithm). This is a challenge for performance bench-
marking, since result quality can be traded for performance. To alleviate this problem
the kits algorithms are designed in a way that they produce the exact same results, or –
where this is not possible – other implementations’ algorithm have to have at least the
same quality as the default implementation.

Reaching consensus. Although BigBench was fully implemented in a kit when it was
proposed to the TPC, the specification had to be extended to cover all required regu-
lations and rules. In this process, multiple changes were introduced to, one the one
hand, fix minor deficiencies and to, on the other hand, not penalize certain vendors that
have slightly different/not completely compatible functionality. This is one of the most
delicate parts of standardization, since disagreement on this level can delay or even stop
a benchmark standardization. One of the more controversial topics during the stan-
dardization of BigBench was the metric, as briefly touch upon above. To solve this, the

From BigBench to TPCx-BB 33

TPC subcommittee went through the process of preparing a model that can estimate
performance, based on previously collected information, and using this to estimate the
result of an execution. Being able to rethink and discuss setups with some numbers
rather than on a theoretical level made it much easier for the committee to reach
consensus.

5 Experiments with TPCx-BB Benchmark

In this section, we present experiments that were executed on independent test plat-
forms, different frameworks, and small and large scale factors. We also discuss the
hardware resource utilization behavior of one of the test platforms. Table 1 shows test
details of the experiments.

The test runs were conducted with default settings, except where parameters needed
to be configured to ensure all queries are able to run successfully. The dataset was
generated using the default data generator and the tests were run using the driver
provided in the kit.

5.1 Experimental Results

Test 1. The original implementation of the benchmark uses Hive on MapReduce. The
test platform was configured with suitable parameters for Yarn, HDFS, and Hive, the
benchmark was run with all three phases with two concurrent streams (default value)
and completed successfully. Phase elapsed times were: load: 2803 s, power: 34076 s,
and throughput: 54705 s.

Test 2. Hive on Spark utilizes Apache Spark as execution engine for Hive. Hive on
Spark reuses Hive’s planner/optimizer. The primary benefit is that Hive on Spark
automatically gets full compatibility with all of Hive’s features. The benchmark can run
with Hive on Spark, with small changes in the configuration and changes on the cluster
to enable Hive to use Spark as the execution engine. All the three phases of the
benchmark completed successfully on the test platform. Phase elapsed times are: load:
9389 s, power: 13775 s, and throughput: 13864 s.

Table 1. Test run experiments

Test # Nodes in cluster Framework Scale factor

1 9 Hive on MapReduce 3000
2 8 Hive on Spark 1000
3 8 Hive on Tez 3000
4 8 SparkSQL 3000
5 1 Metanautix 1
6 8 Apache Flink 300
7 60 Hive on MapReduce 100000

34 P. Cao et al.

Test 3. Tez is designed to run batch and interactive workloads using the Hive API. In
this test the load phase completed successfully, in the power phase 29 of 30 queries
completed successfully. However Q16 failed to complete throwing an exception. The
elapsed times for load was 3719 s.

Test 4. SparkSQL is an offering from Apache Spark to process structured data.
SparkSQL is compatible with Hive, making it possible to run queries written in
HiveQL without modifications. Enabling SparkSQL support for all 30 queries has been
a multi month effort, where the benchmark team worked with the Apache Spark
community to identify and fix missing features and bugs that prevented the complete
execution of TPCx-BB queries. In this test, we had to apply a patch to Spark version
1.6.1 to get all queries to run successfully. This patch should be made available in yet
to release Spark version 2.0. All three phases of the benchmark completed successfully
on the test platform. Phase elapsed times were: load: 7896 s, power: 24,228 s, and
throughput: 40,352 s.

Test 5. The Metanautix query processing engine is part of Microsoft’s big data
portfolio. All of the TPCx-BB queries were translated in SQL including sentiment
analysis using a combination of window functions, user-defined Java functions, and
pipelines. The machine learning post-processing stages were excluded.

Test 6. Apache Flink is a big data streaming dataflow processing engine compatible to
the Hadoop stack. While having a different architecture with a purely stream-oriented
execution engine, it offers similar functionality as Apache Spark. As a proof of concept,
22 queries were implemented using Flink’sDataSet API. In order to cover all necessary
machine learning capabilities, a Flink-backed SystemML implementation was used for
two of the queries [11].

Test 7. The objective of this test to demonstrate readiness of the benchmark to scale
beyond small dataset and clusters. For this purpose, we selected a cluster with 60 nodes
and dataset scale factor of 100000 which is close to 100 TB of input data. Hive on
MapReduce was used as execution framework. We ran load and power phase and
skipped the throughput phase due to limited availability of cluster time. Phase elapsed
times were: load: 19,941 s and power: 401,738 s. During the tests, we found that the
usage of realistic data distribution models in the benchmark result in a number of
skewed tasks on Hive on MapReduce, where skewed tasks processes many more
records than others and took much more time to complete. While this behavior is seen
across all scale factors and cluster sizes, the result is amplified running the benchmark
on the larger dataset and more number of nodes, challenging the efficiency of the query
engine.

This set of experiments shows that various big data frameworks are able to run the
benchmark with modification or no modifications, as demonstrated by experiments
1–6. This proves the versatility of the benchmark kit and shows that it can be used to
compare and distinguish multiple frameworks for their features and performance.
Partial execution of the kit on Metanautix shows that non-Hadoop-based frameworks
are capable of adapting the benchmark. Partial execution of the benchmark on Apache
Flink demonstrates the system agnostic nature of TPCx-BB, the use cases can be
implemented natively without higher level SQL expression API’s. Data and cluster

From BigBench to TPCx-BB 35

scale tests bring out issues which are mostly uncaught during the development stages
proving that a benchmark’s role goes beyond providing publications but also helping
vendors iteratively tune their platforms.

5.2 Resource Utilization Tests

Hardware platform tuning is often used to optimize the SUT to its maximum efficient
state, i.e., the configuration where the test hardware is fully utilized with no obvious
bottlenecks. Analysis of the hardware behavior under the load is crucial to understand
the baseline performance and identify and resolve any bottlenecks. In this section, we
analyze hardware resource utilization comparing the utilization patterns of the test
platform by running the benchmark two times on a fixed hardware setup, scale factor,
and big data framework. In the second test, we increase the number of concurrent
streams in the throughput phase from 2 to 4.

Benchmark Setup. The cluster consists of eight HPE DL360 G8 nodes, with the
configuration shown in Table 2. The experiments were conducted running all three
phases of TPCx-BB on Scale Factor 3000. Hive on MapReduce was selected as the
framework. Intel’s Performance Analysis Tool3 was used to collect the utilization
pattern from the cluster nodes.

Table 3 shows the elapsed times for load, power, and throughput phase for both of
the test runs. The load phase consists of reading the generated data to create the test
dataset in appropriate format; copy data into
final location; data preparation including
metadata creation, population, and compu-
tation of database statistics. The power phase
is designed to measure the performance of
the SUT when processing all the queries in
sequential order. The elapsed times for load
and power phases are comparable with
variation expected from a Hadoop system. In
this test we are in particular interested in the system characteristics of the throughput
phase. During this phase, all queries are executed using concurrent streams. Each query
stream runs all queries, where each stream has a different order of queries. As can be

Table 2. Cluster configuration

Node Role Hardware Software

1 Master server 24C, 192 GB RAM, 8.5 TB storage, 10 Gbe RHEL 6.7, CDH 5.6
2–8 Worker node 24C, 256 GB RAM, 8.5 TB storage, 10 Gbe RHEL 6.7, CDH 5.6

Table 3. Elapsed times

Phase 2 Streams 4 Streams

Load 2803 2796
Power 34076 34179
Throughput 54705 104565

3 PAT - https://github.com/intel-hadoop/PAT.

36 P. Cao et al.

https://github.com/intel-hadoop/PAT

seen in the table, the elapsed time for the throughput phase doubles for 4 concurrent
streams in comparison to 2 concurrent streams.

Analysis of Utilization Pattern. The charts in Fig. 2 show the hardware utilization
pattern behavior of the cluster when running the benchmark with 2 and 4 streams. The
chart shows comparison of the major components of the cluster, i.e., CPU utilization,
memory utilization, I/O bandwidth, and network I/O. Since we have captured data at
one second samples, the chart is compressed on the time scale to show the complete
execution of the benchmark.

The first mark in the time scale in Fig. 2 marks the end of the load phase of both
test which is at *2,800 s. The load phase involves data staging and replicating over
data nodes that results in a cluster management overhead. This governs the perfor-
mance of this stage with significant CPU and memory utilization, I/O bandwidth, and
network I/O. The load phase uses software compression to compress the raw input data
into optimized columnar format, resulting in additional CPU utilization.

The power phase utilization can be seen between the first and second mark in the
time scale in Fig. 2. The individual peaks are signatures of each query being run in
sequential order. Additional insight of the queries can be gained by mapping the
running time of each to the time dimension on the charts. The independent utilization
pattern for each query highlights that, unlike the constant ramp-up and down seen in
micro-benchmarks, TPCx-BB exhibits use case driven utilization patterns close to real
world big data use cases, where the platform needs to accommodate both short and

Fig. 2. Processor, memory and I/O utilization

From BigBench to TPCx-BB 37

long running tasks. It is possible to go into more fine granular analysis of each query
and gain insight into the individual system resource usage. This leads to a better
understanding of the query and system behavior when tuning individual queries. As
expected the power phase shows very similar comparative elapsed times between the
two tests.

In Fig. 2, the second mark indicates the start of the throughput phase, the CPU
utilization shows a steady high processor usage. A more detailed analysis showed 70%
utilization for two concurrent streams and 90% utilization for four concurrent streams.
The memory, storage, and network I/O are sufficiently utilized but nowhere close to the
processor utilization. We can estimate the overhead effect when observing the ratio of
the throughput phase execution time. As the number of streams doubled from 2 to 4,
the execution time increases by a factor of 2. The overhead of running more streams
can be inferred by varying the number of streams. The throughput phase reflects the
nature of big data workloads comprising a mix of both short running and long running
tasks executing side by side on a cluster [12].

The emphasis of TPCx-BB to simulate real-world scenario for big data batch
analytics helps to extrapolate the findings and apply the takeaways when deploying big
data applications. By running the above experiments we summarize few key
takeaways:

• When selecting the hardware for big data clusters, it is important to evaluate
computing power, memory capacity, storage, and network bandwidth in conjunc-
tion with intended data set size and number of tasks required to run side by side.

• Contrary to common belief that big data workloads are I/O bound, we notice – with
an adequate I/O setup – big data workloads tend to be compute bound. Similar
results are also reported by [13, 21] during their independent tests.

• Efficient utilization of hardware resources highly depends on framework tuning. In
this example, we believe – as software schedulers evolve – the utilization pattern of
peaks and valleys of will reduce when freeing hardware resources and reducing the
wait times for waiting queued tasks.

• Selective utilization of accelerators and off-load engines could be beneficial to
increase overall efficiency of the cluster. An example could be load phase com-
pression off-load.

6 Benchmarking Emerging Big Data Use Cases

In recent years, there have been large advances in analytics software. As big data
reaches a larger audience, the community has sought to commoditize general purpose
algorithms and systems for increasingly elaborate analytical tasks. The generation of
large datasets has been increasing, leading to the development of new big data pro-
cessing frameworks, which is predominantly driven by “People and Things”. For
example, “People” interacting via social media portals and cloud enabled applications
are driving an ever increasing volume of data into the cloud [14]. “Things” are intel-
ligent and connected devices capable of making semi-autonomous decisions
using models received by cloud-based or -hosted compute farms. Addressing these two

38 P. Cao et al.

important segments with a relevant benchmark, will help the industry and academic
community to validate the performance of new implementations.

There is a broad range of new applications for these analytical capabilities, to name
a few:

• Recommendation systems: graph processing, stream processing, machine learning.
• Search and ranking: graph processing, machine learning.
• Fraud detection: machine learning, ad-hoc analysis.
• Internet-of-Things (IoT): stream processing, lambda processing.
• Image, video, audio, and natural language processing: deep learning using neural

networks.

For the purpose of this paper and benchmarking, we select two categories of the
advances as follows:

• Processing frameworks
• Machine learning

6.1 Processing Frameworks

Stream. Stream processing is mainly
used in real-time analytics, where the
events are streamed in form of micro or
mini batches. A data stream can be as
simple as time series events displayed in
real-time, e.g., temperature readings
from a sensor, or processed as complex
events by applying computation tech-
niques in real-time, e.g., identifying
failed components in an airplane using
anomaly detection techniques. In addi-
tion to acting on the incoming stream in
real-time, events are stored for feedback-
based learning and historical trend
analysis using batch analytics.

Data from a device in the field can be permuted and aggregated at the source or in
mid-way before it is transferred to the cloud. The lambda architecture [15] is an
example of a stream processing framework using three layers of processing (Fig. 3):

• Batch Layer – curates the master dataset by storing all data entering the system
using batch processing techniques.

• Serving Layer – enables fast ad-hoc insights extracted from data curated in the
batch layer.

• Speed Layer – provides real-time insights from the incoming/streamed data,
including running machine learning algorithms, on real-time data.

Fig. 3. Lambda architecture

From BigBench to TPCx-BB 39

An IoT benchmark based on such an architecture can serve as an excellent proxy to
test functions involved with streaming and real-time analytics.

Graph. Human interaction with the
internet changed the Web 2.0 [16]. The
emergence of various social networking
platforms, search engine optimizations,
and the ability to connect these human
interactions with business models was
unthinkable just a decade ago. Graph
processing systems are used in analyzing
networks of relationships normally rep-
resented in data objects referred as nodes
and edges. Some large graph datasets can
span trillions of edges [17].

Graph processing requires a robust framework with characteristics such as, fault
tolerant storage, fast database, scale-out graph analysis engines, scale-out computation
engine, and efficient algorithms as illustrated in Fig. 4.

6.2 Machine Learning

Machine learning techniques continue to grow in significance but also are expanding
into different areas of application. With this growth the field is transitioning from a few
“bespoke” applications; e.g., image recognition, machine translation, speech recogni-
tion, and robotics, to more commoditized ones; e.g., fraud detection. We will focus on
the latter, which typically operate on discrete symbols such as words as opposed to
continuous input such as from a microphone or historical revenue.

Machine learning has a broad range of applications with different algorithms being
employed. These algorithms typically fall into two categories:

1. Regression, which works to predict a variable’s value (e.g., projection of revenue),
2. Classification, is concerned with predicting a label for a sample (e.g. male/female,

will or will not buy).

Moreover, a task can be structured where the prediction happens on a graph or
sequence such as machine translation generating a sequence of words in a foreign
language. The task can also be unstructured, where the desired output is a single value
like the next stock price, or whether a fraud occurred or not. Training of a model can be
supervised, unsupervised, or utilizing reinforcement learning. In each of these sce-
narios, one can define a measure of quality such as in the case of fraud detection;

1. A weighted sum of false positives - fraud was declared when a transaction was in
good standing

2. False negatives - fraud remained undetected

Fig. 4. Graph processing framework

40 P. Cao et al.

Because the data are generated automatically, they have special properties which
can be exploited by the algorithms. Therefore, as in TPCx-BB, we should factor in the
speed of the algorithms.

TPCx-BB as a batch analytics benchmark provides excellent coverage for advanced
analytics to examine large datasets. Most of the benchmark is implemented using data
management primitives and functions. Although there are a handful of use cases in
TPCx-BB invoking machine learning algorithms4, TPCx-BB is far from being a
comprehensive representation of analytics using machine learning algorithms.
Currently, neither streaming processing, graph processing, nor deep learning are rep-
resented in TPCx-BB. Given the recent interest in deep learning, and its broad range of
applicability, it should be given special consideration.

There have been some efforts in the analytics community to address these areas [18,
19]. However, there hasn’t been any collaborative push from the industry and academia
to create a use case based benchmarking framework. We think it would be impractical
to expand the coverage of the TPCx-BB benchmark to include all of these, therefore,
they should be the focus of future benchmarks.

7 Conclusion

In 2013, the proposal “BigBench” was brought to the attention of the analytics com-
munity as a candidate for a first end-to-end big data benchmark. Since then idea has
evolved, been put under the scrutiny of experts and public alike to finally emerge as
TPCx-BB, the first industry standard big data benchmark with relevance to big data use
cases. During this process, several changes went into the benchmark, which we dis-
cussed in this paper. Preliminary results are encouraging and it already has seen
adoption with first results being published5. The benchmark helps the big data software
ecosystem to identify performance bottlenecks, feature gaps, and scaling issues, which
previously often remained undiscovered. The benchmark has also helped driving
innovation in non-Hadoop ecosystems.

In this paper, we have tracked the course of the BigBench journey, gave a snapshot
of its current state and potential changes coming in the future. We have conducted
extensive experiments using the benchmark, and offered observations and analyses of
several platforms. This paper offers a glimpse of the TPC standardization process,
challenges and means to navigate through them successfully.

Acknowledgements. We would like to thank Sreenivas Viswanada from Microsoft Corporation
for running experiments on Metanautix. Yao Yi and Zhou Yi from Intel Corporation for their
help to run 100 TB experiment. Michael Frank and Manuel Dansich from bankmark for their
work on the TPCx-BB benchmark kit.

4 Examples are clustering, logistic regression, and sentiment analysis.
5 Hewlett Packard Enterprise ProLiant DL for Big Data – http://www.tpc.org/3501.

From BigBench to TPCx-BB 41

http://www.tpc.org/3501

This work has been partially supported through grants by the German Ministry for Education
and Research as Berlin Big Data Center BBDC (funding mark 01IS14013A) as well as through
grants by the European Union’s Horizon 2020 research and innovation program under grant
agreement 688191.

Appendix A

K-Means using SQL. It is possible to write K-means using SQL and extensions in the
Metanautix Quest system. The full implementation is complex, requiring an iteration
(implemented using SQL triggers), but also rebalancing when a class becomes empty.
For simplicity we assume that each point is described by an id, and a coordinate vector
x. Using a SQL UDF, we can write the Distance function. A user-defined aggregation
function, AVG_VECTOR, computes the average vector. We assume 50 classes. We
outline the steps:

1. Initialization of class centroids

2. Assigning data points to classes

3. Compute new centroids

Using window functions. Window functions can be used where a MapReduce, or
multiple passes would be otherwise required. As an example, we show how Query 02
can be rewritten.

42 P. Cao et al.

References

1. McSherry, F., Isard, M., Murray, D.G.: Scalability! But at what COST? In: HotOS 2015
(2015)

2. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.-A.: BigBench:
towards an industry standard benchmark for big data analytics. In: SIGMOD 2013 (2013)

3. Nambiar, R.O., Poess, M., Dey, A., Cao, P., Magdon-Ismail, T., Ren, D.Q.: Andrew bond:
introducing TPCx-HS: the first industry standard for benchmarking big data systems. In:
Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 1–12. Springer, Cham
(2014)

4. Poess, M., Nambiar, R.O., Walrath, D.: Why you should run TPC-DS: a workload analysis.
In: VLDB 2007 (2007)

5. Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Setting the Direction for Big
Data Benchmark Standards. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol.
7755, pp. 197–208. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36727-4_14

6. Ghat, D., Rorke, D., Kumar, D.: New SQL Benchmarks: Apache Impala (incubating)
Uniquely Delivers Analytic Database Performance. https://blog.cloudera.com/blog/2016/02/
new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-
performance/

7. Transaction Processing Performance Council. TPC Express Benchmark™ BB. http://www.
tpc.org/tpcx-bb

From BigBench to TPCx-BB 43

http://dx.doi.org/10.1007/978-3-642-36727-4_14
https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
https://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
http://www.tpc.org/tpcx-bb
http://www.tpc.org/tpcx-bb

8. Baru, C., Bhandarkar, M., Curino, C., Danisch, M., Frank, M., Gowda, B., Huang, J.,
Jacobsen, H.-A., Kumar, D., Nambiar, R., Poess, M., Raab, F., Rabl, T., Ravi, N., Sachs, K.,
Yi, L., Youn, C.: An analysis of the BigBench workload. In: TPCTC 2014 (2014)

9. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A data generator for cloud-scale
benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 41–
56. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18206-8_4

10. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.-C., Hueske, F., Heise, A., Kao, O.,
Leich, M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax, M.J.,
Schelter, S., Höger, M., Tzoumas, K., Warneke, D.: The stratosphere platform for big data
analytics. VLDB J. 23(6), 939–964 (2014)

11. Boehm, M., Burdick, D., Evfimievski, A.V., Reinwald, B., Sen, P., Tatikonda, S., Tian, Y.:
Compiling machine learning algorithms with SystemML. In: SoCC 2013 (2013)

12. Chen, Y., Ganapathi, A., Griffith, R., Katz, R.: The case for evaluating MapReduce
performance using workload suites. In: MASCOTS 2011 (2011)

13. Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., Chun, B.-G.: Making sense of
performance in data analytics frameworks. In: NSDI 2015 (2015)

14. O’Leary, D.E.: ‘Big Data’, the ‘Internet of Things’ and the ‘Internet of Signs’. In: Intelligent
Systems in Accounting, Finance and Management, vol. 20(1), pp. 53–65

15. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data
Systems. Manning Publications, New York (2015)

16. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: a system for large-scale graph processing. In: SIGMOD 2010 (2010)

17. Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., Muthukrishnan, S.: One trillion edges:
graph processing at facebook-scale. PVLDB 8(12), 1804–1815 (2015)

18. Li, M., Tan, J., Wang, Y., Zhang, L., Salapura, V.: SparkBench: a comprehensive
benchmarking suite for in memory data analytic platform Spark. In: CF 2015 (2015)

19. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud
serving systems with YCSB. In: SoCC 2010 (2010)

20. Rabl, T., Frank, M., Danisch, M., Gowda, B., Jacobsen, H.-A.: Towards a complete
BigBench implementation. In: Rabl, T., Sachs, K., Poess, M., Baru, C., Jacobson, H.-A.
(eds.) WBDB 2015. LNCS, vol. 8991, pp. 3–11. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-20233-4_1

21. Chen, Y., Choi, A., Kumar, D., Rorke, D., Rus, S., Ghat, D.: How Impala Scales for
Business Intelligence: New Test Results. http://blog.cloudera.com/blog/2015/09/how-
impala-scales-for-business-intelligence-new-test-results/

44 P. Cao et al.

http://dx.doi.org/10.1007/978-3-642-18206-8_4
http://dx.doi.org/10.1007/978-3-319-20233-4_1
http://dx.doi.org/10.1007/978-3-319-20233-4_1
http://blog.cloudera.com/blog/2015/09/how-impala-scales-for-business-intelligence-new-test-results/
http://blog.cloudera.com/blog/2015/09/how-impala-scales-for-business-intelligence-new-test-results/

Benchmarking Spark Machine Learning Using BigBench

Sweta Singh(✉)

IBM, Dallas, USA
singhswe@us.ibm.com

Abstract. Databases such as dashDB are adding High Speed Connectors for
Spark to efficiently extract large volumes of data. This allows them to be
combined with other unstructured data sources and perform Machine Learning
(ML) on top of it. Machine Learning is a key ingredient for such use cases. In
order to assess performance of the data connectors and machine language frame‐
works, we sought benchmarks that have the ability to scale the size of datasets to
very large volumes and apply Machine Learning algorithms. After exploring
several options, we found BigBench to be a good fit. In this paper, we talk about
our experiences of using BigBench with special focus on its 5 Machine Learning
queries and their default implementation in Spark. We discuss on how we could
improve effectiveness of BigBench for benchmarking Machine Learning by
avoiding bias and inclusion of real time analytics. We also think that there is scope
for improving the coverage of Machine Learning by adding more use cases like
Collaborative Filtering. Lastly, we share some interesting visualization of 4 ML
queries using SPSS Modeler and our experiments on different Clustering and
Classification algorithms.

Keywords: Collaborative filtering using machine learning · Predicting accuracy
of data sets · Visualization of bigbench machine learning queries using SPSS

1 Introduction

Machine Learning is being increasingly applied on large volumes of data to be able to
predict outcomes with high efficiency and accuracy. The performance of such use cases
are determined by two key aspects

(a) Optimized data exchange between analytics engines like Spark [1, 18, 19] and the
data store. This is important due to the iterative nature of machine learning algo‐
rithms, especially for large data sets that do not fit in memory

(b) Scalability and accuracy of the Machine Learning frameworks

To address the first aspect above, several databases like IBM dashDB [2], Cassandra,
Couchbase etc. are employing techniques for optimized data connectors that make bi-
directional communication between Spark and databases more efficient by

(a) Generating parallel SQL statements under the covers, to read from multiple data‐
base partitions concurrently

© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 45–60, 2017.
DOI: 10.1007/978-3-319-54334-5_4

(b) Localizing the data exchange between Spark and database node if they are hosted
on the same cluster

IBM dashDB Local [3] has the capability to run Spark applications that analyze data
in a dashDB database and write results back to the database. It achieves highly optimized
and parallel data transfer between dashDB and Spark by collocating DB2 data nodes
and Spark executors. An I/O layer, implemented as a DB2 Fenced Mode Process (FMP),
acts as an interface between dashDB and Spark. dashDB unloads the data of the local
partition into the FMP, which then passes the data to the Spark layer. A single transfer
unit contains multiple blocks and potentially millions of rows, hence providing signif‐
icant speed up for exchange of data.

We sought benchmarks to evaluate the performance benefits of connectors. These
were the key pre-requisites:

(a) The benchmark should be representative of a good use case for Spark and database
integration. Machine Learning has to be a key component of the use case

(b) It should be able to scale data volumes, allowing for large data volume transfers
and be bidirectional - read/write to database

(c) It should invoke Machine Learning algorithms via SQL interface (Stored Proce‐
dure) or via Spark jobs (using customized RDD to connect to data source)

(d) It should support multiple streams to test both scalability and resource management
in an integrated solution where Spark and database co-exist on the same cluster

One option that we explored were open data sets available as part of UCI machine
learning repository [4]. They have 336 datasets based on “real” world data, which is
precisely the reason why they are an attractive option. However, after examining some
of the new and popular data sets, we found that their key drawback was the small dataset
size, ranging from few KB to less than 500 MB.

Given our key requirements of large data transfers, ability to scale and run multi-
stream, we found BigBench [7–9, 17] to be an apt choice. There are five queries in
BigBench (Q05, Q20, Q25, Q26 and Q28) that involve interaction between database
and Spark. These cover three Machine Learning algorithms in Clustering (K-Means)
and Classification (Logistic Regression and Naive Bayes). Since data exchange volumes
will be large and data cannot be entirely cached in memory for reuse, the iterative nature
of Machine Learning algorithms involves multiple trips to the data source and hence the
performance of data connectors is stressed well enough. BigBench also supports bidir‐
ectional transfer between data layer and Spark by supporting writing back the scoring
results to the database.

Our experiments were conducted with the following configuration:

BigBench Scale Factor = 1 TB
dashDB Local cluster, CentOS7.0-64 and Spark 1.6.2
4 nodes with the following configuration:
• 24 cores (2.6 GHz Intel Xeon-Haswell)
• 512 GB memory
• 6 internal SSDs (960 GB SanDisk CloudSpeed 1000 SSD)
• 10000 Mbps full duplex N/W card

46 S. Singh

We also studied the effectiveness of BigBench in assessing Machine Learning
frameworks as we intend to extend our study to assess Machine Learning algorithm
implementation in Spark MLlib versus IBM ML algorithms.

In the following sections, we discuss our key observations and recommendations.

2 Collaborative Filtering Using Machine Learning

We propose to add a “Recommender System” use case in BigBench. It is a very relevant
use case in e-commerce and can be implemented using Collaborative filtering, one of
the most widely used and researched methods. Collaborative Filtering is based on the
principle that if two users rate x items similarly, they will likely rate other items similarly.
It is known for two unique challenges:

(a) Data Sparsity: For a large customer base and a large product set, the subset of items
rated by users is very small. This leads to a sparse user-item association matrix and
hence poses a challenge to the predictions of the algorithm.

(b) Scalability: With a large customer base and range of items, the computational
complexity of Collaborative Filtering grows very quickly. There are several opti‐
mizations to reduce the cost of calculating similarity but there is often a trade-off
between performance and accuracy.

Matrix Factorization is one of the key methods to implement Collaborative Filtering.
It is often classified as a latent factor model. The ratings are explained by characterizing
both items and users on a number of factors automatically inferred from the ratings
pattern [13–15]. The sparse rating matrix is modeled as the product of low-rank user
and item factors. Latent factors are learnt by minimizing the reconstruction error of the
observed ratings. The unknown ratings can then be computed by multiplying these
factors.

Given that BigBench already provides the [user, product, review] triplet in
web_clickstreams, Matrix Factorization will be a good add-on to the BigBench Machine
Learning arsenal to study the performance of the Machine Learning framework and the
cluster.

Spark MLlib [11] implements Matrix Factorization using Alternating Least Squares
(ALS) method [16, 20–22]. ALS alternates between fixing the user feature matrix and
the item feature matrix. When one is fixed, the other is solved by minimizing the Root
Mean Squared Error. This is repeated until convergence.

Below, we share an initial prototype for BigBench Recommendation System using
Explicit Feedback.

The input Vector can be extracted from product_reviews table in 3 possible ways

(a) Select all items, users, ratings from product_reviews table
SELECT PR_USER_SK, PR_ITEM_SK, PR_REVIEW_RATING FROM
product_reviews;

(b) Predict recommendations in a specific item category
SELECT PR_USER_SK, PR_ITEM_SK, PR_REVIEW_RATING FROM
product_reviews pr, item

Benchmarking Spark Machine Learning Using BigBench 47

WHERE I_CATEGORY = ‘Books’ AND i_item_sk = pr_item_sk
(c) Predict recommendations to specific item category and class

SELECT PR_USER_SK, PR_ITEM_SK, PR_REVIEW_RATING FROM
product_reviews pr, item WHERE I_CATEGORY = ‘Books’ AND I_CLASS =
‘fiction’

The Spark job for Recommender does the following:

(a) Accepts arguments for iterations and rank that are parameters of the ML algorithm
(b) Transforms Rows of data frame to Rating object
(c) Trains ALS model on a partial data set (90%) and predicts the outcome on the held

back data
(d) Measures the accuracy using Root Mean Squared Error (RMSE)

Below is a snippet from Recommender output on 1 TB scale factor of BigBench. At
this scale factor, the product_reviews table has 4.45 million ratings. 1.7 million
customers have rated 556,000 items.

Spark uses a blocked implementation of ALS. A User column block stores a subset
of user factor matrix and an Item column block stores a subset of item factor matrix.
The rating matrix is stored as two separate RDDs. One RDD is partitioned by user and
the other RDD is partitioned by item. While updating the user factor matrix, ratings for
each user in its partition is locally available. However, item factor vector corresponding
to items rated by the user must be shuffled across the nodes.

Below is a snapshot of ALS training stage execution with twenty iterations.
Figure 1 shows that Job 3 is the most expensive job. Figure 2 shows a snippet of Job 3
breakdown. Job 3 comprises forty stages, two for each iteration. The user or the item
factor matrix is updated alternately in each stage. At the end of each stage, the updated
factor matrix is shuffled across the nodes. A major chunk of the time is spent in the
shuffle.

48 S. Singh

Fig. 1. dashDB Spark integration layout

Fig. 2. Spark monitoring UI showing the jobs

We did some experiments to study the impact of the number of factors or rank on
the performance and accuracy of Collaborative Filtering. The intermediate RDDs are
100% cached. As we increase the rank, we observe that the accuracy of the algorithm
changes, with consistent drop in performance. This performance drop is attributed to
increase in shuffle time due to larger size of the factor matrix (Fig. 3).

Benchmarking Spark Machine Learning Using BigBench 49

Fig. 3. Spark monitoring UI showing a breakdown of the expensive job

We also propose to extend the usage of Collaborative Filtering to construct a
streaming scenario in BigBench. We can stream a portion of web click stream data during
the workload execution and use saved MatrixFactorization model to predict the use
rating or generate top item recommendations for users on the fly (Fig. 4).

Fig. 4. Impact of increasing rank on RMSE & Performance of ALS (Lower is better)

3 Measuring Accuracy and Tuning Machine Learning Algorithms

A best practice in Machine Learning is to test the accuracy of the model on a data set
that it is not trained on. In other words, we should have disjoint data sets for training
and testing the models. The accuracy is reported on the test data set. We see that the data
set is split for Naïve Bayes algorithm using SQL queries to segregate data but not so for
Logistic Regression. We’d recommend making the measurement of accuracy consistent
across all supervised ML algorithms in BigBench by either employing a method similar

50 S. Singh

to Naïve Bayes to split the training/test data or using mechanisms like Cross Validation
to achieve the same. This will help avoid bias and obtain a better estimate of the model’s
generalized error.

In a modified Logistic Regression scenario similar to Scenario #2 in Sect. 4.1 below,
we split the data set into a 70% training data and 30% test data. Running prediction on
the training data set vs running prediction on a 30% test data set suggests that Area Under
Curve (AUC) on test data reduces by 4.4% (Fig. 5).

 Training data Test data
Precision 0.7587515979164543 0.7281337029540884
AUC 0.5253761346454113 0.5024392467169441
Confusion Matrix 2284497.0 276466.0

478607.0 90287.0
662283.0 180646.0
74435.0 20895.0

Fig. 5. Comparison of accuracy on training data vs test data

On a related note, one common use case in Machine Learning is model selection and
tuning the parameters of Machine Learning algorithms. We could modify Q05 or any
new ML algorithm in BigBench to represent such a ML tuning use case. For example,
test the Logistic Regression or Collaborative Filtering with multiple values of regulari‐
zation parameters. The optimal regularization parameter is one that reports the best
accuracy on the test data set.

4 Visualization of Machine Learning Use Case in SPSS Modeler

IBM SPSS Modeler [3] is a powerful data mining workbench that helps build accurate
predictive models quickly and intuitively, without the need for any programming. It
provides a rich set of machine learning algorithms and facilitates comparison of alternate
ML models.

We analyzed the existing 4 Machine Language use cases in BigBench using SPSS
Modeler. Our intent was to:

(a) Gain insights about the data and relative importance of features in predicting
outcomes

(b) Assess the cluster quality and size for the three K-Means clustering scenarios
(c) Assess alternative models that could be incorporated into the BigBench test suite

for increased coverage

We discuss our findings in the sections below.

4.1 Q05 – Logistic Regression

This use case predicts if a visitor will be interested in a given item category, based on
demographics and existing users online activities (interest in items of different catego‐
ries).

Benchmarking Spark Machine Learning Using BigBench 51

The target variable for the use case is a binary variable indicating whether a visitor
is interested in a specific item category. It is 1 if the user’s clicks in the category is greater
than the average clicks in that category for the entire population.

Model Assessment. The model selected and its accuracy depend on the clicks in the
specified item category. If the target category is included in the input feature vector, the
model is able to predict with 100% accuracy, as it is able to learn that the clicks of the
category are determining the outcome. Therefore, we suggest adding a use case in which
the clicks in the item category are deliberately excluded from the input feature vector.
This will enable BigBench to exercise a wider range of ML algorithms like Neural
Networks and also, help increase the computational complexity of these algorithms e.g.
increased depth of the Tree. The experiments below provide more details.

Scenario #1: Q05 is executed with target item category “Books”. The target variable is
1 if the number of clicks by a customer is greater than average number of clicks in
“Books” category and 0 otherwise. CLICKS_IN_3 column is the number of clicks in
“Books” category and is a part of input feature vector.

SPSS Modeler evaluated several classification algorithms and arrived at three
models: C51, Logistic Regression and C&R Tree. C51 and C&R Tree belong to the tree
family. As shown below, all algorithms predict with 100% accuracy, as they are able to
determine CLICKS_IN_3 as the key predictor (Fig. 6).

Fig. 6. Top 3 Classification models filtered by SPSS, sorted by Area Under Curve

Fig. 7. Parameters of Logistic Regression

Logistic Regression shows very high correlation for CLICKS_IN_3. Similarly, C51 is
able to infer the condition that decides the target variable in a one-level tree structure (Fig. 7).

52 S. Singh

Fig. 8. Tree output of C51 Model

Scenario #2: Q05 is executed with target item category “Toys & Games”. The target
variable is 1 if the number of clicks by a customer is greater than average number of
clicks in “Toys & Games” category and 0 otherwise. Clicks in this category are “not”
part of input feature vector (Fig. 8).

SPSS Modeler shows that three models (C51, Neural Network and Logistic Regres‐
sion) have relatively high accuracy amongst several classification algorithms. The accu‐
racy level is less than 100% (Fig. 9).

Fig. 9. Top 3 classification models filtered by SPSS, sorted by Area Under Curve

C51 Model. The Fig. 10 shows the decision tree structure produced by C51 Model [6]. It
is worth noting that the optimal tree depth selected for producing high accuracy is 25.
Adding a tree based classification algorithm to BigBench would be an interesting add-on.

Fig. 10. Tree output by C51 Model

Benchmarking Spark Machine Learning Using BigBench 53

Logistic Regression Model. The Fig. 11 shows the parameters chosen by Logistic
regression for the feature vector. Demographics have negligible impact on the target
variable (Fig. 12).

Fig. 11. Parameters of Logistic Regression

Fig. 12. Predictor importance using C51 algorithm

Predictor Importance. Both logistic regression and C51 show that the number of
clicks in different categories dictates the interest of visitor in “Toys & Games” category.
Demographics have the least impact on the target variable (Fig. 13).

54 S. Singh

Fig. 13. Predictor importance using Logistic Regression

Similar results were observed when the target item category was “Books” and
CLICKS_IN_3 was “not” included in the input feature vector (Fig. 14).

Fig. 14. Top 3 Classification models filtered by SPSS

Key Inferences.

As mentioned, not including the deterministic clicks in the input feature vector will
exercise and stress the machine learning algorithms in a more realistic way. This
clearly reflects in the tree depth – 25 in Scenario #2 versus only 1 in Scenario #1
Another benefit of Scenario #2 is the ability to introduce more algorithms such as Trees
and Neural Networks to the BigBench ML mix.

4.2 K-Means Clustering

In SPSS, the quality of clustering is measured by the Silhouette coefficient. Silhouette
coefficient combines the concepts of cluster cohesion (favoring models which contain
tightly cohesive clusters) and cluster separation (favoring models which contain highly
separated clusters).

Q20 performs Customer segmentation for return analysis: Customers are separated
along the following dimensions: return frequency, return order ratio (total number of
orders partially or fully returned versus the total number of orders), return item ratio

Benchmarking Spark Machine Learning Using BigBench 55

(total number of items returned versus the number of items purchased) and return amount
ratio (total monetary amount of items returned versus the amount purchased).

As shown in the Fig. 15, Q20 is on the threshold of Good (0.5) on the Silhouette
scale.

Fig. 15. Cluster Quality of Q20 K-Means Clustering: twenty iterations & five Clusters

Fig. 16. Q20 Clusters ordered by size and predictor importance; Cluster size = 5

Predictor Importance. In context of clustering algorithms, predictor importance indi‐
cates how well the variable can differentiate different clusters. For both range (numeric)
and discrete variables, the higher the importance measure, the less likely the variation

56 S. Singh

for a variable between clusters is due to chance and more likely due to some underlying
difference.

In Q20, all inputs have equal importance. The size of the largest cluster is 1.2 million
(38% of population) while the size of smallest cluster is 5901 (0.2% of the population).
The numbers beneath the feature names are the cluster centers (Fig. 16).

Q25 performs customer segmentation based on recency of last visit, frequency of
visits and monetary amount spent. Recency doesn’t have any impact on the clustering,
while frequency of visits and amount spent are equally important in determining the
cluster.

Although Q25 fares very good on the Silhouette scale, there is a skew in cluster size
with 99.7% of population belonging to a single cluster (Fig. 17).

Fig. 17. Q25 Clusters ordered by size and predictor importance; Cluster size = 5

Q26 clusters customers into book buddies/club groups based on their store book
purchasing histories. For this query, we observe non-zero store sales values for books
in 5 out of 15 categories. 10 categories show 0 sales and hence they do not have any
impact on the clustering.

The clustering characteristics for Q26 are similar to Q25. Although it fares very well
on Silhouette scale, 99.7% of the population belongs to a single cluster (Fig. 18).

In our performance experiments, we observe that K-Means runs for the default
number of iterations, twenty, for convergence. Also, K-Means requires the number of
clusters to be specified. Given these factors, the skew in the cluster size should not impact
the extent to which K-Means is exercised. During our experiments, we found that the
Spark cache size impacts the K-Means queries significantly and hence they were effec‐
tive in assessing the benefits of an optimized data connector. K-Means runs for twenty
iterations and if the data doesn’t fit in the memory, the analytics engine has to repeatedly
fetch the input vector from the data source. The optimizations done in the dashDB Spark
data connector improved performance significantly.

Benchmarking Spark Machine Learning Using BigBench 57

5 Conclusion and Future Work

With the increasing importance of Machine Learning in big data scenarios, a broader
coverage of commonly used Machine Learning algorithms along with more realistic
scenarios like tuning the parameters of machine learning using cross validation and
loading an existing model to predict outcome on real time data will make it even more
appealing and relevant. Our experiments show that the performance characteristics of
ML algorithms vary and hence will be useful in stressing the different system compo‐
nents. The paper highlights the importance of broadening the scope of ML algorithms
and use cases in BigBench and provides concrete recommendations supported by
experiments. It also talks about how the existing BigBench ML queries, K-Means and
Logistics Regression, have been effective in proving the performance benefits of dashDB
Spark connector.

In future, we plan to study the performance characteristics of other ML algorithms
like Trees and Neural Networks on large data sets using BigBench. We’d also like
BigBench to consider adopting our recommendations.

Fig. 18. Q26 Clusters ordered by size and predictor importance; Cluster size = 5

58 S. Singh

Acknowledgement. We would like to thank Berni Schiefer, Steve Rees, Torsten Steinbach, John
Poelman and Manish Anand for providing their valuable feedback.

References

1. Apache Spark. http://spark.apache.org/
2. dashDB. http://www.ibm.com/analytics/us/en/technology/cloud-data-services/dashdb/
3. dashDB Local. http://www.ibm.com/analytics/us/en/technology/cloud-data-services/dashdb-

local/
4. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/
5. IBM SPSS. http://www.ibm.com/analytics/us/en/technology/spss/spss.html
6. ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/16.0/en/

modeler_applications_guide_book.pdf
7. Ghazal, A., et al.: BigBench: towards an industry standard benchmark for big data analytics.

In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data. ACM (2013)

8. Chowdhury, B., Rabl, T., Saadatpanah, P., Du, J., Jacobsen, H.-A.: A BigBench
implementation in the hadoop ecosystem. In: Rabl, T., Jacobsen, H.-A., Raghunath, N., Poess,
M., Bhandarkar, M., Baru, C. (eds.) WBDB 2013. LNCS, vol. 8585, pp. 3–18. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-10596-3_1

9. Baru, C., et al.: Discussion of BigBench: a proposed industry standard performance
benchmark for big data. In: Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904,
pp. 44–63. Springer, Cham (2015). doi:10.1007/978-3-319-15350-6_4

10. Nambiar, R., Poess, M. (eds.): TPCTC 2013. LNCS, vol. 8391. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-04936-6

11. Meng, X., et al.: Mllib: Machine learning in apache spark. JMLR 17(34), 1–7 (2016)
12. Agrawal, D., et al.: SparkBench – a spark performance testing suite. In: Nambiar, R., Poess,

M. (eds.) TPCTC 2015. LNCS, vol. 9508, pp. 26–44. Springer, Heidelberg (2016). doi:
10.1007/978-3-319-31409-9_3

13. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell.
2009, 19 (2009). Article ID 421425, doi:10.1155/2009/421425

14. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.
Computer 42(8), 30–37 (2009)

15. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering
for the netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 337–
348. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68880-8_32

16. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating
minimization. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing. ACM (2013)

17. Transaction Processing Performance Council. http://www.tpc.org
18. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M., Shenker,

S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation. USENIX Association, p. 2 (2012)

19. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing
with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, Boston, 22–25 June 2010, p. 10 (2010)

Benchmarking Spark Machine Learning Using BigBench 59

http://spark.apache.org/
http://www.ibm.com/analytics/us/en/technology/cloud-data-services/dashdb/
http://www.ibm.com/analytics/us/en/technology/cloud-data-services/dashdb-local/
http://www.ibm.com/analytics/us/en/technology/cloud-data-services/dashdb-local/
http://archive.ics.uci.edu/ml/
http://www.ibm.com/analytics/us/en/technology/spss/spss.html
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/16.0/en/modeler_applications_guide_book.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/16.0/en/modeler_applications_guide_book.pdf
http://dx.doi.org/10.1007/978-3-319-10596-3_1
http://dx.doi.org/10.1007/978-3-319-15350-6_4
http://dx.doi.org/10.1007/978-3-319-04936-6
http://dx.doi.org/10.1007/978-3-319-31409-9_3
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1007/978-3-540-68880-8_32
http://www.tpc.org

20. Pilászy, I., Zibriczky, D., Tikk, D.: Fast als-based matrix factorization for explicit and implicit
feedback datasets. In: Proceedings of the Fourth ACM Conference on Recommender Systems.
ACM (2010)

21. Feuerverger, A., He, Y., Khatri, S.: Statistical significance of the Netflix challenge. Stat. Sci.
27, 202–231 (2012)

22. Hastie, T., et al.: Matrix completion and low-rank SVD via fast alternating least squares. J.
Mach. Learn. Res. 16, 3367–3402 (2015)

60 S. Singh

Benchmarking Exploratory OLAP

Mahfoud Djedaini1(B), Pedro Furtado2, Nicolas Labroche1, Patrick Marcel1,
and Verónika Peralta1

1 University of Tours, Blois, France
{mahfoud.djedaini,nicolas.labroche,patrick.marcel,

veronika.peralta}@univ-tours.fr
2 University of Coimbra, Coimbra, Portugal

pnf@dei.uc.pt

Abstract. Supporting interactive database exploration (IDE) is a prob-
lem that attracts lots of attention these days. Exploratory OLAP (On-
Line Analytical Processing) is an important use case where tools sup-
port navigation and analysis of the most interesting data, using the best
possible perspectives. While many approaches were proposed (like query
recommendation, reuse, steering, personalization or unexpected data rec-
ommendation), a recurrent problem is how to assess the effectiveness of
an exploratory OLAP approach. In this paper we propose a benchmark
framework to do so, that relies on an extensible set of user-centric met-
rics that relate to the main dimensions of exploratory analysis. Namely,
we describe how to model and simulate user activity, how to formalize
our metrics and how to build exploratory tasks to properly evaluate an
IDE system under test (SUT). To the best of our knowledge, this is the
first proposal of such a benchmark. Experiments are two-fold: first we
evaluate the benchmark protocol and metrics based on synthetic SUTs
whose behavior is well known. Second, we concentrate on two different
recent SUTs from IDE literature that are evaluated and compared with
our benchmark. Finally, potential extensions to produce an industry-
strength benchmark are listed in the conclusion.

1 Introduction

Supporting exploration of databases is of prime importance, especially in a con-
text of big, distributed and heterogeneous data, as shown in a recent survey of
the topic [17]. Both researchers and companies that supply data analysis tools are
increasingly focused on mechanisms for improving user experience, in particular
aids for effective data exploration. As researchers and companies implement, test
and tune alike their Interactive Data Exploration (IDE) solutions, a major issue
they face is how to assess and compare solutions, improvements and alternatives.

While there exist a set of benchmarks recognized by the database community
as relevant for evaluation and comparison of performance of database systems,
such as the benchmarks from TPC organization, there is yet no commonly agreed
upon benchmark for evaluating to what extent database systems help the user

c© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 61–77, 2017.
DOI: 10.1007/978-3-319-54334-5 5

62 M. Djedaini et al.

during data exploration. Our objective is to propose such a benchmark as, roughly
speaking, actual TPC benchmarks assess data retrieval, and not data exploration.

In this work, we focus on the context of OLAP analysis of data, as an impor-
tant use case of IDE, first because exploration of data has been deeply studied
in this context, and second because to our opinion OLAP is an ideal first step
before generalizing to other database systems. OLAP is defined as the process of
analyzing multidimensional datasets (cubes), online, interactively, summarizing
key performance indicators (called measures) from different perspectives or axes
of analysis (called dimensions).

In order to motivate our work, let’s now consider the following toy example:
a user navigating OLAP sales cube faces an unexpected difference between sales
in year 2014 and year 2015 for a product P in France. The user will then explore
the surrounding region of the cube by means of OLAP operators such as roll-up
(at the Europe level for example), drill-down (at the month level for example)
and slices (for other products) to find evidences that may explain and corrob-
orate the first fact. The user might even get some support from a system that
automatically proposes next moves in the analysis [1,13]. We consider that the
surrounding region of the first interesting fact corresponds to a neighborhood
that has to be covered to ensure the exploration task success. If one wants to
evaluate this particular data exploration, it is then possible to measure several
metrics such as the number of queries that the user needed to cover this neigh-
borhood, the ratio of this area that has been finally discovered, the ratio of the
rest of the cube that the user had to visit to reach this result etc. So far, the
assessment of data exploration through quality measures has been overlooked
by the database community, but we can benefit from experience in the fields of
information retrieval and exploratory search [33], which are particularly driven
by the quality of the user’s experience and metrics for measuring it.

This paper covers all the aspects of the implementation of a data exploration
benchmark for OLAP. This benchmark was designed with a set of guiding prin-
ciples in mind. It has to be easy to use by anyone, considering that a developer
or researcher working in an OLAP exploration tool or algorithm, should be able
to quickly plug his approach to the benchmark and use it, without requiring
complex development or setting up of schema, dataset or OLAP exploration
characteristics. The benchmark should also return objective evaluation metric
results that are independent of the approach being tested. This means that both
the mechanisms of the benchmark and the evaluation metrics must be agnostic of
the IDE approach. Therefore, the benchmark includes generating skewed data
with interesting facts, generating past query logs on this data and simulating
OLAP users to evaluate a System Under Test (SUT) that provides support for
next data analysis moves to the user. The benchmark can be used with any SUT,
to evaluate any strategy that one may design. It reports objective measures for
a set of metrics that characterize the degree to which the SUT fulfills certain
objectives. Extensive experiments have been conducted to validate our bench-
mark proposal. First we evaluate the benchmark protocol and metrics based on
synthetic SUTs whose behavior is well known. Second, we show that it is possible

Benchmarking Exploratory OLAP 63

and meaningful to compare two state-of-the-art SUT from IDE literature [1,13]
with our benchmark.

The paper is organized as follows. Section 2 discusses related work. Section 3
explains how interactive explorations can be scored and defines the benchmark
metrics. Section 4 presents the benchmark itself. Experimental results are dis-
cussed in Sect. 5. Finally, Sect. 6 concludes the paper with considerations on
potential extensions to produce industry-strength benchmark. A long version of
this paper, with additional details, examples and tests, is available in [8]1.

2 Related Work

The variety of database exploration approaches. Many approaches have recently
been developed to support interactive database exploration (IDE), as illustrated
by a recent survey of the topic [17]. Techniques range from Visual optimization
(like query result reduction [4]), automatic exploration (like query recommen-
dation [9]), assisted query formulation (like data space segmentation [31]), data
prefetching (like result diversification [19]) and query approximation [16]. The
core of most of these approaches consists of a function that, given the database
instance and users’ history with the database (i.e., past and current queries),
computes new relevant queries, tuples or visualizations that are meant to sup-
port user exploration.

Given the exploratory nature of OLAP analysis of multidimensional data
(see e.g., [18,29]), many exploration techniques have been specifically developed
in the context of interactive OLAP exploration of data cubes. Table 1 lists these
exploration approaches, indicating their categories (in terms of those proposed in
[17]), and details their inputs and outputs. For instance, the PROMISE prefetch-
ing approach [27], that predicts a query based on a Markov Model constructed
out of the server’s log, corresponds to a function with signature 〈L, 〈q〉〉 → 〈q′〉,
where L is the query log, q is the current user query and q′ is the predicted
query.

Measuring the quality of an exploration. Measuring the quality of exploration
has attracted a lot of attention in Information Retrieval, in particular in the field
of Exploratory Search2 [33] that can be defined as a search paradigm centered
on the user and the evolution of their knowledge. It is particularly driven by
the quality of the user’s experience, and metrics for measuring it have been
categorized as follows. Engagement and Enjoyment measures the “degree
to which users are engaged and are experiencing positive emotions”. It includes
“the amount of interaction required during exploration”, the “extent to which
the user is focused on the task”. Task Success assesses “whether the user
reaches a particular target” and finds a “sufficient amount of information and
details” along the way. Information Novelty measures the “amount of new
1 More information on the benchmark can be found on its web page: http://www.info.

univ-tours.fr/∼marcel/benchmark.html.
2 http://wp.sigmod.org/?p=1183.

http://www.info.univ-tours.fr/~marcel/benchmark.html
http://www.info.univ-tours.fr/~marcel/benchmark.html
http://wp.sigmod.org/?p=1183

64 M. Djedaini et al.

Table 1. Interactive cube exploration techniques signatures

Category Input Output

DB instance Query log Current query

[5] Automatic exploration � � Tuples

[1] Automatic exploration � � Sequence of queries

[12] Automatic exploration � � � Queries

[3] Automatic exploration � � Queries

[13] Visual optimization � � Queries

Automatic exploration Result highlighting

[14] Visual optimization � Query

[29] Data prefetching � � � Tuples

[28,30] Data prefetching � � Tuples

[18] Data prefetching � � Sequence of queries

[27] Data prefetching � � Queries

information encountered”. Task Time measures the “time spent to reach a state
of task completeness”. Learning and Cognition measures the “attainment of
learning outcomes”, “the amount of the topic space covered” and “the number
of insights acquired”. While these categories have been proposed in the context
of web search, they make perfect sense for interactive database exploration, and
we next focus on measures that have been proposed in the literature in these
categories.

User engagement measures are popular in web search to measure how a user
is engaged in using a website or search engine. Many implicit measures have
been proposed [22] to track online behavior. These measures are classically cate-
gorized in activity (how a website is used), loyalty (return of users to a website)
and popularity (how much a website is used). While loyalty and popularity essen-
tially make sense for relative comparison of websites, activity enables measuring
engagement for a particular website independently of other websites. The most
commonly used activity metrics include number of queries per session, number
of clicks, number of clicks per query, dwell (presence) time (see e.g., [10,32]).

Task success is well studied in information retrieval, with even conferences
devoted specifically to this, like the TREC conference3. Task success is tradi-
tionally measured with precision/recall-based measures, which supposes that the
target of the task is known. In this case, roughly speaking, recall measures how
complete the answer to a query is, while precision measures how noisy the answer
to a query is.

Many works have been interested with measuring information novelty in rela-
tional databases. For instance, in [11], the authors propose to describe the data
space covered by a session with a vector of the tuples accessed by the queries
of the session. In [23], the authors propose the notion of access area to capture
the portion of the dataset a user is interested in. In [19], the authors use a sim-

3 http://trec.nist.gov/.

http://trec.nist.gov/

Benchmarking Exploratory OLAP 65

ilar notion to propose query result diversification. In data cubes exploration,
Sarawagi [29] assimilates novelty with the most informative constraints so that
the expected distribution of a cube’s cell values - based on a maximum entropy
principle - is closer to the actual observed values. Here, a constraint is defined at
an aggregate level of the observed cells and is expressed as a sum over the values
of a subset of the observed cells. It is then expected that bringing more con-
straints modifies the expected distribution of values and thus allows to reduce
the divergence between the observation and the expectation. The constraints
that best reduce this divergence is declared to be the most informative.

Measuring task time may seem straightforward, but one needs to carefully
define what is timed and how to report it. Performance related metrics like query
per hour can be adapted from TPC benchmarks to this end.

Finally, measuring learning and cognition has attracted lots of attention in
learner models [7]. Learner models are central components of intelligent tutoring
systems, that infer a student’s latent skills and knowledge from observed data.
A very influential and widespread accepted model is the Knowledge Tracing
model [6]. Knowledge tracing is a Bayesian network allowing to measure the
probability that a skill is mastered when resolving a problem (opportunity to use
the skill). The model relies on four parameters, usually experimentally tuned:
P (L0): the probability the skill is already mastered before the first problem,
P (T): the probability the skill will be learned at each opportunity to use the
skill (transition from not mastered to mastered), g: the probability the resolution
is correct if the skill is not mastered (guess), s: the probability a mistake is made
if the skill is mastered (slip). The probability that the skill L at opportunity n
is mastered is the probability the skill is learned at step n − 1 or not learned at
step n − 1 but learned at this step n. It can be computed as:

P (Ln|Xn = xn) = P (Ln−1|Xn = xn) + (1 − P (Ln−1|Xn = xn)) × P (T) (1)

where:
P (Ln−1|Xn = 1) = P (Ln−1)(1−s)

P (Ln−1)(1−s)+(1−P (Ln−1))g

P (Ln−1|Xn = 0) = P (Ln−1)s
P (Ln−1)s+(1−P (Ln−1))(1−g)

Xn = 1 (resp. 0) means problem n has been solved (resp. not solved).

Current benchmarks for decision support, big data and analytic workloads. TPC
proposes a number of popular benchmarks and metrics for assessing the per-
formance of database systems, covering time, performance, price, availability or
energy consumption (see Table 2). However, while TPC acknowledges the impor-
tance of the explorative nature of decision support queries (see e.g., the OLAP
interactive queries in the TPC-DS benchmark), none of the existing TPC met-
rics are appropriate for measuring database exploration support in the sense
of the categories proposed in Exploratory Search. A recent benchmark targets
analytical workloads [21], but it too overlooks assessing the quality of interactive
data exploration by proposing metrics covering only query response time, tuning
overhead, data arrival to query time, storage size and monetary cost.

66 M. Djedaini et al.

Table 2. Metrics of relevant TPC benchmarks

Metrics TPC-H TPC-DS TPC-DI TPCx-HS TPCx-BB

Query per hour/minute � � � �
Price/performance � � � � �
Availability date � � � � �
Power/performance � � � �
Power �
Throughput � � � � �
Load time � �
Power test elapsed time � �

OLAP exploration as a relevant use-case. Interestingly, the literature on OLAP
already provides the building blocks for benchmarking cube exploration. OLAP
has been the subject of specific benchmarks, like the TPC-H-based Star Schema
Benchmark (SSB) [24]. SSB models a realistic use case of sales analysis, for which
realistic instances with skewed data can be produced with the PDGF data gener-
ator [25]. Realistic OLAP workloads can be generated with the CubeLoad session
generator [26]. CubeLoad takes as input a cube schema and creates the desired
number of sessions according to templates modeling various user exploration
patterns: users with limited OLAP skills pursuing a specific analysis goal, more
advanced users navigating with a sequence of slice and drill operations, users
tracking unexpected results with explorative sessions. OLAP literature also pro-
vides techniques for characterizing analytic behaviors [3,27]. In these works, the
user’s behavior is defined as a Markov model, whose states are built from the
past queries of the user, and the transitions between states are weighted by the
probability of observing a query after another in the user’s query log. Finally,
OLAP literature also provides characterizations of interesting data in the mul-
tidimensional space. Discovery-driven analysis of data cube [5,28–30] aimed at
measuring potentially surprising data, knowing already evaluated queries. These
work characterize surprising data as being groups of tuples that are connected
(usually one OLAP operation apart), and that, taken altogether, appear to be
meaningful (usually unexpected, in the sense of e.g., information theoretic mea-
sures).

3 Evaluating an Exploration

This section describes how interactive explorations can be scored, by implement-
ing the metrics related to user experience identified in the previous section. We
first start with presenting formally the definition of an exploration in an OLAP
context. A complete formal framework, with illustrative examples, can be found
in the full paper [8].

Benchmarking Exploratory OLAP 67

3.1 Exploration in an OLAP Context

Our benchmark incorporates the explorative and interactive nature of IDE by
considering user sessions as first class citizens. We define a session s = 〈q1, . . . , qk〉
of length |s| = k as a sequence of k OLAP queries over a data warehouse and
a log as a finite set of sessions. In what follows, a log can be associated to one
particular user profile (representing this user’s activity) or can represent the
overall activity (being the union of all user logs).

Without loss of generality, the OLAP queries we consider are dimensional
aggregate queries over a data cube [15]. A query is defined as a group by set
(identifying the query granularity) and a set of Boolean predicates, one for each
hierarchy. During their sessions, after each query is processed, users inspect the
cube cells retrieved by the query. A cell c is an element of a cube that has a
particular coordinate and a measure value. The answer to a query q, denoted
answer(q), is the set of retrieved cells whose coordinates are defined by the
query group by set and selection predicates. Thanks to the popular OLAP oper-
ations (roll-up, drill-down, slice-and-dice), users navigate the cube by exploring
cells neighborhood, querying at coarser granularity (roll-up), finer granularity
(drill-down) or reaching siblings in a hierarchy. This is formalized using classical
relations between cells. For two cells c and c′, we note c � c′ if c′ is a roll-up of
c, i.e., a coordinate of c′ is an ancestor of that of c in some hierarchy, and we
note c ≈ c′ if the two cells are siblings, i.e., their coordinates differ only in one
sibling position in some hierarchy.

Definition 1 (Neighborhood of a cell). The rollup (resp., drill-down, sib-
ling) neighborhood of a cell c is the set of all cells c′ such that c′ � c (resp.
c � c′, c ≈ c′). The OLAP neighborhood of a cell c is the union of its rollup
neighborhood, its drilldown neighborhood and its sibling neighborhood.

The neighborhood of a group of cells C, noted neighborhood(C) is the union
of the neighborhoods of each cell of the group. Intuitively, the neighborhood of
a group of cells defines a zone of the cube to be explored to analyze this group
of cell.

A user is represented by a log, i.e., the user’s past explorations. This allows
to characterize a user’s behavior by constructing a generative model, in the spirit
of what has been successfully applied in OLAP for data prefetching [27].

Definition 2 (Generative model). Let L be a set of sessions characterizing
a user. The generative model to represent this user’s behavior is a Markov model
of order one, i.e., a graph 〈S, P 〉 where S is the set of queries of L and P :
S ×S → [0, 1] denotes the probability function for the state transition, computed
as P (q1, q2) = sessions(〈q1,q2〉)

sessions(〈q1〉) where q1 and q2 are queries and sessions(s) gives
the number of sessions where the sequence s appears.

Definition 3 (User). Let S be a set of sessions and x be a percentage. A user
ux is a tuple ux = 〈slog, sseed, g〉 where S = slog ∪ sseed, |slog| = x× |S| and g is
the generative model built from slog.

68 M. Djedaini et al.

Finally, a task 〈s, u〉 for a session consists of a set of cells to be analyzed by
a user u. This set of cells is given under the form of a session s, i.e., consists
of the cells retrieved by the queries of this session. This session is based on the
user’s seed sessions.

3.2 Metrics

As explained in Sect. 2, the benchmark metrics follow the categorization pro-
posed in the field of Exploratory Search [33]. For each category, we propose a
primary metric and a secondary metric, with the idea that secondary metrics
can be used to counterbalance primary ones. Metrics of different categories have
been defined so that the overlapping between them is minimal: User engage-
ment relates only to the number of queries, novelty to cells, task success to cell
neighborhood and task time only to time. Only Learning and cognition overlaps
with novelty and task success since it aims at measuring the skill of finding new
and relevant information. In what follows, let u = 〈slog, sseed, g〉 be a user, let
t = 〈s0, u〉 be a task for user u and let s = 〈q1, . . . , qk〉 be a session produced for
the resolution of a task t.

User engagement and enjoyment. We use two popular and simple activity met-
rics used in web search: click depth as primary metric, to represent overall activ-
ity, and number of clicks per query to represent how focused this activity is.
Dwell time, another popular activity metric, better fits in the Task time cate-
gory. In the web search context, a click correspond to following a hyperlink (i.e.,
an HTTP query). In the context of the benchmark, a click corresponds to a new
query. The metrics are defined as follows:

– Query depth (QD, primary) = k, i.e., the number of queries in the session,
needed for resolving a task.

– Focus (F, secondary) = max({|focus(q)||q∈s})
|s| , where focus(q) = 〈q, . . . , q′〉 ⊆

S such that for all qi, qi+1 ∈ focus(q) the cells retrieved by qi+1 are in one
of the neighborhood of the cells retrieved by qi. Intuitively, this is to measure
for a query q, the length of the chain of queries starting from q that are
successively distant of only one OLAP operation.

Information Novelty. Capturing user interest in the data explored can be done
by measuring the access area [23]. In our context, this access area would be the
set of tuples (recorded in a fact table) contributing to form the cells of a query
result. As this area corresponds to tuples that are not actually presented as
answers to queries (since, being an OLAP context, these tuples are aggregated),
data of interest is better captured with view area, i.e., the cells presented in the
answers. This is defined by: given a set of query Q = {q1, . . . , qn}, the view area
of Q is va(Q) =

⋃
q∈Q answer(q).

In a view area, not all data is interesting in the sense that it brings novel
knowledge. We measure interestingness degree as a simple normalized entropy:

Benchmarking Exploratory OLAP 69

interest(C) = (−∑m
i=1 p(i) log(p(i)))

log(m) , with |C| = m, C(i) is the ith value of the set

C and p(i) = C(i)∑m
i=1 C(i) denotes the ith cell probability.

The primary metric then quantifies the amount of interesting data found in
the session. The secondary metric measures the increase in view area compared
to the user’s log view area. They are defined as follows:

– Relevant new information (RNI, primary) = 1−avgq∈s(interest(va(q)))
– Increase in view area (IVA, secondary) = |va(s)\va(slog)|

|va(s)∪va(slog)|

Task Success. Intuitively, a task consists of investigating what can be said of a
group of cells C coming from a task 〈s, u〉. The extent to which a task is complete
consists of assessing how much of the neighborhood of this group of cells has
been retrieved during the resolution of the task. A simple way of measuring it is
with recall and precision. Recall is the primary metrics since consistently with
exploratory search, we consider OLAP navigation as a recall oriented activity
(what matters most is to minimize the number of false negative). The metrics
are defined as follows, for a group of cells C:

– Recall (R, primary) = |va(s)∩neighborhood(C)|
|neighborhood(c)|

– Precision (P, secondary) = |va(s)∩neighborhood(C)|
|va(s)|

Task Time. Measuring task time is done by adapting metrics of existing TPC
benchmarks. We need to measure the time for the SUT to produce its output
and to process the queries needed for the resolution of the task. The primary
metric comes from the TPC-DS benchmark and measures the number of queries
per the time taken to resolve the task. The secondary metric simply measures
the task elapsed time. The metrics are defined as follows:

– Query per seconds (QpS, primary) = k√
To×Te

, where To is the overall
time for the SUT to produce its outputs and Te is the overall query execution
time.

– Task elapsed time (TET, secondary) = To + Te, where To is the overall
time for the SUT to produce its outputs and Te is the overall query execution
time.

Learning and cognition. We adapt the Knowledge Tracing (KT) model to our
context: we assimilate the skill mastering with the ability of finding interesting
and novel information in the neighborhood NC of a group of cells C. In other
words, Xn = 1 if the nth query finds at least one more unknown cell of NC where
novelty increases for those cells compared to query n − 1. In this case, we say
that the query is successful (from the learning point of view). It is 0 otherwise.
The primary metric Learning (L, primary) is defined as in the classical KT
model, see Eq. 1 in Sect. 2. The challenge is then to define the four parameters
of KT: g, s, P (L0) and P (T) based on the user generative model (UGM) since
it represents the past of the user.

70 M. Djedaini et al.

– P (L0) is the proportion of successful queries in the UGM.
– g (resp. s) is the probability in the UGM of passing from unsuccessful to

successful (resp. from successful to unsuccessful) queries.
– P (T) is defined as the average weighted position of successful queries in the

sessions of the UGM, giving more importance to queries that happen earlier
in the session.

The secondary metric measures the average progression of the learning curve.
It is defined by the arithmetic mean of the proportional growth of the probabil-
ities.

– Learning growth rate (LGR, secondary) =
1
n

∑n
i=1

(
1 + P (Li|Xi=xi)−P (Li−1|Xi−1=xi−1)

P (Li−1|Xi−1=xi−1)

)
where n is the session length.

4 The Benchmark

In this section we define the interface between the SUT and the benchmark and
how the benchmark runs an experiment.

4.1 Interfacing with a SUT

In order to assess a SUT, the benchmark, simulates a user and interacts with
the SUT. The SUT first builds its inner structures, if any, and obtains input
metadata from the benchmark. Conceptually, a SUT requires as input all or part
of the following parameters: the database (schema and instance), user traces (i.e.,
sequences of queries collected into the query log) and the active user’s current
exploration (a sequence of queries). Let D denote the set of all database instances
for a given schema, Q denotes the set of all possible queries over this schema,
S denotes the set of all sequences of queries (i.e. Q × Q × . . . × Q), and 2A

denotes the power-set of a set A. The functionality of a SUT can be defined
generically as doing the transformation: 〈D, 2S , S〉 → S. Once the SUT is ready,
the evaluation protocol starts resolving a task, successively calling the SUT to
provide suggestions.

In practice, the benchmark is a Java program where SUTs can be plugged
to be evaluated. Its code and javadoc are available for SUT programmers on
BitBucket4. Basically, a SUT is sought twice, (1) before starting the evaluation
so it can initialize, and (2) whenever a next move suggestion is requested. From
the benchmark point of view, SUTs are only seen as black boxes that perform
what they are asked to perform, through a contract. Practically, a SUT is a
class that implements an interface that exposes two functions readMetadata and
nextSuggestion. Function readMetadata is called before starting the actual
evaluation process, so the SUT can read and initialize its internal structure. Its
parameter is a Metadata object whose getters allow to access the cube, the list of
users, past user traces, etc. Function nextSuggestion is called many times during
4 https://bitbucket.org/mdjedaini/ea-benchmark.

https://bitbucket.org/mdjedaini/ea-benchmark

Benchmarking Exploratory OLAP 71

a task resolution. It provides to the SUT a given user and a current exploration
(sequence of queries), and asks the SUT to suggest. It is the responsibility of the
benchmark to orchestrate the whole process, and to make sure the functions are
called with the right arguments.

4.2 How the Benchmark Works

The benchmark process is composed of three components. The first component
initializes the benchmark. It generates the context: the database (i.e., the cube),
some sequences of queries (i.e., the log), data skews to simulate interesting obser-
vations, and creates user profiles. You do not need to run this component if you
reuse an existing context, but you can also create a new context with different
schema or generation parameters.

The second component is responsible for the actual evaluation of a SUT. The
evaluation is a simulation of a user’s actual navigation, whereby the benchmark
suggests some initial sequence of queries, asks the SUT for next move suggestions,
then proposes some continuation, switches to ask the SUT again, and so on. This
allows the benchmark to ask the SUT for suggestions multiple times, in multiple
phases and focusing multiple view areas.

The third component is in charge of computing scores and reporting results.
It considers the sessions produced with the SUT, and computes values for the
quality metrics presented in Sect. 3.2.

4.3 Component 1: Benchmark Initialization

Initialization consists of the synthesis of an OLAP user environment. It consists
mainly of data generation and user creation.

Data generation. An OLAP database (schema and instance) and a set of user
sessions over it are firstly generated. The default database schema is the one of
SSB benchmark [24], but the benchmark can be initialized with any other OLAP
schema. We use CubeLoad [26] for automatically generating user sessions. Cube-
Load generates realistic OLAP workloads, taking as input a cube schema and
the desired number of sessions. Its templates enable the creation of a large num-
ber of sessions representing varied explorations and patterns. Finally, a realistic
database instance is generated with PDGF [25]. We use the more frequent selec-
tion predicates in the log of sessions to produce data skew in the most queried
zones of the cube.

Users creation. While CubeLoad enables the generation of a large workload
and creates feasible exploration patterns, it does not assign sessions to specific
users. We use an off-the-shelf clustering algorithm [20], using a similarity mea-
sure tailored for OLAP sessions [2] to generate “users”. In this way a user is
characterized by a set of sessions focusing on some zones of the cube. Each set
of sessions is split in two parts: log and seed sessions. The former constitutes

72 M. Djedaini et al.

the user log that is exposed to the SUT, so that it can build its own knowl-
edge for suggesting next moves. The latter, not shown to the SUT, is used to
seed the benchmark tasks. The size of each user’s log is ruled by a parameter.
This allows the benchmark to evaluate the SUT when working with novice users
versus advanced users, creating tasks with different difficulty levels, in the sense
that it is more difficult for a SUT to suggest something interesting to a relatively
new user. Finally, a generative model is learned from the log, inspired by tech-
niques of the OLAP literature [3,27]. This generative model is a Markov Model
that is used by Component 2, for simulating the interaction with a user.

4.4 Component 2: Evaluation of a SUT

This component is responsible for the simulation of a navigation, together with
the SUT, in order to resolve a given task. A task can be seen as an exercise
that has to be solved by SUTs. Tasks are created just before starting a SUT
evaluation. The evaluation protocol first provides a seed session, which is a set of
seed queries representing part of a navigation, as a context for continuation of the
navigation. Then it asks the SUT for a first next move suggestion that consists
of one or more queries. After the SUT suggestion, the benchmark decides if it
accepts or refuses the suggestion (a real user would either follows the suggestion
or not). The probability of discarding the suggestion is given as parameter. The
following step is for the benchmark to indicate the next query (a real user may
evaluate their own queries). This is done by finding the closest query in the user
model to the current query, and stochastically determining the next query in the
user model. This new query is then presented to the SUT to suggest again, and
the process continues as such until a stop condition. The simulation is ran for
a set of tasks (the number of tasks to run is a user-given parameter), and the
whole process is preceded by the definition of tasks to accomplish.

4.5 Component 3: Scoring

All the queries recorded during task resolution are fed to the scoring component
so it can compute a score for the SUT using the metrics defined in Sect. 3.2. For
each metric, the scoring component first scores each task, and then, it aggregates
scores for the SUT. In practice, a metric can be seen as a function that takes as
input a task resolution (the queries that were played), and provides as output a
number that represents the score of the metric for the given task.

5 Experiments

In this section we describe and report results on the experiments designed to
validate the proposed benchmark. A first version of the benchmark application
was coded in Java, using PDGF [25], CubeLoad [26] and Fuzzy C-medoids [20], as
explained in Sect. 4. The tested SUTs were plugged to the benchmark application
using the interface class. Experiments use the default schema (SSB) [24] with a

Benchmarking Exploratory OLAP 73

scale factor of 1, a small global log of 50 sessions, 375 queries and 9 users with
50% of seed sessions. We generated 100 tasks for each SUTs to resolve. Tests
were conducted on a laptop equiped with an i5-3210M CPU @ 2.50 GHz and
8 GB of RAM.

5.1 Experimental Setup

Validation. In order to test benchmark ranking, we compared three synthetic
SUTs that have simple behavior, and then expected results. ‘Random’, the one
having the worst strategy, returns purely random next move suggestions. ‘Naive’
generates queries that are one OLAP operation away from the previous query.
It naively tries to stay close from the current query, but still chooses the next
move randomly within that neighborhood. ‘Cheater’ uses ’insider information’
in order to return good suggestions. Concretely, it generates queries containing
exclusively one cell from the neighborhood NC of cells in the seed session, which
should fit the user’s needs in terms of task success. The goal of this experiment
is to confirm that the benchmark ranks these approaches as expected.

Benchmarking existing approaches. We created an experimental setup to com-
pare the following approaches: CineCube [13] and Falseto [1]. CineCube is a
multifaceted approach focusing on building a user-friendly sequence of explana-
tions for the analysts. The approach highlights relevant cells in current views
and explores automatically expansion into two one-distance children and two
one-distance sibling queries, also summarizing the findings. Falseto is an OLAP
session composition tool that implements a recommender system based on col-
laborative filtering. It features three phases: (i) search the log for sessions that
bear some similarity with the one currently being issued by the user; (ii) extract
the most relevant subsessions; and (iii) adapt the top-ranked subsession to the
current user’s session. As a baseline we also report the scores without a SUT,
i.e. when sessions are created only by playing the user generative model (‘User’).

5.2 Analysis of Experimental Results

Table 3 shows the benchmark results for the tested SUTs. For each SUT, we
report its average score and standard deviation for the 100 tasks, for all the
benchmark primary and secondary metrics.

Validation. Regarding the three basic SUTs designed, the results globally allow
us to rank ‘Cheater’ highest, followed by ‘Naive’ and ‘Random’ with the poor-
est performance, as expected. Having access to detailed insider information,
‘Cheater’ achieved a higher task success and it provides better learning, with
a slightly higher learning curve. Theoretically, cheater should suggest all neigh-
bor cells (recall of 1), but in practice, it is stopped by the protocol (number of
chances reached). That explains that its recall is good, but not maximal. How-
ever, as it plays only queries containing the coverage of the study, increase in view

74 M. Djedaini et al.

Table 3. Scores of the SUTs

Engagement Success Time Novelty Learning
QD F R P QpS TET RNI IVA L LGR

User 102 0.082 0.122 0.032 0.223 20.080 1.24E-004 0.012 0.377 0.554

stdev 0 0.053 0.229 0.082 0.264 19.706 3.38E-004 0.039 0.387 0.501

Random 102 0.030 0.189 0.002 0.0016 2260.400 3.23E-004 0.728 0.384 0.554

stdev 0 0.013 0.263 0.003 0.001 4151.932 2.33E-004 0.307 0.386 0.502

Naive 102 0.069 0.293 0.014 0.004 1464.560 7.72E-005 0.569 0.377 0.554

stdev 0 0.039 0.302 0.031 0.008 1180.270 1.10E-004 0.289 0.387 0.502

Cheater 101.4 0.029 0.538 0.119 0.014 319.600 7.83E-005 0.155 0.513 0.557

stdev 3 0.039 0.318 0.235 0.016 340.167 2.20E-004 0.277 0.489 0.504

Falseto 467 0.024 0.575 0.005 0.0005 2205.080 1.37E-004 0.737 0.376 0.559

stdev 25.855 0.001 0.344 0.003 0.0001 706.705 9.13E-005 0.236 0.386 0.506

Cinecube 184.2 0.018 0.398 0.013 0.006 2891.840 2.20E-004 0.908 0.377 0.556

stdev 51.027 0.006 0.333 0.039 0.010 4210.870 5.38E-004 0.092 0.387 0.503

area is lower. ‘Random’ proposes completely random jumps in the multidimen-
sional space, which is less effective (lower task success). As it slowly contributes
to task resolution, the stop condition (50 chances) stops its execution. That is
why it obtains maximum query depth for all tasks (stdev = 0). Nevertheless, it
randomly explores other cube zones, so consequently increases view area and
increases learning at the cost of a poor precision. As expected, ‘Naive’ stays
half-way between ‘Cheater’ and ‘Random’. By moving always close to the cur-
rent query, it was able to stay within relevant regions (so succeeding quite well).
As ‘Naive’, it executes until the stop condition obtaining maximum query depth.

Benchmarking existing approaches. Results in Table 3 highlight the differences
between Falseto and Cinecube and helps deciding which is best in which case.
By definition, Falseto generates longer sessions than Cinecube as reflected by the
Query Depth score. Falseto also generates queries that are not only related to the
neighborhood of the last queries as Cinecube but that are based on collaborative
filtering with user past sessions to recommend next analysis moves. This leads
Falseto to produce more diverse queries than Cinecube. This is an advantage
when it comes to explore the data as shown by the Recall of Falseto which is
slightly better than that of Cinecube. However this comes at the cost of a lower
precision, because it explores parts of the cube outside seed neighborhood.

When it comes to compare existing approaches with basic SUTs, we also
retrieve coherent and intuitive results. Indeed, the scores allow to globally rank
both Falseto and Cinecube better than Naive and worse than Cheater, while
being good in some points. Indeed, contrary to Random and Naive that do not
seem to effectively support data exploration, Falseto and Cinecube are clearly of
great help for the user. According to User scores (i.e. user playing alone), they
lead to a more complete exploration of relevant regions with more engagement
and better task success.

Benchmarking Exploratory OLAP 75

6 Conclusion

In this paper we proposed the first benchmark for assessing OLAP exploration
approaches. Modern OLAP exploration approaches are expected to suggest next
moves to users, but an important question is how to evaluate the quality of such
suggestions, and how to compare alternatives. Our benchmark uses state of the
art techniques to generate data and user traces, and for its metrics definition. The
benchmark is easy to use, requiring the SUT tester to write only a well-defined
interface, and classifies the SUT according to a set of user-centric metrics. This
is an important advance, since existing benchmarks focus almost exclusively on
performance, cost or energy. To validate the approach, we have proved that the
benchmark correctly ranks a set of strategies for which the behavior is known.

We plan to make all the details of the benchmark public for anyone to use
and improve, and our long-term goal is that it serves as a building block of a
more general benchmark for exploratory search over databases in general. We are
currently working on turning our proposal into an industry-strength benchmark:
we are detailing rules, procedures, reporting procedures and documentation; we
are investigating the benchmark robustness and its sensitivity to the data and
traces. We are currently studying how to use KT to aggregate our metrics to
easily rank SUTs. We are also applying the benchmark to rank other existing
exploratory approaches, as a way to create a regular use base.

References

1. Aligon, J., Gallinucci, E., Golfarelli, M., Marcel, P., Rizzi, S.: A collaborative fil-
tering approach for recommending OLAP sessions. DSS 69, 20–30 (2015)

2. Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S., Turricchia, E.: Similarity measures
for OLAP sessions. KAIS 39(2), 463–489 (2014)

3. Aufaure, M.-A., Kuchmann-Beauger, N., Marcel, P., Rizzi, S., Vanrompay, Y.: Pre-
dicting your next OLAP query based on recent analytical sessions. In: Bellatreche,
L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 134–145. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40131-2 12

4. Battle, L., Stonebraker, M., Chang, R.: Dynamic reduction of query result sets for
interactive visualizaton. In: International Conference on Big Data, pp. 1–8 (2013)

5. Cariou, V., Cubillé, J., Derquenne, C., Goutier, S., Guisnel, F., Klajnmic, H.:
Embedded indicators to facilitate the exploration of a data cube. IJBIDM 4(3/4),
329–349 (2009)

6. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modelling the acquisition of
procedural knowledge. UMUAI 4(4), 253–278 (1995)

7. Desmarais, M.C., de Baker, R.S.J.: A review of recent advances in learner and skill
modeling in intelligent learning environments. UMUAI 22(1–2), 9–38 (2012)

8. Djedaini, M., Furtado, P., Labroche, N., Marcel, P., Peralta, V.: Assessing the
effectiveness of OLAP exploration approaches. Technical report 315, June 2016.
http://www.info.univ-tours.fr/∼marcel/RR-DFLMP-1-062016.pdf

9. Drosou, M., Pitoura, E.: YmalDB: exploring relational databases via result-driven
recommendations. VLDB J. 22(6), 849–874 (2013)

http://dx.doi.org/10.1007/978-3-642-40131-2_12
http://www.info.univ-tours.fr/~marcel/RR-DFLMP-1-062016.pdf

76 M. Djedaini et al.

10. Drutsa, A., Gusev, G., Serdyukov, P.: Future user engagement prediction and its
application to improve the sensitivity of online experiments. In: WWW, pp. 256–
266 (2015)

11. Eirinaki, M., Abraham, S., Polyzotis, N., Shaikh, N.: Querie: collaborative database
exploration. TKDE 26(7), 1778–1790 (2014)

12. Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query recommendations for
OLAP discovery-driven analysis. IJDWM 7(2), 1–25 (2011)

13. Gkesoulis, D., Vassiliadis, P., Manousis, P.: Cinecubes: aiding data workers gain
insights from OLAP queries. IS 53, 60–86 (2015)

14. Golfarelli, M., Rizzi, S., Biondi, P.: myOLAP: an approach to express and evaluate
OLAP preferences. TKDE 23(7), 1050–1064 (2011)

15. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data cube: a relational aggregation operator generalizing
group-by, cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)

16. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: SIGMOD, pp.
171–182 (1997)

17. Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data exploration tech-
niques. In: SIGMOD, pp. 277–281 (2015)

18. Kamat, N., Jayachandran, P., Tunga, K., Nandi, A.: Distributed and interactive
cube exploration. In: ICDE, pp. 472–483 (2014)

19. Khan, H.A., Sharaf, M.A., Albarrak, A.: Divide: efficient diversification for inter-
active data exploration. In: SSDBM, pp. 15:1–15:12 (2014)

20. Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.: Low-complexity fuzzy relational
clustering algorithms for web mining. IEEE-FS 9, 595–607 (2001)

21. LeFevre, J., Sankaranarayanan, J., Hacigümüş, H., Tatemura, J., Polyzotis, N.:
Towards a workload for evolutionary analytics. In: DanaC 2013, pp. 26–30 (2013)

22. Lehmann, J., Lalmas, M., Yom-Tov, E., Dupret, G.: Models of user engagement.
In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP
2012. LNCS, vol. 7379, pp. 164–175. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31454-4 14

23. Nguyen, H.V., Böhm, K., Becker, F., Goldman, B., Hinkel, G., Müller, E.: Iden-
tifying user interests within the data space - a case study with skyserver. EDBT
2015, 641–652 (2015)

24. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark
and augmented fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC
2009. LNCS, vol. 5895, pp. 237–252. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10424-4 17

25. Rabl, T., Poess, M., Jacobsen, H., O’Neil, P.E., O’Neil, E.J.: Variations of the star
schema benchmark to test the effects of data skew on query performance. In: ICPE
2013, pp. 361–372 (2013)

26. Rizzi, S., Gallinucci, E.: CubeLoad: a parametric generator of realistic OLAP
workloads. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos,
Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 610–624.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-07881-6 41

27. Sapia, C.: PROMISE: predicting query behavior to enable predictive caching
strategies for OLAP systems. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.)
DaWaK 2000. LNCS, vol. 1874, pp. 224–233. Springer, Heidelberg (2000). doi:10.
1007/3-540-44466-1 22

28. Sarawagi, S.: Explaining differences in multidimensional aggregates. In: VLDB, pp.
42–53 (1999)

http://dx.doi.org/10.1007/978-3-642-31454-4_14
http://dx.doi.org/10.1007/978-3-642-31454-4_14
http://dx.doi.org/10.1007/978-3-642-10424-4_17
http://dx.doi.org/10.1007/978-3-642-10424-4_17
http://dx.doi.org/10.1007/978-3-319-07881-6_41
http://dx.doi.org/10.1007/3-540-44466-1_22
http://dx.doi.org/10.1007/3-540-44466-1_22

Benchmarking Exploratory OLAP 77

29. Sarawagi, S.: User-adaptive exploration of multidimensional data. In VLDB, pp.
307–316 (2000)

30. Sathe, G., Sarawagi, S.: Intelligent rollups in multidimensional OLAP data. In:
VLDB, pp. 531–540 (2001)

31. Sellam, T., Kersten, M.L.: Meet Charles, big data query advisor. In: CIDR (2013)
32. Song, Y., Shi, X., Fu, X.: Evaluating and predicting user engagement change with

degraded search relevance. In: WWW, pp. 1213–1224 (2013)
33. White, R.W., Roth, R.A.: Exploratory Search: Beyond the Query-Response Para-

digm. Morgan & Claypool Publishers, San Rafael (2009)

Lessons from OLTP Workload on Multi-socket HPE
Integrity Superdome X System

Srinivasan Varadarajan Sahasranamam, Paul Cao(✉), Rajesh Tadakamadla,
and Scott Norton

Hewlett Packard Enterprise, 3000 Hanover Street, Palo Alto, CA, USA
paul.cao@hpe.com

Abstract. With today’s data explosion, databases have kept pace with the ever
increasing demands of businesses by growing in size to accommodate peta-bytes
and exa-bytes of data. This growth in data sizes is met by an equally impressive
platform hardware engineering. These large enterprise systems are characterized
by very large memory, I/O footprints and number of processors. These systems
offer a good hardware consolidation platform, allowing traditional smaller data‐
bases to be consolidated on to larger and fewer x86 servers. In pursuit of efficient
resource utilization, we have seen database implementations leverage technolo‐
gies like virtualization and containerization to improve resource utilization rates,
while providing best possible isolation of workloads. Oracle database 12cR1 is
an offering that enables high server resource utilization rates for database work‐
loads using the “Multitenant” feature. While scaling multi-tenant database work‐
loads from 1 to 4 sockets could be considered a modestly challenging task, scaling
these workloads beyond 4 sockets (such as 8 or 16 sockets) presents new chal‐
lenges that have to be addressed to make the deployments more efficient. One of
the main challenges to deal with on such highly NUMA (Non-Uniform Memory
Access) architectures is the associated performance penalties in memory intensive
workloads. Database software is primarily memory intensive, so the need for
optimizing both the hardware and the software stack for best performance
becomes very apparent. While many of the hardware optimizations are done via
platform tunings in the BIOS (aka system firmware), an equal amount of tuning
options are available to be explored and applied on the OS and the application
side. In this paper, we focus primarily on the software based tunings available to
users in the OS and the database. The information presented in this paper are an
accumulation of learnings and observations made when trying to solve NUMA
challenges during OLTP benchmarking with Oracle multitenant database
deployed on a 16 socket HPE Integrity Superdome X under a Linux environment.

1 Introduction

1.1 NUMA and Its Significance in Scale-Up Architectures

As the name suggests, Non-Uniform Memory Access (NUMA) is an implementation of
multiprocessor computer design that has parts of its memory local to each processor. It
essentially means that different parts of memory exhibit varying latencies based on the
memory topology of the system [1]. Platforms based on Intel x86 architecture can scale

© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 78–89, 2017.
DOI: 10.1007/978-3-319-54334-5_6

up to 8 sockets with Intel “glueless” architecture, and beyond 8 sockets with the help of
node controllers [2]. An example of an 8 Socket “glueless” implementation would be
PRIMEQUEST 2800E [3] and an example of node controller implementation would be
HPE Superdome-X using XNC2 controllers along with SX3000 Fault Tolerant Crossbar
(XBar) fabric [4].

In common terms, the memory that is directly attached to a processor’s socket is
referred to as “Socket Local Memory” or simply “Local Memory”. Memory attached to
an adjacent processor socket that can be reached over direct QPI links is referred to as
Buddy Local memory. Please check reference [5] for more information on Intel QPI.
Any memory that is attached to a processor which can be reached over a node controller
or with a hop over an adjacent processor is referred to as Remote memory. Based on the
architecture and physical distance, memory access latency of Remote Memory can be
significantly higher than that of Local and Buddy Local memory.

Apart from memory access latencies, applications running on large NUMA systems
also have to deal with cacheline contentions on a larger scale. The HPE Superdome X
in our experiments with 16 Intel XeonE7-8890 v3 processors can hold data up to 720 MB
in its L3 (LLC) cache (i.e. combined L3 cache size on the platform, considering all the
processors, where each processor has an L3 cache of 45 MB). While there are definite
benefits from the improved L3 cache size of newer processors, we also need to consider
how cache line contentions could bring down performance in such large NUMA systems
and see how a NUMA-aware application scheduling would help alleviate those issues.

1.2 Oracle 12c and Its “Multi-tenancy” Feature

Oracle Multitenant introduced with Oracle Database 12c is an architecture that allows
a single large container database to hold multiple small pluggable databases. All these
pluggable databases share the memory and background processes of their container
database, enabling high density consolidation of databases compared to the previous
architecture. It is critical that we understand how a container database and its constituent
pluggable databases work, and align themselves with the underlying NUMA architecture
for best performance results. Oracle database enables additional support for NUMA
environments using the hidden parameter “_enable_NUMA_support”. By default,
Oracle databases are configured with NUMA support disabled. As mentioned in Oracle
support document ID 864633.1, enabling or disabling NUMA support can impact appli‐
cation performance and caution needs to be exercised while enabling the support.
Prerequisites for enabling this parameter are that underlying OS is NUMA aware and
hardware is NUMA capable.

In the following sections, we have described a multitenant database deployment strategy
on a 16 socket HPE Superdome X to minimize the scalability issues as described above.

This paper is organized in the following manner: Sect. 2 describes the test setup and
configuration. Section 3 lists observations on the workload when run without explicit
NUMA awareness. Section 4 describes the changes that were made to optimize the test
setup to be more NUMA aware. Section 5 lists various tools and commands used for
the tests. Section 6 summarizes the results. Section 7 provides a conclusion on the effort
and Sect. 8 talks about future work.

Lessons from OLTP Workload on Multi-socket HPE 79

2 Configuration

2.1 Hardware

The test setup consisted of a fully populated HPE Integrity Superdome X enclosure
configured as a single 8-blade nPar or hard partition. We used Gen9 blades and each of
these blades was populated with two Intel Xeon E7-8890 v3 processors and 512 GB
RAM. Following table describes the complete hardware in detail:

Enclosure Superdome X
Interconnect Modules 4 x HPE B-series 8/24c SAN witch

2 x HPE ProCurve 6120XG 10Gbps

Hard Partition Size 8 Blades/16 CPUs/4TB RAM

CPUs per blade 2 x Intel Xeon E7-8890 v3 processors

Physical core count 288

Logical core count 576

RAM per blade 512GB

LOMs per blade 1 x FlexFabric 20Gb 2-port 630FLB

Mezzanines per blade 2 x HP QMH2672 16Gb

Storage 2 x HPE 3Par 7450 All Flash (32 TB)

LUN Raid Level vRaid5

For storage connectivity, FC (Fiber Channel) cards were placed in mezzanine slots
2 & 3 of each blade. The enclosure was equipped with four SAN switch interconnect
modules in interconnect bays 5, 6, 7, and 8. LUNs/Disks were presented to the hard
partition from two all flash 3 Par 7440 arrays. As depicted in the image below, inter‐
connect switches in bay 5 & 6 were connected to first 3 Par array and interconnect
switches in bay 7 & 8 were connected to the second 3 Par array.

2.2 OS

The Server under test was running Red Hat Enterprise Linux 6 Update 6. All the paths
to a disk were grouped based on the bus and a policy for load balancing was used based

80 S.V. Sahasranamam et al.

on shortest service time. We had 90% of the memory configured to be used as 2 MB
Huge Pages. All the necessary kernel tunables were set to support shared memory sizes
required for the Oracle database. For optimal performance, we activated “latency-
performance” profile using “tuned-adm” and CPU frequency governor was configured
to use the “performance” profile. The test system had 16 NUMA nodes identified by the
OS as indicated by “lscpu” command output. Statistics from “/proc/interrupts” indicated
that interrupts for each network interface was being handled by the CPU cores from the
first socket of the blade hosting the interface. For example, interrupt from network
interface located on blade 2 would be handled by CPU cores from socket 2. Similarly,
for a network interface card on blade 7, interrupts would be handled by CPU cores from
socket 12. No other NUMA specific tunings were applied at the OS level.

2.3 Workload

We chose an open source GUI/CLI based tool called Hammer DB [6] as the workload
generator for its ability to generate/reproduce results consistently. We used TPC-C like
OLTP workloads and configured them to be CPU/Memory intensive to elevate the
impact of remote memory access penalties and the cache line contentions. Following
table describes the workload and the workload tool options used in the test environment:

HammerDB Clients 4
Workload Type OLTP (TPC-C)
Seed Size 4000 Warehouses
Client HW Configuration 32 Cores/96 GB
Public Network 10 Gbps
User count 576
Key & Think Time 0
Workload Duration 3+5 Minutes

To be able to have comparable test results at scaled down versions, as a rule of thumb,
we fixed the client side user count to the number of logical CPUs of the configuration.

2.4 Database Configuration

We had one CDB (container database) hosting four pluggable databases and each of
these pluggable databases had seed data for 500 warehouses. The container database
was configured to have SGA (Shared Global Area) set to consume 90% of the available
memory as HugePages. After the database creation, some of the necessary parameter
values were scaled to support the test environment and its workload scale. There was a
single listener that was configured to support all the pluggable databases within the
container database. To avoid “logfile switch” events during benchmark runs, two
2000 GB redo log groups with a single log member were configured. All the data files
of the container database, datafiles of each pluggable database and redo logs were placed
on different ASM diskgroups. Since this study was focused primarily on application
performance impacts in a NUMA configuration, during workload runs, storage access

Lessons from OLTP Workload on Multi-socket HPE 81

requirements were kept to a minimum by hosting the complete database in memory
while keeping the storage access limited to redo logs.

3 Observations on Non-NUMA Optimized Configuration

There are non-NUMA related factors that also significantly influence the overall
performance of a database. We adopted the following sequence to present observations
relevant to the subject of the paper in a definitive way:

a. Along with NUMA considerations, tune the configuration for best possible
throughput. This typically involves sizing the seed data for the available memory
footprint, sizing memory, tuning to resolve contentions, etc. These are standard
practices for database tuning, and the Oracle specific tunings are well documented
in Oracle product literature.

b. Once the baseline with the best possible results are created, switch off or rollback
changes that can be classified under NUMA optimization (described in detail in
Sect. 4) and make a benchmark run.

Following are a set of high-level observations that were made after step b:

1. While each HammerDB client was configured to run workload against a unique
pluggable database through a single listener configured for the entire CDB, all client
connections by default got clustered towards the first two NUMA nodes as indicated
by PSR field of “ps–eF” output. On our 16 socket configuration, about 45% of the
connections were bound to first 2 NUMA nodes while remaining were randomly
distributed among the remaining 14 NUMA nodes.

2. After database startup, “numastat–p ora_” indicated near equal memory distribution
across all the nodes.

3. All the db_writer (ora_db* & ora_bw*) processes were unevenly distributed(more
clustered towards first few NUMA nodes).

4. Perf c2c data collected for a duration of 10 s during peak workload indicated heavy
cacheline contentions with-in the database. Cache hit statistics indicated that Remote
HITs + Remote HITMs contribution was around 28% while LLC misses to Remote
DRAM contribution was 65%.

LLC Misses to Local DRAM 6.6%
LLC Misses to Remote DRAM 65.6%
LLC Misses to Remote cache (HIT) 4.8%
LLC Misses to Remote cache (HITM) 23.0%

5. Overall observed throughput (in TPM) was roughly equivalent to that of an 8-socket
configuration running a single instance database on similar hardware. This clearly
indicated that existing NUMA awareness with the configuration was insufficient to
scale to 16 socket level.

82 S.V. Sahasranamam et al.

4 NUMA Optimized Configuration for Best Performance

4.1 Network

As a first level of load balancing of incoming traffic, three additional listeners were
configured. We configured each of these new listeners to listen on an IP plumbed on 3
different physical network interfaces. All the four network interfaces were chosen from
4 different blades of the hard partition. As an end result, we had interrupt handling for
each of these four network interfaces to be handled by NUMA nodes 0, 2, 8, and 10.

4.2 Database

The first tuning in the database configuration was enabling the parameter that controlled
NUMA support. Database parameter “_enable_NUMA_support” was set to true and the
container database instance was restarted. With this parameter enabled, we made
following two observations:

1. Distribution of db_writer processes across all NUMA nodes in a round robin fashion.
2. “buffer cache” allocation that is NUMA aligned with client side processes. Our tests

strongly suggested that memory allocation for cache buffers and processes were
made from the same NUMA node that handled the listeners.

4.3 Workload

Workload from each HammerDB client was targeted against a unique pluggable data‐
base using a dedicated listener configured for that pluggable database. Our second step
was to isolate each of the listeners and bind them to a set of NUMA nodes to ensure that
memory allocations made for the pluggable database are confined to those specific
NUMA nodes.

We had LSNR1 serving the pluggable database PDB1 and was bound to NUMA
nodes 0, 1, 4 & 5. Similarly, remaining listeners for the other 3 pluggable databases were
bound as follows:

PDB Listen-
er

NUMA nodes

PDB
1

LSNR1 0, 1, 4, 5

PDB
2

LSNR2 2, 3, 6, 7

PDB
3

LSNR3 8, 9, 12, 13

PDB
4

LSNR4 10, 11, 14, 15

Lessons from OLTP Workload on Multi-socket HPE 83

Based on HPE Superdome X architecture, either all odd slot blades or all even slot
blades together form a better cluster on the XBar fabric. Hence, sharing workload
between NUMA nodes 0, 1, 4, 5, 8, 9, 12, and 13 was optimal (similarly, NUMA nodes
2, 3, 6, 7, 10, 11, 14 and 15 form the other optimal cluster for sharing workload).

Tools like “numactl” and “hpe-atx” were used to bind the listeners to the assigned
NUMA nodes. Unlike, “numactl”, “hpe-atx” provides support for process and thread
launch policies. Listeners were launched either using “numactl” or “hpe-atx” with
following arguments:

$ numact --cpunodebind=0,1,2,3 --membind=0,1,2,3 lsnrctl start
LSNR1

$ hpe-atx -p ff_flat -n 0,1,4,5 lsnrctl start LSNR1

4.4 Summary

Idea behind each of the change was to attempt and isolate workloads against each PDB
and its supporting resources to a specific set of NUMA nodes to the best extent possible.

During the course of evaluation, each of the changes described above was derived
and applied to the configuration in an incremental fashion. At varying levels, we have
observed substantial gains in throughput with each individual change. However, the best
gains were realized with all of them applied together.

5 Tools and Commands

Following tools and commands were used to evaluate and configure the database server:

lscpu: Display information of CPU architecture along with information on CPU count,
threads, cores, sockets, and Non-Uniform Memory Access (NUMA) nodes.
lstopo: Command to display the hardware topology of the system.
hwloc-distances: Displays distance matrices attached to the system topology.
numastat: Show per-NUMA-node memory statistics for processes and the operating
system. The default numastat statistics shows per-node numbers (in units of pages of
memory) in the categories numa_hit, numa_miss, numa_foreign, interleave_hit,
local_node, other_node.
numactl: Control NUMA policy for processes or shared memory. It runs processes
with a specific NUMA scheduling or memory placement policy. The policy is set for
command and inherited by all of its children.
hpe-atx [7]: Similar to numactl, this is a utility that allows NUMA unaware applications
to gain the benefits of NUMA, by launching processes in a more controlled manner to
optimize its memory allocation and scheduling. It controls the distribution of an applica‐
tion’s processes and threads in a NUMA environment. This tool is available on RHEL
and SLES distributions supported on HPE Integrity Superdome X.

84 S.V. Sahasranamam et al.

perf, c2c [8]: Enhancement added to perf tool to analyze cache line contention on
NUMA systems.

6 Results

With the changes described in Sect. 4 and using “numactl”, we observed a gain of 43.4%
in throughput. And with “hpe-atx”, a gain of 58.3%.

Perf c2c data for the tuned configuration indicated significant reduction in cacheline
contentions and LLC misses to remote DRAM. Following are the cache level statistics
for the tuned configuration. We have to note that workload against each PDB was still
confined to 4 NUMA nodes where local memory to remote memory still stands at 1:3
ratio i.e. Buddy Local/Remote Memory contributes to 75% of the memory used by a
PDB.

LLC Misses to Local DRAM 21.2%
LLC Misses to Remote DRAM 64.2%
LLC Misses to Remote cache (HIT) 2.8%
LLC Misses to Remote cache (HITM) 11.9%

We clearly see a 14.6% rise in LLC missed to local DRAM and a drop of 11.1% in
remote cache HITMs. Apart from a rise in LLC hits and Local HITMs, we also have to
note that all the LLC misses to remote DRAM, remote HITs and remote HITMs are now
confined to a set of 3 NUMA nodes that are closely co-located on the Xbar fabric with
ability to resolve them at much lower latency rates. From these statistics and the observed
throughput improvements, the benefits of localizing memory accesses to NUMA nodes
that are physically closer (with reduced performance penalties of remote cache accesses)
become obvious.

Lessons from OLTP Workload on Multi-socket HPE 85

When the same configuration was scaled down to 8 sockets with proportionately
scaled down PDB and user counts, we achieved a scalability factor of 1.77× between 8
socket and 16 socket configurations in conjunction with “hpe-atx” tool for NUMA
controlled launch of listeners:

With the changes described in Sect. 4 and using “numactl”, on an 8 socket config‐
uration, we observed a gain of 13.5% in throughput while a gain of 24.8% was achieved
using “hpe-atx”.

Fig. 1. a. CPU utilization pattern on 16 socket multitenant database when4 listeners were
launched with no NUMAcontrol. b. CPU utilization pattern on 16 socket multitenant database
when 4 listeners were launched using hpe-atx.

86 S.V. Sahasranamam et al.

When the listeners are launched without explicit NUMA control, utilization pattern
across the CPU cores was observed to be erratic. Using following line histograms
(Fig. 1a and b) from benchmark runs, we can visualize CPU utilization pattern between
default and NUMA controlled launch of database listeners on our 16 socket server (with
576 logical CPUs):

With even distribution of workload across all NUMA nodes (Fig. 1b), we see steady
CPU utilization rates in the 70%–90% band. And in case of no NUMA control (Fig. 1a),
we see some CPUs close to 100% utilization rates while some CPUs between 70%–95%
band with a lot of fluctuation.

These observations can be better visualized from following CPU utilization line
histograms (Fig. 2a and b) captured from benchmark runs on an 8 socket, 120 core single
instance database using a single listener. This configuration is outside the focus of this
paper, but it has still been included here as it provides better insights into CPU utilization
randomness between default launch and the NUMA controlled launch of listeners.

Fig. 2. a. CPU utilization pattern on 8 socket single instance database when listener was launched
with no NUMA control. b. CPU utilization pattern when listener were launched using “hpe-atx”
distributing workloads across all NUMA nodes

We can clearly observe the improvement of individual CPU core utilization levels
due to even distribution of workload.

Lessons from OLTP Workload on Multi-socket HPE 87

7 Conclusion

In this paper, we saw how the present day NUMA architectures affect application perform‐
ance. We have seen how a NUMA-unaware application, left to the mercy of the default
scheduling policy and memory allocation of the OS, might suffer severe performance
penalties due to remote memory accesses. We have also seen how the OS, associated tools
and the software eco-system have evolved over time to be more aligned with the hardware
topology of the platform and hence offer ways to overcome those performance penalties
with the use of NUMA-aware scheduling and allocation policies (tools like numactl and
hpe-atx serve as good examples in this area). We also discussed how these performance
penalties become aggravated on large scale-up architectures, and how a NUMA-aware OS
and its associated tools become even more important and relevant for applications in such
environments. Our study also suggests that even though OS’s are NUMA-aware, at best
they can enable applications to exploit the benefits of data locality. While the OS-based
NUMA-awareness may provide some gains on smaller systems, it requires applications
also to be fully NUMA-aware to get the maximum benefit of performance on large
systems. In the absence of such NUMA-awareness in applications, tools like numactl and
hpe-atx build on the OS capabilities and play a vital role as performance enablers in an
increasingly complex hardware and software eco-system.

8 Futurework

A future area of work would be to evaluate the performance of the database in the
presence of storage accesses for database operations. In addition, an assessment of
impacts of interrupt latencies in the context of the core DB processes (the shared pool
of background processes that are common to all PDBs) would also be recommended.
This study covered the aspects of NUMA-aware scheduling for the DB processes
launched by the listener processes. While this has its demonstrated performance benefits,
we believe there are opportunities for optimization if the core DB processes could be
launched with NUMA optimization. The present DB startup framework in Oracle limits
the amount of experimentation possible (without resorting to developer hacks, which
requires an intimate understanding of the DB startup sequence and its associated
processes). As Oracle database improves to offer more scaling on large systems, it would
be worthwhile to keep this as a potential area of investigation based on future features
that might lend themselves to performance optimization in this area.

Acknowledgments. We would like to thank Long, Wai Man for his help in setup of perf, c2c
tool along with analysis of perf data collected during the database workload runs.

References

1. Manchanda, N., Anand, K.: Non-uniform memory access (NUMA). New York University
2. Kumar, M., Demshki, M., Shiveley, R.: Advanced reliability for intel xeon processor-based

servers, March 2010

88 S.V. Sahasranamam et al.

3. FUJITSU Server PRIMEQUEST 2800E Mission Critical data sheet: https://sp.ts.fujitsu.com/
dmsp/Publications/public/ds-pq-2800e.pdf

4. HPE Integrity Superdome X system architecture and RAS a technical white paper
5. An Introduction to the Intel® QuickPath Interconnect, January 2009
6. HammerDB is a graphical open source database load testing and benchmarking tool for Linux

and Windows. http://www.hammerdb.com/about.html
7. HPE Application Tuner Express. https://h20392.www2.hpe.com/portal/swdepot/

displayProductInfo.do?productNumber=HPE-ATX
8. New tool to analyze cacheline contention on NUMA systems. https://lwn.net/Articles/588866/

Lessons from OLTP Workload on Multi-socket HPE 89

https://sp.ts.fujitsu.com/dmsp/Publications/public/ds-pq-2800e.pdf
https://sp.ts.fujitsu.com/dmsp/Publications/public/ds-pq-2800e.pdf
http://www.hammerdb.com/about.html
https://h20392.www2.hpe.com/portal/swdepot/displayProductInfo.do%3fproductNumber%3dHPE-ATX
https://h20392.www2.hpe.com/portal/swdepot/displayProductInfo.do%3fproductNumber%3dHPE-ATX
https://lwn.net/Articles/588866/

Benchmarking Distributed Stream Processing
Platforms for IoT Applications

Anshu Shukla(B) and Yogesh Simmhan

Indian Institute of Science, Bangalore, India
shukla@grads.cds.iisc.ac.in, simmhan@cds.iisc.ac.in

Abstract. Internet of Things (IoT) is a technology paradigm where mil-
lions of sensors monitor, and help inform or manage, physical, environ-
mental and human systems in real-time. The inherent closed-loop respon-
siveness and decision making of IoT applications makes them ideal can-
didates for using low latency and scalable stream processing platforms.
Distributed Stream Processing Systems (DSPS) are becoming essential
components of any IoT stack, but the efficacy and performance of con-
temporary DSPS have not been rigorously studied for IoT data streams
and applications. Here, we develop a benchmark suite and performance
metrics to evaluate DSPS for streaming IoT applications. The benchmark
includes 13 common IoT tasks classified across functional categories and
forming micro-benchmarks, and two IoT applications for statistical sum-
marization and predictive analytics that leverage various dataflow pat-
terns of DSPS. These are coupled with stream workloads from real IoT
observations on smart cities. We validate the benchmark for the popular
Apache Storm DSPS, and present the results.

Keywords: Stream processing · Benchmark · Workload · Internet of
Things · Smart cities · Fast data · Big Data · Velocity · Distributed
systems

1 Introduction

Internet of Things (IoT) is a technology paradigm where ubiquitous sensors num-
bering in the billions will be able to monitor physical infrastructure, humans and
virtual entities in real-time, process both real-time and historic observations, and
take actions that improve the efficiency and reliability of systems, or the comfort
and lifestyle of society. Besides affordable sensing and pervasive communications,
Cloud and Big Data platforms have contributed to this rapid growth.

Currently, the IoT applications are often manifest in vertical domains, such
as demand-response optimization and outage management in smart grids [5],
or fitness and sleep tracking by smart watches and health bands [19]. The IoT
stack for such domains is tightly integrated to serve specific needs, but typically
operates on a closed-loop Observe Orient Decide Act (OODA) cycle, where sen-
sors communicate time-series observations of the system to a Cloud data center
for analysis, and the analytics drive recommendations that are enacted on, or
c© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 90–106, 2017.
DOI: 10.1007/978-3-319-54334-5 7

Benchmarking Distributed Stream Processing Platforms for IoT Applications 91

notified to, the system to improve it, which is again observed and so on. In fact,
this closed-loop responsiveness is an essential characteristic of IoT applications.

This low-latency cycle makes it necessary to process data streaming from
sensors at fine spatial and temporal scales, in real-time, to derive actionable
intelligence. In particular, this streaming analytics has to be done at massive
scales (millions of sensors, thousands of events per second) from across distrib-
uted sensors, requiring large computational resources. Cloud computing offers a
natural platform for scalable processing of the observations at globally distrib-
uted data centers, and sending a feedback response to the IoT system at the
edge. This complements Fog Computing that puts the onus on edge devices to
collaboratively collect, process and analyze data with low latency by reduced
reliability.

Recent Big Data platforms like Storm [18], Flink [2] and Spark [20] provide
an intuitive programming model for composing and executing scalable stream-
ing applications on commodity clusters and Clouds. These Distributed Stream
Processing Systems (DSPS) are becoming essential components of any IoT stack
to support online analytics for IoT applications. In fact, reference IoT solutions
from Cloud providers1,2 include their own stream and event processing engines.

Shared-memory stream processing systems [9] have been investigated for
wireless sensor networks, with community benchmarks being proposed [6]. But
there has not been a detailed review of, or benchmarks for, distributed stream
processing for IoT domains. In particular, the efficacy of contemporary DSPS,
originally designed for web and social network traffic [18], have not been rigor-
ously studied for IoT data streams and applications. We address this gap here.

We develop a benchmark suite for DSPS to evaluate their effectiveness
for streaming IoT applications. The proposed workload is based on common
building-block tasks observed in various IoT domains for real-time decision mak-
ing, and the input streams are sourced from real IoT observations from smart
cities.

Specifically, we make the following contributions:

1. We classify different characteristics of streaming applications and their data
sources, in Sect. 3. We propose categories of tasks that are essential for IoT
applications and the key features that are present in their input data streams.

2. We identify performance metrics of DSPS that are necessary to meet the
latency and scalability needs of streaming IoT applications, in Sect. 4.

3. We propose an IoT Benchmark for DSPS based on representative micro-
benchmark tasks, drawn from the above categories, in Sect. 5. Further, we
design two reference IoT applications – for statistical analytics and predictive
analytics – composed from these tasks. We also offer real-world streams with
different distributions on which to evaluate them.

4. We run the benchmark for the popular Apache Storm DSPS, and present
empirical results for the same in Sect. 6.

1 https://aws.amazon.com/iot/how-it-works/.
2 https://www.microsoft.com/en-in/server-cloud/internet-of-things/overview.aspx.

https://aws.amazon.com/iot/how-it-works/
https://www.microsoft.com/en-in/server-cloud/internet-of-things/overview.aspx

92 A. Shukla and Y. Simmhan

2 Background and Related Work

Early data stream management systems (DSMS) were motivated by sensor net-
work applications, that have similarities to IoT [9]. They supported continuous
query languages with operators such as join, aggregators similar to SQL, but
with a temporal dimension using windowed-join operations. These have distrib-
uted implementations [8] and have evolved to complex event processing (CEP).

Current DSPS like Apache Storm and Apache Spark Streaming [18,20] lever-
age Big Data fundamentals, running on commodity clusters and Clouds, offer-
ing weak scaling, ensuring robustness, and supporting fast data processing over
thousands of events per second. They do not support native query operators and
instead allow users to plug in their own logic composed as dataflow graphs exe-
cuted across a cluster. While developed for web and social network applications,
such fast data platforms have found use in financial markets, astronomy, and
particle physics. IoT is one of the more recent domains to consider them.

Work on DSMS spawned the Linear Road Benchmark (LRB) [6] that was
proposed as an application benchmark. In the scenario, DSMS had to evaluate
toll and traffic queries over event streams from a virtual traffic monitoring sys-
tem, with parallels to current smart transportation. However, there have been
few studies or community efforts on benchmarking DSPS, other than research
evaluations against popular DSPS like Storm or Spark. These papers define their
own metrics of success – typically just throughput and latency – and use generic
workloads like the Enron email dataset and custom micro-benchmarks [15].

Stream Bench [14] has proposed 7 micro-benchmarks on 4 different synthetic
workload suites generated from real-time web logs and network traffic to eval-
uate DSPS. Metrics including performance, durability and fault tolerance are
proposed. It covers different dataflow patterns and common tasks like grep and
wordcount. While useful as a generic streaming benchmark, it does not con-
sider aspects unique to IoT applications and streams. SparkBench [3] is specific
to Spark, and includes four categories of applications from domains spanning
Graph analysis and SQL queries, and one application for Spark Streaming. The
benchmark metrics include CPU, memory, disk and network IO, with the goal
of identifying tuning parameters to improve Spark’s performance.

In contrast, the goal for this paper is to develop relevant micro- and
application-level benchmarks for evaluating DSPS, specifically for IoT workloads
for which such platforms are increasingly being used. Our benchmark is designed
to be platform-agnostic, simple to implement and execute within diverse DSPS,
and representative of both the application logic and data streams observed in
IoT domains. This allows for the performance of DSPS to be independently and
reproducibly verified for IoT applications.

There has been a slew of Big Data benchmarks for processing high volume
(i.e., MapReduce-style) and enterprise/web data, that complement our work.
The Yahoo Cloud Serving Benchmark (YCSB) [10] was developed to compare
different key-value stores on the Cloud. Hibench [13] is a workload suite for eval-
uating Hadoop with popular micro-benchmarks like Sort, WordCount and Tera-
Sort, MapReduce applications like Nutch Indexing and PageRank, and machine

Benchmarking Distributed Stream Processing Platforms for IoT Applications 93

learning algorithms like K-means Clustering. This is a general purpose workload
for MapReduce platforms at large. BigBench [12] uses a synthetic generator to
simulate online retail enterprise data. It combines structured data from the TPC-
DS benchmark [16], semi-structured data on user clicks, and unstructured data
from product reviews. Queries cover data velocity by processing periodic data
refreshes, variety by including free-text reviews, and volume by querying over a
large click logs. We take a similar approach to benchmark fast data platforms,
targeting the IoT domain and using real public data streams.

There has been some recent work on benchmarking IoT applications. Gener-
ating large volumes of synthetic sensor data with realistic values is challenging,
yet required for benchmarking. IoTAbench [7] provides a scalable synthetic gen-
erator of time-series datasets using a Markov chain model for scaling the time
series. It uses a limited number of inputs to ensure that important statistical
properties of the stream is retained in the generated data. This has been demon-
strated for smart meter data. Their emphasis is on the data characteristics and
content, which supplements our focus on the systems aspects of the platform.

CityBench [4] is a benchmark to evaluate RDF stream processing systems.
They include different generation patterns for smart city data, such as traffic
vehicles, parking, weather, pollution, cultural and library events, with changing
event rates and playback speeds. They propose fixed set of semantic queries over
this dataset, with concurrent execution of queries and sensor streams. Here, the
target platform is different (RDF database), but in a spirit as our work.

3 Characteristics of Streaming IoT Applications

In this section, we review the common application composition capabilities of
DSPS, and the dimensions of the streaming applications that affect their per-
formance on DSPS. These semantics help define and describe streaming IoT
applications based on DSPS capabilities. Subsequently in this section, we also
categorize IoT tasks, applications and data streams based on the domain require-
ments. Together, these offer a search space for defining workloads that meaning-
fully and comprehensively validate IoT applications on DSPS.

3.1 Dataflow Composition Semantics

DSPS applications are commonly composed as a dataflow graph, where vertices
are user provided tasks and directed edges are refer to streams of messages that
can pass between them. Messages (or events or tuples) from/to the stream are
consumed/produced by the tasks. DSPS typically treat the messages as opaque
content, and only the user logic may interpret the message content.

Selectivity ratio, also called gain, is the number of output messages emitted
by a task on consuming a unit input message, expressed as σ = input rate :
output rate. Based on this, one can assess whether a task amplifies or attenu-
ates the incoming message rate. It is important to consider this while designing
benchmarks as it can have a multiplicative impact on downstream tasks.

94 A. Shukla and Y. Simmhan

Fig. 1. Common task patterns and semantics in streaming applications.

There are message generation, consumption and routing semantics associated
with tasks and their dataflow composition. Figure 1 captures the basic compo-
sition patterns supported by modern DSPS. Source tasks have only outgoing
edge(s), and these tasks encapsulate user logic to generate or receive the input
messages that are passed to the dataflow. Likewise, Sink tasks have only incom-
ing edge(s) and these tasks react to the output messages from the application,
say, by storing it or sending an external notification.

Transform tasks, sometimes called Map tasks, generate one output message
for every input message received (σ = 1 : 1). Their user logic performs a transfor-
mation on the message, such as changing the units or projecting only a subset of
attribute values. Filter tasks allow only a subset of messages that they receive
to pass through, optionally performing a transformation on them (σ = N : M ,
N ≥ M). Conversely, a FlatMap consumes one message and emits multiple mes-
sages (σ = 1 : N). An Aggregate pattern consumes a window of messages, with
the window width provided as a count or a time duration, and generates one or
more messages that is an aggregation over each message window (σ = N : 1).

When a task has multiple outgoing edges, routing semantics on the dataflow
control if an output message is duplicated onto all the edges, or just one down-
stream task is selected for delivery, either based on a round robin behavior or
using a hash function on an attribute in the outgoing message to decide the target
task. Similarly, multiple incoming streams arriving at a task may be merged into
a single interleaved message stream for the task. Or alternatively, the messages
coming on each incoming stream may be conjugated, based on order of arrival
or an attribute exposed in each message, to form a joined stream of messages.

Tasks may be data parallel, in which case, it may be allocated multiple
threads/cores to process messages in parallel by different instances the task.
This is typically possible for tasks that do not maintain state across multiple
messages. The length of the dataflow is the latency of the critical (i.e., longest)
path through the dataflow graph, if the graph does not have cycles. This gives an
estimate of the expected latency for each message and also influences the number
of network hops a message on the critical path has to take in the cluster.

3.2 Input Data Stream Characteristics

We list a few characteristics of the input data streams that impact the runtime
performance of streaming applications, and help classify IoT message streams.

The input throughput in messages/sec is the cumulative frequency at which
messages enter the source tasks of the dataflow. Input throughputs can vary
by application domain, and are determined both by the number of streams of

Benchmarking Distributed Stream Processing Platforms for IoT Applications 95

messages and their individual rates. This combined with the dataflow selectivity
will impact the load on the dataflow and the output throughput.

Throughput distribution captures the variation of input throughput over time.
In real-world settings, the input data rate is usually not constant and DSPS need
to adapt to this. There may be several common data rate distributions besides
a uniform one. There may be bursts of data coming from a single sensor, or a
coordinated set of sensors. A saw-tooth behavior may be seen in the ramp-up/-
down before/after specific events. Normal distribution are seen with diurnal (day
vs. night) stream sources, with bi-modal variations capturing peaks during the
morning and evening periods of human activity.

3.3 Categories of IoT Tasks and Applications

Here, we attempt to categorize common IoT processing and analytics tasks that
are performed over real-time data streams to support domain applications.

Parse. Messages are encoded on the wire in a standard text-based or binary
representation by the stream sources, and need to be parsed upon arrival at
the application. Text formats in particular require string parsing by the tasks,
and are also larger in size on the wire. The tasks within the application may
themselves retain the incoming format in their streams, or switch to another
format or data model, say, by projecting a subset of the fields. Industry-standard
formats that are popular for IoT domains include CSV, XML and JSON text
formats, EXI and CBOR binary formats, and serialization protocols like Google’s
Protocol Buffer and Apache Thrift.

Filter. Messages may require to be filtered based on specific attribute values
present in them, as part of data quality checks, to route a subset of message types
to a part of the dataflow graph, or as part of their application logic. Value and
band-pass filters that test an attribute’s numerical value ranges are common,
and are both compact to model and fast to execute. Since IoT event rates may
be high, more efficient Bloom filters may also be used to process discrete values
with low space complexity but with a small fraction of false positives.

Statistical Analytics. Groups of messages within a sequential time or count
window of a stream may require to be aggregated as part of the application.
The aggregation function may be common mathematical operations like average,
count, minimum and maximum. They may also be higher order statistics such
as finding outliers, quartiles, second and third order moments, and counts of
distinct elements. Statistical data cleaning like linear interpolation or denoising
using Kalman filters are common for sensor-based data streams. Some tasks may
maintain just local state for the window width (e.g., local average) while others
may maintain state across windows (e.g., moving average). When the state size
grows, here again approximate aggregation algorithms may be used.

Predictive Analytics. Predicting future behavior of the system based on past
and current messages is an important part of IoT applications. Various statistical
and machine-learning algorithms may be employed for predictive analytics over

96 A. Shukla and Y. Simmhan

sensor streams. The predictions may either use a recent window of messages
to estimate the future values over a time or count horizon in future, or train
models over streaming messages that are periodically used for predictions over
the incoming messages. The training itself can be an online task that is part of
an application. For e.g., linear regression use statistics to predict uni- or multi-
variate attribute values. Classification algorithms like decision trees and neural
networks can be trained to map discrete values to a category, which may lead
to specific actions taken on the system.

Pattern Detection. Another class of tasks are those that identify patterns
of behavior over several events. Unlike window aggregation which operate over
static window sizes and perform a function over the values, pattern detection
matches user-defined predicates on messages that may not be sequential or even
span streams, and returned the matched messages. These are often modeled as
state transition automata or query graphs. Common patterns include contiguous
or non-contiguous sequence of messages with specific property on each message
(e.g., high-low-high pattern over 3 messages), or a join over two streams based
on a common attribute value. Complex Event Processing (CEP) engines [17]
may be embedded within the DSPS task to match these patterns.

Visual Analytics. Other than automated decision making, IoT applications
often generate charts and animations for consumption by end-users or system
managers. These visual analytics may be performed either at the client, in which
case the processed data stream is aggregated and provided to the users. Alterna-
tively, the streaming application may itself periodically generate such plots and
visualizations as part of the dataflow, to be hosted on the web or pushed to the
client. Charting libraries like D3.js or JFreeChart may be used for this.

IO Operations. Lastly, the IoT dataflow may need to access external storage
or messaging services to access/push data into/out of the application. These
may be to store or load trained models, archive incoming data streams, access
historic data for aggregation and comparison, and subscribe to message streams
or publish actions back to the system. These require access to file storage, SQL
and NoSQL databases, and publish-subscribe messaging systems. Often, these
may be hosted as part of the Cloud platforms themselves.

The tasks from the above categories, along with other domain-specific tasks,
are composed together to form streaming IoT dataflows. These domain dataflows
themselves fall into specific classes based on common use-case scenarios, and
loosely map to the Observe-Orient-Decide-Act (OODA) phases.

Extract-Transform-Load (ETL) and Archival applications are front-line
“observation” dataflows that receive and pre-process the data streams, and if
necessary, archive a copy of the data offline. Pre-processing may perform data for-
mat transformations, normalize the units of observations, data quality checks to
remove invalid data, interpolate missing data items, and temporally reorder mes-
sages arriving from different streams. The pre-processed data may be archived
to table storage, and passed onto subsequent dataflow for further analysis.

Benchmarking Distributed Stream Processing Platforms for IoT Applications 97

Summarization and Visualization applications perform statistical aggrega-
tion and analytics over the data streams to understand the behavior of the IoT
system at a coarser granularity. Such summarization can give the high-level pulse
of the system, and help “orient” the decision making to the current situation.
These tasks are often succeeded by visualizations tasks in the dataflow to present
it to end-users and decision makers.

Prediction and Pattern Detection applications help determine the future state
of the IoT system and “decide” if any reaction is required. They identify patterns
of interest that may indicate the need for a correction, or trends based on current
behavior that require preemptive actions. For e.g., an unsustainable growing load
on a power grid cause load to be shed preemptively, or a detection that the heart-
rate from a fitness watch is very high may trigger a treadmill to slow down.

Classification and notification applications determine specific “actions” that
are required and communicate them to the IoT system. Decisions may be mapped
to specific actions, and the entities in the IoT system that can enact those be
notified. For e.g., the need for load shedding in the power grid may map to
specific residents to request the curtailment from, or the need to reduce physical
activities may lead to a treadmill being notified to reduce the speed.

3.4 IoT Data Stream Characteristics

IoT data streams are often generated by sensors that observe physical systems
or the environment. As a result, they are typically time-series data that are
generated periodically. The sampling rate for these sensors may vary from once
a day to hundreds per second, depending on the domain. The number of sensors
themselves may vary from a few hundred to millions as well. As a result, we may
encounter a wide range of input throughputs from 10−2 to 105 messages/sec.

At the same time, this event rate itself may not be uniform across time. Sen-
sors may also be configured to emit data only when there is a change in observed
value, rather than unnecessarily transmitting data that has not changed. This
helps conserve network bandwidth and power for constrained devices when the
observations are slow changing. Further, if data freshness is not critical to the
application, they may sample at high rate but transmit at low rates but in a
burst mode. Example smart meters may collecting kWh data at 15 min intervals
from millions of residents but report it to the utility only a few times a day,
while the FitBit smart watch syncs with the Cloud every few minutes or hours
even as data is recorded every few seconds.

Message variability also comes into play when human-related activity is being
tracked. Diurnal or bimodal event rates are seen with single peaks in the after-
noons, or dual peaks in the morning and evening. For e.g., sensors at businesses
may match the former while traffic flow sensors may match the latter.

4 Performance Metrics

We identify and formalize commonly-used quantitative performance measures
for evaluating DSPS for the IoT workloads.

98 A. Shukla and Y. Simmhan

Latency. Latency for a message that is generated by task is the time in seconds
it took for that task to process one or more inputs to generate that message.
When we consider the average latency λ of the dataflow application, it is the
average of the time difference between each message consumed at the source
tasks and all its causally dependent messages generated at the sink tasks.

The latency per message may vary depending on the input rate, resources
allocated to the task, and the type of message being processed. While this task
latency is the inverse of the mean throughput, the end-to-end latency for the
task within a dataflow will also include the network and queuing time to receive
a tuple and transmit it downstream.

Throughput. The output throughput is the aggregated rate of output messages
emitted out of the sink tasks, measured in messages per second. The throughput
of a dataflow depends on the input throughput and the selectivity of the dataflow,
provided the resource allocation and performance of the DSPS are adequate.
Ideally, the output throughput ωo = σ × ωi, where ωi is the input throughput
for a dataflow with selectivity σ. It is also useful to measure the peak throughput
that can be supported by a given application, which is the maximum stable rate
that can be processed using a fixed quanta of resources.

Both throughput and latency measurements are relevant only under stable
conditions when the DSPS can sustain a given input rate.

Jitter. The ideal output throughput may deviate due to variable rate of the
input streams, change in the paths taken by the input stream through the
dataflow (e.g., at a Hash pattern), or performance variability of the DSPS. We use
jitter to track the variation between the expected and observed output through-
put, defined for a time interval t as, Jt = ωo − σ × ωi

σ × ωi
, where the numerator is the

observed difference between the expected and actual output rate during interval
t, and the denominator is the expected long term average output rate given a
long-term average input rate ωi. In an ideal case, jitter will tend towards zero.

CPU and Memory Utilization. Streaming IoT dataflows are expected to
be resource intensive, and the ability of the DSPS to use distributed resources
with minimal overhead is important. This also affects the VM resources used
and price to be paid to run the application on the DSPS. We track the CPU
and memory utilization for the dataflow as the average of the CPU and memory
utilization across all the VMs that are being used by the dataflow’s tasks. The
per-VM information can also help identify which VMs hosting which tasks are
the potential bottlenecks, and can benefit from data-parallel scale-out.

5 Proposed Benchmarks and Workload

We propose IoT benchmark workloads to help evaluate the metrics discussed
before for various DSPS. The benchmarks have two parts: the dataflow logic
that is executed on the DSPS and the input data streams that they consume.

Benchmarking Distributed Stream Processing Platforms for IoT Applications 99

5.1 IoT Input Stream Workloads

Sense your City (CITY) [1]. This is an urban environmental monitoring
project3 that crowd-sourced deployment of sensors at 7 cities across 3 conti-
nents in 2015, with about 12 sensors per city. Five timestamped observations:
temperature, humidity, ambient light, dust and air quality, are reported every
minute by a sensor along with the sensor ID and location. Besides urban sensing,
this real-world data also captures the vagaries crowd-sourcing for IoT (Table 1).

Table 1. Smart Cities data stream features and rates at 1000× scaling

Dataset Attributes Format Size (bytes) Peak rate (msg/sec) Distribution

CITY [1] 9 CSV 100 7, 000 Normal

TAXI [11] 10 CSV 191 4, 000 Bimodal

We use a single logical stream that combines the data from all 90 sensors.
Since practical deployments of environmental sensing can easily extend to thou-
sands of sensors per city, we use a temporal scaling of 1000× the native input
rate to simulate a deployment of 90, 000 sensors. Figure 2a shows a narrow nor-
mal distribution of the event rate centered at 6, 400 msg/sec with a peak of
7, 000 msg/sec. We use 7 days of data from 27 Jan to 2 Feb, 2015 for our bench-
mark.

(a) CITY @1000× msg/sec (b) TAXI @1000× msg/sec

Fig. 2. Frequency distribution of input throughputs for CITY and TAXI streams at
1000× temporal scaling used for the benchmark runs.

NYC Taxi cab (TAXI) [11]. This offers a stream of smart transportation
messages that arrive from 2M trips taken in 2013 on 20, 355 New York city
taxis equipped with GPS4. A message is generated when a taxi completes a
3 http://map.datacanvas.org.
4 http://www.debs2015.org/call-grand-challenge.html/.

http://map.datacanvas.org
http://www.debs2015.org/call-grand-challenge.html/

100 A. Shukla and Y. Simmhan

trip, and provides the taxi and license details, the start and end coordinates and
timestamp, the distance traveled, and the cost, including the taxes and tolls.

Considering that events may be generated from the GPS sensors periodically
rather than only at the end of the trip, we use a temporal scaling factor of 1000×
for our workload. This data has a bi-modal event rate distribution that reflects
the morning and evening commutes, with peaks at 300 and 3, 200 events/sec. We
use 7 days of data from 14-Jan-2013 to 20-Jan-2013 for our benchmark runs.

5.2 IoT Micro-benchmarks

We propose a suite of common micro-benchmark tasks that span various IoT
categories and types of streaming task patterns as well. Their goal is to evalu-
ate the performance of the DSPS for individual IoT tasks, using the peak input
throughput that they can sustain on a unit computing resource as the perfor-
mance measure. This offers a baseline for comparison with other DSPS, as well
as when these tasks are used in application benchmarks with variable input rates
(Table 2).

Table 2. IoT micro-benchmark tasks with different IoT categories and DSPS patterns

Task name Code Category Pattern σ ratio State

XML parsing XML Parse Transform 1:1 No

Bloom filter BLF Filter Filter 1:0/1 No

Average AVG Statistical Aggregate N:1 Yes

Distinct appox. count DAC Statistical Transform 1:1 Yes

Kalman filter KAL Statistical Transform 1:1 Yes

Second order moment SOM Statistical Transform 1:1 Yes

Decision tree classify DTC Predictive Transform 1:1 No

Multi-variate linear reg. MLR Predictive Transform 1:1 No

Sliding linear regression SLR Predictive Flat map N:M Yes

Azure blob D/L ABD IO Source/transform 1:1 No

Azure blob U/L ABU IO Sink 1:1 No

Azure table query ATQ IO Source/transform 1:1 No

MQTT publish MQP IO Sink 1:1 No

We include a single XML parser as a representative parsing operation within
our suite. The Bloom filter is a more practical filter operation for large discrete
datasets, and we prefer that to a simple value range filter. We have several
statistical analytics and aggregation tasks. These span simple averaging over a
single attribute value to and second order moments over time-series values, to
Kalman filter for denoising of sensor data and approximate count of distinct
values for large discrete attribute values.

Benchmarking Distributed Stream Processing Platforms for IoT Applications 101

Predictive analytics using a multi-variate linear regression model that is
trained offline and a sliding window univariate model that is trained online
are included. A decision tree machine learning for discrete attribute values is
also used for classification, based on offline training. Lastly, we have several IO
tasks for reading and writing to Cloud file and NoSQL storage, and to publish
to an MQTT publish-subscribe broker for notifications. We see that these tasks
capture different dataflow patterns like transform, filter, aggregate and flat map.

5.3 IoT Application Benchmarks

Application benchmarks are valuable in understanding how non-trivial and
meaningful IoT applications behave on DSPS. Application dataflows for a
domain are most representative when they are constructed based on real or
realistic application logic, rather than synthetic tasks. In case applications use
highly-custom logic or proprietary libraries, this may not be feasible or reusable
as a community benchmark. However, many of the common IoT tasks we have
proposed earlier are naturally composable into application benchmarks that sat-
isfy the requirements of a OODA decision making loop.

We propose application benchmarks that capture two common IoT scenarios:
a Data pre-processing and Statistical summarization (STATS) application and
a Predictive Analytics (PRED) application. STATS (Fig. 3a) ingests incoming
data streams, performs data filtering of outliers on individual observation types
using a Bloom filter, and then does three concurrent types of statistical analytics
on observations from individual sensor/taxi IDs: sliding Average over a 90/10
event window for CITY/TAXI (∼15 min native time window), Kalman filter for
smoothing followed by a sliding window linear regression, and an approximate
count of distinct readings. The outcomes from these statistics are published by
an MQTT task, which can separately be subscribed to and visualized on a client.

The PRED dataflow captures the lifecycle of online prediction and classifi-
cation to drive visualization and decision making for IoT applications. It parses
incoming messages and forks it to a decision tree classifier and a multi-variate
regression task. The decision tree uses a trained model to classify messages into
classes, such as good, average or poor air quality, based on one or more of
their attribute values. The linear regression uses a trained model to predict an
attribute value in the message using several others. It then estimates the error
|p − o|

o between the predicted and observed value, normalized by the sliding aver-
age of the observations. These outputs are then grouped and plotted, and the file
written to Cloud storage for hosting on a portal. One realistic addition is the use
of a separate stream to periodically download newly trained classification and
regression models from Cloud storage, and push them to the prediction tasks.

As such, these applications leverage many of the compositional capabilities
of DSPS. The dataflows include single and dual sources, tasks that are composed
sequentially and in parallel, stateful and stateless tasks, and data parallel tasks
allowing for concurrent instances. The initial parse task for STATS uses a flat
map pattern to create observation-specific streams. These are further grouped
by their observation type using a hash pattern and passed to task instances.

102 A. Shukla and Y. Simmhan

Fig. 3. Application benchmarks composed using the micro-benchmark tasks.

6 Evaluation of Proposed Benchmarks

We implement the 13 micro-benchmarks as generic Java tasks that can consume
and produce objects5. We validate our proposed benchmark by composing and
running these dataflows on the popular Apache Storm open source DSPS.

In Storm, each task logic is wrapped by a bolt that invokes the task for each
incoming tuple and emits response tuples. The dataflow is composed as a topology
that defines the edges between the bolts, and the groupings which determine
duplicate or hash semantics. We have implemented a scalable source task (spout)
that replays events from a CSV file with a scaling factor. We generate random
integers as tuples at a constant peak rate for the micro-benchmarks, and replay
the original CITY and TAXI datasets at 1000× scaling for the applications.

We use Apache Storm 1.0.0 running on OpenJDK 1.7 and CentOS, and
hosted on Microsoft Azure Cloud Virtual Machines (VMs). For the micro-
benchmarks, Storm runs the benchmark task on one exclusive D1 VM (1-core
Intel Xeon E5@2.2 GHz, 3.5 GiB RAM, 50 GiB SSD), while the source and sink
tasks and the master service run on a D8 VM (8-core Intel Xeon E5@2.2 GHz,
28 GiB RAM, 400 GiB SSD). The large VM for the supporting services ensures
that they are not the bottleneck when benchmarking the peak task rate on 1
VM. For the STATS and PRED application benchmark, we use D8 VMs for all
the tasks of the dataflow, while reserving additional D8 VMs to exclusively run
the supporting service. Each experiment runs for ∼10 min, which translates to
about 7 days of event data for the CITY and TAXI datasets at 1000× scaling6.

5 https://github.com/dream-lab/bm-iot.
6 Application runtime = 7 days× 24 h× 60min× 60 s

1000× scaling
secs = 10.08 min.

https://github.com/dream-lab/bm-iot

Benchmarking Distributed Stream Processing Platforms for IoT Applications 103

6.1 Micro-benchmark Results

Figure 4 shows plots of the different metrics evaluated for the micro-benchmark
tasks on Storm when running at their peak input rate supported on a single D1
VM with one thread. The peak sustained throughput per task is shown in Fig. 4a
in log-scale. We see that most tasks can support 3, 000 msg/sec or higher rate,
going up to 68, 000 msg/sec for BLF, DAC, KAL, DTC and MLR. XML parsing
is highly CPU bound and has a peak throughput of only 310 msg/sec, and the
Azure operations are I/O bound on the Cloud service and even slower.

The inverse of the peak sustained throughput gives the mean latency. How-
ever, it is interesting to examine the end-to-end latency, calculated as the time
taken between emitting a message from the source, having it pass through the
benchmarked task, and arrive at the sink task. This is the effective time con-
tributed to the total tuple latency by this task running within Storm, including
framework overheads. We see that while the mean latencies should be in sub-
milliseconds for the observed throughputs, the box plot for end-to-end latency
(Fig. 4b) varies widely up to 2, 600 ms for Q3. This wide variability could be
because of non-uniform task execution times due to which slow executions queue
up incoming tuples that suffer higher queuing time, such as for DTC and MLR
that both use the WEKA library. Or tasks supporting a high input rate in the
order of 10, 000 msg/sec, such as DAC and KAL, may be more sensitive to even
small per-tuple overhead of the framework, say, caused by thread contention
between the Storm system and worker threads, or queue synchronization. The
Azure tasks that have a lower throughput also have a higher end-to-end latency,
but much of which is attributable directly to the task latency.

Fig. 4. Performance of micro-benchmark tasks for integer input stream at peak rate.

104 A. Shukla and Y. Simmhan

The box-plot for jitter (Fig. 4c) shows values close to zero in all cases. This
indicates the long-term stability of Storm in processing the tasks at peak rate,
without unsustainable queuing of input messages. The wider whiskers indicate
the occasional mismatch between the expected and observed output rates.

The box plots for CPU utilization (Fig. 4d) shows the single-core VM effec-
tively used at 70% or above in all cases except for the Azure tasks that are
I/O bound. The memory utilization (Fig. 4e) appears to be higher for tasks
that support a high throughput, potentially indicating the memory consumed
by messages waiting in queue rather than consumed by the task logic itself.

6.2 Application Results

The STATS and PRED application benchmarks are run for the CITY and TAXI
workloads at 1000× their native rates, and the performance plots shown in Fig. 5.
The end-to-end latencies of the applications depend on the sum of the end-to-
end latencies of each task in the critical path of the dataflow. The peak rates
supported by the tasks in STATS is much higher than the input rates of CITY
and TAXI. So the latency box plot for STATS is tightly bound (Fig. 5a) and its
median much lower at 20 ms compared to the end-to-end latency of the tasks
at their peak rates. The jitter is also close to zero in all cases. So Storm can
comfortably support STATS for CITY and TAXI on 7 and 5 VMs, respectively.
The distribution of VM CPU utilization is also modest for STATS. CITY has
a 35% median with a narrow box (Fig. 5d), while TAXI has a low 5% median

Fig. 5. End-to-end latency and Jitter (top), and CPU and Memory utilization (bottom)
plots for STATS and PRED application benchmarks on CITY and TAXI workloads.

Benchmarking Distributed Stream Processing Platforms for IoT Applications 105

with a wide box (Fig. 5e) – this is due to its bi-modal distribution with low input
rates, hence utilization, at nights, and high rates and utilization in the day.

For PRED, we see that the latency box plot is much wider, and the median
end-to-end latency is between 500–700 ms for CITY and TAXI (Fig. 5b). This
reflects the variability in task execution times for the WEKA tasks, DTC and
MLR, which was observed in the micro-benchmarks too. The Azure blob upload
also adds to the absolute increase in the end-to-end time. The jitter however
remains close to zero, indicating sustainable performance. The CPU utilization
is also higher, reflecting its more complex task logic relative to STATS.

7 Conclusion

In this paper, we have proposed a novel application benchmark for evaluating
DSPS for IoT domains. These help evaluate common IoT tasks, as well as fully-
functional applications for summarization and predictive analytics using with
two real-world workloads from smart cities. The benchmark has been validated
for the popular Apache Storm DSPS, and the performance metrics presented.

Acknowledgement. This work was supported by grants from the Robert Bosch Cen-
ter for Cyber Physical Systems (RBCCPS) at IISc, DeitY and Microsoft Azure.

References

1. Data Canvas Dataset. http://datacanvas.org/sense-your-city/
2. Apache Flink. https://flink.apache.org/features.html/, April 2015
3. Agrawal, D., et al.: SparkBench – a spark performance testing suite. In: Nambiar,

R., Poess, M. (eds.) TPCTC 2015. LNCS, vol. 9508, pp. 26–44. Springer, Cham
(2016). doi:10.1007/978-3-319-31409-9 3

4. Ali, M.I., Gao, F., Mileo, A.: CityBench: a configurable benchmark to evalu-
ate RSP engines using smart city datasets. In: Arenas, M., et al. (eds.) ISWC
2015. LNCS, vol. 9367, pp. 374–389. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25010-6 25

5. Aman, S., Simmhan, Y., Prasanna, V.K.: Holistic measures for evaluating predic-
tion models in smart grids. IEEE TKDE 27(2), 475–488 (2015)

6. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E.,
Stonebraker, M., Tibbetts, R.: Linear road: a stream data management bench-
mark. In: VLDB (2004)

7. Arlitt, M., Marwah, M., Bellala, G., Shah, A., Healey, J., Vandiver, B.: IoTAbench:
an internet of things analytics benchmark. In: ICPE (2015)

8. Balazinska, M., Balakrishnan, H., Madden, S.R., Stonebraker, M.: Fault-tolerance
in the borealis distributed stream processing system. ACM TODS (2008)

9. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: Niagaracq: a scalable continuous query
system for internet databases. ACM SIGMOD Rec. 29(2), 379–390 (2000)

10. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: ACM SoCC, pp. 143–154. ACM (2010)

11. Donovan, B., Work, D.B.: Using coarse GPS data to quantify city-scale transporta-
tion system resilience to extreme events. In: Transportation Research Board 94th
Annual Meeting (2014)

http://datacanvas.org/sense-your-city/
https://flink.apache.org/features.html/
http://dx.doi.org/10.1007/978-3-319-31409-9_3
http://dx.doi.org/10.1007/978-3-319-25010-6_25
http://dx.doi.org/10.1007/978-3-319-25010-6_25

106 A. Shukla and Y. Simmhan

12. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.A.:
Bigbench: towards an industry standard benchmark for big data analytics. In:
ACM SIGMOD (2013)

13. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The Hibench benchmark suite:
characterization of the MapReduce-based data analysis. In: IEEE ICDEW (2010)

14. Lu, R., Wu, G., Xie, B., Hu, J.: Stream bench: towards benchmarking modern
distributed stream computing frameworks. In: IEEE/ACM UCC (2014)

15. Nabi, Z., Bouillet, E., Bainbridge, A., Thomas, C.: Of streams and storms. Tech-
nical report, IBM (2014)

16. Nambiar, R.O., Poess, M.: The making of TPC-DS. In: VLDB (2006)
17. Suhothayan, S., Gajasinghe, K., Loku Narangoda, I., Chaturanga, S., Perera, S.,

Nanayakkara, V.: Siddhi: a second look at complex event processing architectures.
In: ACM Workshop on Gateway Computing Environments (2011)

18. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S.,
Jackson, J., Gade, K., Fu, M., Donham, J., et al.: Storm@ twitter. In: ACM SIG-
MOD, pp. 147–156 (2014)

19. Wolf, G.: The data-driven life. The New York Times Magazine (2010)
20. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: an effi-

cient and fault-tolerant model for stream processing on large clusters. In: USENIX
Hot Cloud (2012)

AdBench: A Complete Benchmark for Modern
Data Pipelines

Milind Bhandarkar(B)

Ampool Inc., Santa Clara, USA
milind@ampool.io

Abstract. Since the introduction of Apache YARN, which modularly
separated resource management and scheduling from the distributed pro-
gramming frameworks, a multitude of YARN-native computation frame-
works have been developed. These frameworks specialize in specific ana-
lytics variants. In addition to traditional batch-oriented computations
(e.g. MapReduce, Apache Hive [14] and Apache Pig [18]), the Apache
Hadoop ecosystem now contains streaming analytics frameworks (e.g.
Apache Apex [8]), MPP SQL engines (e.g. Apache Trafodion [20], Apache
Impala [15], and Apache HAWQ [12]), OLAP cubing frameworks (e.g.
Apache Kylin [17]), frameworks suitable for iterative machine learning
(e.g. Apache Spark [19] and Apache Flink [10]), and graph process-
ing (e.g. GraphX). With emergence of Hadoop Distributed File System
and its various implementations as preferred method of constructing a
data lake, end-to-end data pipelines are increasingly being built on the
Hadoop-based data lake platform.

While benchmarks have been developed for individual tasks, such as
Sort (TPCx-HS [5]), and Analytical SQL queries (TPC-xBB [6]), there is
a need for a standard benchmark that exercises various phases of an end-
to-end data pipeline in a data lake. In this paper, we propose a bench-
mark called AdBench, which combines Ad-Serving, Streaming Analytics
on Ad-serving logs, streaming ingestion and updates of various data enti-
ties, batch-oriented analytics (e.g. for Billing), Ad-Hoc analytical queries,
and Machine learning for Ad targeting. While this benchmark is specific
to modern Web or Mobile advertising companies and exchanges, the
workload characteristics are found in many verticals, such as Internet of
Things (IoT), financial services, retail, and healthcare. We also propose a
set of metrics to be measured for each phase of the pipeline, and various
scale factors of the benchmark.

1 Introduction

As we witness the rapid transformation in data architecture, where RDBMS is
being supplemented by large scale non-Relational stores, such as HDFS [11],
MongoDB [23], Apache Cassandra [9], and Apache HBase [13], a more funda-
mental shift is on its way, which would require larger changes to modern data
architectures. While the current shift was mandated by business requirements
for the connected world, the next wave will be dictated by operational cost
c© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 107–120, 2017.
DOI: 10.1007/978-3-319-54334-5 8

108 M. Bhandarkar

optimization, transformative changes in the underlying infrastructure technol-
ogy, and newer use-cases, such as Internet of Things (IoT), deep learning, and
conversational user interfaces (CUI).

These new use-cases combined with ubiquitous data characterized by its large
volume, variety, and velocity has resulted in an emergence of big data phe-
nomenon. Most applications being built in this connected world are based on
analyzing historical data of various genres to create a context within which the
user interaction with applications is interpreted. Such applications are popularly
referred to as data-driven applications. While such data-driven applications are
coming into existence across almost all the verticals, such as financial services,
healthcare, manufacturing, and transportation, Web-based & mobile advertising
companies recognized the potential of big data technologies for building data-
driven applications, and were arguably the earliest adopters of big-data tech-
nologies. Indeed, popular big-data platforms such as Apache Hadoop [11] were
created and adopted at web-technology companies, such as Yahoo, Facebook,
Twitter, and Linkedin.

Most of the initial uses of these big data technologies were in workloads ana-
lyzing large unstructured and semistructured datasets in batch-oriented Java
MapReduce programs, or using queries in SQL-like declarative languages. How-
ever, availability of majority of enterprise data on big data distributed storage
infrastructure soon attracted other non-batch workloads to these platforms. Mas-
sively parallel SQL engines such as Apache Impala [15], and Apache HAWQ [12]
that provide interactive analytical query capabilities were developed to natively
run on top of Hadoop analyzing data stored in HDFS. Since 2012, cluster resource
management, scheduling, and monitoring functionality previously embedded in
MapReduce framework has been modularly separated out as a separate compo-
nent, Apache YARN [11] in the Hadoop ecosystem. This allowed data processing
frameworks other than MapReduce to natively run on Hadoop clusters, shar-
ing computational resources among various frameworks. The last four years has
seen an explosion of Hadoop-native data processing frameworks tackling vari-
ous processing paradigms, such as streaming analytics, OLAP cubing, iterative
machine learning, and graph processing, among others.

Flexibility of HDFS (and other Hadoop-compatible storage systems,) some-
times federated1 across a single computational cluster, for storing large amounts
of structured, semistructured, and unstructured data, and the added flexibility
and choice of data processing frameworks, has resulted in Hadoop-based big data
platforms that are being increasingly utilized for end-to-end data pipelines.

Emergence of this ubiquitous new platform architecture has created the
imperative for an industry standard benchmark suite that evaluates efficacy
of such platforms for end-to-end data processing workloads for consumers to
make informed choices about various storage infrastructure components, and
computational engines.

In this paper, we propose an end-to-end data pipeline benchmark, based on
real-life workloads. While the benchmark itself is based on a typical pipeline in

1 Referred to in the industry as a “Data Lake”.

AdBench: A Complete Benchmark for Modern Data Pipelines 109

online advertising, it shares many common patterns across a variety of industries
that make it relevant to a majority of big data deployments. In the next section,
we discuss various previous benchmarking efforts, that have contributed to our
current understanding of industry-standard big data benchmarks. In Sect. 3, we
describe the benchmark scenario, at a fictitious Ad-Tech company. The datasets
stored and manipulated in the end-to-end data pipeline of this benchmark are
discussed in Sect. 4. In Sect. 5, we outline various computations that are per-
formed on the data in data pipeline. We have developed a prototype implemen-
tation of the AdBench data pipeline that we describe in Sect. 6. In Sect. 7, we
propose metrics to measure the effectiveness of systems under test (SUT), and
report based on various classes of benchmarks that correspond to data sizes. We
conclude in Sect. 8 after summarizing future work.

2 Related Work

Performance benchmarking of data processing systems is a rich field of study
and has seen tremendous activity since commercial data platforms were first
developed several decades ago. Several industry consortia have been estab-
lished to standardize benchmarks for data platforms over the years. Of these,
Transaction Processing Performance Council (TPC [7]) and Standard Perfor-
mance Evaluation Corporation (SPEC [4]), both established in 1988, have gained
prominence, and have created several standard benchmark suites. While TPC
has traditionally been focused on data platforms, SPEC has produced several
microbenchmarks aimed at evaluating low-level computer systems performance.
Among the various TPC standard benchmarks, TPC-C (for OLTP workloads),
TPC-H (for data warehousing workloads), and TPC-DS (for analytical deci-
sion support workloads) have become extremely popular, and several results
have been published using these benchmark suites. The benchmark specifica-
tions consist of data models, tens of individual queries on these data, synthetic
data generation utilities, and a test harness to run these benchmarks, and to
measure performance.

Starting late 2011, the Center for Large-scale Data Systems Research (CLDS)
at the San Diego Supercomputing Center, University of California at San Diego,
along with several industry and academic partners, established a Big Data
Benchmarking Community (BDBC) to establish standard benchmarks in evalu-
ating hardware and software systems that form the modern big data platforms.
A series of well-attended workshops called Workshop on Big Data Benchmarking
have been conducted across three continents as part of this effort, and proceed-
ings of those workshops have been published [24–26]. This author has been an
active participant in formation of BDBC, and organizing the series of workshops.
The AdBench proposal in this paper is a result of discussions and interactions
within the BDBC and WBDB.

Recognizing the need to speed up development of industry standard bench-
marks, especially for rapidly evolving big data platforms and workloads, a new

110 M. Bhandarkar

approach to developing and adopting benchmarks within the TPC, called TPC-
express [22] was adopted in 2014. Since then, two standard benchmarks, TPC-
xHS [5], and TPC-xBB [6] have been created under TPC-express umbrella. TPC-
xHS provides standard benchmarking rigor to the existing Hadoop Sort (based
on Terasort) benchmark, whereas TPC-xBB provides big data extensions to the
data models and workloads from the earlier TPC-DS benchmarks. We consider
TPC-xHS to be a microbenchmark, which evaluates the shuffle performance in
MapReduce and other large data processing frameworks. TPCx-BB is based on
a benchmark proposal [1] called BigBench [21], that consists of a set of thirty
modern data warehousing queries that combine both structured and unstruc-
tured data. None of the existing benchmarks provide a way to evaluate combined
performance of an end-to-end data processing pipelines.

The need for having an industry-standard big data benchmark for evaluating
performance of end-to-end data pipelines and conducting an annual competition
to rank the top 100 systems based on this benchmark has been described in [2].
AdBench, the benchmark proposal in this paper builds upon this deep analytics
pipeline benchmark proposal, by extending the proposed user-behavior deep-
analytics pipeline, to include streaming analytics, and ad-hoc analytical queries,
in the presence of transactions on the underlying datasets.

AdBench represents a generational advance over the previous standardized
benchmarks, because it combines various common computational needs into a
single end-to-end data pipeline. We note that while the performance of individual
tasks in data pipelines remains important, operational complexity of assembling
an entire pipeline composed of many different systems adds overheads of data
exchange between various computational frameworks. Data layouts optimized
for different tasks requires transformations. Scheduling different tasks into a
single data pipeline requires a workflow engine with its own overheads. These
additional data pipeline composition and orchestration is not taken into account
by the previous benchmarks that measure effectiveness of systems on individual
tasks. We believe that systems that exhibit good-enough performance to imple-
ment entire data pipelines are preferred for their operational simplicity, rather
than best-of-breed disparate but incompatible systems that may exhibit the best
performance for individual tasks, but have to be integrated with external glue
code. Thus, our data pipeline benchmarks measures performance of an end-to-
end data pipeline, rather than focus on hero numbers for individual tasks.

3 Benchmark Scenario

Acme is a very popular content aggregation company that has a web-based portal
and also a mobile app, with tens of millions of users, who frequently visit them
from multiple devices several times a day to get hyper-personalized content, such
as news, photos, audio and video. Acme has several advertising customers2 who
2 We distinguish between users, who browse through Acme’s website, from customers,
who publish advertisements on that website.

AdBench: A Complete Benchmark for Modern Data Pipelines 111

pay them to display their advertisements on all devices. Acme is one of the many
Web 3.0 companies because they have a deep understanding of their users’ precise
interests as well as exact demographic data, history of consumption of content,
and interactions with advertisements displayed on Acme website and mobile
application. Acme personalizes their users’ experience based on this data. They
have an ever growing taxonomy of their users’ interests, and their advertisers
can target users not only by the demographics, but also by the precise interests
of those users.

Here is Acme’s business in numbers:

– 100 Million registered users, with 50 Million daily unique users
– 100,000 advertisements across 10,000 advertisements campaigns
– 10 Million pieces of content (News, Photos, Audio, Video)
– 50,000 keywords in 50 topics & 500 subtopics as user interests, content topics,

and for ad targeting

Acme has several hundred machines serving advertisements, using a unique
matching algorithm, that fetches a user’s interests, finds the best match within
a few milliseconds, and serves the ad within appropriate content.

Acme has many data scientists, and Hadoop expertise that operates a large
Hadoop cluster for providing personalized recommendations of content to their
users. However, the batch-oriented nature of Hadoop has so far prevented them
from using that Hadoop infrastructure for real-time ad serving, streaming ana-
lytics on advertisement logs, and providing real-time feedback on advertisement
campaign performance to their customers. Also, for their business & marketing
analysts, who want to perform ad-hoc queries on the advertising data to target a
larger pool of users, they have set up a separate data repository away from both
the real time analytics & batch analytics systems. As a result, the operating
expenses of their data infrastructure have more than tripled. Worse, they incur
a huge overhead, just trying to keep the data synchronized across these three
platforms. Since essentially the same data is kept in multiple places, there is a
lag & discrepancies in the data, and repetitive tasks for data cleansing, ensuring
data quality, and maintaining data governance waste more than 80% of precious
and valuable time of their data scientists, and big data infrastructure specialists.

Acme architects and engineers decided to replace the entire data infrastruc-
ture with modern flash & memory based architecture. However, because of the
high costs of these modern hardware systems, they are unsure whether the
return-on-investment will justify these increased capital expenditures. In addi-
tion, they need to consider the engineering costs of rewriting their entire existing
data pipelines, written over more than five years, for these modern architectures.
There are also considerations of having to retrain the data practitioners for uti-
lizing new technologies. Based on process considerations, they decided to do
incremental, piecemeal upgrades to their data infrastructure, moving towards
a more unified data processing platform from their current disparate systems.

112 M. Bhandarkar

However, evaluating modern infrastructures, without having to rewrite the entire
data pipeline, would require a standard benchmark, that is necessary for Acme
to evaluate new systems.

4 The Data

There are four important large datasets used in Acme’s data analysis pipeline.

4.1 User Profiles

User profiles contain details about every registered user. The schema for user
profile is as follows:

– UserID: UUID (64–128 bit unique identifier.)
– Age: 0..255
– Sex: M/F/Unknown
– Location: Lat-Long
– Registration timestamp: TS
– Interests: Comma separated list of (topic:subtopic:keyword)

4.2 Advertisements

This dataset contains all the details about all the advertisements available for
displaying within content. The schema for this dataset is as follows:

– AdID: UUID
– CampaignID: UUID
– CustomerID: UUID
– AdType: {“banner”, “modal”, “search”, “video”, “none”}
– AdPlatform: {“web”, “mobile”, “both”}
– Keywords: comma separated list of (topic:subtopic:keyword)
– PPC: $ per click
– PPM: $ per 1000 ads displayed
– PPB: $ per conversion

4.3 Content Metadata

Content dataset contains all the metadata about the content. The schema for
the content dataset is as follows:

– ContentID: UUID
– ContentType: {“news”, “video”, “audio”, “photo”}
– Keywords: Comma separated list of (topic:subtopic:keyword)

AdBench: A Complete Benchmark for Modern Data Pipelines 113

4.4 Ad Serving Logs

This dataset is streamed continuously from the ad servers. Each entry in this
log has the following fields, of which some may be null:

– TimeStamp: TS
– IPAddress: IPv4/IPv6
– UserID: UUID
– AdID: UUID
– ContentID: UUID
– AdType: {“banner”, “modal”, “search”, “video”}
– AdPlatform: {“web”, “mobile”}
– EventType: {“View”, “Click”, “Conversion”}

5 Computations

Following computational steps are performed on the data in Acme’s advertise-
ment analytics data pipelines.

Fig. 1. Dataflow across AdBench data pipeline

5.1 Ingestion and Streaming Analytics

This phase of the data pipeline is based on a streaming analytics benchmark
proposed by the Yahoo! Storm Engineering Team [27]. Ad servers produce ad
click, view, & conversion events to a message queue, or a staging storage sys-
tem. Queue consumers consume events continuously from a message queue, and
process them in a streaming manner using a streaming analytics platform. For
every event consumed the following computations are performed:

114 M. Bhandarkar

1. Parse the event record
2. Extract Timestamp, AdID, EventType and AdType
3. Look up CampaignID from AdID
4. Windowed aggregation of event types for each AdID, and CampaignID
5. Store these aggregates in an aggregate dataset
6. Prepare these aggregations for a streaming visualization dashboard for a Cam-

paignID, and all Ads in that Campaign

The two output datasets from the streaming analytics stage is:

1. (AdID,Window, nV iews, nClicks, nCon,
∑

PPV,
∑

PPC,
∑

PPCon)
2. (CmpgnID,Window, nV iews, nClicks, nCon,

∑
PPV,

∑
PPC,

∑
PPCon)

Second streaming ingestion pipeline keeps the User table, Ad Table, and Con-
tent Table updated. While the ads are being displayed, clicked, and converted,
new users are being registered, and existing users’ information is being updated.
New campaigns are created, existing campaigns are modified, new ads are being
created, and existing ads are updated. The correct implementation of this data
pipeline will allow these inserts and updates taking place concurrently with other
stages of the pipeline, rather than periodically, thus introducing transactionality.
In this ingestion pipeline also, we use message queue consumers to get insert &
update records, and apply these inserts and updates to respective datasets in
storage in real time. The steps in this pipeline are as follows:

1. Ingest a {user, campaign, ad} {update, insert} event from message queue.
2. Parse the event to determine which dataset is to be updated.
3. Update respective dataset.
4. Keep track of total number of updates for each dataset.
5. When 1% of the records are either new or updated, launch the batch compu-

tation stage described below, and reset update counters.

5.2 Batch Model Building

In this batch-oriented computational stage, we build ad targeting models. The
inputs for this pipeline are the user dataset, ad dataset, and content dataset.
And output of this pipeline are two new datasets:

1. (UserID,AdID1, weight1, AdID2, weight2, AdID3, weight3)
2. (ContentID,AdID1, weight1, AdID2, weight2, AdID3, weight3)

These datasets represent the top 3 most relevant ads for every user, and for
every content. These datasets are then used for the Ad serving systems, such
that when a user visits a particular content, the best match among these ads are
chosen, based on one look up each in the user dataset, and content dataset.

Relevance of an Ad for a user or a content is determined by cosine similarity
in the list of keywords, and topics and subtopics. This model building pipeline,
built using batch-oriented computational frameworks, has the following steps:

AdBench: A Complete Benchmark for Modern Data Pipelines 115

1. Extract the relevant fields from user dataset & ad dataset, and join based on
topics, subtopics and keywords.

2. Filter the top 3 matching keywords, and compute the weights of ads for those
keywords using cosine similarity.

3. Repeat the steps above for the content dataset & ad dataset.

5.3 Interactive and Ad-Hoc SQL Queries

The interactive and ad-hoc queries are performed on varying windows of the
aggregates for campaigns and ads using an interactive query engine (preferably
SQL-based). Some examples of the queries are:

1. What was the per-minute, hourly, daily conversion rate for an Ad? For a
campaign?

2. How many Ads were clicked on as a percentage of viewed, per hour for a
campaign?

3. How much money does a campaign owe to Acme for the whole day?
4. What are the most clicked ads & campaigns per hour?
5. How many male users does Acme have aged 0–21, 21–40?

The results of these queries can be displayed in a terminal, and for the queries
resulting in time-windowed data, visualized using BI tools.

Various stages of computations in the AdBench data pipeline, and dataflow
among them is shown in Fig. 1.

6 Prototype Implementation

At Ampool, we are building a next-generation data platform that enables unified
analytics on structured, semistructured, and unstructured data. At the core of
our product is a distributed, memory-centric, highly available, elastic object
store, that acts as a substrate for hybrid transactional and analytical processing
(HTAP) workloads. In addition, we have connectors to common open source
analytical computation frameworks.

We have built a prototype implementation of AdBench, where Ampool is
used as a unified data store for the raw & derived datasets. For Streaming
data ingestion, we have used Apache Kafka [16]. We simulate Ad servers with
our synthetic data generator, which generates Ad Server Logs. Currently the
synthetic data generator is only a single instance, simulating a single Ad server,
but in future, we will extend it to simulate multiple Ad servers. For user, content,
and advertising campaign updates, we have another synthetic data generator,
which is based on real-world catalog of products to generate keywords, and other
ad targetting features.

For streaming data analytics, we use Apache Apex [8]. Apache Apex is a
Hadoop YARN native platform that unifies stream and batch processing. It
processes big data in-motion in a way that is highly scalable, highly performant,

116 M. Bhandarkar

fault tolerant, stateful, secure, distributed, and easily operable. All the opera-
tions, such as computing the windowed aggregations for advertisements served,
clicked etc. are implemented as operators in the Apache Apex platform.

For batch data analytics, we use Cask data Application Platform (CDAP [3]).
CDAP is an open source framework to build and deploy data applications on
Apache Hadoop. CDAP is an abstraction layer on top of Hadoop and other open
source infrastructure such as HBase, Hive, MapReduce & Spark that enables
developers to rapidly build, and operations to easily manage, real-time and batch
data applications. For our AdBench batch-oriented machine learning, we have
used Apache Hive to do pre-aggregation of the raw advertisement logs, user
preferences, and advertisement and content keywords. Based on these aggrega-
tion, we run recommendation algorithm written using Apache Spark, to generate
weights for individual advertisements, and their relevance to the user preference.
In the third stage of this pipeline, we take the top three best suited advertise-
ments per user & piece of content, to create an ad serving dataset.

For interactive and ad-hoc queries, we use Apache Trafodion [20]. Apache
Trafodion (incubating) is a webscale SQL-on-Hadoop solution enabling trans-
actional or operational workloads on Apache Hadoop. Trafodion builds on the
scalability, elasticity, and flexibility of Hadoop. Trafodion extends Hadoop to
provide guaranteed transactional integrity, enabling new kinds of big data appli-
cations to run on Hadoop. Trafodion query-language is fully ANSI SQL compli-
ant, with ODBC & JDBC support. We also use Trafodion’s visual dashboard to
generate visualizations from the above Ad-Hoc queries.

Figure 2 shows our prototype implementation of AdBench data pipeline using
above mentioned technology components. We are planning to publish the source
code, as well as our installation, deployment, and benchmark runner as open
source project soon.

Fig. 2. Prototype implementation of AdBench data pipeline using ampool as data store

AdBench: A Complete Benchmark for Modern Data Pipelines 117

While the prototype implementation that uses several disparate computa-
tional frameworks on a single unified memory-based storage framework may seem
complex, it is intended to emphasize the difficulties of integrating current tools
to assemble these data processing pipelines. By highlighting this difficulty, we
hope to guide development of unified computational frameworks, or additionally
tools that simplify this integration. Indeed, we are witnessing limited unification
of different computational engines on a single language runtime, which will sim-
plify building the pipelines. For example, Apache Beam is a unified API with a
modularly separated runtime, that allows convergence of streaming and batch-
oriented analytics. Also, Apache Spark has support for SparkSQL for interactive
and ad-hoc queries, Spark Streaming for streaming analytics, and Scala-based
raw Spark interfaces to implement iterative machine learning computations. We
expect AdBench and other end-to-end data pipeline benchmarks to be relevant
to measure complexity of assembling such pipelines.

7 Scale Factors and Metrics

When compared to micro-benchmarks or benchmarks that consist of a fixed
set of queries representing similar workloads, performed on a single system, an
end-to-end data pipeline with mixed workloads poses significant challenges in
defining scale factors, metrics, and reporting benchmark results. In this section,
we propose a few alternatives, with reasoning behind our choice.

7.1 Scale Factors

Across different verticals, the number of entities and thus the amount of data,
and data rates vary widely. For example, in financial institutions, such as Banks
providing online banking, the number of customers (users) are between a few
tens of thousands to millions, number of advertisements correspond to number
of different services (such as loans, fixed deposits, various types of accounts) are
tens to hundreds, number of content entities are equivalent to the number of
dashboards (such as account transaction details, bill pay), and the data rates
tend to be in low tens of thousands per minute even during peak times. These
scales are very different than a content aggregation website or mobile application.
To address these varying needs for various industries, we suggest the following
scale factors:

Class Users Ads Contents Events/second

Tiny 100,000 10 10 1,000

Small 1,000,000 100 100 10,000

Medium 10,000,000 1,000 1,000 100,000

Large 100,000,000 10,000 10,000 1,000,000

Huge 1,000,000,000 100,000 100,000 10,000,000

118 M. Bhandarkar

7.2 Metrics

Since the benchmark covers an end-to-end data pipeline consisting of multiple
stages, measures of performance in each of the stages vary widely. Streaming data
ingestion is measured in terms of number of events consumed per second, but
due to varying event sizes, amount of data ingested per second is also an impor-
tant measure. Streaming data analytics operates on windows of event streams,
and performance of streaming analytics should be measured in terms of window
size (amount of time per window, which is a product of number of events per
unit time, and data ingestion rate). Because of the latency involved in ingestion
of data, and output of streaming analytics, the most relevant measure of perfor-
mance of streaming analytics is the amount of time between event generation,
and event participation in producing results.

Batch computations, such as machine-learned model training (of which rec-
ommendation engine is a representative example), amount of time needed from
beginning of the model-training, including any preprocessing of raw data, to the
upload of these models to the serving system needs to be considered as perfor-
mance measure.

Similarly, for ad-hoc and interactive queries, time from query submission, to
the production of results is the right performance measure.

While most of the benchmark suits attempt to combine the performance
results into a single performance metric, we think that for an end-to-end data
pipeline, one should report individual performance metrics of each stage, to
enable choice of different components of the total technology stack. For a rapidly
evolving big data technology landscape, where a complete data platform is con-
structed from a collection of interoperable components, we encourage experimen-
tation of combining multiple technologies to implement end-to-end data pipeline,
and stage-wise performance metrics will aid this decision.

In order to simplify comparisons of environments used to execute these end
to end pipelines, initially, a simple weighted aggregation of individual stage’s
performance is proposed as a single performance metric for the entire system,
with weights explicitly specified. There is anecdotal evidence to suggest that
the business value of data decreases as time between production and consump-
tion of data increases. Thus, one might be tempted to give higher weight to
the streaming computation performance than to the batch computation per-
formance. However, it also might be argued that approximate computations in
real-time are acceptable, while batch computations need exact results, and there-
fore faster batch computations should be given higher weightage. We propose
that determining appropriate weights for individual stages should be an active
area of investigation, and should be incoporated in the metrics based on the
outcome of this investigation.

In addition to performance metrics, the complexity of assembling data
pipelines by combining multiple technologies must be taken into account by the
architects of these pipelines. Skills needed to effectively use multiple technolo-
gies, and operational complexity of these data pipelines tend to be some of the
important factors in choosing such systems. These are reflected in the total cost

AdBench: A Complete Benchmark for Modern Data Pipelines 119

of ownership (TCO) of the system under test. We recommend that metrics such
as time & and manpower required to develop the pipeline, time to deployment,
management and monitoring tools for operationalizing data pipelines should be
reported.

8 Conclusion

In this paper, we have proposed an end-to-end data pipeline to be used as a
benchmark for evaluating various data and analytics platforms. While the partic-
ular usecase is specific to online advertisement technology industry, most indus-
tries have similar data pipeline workloads composed of multiple data processing
stages. Therefore, we consider this as a representative benchmark. An end-to-
end pipeline benchmark not only measures the performance of individual stages
in the data pipeline, but also takes into account performance of data exchange
and possible transformations between different stages. In future, we would like
to extend this benchmark to include more data genres, such as graphical, and
multi-media data.

References

1. Baru, C., et al.: Discussion of BigBench: a proposed industry standard performance
benchmark for big data. In: Nambiar, R., Poess, M. (eds.) TPCTC 2014, vol. 8904,
pp. 44–63. Springer, Heidelberg (2014)

2. Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Benchmarking big
data systems and the bigdata top 100 list. Big Data 1(1), 60–64 (2013)

3. Cask Data, Inc., Cask Data Application Platform (CDAP), June 2016
4. Standard Performance Evaluation Corporation. SPEC Website, June 2016
5. Transaction Processing Performance Council. TPC Express Benchmark HS, Stan-

dard Specification, Version 1.4.0, April 2016
6. Transaction Processing Performance Council. TPC Express Big Bench, Standard

Specification, Version 1.1.0, May 2016
7. Transaction Processing Performance Council. TPC Website, June 2016
8. Apache Software Foundation. Apache Apex, June 2016
9. Apache Software Foundation. Apache Cassandra, June 2016

10. Apache Software Foundation. Apache Flink, June 2016
11. Apache Software Foundation. Apache Hadoop, June 2016
12. Apache Software Foundation. Apache HAWQ (inbcubating), June 2016
13. Apache Software Foundation. Apache HBase, June 2016
14. Apache Software Foundation. Apache Hive, June 2016
15. Apache Software Foundation. Apache Impala, June 2016
16. Apache Software Foundation. Apache Kafka, June 2016
17. Apache Software Foundation. Apache Kylin, June 2016
18. Apache Software Foundation. Apache Pig, June 2016
19. Apache Software Foundation. Apache Spark, June 2016
20. Apache Software Foundation. Apache Trafodion (incubating), June 2016

120 M. Bhandarkar

21. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.-A.:
Bigbench: towards an industry standard benchmark for big data analytics. In: Pro-
ceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, pp. 1197–1208. ACM, New York (2013)

22. Huppler, K., Johnson, D.: TPC express – a new path for TPC benchmarks. In:
Nambiar, R., Poess, M. (eds.) TPCTC 2013. LNCS, vol. 8391, pp. 48–60. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-04936-6 4

23. MongoDB, Inc., MongoDB, June 2016
24. Rabl, T., Poess, M., Baru, C., Jacobsen, H.-A. (eds.): WBDB 2012. LNCS, vol. 8163.

Springer, Heidelberg (2013)
25. Rabl, T., Jacobsen, H.-A., Raghunath, N., Poess, M., Bhandarkar, M., Baru, C.

(eds.): WBDB 2013. LNCS, vol. 8585. Springer, Heidelberg (2014)
26. Rabl, T., Sachs, K., Poess,M., Baru, C., Jacobson, H.-A. (eds.):WBDB 2014. LNCS,

vol. 8991. Springer, Heidelberg (2015)
27. Yahoo Storm Engineering Team. Benchmarking Streaming Computation Engines at

Yahoo! December 2015

http://dx.doi.org/10.1007/978-3-319-04936-6_4

Lessons Learned: Performance Tuning
for Hadoop Systems

Manan Trivedi and Raghunath Nambiar(✉)

Cisco Systems, Inc., 275 East Tasman Drive, San Jose, CA 95134, USA
{matrived,rnambiar}@cisco.com

Abstract. Hadoop has become a strategic data platform for by mainstream
enterprises, adopted because it offers one of the fastest paths for businesses take
to unlock value from big data while building on existing investments. Hadoop is
a distributed framework based on Java that is designed to work with applications
implemented using MapReduce modeling. This distributed framework enables
the platform to pass the load to thousands of nodes across the whole Hadoop
cluster. The nature of distributed frameworks also allows node failure without
cluster failure. The Hadoop market is predicted to grow at a compound annual
growth rate (CAGR) over the next several years. Several tools and guides describe
how to deploy Hadoop clusters, but very little documentation tells how to increase
performance of Hadoop clusters after they are deployed. This document provides
several BIOS, OS, Hadoop, and Java tunings that can increase the performance
of Hadoop clusters. These tunings are based on lessons learned from Transaction
Processing Performance Council Express (TPCx) Benchmark HS (TPCx-HS)
testing on a Cisco UCS® Integrated Infrastructure for Big Data cluster. TPCx-
HS is the industry’s first standard for benchmarking big data systems. It was
developed by TPC to provide verifiable performance, price-to-performance, and
availability metrics for hardware and software systems that use big data.

Keywords: Hadoop · Tuning · Industry standard · TPCx-HS

1 Introduction

Big data is expected to fuel the next industrial revolution. An early sign is the wide
adoption of big data technologies across major market sectors, including agriculture,
education, entertainment, finance, healthcare, manufacturing, transportation, and
government. According to IDC, the big data technology and services market experienced
six times the growth rate of the overall information and communications technology
market in 2015 [1]. This market is expected to be US$34 billion in 2017, and it is
expected to be directly and indirectly responsible for US$300 billion in worldwide IT
spending. This exponential growth in big data is fueled primarily by several open-source
software initiatives and industry-standard infrastructure solutions.

The most prominent software platform by far is Hadoop. In fact, Hadoop and big
data are often considered synonymous. Hadoop adaption is predicted to grow at a
compound annual growth rate (CAGR) over the next several years across major industry

© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 121–141, 2017.
DOI: 10.1007/978-3-319-54334-5_9

vertical markets as a mainstream data management platform. Several tools and guides
describe how to deploy Hadoop clusters, but very little documentation tells how to
increase the performance of Hadoop clusters after they are deployed.

This document explains several BIOS, OS, Hadoop, and Java tunings that can
increase the performance of Hadoop clusters. These tunings are based on lessons learned
from Transaction Processing Performance Council Express (TPCx) Benchmark HS
(TPCx-HS) testing. The tests were conducted on a Cisco UCS® Integrated Infrastructure
for Big Data cluster, an industry-leading platform for enterprise Hadoop deployments.
However, these tuning parameters are applicable across most Hadoop deployments.

This document also presents the results of tests addressing eight of the most
frequently asked questions in tuning Hadoop systems. All test results reported are based
on fully compliant TPCx-HS testing based on the specification, but they have not been
audited or published.

2 TPC Express Benchmark HS

TPCx-HS is the industry’s first standard for benchmarking big data systems. It is
designed to provide verifiable performance, price-to-performance, and availability
metrics for hardware and software systems that use big data [2, 3].

TPCx-HS can be used to assess a broad range of system topologies and implemen‐
tation methodologies for Hadoop in a technically rigorous and directly comparable,
vendor-neutral manner. And although modeling is based on a simple application, the
results are highly relevant to big data hardware and software systems.

TPCx-HS benchmarking has three steps:

• HSGen: Generates data and retains it on a durable medium with three-way replication
• HSSort: Samples the input data, sorts the data, and retains the data on a durable

medium with three-way replication
• HSValidate: Verifies the cardinality, size, and replication factor of the generated data

The TPCx-HS specification mandates two consecutive runs to demonstrate repeat‐
ability, as depicted in Fig. 1, and the lower value is used for reporting [4].

TPCx-HS uses three main metrics:

• HSph@SF: Composite performance metric, reflecting TPCx-HS throughput, where
SF is the scale factor

• $/HSph@SF: Price-to-performance metric
• System availability date

TPCx-HS also reports the following numerical quantities:

• TG: Data generation phase completion time, with HSGen reported in hh:mm:ss format
• TS: Data sort phase completion time, with HSSort reported in hh:mm:ss format
• TV: Data validation phase completion time, reported in hh:mm:ss format

122 M. Trivedi and R. Nambiar

The primary performance metric of the benchmark is HSph@SF, the effective sort
throughput of the benchmarked configuration. Here is an example (using the summation
method):

HSph@SF =

⌊
SF

(T∕3600)

⌋

Here, SF is the scale factor, and T is the total elapsed time for the run in seconds.
The price-to-performance metric for the benchmark is defined as follows:

$∕HSph@SF =
P

HSph@SF

Here, P is the total cost of ownership (TCO) of the system under test (SUT).
The system availability date indicates when the system under test is generally avail‐

able as defined in the TPC-Pricing specification.

Fig. 1. TPCx-HS benchmark processing

Lessons Learned: Performance Tuning for Hadoop Systems 123

3 System Under Test: Cisco UCS Integrated Infrastructure
for Big Data

The tests were conducted on a Cisco UCS Integrated Infrastructure for Big Data cluster
with 16 Cisco UCS C240 M4 Rack Servers. The Cisco UCS Integrated Infrastructure
for Big Data is built using the following components:

• Cisco UCS 6296UP 96-Port Fabric Interconnect: Fabric interconnects are central to
the Cisco Unified Computing System™ (Cisco UCS). They provide low-latency,
lossless 10 Gigabit Ethernet, Fibre Channel over Ethernet (FCoE), and Fibre Channel
functions with management capabilities for the system. All servers attached to fabric
interconnects become part of a single, highly available management domain.

• Cisco UCS C240 M4 Rack Server: Cisco UCS C-Series Rack Servers extend Cisco
UCS in standard rack-mount form factors. The Cisco UCS C240 M4 Rack Server is
designed to support a wide range of computing, I/O, and storage-capacity demands
in a compact design. It supports two Intel® Xeon® processor E5-2600 v4 series
CPUs, up to 768 GB of memory, and 24 small-form-factor (SFF) disk drives plus
two internal SATA boot drives and Cisco UCS Virtual Interface Card (VIC) 1227
adapters.

The Cisco UCS Integrated Infrastructure for Big Data cluster configuration consists
of two Cisco UCS 6296UP fabric interconnects, 16 Cisco UCS C240 M4 servers with
two Intel Xeon processor E5-2600 v4 series CPUs, 256 GB of memory, and 24 SFF disk
drives plus two internal SATA boot drives and Cisco UCS VIC 1227 adapters, as shown
in Fig. 2. Table 1 lists the software versions used.

16 x Cisco UCS C240 M4 Servers (Data Nodes) with:
24 × 1.2-TB 6-Gbps SAS 10,000-rpm SFF HDD
2 × 120-GB 2.5-Inch Enterprise Value 6-Gbps SATA SSD (Boot)
10 Gigabit Ethernet
16 × 10 Gigabit Ethernet
2 x Cisco UCS 6296UP fabric interconnect
1 x Cisco Nexus® 9372PX Switch

Table 1. Software versions

Layer Component Version or Release
Computing Cisco UCS C240 M4 server Release C240M4.2.0.10c
Network Cisco UCS 6296UP fabric interconnect Release UCS 3.1(1 g)A

Cisco UCS VIC 1227 firmware Release 4.1(1d)
Cisco UCS VIC 1227 driver Release 2.3.0.18

Software Red Hat Enterprise Linux (RHEL) server Version 6.5 (x86_64)
Cisco UCS Manager Release 3.1(1 g)

Hadoop Cloudera Enterprise Version 5.3.2

124 M. Trivedi and R. Nambiar

4 Performance Tuning

Many factors come into play when tuning a system as complex as big data systems.
Performance tuning involves making modifications to hardware, software, and network
parameters.

This section lists parameters that can be tuned at the infrastructure, operating system,
and Hadoop levels.

Infrastructure

Infrastructure tuning helps achieve optimal utilization of resources. It also helps the
application run faster and perform better.

• Server
– BIOS

CPU parameters
Intel Turbo Boost Technology
Intel Hyper-Threading Technology
Prefetcher
C-states
Power control policy
Memory tuning

• Network
– Network tuning parameters
– Network interface card (NIC) bonding
– Jumbo frame (maximum transmission unit [MTU])
– Quality-of-service (QoS) settings

• Storage
– RAID 0

Write back
Read ahead
Stripe size

Fig. 2. Cisco UCS integrated infrastructure for big data cluster configuration

Lessons Learned: Performance Tuning for Hadoop Systems 125

– JBOD
– JBOD Versus RAID 0

Operating System
OS performance tuning is used to manage and improve resources that respond to indi‐
vidual requests. OS scalability is managed by monitoring the resource consumption of
varying volumes of requests, from low to very high, by changing default OS settings.

• File system
– XFS
– Agcount
– Mount
– Fstab

• Post-OS tuning
– sysctl.conf
– limits.conf
– CPU frequency and scaling governor
– Transparent huge pages
– Linux swappiness
– I/O scheduler

Hadoop
In addition to tuning the infrastructure and OS, you need to tune Hadoop settings for
best performance. Hadoop tuning can have a significant impact on the overall perform‐
ance of your Hadoop cluster.

• Hadoop
– Hadoop Distributed File System (HDFS)

hdfs-site.xml
– MapReduce

Java Virtual Machine (JVM) reuse
Compression
mapred-site.xml
core-site.xml

5 Performance Tuning in Detail

This section describes the infrastructure, OS, and Hadoop tuning parameters in detail.

Server Tuning
Hadoop is based on a new approach to storing and processing complex data, with data
movement reduced. Hadoop distributes across the cluster the data that each machine in
a Hadoop cluster stores, and it also processes the data. Therefore, it is important to tune
the processing, or computing, aspect of the system to achieve optimal performance from
the cluster.

126 M. Trivedi and R. Nambiar

BIOS settings can have a significant performance impact, depending on the workload
and the applications. Table 2 lists the optimal CPU settings for Hadoop based on the
tests reported in this document.

Table 2. Optimal CPU settings

Parameter Setting
Intel Turbo Boost Enabled
Enhanced Intel SpeedStep Enabled
Intel Hyper-Threading Enabled
Core Multiprocessing All
Executive Disabled Bit Platform default
Virtualization Technology Disabled
Hardware Prefetcher Enabled
Adjacent Cache Line Prefetcher Enabled
Data Cache Unit (DCU) Streamer Prefetcher Enabled
DCU IP Prefetcher Enabled
Direct Cache Access Enabled
Processor C-State Disabled
Processor CIE Disabled
Processor C3 Report Disabled
Processor C6 Report Disabled
Processor C7 Report Disabled
CPU Performance Enterprise
Maximum Variable Mean Time to Replace or Repair (MTRR) Setting Platform default
Local x2APIC Advanced Programmable Interrupt Controller Platform default
Power Technology Performance
Energy Performance Performance
Frequency Floor Override Enabled
P-State Coordination Hw-all
DRAM Clock Throttling Performance
Channel Interleaving Platform default
Rank Interleaving Platform default
Demand Scrub Disabled
Patrol Scrub Disabled
Altitude Platform default
Package C-State Limit Platform default

Table 3 lists optimal memory settings for Hadoop based on the tests reported here.

Table 3. Optimal memory settings for Hadoop

Parameter Setting
Memory RAS Configuration Maximum

performance
NUMA Enabled
Low-Voltage Double Data Rate (LV DDR) Mode Performance mode
DRAM Refresh Rate 1 time
DDR3 Voltage Selection Platform default

Lessons Learned: Performance Tuning for Hadoop Systems 127

Network Tuning
The impact of the network on big data is enormous. An efficient and resilient network
is a crucial part of a good Hadoop cluster because the network is what connects all the
nodes. The network is also crucial for writing data, reading data, and signaling and for
HDFS operations and operations of the MapReduce infrastructure. Therefore, the failure
of a networking device can have dire affects. A job may need to be restarted, or a work‐
load may be pushed to the remaining nodes, resulting in delay. Therefore, networks must
be designed to provide redundancy, with multiple paths between computing nodes, and
they must be able to scale.

Table 4 lists some network performance settings that can increase Hadoop perform‐
ance. These options increase the read and write cache sizes for the network stack. These
parameters can be tested with the systctl –w command or made permanent by adding
the variable to the /etc./sysctl.conf file.

Table 4. Optimal network tuning parameters for Hadoop

Parameter Tuned value Description
net.core.somaxconn 1024 Changing the net.core.somaxconn Linux kernel settings

from the default of 128 to 1024 helps with burst requests
from the name node and job tracker. This option sets the
size of the listening queue, or the number of connections
that the server can set up at one time.

net.ipv4.tcp_retries2 5 This variable helps forward the packets between
interfaces. This variable is special; its change resets all
configuration parameters to their default state.

net.ipv4.ip_forward 0 IP forwarding is disabled in most Linux distributions
because most of them do not set up a Linux router,
gateway, VPN server, or dial-in server.

net.ipv4.conf.default.rp_filter 1 This value influences the timeout behavior of a live TCP
connection.

net.ipv4.conf.all.rp_filter 1 This value enables route verification on all interfaces.
net.ipv4.conf.default.accept_source_route 0 This setting does not accept source routing.
net.ipv4.tcp_syncookies 1 This setting enables the use of TCP SYN cookies.
net.ipv4.conf.all.arp_filter 1
net.ipv4.tcp_mtu_probing 1 If there are multiple network interfaces on different IP

addresses, this setting will help achieve the desired
results.

net.ipv4.icmp_echo_ignore_broadcasts 1 This setting controls TCP packetization layer path MTU
discovery. It is disabled by default, and it is enabled
when an Internet Control Message Protocol (ICMP)
black hole is detected.

net.ipv4.conf.default.promote_secondaries 1 These settings prevent deletion of secondary IP
addresses when the primary IP address is deleted.net.ipv4.conf.all.promote_secondaries 1

net.core.rmem_max 16777216 These settings increase the TCP maximum buffer size.
The four options shown here increase the TCP send and
receive buffers, allowing an application to move its data
out faster so it can serve other requests. This adjustment
also improves the client’s ability to send data to the
server when it gets busy.

net.core.wmem_max 16777216
net.ipv4.tcp_rmem 4096 87380

16777216
net.ipv4.tcp_wmem 4096 65536

16777216
net.core.netdev_max_backlog 10000
net.core.netdev_max_backlog 10000

128 M. Trivedi and R. Nambiar

You can tune NIC bonding. A NIC is a computer hardware component that connects
a computer to a computer network. Network bonding is a method of combining (joining)
two or more network interfaces together into a single interface. This combination
increases network throughput and provides redundancy. If one interface is down or
unplugged, the remaining interfaces will keep the network traffic up and alive. Network
bonding can be used in situations in which you need redundancy, fault tolerance, or load
balancing.

Fig. 3. Single 10-Gbps Versus Dual 10-Gbps Connectivity with NIC Bonding

Linux allows bonding of multiple network interfaces into a single channel using a
special kernel module called a bonding module. The Linux bonding driver provides a
method for aggregating multiple network interfaces into a single logical “bonded” inter‐
face. The behavior of the bonded interface depends on the mode. In general, the mode
provides either hot-standby or load-balancing services. Additionally, link-integrity
monitoring can be performed.

Test Result 1: 10-Gbps Versus Dual 10-Gbps Connectivity with NIC Bonding
One frequently asked question relates to the impact of NIC bonding for Hadoop. In
older-generation servers, single 10-Gbps connectivity was sufficient. Since the intro‐
duction of Cisco UCS C240 M4 servers (based on Intel Xeon processor 2600 v3 CPUs)
with 24 SFF disks drives, we have observed significant performance improvements with
NIC bonding. In other words, Hadoop nodes can use more than 10-Gbps network band‐
width (Fig. 3).

Lessons Learned: Performance Tuning for Hadoop Systems 129

Table 5 lists detailed response times for each benchmark phase.

Test Result 2: 1500 Versus 9000 Maximum Transmission Unit
One the most commonly tuned parameters is the MTU, which defines the largest packet
size that an interface can transmit without the need to fragment the packet. IP packets
larger than the MTU require IP fragmentation.

The use of jumbo frames (an MTU value of 9000) improves performance because
jumbo frames reduce the number of individual frames that must be sent for a given
amount of data, and they reduce the need to separate data blocks into multiple Ethernet
frames. They also reduce host and storage CPU utilization.

Figure 4 shows the performance improvement with a larger MTU (9000).

Fig. 4. MTU of 1500 Versus 9000

Table 6 lists detailed response times for each benchmark phase.

Table 5. Single 10-Gbps versus Dual 10-Gbps with NIC Bonding

Phase No Bonding (Time in
Seconds)

2-NIC Bonding (Time
in Seconds)

Percentage
improvement

HSGen 173 102 41.0%
HSSort 286 218 23.7%
HSValidate 69 55 22.2%
Total Time 528 375 28.9%
HSph@SF at 1-TB
Scale Factor

6.72 9.45

130 M. Trivedi and R. Nambiar

Table 6. MTU of 1500 versus 9000

Phase Bonding (Multiple
NICs at 1500 MTU)

Bonding (Multiple
NICs at 9000 MTU)

Percentage
improvement

HSGen 140 95 32.1%
HSSort 264 217 17.8%
HSValidate 56 49 12.5%
Total Time 460 361 21.5%
HSph@SF at 1-TB
Scale Factor

7.71 9.81

Test Result 3: Two-vNIC Bonding Versus Three-vNIC Bonding
Cisco UCS VIC technology supports up to 256 virtual NICs (vNICs). Tests with three
vNICs provided slight performance improvement, as shown in Fig. 5.

[[PLS CHANGE THE CALLOUTS AS FOLLOWS:]]
Two-vNIC Bonding Versus Three-vNIC Bonding
Time in Seconds
(2 NICs)
(Multiple NICs)

Fig. 5. Two-vNIC Bonding versus Three-vNIC Bonding

Table 7 lists detailed response times for each benchmark phase.
Storage Tuning
Optimal configuration of the storage system is extremely important to achieve the best
application performance. In most cases, servers with internal direct-attached storage
(DAS) provide the best performance and price-to-performance ratios. Two popular
storage controller options are RAID controllers and host bus adapters (HBAs). In

Lessons Learned: Performance Tuning for Hadoop Systems 131

addition to RAID functions, RAID controllers offer advanced self-monitoring, analysis,
and reporting technology (SMART) features and write-back or flash-based write cache.
SMART features detect and report the health of the disk drives beyond the capabilities
of JBOD. Caching can improve data load performance in Hadoop deployments. This
section describes best practices based on the tests conducted on the Cisco UCS Integrated
Infrastructure for Big Data cluster.

Fig. 6. JBOD Versus RAID 0

Table 8 lists optimal settings for the Cisco 12-Gbps SAS modular RAID controller
for Hadoop deployments.

Test Result 4: JBOD Versus RAID
JBOD and RAID 0 work similarly. The main difference pertaining to performance is the
effect of controller caching. Figure 6 shows better performance with RAID than with
JBOD. The controller cache (a 2-GB module was used in these tests) optimizes writeback
operations when the workload is based on large sequential read and write processing.

Table 9 lists detailed response times for each benchmark phase.

Table 7. Two-vNIC Bonding versus Three-vNIC Bonding

Phase Bonding (2 NICs) Bonding (Multiple NICs) Percentage improvement
HSGen 102 95 6.86%
HSSort 218 217 0.45%
HSValidate 55 49 10.9
Total Time 375 361 3.73%
HSph@SF at 1-TB Scale
Factor

9.45 9.81

132 M. Trivedi and R. Nambiar

Table 9. JBOD versus RAID 0

Phase JBOD RAID 0 Percentage improvement
HSGen 111 95 16.84%
HSSort 237 217 9.22%
HSValidate 53 49 8.16%
Total Time 401 361 11.08%
HSph@SF at 1-TB Scale Factor 8.82 9.81

Operating System Tuning
Changing some system settings in Linux can increase overall performance. This section
discusses these changes and their benefits. Table 10 lists some of the OS performance
settings best for Hadoop.

Table 10. Operating system settings

Parameter Value
vm.dirty_background_ratio 1
vm.swappiness 0
vm.overcommit_memory 0
net.core.rmem_max 16777216
net.core.wmem_max 16777216
net.core.netdev_max_backlog 10000

In addition, the following settings for /etc./security/limits.conf are recommended:

• root soft nofile 64000
• root hard nofile 64000
• hadoop soft nproc 32768
• hadoop hard nproc 32768
• hadoop soft nofile 32768
• hadoop hard nofile 32768

File System Tuning
Different Linux distributions use different default file systems. Testing has shown that
XFS seems to be better than Ext3 or Ext4 for Hadoop. XFS is a high-performance

Table 8. Optimal RAID controller settings for Hadoop

Parameter Setting
RAID RAID 0 for individual disk drives
Controller Cache Always write back

NoCacheBadBBU
Read ahead

Stripe Size 1024 KB
Disk Drive Cache Enabled (read)

(Cisco firmware does not allow the write cache to be
enabled on disk drives.)

Lessons Learned: Performance Tuning for Hadoop Systems 133

journaling file system that was initially created by Silicon Graphics for the IRIX oper‐
ating system and later ported to Linux. XFS has a large number of features that make it
suitable for deployment in an enterprise-level computing environment that requires
implementation of very large file systems.

XFS has very bad performance out of the box. Unlike with Ext4, the file system
needs to be formatted with the right parameters to perform well. And if you don’t specify
the parameters correctly, you need to reformat the file system because you can’t change
the parameters later. The main parameter that the tests reported here found useful to tune
is agcount: the number of allocation groups. Allocation groups enable simultaneous
I/O processing by multiple application threads. XFS splits the file system into multiple
allocation groups to help increase parallelism, because each allocation group has its own
set of locks. It is important to create as many allocation groups as you have hardware
threads. If the server has a dual CPU configuration with 16 cores and 32 threads with
hyperthreading, an agcount value of 32 is recommended for best I/O performance.

Fig. 7. XFS agcount of 2 Versus 32

XFS supports several mount options that can influence behavior. XFS allocates
inodes according to their on-disk locations by default. However, because some 32-bit
user-space applications are not compatible with inode numbers greater than 232, XFS
allocates all inodes in disk locations that result in 32-bit inode numbers. This behavior
can lead to decreased performance on very large file systems (systems larger than 2
terabytes [TB]), because inodes are skewed toward the beginning of the block device,
and data is skewed toward the end. To address this scenario, the inode64 mount option
is recommended.

Linux records information about the time when files were created, last modified, and
last accessed. There is a cost associated with recording the last access time. The noatime
attribute tells the file system not to record the last-accessed time for the file and is
recommended for Hadoop deployments.

134 M. Trivedi and R. Nambiar

Test Result 5: XFS with agcount of 2 Versus 32
Tests for conducted with allocation groups of 2 and 32. As shown in Fig. 7, an optimal
allocation count is critical for optimizing XFS for Hadoop.

Table 11 lists detailed response times for each benchmark phase.

Table 11. XFS agcount of 2 versus 32

Phase Agcount = 2 Agcount = 32 Percentage
improvement

HSGen 126 95 32.63%
HSSort 246 217 13.36%
HSValidate 56 49 14.29%
Total Time 428 361 18.56%
HSph@SF at 1-TB
Scale Factor

8.27 9.81

Another important OS setting is the CPU frequency and scaling governor (Table 12).
The performance mode is recommended for high-performance Hadoop deployments.

Table 12. CPU Governor options in Linux

Governor Description
ondemand Dynamically switch between CPUs available if 95% CPU load is

reached.
performance Run the CPU at maximum frequency. This mode is recommended

for high-performance Hadoop deployments.
conservative Dynamically switch between CPUs available if 75% CPU load is

reached.
powersave Run the CPU at the minimum frequency.
userspace Run the CPU at user-specified frequency.

Transparent huge pages is a commonly used option that works well in most instances,
including with Hadoop. However, a problem arises with one feature of transparent huge
pages called compaction. This feature defragments memory at the cost of CPU cycles.
Testing has shown better performance with compaction disabled. This option can be set
with the following command:

Linux swappiness is a kernel process that finds memory content that has not been
used in a while and copies it to the hard drive. The swappiness value can be adjusted
from 0 to 100. In most versions of Linux, the default value is 60. The tests reported here
show that turning off swappiness (setting swappiness to 0) is optimal for Hadoop
deployments. This option can be set with the following command:

Lessons Learned: Performance Tuning for Hadoop Systems 135

The I/O scheduler is another important performance tuning option. The recom‐
mended I/O scheduler setting for Hadoop is Completely Fair Queuing (CFQ). CFQ is
the default setting in some Linux distributions, and it can increase performance by 2 or
3 percent. This option can be set with the following command:

Hadoop Tuning
Out of the box, many Hadoop settings are not optimized for best performance. HDFS
provides storage for all the data and is a core component of Hadoop. Fine-tuning the
settings here can produce significant performance improvements. The settings discussed
in this section have been tested and will provide improved speed for heavy workloads.

The Hadoop block size defines the number of input splits for a file. Each input split
is replicated three times (by default) across the cluster. Map tasks typically operate on
these input splits. The number of input splits determines the number of map tasks.

The total read time on hard disk drives consists of seek time (finding the first block
of the file) and transfer time (the time needed to read contiguous blocks of data). When
dealing with hundreds of terabytes or petabytes of data, these times become significant.
Hadoop handles this processing by having lots of map tasks reading and writing data in
parallel. However, processing can benefit by limiting the number of tasks running in
parallel, because having too many map tasks trying to read and write data is inefficient.
The best approach is a balanced number of input splits and map jobs, because having
too few map jobs also reduces performance, just as does having too many.

Fig. 8. Impact of Block Sizes

The recommended balance uses this calculation:
Number of launched map tasks = Total size/Input split size (or block size)
Using this formula, for a 1-TB data set with a 64-MB block size, Hadoop would run

15,120 map tasks; with a 512-MB block size, it would run 2160 map tasks.

136 M. Trivedi and R. Nambiar

Test Result 6: HDFS Block Sizes
Tests were conducted with block sizes of 64, 128, 256, and 512 MB. As shown in
Fig. 8, 512 MB provided the best performance for the TPCx-HS benchmark. Additional
tests conducted with customer workloads reached the same conclusion: that for MapRe‐
duce-based applications, larger block sizes provide the best performance.

The configuration is set in hdfs-site.xml as shown in Table 13.

Table 13. hdfs-site.xml Settings

Parameter Value
dfs.blocksize 512 MB
dfs.datanode.drop.cache.behind.writes True
dfs.datanode.sync.behind.writes True
dfs.datanode.drop.cache.behind.reads True

The general rule for memory tuning is to use as much memory as you can without
triggering swapping. The parameter mapred.*.child.java.opts can be used to set the
task memory. The recommended heap size for both map and reduce tasks is 2 GB, and
ulimit was set to 4 GB (double the heap size used by all JVM processes) for this work‐
load.

Another important tuning option is to reduce the map disk spill. Mappers generate
intermediate data output, which is stored in a memory buffer that is determined by the
io.sort.mb parameter. This chunk of memory is part of the map JVM heap space. As
soon as the threshold is reached (io.sort.spill.percent), the content is written to the local
disk. This content is called spill. To store the record, the Hadoop framework uses the
io.sort.record.percent value of the memory allocated by io.sort.mb. Performance
problems occur when you spill records to disk multiple times. The values of the map
output records counter and spilled record counters can be checked for each job, and you
can allocate the appropriate memory buffer and the io.sort.spill.percent value to use
nearly full capacity to enhance Hadoop job performance. These are the recommended
settings:

The number of mappers and reducers is critical to get the best performance. This
configuration is based on a 16-node cluster, with one server configured as the name node
and 15 servers configured as data nodes, and each server with two CPUs with a total of
48 threads. A slight oversubscription of the number of mappers and reducers to the
number of cores should be used, because reducers typically don’t start at the same time
as mappers. Given the 48 threads in the system under test, allocate 36 threads for mappers
and 30 threads for reducers for each node. (This number will vary based on the scale
factor of the workload and the system configuration.) The number of HDFS blocks in
the input files usually determines the number of mappers. The tuning goal of mappers
should be to control the number of mappers and the size of the job. When dealing with
large files, Hadoop splits the file into smaller chunks so that the mapper can run it in
parallel. However, initializing the new mapper job usually takes a few seconds, creating

Lessons Learned: Performance Tuning for Hadoop Systems 137

overhead that should be reduced. To determine the optimal number, several iterations
were run.. The configuration for mapred-site.xml is shown in Table 14.

Table 14. mapred-site.xml Settings

Parameter Value
Mapred.map.tasks 540
Mapred.reduce.tasks 450
mapred.tasktracker.map.tasks.maximum 36
mapred.tasktracker.reduce.tasks.maximum 30
mapred.map.child.java.opts -Xmx800 m -Xms800 m -Xmn256 m
mapred.reduce.child.java.opts -Xmx1200 m -Xmn256 m
mapred.child.ulimit 4096 MB
io.sort.mb 1024 MB
io.sort.factor 64
io.sort.record.percent 0.15
Io.sort.spill.percent 0.98
mapred.job.reuse.jvm.num.tasks –1
mapred.reduce.parallel.copies 20
mapred.reduce.slowstart.completed.maps 0
tasktracker.http.threads 120
mapred.job.reduce.input.buffer.percent 0.7
mapreduce.reduce.shuffle.maxfetchfailures 10
mapred.job.shuffle.input.buffer.percent 0.75
mapred.job.shuffle.merge.percent 0.95
mapred.inmem.merge.threshold 0
mapreduce.ifile.readahead.bytes 16777216
mapred.map.tasks.speculative.execution False

Also, in the hdfs-site.xml file, the io.sort.factor parameter controls the number of
concurrent streams from the map output that are merged and saved to disk. For heavy
workloads with many map tasks, this value should be increased from 10 to 64, to increase
the number of streams merged at the same time. This setting has been tested and shown
to increase performance, but it should be used with caution on other equipment because
it could lead to instability by overworking the system.

Under heavy workloads, Hadoop can launch many thousands of jobs, each of which
runs for only a short period of time, and each launching a separate JVM. By default,
each JVM must be started and torn down every time. Obviously, this approach is inef‐
ficient. It can be improved by changing the parameter mapred.job.reuse.num.tasks in
the mapred-site.xml file. Change this parameter to –1, and JVMs can be reused for an
unlimited number of jobs. This change also helps the platform take full advantage of
Java’s just-in-time (JIT) compilation, because the JVM does not need to be compiled
each time.

138 M. Trivedi and R. Nambiar

Compression can significantly improve Hadoop performance by reducing disk I/O
processing and network traffic. It also reduces the amount of disk space used. The TPCx-
HS requirements enforce the use of uncompressed job output, but intermediate map output
compression is allowed. Table 15 lists the recommended compression parameters.

Table 15. Compression Parameters

Parameter Value Description
mapred.output.compress False Compression allowed for the

MapReduce output
mapred.compress.map.output True Compression allowed for

intermediate map output
mapred.map.output.compression.
codec

org.apache.hadoop.io.
compress.SnappyCodec

Another important tuning parameter is file buffer size, a setting in core-site.xml. The
recommended setting for the io.file.buffer.size parameter is 131072.

Test Result 7: End-to-End I/O and Network Utilization
Sort workloads are popular in the Hadoop space. TPCx-HS enables fair comparisons to
be made between software and hardware systems. It also exercises various subsystems.
Figure 9 shows disk read, disk write, network read, and network write utilization from
one of the nodes for an end-to-end run.

[[PLS CHANGE CALLOUTS AS FOLLOWS:]]
…Resource Utilization Across Various Phases of Job Processing
Peak Write Throughput Is 2.81 GBps
…Is 1.74 GBps
…Peak Write Throughput Is 2.51 GBps
HSValidate Phase
HSSort Phase
Network I/O Send Peak Throughput Is 1.65 GBps, and Receive Peak Throughput Is
1.92 GBps
Network I/O Send Peak Throughput Is 1.65 GBps, and Receive Peak Throughput Is
1.68 GBps
Network I/O Receive
Network I/O Send

As shown in Fig. 9, in the HSGen phase, peak write throughput is 2.81 GBps, which
means that each drive is performing at 117 GBps. This equates to 2.81 × 15 = 42 GBps
write throughput per cluster. During the shuffle phase, aggregate read bandwidth is 26
GBps, and during the reduce phase, aggregate write bandwidth is 38 GBps. The peak
network bandwidth utilization was 1.8 GBps: about 75 percent of dual 10 Gbps connectivity.

Test Result 8: End-to-End CPU Utilization
One frequently asked question relates to CPU utilization. Figure 10 shows the CPU
utilization for an end-to-end TPCx-HS run. As noted, CPU utilization was about 97
percent peak at the shuffle and sort phase.

Lessons Learned: Performance Tuning for Hadoop Systems 139

As observed in the results from tests 8 and 9, the TPCx-HS benchmark exercises the
upper boundaries of I/O, network, and CPU processing with Hadoop. This feature makes
TPCx-HS a good benchmark standard that enables fair comparison of Hadoop systems,
and it also provides a good workload for stress-testing various technologies under
development.

Fig. 9. Resource Utilization across various Job Processing phases

Fig. 10. CPU Utilization Across Various Phases

140 M. Trivedi and R. Nambiar

6 Conclusion

This document provides a summary of lessons learned from performance tuning for the
TPCx-HS benchmark. The tuning parameters and test results have broad applicability
across Hadoop-based applications. The test results also address some of the most
frequently asked questions about Hadoop system tuning.

References

1. IDC Worldwide Big Data Technology and Services Forecast (2015)
2. Nambiar, R., Poess, M., Dey, A., Cao, P., Magdon-Ismail, T., Da Ren, Q., Bond, A.: Introducing

TPCx-HS: the first industry standard for benchmarking big data systems. In: Nambiar, R.,
Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 1–12. Springer, Cham (2015). doi:
10.1007/978-3-319-15350-6_1

3. Nambiar, R.: A standard for benchmarking big data systems. In: IEEE Big Data Conference,
pp. 18–20 (2014)

4. TPCx-HS specification. http://www.tpc.org/tpcx-hs/

Lessons Learned: Performance Tuning for Hadoop Systems 141

http://dx.doi.org/10.1007/978-3-319-15350-6_1
http://www.tpc.org/tpcx-hs/

Work-Energy Profiles: General Approach and
In-Memory Database Application

Annett Ungethüm(B), Thomas Kissinger, Dirk Habich, and Wolfgang Lehner

Database Systems Group, Technische Universität Dresden,
01062 Dresden, Germany

{annett.ungethum,thomas.kissinger,
dirk.habich,wolfgang.lehner}@tu-dresden.de

Abstract. Recent energy-related hardware developments trend towards
offering more and more configuration opportunities for the software to
control its own energy consumption. Existing research so far mainly
focused on finding the most energy-efficient hardware configuration for
specific operators or entire queries in the database domain. However, the
configuration opportunities influence the energy consumption as well as
the processing performance. Thus, treating energy efficiency and per-
formance as independent optimization goals offers a lot of drawbacks.
To overcome these drawbacks, we introduce a model based approach in
this paper which enables us to select a hardware configuration offering
the best energy efficiency for a requested performance. Our model is a
work-energy-profile being a set of useful work done during a fixed time
span and the required energy for this work for all possible hardware con-
figurations. The models are determined using a well-defined benchmark
concept. Moreover, we apply our approach on in-memory databases and
present the work-energy profiles for a heterogeneous multiprocessor.

Keywords: Energy efficiency · In-memory database systems · Bench-
marking · Profiles

1 Introduction

Energy consumption has become a crucial factor in data centers [5,7] and already
is the limiting factor for the scalability of many-core processors. This limitation
can be observed on today’s processors, which are not designed to run at their
peak performance for a long time because thermal and power related limitations
lead to a reduced performance or even dark silicon effects [2]. Driven by the
recent advances in the mobile devices sector, technology providing a fine-grained
control over the energy consumption of individual cores made its way into the
server CPU market. That means, hardware and operating systems offer several
control knobs for reducing the energy consumption of a system, e.g., frequency
scaling (DVFS) and sleep states. To exploit their full potential, software has to
make appropriate use of these control knobs. This exploitation becomes more

c© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 142–158, 2017.
DOI: 10.1007/978-3-319-54334-5 10

Work-Energy Profiles 143

complex by introducing hardware heterogeneity as done e.g., by the ARM R©

big.LITTLETM hardware technology [6].
Using these control knobs, the hardware can be configured in a regulated

way influencing the energy consumption as well as the performance. From a
database perspective, we can state that an energy-efficient in-memory database
system must be fast enough to process queries with a certain maximum latency.
However, a low latency query execution does not necessarily correspond to a
low energy consumption [6]. Thus, treating energy efficiency and performance
as independent optimization goals (1) makes the system waste energy because
it uses a high performing but much more power draining configuration or (2)
increases the latency to a point where the query queue grows faster than it can
be processed while operating in an energy-efficient mode. To overcome this issue,
our objective is to avoid both of these traps by applying a combined approach.

Fig. 1. Model-based approach using a benchmark concept.

That means, instead of choosing a hardware configuration using the control
knobs which always offer the best performance or the best energy efficiency, we
have to determine a hardware configuration offering the best energy efficiency
for a requested or desired performance requirement range. For selecting this con-
figuration, a model is required providing the most energy-efficient configuration
for a requested performance as depicted in Fig. 1. To enable that, we propose our
solution called work-energy profiles. A work-energy profile is a set of the useful
work done during a fixed time span and the required energy for this work for
all possible hardware configurations. Based on these work-energy profiles, we are
able to select an energy-efficient hardware configuration for a requested perfor-
mance range. To create such work-energy profiles for a concrete hardware and
specific application, we introduce our developed benchmark concept.

Our Contribution and Outline: We begin our presentation with a solution
overview by describing our running example hardware for this paper and intro-
ducing our work-energy profiles in Sect. 2. In particular, our example heteroge-
neous multiprocessor system, the ARM R© big.LITTLETM based ODROID-XU3,
offers a rich set of configuration opportunities. Then, we propose our general
benchmark concept for the creation of work-energy profiles in Sect. 3. In detail,
we introduce our metrics for evaluating the energy awareness and performance
of software in general. Moreover, we define the overall benchmark sequence and
present several dependencies which have to be considered. Afterwards, we apply

144 A. Ungethüm et al.

our benchmark concept to a concrete scenario in Sect. 4. Here, we investigate
in-memory database systems on our heterogeneous hardware. Using our bench-
mark, we clearly show a dependency between energy efficiency and typical data-
base main memory access patterns as well as a high variance in performance
and energy consumption for different hardware configurations. Based on this
investigation, we draw some further conclusions for energy-efficient in-memory
database systems in Sect. 5. We conclude the paper with related work in Sect. 6
and a short summary including an outlook in Sect. 7.

2 Solution Overview: Work-Energy Profiles

As already mentioned in the previous section, modern hardware and operating
systems offer several control knobs to adjust hardware settings and accordingly
influence the performance and the energy consumption. However, a mapping
between the hardware configuration, performance and energy efficiency is not
always trivial. For example, two cores running on a low frequency might per-
form as well as a single core running on a higher frequency but their energy
consumption differs. Further, this performance equality might not exist for all
applications, e.g. if it is bandwidth bound, such that enabling a second core
hardly produces a performance gain. Nevertheless, the determination of a hard-
ware configuration offering the best energy efficiency for a desired performance
is important for applications.

To capture all hardware configuration possibilities and to consider all hardly
predictable effects, we propose to solve this challenge using our so called work-
energy profiles. A work-energy profile is a set of the useful work done during a
fixed time span and the required energy for this work for all possible hardware
configurations. The work-energy profiles have to be determined for an specific
application and on a concrete hardware system. Based on these work-energy
profiles, we are able to select an energy-efficient hardware configuration for a
requested application performance range. While this section introduces our work-
energy profiles as a general solution, we also present our underlying test hardware
which is used through the paper as a running example.

2.1 Heterogeneous Test Hardware

In the last years, hardware has been shifted from single CPU to multiproces-
sors with increasing main memory capacities. At the moment, the hardware is
changing again from homogeneous towards heterogeneous systems, mainly to
reduce energy consumption to avoid Dark Silicon effects or to increase the sys-
tem’s performance since homogeneous multiprocessors reached several physical
limits in scaling [2]. This heterogeneity and the corresponding control knobs to
adjust the hardware settings have a non-trivial influence on the performance and
the energy consumption. Therefore, we have chosen the ODROID-XU3 as our
running example hardware, which is based on the ARM R© big.LITTLETM tech-
nology. In this architecture, relatively battery-saving and slower processor cores

Work-Energy Profiles 145

(LITTLE) are coupled with relatively powerful and power-hungry ones (big). The
ODROID-XU3is operating in the heterogeneous multi-processing mode (HMP)
allowing us to freely assign threads to specific big and LITTLE cores. Contrary
to earlier ARM R© big.LITTLETM processors, both clusters (LITTE and big) of
the ODROID-XU3 can be active at the same time. The 2 GB of main memory
are shared for all cores. Table 1 gives an overview of the available core clusters
and the respective configuration options.

Table 1. Configuration options of the ARMR© big.LITTLETM ODROID-XU3

LITTLE Core Cluster big Core Cluster

Core description ARM-CortexA7 ARM-CortexA15

Number of Cores 4 4

Frequency range 0.2 GHz–1.4 GHz 0.2 GHz–2.0 GHz

Frequency step range 100 MHz

Number of freq. steps 13 19

Pipelines 1 3

Features - out-of-order execution

Additionally, our hardware system is equipped with on-board power sensors
allowing us to measure the power level of individual core clusters and the main
memory separately. The system draws around 2.5 W (CPU: 1.1 W) in idle mode.
Under load, it draws 10.7 W of which 7.0 W are the power consumption of the
CPU. Hence, around two thirds of the drawn power under load is consumed by
the CPUs. There is no HyperThreading and only the performance governor (a
power policy for the CPU) is available, but the system allows to manually set
one of the 13 different frequencies for the LITTLE A7 cluster as well as one of
the 19 for the big A15 cluster. Different frequency settings on a completely idle
cluster cannot be summarized because a changing frequency on the idle cluster
influences the performance on the active cluster for many use-cases (see Sect. 5).
This already extends to 19 ·13 ·24 = 5, 928 possible hardware configurations. For
demonstration purposes, we refrain from using any specialized instruction sets,
e.g. NEON, which increases the number of configurations even further.

2.2 Example Work-Energy Profile

With 5, 928 possible hardware configurations for our example hardware, we have
a large space of opportunities to satisfy a desired performance range of an appli-
cation task. The challenge is now to determine the most energy-efficient hard-
ware configuration for a requested performance range. To tackle this challenge,
we propose our work-energy profiles. To get a deeper understand of our work-
energy profile approach, Fig. 2 illustrates an example for an application task

146 A. Ungethüm et al.

running on our test hardware. The left chart in this figure shows the corre-
sponding work-energy profile. While the performance is plotted on the x-axis,
the y-axis shows the energy efficiency. Each dot in this chart represents a spe-
cific hardware configuration. As we can see, different hardware configurations
offer the same performance range with a high variance in the energy efficiency.
Therefore, a work-energy profile depicts the energy efficiency as a function of
performance. From this profile, we are able to derive various insights as high-
lighted in the remainder of the paper. To determine these dots, we executed the
application task with each possible hardware configuration and measured the
performance as well as the energy efficiency. For the systematic construction of
such work-energy profiles, we developed a benchmark concept as described in
the next section.

Fig. 2. Work-Energy Profile and a close-up of the highlighted performance range.

Generally, we are able to utilize such profiles to directly identify the most
energy-efficient configuration (high energy efficiency value) for a desired perfor-
mance range and application task. In Fig. 2, we highlighted a specific perfor-
mance range using a vertical slice. This performance range can be realized with
various hardware configurations as depicted in the right chart of this figure.
In this chart, the most energy-efficient configuration is highlighted by a thick
green line. The x-axis indicates the frequency of the clusters, the y-axis shows
the number of active cores. The left side shows the A7 cluster, the right side
the A15 cluster. A line connects the configuration of both clusters and forms
the complete configuration. The least energy-efficient ones are marked with a
thin red line. These close-ups show the variety inside the configurations, which
produce the same performance but a different energy efficiency and the most
energy-efficient configuration is not necessarily the most obvious one. In Sects. 4
and 5, we apply our approach to an in-memory database system and draw some
conclusions regarding energy-efficient database systems.

3 Creation of Work-Energy Profiles - Benchmarking

One of our main challenges is the creation of work-energy profiles covering a
large number of possible hardware configurations. To tackle this challenge, we

Work-Energy Profiles 147

developed a benchmark concept to examine the behavior of performance and
energy efficiency for different hardware configurations in a uniform way. Funda-
mentally, the same test-case or application task has to be repeated and recorded
for all possible configurations on the target systems. Moreover, not only the task
but also the test data has to be the same in order to produce comparable results.
Therefore, we separated the generation of test-cases and data from the control-
flow of our benchmark concept. Generally, an overview of our benchmark concept
is depicted in Fig. 3. A concrete implementation and application is presented in
Sect. 4, while this section describes the general benchmark concept.

Fig. 3. An overview of the benchmark setup.

As shown in Fig. 3, the Controller is the centerpiece of our benchmark.
It starts the Work Generator which produces tasks and test data. This Work
Generator has to be adjusted for each application scenario. After the Work
Generator has finished, the Controller chooses the first hardware configuration
and starts the first test run. Within a test, the corresponding tasks are processed
by every worker, whereas a worker is a thread running on a (virtual) core. The
workers count their finished tasks. After a fixed time span, the Controller
shuts down the threads and collects the number of finished tasks which are
later used for calculating the performance. During an active test, the values
necessary for the energy computation are recorded by a Measuring Device.
Depending on the abilities of the Measuring Device, the energy computation is
either done by the device itself or by the controller. In both cases the final values
are collected by the Controller. For eliminating odd side effects, a test can be
run multiple times. Then, the test runs for the remaining configurations but
the same tasks and test data are successively executed. After all configurations
have been processed, the Controller generates a Work-Energy-Profile for the
selected task and data as depicted in Fig. 2. This profile can then be used for
in-depth analysis and optimization purposes, e.g. for choosing an energy-efficient

148 A. Ungethüm et al.

configuration satisfying the requested performance constraints or for optimizing
the applied algorithm.

3.1 Metrics

In addition to this general benchmark sequence as presented above, it is impor-
tant, which metrics have to be measured at all. In our case, performance and
energy efficiency are the relevant metrics and specified in detail as next:

Work and Performance: The hardware processes the work generated by the
Work generator. This work consists of a task and the data to be processed.
The task is repeated over the same amount of data, e.g. scan of records or hash-
ing of keys for each hardware configuration. Then, the number of finished task
during a fixed runtime is denoted as work done. Accordingly, the performance is
denoted as:

performance =
work done

time

The goal of our benchmark is not the evaluation of a real-life scenario but
the comparability between the test runs with the same task and data defini-
tions. Therefore, the processed data must have the same size and type in every
task execution and break conditions must be reached after processing the same
amount of data. Furthermore, since tasks can implement different operations on
different data, a quantitative comparison between them is only possible when
the performance is normalized to the same amount of processed data.

Energy: The electric power P is the product of the amperage i(t1) and the
voltage v(t1) measured at t1 (Eq. 1). Thus, it describes the power consumption
of a measured system at a discrete point in time. In contrast, the electrical
energy E is the integral over time of the whole power curve consisting of all
power values taken during the measurement (Eq. 2). Thus, the consumed energy
grows while time passes whereas the power can rise and drop.

The Measuring Device is responsible for determining amperage and volt-
age. The on-board power sensors of our ARM R© big.LITTLETM hardware satisfy
this property. Intel R© introduced also on-board energy sensors—called “Running
Average Power Limit” (RAPL)—with their Sandy Bridge microarchitecture [4].
Therefore, our benchmark concept can also be applied to Intel R© multiprocessors
without special instrumentation as long as the corresponding sensors are avail-
able. The computation of the energy from these measured values can either be
done by the Measuring Device or by the Controller.

P (t) = v(t) · i(t) (1)

E =
∫ tend

t0

P (t) dt =
∫ tend

t0

v(t) · i(t) dt (2)

An optimization for power is necessary, e.g., for thermal chip design or for
dimensioning the necessary cooling, but the reduction of the electricity bill and

Work-Energy Profiles 149

the extension of the life span of a battery charge require energy optimization, i.e.
the costs on the electricity bill are calculated from the energy drawn since the
last meter reading. Hence, the primary goal for increasing energy efficiency is the
reduction of the overall energy drawn by the system while doing the same amount
of work. Only reducing the power, e.g. by reducing the core frequencies, could
lead to longer execution times and therefore to a higher energy consumption.

Energy Efficiency: To achieve the objective of reducing the overall energy
consumed by the system for a specific amount of work, the natural decision for
quantifying the energy efficiency is to calculate it as the quotient of work done
and consumed energy [5,7,9]. Accordingly, we call this relation the Work-Energy
Quotient (WEQ).

WEQ =
work done

energy

Since work done/time equals the performance for a certain operation, the men-
tioned works rewrite the quotient as follows:

work done

energy
=

work done

power · time
=

performance

power

As already discussed, the power level can change during the measurement
and the energy is its integral over time. Thus, the real power values cannot
be restored from the energy, although the rewritten equation implies that this
was possible. Vice versa, energy cannot be computed by an average power value
when the required time is not necessarily the time needed for the computation
but a part of a potentially normalized performance value. For this reason and
for avoiding a confusion of execution time and normalized performance values,
we argue to use work done/energy instead of performance/power. For not mistaking the
WEQ for energy efficiency definitions in other fields, e.g. the energy conversion
efficiency, we do not just call this definition energy efficiency (EE) but work-
energy quotient.

3.2 Benchmark Setup and Dependencies

Up to now, we described our general benchmark sequence and defined our mea-
sured metrics. A full benchmark tests the same tasks and data configuration
on all possible hardware configurations and these hardware configurations have
to be set by the Controller. A hardware configuration contains the settings of
hardware components which can be adjusted. Thus, it depends on the hardware
system the benchmark is running on. A common configuration could consist of
the following parts:

– Bitmask for defining active workers (wi)
– Frequency of the physical cores (fi)
– If available: Bitmask indicating if a specialized instruction set is used, e.g.

SSE (isi)

150 A. Ungethüm et al.

A configuration containing these options could be described by the vector
{w1, .., wn, f1, .., fm(, is1, .., ism)} with n = m ∗ hyperthreads per core. Such a
description is used to iterate over all possible hardware configurations by our
Controller. For our running example hardware, the ODROID-XU3, a config-
uration consists of an 8-bitmask {w0, ..., w7} and two frequencies {fA7, fA15}.
The bitmask indicates which cores are actively processing tasks. Since there are
no hyperthreads, one bit per core is sufficient. The frequencies can be adjusted
per cluster. Hence, there are two frequencies in every configuration, one for the
A15-cluster and one for the A7-cluster.

Furthermore, we have to consider the following aspect: The generated work,
the processing speed of the hardware and the specifications of the measuring
device influence the accuracy of the tests. This implies that certain aspects have
to be considered before implementing this benchmark. First, the Measuring
Device must be suitable for the power range of the system, e.g. an accuracy
of 1 W might be accurate enough for a system drawing between 100 and 500 W
but not for one drawing between 1 and 10 W. In our implementation, we use the
integrated current sensors of the ODROID-XU3 which fulfill this requirement.
Second, the runtime of a single test must be long enough to gain significant
results. In detail it has to fulfill the following requirements:

– Compensate for out-dated values due to the update frequency of the measure-
ment device. Ideally a new test always starts right after an update cycle of
the measurement device.

– Compensate for varying power values, e.g. if the power level changes during a
test case but only one power value is recorded, the measurement result of this
particular test case has only limited expressiveness because the energy is only
computed from this single power value.

– Finish a significant amount of work on all workers, e.g. if half of the cores
are not even able to process one request, there is no work done which can be
compared even if some of the cores would have finished much faster than the
other ones.

The integrated sensors of our example hardware only update their values
approximately every quarter second. Hence, depending on the exact task, we
run every test between 5 and 10 s to gain between 20 and 40 values to compute
the energy from and to finish some tasks on every worker even in very low
performing configurations.

4 Application of Work-Energy Profiles

Energy awareness of database systems has emerged as a critical research topic
[6,7]. In our research, we focus on energy-efficient in-memory database systems.
Therefore, CPU and main memory are the main hardware components of inter-
est. Here, the performance and energy efficiency of a hardware configuration
depend on a multitude of factors (e.g., data characteristics and size, operators

Work-Energy Profiles 151

types, etc.). Moreover, main memory bandwidth and latency are limiting fac-
tors that could cause a non trivially predictable hardware behavior. To get a
deeper understanding of this issue, we have investigated in-memory databases
with our benchmark concept using fine-grained memory access patterns which
are highly utilized. Nevertheless, we are also able to investigate complete opera-
tors or queries and can create work-energy profiles for such database tasks with
our approach. Here, the advantage would be that we would have the work-energy
profiles per operator or query and then we can directly use them. However, there
are a lot of disadvantages for such an approach: (i) operators and queries are
of complex nature, and (ii) database systems usually execute multiple queries
simultaneously, which results in multiple operator types running in parallel. For
these reasons, it makes much more sense to explore the configuration space on
a fine-grained level of main memory access patterns.

4.1 Typical Database Memory Access Patterns Under Test

As already argued, main memory is the bottleneck for in-memory database sys-
tems and therefore, we use four different low-level but basic work operations with
significantly different memory access patterns. For each low-level operation, we
implemented a corresponding task and data definition for our Work Generator:

(1) Compute-Intensive: This class simulates work operations that do not
involve any main memory utilization, e.g. the solution of mathematical equa-
tions. In our implementation, our task includes taking 512 square roots per
iteration.

(2) Scan-Operation: This workload consists of main memory/cache-bound
operations like column scans exhibiting a sequential main memory access
pattern including reading and writing operations. The implementation is
done using a memory compare operation with 128 KB per iteration.

(3) Lookup-Operation: This class also represents main memory/cache-bound
operations like lookup exhibiting a random main memory access pattern
including reading and writing operations. The lookup is done using 32 B in
each iteration

(4) Copy-Operation: This work class simulates a data copy operation for the
creation of intermediate results. As test data, we used 128 KB per iteration.

As described in Sect. 3, the obtained measurements of our benchmark include
the performance in iterations/second and the WEQ in iterations/Joule.

4.2 Work-Energy Profiles

Then, we executed our benchmark for each low-level memory access pattern in
an isolated way for our selected hardware, to create a specific work-energy profile
for each of them and to get a first impression of how the test system responds.
Figure 4 shows the resulting four work-energy profiles. As we can see in this figure,
the profiles show a completely different shape. Again, each dot in each diagram

152 A. Ungethüm et al.

represents a hardware configuration and for each hardware configuration, we
determined a performance (x-axis) and a WEQ value (y-axis). That means,
each low-level operation shows a different behavior with regard to performance
and energy efficiency. All profiles have in common, that there are hardware
configurations offering the same performance with a different energy efficiency
value.

If we look at the compute-intensive operation, this operation has its peak
WEQ at ∼1/5 of the maximum performance (see Fig. 4(a)). Afterwards, the per-
formance is further increasing at the cost of the energy efficiency. Furthermore,
there are hardware configurations available with a high performance value but
less energy efficiency. In contrast to that, the peak WEQs of the other low-level
operations are (i) Scan-Operation at ∼1/3, (ii) Lookup-Operation at ∼3/4, and
(iii) Copy-operation at ∼1/2 of the maximum performance. Then, the perfor-
mance increases with decreasing the energy efficiency.

As we can observe in Fig. 4, each low-level operation has its own work-energy
profile shape. Based on that profiles, we are able to determine a hardware config-
uration which offers the best energy efficiency for a requested performance range.
These hardware configurations are the pareto efficient frontiers of the profiles. At
the moment, we can only state that the profile’s shapes and the pareto frontiers
are different. The question now is, why and to which extent they are different
and if there are even similarities recognizable. To answer this question, we have
to analyse the profiles in detail as done in the following section.

(a) Compute-Intensive (b) Scan-Operation

(c) Lookup-Operation (d) Copy-Operation

Fig. 4. Work-energy profiles for low level memory access patterns.

Work-Energy Profiles 153

5 Analysis of Application Work-Energy Profiles

For showing why the profiles look the way they do, we exemplarily explain a
profile in more detail. We choose the Copy-Operation (memory copy operation)
since it includes two main basic tasks a database has to process: reading and
writing data, e.g. key-value stores mainly process put- and get-requests where
relatively small chunks of data are read from and written to the main memory.

5.1 Intra-Profile Observations

It is useful to know if the same operation has a different profile for different
implementations or data sizes. For our memory copy operation, we varied the
size of the blocks which are copied. Our original setup copied 32 MB at once.
Then, we varied it to copy it in 128 KB and 512 KB blocks (see Fig. 5a). While
128 KB fit well into the L2 cache on both clusters of our example hardware,
the 512 KB block leaves no space for any other data in the L2 cache of the A7
cluster. Since the performance and peak WEQ was growing while we shrinked the
block size, we chose a block size of only 32 Bytes for the last implementation,
which is only a fraction of the page size of 4 KB. For being able to compare
different implementations of the same use-case, the performance and WEQ need
to be normalized to a common measure. Using the performance or WEQ at
a certain hardware configuration, e.g. the lowest performing one, still results in
different absolute reference measures for differently performing implementations.
Therefore, we used the smallest block size of the processed data as a common
reference measure. We define work done = 32Bytes copied and calculate the
performance and WEQ accordingly.

The best performing implementation copies the data in blocks that fit into
both L2 caches. The performance and WEQ increase until a peak is reached.
Afterwards, the performance can still be increased at the cost of the energy effi-
ciency. As expected, the performance and the energy efficiency decrease when
sizes are chosen which do not fit into the cache of the clusters. This effect is
especially visible when copying 32 MB blocks. The possibility to gain any per-
formance after the WEQ has reached a peak, has massively decreased.

The reason for this behavior is illustrated in Fig. 6. It shows the performance
and WEQ for the configurations which contain only one active cluster. In Fig. 6a
the frequency on the active cluster is increased, in Fig. 6b the frequency on the
idle cluster is increased. In both cases the WEQ does not grow anymore for any
core configuration when switching to the higher frequencies. When changing
the frequency on the A15-cluster it even decreases after ≈1 GHz. This is most
likely because the power consumption grows superlinearly when increasing the
frequency. When looking at the number of active cores on the A15 cluster, the
energy efficiency decreases when enabling more than two cores. Additionally,
the mean performance decreases in Fig. 6b while in Fig. 6a it increases by an
insignificant amount.

The worst performing implementation is the 32 B-block implementation. The
maximum performance and WEQ increase until a peak is reached. Then the

154 A. Ungethüm et al.

(a) Read and write back of different data sizes, normalized to 32 Byte.

(b) Reduced Work-Energy profile to only show the core configurations producing the
optimum for a read/write operation.

Fig. 5. The same operation differently implemented (i.e. varying the block size) pro-
duces different profiles. Depending on the implementation they are either memory or
bandwidth bound.

WEQ drops while the performance hardly increases anymore. There is no con-
figuration which can improve the performance at the expense of the energy
efficiency. This behavior is very similar to the lookup test-case (Fig. 4c) where
equally small data chunks are accessed. The high variance between different
implementations of the same test case on the one hand, and the similarity
between different test cases with a similar memory access pattern on the other
hand, suggest that the underlying memory access pattern influences the energy
and performance behavior of the system much more than the actually performed
higher level operation.

Work-Energy Profiles 155

(a) Varying frequency on active cluster

(b) Varying frequency on idle cluster

Fig. 6. A subset of a memory bound use-case to show where the different energy
efficiencies for the same performance range come from.

5.2 Inter-Profile Observations

When looking at a single profile, e.g. Fig. 4, there are recurring arcs which differ
in their length, height and width. Since they appear, more or less significantly,
in all profiles, they are likely not to be a random pattern. Figure 7d shows the
core configurations which belong to the most energy-efficient configurations of
the profile. They are derived by dividing the profile into 50 equally large perfor-
mance ranges and selecting the maximum WEQ in every of them. A visualization
of the configurations which belong to the core configurations in Fig. 5b shows
how the arcs in the profiles are generated (for the Copy Operation). Each core
configuration spans an arc.

Moreover, Fig. 5b shows that only a few configurations serve the pareto fron-
tier of this profile. Figure 7 shows the optimal core configurations for the test
cases from Sect. 4. While they differ for each test case, they are always only a sub-
set of all possibilities. Hence, the pareto frontier is made of a few combinations
of active cores.

In our example in Fig. 5b, one configuration, namely four A15 and one A7
core, even covers a wide range of the optimum without ever falling significantly
under the optimum of any performance range. Only very small performances

156 A. Ungethüm et al.

cannot be reached. Hence, by staying at this core configuration and only chang-
ing the frequency depending on the requested performance, we always operate
with a good energy efficiency while avoiding task switching and data movement
overhead resulting from a changed CPU set. We call such configurations robust
configurations.

(a) Compute-Intensive (b) Scan-Operation (c) Lookup-Operation (d) Copy-Operation

Fig. 7. Optimal core usage for low level memory access patterns. The value of the color
indicates the frequency of the configuration among the most efficient configurations.
The x-axis shows the active cores on the A7 cluster and the y-axis the active cores on
the A15 cluster.

6 Related Work

Generally, the need for energy efficiency in data centers has already been iden-
tified a few years ago [5]. However, before being able to develop a method for
energy savings, the developer is required to know where the energy is spent and
which performance levels are to be expected. An exhaustive investigation on
available hardware has already been made by Tsirogiannis et al. [7]. But this
work did explicitly not focus on energy-efficient hardware configurations and
investigated now outdated hardware with only homogeneous cores.

A naive and more generally applicable approach is simply taking the vendor
specifications of the hardware components. However, these specifications usually
only provide the maximum power consumption [1] and experiments have shown
that they do not reflect the real usage of a system [10]. Hence, a more sophisti-
cated approach has to be found. An analytical model has been implemented by
Xu [10]. But the more complex the hardware is, the more complex this model
gets. Götz et al. present a benchmark-based approach [3], but only apply it for
homogeneous systems.

By applying the TPCH-H queries on an ARM R© big.LITTLETM system,
Mühlbauer et al. have shown that the energy consumption varies heavily depend-
ing on the query [6]. Not only the execution plan and the operators themselves
but also the size and type of the data to be processed influence the performance
and the energy consumption. There are countless possible set sizes and different
implementations of query optimizers and operators. Analyzing the workload of
a query on an operator or even query level is too coarse grained to consider all

Work-Energy Profiles 157

of these possibilities. It could only produce a model valid for a specific DBMS
on a specific hardware and operating-system combination. For this reason we
apply a more universal low-level approach considering the hardware component
utilization.

7 Conclusion and Future Work

In this paper, we addressed the challenge of benchmarking of work-energy pro-
files to determine the influence of different hardware configurations on the energy
efficiency and the performance for a specific application running on a concrete
hardware. Aside from presenting work-energy profiles in general, we introduced
our benchmark concept and applied our approach to an in-memory database
on a heterogeneous hardware system. Furthermore, we analyzed the profiles for
our application scenario in detail and presented interesting insights. Addition-
ally, by using our work-energy profiles, the best possible energy efficiency and
the corresponding hardware configuration can be found for a certain required
performance range.

Fundamentally, our work-energy profiles are the foundation of our vision of an
energy-control loop [8]. This energy-control loop addresses the topic of software-
controlled hardware reconfigurations at runtime for data management systems.
This way, our energy-control loop is able to run the system in an energy-efficient
hardware configuration while still being able to maintain certain query latency
constraints, especially in times of heavy load. Since the workload is a moving
target, the loop is continuously running and adapts the hardware configuration.

Acknowledgments. This work is partly funded by the German Research Foundation
in the Collaborative Research Center 912 “Highly Adaptive Energy-Efficient Comput-
ing” and within the Cluster of Excellence “Center for Advancing Electronics Dresden”
(Orchestration Path).

References

1. ACP - the truth about power consumption starts here. AMD White Paper (2010)
2. Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., Burger, D.: Dark

silicon and the end of multicore scaling. In: ISCA
3. Götz, S., Ilsche, T., Cardoso, J., Spillner, J., Kissinger, T., Aβmann, U., Lehner,

W., Nagel, W.E., Schill, A.: Energy-efficient databases using sweet spot frequencies.
In: UCC 2014 (2014)

4. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17
(2012)

5. Harizopoulos, S., Shah, M., Meza, J., Ranganathan, P.: Energy efficiency: the new
holy grail of data management systems research. arXiv preprint arXiv:0909.1784
(2009)

6. Mühlbauer, T., Rödiger, W., Seilbeck, R., Kemper, A., Neumann, T.: Heterogeneity-
conscious parallel query execution: getting a better mileage while driving faster! In:
DaMoN (2014)

http://arxiv.org/abs/0909.1784

158 A. Ungethüm et al.

7. Tsirogiannis, D., Harizopoulos, S., Shah, M.A.: Analyzing the energy efficiency of
a database server. In: SIGMOD (2010)

8. Ungethüm, A., Kissinger, T., Habich, D., Lehner, W.: Energy elasticity on het-
erogeneous hardware using adaptive resource reconfiguration live (demo). In: SIG-
MOD, pp. 2173–2176

9. Wang, J., Feng, L., Xue, W., Song, Z.: A survey on energy-efficient data manage-
ment. SIGMOD 40(2) (2011)

10. Xu, Z.: Building a power-aware database management system. In: IDAR (2010)

Erratum to: Performance Evaluation
and Benchmarking

Raghunath Nambiar1(&) and Meikel Poess2

1 Cisco Systems, Inc., San Jose, CA, USA
rnambiar@cisco.com

2 Oracle Corporation, Redwood City, CA, USA

Erratum to:
R. Nambiar and M. Poess (Eds.):
Performance Evaluation and Benchmarking, LNCS 10080,
DOI: 10.1007/978-3-319-54334-5

In the original version, there is an error in the title on the cover and the inner title page.
It must read “Internet of Things”.

The updated original version of this book can be found at DOI: 10.1007/978-3-319-54334-5

© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, p. E1, 2017.
DOI: 10.1007/978-3-319-54334-5_11

http://dx.doi.org/10.1007/978-3-319-54334-5
http://dx.doi.org/10.1007/978-3-319-54334-5

Performance and Energy Analysis
Using Transactional Workloads

Anastasia Ailamaki1,2(&), Danica Porobic1, and Utku Sirin1

1 EPFL, Lausanne, Switzerland
{anastasia.ailamaki,danica.porobic,utku.sirin}@epfl.ch

2 RAW Labs, Lausanne, Switzerland

Online Transaction Processing (OLTP) is a multi-billion-dollar industry and one of the
most important and demanding database applications. Innovations in OLTP continue to
attract significant attention from established industry vendors, startups and a plethora of
academic groups worldwide. OLTP applications are characterized by many concurrent
requests that typically read about a dozen and write a handful of data items each. The
users of the system expect predictably low response times and high availability
regardless of the degree of concurrency or the size of data. Thus it is not surprising that a
lot of innovations focus on improving the systems to utilize abundant parallelism present
in modern multicore servers while ensuring efficient utilization of the microarchitectural
resources of each processor core and achieving good energy efficiency.

Analysis of the behavior of existing software systems on modern hardware is the
essential precursor to the design of more efficient hardware and software systems of the
future. The goal of this process is learning as much as possible about the intrinsic prop-
erties of the target workload across different OLTP systems and hardware platforms.
Choosing appropriate methodology comprising of the benchmarks and performance
metrics for each specific phase of the analysis is the key to successfully answering the
question like: (a) why is a system under-utilizing the available hardware? (b) why isn’t the
system faster on the new server? (c) are the new processors more energy efficient?

The first question one needs to answer is which type of benchmarks is the most
beneficial for a certain analysis. For example, main-memory optimized OLTP systems
have been proliferating recently with the falling costs of main-memory and increasing
demand for higher transactional throughput. Such systems forgo many components of
the traditional designs, such as the buffer pool, and feature lightweight concurrency
control mechanisms, cache-conscious indexes and optimized query compilation tech-
niques. The natural question to ask is whether they manage to utilize the modern
processors more efficiently than their disk-based predecessors. Macrobenchmarks from
TPC family offer a good starting point as their behavior is well understood in the
community and there is a wealth of previous data. By using metrics such as the number
of instruction retired per cycle (IPC) and the percentage of stall cycle we can gain broad
understanding of the behavior of different systems. In this instance, despite all the
design differences, in-memory OLTP behaves very similarly to the traditional systems;
stalling over 60% of the time while running the TPC-C workload.

While great for deriving broad insights, macrobenchmarks are not able to help in
“what-if analysis” due to their inflexibility. For such scenarios, microbenchmarks are

© Springer International Publishing AG 2017
R. Nambiar and M. Poess (Eds.): TPCTC 2016, LNCS 10080, pp. 159–160, 2017.
DOI: 10.1007/978-3-319-54334-5

much better choice. For example, one can measure the impact of the amount of time
spent inside the OLTP engine on the micro-architectural behavior by using a simple
micro-benchmark where every transaction reads/writes N number of rows per trans-
action, N being 1, 10, 100, 500, … In this case, while disk-based systems exhibit better
use of micro-architectural resources, in-memory systems suffer higher percentages of
stall cycle as the amount of time spent inside the OLTP engine increases. Another
scenario where microbenchmarks are essential is in quantifying the impact of
non-uniform topologies of modern multisocket multicore servers. Nowadays, such
servers feature Hardware Islands, i.e., groups of cores that communicate fast among
themselves and slower with other groups. By using partition-sensitive microbenchmark
containing the single site and multisite transaction and varying their ratio, we can
effectively compare different deployment configurations of the distributed OLTP sys-
tems. We conclude that no single optimal configuration exists: the ideal configuration
depends on the hardware topology and the workload.

While macro/microbenchmarks are useful for understanding the system behavior
from different aspects, they are only meaningful based on the defined metrics used to
analyze the system behavior. Metrics can be used to quantify the aggregate system
behavior, e.g., delivered throughput and IPC, as well as the fine-grained components
explaining the aggregate system behavior, e.g., execution time breakdown. For example,
assuming that majority of the execution time goes to memory stalls when running OLTP
workloads, breakdown of memory stalls into the stalls coming from different levels of
the cache hierarchy shows that in-memory systems not using aggressive transaction
compilation still suffers the most from the L1 instruction stalls similar to disk-based
systems. In-memory systems using aggressive transaction compilation, on the other
hand, can significantly reduce the L1 instruction stalls. This, however, amplifies the
last-level cache data stalls, resulting high percentage of stall cycle.

On the other hand, energy efficiency has become a serious concern over the last
decade. Traditionally low-power low-end ARM cores gradually advance to
server-grade processors. Having observed that OLTP workloads severely under-utilize
the Intel Xeon-like processors, we compare the power, throughput and latency char-
acteristics of the two. We observe that, while Xeon’s delivered throughput is 1–3×
higher, its consumed power is 3–15× larger than the ARM processor, rendering the
ARM processor up to 9× higher energy-efficient. On the other hand, ARM’s quantified
latency towards to the tail of latency distribution can be up to 11× higher, showing that
ARM is less suitable for tail-latency-critical workloads.

In summary, choosing the right methodology is essential in understanding the
behavior of hardware and software systems. Macrobenchmarks enable gaining broad
insights and compare observed behavior with previous analyses. Microbenchmarks
enable variation of specific parameters to reveal fine-grained trends in specific
dimensions to deepen the understanding. In addition to simple performance metrics,
breakdowns are key to explaining the observed trends, especially when used in con-
junction with sensitivity analysis to gain complete understanding of the analyzed
behavior. Lastly, as power has become an increasingly important concern, energy
efficient OLTP highlights a new set of challenges and extends the design and analysis
space of transactional systems.

160 A. Ailamaki et al.

Author Index

Ailamaki, Anastasia 159
Arif, Mofassir ul Islam 7

Bhandarkar, Milind 107

Cao, Paul 24, 78

Djedaini, Mahfoud 61

Furtado, Pedro 61

Gowda, Bhaskar 24

Habich, Dirk 142

Kanevsky, Arkady 7
Khan, Fazal E Rehman 7
Kissinger, Thomas 142

Labroche, Nicolas 61
Lakshmi, Seetha 24
Lehner, Wolfgang 142

Marcel, Patrick 61

Nambiar, Raghunath 1, 121
Narasimhadevara, Chinmayi 24
Nguyen, Patrick 24
Norton, Scott 78

Peralta, Verónika 61
Poelman, John 24
Poess, Meikel 1, 24
Porobic, Danica 159

Rabl, Tilmann 24

Sahasranamam, Srinivasan Varadarajan 78
Shukla, Anshu 90
Simmhan, Yogesh 90
Singh, Sweta 45
Sirin, Utku 159

Tadakamadla, Rajesh 78
Trivedi, Manan 121

Ungethüm, Annett 142

Wakou, Nicholas 7
Woodside, Michael 7

	Preface
	TPCTC 2016 Organization
	About the TPC
	TPC 2016 Organization
	Contents
	Industry Standards for the Analytics Era: TPC Roadmap
	Abstract
	1 TPC Benchmark Timelines
	2 TPCTC Conference Series
	3 Outlook
	Acknowledgements
	References

	TPCx-HS on the Cloud!
	Abstract
	1 Introduction
	2 Related Work
	3 System Under Test
	3.1 OpenStack Sahara
	3.2 Cloudera Manager 5.3
	3.3 TPCx-HS

	4 Configurations
	4.1 Hardware Configurations
	4.2 Hadoop Configurations

	5 Performance Testing
	5.1 Instance Configuration Tests
	5.2 Over-Subscription Tests
	5.3 HDFS on Local Storage Tests
	5.4 CPU Pinning/NUMA with HDFS on Local Storage Tests
	5.5 Disk and CPU Pinning/NUMA with HDFS on Local Storage Tests

	6 Conclusions
	Acknowledgments
	References

	From BigBench to TPCx-BB: Standardization of a Big Data Benchmark
	Abstract
	1 Introduction
	2 Related Work
	3 TPCx-BigBench (TPCx-BB)
	3.1 TPCx-BB Overview
	3.2 Benchmark Kit
	3.3 Supported Big Data Frameworks

	4 TPC Standardization of Big Bench
	4.1 Challenges During the Standardization

	5 Experiments with TPCx-BB Benchmark
	5.1 Experimental Results
	5.2 Resource Utilization Tests

	6 Benchmarking Emerging Big Data Use Cases
	6.1 Processing Frameworks
	6.2 Machine Learning

	7 Conclusion
	Acknowledgements
	Appendix A
	References

	Benchmarking Spark Machine Learning Using BigBench
	Abstract
	1 Introduction
	2 Collaborative Filtering Using Machine Learning
	3 Measuring Accuracy and Tuning Machine Learning Algorithms
	4 Visualization of Machine Learning Use Case in SPSS Modeler
	4.1 Q05 – Logistic Regression
	4.2 K-Means Clustering

	5 Conclusion and Future Work
	Acknowledgement
	References

	Benchmarking Exploratory OLAP
	1 Introduction
	2 Related Work
	3 Evaluating an Exploration
	3.1 Exploration in an OLAP Context
	3.2 Metrics

	4 The Benchmark
	4.1 Interfacing with a SUT
	4.2 How the Benchmark Works
	4.3 Component 1: Benchmark Initialization
	4.4 Component 2: Evaluation of a SUT
	4.5 Component 3: Scoring

	5 Experiments
	5.1 Experimental Setup
	5.2 Analysis of Experimental Results

	6 Conclusion
	References

	Lessons from OLTP Workload on Multi-socket HPE Integrity Superdome X System
	Abstract
	1 Introduction
	1.1 NUMA and Its Significance in Scale-Up Architectures
	1.2 Oracle 12c and Its “Multi-tenancy” Feature

	2 Configuration
	2.1 Hardware
	2.2 OS
	2.3 Workload
	2.4 Database Configuration

	3 Observations on Non-NUMA Optimized Configuration
	4 NUMA Optimized Configuration for Best Performance
	4.1 Network
	4.2 Database
	4.3 Workload
	4.4 Summary

	5 Tools and Commands
	6 Results
	7 Conclusion
	8 Futurework
	Acknowledgments
	References

	Benchmarking Distributed Stream Processing Platforms for IoT Applications
	1 Introduction
	2 Background and Related Work
	3 Characteristics of Streaming IoT Applications
	3.1 Dataflow Composition Semantics
	3.2 Input Data Stream Characteristics
	3.3 Categories of IoT Tasks and Applications
	3.4 IoT Data Stream Characteristics

	4 Performance Metrics
	5 Proposed Benchmarks and Workload
	5.1 IoT Input Stream Workloads
	5.2 IoT Micro-benchmarks
	5.3 IoT Application Benchmarks

	6 Evaluation of Proposed Benchmarks
	6.1 Micro-benchmark Results
	6.2 Application Results

	7 Conclusion
	References

	AdBench: A Complete Benchmark for Modern Data Pipelines
	1 Introduction
	2 Related Work
	3 Benchmark Scenario
	4 The Data
	4.1 User Profiles
	4.2 Advertisements
	4.3 Content Metadata
	4.4 Ad Serving Logs

	5 Computations
	5.1 Ingestion and Streaming Analytics
	5.2 Batch Model Building
	5.3 Interactive and Ad-Hoc SQL Queries

	6 Prototype Implementation
	7 Scale Factors and Metrics
	7.1 Scale Factors
	7.2 Metrics

	8 Conclusion
	References

	Lessons Learned: Performance Tuning for Hadoop Systems
	Abstract
	1 Introduction
	2 TPC Express Benchmark HS
	3 System Under Test: Cisco UCS Integrated Infrastructure for Big Data
	4 Performance Tuning
	5 Performance Tuning in Detail
	6 Conclusion
	References

	Work-Energy Profiles: General Approach and In-Memory Database Application
	1 Introduction
	2 Solution Overview: Work-Energy Profiles
	2.1 Heterogeneous Test Hardware
	2.2 Example Work-Energy Profile

	3 Creation of Work-Energy Profiles - Benchmarking
	3.1 Metrics
	3.2 Benchmark Setup and Dependencies

	4 Application of Work-Energy Profiles
	4.1 Typical Database Memory Access Patterns Under Test
	4.2 Work-Energy Profiles

	5 Analysis of Application Work-Energy Profiles
	5.1 Intra-Profile Observations
	5.2 Inter-Profile Observations

	6 Related Work
	7 Conclusion and Future Work
	References

	Erratum to: Performance Evaluation and Benchmarking
	Erratum to: R. Nambiar and M. Poess (Eds.): Performance Evaluation and Benchmarking, LNCS 10080, DOI: 10.1007/978-3-319-54334-5

	Performance and Energy Analysis Using Transactional Workloads
	Author Index

