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Abstract. This work focuses on the evaluation of Web quality of expe-
rience as perceived by actual users and in particular on the impact of
HTTP/1 vs HTTP/2. We adopt an experimental methodology that uses
real web pages served through a realistic testbed where we control net-
work, protocol, and application configuration. Users are asked to browse
such pages and provide their subjective feedback, which we leverage to
obtain the Mean Opinion Score (MOS), while the testbed records objec-
tive metrics.

The collected dataset comprises over 4,000 grades that we explore to
tackle the question whether HTTP/2 improves users experience, to what
extent, and in which conditions. Findings show that users report mar-
ginal differences, with 22%, 52%, 26% of HTTP/2 MOS being better, iden-
tical, or worse than HTTP/1, respectively. Even in scenarios that favor
HTTP/2, results are not as sharp as expected. This is in contrast with
objective metrics, which instead record a positive impact with HTTP/2
usage. This shows the complexity of understanding the web experience
and the need to involve actual users in the quality assessment process.

Keywords: Web · HTTP/2 · Page Load Time · MOS · User
experience · QoE

1 Introduction

The Web keeps being at the center of our lives, thanks to a plethora of online
services, from web searches to business applications, from personal communica-
tions to social networks and entertainment portals. HTTP is the de facto “thin
waist” of the Internet [19], remaining almost unchanged from the original pro-
tocol defined at the end of the last century. Only recently a number of new pro-
tocols, namely HTTP/2 [3], SPDY [11] and QUIC [10], have been proposed and
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are likely to change the Web status quo. Having reliable ways to compare per-
formance benefits becomes crucial when massive deployments of new protocols
take place. However, measuring Web users’ Quality of Experience (WebQoE) is a
challenging problem. Page complexity has grown to include hundreds of objects
hosted on different servers, with browsers opening tens of connections to fetch
them. While several studies pointed out the importance of latency [16,18] and
its relationship with business value1, it is less obvious how it impacts WebQoE.

Objective metrics have been defined and the Page Load Time (PLT) is the
de-facto benchmark used for comparison [8,15,21–23], with the industry adopt-
ing it too (e.g., Alexa reports the quantiles of PLT). However, this family of met-
rics does not fully reflect users’ quality of experience in the complex “waterfall”
of network and browser events taking place during the page loading processes.

Subjective metrics, the Mean Opinion Score (MOS), allow one to measure the
actual user’s WebQoE, but it is extremely expensive to run MOS measurement
campaigns. As such, approaches to estimate WebQoE have been proposed [6,9],
but their relationship with actual users’ experience is yet to be proved and their
computational complexity makes them difficult to use in practice.

Recognizing intrinsic limits of objective metrics [5], we present the first study
of MOS measurement of WebQoE: We engineer a methodology to collect vol-
unteers’ feedbacks in a controlled environment where users are asked to access
actual pages while we control network, protocol, and application setup. In our
effort towards a subjective, yet scientific, comparison of HTTP/1.1 (H1) and
HTTP/2 (H2), we (i) collect a dataset of over 4,000 samples of subjective feed-
back augmented with objective metrics, and (ii) dig into the data to shed light
on actual experience improvement when using H2 vs H1. Advantages appear to
be less sharp than those shown by objective metrics: Users report no differences
in over half of the cases, while H2 improves WebQoE in 22% of cases only.

2 Related Work

Since the original SPDY proposal [11], ended with the standardization in H2 [3],
and the appearance of QUIC [10], researchers have been devoting increasing
attention to the benchmarking and optimization of these protocols [4,7,8,15,
17,21–23]. In what follows, we contrast our investigation with related works
considering experiment scale, testbed setup, set of pages, and collected metrics.

Experiments scale. In terms of experiments scale, works collecting objective
metrics span from several thousands (active testbeds [7,8,17,21,22]) to several
millions points (crawling [15] and server logs [23]). Conversely, studies employing
actual user feedback (only [4] besides this paper) are inherently of smaller scale
(i.e., tens of participants). Our work is based on the collection of actual user
feedback from 147 participants, for a total of over 4,000 experiments.

Testbeds. Testbed setups are either based on proxies [7,8] or, as in this work,
on locally controlled servers and networks [17,21,22]. Few works leverage actual
1 http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-

billion-sales.

http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
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Fig. 1. Experimental workflow.

H2 servers in the Internet [15] or large corporate server logs [23]. Google Chrome
is the most popular web browser followed by custom client implementations [21],
or a mixture of clients [23]. As for network setup, both controlled [17,21,22] and
uncontrolled [7,8,15] networks can be found, including 3G/4G access.

Page catalog. For what concerns pages used for testing, Alexa ranking is a
popular source for the selection of websites. The number of sites ranges from 20
to 500, and page selection criterion (e.g., landing [7] vs non-landing [8]) differs.
We use Alexa as well to drive our choice towards popular websites. As in [8], we
select pages that are likely known by our users, i.e., pages popular in France.
We consider pages optimized for desktop browsing and discard landing pages.

Measured metrics. Many works adopt the Page Load Time (PLT) as objective
metric [7,8,15,21–23]. PLT limitations are well-known [6,9], yet only few works
include more refined metrics to describe users’ QoE, e.g., [5,17] consider the
SpeedIndex [9]. MOS models for web traffic are dated back to 2002 and 2005
and therefore they should be re-assessed under recent architectures, technologies
and designs. Involving end-users in subjective measurements is the best practice,
with MOS being a simple and compact metric representative of their actual
experience. MOS is the standard in audio and video quality comparison, but
only recently it has been introduced for WebQoE assessment. To the best of our
knowledge, only [4] presents a framework to collect volunteers’ feedback on pre-
recorded videos of web-browsing sessions: Side-to-side videos are shown, with
the aim of identifying a winner. In contrast, we collect volunteers’ feedback of
actual browsing sessions, using the typical [1, 5] MOS scale [13]. Both approaches
have challenges: e.g., synchronization between videos, correlation between videos
and actual browsing experience, ability to slow-down/pause video can affect
results in [4]. Conversely, in our work the analysis is made complex by volunteers
tendency to refraining from using the full scale of scores, as we shall see.

3 Methodology

As portrayed in Fig. 1, the methodology we employ to compare H1 and H2 con-
sists of four phases: 1. Page catalog (Sect. 3.1) – To build a realistic benchmark,
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Fig. 2. Page catalog characteristics.

we fetch actual pages and characterize network paths towards servers. 2. Testbed
engineering (Sect. 3.2) – Pages and paths metadata are used to set up our test-
bed. Local servers host objects using multiple Apache instances while we control
network (RTT, loss), protocol (H1/H2), and application (domain sharding) con-
figuration. 3. MOS collection (Sect. 3.3) – Volunteers browse pages served by our
local infrastructure and provide a score in the range [1, 5]. At the same time, the
testbed captures objective metrics. 4. Analysis (Sects. 4–6) – At a later stage,
we apply analytics to contrast H1 vs H2 performance.

3.1 Page Catalog

For collecting MOS grades, we aim at selecting pages users are familiar with. As
our tests take place in Paris, we start from the top 100 in Alexa France ranking.
We visit each page using Google Chrome and compile a list of URLs of objects
being requested by the browser. We then mirror each object on a local server
and measure the RTT towards each original domain using TCP-SYN packets.

We manually check each mirrored page from our local servers to both dis-
card incomplete pages (e.g., object failing to download due to dynamic requests
or cookies policies), landing pages [8] (e.g., Facebook login page), etc. We are
left with 24 real pages covering a variety of categories, e.g., news, e-commerce,
informative websites, leisure etc. At last, we add the toy page http://www.
httpvshttps.com to the page catalog, for a total of 25 pages. For each considered
page, Fig. 2 reports its size (top-left), the number of objects (bottom-left), the
number of domains serving such objects (top-right), and the average per-domain
RTT to contacted domains, with bars reporting the minimum and the maximum
RTT (bottom-right). The figure shows that our catalog includes diverse scenar-
ios, from pages hosted on few domains serving a handful of objects, to pages
hosted on tens of domains and made of hundreds of objects.

3.2 Testbed Engineering

Server and network configuration. We design and setup a local testbed
where we have full control on network conditions (RTT, loss), protocols (H1/H2),

http://www.httpvshttps.com
http://www.httpvshttps.com
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and content placement (domain sharding [12]). Our testbed is composed of six
servers, each equipped with a quad-core processor, 4 GB of memory and two
Gigabit network cards. Servers run Ubuntu 14.04 with Apache HTTP Server
2.4.18. Apache runs in its default configuration, with H2 and SSL modules
enabled. Content is served using SSL by installing self-signed certificates.

We run multiple Apache instances configured to serve content through vir-
tual hosts, which are both name-based and IP-based. We leverage name-based
configuration to distinguish requests directed to different domains being hosted
on the same machine, while the IP-based distinction is required to have domains
mapped to specific network conditions. To control network conditions, we use
Linux traffic control utility (tc) to enforce both network latency and packet loss.
We next distribute content to each server, preserving the original placement of
objects into domains, and map each domain to a static IP address using the
10.0.0.0/8 private range. Two separate virtual-hosts serve content using either
H1 or H2 to avoid protocol switching or fall-backs on the client side. The choice
of H1/H2 is performed by the client, which directs requests to the IP address of
the server implementing the desired protocol.

Client instrumentation. We provide a preconfigured PC to each volunteer
taking part in our campaign. Each PC runs Linux Mint 17.3 and is equipped
with a set of scripts for experiment orchestration. In particular, such scripts
(i) setup the local client to reflect the desired scenario, (ii) run Google Chrome
to let the volunteer visit a page, (iii) collect the user’s score and the objective
measurement, and (iv) send the results to a central repository.

Each experiment requires several steps to complete. From the users’ point
of view, the experience starts with a GUI listing all the available websites of
the page catalog. Volunteers (i) select a page from the list and (ii) observe it
being loaded by Google Chrome. At the end, they (iii) input the MOS grade,
and then (iv) watch again the same page, now served with the other protocol.
At step (ii) the page is loaded using either H1 or H2 in a random fashion, then
at step (iv) the complementary protocol is used. Therefore, users sequentially
grade the same page under the same condition and for both protocols, although
they are unaware about the protocol order.

From the implementation standpoint, once the volunteer has selected a page,
the script (i) configures the system /etc/hosts file to direct browser requests to
local servers instead of the public Internet.2 Two hosts files are provided for each
web page, one for H1 servers, the other for H2 servers. Next, the script (ii) starts
Google Chrome in full screen mode, disabling the local cache and enabling the
incognito mode. This ensures each page is loaded independently on previous
tests and eventual cookies. We force Chrome to log network events, which we
collect in the form of HTTP Archive (HAR) file for later stage analysis. Once
the user has provided the (iii) MOS grade, (iv) all metadata for that experiment
(i.e., HAR file, user’s grade, and metadata with network configuration, etc.) are
sent to a central repository.

2 Due to the explicit binding between host names and IP addresses in hosts file, no
DNS resolution takes place. This avoids potential bias due to resolution delay and
DNS caching, enabling a fair comparison between H1 and H2 performance.
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Fig. 3. MOS grades and PLT for homogeneous RTT in [0,100] ms. (Color figure
online)

3.3 Scenarios and MOS Dataset Collection

We aim at collecting MOS grades in (i) realistic scenarios to provide answers
of operational interest, but also in (ii) controlled scenarios that the scientific
community has already targeted via objective metrics. Given the limited time
available with volunteers, we focus our attention on the following scenarios.

• Homogeneous network. Objects are distributed on servers as originally
observed. RTT and packet loss are artificially forced to be the same for all
virtual servers. RTT can be chosen in {0, 20, 50, 100}ms, and packet loss in
{0, 1, 2}%. Bandwidth is uncapped. These conditions are typically considered
in literature.

• Heterogeneous network. As before, but latency reflects the original RTT
measured during the collection process. No loss is introduced. Such configura-
tion introduces realism into the dependency graph of objects download, which
may not arise in case of homogeneous conditions.

• Unsharded deployment. All objects are hosted by a single server, on a single
domain name and IP address. RTT to the server is forced in {0, 20, 50, 100}ms.
Bandwidth is uncapped, and no loss is introduced. Unsharded deployment is
useful to contrast today’s production scenarios (i.e., sharding over multiple
domains) vs situations that are by now unrealistic (i.e., all content hosted on
a single “unsharded” domain) where H2 benefits are expected to appear [12].

Volunteers are exposed to experiments by randomly choosing one scenario
and by visiting the same page over H1 and H2 in unknown order. To avoid
biased ratings, only the website name is disclosed to users. Experiments have
been conducted in three sessions totaling to 147 volunteers who sampled a space
of 25 pages with 32 different scenarios. We followed the best practices suggested
by “The Menlo Report” [2], and in particular those for network measurements [1].

4 MOS on the Toy Page

We start the analysis of collected MOS grades focusing on the toy page https://
www.httpvshttps.com, which contains a HTML document (18 kB) and 360

https://www.httpvshttps.com
https://www.httpvshttps.com
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identical non-cacheable images of 20 × 20 pixels (1.7 kB each), for a total of
630 kB. All the content is hosted on a single domain, mapped to a single IP
address and served by a single server. This scenario is particularly adverse to H1
since the browser opens a large number of connections, each incurring in TCP
and TLS handshake overhead and in TCP slow-start. In contrast, H2 takes full
advantage of its capabilities by pipelining all requests over multiple streams
encapsulated in a single TCP connection and by performing HPACK header
compression. We expect H2 to reduce the PLT, ultimately providing a better
WebQoE.

We use this toy page to validate the testbed and calibrate MOS grades. On
the one hand, we aim at verifying whether expectations on H2 performance are
satisfied. On the other hand, we aim at assessing the MOS gap between H2 and
H1 by using this extreme scenario as a litmus paper [16,18,20]. We consider 4
different network setups, namely with RTT in {0, 20, 50, 100}ms, collecting 487
MOS samples in total. Figure 3 shows MOS (left plot) and PLT (right plot) for
H1 (red) and H2 (green). Each point corresponds to an experiment, adding jitter
(to x-y axis for MOS and to x axis only for PLT) to enhance the representation.

Consider Fig. 3a first and notice that MOS consistently decreases with
increasing RTT. This holds for H1 and H2, with H2 providing a better experience
at both low and high latencies. Also, the difference (Δ) between the average of
H1 and H2 MOS grades is always of at least 1 point, increasing along with RTT.

Consider now Fig. 3b, showing PLT. H1 is significantly more penalized than
H2, with PLT peaking at 8 s for RTT = 100 ms, while H2 keeps PLT below
2 s in all scenarios. As expected, H2 outperforms H1 PLT, meeting the original
design goal of “a 50% reduction in page load time” [11].

Next, we verify the existence of a sub-linear dependency of the subjec-
tive response to an objective impulse [20]. Here the impulse is the inflated
RTT (translating into a longer PLT), while the response is the MOS degra-
dation. Figure 4 reinterprets Fig. 3 as a scatter plot, where each point is the
(E[PLT],E[MOS]) pair over all samples for a given RTT. The figure also reports
the trend curve, clearly highlighting the expected sub-linear dependency.
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Fig. 5. H1 vs H2 MOS grades (ΔMOS) for all 4,000 tests in the dataset.

A final remark is that excellent MOS (i.e., 4 or higher) is bestow only to pages
with a loading time lower than 1.25 s. This is in line with [14], which classifies
pages as reactive if they render the above-the-fold content in less then 1 s.

5 MOS on Real Pages

We here focus on real pages to compare H1 and H2 from a subjective perspective.
Our aim is to assess if and to what extent differences in user experience shown
earlier still hold in real-life scenarios. To do so, we consider a set of pages served
using multiple network and application configurations. On the one hand, we
revisit known results from the unique user MOS perspective. On the other
hand, we target the impact of less studied factors, such as implications of content
sharding [12] over multiple domains and differences caused by homogeneous vs
heterogeneous latency conditions towards servers.

5.1 Subjective MOS Differences

We start by assessing the per-user difference of H1 vs H2 MOS grades (ΔMOS)
for each page in the catalog. Figure 5 shows ΔMOS = MOSH2−MOSH1 over all
tests, detailing both the empirical probability mass function (Fig. 5a) and the
per-page MOS difference (Fig. 5b). The figure is annotated with statistics (e.g.,
median) and visual references (e.g., light-gray area for H2 better than H1).

Some insightful observations can be drawn from the plot: The distribution
is (i) monomodal with zero mean and median, (ii) bell shaped, but (iii) slightly
skewed. In other words, (i) in 50% of cases, users equally score H2 and H1,
(ii) cases where either H2 or H1 has higher score are roughly balanced, although
(iii) there is a slight yet noticeable bias towards negative ΔMOS, where MOS|H1

is higher than MOS|H2. That is, contrary to the previous results, the difference
between H2 and H1 is much more subtle and inconsistent.

This reinforces the need to perform experiments on real-world pages, as oppo-
site to benchmark pages that inflate MOS differences. Results are only partially
surprising. First, pages widely differ (see Fig. 2) and ΔMOS varies according to
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the page being considered, as shown by Fig. 5b (the order of web pages is con-
sistent with Fig. 2). Second, users have a different way to “value improvement”,
causing them to report the same score under both protocols, which contributes
to ΔMOS = 0. Third, pages in our catalog are likely optimized for H1. Fourth,
the H1 software has undergone decades of testing and optimization, while H2 is
a relatively new protocol.

5.2 Impact of Page Sharding

We now consider sharding [12], i.e., distributing page content over multiple
domains to exploit server parallelism. This practice helps in overcoming the lim-
itation on the maximum number of connections a browser can establish towards
the same domain. Given H2 benefits of using a single connection to a single
domain [7,15,22], one would expect that unsharding helps in taking advantage
of H2 pipelining features. In our evaluation, we consider 10 of the 25 pages
of the catalog and modify them so to have all the content hosted on a single
domain (i.e., unsharding the content). We then contrast MOS grades to assess
the impact of (un)sharding for H2 and H1 independently.

Figure 6 shows the per-page difference between the average MOS for the
unsharded and for the sharded content. In formulas, ΔMOS = E[MOS|unsharded]
– E[MOS|sharded]. Pages are sorted increasingly according to ΔMOS for H2.

It is straightforward to notice that the impact of sharding is page-dependent:
there are pages for which the user experience improves when they are served
through the unsharded deployment (ΔMOS > 0), as well as pages suffering
from usharding (ΔMOS < 0). 7 pages out of 10 show an improvement in MOS
when unsharded, even though the difference in perceived quality greatly changes,
from a minimum of 0.028 to a maximum of 1.020 ΔMOS points. H2 appears to
benefit more of unsharding, but 3 pages gets a sensibly reduced MOS. H1 is less
impacted, peaking at a difference of “only” 0.716 ΔMOS points.

5.3 Impact of Latency Diversity

Page latency is known to be impacted by client-server RTT. Here we investi-
gate how much impact it has on MOS. We contrast scenarios with homogeneous
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RTT (usually considered in literature [17,21]) against heterogeneous RTT to
each domain. Clearly, homogeneous conditions are the ordinary solution in case
of proxy-based proposals [7,8,22] and is typically justified in testbed studies with
the assumption that sharding practice will ultimately be abandoned as counter-
ing H2 benefits. At the same time, sharding is by now a standard practice and
page redesign would happen conditionally on unsharding benefits being proved
and consistent. Total unsharding is unlikely as pages aggregate many contri-
butions (e.g., twitter feeds, advertisement, etc.) coming from multiple content
producers. As such, it is important to evaluate H2 performance also in controlled
conditions that are as close as possible to the real ones.

For this experiment, we select a subset of 3 pages sampled by 95 users for
a total of 362 experiments. Average MOS scores are reported in Fig. 7 for
different RTT configurations and for H2 and H1 separately. It emerges that
different RTT leads to opposite biases for H1 vs H2. For instance, in the case
of H2, low-RTT homogeneous scenarios provide about 0.35 better MOS than
heterogeneous RTT. When RTT is high (>50 ms), instead, MOS degrades loosing
0.58 points with respect to the low-RTT scenario. This happens in the case of
H1 too, where high-RTT homogeneous scenarios lead to a loss of about 0.5 MOS
points with respect to both heterogeneous and low-RTT homogeneous scenarios.
Interestingly, H1 in heterogeneous RTT conditions performs much better than
H2 in the same scenario. Similarly to [23], we noticed that macroscopic pages
characteristics are not telling as for user MOS. The performance gap has its roots
in page dependency graph [22], and homogeneous latencies may hide intricate
interactions in such dependencies that arise only under heterogeneous conditions.

6 Objective Metrics on Real Pages

We finally study the H1 vs H2 difference using objective metrics (OBJ in short).
As before, we quantify the difference in accessing the same page over the two
protocols with ΔOBJ = OBJH2 − OBJH1, where OBJ is the Time to the First
Byte (TTFB), the Document Object Model (DOM), or Page Load Time (PLT).
We additionally consider the ObjectIndex, a replacement metric for the SpeedIn-
dex [9] that has been shown to be strongly correlated with the latter [5].
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Figure 8 presents the results depicting the histogram of ΔOBJ using bins
of 100 ms. The figure is annotated with statistics (notice that H2 better than
H1 is represented by the negative semi-plane in this case). All OBJ exhibit an
empirical probability mass function that is similar to that of the ΔMOS grades
(i.e., roughly symmetric, peak close to zero, very low median). In addition, here
ΔOBJ attributes a (slight) advantage to H2, unlike in the ΔMOS case.

Excluding the TTFB, which is known to be not the most appropriate metric
for web pages performance assessment, H2 shows better results than H1 in at
least 54% of tests. That is, H2 speeds up the page loading process and the
time needed to load the DOM, but those improvements are not reflected in user
experience that rates H1 and H2 with the same score in 55% of cases (see Fig. 5).

7 Conclusions

This paper presents the first study comparing the performance of H2 and H1 in
terms of MOS. We contrast the two protocols using both subjective (i.e., a MOS
corpus of over 4,000 points) and objective metrics using a dedicated testbed.

The emerging picture does not allow the election of a single winner. While
H2 sensibly reduces the PLT on a toy page, ultimately improving the quality
of experience, it is not as effective when serving real-world web pages. Objective
metrics (e.g., DOM, PLT, etc.) show a performance improvement to the advan-
tage of H2 in more than 50% of cases, but they fail to predict users’ MOS that
is reported to be higher in the case of H1.

This highlights the importance of users feedbacks and calls for future research
on new models enhancing the correlation between MOS and QoE metrics.
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