
Mohamed Ali Kaafar
Steve Uhlig
Johanna Amann (Eds.)

 123

LN
CS

 1
01

76

18th International Conference, PAM 2017
Sydney, NSW, Australia, March 30–31, 2017
Proceedings

Passive and Active
Measurement

Lecture Notes in Computer Science 10176

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Mohamed Ali Kaafar • Steve Uhlig
Johanna Amann (Eds.)

Passive and Active
Measurement
18th International Conference, PAM 2017
Sydney, NSW, Australia, March 30–31, 2017
Proceedings

123

Editors
Mohamed Ali Kaafar
CSIRO
Sydney, NSW
Australia

Steve Uhlig
Queen Mary University of London
London
UK

Johanna Amann
International Computer Science Institute
Berkeley, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-54327-7 ISBN 978-3-319-54328-4 (eBook)
DOI 10.1007/978-3-319-54328-4

Library of Congress Control Number: 2017933285

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 18th edition of the Passive and Active Measurement conference (PAM) took place
in Sydney, Australia, during March 30–31, 2017. The technical program included
papers on a wide range of topics in Internet measurements, including performance and
troubleshooting, the Web and applications, IPv6, security, and wireless.

PAM brings together both the network research and operations communities to
discuss novel network measurement and analysis techniques, with a particular focus on
early-stage research. PAM has traditionally focused on research and practical applica-
tions of specific network measurements. However, over the past few years, PAM has
broadened its scope to encompass measurements of networked applications and sys-
tems, content distribution networks, online social networks, overlay networks, and
more. Indeed, measurement technology is needed at all layers of the stack, e.g., for
power profiling of hardware components, at the MAC/network/transport layers, as well
as up the stack for application profiling and even to collect user feedback. Measurement
technologies are being designed for the digital home, residential access networks,
wireless and mobile access, enterprise, ISP, and data-center networks. PAM encourages
a broad range of submissions across all these topics. We aim at understanding the role
that measurement techniques can play in networked environments and applications,
across different layers, and how they can serve as building blocks for broader mea-
surement needs. This year PAM received 87 submissions originating from most con-
tinents, including North America, South America, Europe, Asia, the Pacific, and the
Middle East, with authors from both academia and industry. The program was the result
of a thorough review process, followed by a two-week-long discussion phase. In the first
phase of the review process, papers were assigned to Technical Program Committee
(TPC) members for review. The TPC consisted of 34 recognized researchers, with
expertise covering the topics of interest to PAM, and were drawn mostly from academic
and research institutes but also industry. Special attention was paid this year to the TPC
member selection, so as to include a mix of early career and more established
researchers, as well as to ensure diversity in the institutions and countries represented.
The TPC worked diligently, writing many thoughtful, fair, and thorough reviews. Most
papers received three reviews by the end of this stage. Also, throughout the review
process, special attention was paid to conflicts (declared by the authors or not), to
guarantee impartial reviewing. Indeed, more than half of the submitted papers had TPC
conflicts. Papers in conflict with TPC members were marked as conflict in the confer-
ence management system and were reviewed only by non-conflicting TPC members.

At the end of the reviewing phase, marking the beginning of the discussion phase,
each paper was then assigned a discussion lead among its assigned reviewers. The
discussion leads were responsible for leading and moderating the discussion. By the
end of the discussion phase, a consensual decision had been made by the reviewers.
This led to 20 papers being accepted out of the 87 submitted. Some of the accepted

papers were assigned a shepherd to ensure that the authors addressed the reviewers
comments adequately.

The final program is the result of hard work of many individuals. We thank all the
authors who submitted their work to PAM. We appreciate the effort that goes into
producing a quality research paper and hope that authors received useful feedback on
their submissions. As program chair, I would like to extend a big thank you to our
hardworking TPC members for volunteering their time and expertise with passion.

Before closing this preface, our most sincere thanks also go to our local volunteers
who devoted their time and effort to make the conference possible. We would also like
to thank Prashanthi Jayawardhane and the local organization chairs, Wei Bao and
Jonathan Chan, for their diligence and care in reviewing logistics and organizational
details. We are also grateful to Ralph Holz, who was the finance chair, Johanna Amann
as the publication chair, and Kanchana Thilakarathna, who served as the publicity
chair.

We hope you enjoyed the proceedings.

March 2017 Dali Kaafar
Steve Uhlig

VI Preface

Organization

General Chair

Mohamed Ali (Dali) Kaafar Data61-CSIRO, Australia

Program Chair

Steve Uhlig Queen Mary University of London, UK

Finance Chair

Ralph Holz University of Sydney, Australia

Local Arrangements Chairs

Wei Bao University of Sydney, Australia
Jonathan Chan Data61-CSIRO, Australia

Web Chair

Guillaume Jourjon Data61-CSIRO, Australia

Publicity Chair

Kanchana Thilakarathna Data61-CSIRO, Australia

Publication Chair

Johanna Amann ICSI, USA

Submission Chair

Timm Boettger Queen Mary University of London, UK

Steering Committee

Fabio Ricciato University of Salento, Italy
George Riley Georgia Institute of Technology, USA
Ian Graham Endace, New Zealand
Neil Spring University of Maryland, USA
Nevil Brownlee The University of Auckland, New Zealand
Nina Taft Google, USA

Matthew Roughan University of Adelaide, Australia
Rocky K.C. Chang The Hong Kong Polytechnic University, Hong Kong,

SAR China
Yong Liu New York University, USA
Xenofontas Dimitropoulos University of Crete, Greece
Mohamed Ali (Dali) Kaafar Data61-CSIRO, Australia

Program Committee

Mark Allman ICSI, USA
Gianni Antichi University of Cambridge, UK
Fabian Bustamante Northwestern University, USA
Alberto Dainotti CAIDA, UC San Diego, USA
Xenofontas Dimitropoulos FORTH and ETH Zurich, Switzerland
Amogh Dhamdhere CAIDA/UC San Diego, USA
Benoit Donnet University of Liege, Belgium
Anja Feldmann TU Berlin, Germany
Kensuke Fukuda National Institute of Informatics, Japan
Monia Ghobadi Microsoft research, USA
Sergey Gorinsky IMDEA, Spain
Ralph Holz University of Sydney, Australia
Te-Yuan Huang Netflix, USA
Thomas Karagiannakis MSR, UK
Myungjin Lee University of Edinburgh, UK
Youngseok Lee Chungnam National University, Korea
Simon Leinen SWITCH, Switzerland
Yong Li Tsinghua University, China
Marco Mellia Politecnico di Torino, Italy
Alan Mislove Northeastern University, USA
Andrew Moore University of Cambridge, UK
Cristel Pelsser University of Strasbourg, France
Maria Papadopouli FORTH, University of Crete
Costin Raiciu Universitatea Politehnica din Bucureşti, Romania
Michael Rabinovich Case Western Reserve University, USA
Cigdem Sengul Nominet, UK
Justine Sherry UC Berkeley, USA
Georgios Smaragdakis MIT/TU Berlin, Germany
Rade Stanojevic Telefonica, Spain
Kanchana Thilakarathna Data 61, Australia
Guillaume Urvoy-Keller University of Nice, France
Narseo Vallina-Rodriguez IMDEA Networks/ICSI, Spain
Gaogang Xie ICT, CAS, China

VIII Organization

Sponsoring Institutions

Data61-CSIRO, Australia
Akamai, USA
University of New South Wales, Australia
University of Sydney, Australia

Organization IX

Contents

IPv6

Understanding the Share of IPv6 Traffic in a Dual-Stack ISP 3
Enric Pujol, Philipp Richter, and Anja Feldmann

On the Potential of IPv6 Open Resolvers for DDoS Attacks 17
Luuk Hendriks, Ricardo de Oliveira Schmidt, Roland van Rijswijk-Deij,
and Aiko Pras

Something from Nothing (There): Collecting Global IPv6 Datasets
from DNS . 30

Tobias Fiebig, Kevin Borgolte, Shuang Hao, Christopher Kruegel,
and Giovanni Vigna

Web and Applications

The Web, the Users, and the MOS: Influence of HTTP/2 on User
Experience . 47

Enrico Bocchi, Luca De Cicco, Marco Mellia, and Dario Rossi

Internet Scale User-Generated Live Video Streaming: The Twitch Case 60
Jie Deng, Gareth Tyson, Felix Cuadrado, and Steve Uhlig

Internet Access for All: Assessing a Crowdsourced Web Proxy Service
in a Community Network. 72

Emmanouil Dimogerontakis, Roc Meseguer, and Leandro Navarro

Security

A First Look at the CT Landscape: Certificate Transparency Logs
in Practice . 87

Josef Gustafsson, Gustaf Overier, Martin Arlitt, and Niklas Carlsson

Where Is the Weakest Link? A Study on Security Discrepancies Between
Android Apps and Their Website Counterparts . 100

Arash Alavi, Alan Quach, Hang Zhang, Bryan Marsh, Farhan Ul Haq,
Zhiyun Qian, Long Lu, and Rajiv Gupta

Patch Me If You Can: A Study on the Effects of Individual User Behavior
on the End-Host Vulnerability State . 113

Armin Sarabi, Ziyun Zhu, Chaowei Xiao, Mingyan Liu,
and Tudor Dumitraş

http://dx.doi.org/10.1007/978-3-319-54328-4_1
http://dx.doi.org/10.1007/978-3-319-54328-4_2
http://dx.doi.org/10.1007/978-3-319-54328-4_3
http://dx.doi.org/10.1007/978-3-319-54328-4_3
http://dx.doi.org/10.1007/978-3-319-54328-4_4
http://dx.doi.org/10.1007/978-3-319-54328-4_4
http://dx.doi.org/10.1007/978-3-319-54328-4_5
http://dx.doi.org/10.1007/978-3-319-54328-4_6
http://dx.doi.org/10.1007/978-3-319-54328-4_6
http://dx.doi.org/10.1007/978-3-319-54328-4_7
http://dx.doi.org/10.1007/978-3-319-54328-4_7
http://dx.doi.org/10.1007/978-3-319-54328-4_8
http://dx.doi.org/10.1007/978-3-319-54328-4_8
http://dx.doi.org/10.1007/978-3-319-54328-4_9
http://dx.doi.org/10.1007/978-3-319-54328-4_9

Performance

Application Bandwidth and Flow Rates from 3 Trillion Flows Across 45
Carrier Networks. 129

David Pariag and Tim Brecht

Measuring What is Not Ours: A Tale of 3rd Party Performance. 142
Utkarsh Goel, Moritz Steiner, Mike P. Wittie, Martin Flack,
and Stephen Ludin

The Utility Argument – Making a Case for Broadband SLAs 156
Zachary S. Bischof, Fabián E. Bustamante, and Rade Stanojevic

Latency

Why Is the Internet so Slow?! . 173
Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan Chandrasekaran,
P. Brighten Godfrey, Gregory Laughlin, Bruce Maggs, and Ankit Singla

Anycast Latency: How Many Sites Are Enough? . 188
Ricardo de Oliveira Schmidt, John Heidemann, and Jan Harm Kuipers

Where Has My Time Gone?. 201
Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu,
Neelakandan Manihatty-Bojan, Gianni Antichi, Marcin Wójcik,
and Andrew W. Moore

Characterization and Troubleshooting

Mind the Gap Between HTTP and HTTPS in Mobile Networks 217
Alessandro Finamore, Matteo Varvello, and Kostantina Papagiannaki

Using Loops Observed in Traceroute to Infer the Ability to Spoof 229
Qasim Lone, Matthew Luckie, Maciej Korczyński, and Michel van Eeten

A Characterization of Load Balancing on the IPv6 Internet 242
Rafael Almeida, Osvaldo Fonseca, Elverton Fazzion, Dorgival Guedes,
Wagner Meira Jr., and Ítalo Cunha

Wireless

Enhancing WiFi Throughput with PLC Extenders: A Measurement Study . . . 257
Kittipat Apicharttrisorn, Ahmed Osama Fathy Atya, Jiasi Chen,
Karthikeyan Sundaresan, and Srikanth V. Krishnamurthy

XII Contents

http://dx.doi.org/10.1007/978-3-319-54328-4_10
http://dx.doi.org/10.1007/978-3-319-54328-4_10
http://dx.doi.org/10.1007/978-3-319-54328-4_11
http://dx.doi.org/10.1007/978-3-319-54328-4_11
http://dx.doi.org/10.1007/978-3-319-54328-4_12
http://dx.doi.org/10.1007/978-3-319-54328-4_13
http://dx.doi.org/10.1007/978-3-319-54328-4_14
http://dx.doi.org/10.1007/978-3-319-54328-4_15
http://dx.doi.org/10.1007/978-3-319-54328-4_16
http://dx.doi.org/10.1007/978-3-319-54328-4_17
http://dx.doi.org/10.1007/978-3-319-54328-4_18
http://dx.doi.org/10.1007/978-3-319-54328-4_19

Cutting Internet Access Costs Through HTTPS Caching: A Measurement
Study. 270

Prerna Gupta, Mohammedsalman Patel,
and Kameswari Chebrolu

Author Index . 283

Contents XIII

http://dx.doi.org/10.1007/978-3-319-54328-4_20
http://dx.doi.org/10.1007/978-3-319-54328-4_20

IPv6

Understanding the Share of IPv6 Traffic
in a Dual-Stack ISP

Enric Pujol1,2(B), Philipp Richter2, and Anja Feldmann2

1 BENOCS GmbH, Berlin, Germany
2 TU Berlin, Berlin, Germany
enric@inet.tu-berlin.de

Abstract. After almost two decades of IPv6 development and conse-
quent efforts to promote its adoption, the current global share of IPv6
traffic still remains low. Urged by the need to understand the reasons
that slow down this transition, the research community has devoted much
effort to characterize IPv6 adoption, i.e., if ISPs and content providers
enable IPv6 connectivity. However, little is known about how much the
available IPv6 connectivity is actually used and precisely which factors
determine whether data is exchanged over IPv4 or IPv6. To tackle this
question, we leverage a relevant vantage point: a dual-stack residential
broadband network. We study interactions between applications, devices,
equipment and services, and illustrate how these interactions ultimately
determine the IPv6 traffic share. Lastly, we elaborate on the potential
scenarios that dual-stack ISPs and content providers may confront dur-
ing the Internet’s transition to IPv6.

1 Introduction

The initial and ubiquitously deployed version 4 of the Internet Protocol has a
fundamental resource scarcity problem: it reached the limit of available, globally
unique, IP address space. As of today, IPv4 address scarcity has become a global
issue, forcing some ISPs to NAT large chunks of their customers [43] or even to
buy blocks of remaining free IPv4 address space on address markets [41]. IPv6,
which offers a vastly larger address space was intended to replace IPv4 long
before scarcity of IPv4 address blocks commenced. However, despite initiatives
by Internet governing bodies to promote IPv6 deployment [5], the transition to
IPv6 has been slow and challenging in production environments [7,16]. As of
today, there is no clear consensus about when IPv6 will really “hit the breaking
point”, i.e., when IPv6 will become the preferred interconnectivity option on
the Internet. The research and operations communities have put substantial
effort into measuring and tracking IPv6 deployment with the goal of assessing
this transition (e.g., [19]). However, current statistics show a disparity between
two adoption metrics: connectivity and traffic share. For example, while Google
reports optimistic connectivity adoption rates as high as 16% for end hosts [4]
as of January 2017, the IPv6 traffic share at major Internet eXchange Points
(IXPs) still ranges between 1–2% [2]. The comparably low share of IPv6 traffic is
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 3–16, 2017.
DOI: 10.1007/978-3-319-54328-4 1

4 E. Pujol et al.

(iii)
CPE

(i) OS
(ii) applications

Home network Dual-stack ISP Service providers

IPv4 traffic

IPv6 traffic

(iv) ISP connectivity (v) service availability

Internet

Fig. 1. IPv6 traffic in dual-stack networks. Barriers are present at home networks
(operating systems, applications and CPEs), ISPs (offered DSL connectivity), and at
service providers.

not only one of the main reasons for disappointment regarding the pace of IPv6
adoption, but has also fueled a different interconnection structure among ISPs.
The provider hierarchy in the IPv6 Internet shows vastly different properties
compared to that of IPv4 [23], i.e., the one ISP offering free IPv6 tunnels has the
largest customer cone in the IPv6 Internet, whereas Tier-1 ISPs with worldwide
backbones are less prominent in this hierarchy.

We argue that increasing IPv6 traffic shares will eventually provide the incen-
tives for ISPs to provision proper IPv6 infrastructure, establish genuine intercon-
nectivity, and finally make IPv6 the first-class citizen on the Internet. However,
to exchange data over IPv6, all components on the path from a source to a desti-
nation need to fully support IPv6 (see Fig. 1). This includes (i) end-user devices
and operating systems supporting IPv6, (ii) applications making proper use of
the available connectivity options (see [49]), (iii) customer premises hardware
(CPEs) supporting and providing IPv6 to the home network [3,48], (iv) the ISP
assigning IPv6 to the subscribers CPEs [20], and finally (v) content providers
enabling their services over IPv6 [34]. Moreover, even if all of the above condi-
tions apply, i.e., all components support IPv6, a second dimension of the problem
is whether IPv6 will be preferred over IPv4, as modern applications employ a
technique named “happy eyeballs” to choose between IPv4 and IPv6 according
to the current network conditions [51].

Determined to investigate the reasons that refrain the increase of IPv6 traffic
on the Internet, we study this problem from the perspective of 12.9 K subscribers
of a dual-stack ISP. This vantage point gives us a unique opportunity to analyze
the interactions between applications, devices, equipment and services, and how
they eventually influence the share of IPv6 traffic. Our main findings can be
summarized as follows:

(i) Even though this ISP supports IPv6 connectivity, a large number of sub-
scribers can not use IPv6. While in some few cases the ISP does not provide
IPv6 connectivity to its subscribers, more often the CPE limits IPv6 con-
nectivity.

Understanding the Share of IPv6 Traffic in a Dual-Stack ISP 5

(ii) Consequently, IPv6-ready services exchange a significant amount of traf-
fic over IPv4. IPv4-only speaking devices and fallback mechanisms further
increase the share of IPv4 traffic for these services. We observe, on the other
hand, a strong intent for IPv6 traffic that IPv4-only services are not yet
ready to correspond to.

(iii) Due to dual-stack applications’ preference for IPv6, dual-stack networks
could face a rapid and substantial increase of the IPv6 traffic share if only
a few major service providers enable IPv6 for high-traffic domains.

The rest of this manuscript is organized as follows: Section 2 summarizes
related work. We describe our methodology in Sect. 3 and introduce our dataset
in Sect. 4. Section 5 presents our findings. We discuss implications and limitations
of our work in Sect. 6, and conclude with Sect. 7.

2 Related Work

The research community has called for data that can help tracking the evolu-
tion of IPv6 [17]. Some works have reported the IPv6 traffic share at multiple
vantage points in the Internet. In 2008, most IPv6 traffic at a tier-1 ISP in the
US was DNS and ICMP [29]. While initiatives such as the “World IPv6 day”
in 2011 ignited the increase of IPv6 traffic at various vantage points [46], by
2013 the share of IPv6 traffic at European IXPs or at 260 network providers
was still below 1% [19,42]. Nonetheless, every year IPv6 traffic experiences a
many-fold increase [19]. This development has encouraged studies on dual-stack
networking performance [11,16,38,40], active measurements of the Internet’s
IPv6 infrastructure [13,32] and analyses of the AS-level topology [21,23]. More-
over, a large body of literature has focused on measuring IPv6 adoption among
ISPs and service providers [18,19,21,23,28,29]. Some works seek to understand
the root causes that slow down IPv6 adoption and find a slower pace of adoption
at the edge compared to core networks [21], or poor IPv6 quality in the early
days of this transition [37]. As of today, the IPv6 control and data planes are—
when applicable—almost on par with IPv4 [31], while both control planes show
signs of convergence [23]. In parallel to the research community, standardization
bodies have invested decades to address IPv6-related aspects. Relevant to our
work are fallback mechanisms for dual-stack applications [51] (happy eyeballs)
and their implementations (see e.g., [6,26,27,47]). We complement this body of
work with a passive measurement study at a dual-stack ISP to shed light on why
some data exchanges occur over IPv4 instead of IPv6.

3 Methodology

The focus of our study is the traffic at a residential broadband network of a dual-
stack ISP. As shown in Fig. 1, IPv4 and IPv6 traffic coexist at such a vantage
point. Whether IPv4 or IPv6 is used depends on a large variety of factors men-
tioned earlier in Sect. 1. Hence, a dual-stack ISP presents a unique opportunity

6 E. Pujol et al.

to study the interactions of this ecosystem and its influence on the share of IPv6
traffic. To this end, we first need to discover the connectivity options of the two
engaged parties, i.e., the subscribers (the client side) and the service providers
(the server side). With this information in hand we can proceed to study which
traffic is exchanged over which protocol, and why.

3.1 Measuring IPv6 Connectivity

Connectivity of subscribers (“client side”). Broadband network providers
typically rely on Remote Authentication Dial-In User Service (RADIUS [44]) to
assign IP addresses to subscribers. With this protocol, CPEs obtain IP addresses,
usually a single IPv4 address that multiplexes devices (NAT). This protocol
specification also supports the delegation of IPv6 addresses to subscribers [8,20,
45]. If the CPE receives an IPv6 prefix assignment, we say that the subscriber
obtains IPv6 connectivity from the ISP. Traffic statistics later tell us whether
the subscriber’s devices make actual use of this assigned IPv6 prefix.

Since not all devices within home networks support IPv6, the raw traffic
statistics are necessary but not sufficient to infer if a device within a subscriber’s
premise can use IPv6. We use AAAA DNS requests as an indicator for the presence
of IPv6-speaking devices. Most dual-stack applications follow the happy-eyeballs
proposed standard (see [51]), and issue A as well as AAAA DNS requests. If
the requested service is available over IPv6, the device attempts to connect
simultaneously to two addresses contained in the DNS resource records (RRs);
one being IPv6 and the other IPv4. An application that adheres to the example
implementation then establishes two TCP connections and uses the one that
completed the handshake faster. Some implementations introduce a preference
towards IPv6. For example, Apple devices issue an IPv6 connection immediately
after a successful AAAA request if the A response did not arrive already, or if
historical RTT data suggests a difference > 25 ms [47]. Given that most DNS
clients issue AAAA requests first [36], some dual-stack devices do not always
attempt a connection over both IPv4 and IPv6 although they issue requests for
both RRs.

One important fact regarding IPv6-speaking devices is that many resolver
libraries avoid suppressing AAAA requests if there is no global IPv6 connectivity,
but just link-local, i.e., within the home network. The rationale is that doing so
can lead to undesired situations [1]. Thus, we can use this information to further
identify CPEs that offer link-local IPv6 connectivity even if the ISP does not
provide IPv6 connectivity to them.

Connectivity of services (“server side”). In this paper we use the term
service to refer to content and functionality that is available on the Internet via
a Fully-Qualified Domain Name (FQDN). For example, at www.google.com we
can find a search service as well as plain content. If the network infrastructure
that hosts a service supports IPv6, a service provider willing to make its services
available over IPv6 just needs to update the corresponding DNS AAAA and PTR
resource records (RRs) [34]. Henceforth, we can analyze DNS traffic to infer if

www.google.com

Understanding the Share of IPv6 Traffic in a Dual-Stack ISP 7

a service is IPv6-ready by looking for non-empty AAAA responses in our traces.
However, as we may not be able to observe all AAAA RRs (e.g., if the clients
are not IPv6 enabled), we complement passive data with active measurements,
i.e., we actively request AAAA records for FQDNs found in our trace.1

3.2 From IPv6 Connectivity to IPv6 Usage

Now that we are aware of the connectivity options of subscribers and services
(IPv4 and/or IPv6), we proceed to study the exchanged traffic. To accomplish
this, we first need to annotate each flow in our trace with the respective sub-
scriber and service.

Matching flows to names. One of the building blocks for our methodology is
the ability to associate the DNS requests issued by an IP address to the network
flows it generates, i.e., reproduce the mapping between FQDNs and server IPs for
each subscriber. This problem has been already explored (see, e.g., [12,35,39]),
and we extend it to include the connectivity information. It is important to
notice that for dual-stack networks the IP addresses of the flows and those of the
DNS traffic are not necessarily the same. Therefore, we cannot directly use the
source IP of a DNS request as a rendezvous. Instead, we keep track of the IPv4
and IPv6 addresses assigned to each subscriber. Another caveat (as reported
in related work) is that we need to update this mapping according to the TTL
values of the DNS response RRs. We are aware that related studies have reported
violations of the TTL field by clients [14,35]. For example, Callahan et al. [14]
observe that 13% of the TCP connections use expired records and attribute it
to security features present in modern Web browsers. In this work we opt for a
conservative approach and strictly use the TTL expiration values. In addition, we
do not consider negatively cached responses, e.g., a service without a AAAA RR.
Our rationale is that although negative answers should, in principle, be cached
according to the SOA record [10], some resolvers do not respect this [30]. The
immediate consequence is that at times we will not observe a AAAA request for
services without AAAA RR and may mis-attribute it to a device that does not
support IPv6.

Annotating flows. We next annotate each flow with the following information:
(i) whether the ISP has delegated an IPv6 prefix to the subscriber’s CPE, (ii) the
FQDN associated with the flow, where possible, and (iii) if the subscriber issued
an A and/or a AAAA DNS request. After collecting the trace we extend this
annotation with the following information: (iv) if the subscriber makes use of its
assigned IPv6 prefix at all, and with (v) the connectivity options for the FQDN
i.e., whether the service is available over IPv4 and/or IPv6.

4 Dataset

The dataset used throughout this study covers all IP traffic generated by
12.9 K DSL subscribers of a residential broadband network during a period of
1 We conducted these additional measurements shortly after the data collection.

8 E. Pujol et al.

Table 1. Total traffic
over IPv4/IPv6 and
TCP/UDP.

Trace #bytes #flows

TCPv4 80.5% 53.1%

TCPv6 10.7% 4.7%

UDPv4 7.4% 18.2%

UDPv6 1.1% 21.7%

total 64.5T 356.2M

Table 2. Traffic contribution partitioned by the state
of IPv4/IPv6 connectivity of subscribers and service
providers.

Service Side Subscriber Side total

IPv4-only IPv6-inactive IPv6-active

IPv4-only 5.4% 20.1% 22.4% 47.9%

IPv6-ready 3.2% 9.2% 15.4% 27.8%

IPv6-only 0.0% 0.0% < 0.1% < 0.1%

Unknown 3.4% 8.8% 12.1% 24.2%

total 11.9% 38.1% 49.8% 100%

45 h in winter 15/16. We implemented a custom tool built on top of the lib-
trace library [9] to produce two streams of data from raw network data. The
first stream consists of packet summaries, including packet size, SRC and DST
IP addresses, and port numbers. For TCP packets, we also save TCP flags, SEQ,
and ACK numbers. The second stream consists of full-sized packets of DNS traffic
(UDP port 53). We then process our packet summaries to obtain flow-level sta-
tistics. Namely, we aggregate the packet summaries into the 5 tuple and expire
inactive flows after 3600s. For TCP flows we also compute the time difference
between the SYN packet and the SYN ACK packet to estimate TCP handshake
times.2 Given the location of our monitor within the aggregation network, these
“handshakes” only capture the wide-area delays (backbone RTTs) and do not
include delays introduced by the access- and home network (see [33] for details
on the technique). Finally, we remark that the dataset was collected, processed,
and analyzed at an isolated and secured segment infrastructure of the ISP. The
toolset operates in an automated fashion and anonymizes line ids and addresses
before writing the annotated flows to the disk. Table 1 summarizes the dataset
collected for this study.

DNS transactions. We processed 141.9M DNS transactions, where we denote
a transaction as an A or a AAAA request with a valid response. 69.6% of these
entries are of type A and 30.4% of type AAAA. Out of these DNS transactions,
0.6% and 36.0% of the A and -respectively- AAAA requests could not be resolved
(empty response). The high ratio of unresolved AAAA requests is the result of
content that is indeed requested for IPv6, but still not accessible over IPv6
(see Sect. 2). 39% of the A requests were sent over IPv6, and 28% of the AAAA
requests over IPv4.

Flow-level statistics. Table 1 shows a breakdown of the contribution of
TCP and UDP traffic, dissected by IP version. Unsurprisingly, TCPv4 dom-
inates in terms of traffic volume. However, the share of IPv6 is substantial
(11.9%) especially when compared to older measurement studies at other van-
tage points [19,46]. Web traffic sums up to 86.6% of the trace volume (13.5%
2 We exclude flows with retransmissions of packets with the SYN flag set.

Understanding the Share of IPv6 Traffic in a Dual-Stack ISP 9

over IPv6).3 We find that QUIC contributes 2.8% of the overall trace volume
(39.5% over IPv6). Considering the relative UDP contributions over IPv4 and
IPv6, we see that the share of UDPv6 flows is well above the UDPv4 share. A
closer look reveals that this bias is introduced by DNS traffic: DNS accounts for
71.0% of all UDP flows and 75.3% of DNS flows are sent over IPv6.

Classification coverage. We are able to associate up to 76.1% of the traffic
to services using the flow-classification approach described in Sect. 3.2. While
our coverage statistics are consistent with the base results reported in [35], we
remark that ours are lower than related methods because our method (i) does
not use a warm-up period to account for already cached DNS RRs, (ii) relies on
each subscriber’s own DNS traffic, and (iii) adheres to the TTL values included
in DNS responses.

5 A Dual-Stack ISP Perspective on IPv6 Traffic

5.1 The Subscribers’ Side

We find three classes of DSLs among the 12.9 K subscriber lines of this van-
tage point: (i) IPv4-only : lines that do not get IPv6 connectivity from the ISP
(17.3%), (ii) IPv6-inactive: lines provisioned with IPv6 connectivity but no IPv6
traffic (29.9%), and (iii) IPv6-active: lines with IPv6 connectivity as well as IPv6
traffic (52.9%).

IPv4-only subscribers. This set of lines corresponds to subscribers for which
the ISP has still not activated IPv6 connectivity (e.g., old contracts). They con-
tribute 12.0% to the overall trace volume. 26.6% of their traffic is exchanged
with services that are available over IPv6. We notice that some devices issue
AAAA DNS requests, most likely because some CPEs create a link-local IPv6
network. In fact, for 11.6% of the traffic related to IPv6 services we observe a
AAAA request. This first observation is relevant for IPv6-adoption studies, as it
indicates that in some cases DNS traffic may not well reflect the actual connectiv-
ity. This shows that many devices are already prepared to use IPv6 connectivity,
waiting for the ISP to take proper action.

IPv6-inactive subscribers. For 36.1% of the DSLs we do not observe any IPv6
traffic, even though the ISP assigned IPv6 prefixes to the CPEs. One explanation
is that the CPE has not been configured to enable IPv6 on the home network
(see e.g., [22,24,50]). Thus, the ISP provides IPv6 connectivity, but the end-
devices only have internal IPv4 addresses (e.g., RFC1918), assigned from the
CPE. Consequently, we find that only 1.7% of the traffic from these subscribers
can be associated with a AAAA request, likely because most devices suppress
AAAA requests in the absence of a link-local IPv6 address. Other, less likely,
explanations are that none of the devices present at premises during the trace
collection support IPv6 (e.g., Windows XP), or the subscribers do not contact
3 TCP traffic on ports 80 and 8080 (HTTP), 443 (HTTPS), and UDP traffic on port

443 (QUIC).

10 E. Pujol et al.

services available over IPv6. The latter is unlikely, as 24.1% of the traffic in this
subscriber class is exchanged with IPv6-ready services.

IPv6-active subscribers. Subscribers in this category actively use the pro-
vided IPv6 connectivity. The share of IPv6 traffic for these subscribers is almost
twice as high (21.5%) when compared to the overall trace (11.9%). When only
considering traffic exchanged between IPv6-active subscribers and services that
are indeed available over IPv6, the ratio is even higher (69.6%). Yet, that leaves
us with 30% of the traffic exchanged between two IPv6-enabled hosts being car-
ried over IPv4. This can be caused either by end-user devices not requesting
content over IPv6 (no AAAA RR) or end-user devices choosing IPv4 over IPv6
because of their happy eyeball implementation. Indeed, when only considering
traffic for which the client requested both IPv4 and IPv6 (A and AAAA), the
share of IPv6 in this category raises up to 85.1%. This is an important obser-
vation for service providers and operators, as it implies that enabling IPv6 can
increase the share of IPv6 traffic from/in dual-stack networks rapidly.

5.2 The Service Providers’ Side

We next shift our focus from subscribers to services (FQDNs). Similar to the
previous section, we define three categories. We say that a service is IPv4-only
if it only has a valid non-empty A RR. IPv6-only services are those which only
have a valid non-empty AAAA RR. A service that is IPv6-ready has valid and
non-empty A and AAAA RRs. We report in Table 2 how these three categories
of services contribute to the total traffic and intersect them with the three sub-
scriber categories.

IPv4-only services (only A RR). As expected, this set of services dominates
the share of traffic (47.9%). However, for 36.2% of this traffic we observe a pre-
ceding AAAA request from the subscriber requesting the content, which implies
that this traffic has the potential to be served over IPv6 if the corresponding
service providers enable IPv6.

IPv6-only services (only AAAA RR). We find around 500 services that appear
to be available only over IPv6, accounting for less than 0.1% of the traffic. Manual
inspection reveals that most of them are mere connectivity checkers. Some service
providers add strings to host names, which may appear as an IPv6-only service
(e.g., both host.domain.org and hostv6.domain.org have a AAAA RR, but only the
former has an A RR).

IPv6-ready services (A and AAAA RRs). These services generate a significant
amount of traffic (27.8%). However, as many subscribers from this dual-stack
network cannot use IPv6, the actual share of IPv6 traffic within this class of
services is only 38.6%.

5.3 IP Traffic: Barriers and Intent for IPv6

As shown in Table 2, the upper bounds for IPv6 traffic share when looking at
services and subscribers independently is roughly 2 and respectively 4 times

Understanding the Share of IPv6 Traffic in a Dual-Stack ISP 11

service availability

actual tra c share of IPv6-ready services

IPv6-ready tra c carried over IPv4

Unknown IPv4 only IPv6 ready

0 24 73 100

IPv4 IPv6

73 90 100

% of total traffic

IPv4
only

IPv6 inactive
No

AAAA
Fallb.

73 76 85 88 90

(a) IPv6 barriers. Top: service availability.
Center: IP version that carries IPv6-ready con-
tent. Bottom: Reason why traffic is carried over
IPv4 instead of IPv6.

service availability

 tra c of IPv4-only services by subscriber class

IPv6-active: intent for IPv4-only services

Unknown IPv4 only IPv6 ready

0 24 73 100

IPv4
only

IPv6 inactive IPv6 active

24 29 49 73

% of total traffic

A requested AAAA requested

49 58 73

(b) IPv6 intent. Top: service availability. Cen-
ter: Breakdown of IPv4-only traffic by sub-
scribers’ type. Bottom: traffic from IPv6-active
subscribers to IPv4-only services.

Fig. 2. Barriers and intent for IPv6 traffic in a dual-stack ISP.

the actual IPv6 traffic share. At the same time, not all traffic in the cross-
product of IPv6-active subscribers and IPv6-ready services is carried over IPv6.
We next proceed to study the root causes that lead to this lower-than-possible
IPv6 share. To this end, we use the term IPv6 barriers to reason about traffic
to and from IPv6-ready services, which is carried over IPv4 instead of IPv6.
Correspondingly, we use the term IPv6 intent to reason about traffic to and
from IPv4-only services, of which some portion could be carried over IPv6, as
requested by the subscribers.

IPv6 barriers. Figure 2(a) illustrates why traffic related to IPv6-ready services
is exchanged over IPv4. On the top of the figure we show a bar summarizing
all traffic in the trace according to the service availability. As previously stated,
27.8% of the traffic relates to services available over IPv6. Nevertheless, the
majority of it (61.4%) is actually exchanged over IPv4 (see middle bar). In the
bottom bar we illustrate why data is exchanged over IPv4 instead of IPv6. Most
of this traffic (70.5%) is carried over IPv4 because the subscribers do not use IPv6
connectivity at all (IPv4-only and IPv6-inactive). We make two observations for
the remainder of this traffic (which is generated by IPv6-active subscribers).
The majority of it has no associated AAAA request, which can primarily be
attributed to end-devices that do not support IPv6: they do not issue AAAA
requests. For another 40% of the IPv4 traffic from IPv6-active subscribers to
IPv6-ready services we observe a AAAA request. These are likely flows generated
by devices that fall back to IPv4 as a result of the happy-eyeballs algorithm.

IPv6 intent. Figure 2(b) illustrates what fraction of the traffic of IPv4-only
services (top bar) could be carried over IPv6. While the bar in the middle depicts
how much of this traffic they exchange with each subscriber category, the bottom
bar shows the traffic characteristics for the IPv6-active subscribers. In particular,
we observe that end-user devices in the IPv6-active group issue AAAA requests

12 E. Pujol et al.

15 10 5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

Service time difference in ms

F
n(

x)

DNS (A vs. AAAA)
TCP (IPv4 vs. IPv6)

Fig. 3. ECDF: Differences between
IPv6 and IPv4 TCP handshake and
DNS resolution times per host name.
Positive values indicate longer transac-
tions for IPv6 and AAAA RRs.

0

20

40

60

80

100

FQDNs that enable IPv6

m
ax

. %
 o

f I
P

v6
 tr

af
fic

0 100 101 102 103 104

All subscribers are IPv6 active
Current subscriber connectivity

Fig. 4. Estimation of the maximum
possible share of IPv6 traffic when
IPv4-only FQDNs enable IPv6. We sort
FQDNs by their contribution in terms
of bytes.

for 62.5% of this traffic. Thus, there is a strong intent for IPv6 traffic that
cannot yet be satisfied by the service side. In fact, our measurement likely even
underestimates this value because we do not take into account negatively-cached
AAAA RRs (see Sect. 3.2).

Happy eyeballs. Given that part of the traffic carried over IPv4, which could
be carried over IPv6, can be attributed to (un-)happy eyeballs, we now study two
metrics concerning dual-stack applications and devices, i.e., the RTT estimates
and the DNS resolution times (see [47]). Our RTT estimate corresponds to the
backbone RTTs (Sect. refsec:dataset). For the DNS resolution time (A vs. AAAA),
we only consider transactions with non-empty responses and for which we find
just one request and one response in the same UDP flow. We aggregate these
per host name and compute the median only for those host names with at least
10 samples. Generally, dual-stack services offer similar conditions, i.e., around
80% of the values are within a range of 10 ms. Under such conditions, happy-
eyeball implementations likely select IPv6, as indicated by our earlier results.
This observation is important for service providers transitioning to IPv6, as it
implies that after enabling IPv6 they can expect a significant increase of IPv6
traffic if they already exchange high volumes of data with dual-stack consumer
networks. We note that the final choice of connectivity is subject to how different
implementations adapt to network conditions [6,26,27].

5.4 Case Studies

We next describe two case studies: a large search provider and a large CDN.
Our case studies illustrate two opposite facets of the transition to IPv6. These
providers contribute together to 35.7% of the overall and 73.1% of the IPv6
traffic. They both operate various Autonomous Systems (ASNs) as well as caches
inside ISPs. To identify their traffic, we rely on the origin ASN as derived from
the IP addresses in the flows. To identify traffic from caches, we obtain a list
of the Fully Qualified Domain Names (FQDNs) associated with IP addresses
managed by these ASNs.

Understanding the Share of IPv6 Traffic in a Dual-Stack ISP 13

A large search provider. Our first case study is a service provider that actively
supports and promotes IPv6. 37.6% of its traffic is IPv6, and it alone contributes
69.9% of all IPv6 traffic in the trace. After annotating 91.8% of the traffic with
FQDNs, we corroborate that almost all content –not all traffic relates to search
services– requested by users at this vantage point is available over IPv6 (98.7%).
IPv4-only and IPv6-inactive subscribers generate 74.1% of the IPv4 traffic while
the share of IPv6 traffic for the IPv6-active subscribers is 70.5%. This observation
suggests that for this provider the connectivity of the subscribers is the main
obstacle for the increase in IPv6 traffic.

A large CDN. We are able to annotate 84.7% of the CDN traffic with FQDNs.
Only 2.5% of the traffic is carried over IPv6, and only 3.3% of the CDN traffic
relates to IPv6-ready services. This implies that here the bottleneck for IPv6 is
the server side, since only 2.1% of the content requested with a AAAA is actually
exchanged over IPv6.

Transition to IPv6. Service providers willing to transition to IPv6 need to
update the corresponding DNS RRs. To illustrate the potential impact of this
process on the share of IPv6 traffic, we next concentrate on IPv4-only services.
We present in Fig. 4 an upper bound for the share of IPv6 traffic when the top
traffic-contributing FQDNs enable IPv6. We produce two estimates. The first one
assumes that there are no changes in the subscribers connectivity. The second
one assumes that all subscribers become IPv6-active. Note, we do not take into
consideration 24.2% of the bytes in the trace as we cannot associate them with
a service. Enabling IPv6 connectivity for all subscribers immediately doubles
the upper bound for the IPv6 traffic share (almost 40%). However, to reach
IPv6 traffic shares close to 90%, more than 10 K FQDNs need to enable IPv6
connectivity. That said, and as shown earlier in this paper, IPv4-only devices
and happy-eyeballs fallbacks to IPv4 can reduce this share.

6 Discussion

We are well-aware that our vantage point is not representative of the Internet
as a whole. While this particular ISP promotes IPv6 connectivity, others opt to
deploy Carrier Grade NATs to combat IPv4 address scarcity. Yet, we argue that
our observations most likely apply to other dual-stack ISPs as well (e.g., [25]).
Hence, these observations can aid ISPs and service providers by providing guid-
ance on how to provision for IPv6 as well as insights on traffic dynamics during
the transition phase. For example, IPv4-only service providers could exchange
up to 30% of their traffic over IPv6 if they enable IPv6. By contrast, although
53% of the IPv4 traffic to IPv6-ready services involves subscribers whose CPEs
most likely do not provide IPv6 connectivity to their home network, happy eye-
balls usually chooses IPv6 over IPv4 (85%). We posit that IPv6 traffic shares
will likely be subject to sudden increments when CPE devices enable IPv6 sup-
port in the home network. Virtual CPEs [15] could make it easier for operators
to transition their subscribers to IPv6 and troubleshoot IPv6-related problems.

14 E. Pujol et al.

Hence, avenues for future work include a closer investigation of issues specific to
devices and applications as well as a characterization of happy-eyeballs fallbacks
to IPv4.

7 Conclusion

The Internet’s transition to IPv6 is a tremendous operational effort. The research
community supports this effort by providing measurements of IPv6 adoption
across the Internet. In this work, we push the envelope further and study a
lesser-known aspect: IPv6 usage. We reveal obstacles hampering IPv6 traffic
in dual-stack ISPs, including CPE devices not supporting IPv6, applications
falling back to IPv4, and a broad lack of IPv6 support among service providers.
In spite of such obstacles, we report a pronounced increase, intent, and potential
for growth regarding IPv6. We expect that increasing IPv6 traffic shares will
eventually make IPv6 the first-class citizen of the Internet.

Acknowledgments. This work was partially supported by Leibniz Prize project
funds of DFG - German Research Foundation (FKZ FE 570/4-1).

References

1. Current implementation of AI ADDRCONFIG considered harmful. https://goo.
gl/prXWfz

2. Amsterdam Internet Exchange IPv6 Traffic (2016). https://goo.gl/ajS6PC
3. ARIN IPv6 Wiki: Broadband CPE (2016). https://goo.gl/Wydr3Q
4. IPv6 - Google (2016). https://goo.gl/Tl4cUZ
5. World IPv6 Launch (2016). https://goo.gl/hOoXNo
6. Aben, E.: Hampering Eyeballs - Observations on Two “Happy Eyeballs” Imple-

mentations. https://goo.gl/qUW6s
7. Aben, E., Trenaman, N., Kiessling, A., Wilhelm, R.: Lost Starts - Why Operators

Switch off IPv6 (2016). NANOG 66
8. Aboba, B., Zorn, G., Mitton, D.: RADIUS and IPv6. RFC 3162 (2001)
9. Alcock, S., Lorier, P., Nelson, R.: Libtrace: a packet capture and analysis library.

ACM CCR 42(2), 42–48 (2012)
10. Andrews, M.: Negative Caching of DNS Queries (DNS NCACHE). RFC 2308

(1998)
11. Bajpai, V., Schönwälder, J.: IPv4 versus IPv6 - Who connects faster? In: IFIP

Networking (2015)
12. Bermudez, I.N., Mellia, M., Munafò, M., Keralapura, R., Nucci, A.: DNS to the

rescue: discerning content and services in a tangled web. In: ACM IMC (2012)
13. Beverly, R., Luckie, M., Mosley, L., Claffy, K.: Measuring and characterizing IPv6

router availability. In: Mirkovic, J., Liu, Y. (eds.) PAM 2015. LNCS, vol. 8995, pp.
123–135. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15509-8 10

14. Callahan, T., Allman, M., Rabinovich, M.: On modern DNS behavior and proper-
ties. ACM CCR 43(3), 7–13 (2013)

15. Cantó, R., López, R.A., Folgueira, J.L., López, D.R., Elizondo, A.J., Gamero, R.:
Virtualization of residential customer premise equipment. Lessons learned in Brazil
vCPE trial. Inf. Technol. 57(5), 285–294 (2015)

https://goo.gl/prXWfz
https://goo.gl/prXWfz
https://goo.gl/ajS6PC
https://goo.gl/Wydr3Q
https://goo.gl/Tl4cUZ
https://goo.gl/hOoXNo
https://goo.gl/qUW6s
http://dx.doi.org/10.1007/978-3-319-15509-8_10

Understanding the Share of IPv6 Traffic in a Dual-Stack ISP 15

16. Cho, K., Luckie, M., Huffaker, B.: Identifying IPv6 network problems in the dual-
stack world. In: ACM SIGCOMM Network Troubleshooting Workshop (2004)

17. Claffy, K.: Tracking IPv6 evolution: data we have and data we need. ACM CCR
41(3), 43–48 (2011)

18. Colitti, L., Gunderson, S.H., Kline, E., Refice, T.: Evaluating IPv6 adoption in the
internet. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032,
pp. 141–150. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12334-4 15

19. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 adoption. In: ACM SIGCOMM (2014)

20. Dec, W., Sarikaya, B., Zorn, G., Miles, D., Lourdelet, B.: RADIUS Attributes for
IPv6 Access Networks. RFC 6911 (2013)

21. Dhamdhere, A., Luckie, M., Huffaker, B., Claffy, K., Elmokashfi, A., Aben, E.:
Measuring the deployment of IPv6: topology. Routing and performance. In: ACM
IMC (2012)

22. Drake, K.: You have IPv6. Turn it on (2016). https://goo.gl/maSZRM
23. Giotsas, V., Luckie, M., Huffaker, B., Claffy, K.: IPv6 AS Relationships, Clique,

and Congruence. In: PAM (2015)
24. Gysi, M.: Residential IPv6 at Swisscom, an Overview (2012). https://goo.gl/

QO2SZF
25. Gysi, M.: Status of Swisscom’s IPv6 activities, outlook and opportunities. In: Swiss

IPv6 Council IPv6 Business Conference (2016)
26. Huston, G.: Bemused Eyeballs (2012). https://labs.apnic.net/?p=188
27. Huston, G.: Revisiting Apple and IPv6 (2015). https://goo.gl/qjKdv5
28. Karir, M., Huston, G., Michaelson, G., Bailey, M.: Understanding IPv6 populations

in the wild. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp.
256–259. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36516-4 27

29. Karpilovsky, E., Gerber, A., Pei, D., Rexford, J., Shaikh, A.: Quantifying the extent
of IPv6 deployment. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS,
vol. 5448, pp. 13–22. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00975-4 2

30. Lagerholm, S., Roselli, J.: Negative caching of DNS records. Technical report,
Microsoft (2015)

31. Livadariu, I., Elmokashfi, A., Dhamdhere, A.: Characterizing IPv6 control and
data plane stability. In: IEEE INFOCOM (2016)

32. Luckie, M., Beverly, R., Brinkmeyer, W., Claffy,K.: Speedtrap: internet-scale IPv6
alias resolution. In: ACM IMC (2013)

33. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On dominant characteristics of
residential broadband internet traffic. In: ACM IMC (2009)

34. McConachie, A.: How To Make Your Website Available Over IPv6 (2014). https://
goo.gl/Vs2IuO

35. Mori, T., Inoue, T., Shimoda, A., Sato, K., Ishibashi, K., Goto, S.: SFMap: inferring
services over encrypted web flows using dynamical domain name graphs. In: TMA
(2015)

36. Morishita, Y., Jinmei, T.: Common Misbehavior Against DNS Queries for IPv6
Addresses. RFC 4074 (2005)

37. Nikkhah, M., Guérin, R.: Migrating the Internet to IPv6: An Exploration of the
When and Why. IEEE ToN (2015)

38. Nikkhah, M., Guérin, R., Lee, Y., Woundy, R.: Assessing IPv6 through web access
a measurement study and its findings. In: ACM CoNEXT (2011)

39. Plonka, D., Barford, P.: Context-aware clustering of DNS query traffic. In: ACM
IMC (2008)

http://dx.doi.org/10.1007/978-3-642-12334-4_15
https://goo.gl/maSZRM
https://goo.gl/QO2SZF
https://goo.gl/QO2SZF
https://labs.apnic.net/?p=188
https://goo.gl/qjKdv5
http://dx.doi.org/10.1007/978-3-642-36516-4_27
http://dx.doi.org/10.1007/978-3-642-00975-4_2
https://goo.gl/Vs2IuO
https://goo.gl/Vs2IuO

16 E. Pujol et al.

40. Plonka, D., Barford, P.: Assessing performance of internet services on IPv6. In:
IEEE ISSC (2013)

41. Richter, P., Allman, M., Bush, R., Paxson, V.: A primer on IPv4 scarcity. ACM
CCR 45(2), 21–31 (2015)

42. Richter, P., Chatzis, N., Smaragdakis, G., Feldmann, A., Willinger, W.: Distilling
the internet’s application mix from packet-sampled traffic. In: PAM (2015)

43. Richter, P., Wohlfart, F., Vallina-Rodriguez, N., Allman, M., Bush, R., Feldmann,
A., Kreibich, C., Weaver, N., Paxson, V.: A multi-perspective analysis of carrier-
grade NAT deployment. In: ACM IMC (2016)

44. Rigney, C., Willens, S., Rubens, A., Simpson, W.: Remote Authentication Dial In
User Service (RADIUS). RFC 2865 (2000)

45. Salowey, J., Droms, R.: RADIUS Delegated-IPv6-Prefix Attribute. RFC 4818
(2007)

46. Sarrar, N., Maier, G., Ager, B., Sommer, R., Uhlig, S.: Investigating IPv6 traffic.
In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 11–20. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28537-0 2

47. Schinazi, D.: Apple and IPv6 - Happy Eyeballs (2015). https://goo.gl/XBP9g4
48. Singh, H., Beebee, W., Donley, C., Stark, B.: Basic Requirements for IPv6 Cus-

tomer Edge Routers. RFC 7084 (2013)
49. Thaler, D., Draves, R., Matsumoto, A., Chown, T.: Default Address Selection for

Internet Protocol Version 6 (IPv6). RFC 6724 (2012)
50. Tikan, T.: IPv6 Deployment in Estonia (2015). https://goo.gl/vTQUpH
51. Wing, D., Yourtchenko, A., Eyeballs, H.: Success with Dual-Stack Hosts. RFC 6555

(2012)

http://dx.doi.org/10.1007/978-3-642-28537-0_2
https://goo.gl/XBP9g4
https://goo.gl/vTQUpH

On the Potential of IPv6 Open Resolvers
for DDoS Attacks

Luuk Hendriks1(B), Ricardo de Oliveira Schmidt1, Roland van Rijswijk-Deij2,
and Aiko Pras1

1 Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, Enschede, The Netherlands
{luuk.hendriks,r.schmidt,a.pras}@utwente.nl

2 SURFnet BV, Utrecht, The Netherlands
roland.vanrijswijk@surfnet.nl

Abstract. Distributed Denial of Service (DDoS) attacks have become
a daily problem in today’s Internet. These attacks aim at overwhelm-
ing online services or network infrastrucure. Some DDoS attacks explore
open services to perform reflected and amplified attacks; and the DNS
is one of the most (mis)used systems by attackers.

This problem can be further aggravated in the near future by the
increasing number of IPv6-enabled services in the Internet. Given that
the deployment of IPv6-enabled services is increasing, it becomes impor-
tant to find vulnerable IPv6 open services that could be (mis)used by
attackers, and prevent that misuse. However, unlike with IPv4, simply
scanning the IPv6 address space to find these open services is impractical.

In this paper we present an active measurement approach to enumer-
ate a relevant list of open resolvers on IPv6 in the wild that could be
potentially exploited in a DDoS attack. Based on the assumption that
IPv6 open resolvers can be found via IPv4 ones, we show that IPv6-based
amplified DDoS attacks are a significantly potential threat in the Inter-
net: the analyzed resolvers, of which 72% are assumingly infrastructural
servers, showed a median amplification factor of 50.

1 Introduction

One of the most prevalent and noticeable types of attacks in our Internet today
is the Distributed Denial of Service (DDoS) attack. Based on reports from
Akamai [2] and Arbor Networks [3], we see an increase in both number and size
of these attacks. The attacks come in many forms, with the DNS-based variant
being one of the most observed. This type of attack is possible because of DNS
open resolvers in the Internet, which accept DNS queries from any source. By
spoofing the source IP of a DNS request with the target’s address, an attacker
is able to deceive an open resolver, which ultimately answers directly to the tar-
get, constituting a reflected DDoS (DRDoS) attack. Furthermore, as the DNS
response can be many times larger than the request, there is a form of amplifi-
cation in the attack. These phenomena combined result in a type of threat that

c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 17–29, 2017.
DOI: 10.1007/978-3-319-54328-4 2

18 L. Hendriks et al.

is effective and hard to mitigate, with direct consequences for both operators
and end-users, e.g. significant decrease in quality of experience. It is therefore
important for operators to be aware of open resolvers in their own networks,
to fix them and prevent others from mis-using them in such an attack. Find-
ing these open resolvers on IPv4 is feasible, and has been subject of multiple
studies [13,14]. Tools and services [1,7] to find these open resolvers have existed
for years. As these approaches rely on scanning the entire address space, they
are not applicable in the IPv6 Internet. With this work, we present an approach
to find open resolvers with IPv6 connectivity, and analyze their potential for
attacks.

We assume that a certain share of open resolvers on IPv4 have a form of
IPv6 connectivity, and are also resolving openly over IPv6. Besides dual-stacked
hosts, running resolver software responding on both protocol versions, we expect
to find infrastructural DNS resolvers: machines deployed by network operators
to handle DNS resolution for their customers, but which are not directly used
by the customers. Instead, a forwarding resolver in front of the actual resolving
infrastructure is taking DNS questions and sends the answers to these customers,
while the infrastructural resolvers perform the actual resolving. This infrastruc-
tural part should not be accessible for customers inside the network, let alone
from connections outside of that network. Our hypothesis is that operators for-
get to ACL/firewall the IPv6 part of their resolving infrastructure, effectively
enabling misuse. As tooling and services to find open resolvers lack support to
find resolvers with IPv6-connectivity, most operators will be unaware of open
resolvers in their networks. In order to find open resolvers with IPv6 connectiv-
ity, we present an active measurement approach (Sect. 3) based on querying a
zone where the authoritative nameserver is only reachable over IPv6. With the
results from that, we conduct additional experiments to analyze whether these
are indeed infrastructural DNS resolvers.

Contributions: We present a novel methodology to find open resolvers on IPv6,
and validate it by performing measurements using the complete IPv4 address
space. Consequently, we show that finding open resolvers on IPv6 using our
approach is feasible. Our analysis shows roughly 70% of the found resolvers
are infrastructural, thus likely to have good connectivity and high bandwidth.
Furthermore, we show that queries generate large answers over the found IPv6
paths, with amplification factors of over 100 for the top 5%. These findings
emphasize the need for awareness, wherefore we will approach anti-abuse projects
to share our code with for adoption. We believe incorporating the code in well-
known, existing efforts will have the most effective impact. For ethical reasons, we
do not publish our code: it will be shared with fellow researchers and interested
anti-abuse projects on a request basis.

First, we will sketch out (Sect. 2) possible DNS resolver setups, and
explain why our approach can determine their possible IPv6 connectivity. Our
methodology (Sect. 3) describes the measurement setup (Sect. 3.2), the steps to
obtain open resolvers on IPv6 (Sect. 3.3), measurements to identify infrastruc-
tural resolvers (Sect. 3.4), and an analysis of possible amplification (Sect. 3.5).

On the Potential of IPv6 Open Resolvers for DDoS Attacks 19

Then, we discuss (Sect. 5) our approach and findings, and list related
work (Sect. 6). Lastly, we conclude (Sect. 7) that open resolvers on IPv6 have,
although relatively low in number, a large potential for severe DDoS attacks.

2 Background

2.1 Using DNS to Traverse from IPv4 to IPv6

The approach in this work is based on normal behavior of the Domain Name
System (DNS), in terms of resolving hostnames: a client sends a query to a
resolver, which collects the required information at one or more authoritative
nameservers. The resolver constructs the answer and sends it back to the client.
The only trick is a special configuration of certain nameservers, making them
only reachable over either IPv4 or IPv6, but not both. It is important to empha-
size that we are dealing with two different forms of ‘IPv4’ and ‘IPv6’: the process
involves Resource Record (RRs) for both, i.e. A and AAAA records, but we are
interested in the protocol that is actually used for transport.

Using example.v6only.ourdomain.net as an example, where the
v6only zone is delegated to a nameserver only reachable over IPv6, the fol-
lowing steps take place in the resolving process:

1. The client asks the resolver, over IPv4, for the A record of the domain.
2. The resolver contacts the . (root) and net. server, to find out where the

authoritative nameserver of ourdomain.net is.
3. The resolver contacts the nameserver of ourdomain.net, asking for the NS

record of the v6only. subdomain, in order to find out who to ask for any-
thing under that subdomain. The NS record contains ns6.ourdomain.net,
for which only an AAAA record exists.

4. The resolver tries to contact that nameserver on the IPv6 address from the
AAAA record: only in case the resolver has IPv6 connectivity, traffic arrives
at the nameserver.

Thus, while initially contacting the resolver over IPv4, eventually packets over
IPv6 will arrive on the authoritative side—if and only if the resolver has any form
of IPv6 connectivity. This way, by using DNS on the application layer, we
traverse from IPv4 to IPv6 on the network layer.

2.2 Possible Resolving Setups

In practice, the aforementioned resolver is not necessarily a single entity. Multi-
ple machines can form a resolving infrastructure, including e.g. load-balancers,
without any ostensible difference for the end-user.

In our search for resolvers with forms of IPv6 connectivity, we generalize and
consider two scenarios, as depicted in Fig. 1. The simple form Fig. 1a features
a single host for the resolving, which is thus dual-stacked and both IPv4 and
IPv6 connections are instantiated by that host itself. Examples of this scenario

20 L. Hendriks et al.

C R A

IPv4

IPv6

IPv4

IPv6

(a) Dual-stack scenario

FC A

In

I1IPv4

IPv6
IPv6

IPv4

(b) Forwarding resolver

Fig. 1. Generalized scenarios of DNS resolving setups. C: client, R: resolver, F : for-
warding resolver, Ii: infra, A: auth. nameserver.

are (badly configured) Customer Premises Equipment (CPE) handling queries
on their WAN-side, or a Virtual Private Server (VPS) running resolver software.
In case of Fig. 1b, the resolver used by clients is not performing full resolving
itself, but rather forwards queries to one or more upstream resolvers. In this case,
IPv4 and IPv6 connections towards authoritative nameservers are not necessarily
originating from one and the same machine.

3 Methodology

3.1 Finding IPv4 Open Resolvers

The first step in our approach is to enumerate open resolvers on IPv4 available
in the Internet, which will later be tested for IPv6-connectivity (Sect. 3.2).

To find open resolvers in the Internet, we scan the routable IPv4 address
space. In this scan we simply send out DNS queries to every IPv4 address and
wait for incoming responses. However, the fact that a response is received does
not necessarily mean that the replying open resolver can be somehow misused;
that is, we distinguish responses where DNS resolution is not explicitly refused.
To do so, we look into the returned RCODE1, where RCODE 5 when the server
refuses to answer: those are filtered out and not further acted upon. To maximize
our results, we are liberal with other RCODEs. Our scans are based on zmap [7]
and its DNS module, with an adaption to accept responses from unexpected
ports, again to maximize results.

As we expect to find e.g. CPEs subject to time (DHCP-leases, IPv6 address
lifetimes), we perform our measurements directly after finding an open resolver
on IPv4: this, combined with the aforementioned liberal selection criteria, makes
existing available lists of open resolvers unfit for our research. We go into more
ethical considerations of our measurements in Sect. 5.1.

1 http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#
dns-parameters-6.

http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-6
http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-6

On the Potential of IPv6 Open Resolvers for DDoS Attacks 21

C R A

A

A test.v6only.d.net?

NS v6only.?

AAAA

A test.v6only.d.net?

(a) Determine IPv6 con-
nectivity (Sect.3.3).

C R A

A test.v4only.d.net? ?

A cachecheck.d.net?

(b) Test for forwarding
and shared caches (Sect.3.4).

C R

ANY eu.?

(c) IPv4/IPv6 response
size comparison (Sect.3.5).

Fig. 2. Visualization of methodology steps, per phase. C: client, R: resolver (abstracted,
see Fig. 1), A: authoritative. Solid lines depict IPv4 transport; dashed lines IPv6 trans-
port.

Table 1. Configuration of DNS zone for all measurements.

v6only.ourdomain.net NS ns6.ourdomain.net.

ns6.ourdomain.net AAAA 2001:db8::53

dns6ver.ourdomain.net AAAA 2001:db8::53

v4only.ourdomain.net NS ns4.ourdomain.net.

ns4.ourdomain.net A 123.123.123.123

dns4ver.ourdomain.net A 123.123.123.123

cachecheck.ourdomain.net A 123.123.123.123

3.2 Measurement Setup

With a list of open resolvers on IPv4 at hand, we start the actual measurements,
divided in three steps (Fig. 2). In the following subsections, we detail the three
phases, which all involve specifically configured resource records in the DNS. An
overview of this configuration is given in Table 1. It is important to understand
that there are two different uses of IPv4 and IPv6 in our approach. The DNS
protocol specifies Resource Records of type A and AAAA designated to IPv4
and IPv6, respectively. Our interest is, however, in the IP protocol-version used
for transport.

3.3 Determining IPv6 Connectivity

First, we determine whether the open resolver (found in Sect. 3.1) has any form of
IPv6 connectivity (Fig. 2a). Every open resolver is queried over IPv4 for a specific
qname under a zone for which the nameserver has only an AAAA-record, thus no
A-record: $ipv4.$timestamp.v6only.ourdomain.net. If we observe the
query arriving at the authoritative side, we can extract the initially queried
resolver from the qname (i.e. $ipv4), and we know it has some form
of IPv6-connectivity. To verify whether the IPv6 address we have thus
uncovered is itself an open resolver, we send it a verification query:
$ipv4.$timestamp.dns6ver.ourdomain.net. The initial $ipv4 is still

22 L. Hendriks et al.

included for ease of analysis. Once that query is observed at the authoritative
side, we know we found an open resolver, and we continue with the next two
steps. The $timestamp is used to distinguish different runs of measurements,
and to prevent any forms of caching.

3.4 Distinguishing Dual-Stack and Infrastructural Setups

Now that we have pairs of IPv4 and IPv6 addresses belonging to a resolving
entity, we perform additional queries (Fig. 2b) to gain insight in how this resolv-
ing entity is set up, distinguishing the two scenarios depicted in Fig. 1. Firstly,
the IPv4 address is queried again, but now for a zone that is only reachable
over IPv4: $ipv4.$timestamp.v4only.ourdomain.net. Upon the query
incoming at the authoritative side, comparing the connecting IPv4 address
and the initially queried address (i.e. $ipv4) tells us whether we are dealing
with a single machine, or whether forwarding or distribution has occurred. Sec-
ondly, we test for a shared cache between the IPv4 and IPv6 addresses. For
each pair of IPv4 and IPv6 addresses, both addresses are queried for the same
qname, based on a hash of both addresses and the measurement timestamp:
h($ipv4$ipv6$timestamp).cachecheck.ourdomain.net. This query
is performed twice over IPv4, and twice over IPv6. All the four queries are
5 s apart. Based on the TTL values in the answers, we can determine whether
the resolver is actually caching on any or both of the protocols, and whether
that cache is shared.

3.5 Comparison of Response Sizes for IPv4 and IPv6

Finally, as shown in Fig. 2c, the response sizes of pairs of IPv4 and IPv6 addresses
are compared. We aim at large responses, so queries are DNSSEC-enabled and
ask for the ANY-record [16]. We do not use TCP fallback. Queries of this form for
com. and eu. are sent to both the addresses. We capture the incoming packets
with their full payload in order to find explanations for differences in response
sizes.

Processing on the Authoritative Side. If a queried IPv4 open resolver
has a form of IPv6 connectivity (or delegates the resolving to a host that has
IPv6 capabilities), the constructed query ends up on the host with the IPv6-
address configured in the AAAA record. From incoming queries, we extract the
information listed in Table 2.

4 Results

4.1 What Share of the Resolvers Generate IPv6 Traffic?

Our measurement yielded 1038 unique IPv6 addresses, verified to be openly
resolving. This number is distilled from 78698 unique pairs of IPv4 and IPv6

On the Potential of IPv6 Open Resolvers for DDoS Attacks 23

Table 2. Information extracted from incoming queries.

v6 IPv6 source address of query that reached our nameserver

qname Queried name

qtype Query type (should be A)

orig ts Timestamp extracted from qname

orig v4 IPv4 address of the server initially queried, extracted from qname

asn4 ASN of orig v4

asn6 ASN of v6

Table 3. Overview of measurement results

IPv6 connectivity 1.49M unique pairs

Open on both IPv6/IPv4 78698 (5.3%) unique pairs

of which unique IPv6 1038 addresses 745 (72%) infrastructural

922 (89%) caching

of which unique IPv4 72784 addresses 258 (0.4%) infrastructural

7486 (10%) caching

55582 (76%) mismatches

addresses—of which both IPv4 and IPv6 addresses were openly resolving. In
these pairs were 72784 unique IPv4 addresses, of which (based on the queries for
the v4only zones) 76% did not match with the address contacting our authori-
tative nameserver. Upon verifying whether these mismatches were openly resolv-
ing, we found 258 IPv4 addresses to do so. These are what we call infrastructural
resolvers (Sect. 2.2): 745 (72%) of the 1038 IPv6 addresses were associated with
these. An overview of these numbers is given in Table 3.

In total, we found more than 1.49M unique pairs of IPv4 and IPv6 addresses
to generate a form of IPv6 traffic, i.e. we observed incoming packets from the
IPv6 address after sending a query to the IPv4 address. The verification query
(dns6ver) reduced this to the aforementioned 78698 address-pairs (5.3%).

4.2 Caching Characteristics

Comparing the Time-to-live (TTL) values in answers for the cachecheck
queries showed that for the 1038 unique IPv6 resolvers, 922 (89%) did cache
answers. For pairs of IPv4 and IPv6 addresses that both cache, nearly 60% do
not share their cache, as can be seen in Fig. 3a: for each pair, the TTL of the
cachecheck answer over IPv4 is subtracted from the TTL of the answer over
IPv6. As these queries were sent 10 s apart, the peak at −10 in the plot impli-
cates 40% shared caches. The long tail can be explained by resolvers overwriting
the actual TTL with their own minimal values, e.g. 600 s, on IPv4, while the
IPv6 resolver respected the value configured in our zone, i.e. 60 s. (Note that the

24 L. Hendriks et al.

40% is a conservative number as infrastructures can comprise multiple upstream
resolvers, thus requiring multiple queries to detect shared caches.)

4.3 Amplification Factor

Looking into the achievable amplification factor, we measured the response sizes
of the answers to our ANY queries. The distribution, Fig. 3b, shows the responses
over IPv6 feature significant amplification. The median amplification factor is
50, whereas the top 5% is amplified more than 100 times.

Comparing the response sizes over IPv6 with those over IPv4 requires consid-
eration, as the found IPv6 addresses belong to machines that are often different
from the initial IPv4 open resolvers. While this does not allow us to draw general
conclusions on the network layer protocols, it does provide insight on how much
one with malicious intents can gain (in terms of amplification) when the transi-
tion from IPv4 to the IPv6 resolver is made. We compared the response sizes to
the ANY queries for each pair of IPv4/IPv6 addresses, and show the difference in
bytes in Fig. 3c. The dashed horizontal lines emphasize where the difference in
response size is exactly 0 bytes, i.e. the response sizes are equal over both IPv4
and IPv6. The figure shows that, for the analyzed pairs, 90% of the answers over
IPv6 are equal or bigger in size than the answers coming from the IPv4 address.

−15 −10 −5 0 5 10 15
(v6 - v4) seconds

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

(a) TTL difference for
servers caching on both
IPv4 and IPv6.

0 20 40 60 80 100 120 140
amplification factor

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

(b) Distribution of amplifi-
cation factor over IPv6.

−1000 0 1000 2000 3000 4000
(v6 - v4) bytes

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

eu.

com.

(c) Difference between re-
sponse sizes for pairs of
v4/v6 resolvers for ANY.

Fig. 3. Analysis of caching, amplification and response size characteristics.

4.4 Distribution of Open Resolvers per Network

We looked further into which networks2 the open resolvers reside in. Counting
the number of unique IPv6 addresses acting as open resolvers per Autonomous
system (AS), we find the top 10 to account for more than half of all the IPv6
open resolvers: the other half is spread over 216 different networks. Figure 4
lists these top 10 networks, showing their share of the total number of found
open resolvers. The AS with most unique resolvers (accounting for almost 9%
of the total) is a South-Korea based Internet service provider(ISP). Number 2
is the backbone of a mobile operator in Germany. The top 3 is completed by

2 IP to ASN resolving done using pyasn with CAIDA RouteViews data. Network
names and country codes obtained from Team Cymru.

On the Potential of IPv6 Open Resolvers for DDoS Attacks 25

0% 2% 4% 6% 8% 10%
share of total open resolvers

#10
#9
#8
#7
#6
#5
#4
#3
#2
#1

A
S

Fig. 4. Top networks with most unique open resolvers (IPv6). The 10 networks in this
graph account for 51% of all open resolvers.

a French hosting company. The remainder of the top 10 consists of a mix of
service providers and hosting companies, with the notable exceptions 6 and 7:
there we find a public DNS resolver service from the US, and an organization
famous for providing IPv6 tunnel solutions, also from the US. Geographically,
there is not a definitive domination by any continent, although without 6 and 7,
we are mainly left with networks from Western Europe and Asia. Aggregation
on country indeed shows mainly countries from those continents (Table 4).

Table 4. Top 10 countries with most unique open resolvers (IPv6), accounting for 78%
of all.

Country Unique % of total

Germany 186 17.9%

United States 150 14.5%

South Korea 104 10.0%

France 99 9.5%

Taiwan 78 7.5%

Mexico 72 6.9%

China 53 5.1%

Thailand 25 2.4%

Hong Kong 22 2.1%

Sweden 22 2.1%

4.5 Interface Identifier Analysis

From all unique IPv6 addresses found to be openly resolving, more than half are
assumed to be configured by a human, strengthening the likeliness of these being
infrastructural resolvers. For this, we look at the Interface Identifier (IID), the
last 64 bits of the IPv6 address. Out of the 1038 addresses, 622 had non-zero bits
only in their last hextet: all other of the 64 last bits of the address were 0. Of
those, 570 (i.e. 55% of all) feature only decimal characters—no hexadecimals—in

26 L. Hendriks et al.

0 10 20 30 40 50
Hamming weight

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

last hextet
48 bits
full IID
N(32, 16)
N(8, 4)

Fig. 5. Hamming weight distribution of (parts of the) IIDs (Color figure online)

Table 5. Characteristics of IID of resolver addresses

Total IPv6 addresses 1038

Hex in IID 225

of which SLAAC (ff:fe) 83

All 0 but last hextet 622

of which decimal hextet 570

their “natural” notation. The addresses with hexadecimals were for 37% identi-
fiable as Stateless Address Auto-Configuration (SLAAC) addresses. These num-
bers are further detailed in Table 5. The distribution of the hamming weights
of the IIDs is far below a normal distribution. As shown in Fig. 5, where based
on the central limit theorem a mean of 32 is to be expected for the last 64 bits
(blue dotted line), we find only 10% of the addresses (solid red line) to feature
that hamming weight. The solid blue and green lines depict the distribution of
respectively the last hextet, and the 48 bits before that last hextet. For reference,
the normal distribution of the last hextet is also plotted (pink dotted line).

5 Discussion

5.1 Ethical Considerations

Presenting a methodology that can be misused for malicious intents might raise
ethical concerns. It is however comprised of technologies and configurations that
are not new themselves, and have been available to anyone for a long time.
Furthermore, we emphasize that the traversal from IPv4 to IPv6 using DNS will
only reveal IPv6-connected resolvers, but does not enable direct use over IPv4,
significantly reducing the opportunity to misuse found hosts.

Furthermore, in our measurements, we queried for the domain of the univer-
sity (i.e. utwente.nl), to hint at the benign intent of our doings.

5.2 Pitfalls in Scanning/Great Firewall of China

Using zmap, the default query is A for google.com. Using this yielded ∼ 220M
“open resolvers”, which is not in line with literature. Using A, utwente.nl yields a

On the Potential of IPv6 Open Resolvers for DDoS Attacks 27

far lower number. Initial analysis of this difference points us to a large share of IP
addresses from Chinese networks. Those IP addresses acted as open resolvers in
the sense that they seemingly returned answers on our DNS questions. However,
they only do so for specific qnames, like google.com, while for utwente.nl no
response was sent. Furthermore, when querying a subset of these IP addresses
by hand, we observed responses to be incorrect—random to a certain degree.
When querying for AAAA records, the responses contain invalid IPv6 addresses
or (again, random) IPv4 addresses. Based on the large number of these fake
resolvers, and their location, we reckon to have hit a network-level, government-
managed entity.

5.3 Response Size Difference

The difference in response sizes has multiple explanations. Analysis of the full
packet capture of the answers on our ANY queries shows 1.3× more answers
over IPv6 than over IPv4. Of the answers over IPv4, 60% is malformed : more
than 99% of these malformed answers are exactly 512 bytes in size, hinting at
truncation of packets, possibly by middleboxes. On the contrary, no malformed
answers were observed over IPv6. Looking at valid answers, we find 71% to be
empty (i.e. ANCOUNT 0) over IPv4, versus 6% over IPv6; this likely indicates
different configuration on the application level.

6 Related Work

To the best of our knowledge, we are the first to systematically investigate the
potential of IPv6 open resolvers in the context of DDoS. However, complemen-
tary to our work, there are many studies that addressed the DDoS problem in
multiple ways. In 2014, Welzel et al. [17] found more than 60% of targets of
botnet-driven DDoS attacks to be impacted significantly. More recently, Moura
et al. [9] assessed the impact of DDoS attacks against the Root DNS in Nov. and
Dec. 2015, showing how the distribution of the root system allowed for resilience.
Other works focused on individual aspects of DDoS, such as the amplification
factor. In 2014, Rossow [12] found that 14 UDP-based protocols are succeptible
to bandwidth amplification with a factor up to 4670; and later in 2015, Kührer
et al. [10] collaborated in a large scale campaign to reduce the number of vulnera-
ble NTP servers by more than 92%. Also in 2014, Czyz et al. [6] showed that there
were 2.2M potential NTP amplifiers in the Internet, some replying to probes with
several gigabytes of data; and van Rijswijk-Deij et al. [16] showed that DNSSEC-
signed domains can result in very high amplification factors with responses 59×
larger (and 179× in some cases). In 2015, MacFarland et al. [11] addressed the
potential of amplification by authoritative DNS nameservers, showing that very
few nameservers are responsible for the highest amplification factors.

On another angle, many studies have also addressed IPv6 measurements.
Beverly et al. [5] present an active approach to identify shared IPv4 and IPv6
infrastructures in the Internet. Using a controlled authoritative nameserver,

https://www.google.co.in

28 L. Hendriks et al.

Berger et al. [4] studied the relation between IPv4 and IPv6 DNS resolvers.
A similar approach was used by Schomp et al. [13] to study the behavior of DNS
servers in terms of caching and handling of TTL.

Finally, concerning IPv6 scanning, Ullrich et al. [15] proposed an active app-
roach on the assumption that addresses are systematically assigned; they were
able to identify a large number of active IPv6 addresses, although likely far from
a realistic address census. Gasser et al. [8] proposed a hybrid active/passive app-
roach by creating a hitlist, at the time containing 150M unique IPv6 addresses.

7 Conclusions

In this paper, we prove finding open resolvers with IPv6 connectvity is feasible.
We leverage the fact that we can scan the entire IPv4 address space, and combine
that with the traversal of IPv4 to IPv6 using the higher layer DNS protocol. With
this approach, we prove that one can find both dual-stacked resolvers, as well as
open resolvers that are part of a resolving infrastructure.

Comparing open resolvers on the infrastructure side, we see roughly three
times more IPv6 resolvers than on IPv4, suggesting improper configuration is
indeed more often the case for IPv6 resolvers than for their IPv4 counterparts.
And while being open on IPv6 is likely to be a form of improper configuration on
the network layer (firewall/ACL), the differences in response sizes are likely also
caused by configuration errors on the application layer, i.e. missing parameters
in the resolver software specifically for IPv6. Operators do have to pay attention
to multiple layers to solve this problem adequately.

From the perspective of misuse, thus comparing the found IPv6 resolvers to
the far larger number of IPv4 (forwarding) resolvers, there nonetheless is reason
to be concerned: one may assume infrastructural resolvers to be connected via at
least 1 G, or even 10 G links. This, combined with the larger response sizes, makes
for very potent attack sources. A significant share of the found resolvers cache
responses, making them more effective as they do not have to query authoritative
nameservers that may implement Request Rate Limiting (RRL) on their part.

By sharing our measurement code with projects that enumerate open
resolvers on IPv4, we attempt to create awareness for operators, and an accessi-
ble way for them to prevent their infrastructure from being misused in attacks.

References

1. Open Resolver Project (2016). http://openresolverproject.org
2. State of the Internet/Security. Technical report, Akamai, Q2 (2016). https://

content.akamai.com/PG6852-q2-2016-soti-security.html
3. WISR. Technical report, Arbor Networks (2016). https://www.arbornetworks.

com/insight-into-the-global-threat-landscape
4. Berger, A., Weaver, N., Beverly, R., Campbell, L.: Internet nameserver IPv4 and

IPv6 address relationships. In: ACM IMC (2013)
5. Beverly, R., Berger, A., Siblings, S.: Identifying shared IPv4/IPv6 infrastructure

via active fingerprinting. In: PAM (2015)

http://openresolverproject.org
https://content.akamai.com/PG6852-q2-2016-soti-security.html
https://content.akamai.com/PG6852-q2-2016-soti-security.html
https://www.arbornetworks.com/insight-into-the-global-threat-landscape
https://www.arbornetworks.com/insight-into-the-global-threat-landscape

On the Potential of IPv6 Open Resolvers for DDoS Attacks 29

6. Czyz, J., Kallitsis, M., Gharaibeh, M., Papadopoulos, C., Bailey, M., Karir, M.:
The rise and decline of NTP DDoS attacks. In: ACM IMC (2014)

7. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: USENIX Security (2013)

8. Gasser, O., Scheitle, Q., Gebhard, S., Carle, G.: Scanning the IPv6 internet:
towards a comprehensive hitlist. In: IFIP TMA (2016)

9. Moura, G.C.M., Schmidt, R.O., Heidemann, J., Vries, W.B., Müller, M., Wan, L.,
Hesselman, C.: Anycast vs. DDoS: evaluating the November 2015 root DNS event.
In: ACM IMC (2016)

10. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from Hell? Reducing the
impact of amplification DDoS attacks. In: USENIX Security (2014)

11. MacFarland, D.C., Shue, C.A., Kalafut, A.J.: Characterizing optimal DNS ampli-
fication attacks and effective mitigation. In: Mirkovic, J., Liu, Y. (eds.) PAM
2015. LNCS, vol. 8995, pp. 15–27. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-15509-8 2

12. Rossow, C., Hell, A.: Revisiting network protocols for DDoS abuse. In: NDSS
(2014)

13. Schomp, K., Callahan, T., Rabinovich, M., Allman, M.: On measuring the client-
side DNS infrastructure. In: ACM IMC (2013)

14. Takano, Y., Ando, R., Takahashi, T., Uda, S., Inoue, T.: A measurement study of
open resolvers and DNS server version. In: Internet Conference (IEICE) (2013)

15. Ullrich, J., Kieseberg, P., Krombholz, K., Weippl, E.: On reconnaissance with IPv6:
a pattern-based scanning approach. In: IEEE ARES (2015)

16. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSEC and its potential for DDoS
attacks - a comprehensive measurement study. In: ACM IMC (2014)

17. Welzel, A., Rossow, C., Bos, H.: On measuring the impact of DDoS Botnets. In:
ACM EUROSEC (2014)

http://dx.doi.org/10.1007/978-3-319-15509-8_2
http://dx.doi.org/10.1007/978-3-319-15509-8_2

Something from Nothing (There): Collecting
Global IPv6 Datasets from DNS

Tobias Fiebig1(B), Kevin Borgolte2, Shuang Hao2, Christopher Kruegel2,
and Giovanni Vigna2

1 TU Berlin, Berlin, Germany
tobias@inet.tu-berlin.de

2 UC Santa Barbara, Santa Barbara, CA, USA

Abstract. Current large-scale IPv6 studies mostly rely on non-public
datasets, as most public datasets are domain specific. For instance,
traceroute-based datasets are biased toward network equipment. In this
paper, we present a new methodology to collect IPv6 address datasets
that does not require access to restricted network vantage points. We
collect a new dataset spanning more than 5.8 million IPv6 addresses
by exploiting DNS’ denial of existence semantics (NXDOMAIN). This
paper documents our efforts in obtaining new datasets of allocated IPv6
addresses, so others can avoid the obstacles we encountered.

1 Introduction

The adoption of IPv6 has been steadily increasing in recent years [4]. Unsurpris-
ingly, simultaneously, the research question of efficiently identifying allocated
IPv6 addresses has received more and more attention from the scientific com-
munity. However, unfortunately for the common researcher, these studies have—
so far—been dominated by the analysis of large, restricted, and proprietary
datasets. For instance, the well-known content delivery network (CDN) dataset
used for most contemporary IPv6 analyses [8,15], Internet exchange point (IXP)
datasets, which were used regularly by some other research groups [3,9], or,
slightly less restrictive, the Farsight DNS recursor dataset [21]. Although pub-
lic datasets do exist, they are traceroute-based datasets from various sources,
including the RIPE Atlas project [17], which are limited due to their nature:
they are biased towards addresses of networking equipment, and, in turn, bear
their own set of problems for meaningful analyses.

Correspondingly, in this paper, we aim to tackle the problem of obtaining
a dataset of allocated IPv6 addresses for the common researcher: We present a
new methodology that can be employed by every researcher with network access.
With this methodology we were able to collect more than 5.8 million unique
IPv6 addresses The underlying concept is the enumeration of IPv6 reverse zones
(PTR) leveraging the semantics of DNS’ denial of existence records (NXDO-
MAIN). Although the general concept has been discussed in RFC 7707 [10], we

c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 30–43, 2017.
DOI: 10.1007/978-3-319-54328-4 3

Collecting Global IPv6 Datasets From DNS 31

identified and overcame various challenges that prevented the use of this tech-
nique on a global scale. Therefore, we document how we can leverage the seman-
tics of NXDOMAIN on a global scale to collect allocated IPv6 addresses for a
new IPv6 dataset. Our detailed algorithmic documentation allows researchers
everywhere to implement this technique, reproduce our results, and collect sim-
ilar datasets for their own research.

In this paper, we make the following contributions:

– We present a novel methodology to enumerate allocated IPv6 addresses with-
out requiring access to a specific vantage point, e.g., a CDN, IXP, or large
transit provider.

– We focus on the reproducibility of our techniques and tools, to provide
researchers with the opportunity to collect similar datasets for their own
research.

– We report on a first set of global measurements using our technique, in which
we gather a larger and more diverse dataset that provides new insights into
IPv6 addressing.

– We present a case-study that demonstrates how our technique allows insights
into operators’ networks that could not be accomplished with previous tech-
niques.

2 Previous Work

Active probing for network connected systems is probably one of the oldest
techniques on the Internet. However, tools that can enumerate the full IPv4 space
are relatively new. The first complete toolchain that allowed researchers to scan
the whole IPv4 space was presented by Durumeric in 2013 [6] with ZMap. The
problem of scanning the whole IPv4 address space is mostly considered solved
since then. Especially the security scene heavily relies on these measures [19].
The address space for IPv6 is 128bit, which is significantly larger than the 32bit
of IPv4. Hence, a simple brute-force approach as presented for IPv4 is—so far—
not feasible. Indeed, most current research efforts in the networking community
are concerned with evaluating large datasets to provide descriptive information
on utilized IPv6 addresses [10].

Plonka and Berger provide a first assessment of active IPv6 addresses in their
2015 study using a large CDN’s access statistics as dataset [15]. Subsequently, in
their 2016 work Foremski et al. propose a technique to generate possibly utilized
IPv6 addresses from initial seed datasets for later active probing [8]. Gasser et al.
attempt a similar endeavor, using—among various other previously mentioned
datasources—a large Internet Exchange Point (IXP) as vantage point [9]. How-
ever, prior work has the drawback that the used vantage points are not publicly
accessible.

Measurement-studies using public data sources have been recently published
by Czyz et al. [4,5]. They combine various public data sources, like the Alexa Top
1 million and the Farsight DNS recursor dataset [21]. In addition, they resolve
all IPv4 reverse pointers and attempt to resolve the returned FQDNs for their
IPv6 addresses.

32 T. Fiebig et al.

Algorithm 1. Algorithm iterating over ip6.arpa., based on RFC7707 [10].
// Base-Case: max.ip6.arpa.len = 128/4 ∗ 2 + len(”ip6.arpa.”);
Function enumerate(base, records={ }, max.ip6.arpa.len)

for i in 0..f do
newbase ← i+”.”+base;
qryresult ← getptr(newbase);
if qryresult != NXDOMAIN then

if len(newbase) == max.ip6.arpa.len then
add(records, newbase);

else
enumerate(newbase,records,max.ip6.arpa.len);

3 DNS Enumeration Techniques

Complimentary to prior approaches, van Dijk enumerates IPv6 reverse records by
utilizing the specific semantics of denial of existence records (NXDOMAIN) [2,
10]: When correctly implementing RFC1034 [12], as clarified in RFC8020 [2], the
Name Error response code (NXDOMAIN in practice) has the semantic of there
is nothing here or anywhere thereunder in the name tree. Making this notion
explicit in RFC8020 [2] is a relatively recent development. Combined with the
IPv6 PTR DNS tree, where each sub-zone has 16 (0-f, one for each IPv6 nibble)
children up to a depth of 32 levels, provides the possibility to exploit standard-
compliant nameservers to enumerate the zone.

.ip6.arpa

0 1 e f...

0 1 e f...

0 1 e f...

Fig. 1. Enumerating f.0.f.-
ip6.arpa., existing nodes are
highlighted in bold.

Specifically: Starting at the root (or any other
known subtree), a request for each of the pos-
sible child nodes is performed. If the authorita-
tive server returns NXDOMAIN, the entire possi-
ble subtree can be ignored, as it indicates that no
entries below the queried node exist. Algorithm 1
shows the corresponding algorithmic description.
Figure 1 provides a simplified visualization, e.g., if
a queries for 0-e.ip6.arpa. return NXDOMAIN, but
f.ip6.arpa. returns NOERROR, we can ignore these
subtrees, and continue at f.ip6.arpa., finally finding
f.0.f.ip6.arpa. as the only existing record.

4 Methodology and Algorithmic Implementation

The approach outlined in Sect. 3 has been used on small scales in the past:
Foremski et al. [8] used it to collect a sample of 30,000 records from selected
networks for their study. In this section, we analyze the challenges of a global
application of the technique and describe how we can overcome these limitations.

Collecting Global IPv6 Datasets From DNS 33

Non RFC8020-compliant Systems: The current technique requires that
RFC8020 [2] is correctly implemented, i.e., that the nameserver behaves
standard-compliant. However, following RFC7707 [10], this is not the case for
all authoritative DNS nameserver software found in the wild [2]. Specifically,
if higher level servers (from a DNS tree point of view) are not enumerable by
any of the presented techniques, then this can mask the enumerable zones below
them. For example, if a regional network registry, like APNIC or, RIPE would
use a DNS server that cannot be exploited to enumerate the zone, then all net-
works for which they delegate the reverse zones would become invisible to our
methodology.

To approach this challenge, we seed the algorithm with potentially valid
bases, i.e., known to exist ip6.arpa. zones. Our implementation obtains the
most recent Routeviews [20], and the latest RIPE Routing Information Ser-
vice (RIS) [18] Border Gateway Protocol (BGP) tables as a source. Particularly
important to allow the approach to be easily reproducible: both are public BGP
view datasets, available to any researcher.

Based on the data, we create a collapsed list of prefixes. Following prior
work, we consider the generated list a valid view on the Global Routing Table
(GRT) [22]. For each of the collapsed prefixes we calculate the corresponding
ip6.arpa. DNS record. The resulting list is then used as the input seed for our
algorithm. Alternative public seed datasets are the Alexa Top 1,000,000 [4,5]
or traceroute datasets [8] (which, as aforementioned, are biased by nature; thus,
special care must be taken for traceroute datasets). If available, other non-public
datasets like the Farsight DNS recursor dataset [21] could also be used.

Complimentary approaches to collect ip6.arpa. addresses or subtrees from
systems that implement RFC8020 incorrectly are those with which one can
obtain (significant parts of) a DNS zone. For example, by employing insufficiently
protected domain transfers (AXFRs), which are a prominent misconfiguration
of authoritative nameservers [1].

Breadth-First vs. Depth-First Enumeration: For our data collection, we
employ Algorithm 1. Unfortunately, the algorithm leverages depth-first search to
explore the IPv6 reverse DNS tree. This search strategy becomes problematic if
any of the earlier subtrees is either rather full (non-sparse) or if the authoritative
nameservers are relatively slow to respond to our queries. Slow responses are
particularly problematic: they allow an “early” subtree to delay the address
collection process significantly.

Substituting depth-first search with breadth-first search is non-trivial unfor-
tunately. Therefore, we integrate features of breadth-first search into the depth-
first algorithm (Algorithm 1), which requires a multi-step approach: Starting
from the seed set, we first use Algorithm 1 to enumerate valid ip6.arpa. zones
below the records up to a corresponding prefix-length of 32 bits. If we encounter
input-records that are more specific than 32 bits, we add the input record and
the input record’s 32-bit prefix to the result set. Once this step has completed
for all input records, we conduct the same process on the result set, but with
a maximum prefix-length of 48 bits, followed by one more iteration for 64-bit

34 T. Fiebig et al.

Algorithm 2. Algorithm cooking down the initial seed records.
Function cook down (records)

for prefix.len in 32,48,64 do
records.new ← { };
cur.ip6.arpa.len ← prefix.len/4 ∗ 2 + len(”ip6.arpa.”);
for base in records do

// See Sect. 4 Dynamically-generated Zones/Prefix
Exclusion/Opt-Out for details;

if checks(base) == False then
pass

else if len(base) ≥ cur.ip6.arpa.len then
add(records.new, base);
crop.base = croptolength(base,cur.ip6.arpa.len);
add(records.new, crop.base);

else
add(records.new, enumerate(base, cur.ip6.arpa.len));

prefixes. We opted to use 64 bits as the smallest aggregation step because it is
the commonly suggested smallest allocation size and designated network size for
user networks [11]. Algorithm 2 provides a brief description of the cook down
algorithm. The last step uses Algorithm 1 on these /64 networks with a tar-
get prefix size of 128 bits, effectively enumerating full ip6.arpa. zones up to their
leaf nodes. To not overload a single authoritative server, the ip6.arpa. record sets
are sorted by the least significant nibble of the corresponding IPv6 address first
before they are further enumerated. Sorting them by the least significant nibble
spreads zones with the same most significant nibbles as broadly as possible.

Combined with the observed low overall traffic that our modified technique
generates, we can prevent generating unreasonably high load on single authori-
tative nameserver. Our approach, contrary to prior work, does not generate high
load on the authoritative nameservers before moving on to the next one. Oth-
erwise it would launch a denial of service attack against the nameserver. If our
approach is more widely adopted by researchers, future work should investigate
how distributed load patterns can be prevented, i.e., thousands of researchers
querying the same nameserver simultaneously (see Sect. 4).

Detecting Dynamically-generated Zones: Dynamically generating the
reverse IP address zone, i.e., creating a PTR record just-in-time when it is
requested, has been popular in the IPv4 world for some time [16]. Unsurprisingly,
utilizing dynamically generated IPv6 reverse zones has become even more com-
mon over time as well. Especially access networks tend to utilize dynamically-
generated reverse records. While this provides a significant ease-of-use to the net-
work operators, our algorithm will try to fully enumerate the respective subtrees.
For a single dynamically-generated /64 network it leads to 264 records to explore,
which is clearly impractical. Therefore, we introduce a heuristic to detect if a

Collecting Global IPv6 Datasets From DNS 35

zone is dynamically-generated, so that we can take appropriate action. To detect
dynamically-generated reverse zones, we can rely on the semantic properties of
reverse zones. The first heuristic that we use is the repeatability of returned
FQDNs. Techniques for dynamically-generated reverse zones usually aim at pro-
viding either the same or similar fully-qualified domain names (FQDNs) for the
reverse PTR records. For the former detection is trivial. In the latter case, one
often finds the IPv6 address encoded in the returned FQDN. In turn, two or
more subsequent records in an dynamically generated reverse zone file should
only differ by a few characters. Therefore, a viable solution to evaluate if a zone
is dynamically-generated is the Damerau-Levenshtein distance (DLD) [7].

Unfortunately, we encountered various cases where such a simplistic view is
insufficient in practice. For instance, zones may also be dynamically-generated
to facilitate covert channels via DNS tunneling [14]. In that case, the returned
FQDNs appear random. Similarly in other cases, the IPv6 address is hashed,
and then incorporated into the reverse record. In those cases the change between
two records can be as high as the full hash-length of the utilized hash digest. We
devised another heuristic based on the assumption that if a zone is dynamically-
generated, then all records in the zone should be present. Following prior work
by Plonka et al. and Foremski et al. [8,15], we determined that certain records
are unlikely to exist in one zone all together, specifically, all possible terminal
records of a base that utilize only one character repeatedly. For example, for
the base 0.0.0.0.0.0.0.0.0.0.0.0.0.8.e.f.ip6.arpa such a record would be f.f.f.f.f.f.f.
f.f.f.f.f.f.f.f.f.0.0.0.0.0.0.0.0.0.0.0.0.0.8.e.f.ip6.arpa. Therefore, we build and query
all sixteen possible records from the character set 0..f. Due to these records being
highly unlikely [8], and the use of packet-loss sensitive UDP throughout DNS,
we require only three records to resolve within a one second timeout to classify a
zone as dynamically-generated. We omit the heuristic’s algorithmic description
for brevity, as the implementation is straight forward.

Prefix Exclusion: Naturally, in addition to excluding dynamically-generated
zones, a network operator may ask to be excluded from her networks being
scanned. During our evaluation, multiple network operators requested being
excluded from our scans. Furthermore, we blacklisted two network operators
that did use dynamically-generated zones, but for which our heuristic did not
trigger, either due to rate-limiting of our requests on their side, or bad connec-
tivity toward their infrastructure. Similarly, our algorithm missed a case for a
US based university which used /96 network access allocations, which we did
not detect as dynamically-generated due to the preselected step-sizes for Algo-
rithm 2. In total, we blacklisted five ISPs’ networks and one university network.

Ethical Considerations and Opt-Out Standard: To encourage best prac-
tice, for our experiments and evaluation, the outbound throughput was always
limited to a maximum of 10 MBit/s in total and specifically to 2MBit/s for
any single target system at a time following our least-significant byte sorting for
ip6.arpa zones. Although the load we incurred was negligible for the vast major-
ity of authoritative nameservers, we acknowledge that the load this methodol-
ogy may put onto authoritative servers may become severe, particularly if more

36 T. Fiebig et al.

Algorithm 3. Call-order in final script.
seeds ← get seeds();
enum.records ← cook down(seeds);
final.result ← { };
for base in enum.records do

// See Sect. 4 Dynamically-generated Zones/Prefix Exclusion/Opt-Out for
details;

if checks(base) == False then
return { } ;

tmp.results ← enumerate(base, 128);
final.result ← final.result + tmp.results;

researchers utilize the same approach simultaneously or do not limit their out-
bound throughput. Hence, we suggest to adopt and communicate the practice
of first checking for the existence of a PTR record in the form of 4.4.4.f.4.e.5-
.4.5.3.4.3.4.1.4.e.ip6.arpa.. The respective IPv6 record encodes the ASCII
representation of DONTSCAN for /64 networks. For networks larger than /64,
we suggest to repeat the string. We do not use a non-PTR conform record, as
this would exclude users utilizing, e.g., restrictive DNS zone administration soft-
ware possibly sanitizing input. We will carry this proposal toward the relevant
industry bodies, to provide operators a simple method to opt out of scans.

CNAMEs: Our investigation also found cases of seemingly empty terminals
in the DNS tree, i.e., records of 32 nibble length without an associated PTR
resource record that do not return NXDOMAIN. Upon removal of these records,
and by focusing on non-empty terminals in these address bases, we still obtain
valid results. In addition to cases where the terminals are fully empty, CNAME
records [13] may exist instead of PTR records, which is why it is necessary to
resolve CNAME records if a PTR record does not exist.

Parallelization: Combining the previously presented algorithms, we can enu-
merate the IPv6 PTR space (see Algorithm 3). Due to our algorithm’s nature,
parallelization is ideally introduced in the for loop starting at line 5 of Algo-
rithm 2 and the for loop at line 4 in Algorithm 3. Technically, it would also be
possible to introduce parallelization in the first for loop of Algorithm 1. However,
then parallelization might be performed over a single authoritative server. This
would put a high load on that system. By parallelizing our approach through
Algorithms 2 and 3 parallel queries are made for different IPv6 networks, thus
most likely to different authoritative servers.

5 Evaluation

We evaluate our methodology on a single machine running Scientific Linux
6.7 with the following hardware specification: four Intel Xeon E7-4870 CPUs

Collecting Global IPv6 Datasets From DNS 37

Table 1. Overview of the results of our evaluation.

(2.4 GHz each) for a total of 80 logical cores, 512 GB of main memory, and 2TB
of hard-disk capacity. We installed a local recursive DNS resolver (Unbound
1.5.1) against which we perform all DNS queries. Connection-tracking has been
disabled for all DNS related packets on this machine, as well as other upstream-
routers for DNS traffic from this machine. An overview of our results can be
found in Table 1.

Enumerating .ip6.arpa.: In our first evaluation scenario, we enumerate
addresses using the PTR zone root node of .ip6.arpa. as the initial input only,
which will serve as basic ground-truth. The respective dataset corresponds to the
first column of Table 1: ip6.arpa. The enumeration was completed within 65.6
h, of which most time was spent enumerating pre-identified /64s networks. As
such, the impact of dynamic-generation is evident from this experiment: 615 /32
prefixes are ignored due to dynamically-generated PTR records, with an addi-
tional 15 k /48 prefixes and more than 223 k /64 networks subsequently. This
experiment yields a total of 1.6 million allocated IPv6 addresses.

GRT SEED80: Seeded Enumeration (80 Threads): For our second exper-
iment, we used the current IPv6 GRT as a seed and ran our algorithm with
80 threads in parallel. The respective dataset is identified as GRT SEED80 in
Table 1. The GRT is compiled following our description in Sect. 4. In contrast
to simply enumerating the ip6.arpa. zone, pre-aggregating to /32 prefixes takes
significantly less time. The reduced time is primarily due to the seeds in the
GRT having a certain prefix length already, mostly /32 prefixes. The same can
be observed when comparing the seed set among aggregated /32 prefixes. Inter-
estingly, the dataset only increases by around 1,000 prefixes in that aggregation
step, mostly due to longer prefixes being cropped. However, in the next step, we
do find a significantly larger number of prefixes than those contained in the seed
set. Unfortunately, the next aggregation step demonstrates that a significant
amount of them are in fact dynamically-generated client allocations. Nonethe-
less, at more than 5.4 million unique allocated IPv6 address collected, leveraging
the GRT seed to improve collection exceeds the initial dataset by far (1.6 mil-
ion to 5.4 million). It is important to note, however, that we discovered 335,670
records that are unique to the ip6.arpa. dataset. These originate from currently
unannounced prefixes. The ip6.arpa. root-node should hence be included into
every seed-set. However, depending on the purpose of the data collection, iden-
tified yet unrouted addresses should be marked in the collected data set.

38 T. Fiebig et al.

100 101 102 103

RecordsFound log

102

103

104

Ex
ec

ut
ed

Q
ue

rie
s l

o
g

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

Bi
n
Fr
eq

ue
nc

y
(a) Enum. to /48

100 101 102 103 104

Records Foundlog

102

103

104

Ex
ec

ut
ed

Q
ue

rie
s

lo
g

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Bi
n
Fr
eq

ue
nc

y

(b) Enum. to /64

100 101 102 103 104 105

Records Foundlog

102

103

104

105

Ex
ec

ut
ed

Q
ue

rie
s l

o
g

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4

Bi
n
Fr
eq

ue
nc

y

(c) Enum. to /128

Fig. 2. Executed DNS queries vs. obtained records for GRT SEED80.

GRT SEED400: Seeded Enumeration (400 Threads): Unfortunately, a full
run with 80 parallel threads takes nearly three full days to complete. Therefore,
a higher time resolution is desirable. Due to low CPU load on the measurement
machine we investigated the impact of running at a higher parallelization degree,
using 400 threads to exploit parallelization more while waiting for input/output.
We refer to this dataset as GRT SEED400, which was collected in less than a day.
In comparison to collecting with less parallel threads, we do not see a significant
impact at the first aggregation level toward /32s prefixes (which we expected)
due to the generally low number of them that must be enumerated here.

At the same time, we see a far higher number of obtained prefixes, primarily
/64 prefixes. However, when examining the number of detected dynamically-
generated and blacklisted prefixes closer, we do see that a number of dynamically-
generated prefixes are not being detected correctly, which we discovered is due
to packet loss. This is highlighted by the number of prefixes in GRT SEED400

for each aggregation level, which are considered dynamically-generated in a less
specific aggregation level of GRT SEED80. Indeed, for 92.94 % of dynamically-
generated /64 in GRT SEED400, they have a /48 prefix already considered
dynamically-generated in GRT SEED80.

Although the results between GRT SEED80 and GRT SEED400 differ sig-
nificantly, CPU utilization for GRT SEED400 was not significantly higher. The
core reason for this behavior is that our technique is not CPU bound. Instead,
the number of maximum sockets and in-system latency during packet handling
have a significantly higher impact on the result. Hence, instead of running the
experiment on a single host, researchers should opt to parallelize our technique
over multiple hosts.

Queries per Zone and Records Found: The number of queries sent to
each /32, /48 and /64 prefixes respectively versus the number of more spe-
cific ip6.arpa. records obtained per input prefix is contrasted in Fig. 2(a)-(c). An
interesting insight of our evaluation is that most zones at each aggregation level
contain only a limited set of records. Furthermore, we discover that the number
of records found versus the number of executed queries is most densely popu-
lated in the area of less than 10 records per zone. Additionally, we see a clear
lower-bound for the number of required queries. Specifically, the lower bound
consists of the 16 queries needed to establish if a zone is dynamically-generated,

Collecting Global IPv6 Datasets From DNS 39

plus the minimum number of queries necessary to find a single record. Corre-
spondingly, for the de-aggregation to /64, an additional 64 queries are required.
To go from an aggregation level of /64 to a single terminal record, at least 256
queries are necessary.

Clear upper and lower bounds for the quotient of executed queries and
obtained records are also visible. In fact, these bound become increasingly clear
while the aggregation level becomes more specific and follows an exponential pat-
tern, hinting at an overall underlying heavy-tailed distribution. Furthermore, the
two extremes appear to accumulate data-points, which is evident from Fig. 2(c).
The upper bound thereby corresponds to zones with very distributed entries,
i.e., zones that require a lot of different paths in the PTR tree to be explored,
e.g., zones auto-populating via configuration management that adds records for
hosts with stateless address auto-configuration (SLAAC). On the other hand, the
lower bound relates to well-structured zones, i.e., for which the operators assign
addresses in an easily enumerable way, e.g., sequentially starting at PREFIX::1.

/0 /16 /32 /48 /64 /80 /96 /112
IPv6 Address Prefix Size

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

N
ib
bl
eV

al
ue

10−2

10−1

100

Fr
eq

ue
nc

y
of

N
ib
bl
e
Va

lu
e l

o
g

(a) Combined Result Set

/0 /16 /32 /48 /64 /80 /96 /112
IPv6 Address Prefix Size

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

N
ib
bl
e
Va

lu
e

10−2

10−1

100

Fr
eq

ue
nc

y
of

N
ib
bl
e
Va

lu
e l

o
g

(b) Biased Data Acquisition

Fig. 3. Probability mass function for each 4bit position in obtained datasets following
Foremski et al. [8]. Figure 3(a) visualizes our combined dataset, with 5,766,133 unique
IPv6 addresses. Figure 3(b) depicts an artifact from a measurement error in an earlier
study.

Address Allocation: We utilized the visualization technique introduced by
Foremski et al. [8] to analyze our dataset. To do so, we created the set of all
unique IPv6 address records we obtained over all measurements. The respective
results are depicted in Fig. 3: the least significant nibbles are relatively evenly
distributed, which aligns with our observation that zones are either very random
or in some form sequential.

Fortunately, the technique by Foremski et al. [8] also allows us to validate
our dataset. Specifically, Fig. 3(b) has been created over an earlier dataset that
we collected where an unexpected summation of the value d in IPv6 addresses
between the 64th and 96th bit appears. A closer investigation revealed that this
artifact was caused by a US-based educational institution that uses their PRE-
FIX:dddd:dddd::/96 allocation for their DHCPv6 Wi-Fi access networks. As
aforementioned, this dynamically-generated network was not detected due to
the step-sizes in Algorithm 2, which is why we excluded it manually, see Sect. 4.
Further work should evaluate 4 nibble wide steps, as proposed earlier in this
paper.

40 T. Fiebig et al.

6 Case-Study

Following, we present how findings of our technique can be used to obtain in-
depth insights into practical issues. We provide a brief analysis of the IPv6 efforts
in the internal infrastructure of a large SaaS (Software-as-a-Service) cloud plat-
form operator. For our investigation, we selected the prefixes of this operator
based on its IPv6 announcements collected via bgp.he.net. To obtain further
ground-truth, we also collected the PTR records for all IPv4 prefixes announced
by the operator’s autonomous system (AS) from bgp.he.net. We took two mea-
surements, T1 and T2, two weeks apart in September 2016. Figure 4 shows
an overview of the allocation policy of the operator. Specifically, the opera-
tor uses three /32 prefixes, with one being used per region she operates in (see
Fig. 4(a)). In each region, the operator splits her prefix via the 40th to 44th bit of
addresses. IPv6 networks used by network-edge equipment for interconnectivity
links between different regions are distinguished by an 8 at the 48th to 51st bit,
instead of 0, which is used by all other prefixes.

/0 /16 /32 /48 /64 /80 /96 /112
IPv6 Address Prefix Size

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

N
ib
bl
e
Va

lu
e

10−2

10−1

100

Fr
eq

ue
nc

y
of

N
ib
bl
e
Va

lu
e l

o
g

(a) Density in SaaS provider at T2

T1 T2

Scan Time

0

50

100

150

200

250

300

350

400
R
ec

or
ds

Fo
un

d
pe

r/
64

(b) Addr. per /64

Fig. 4. Overview of address allocation in the SaaS cloud provider’s network.

Another interesting part of the addressing policy are the /48 networks the
SaaS provider allocates. Here, we can see that networks are linearly assigned,
starting with PREFIX:0000-::-/48 , thus creating pools of /64s for various pur-
poses. Furthermore, with /48s being linearly assigned, we discover that prefixes
with higher indexes have not yet been assigned. The same assignment policy
holds for hosts in /64s networks, as indicated by the distribution over the three
least significant nibbles used in addresses.

A third aspect of the operator’s assignment policy is documented in Fig. 4(b).
Specifically, the boxplots show the number of hosts per /64 prefix in the operators
networks. For both measurements, we only observe two /64 prefixes with signifi-
cantly more than 250 hosts. A closer investigation of these networks reveals that
they are related to internal backbone and firewalling services spanning multiple
Points-of-Presence, following the PTR naming schemes of the obtained records.
Apart from this change, we do see a slight increase in the number of hosts per
network in the median, but not the mean. An interesting side-note is that the
IPv6 PTR records appear manually allocated by the operator’s network staff.

Collecting Global IPv6 Datasets From DNS 41

We do arrive at this conclusion because we encountered various records with
typographical errors in them.

Comparing of the datasets with the corresponding IPv4 PTR sets, we note
that the diversity of records is far higher in the IPv4 set. There, various second-
level domains can be found mixed together, which we did not encounter for the
IPv6 set. Various naming schemes for infrastructure hosts are also present. For
example, we discover that the customer-facing domain of the operator is being
used for infrastructure services. However, it has apparently been disbanded with
the growth of the organization, as we also discover infrastructure specific second-
level domains. For the IPv6 set we only observe one infrastructure domain. In
general, naming is far more consistent for IPv6. Our conjecture is that the
operator made an effort in keeping a consistent state when finally rolling out
IPv6, while IPv4 is suffering from legacy setups introduced during the com-
pany’s growth. The last striking observation is that the PTR records returned
for IPv4 and IPv6 reverse pointers do not resolve to valid A and AAAA records
themselves. A direct consequence is that, for this network operator, the technique
proposed by Czyz et al. [5] is not applicable. We conjecture that the operator
chose this setup because she does not require forward lookups, yet wants tracer-
outes and other reverse-lookup related tools, especially distributed logging, to
show the FQDNs.

7 Conclusion

We introduce a novel methodology to collect a large IPv6 dataset from exclu-
sively public data sources. Our initial evaluation of the methodology demon-
strates its practical applicability. Requiring no access to a specific network van-
tage point, we were able to collect more than 5.8 million allocated IPv6 addresses,
of which 5.4 million addresses were found in just three days by issuing 221 million
DNS queries. Specifically, our technique discovered one allocated IPv6 address
per only 41 DNS queries on average. With the obtained dataset, we were able
to provide an in-depth look into the data-centers of a large cloud provider. By
comparing our results with the corresponding IPv4 reverse entries, we demon-
strate that our technique can discover systems which would have been missed by
previous proposals for collecting IPv6 addresses [5]. In summary, our technique
is an important tool for tracking the ongoing deployment of IPv6 on the Inter-
net. We provide our toolchain to researchers as free software at: https://gitlab.
inet.tu-berlin.de/ptr6scan/toolchain.

We note that our technique can also be applied to E.164 records (Telephone
Numbers in DNS), but leave this for future work. Furthermore, future work
should utilize this technique over a period of time in order to obtain a progressing
view on IPv6 deployment on the Internet. To increase coverage, additional seeds
and other address collection techniques should be integrated. This extension of
our work should be combined with security scanning as it is already done for
IPv4 [19]. Following the findings of Czyz et al. [5], such projects are direly needed
to increase overall security on the Internet.

https://gitlab.inet.tu-berlin.de/ptr6scan/toolchain
https://gitlab.inet.tu-berlin.de/ptr6scan/toolchain

42 T. Fiebig et al.

Acknowledgements. We thank the anonymous reviewers for their helpful feedback
and suggestions, and Peter van Dijk for suggesting this research path to us. This
material is based on research supported or sponsored by the Office of Naval Research
(ONR) under Award No. N00014-15-1-2948, the Space and Naval Warfare Systems
Command (SPAWAR) under Award No. N66001-13-2-4039, the National Science Foun-
dation (NSF) under Award No. CNS-1408632, the Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8750-15-2-0084, a Security, Privacy
and Anti-Abuse award from Google, SBA Research, the Bundesministerium für Bil-
dung und Forschung (BMBF) under Award No. KIS1DSD032 (Project Enzevalos), a
Leibniz Price project by the German Research Foundation (DFG) under Award No.
FKZ FE 570/4-1. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The opinions, views, and conclusions contained herein are those of the author(s) and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of ONR, SPAWAR, NSF, DARPA, the U.S. Gov-
ernment, Google, SBA Research, BMBF, or DFG.

References

1. Atkins, D., Austein, R.: Threat Analysis of the Domain Name System (DNS).
RFC3833

2. Bortzmeyer, S., Huque, S.: NXDOMAIN: There Really is Nothing Underneath.
RFC8020

3. Chatzis, N., Smaragdakis, G., Böttger, J., Krenc, T., Feldmann, A.: On the benefits
of using a large ixp as an internet vantage point. In: Proceedings of the ACM
Internet Measurement Conference, pp. 333–346 (2013)

4. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 adoption. Proc. ACM SIGCOMM 44(4), 87–98 (2014)

5. Czyz, J., Luckie, M., Allman, M., Bailey, M.: Don’t forget to lock the back door! a
characterization of ipv6 network security policy. In: Proceedings of the Symposium
on Network and Distributed System Security (NDSS), vol. 389 (2016)

6. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: Proceedings of the USENIX Security Symposium,
pp. 605–620 (2013)

7. Fiebig, T., Danisevskis, J., Piekarska, M.: A metric for the evaluation and compar-
ison of keylogger performance. In: Proceedings of the USENIX Security Workshop
on Cyber Security Experimentation and Test (CSET) (2014)

8. Foremski, P., Plonka, D., Berger, A.: Entropy/IP: uncovering structure in IPv6
addresses. In: Proceedings of the ACM Internet Measurement Conference (2016)

9. Gasser, O., Scheitle, Q., Gebhard, S., Carle, G.: Scanning the IPv6 internet:
towards a comprehensive hitlist (2016)

10. Gont, F., Chown, T.: Network Reconnaissance in IPv6 Networks. RFC7707
11. Hinden, R., Deering, S.: IP Version 6 Addressing Architecture. RFC4291
12. Mockapetris, P.: Domain names - concepts and facilities. RFC1034
13. Mockapetris, P.: Domain names - implementation and specification. RFC1035
14. Nussbaum, L., Neyron, P., Richard, O.: On robust covert channels inside DNS.

In: Proceedings of the International Information Security Conference (IFIP), pp.
51–62 (2009)

Collecting Global IPv6 Datasets From DNS 43

15. Plonka, D., Berger, A.: Temporal and spatial classification of active IPv6 addresses.
In: Proceedings of the ACM Internet Measurement Conference, pp. 509–522. ACM
(2015)

16. Richter, P., Smaragdakis, G., Plonka, D., Berger, A.: Beyond counting: new per-
spectives on the active IPv4 address space. In: Proceedings of the ACM Internet
Measurement Conference (2016)

17. Ripe NCC: RIPE atlas. http://atlas.ripe.net
18. Ripe NCC: RIPE Routing Information Service (RIS). https://www.ripe.net/

analyse/internetmeasurements/routing-information-service-ris
19. ShadowServer Foundation: The scannings will continue until the

internet improves (2014). http://blog.shadowserver.org/2014/03/28/
the-scannings-will-continue-until-the-internet-improves/

20. University of Oregon: Route Views Project. http://bgplay.routeviews.org
21. Vixie, P.A.: It’s time for an internet-wide recommitment to measurement: and

here’s how we should do it. In: Proceedings of the International Workshop on
Traffic Measurements for Cybersecurity (2016)

22. Zhang, B., Liu, R., Massey, D., Zhang, L.: Collecting the internet as-level topology.
ACM Comput. Commun. Rev. 35(1), 53–61 (2005)

http://atlas.ripe.net
https://www.ripe.net/analyse/internetmeasurements/routing-information-service-ris
https://www.ripe.net/analyse/internetmeasurements/routing-information-service-ris
http://blog.shadowserver.org/2014/03/28/the-scannings-will-continue-until-the-internet-improves/
http://blog.shadowserver.org/2014/03/28/the-scannings-will-continue-until-the-internet-improves/
http://bgplay.routeviews.org

Web and Applications

The Web, the Users, and the MOS: Influence
of HTTP/2 on User Experience

Enrico Bocchi1(B), Luca De Cicco2, Marco Mellia3, and Dario Rossi4

1 Télécom ParisTech, Paris, France
enrico.bocchi@telecom-paristech.fr

2 Politecnico di Bari, Bari, Italy
luca.decicco@poliba.it

3 Politecnico di Torino, Torino, Italy
marco.mellia@polito.it

4 Ecole Nationale Supérieure des Télécommunications, Paris, France
dario.rossi@enst.fr

Abstract. This work focuses on the evaluation of Web quality of expe-
rience as perceived by actual users and in particular on the impact of
HTTP/1 vs HTTP/2. We adopt an experimental methodology that uses
real web pages served through a realistic testbed where we control net-
work, protocol, and application configuration. Users are asked to browse
such pages and provide their subjective feedback, which we leverage to
obtain the Mean Opinion Score (MOS), while the testbed records objec-
tive metrics.

The collected dataset comprises over 4,000 grades that we explore to
tackle the question whether HTTP/2 improves users experience, to what
extent, and in which conditions. Findings show that users report mar-
ginal differences, with 22%, 52%, 26% of HTTP/2 MOS being better, iden-
tical, or worse than HTTP/1, respectively. Even in scenarios that favor
HTTP/2, results are not as sharp as expected. This is in contrast with
objective metrics, which instead record a positive impact with HTTP/2
usage. This shows the complexity of understanding the web experience
and the need to involve actual users in the quality assessment process.

Keywords: Web · HTTP/2 · Page Load Time · MOS · User
experience · QoE

1 Introduction

The Web keeps being at the center of our lives, thanks to a plethora of online
services, from web searches to business applications, from personal communica-
tions to social networks and entertainment portals. HTTP is the de facto “thin
waist” of the Internet [19], remaining almost unchanged from the original pro-
tocol defined at the end of the last century. Only recently a number of new pro-
tocols, namely HTTP/2 [3], SPDY [11] and QUIC [10], have been proposed and

c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 47–59, 2017.
DOI: 10.1007/978-3-319-54328-4 4

48 E. Bocchi et al.

are likely to change the Web status quo. Having reliable ways to compare per-
formance benefits becomes crucial when massive deployments of new protocols
take place. However, measuring Web users’ Quality of Experience (WebQoE) is a
challenging problem. Page complexity has grown to include hundreds of objects
hosted on different servers, with browsers opening tens of connections to fetch
them. While several studies pointed out the importance of latency [16,18] and
its relationship with business value1, it is less obvious how it impacts WebQoE.

Objective metrics have been defined and the Page Load Time (PLT) is the
de-facto benchmark used for comparison [8,15,21–23], with the industry adopt-
ing it too (e.g., Alexa reports the quantiles of PLT). However, this family of met-
rics does not fully reflect users’ quality of experience in the complex “waterfall”
of network and browser events taking place during the page loading processes.

Subjective metrics, the Mean Opinion Score (MOS), allow one to measure the
actual user’s WebQoE, but it is extremely expensive to run MOS measurement
campaigns. As such, approaches to estimate WebQoE have been proposed [6,9],
but their relationship with actual users’ experience is yet to be proved and their
computational complexity makes them difficult to use in practice.

Recognizing intrinsic limits of objective metrics [5], we present the first study
of MOS measurement of WebQoE: We engineer a methodology to collect vol-
unteers’ feedbacks in a controlled environment where users are asked to access
actual pages while we control network, protocol, and application setup. In our
effort towards a subjective, yet scientific, comparison of HTTP/1.1 (H1) and
HTTP/2 (H2), we (i) collect a dataset of over 4,000 samples of subjective feed-
back augmented with objective metrics, and (ii) dig into the data to shed light
on actual experience improvement when using H2 vs H1. Advantages appear to
be less sharp than those shown by objective metrics: Users report no differences
in over half of the cases, while H2 improves WebQoE in 22% of cases only.

2 Related Work

Since the original SPDY proposal [11], ended with the standardization in H2 [3],
and the appearance of QUIC [10], researchers have been devoting increasing
attention to the benchmarking and optimization of these protocols [4,7,8,15,
17,21–23]. In what follows, we contrast our investigation with related works
considering experiment scale, testbed setup, set of pages, and collected metrics.

Experiments scale. In terms of experiments scale, works collecting objective
metrics span from several thousands (active testbeds [7,8,17,21,22]) to several
millions points (crawling [15] and server logs [23]). Conversely, studies employing
actual user feedback (only [4] besides this paper) are inherently of smaller scale
(i.e., tens of participants). Our work is based on the collection of actual user
feedback from 147 participants, for a total of over 4,000 experiments.

Testbeds. Testbed setups are either based on proxies [7,8] or, as in this work,
on locally controlled servers and networks [17,21,22]. Few works leverage actual
1 http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-

billion-sales.

http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales

The Web, the Users, and the MOS 49

Fig. 1. Experimental workflow.

H2 servers in the Internet [15] or large corporate server logs [23]. Google Chrome
is the most popular web browser followed by custom client implementations [21],
or a mixture of clients [23]. As for network setup, both controlled [17,21,22] and
uncontrolled [7,8,15] networks can be found, including 3G/4G access.

Page catalog. For what concerns pages used for testing, Alexa ranking is a
popular source for the selection of websites. The number of sites ranges from 20
to 500, and page selection criterion (e.g., landing [7] vs non-landing [8]) differs.
We use Alexa as well to drive our choice towards popular websites. As in [8], we
select pages that are likely known by our users, i.e., pages popular in France.
We consider pages optimized for desktop browsing and discard landing pages.

Measured metrics. Many works adopt the Page Load Time (PLT) as objective
metric [7,8,15,21–23]. PLT limitations are well-known [6,9], yet only few works
include more refined metrics to describe users’ QoE, e.g., [5,17] consider the
SpeedIndex [9]. MOS models for web traffic are dated back to 2002 and 2005
and therefore they should be re-assessed under recent architectures, technologies
and designs. Involving end-users in subjective measurements is the best practice,
with MOS being a simple and compact metric representative of their actual
experience. MOS is the standard in audio and video quality comparison, but
only recently it has been introduced for WebQoE assessment. To the best of our
knowledge, only [4] presents a framework to collect volunteers’ feedback on pre-
recorded videos of web-browsing sessions: Side-to-side videos are shown, with
the aim of identifying a winner. In contrast, we collect volunteers’ feedback of
actual browsing sessions, using the typical [1, 5] MOS scale [13]. Both approaches
have challenges: e.g., synchronization between videos, correlation between videos
and actual browsing experience, ability to slow-down/pause video can affect
results in [4]. Conversely, in our work the analysis is made complex by volunteers
tendency to refraining from using the full scale of scores, as we shall see.

3 Methodology

As portrayed in Fig. 1, the methodology we employ to compare H1 and H2 con-
sists of four phases: 1. Page catalog (Sect. 3.1) – To build a realistic benchmark,

50 E. Bocchi et al.

 0
 2
 4
 6
 8

Si
ze

[M
B

]
Synthetic Realistic

 0
 100
 200
 300
 400

O
bj

ec
ts

Web pages

 0
 15
 30
 45

D
om

ai
ns

 1
 10

 100

R
T

T
[m

s]

Web pages

Fig. 2. Page catalog characteristics.

we fetch actual pages and characterize network paths towards servers. 2. Testbed
engineering (Sect. 3.2) – Pages and paths metadata are used to set up our test-
bed. Local servers host objects using multiple Apache instances while we control
network (RTT, loss), protocol (H1/H2), and application (domain sharding) con-
figuration. 3. MOS collection (Sect. 3.3) – Volunteers browse pages served by our
local infrastructure and provide a score in the range [1, 5]. At the same time, the
testbed captures objective metrics. 4. Analysis (Sects. 4–6) – At a later stage,
we apply analytics to contrast H1 vs H2 performance.

3.1 Page Catalog

For collecting MOS grades, we aim at selecting pages users are familiar with. As
our tests take place in Paris, we start from the top 100 in Alexa France ranking.
We visit each page using Google Chrome and compile a list of URLs of objects
being requested by the browser. We then mirror each object on a local server
and measure the RTT towards each original domain using TCP-SYN packets.

We manually check each mirrored page from our local servers to both dis-
card incomplete pages (e.g., object failing to download due to dynamic requests
or cookies policies), landing pages [8] (e.g., Facebook login page), etc. We are
left with 24 real pages covering a variety of categories, e.g., news, e-commerce,
informative websites, leisure etc. At last, we add the toy page http://www.
httpvshttps.com to the page catalog, for a total of 25 pages. For each considered
page, Fig. 2 reports its size (top-left), the number of objects (bottom-left), the
number of domains serving such objects (top-right), and the average per-domain
RTT to contacted domains, with bars reporting the minimum and the maximum
RTT (bottom-right). The figure shows that our catalog includes diverse scenar-
ios, from pages hosted on few domains serving a handful of objects, to pages
hosted on tens of domains and made of hundreds of objects.

3.2 Testbed Engineering

Server and network configuration. We design and setup a local testbed
where we have full control on network conditions (RTT, loss), protocols (H1/H2),

http://www.httpvshttps.com
http://www.httpvshttps.com

The Web, the Users, and the MOS 51

and content placement (domain sharding [12]). Our testbed is composed of six
servers, each equipped with a quad-core processor, 4 GB of memory and two
Gigabit network cards. Servers run Ubuntu 14.04 with Apache HTTP Server
2.4.18. Apache runs in its default configuration, with H2 and SSL modules
enabled. Content is served using SSL by installing self-signed certificates.

We run multiple Apache instances configured to serve content through vir-
tual hosts, which are both name-based and IP-based. We leverage name-based
configuration to distinguish requests directed to different domains being hosted
on the same machine, while the IP-based distinction is required to have domains
mapped to specific network conditions. To control network conditions, we use
Linux traffic control utility (tc) to enforce both network latency and packet loss.
We next distribute content to each server, preserving the original placement of
objects into domains, and map each domain to a static IP address using the
10.0.0.0/8 private range. Two separate virtual-hosts serve content using either
H1 or H2 to avoid protocol switching or fall-backs on the client side. The choice
of H1/H2 is performed by the client, which directs requests to the IP address of
the server implementing the desired protocol.

Client instrumentation. We provide a preconfigured PC to each volunteer
taking part in our campaign. Each PC runs Linux Mint 17.3 and is equipped
with a set of scripts for experiment orchestration. In particular, such scripts
(i) setup the local client to reflect the desired scenario, (ii) run Google Chrome
to let the volunteer visit a page, (iii) collect the user’s score and the objective
measurement, and (iv) send the results to a central repository.

Each experiment requires several steps to complete. From the users’ point
of view, the experience starts with a GUI listing all the available websites of
the page catalog. Volunteers (i) select a page from the list and (ii) observe it
being loaded by Google Chrome. At the end, they (iii) input the MOS grade,
and then (iv) watch again the same page, now served with the other protocol.
At step (ii) the page is loaded using either H1 or H2 in a random fashion, then
at step (iv) the complementary protocol is used. Therefore, users sequentially
grade the same page under the same condition and for both protocols, although
they are unaware about the protocol order.

From the implementation standpoint, once the volunteer has selected a page,
the script (i) configures the system /etc/hosts file to direct browser requests to
local servers instead of the public Internet.2 Two hosts files are provided for each
web page, one for H1 servers, the other for H2 servers. Next, the script (ii) starts
Google Chrome in full screen mode, disabling the local cache and enabling the
incognito mode. This ensures each page is loaded independently on previous
tests and eventual cookies. We force Chrome to log network events, which we
collect in the form of HTTP Archive (HAR) file for later stage analysis. Once
the user has provided the (iii) MOS grade, (iv) all metadata for that experiment
(i.e., HAR file, user’s grade, and metadata with network configuration, etc.) are
sent to a central repository.

2 Due to the explicit binding between host names and IP addresses in hosts file, no
DNS resolution takes place. This avoids potential bias due to resolution delay and
DNS caching, enabling a fair comparison between H1 and H2 performance.

52 E. Bocchi et al.

 1

 2

 3

 4

 5

0 20 50 100

M
O

S

RTT [ms]

Δ=
1.

13

Δ=
1.

38

Δ=
1.

66

H1 H2 Mean Median

Δ=
1.

00

(a) MOS grades vs RTT

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0 20 50 100

PL
T

 [
m

s]

RTT [ms]

Δ=
2.

08
x

Δ=
2.

93
x Δ=

3.
78

x

H1 H2 Mean Median

Δ=
1.

44
x

(b) PLT vs RTT

Fig. 3. MOS grades and PLT for homogeneous RTT in [0,100] ms. (Color figure
online)

3.3 Scenarios and MOS Dataset Collection

We aim at collecting MOS grades in (i) realistic scenarios to provide answers
of operational interest, but also in (ii) controlled scenarios that the scientific
community has already targeted via objective metrics. Given the limited time
available with volunteers, we focus our attention on the following scenarios.

• Homogeneous network. Objects are distributed on servers as originally
observed. RTT and packet loss are artificially forced to be the same for all
virtual servers. RTT can be chosen in {0, 20, 50, 100}ms, and packet loss in
{0, 1, 2}%. Bandwidth is uncapped. These conditions are typically considered
in literature.

• Heterogeneous network. As before, but latency reflects the original RTT
measured during the collection process. No loss is introduced. Such configura-
tion introduces realism into the dependency graph of objects download, which
may not arise in case of homogeneous conditions.

• Unsharded deployment. All objects are hosted by a single server, on a single
domain name and IP address. RTT to the server is forced in {0, 20, 50, 100}ms.
Bandwidth is uncapped, and no loss is introduced. Unsharded deployment is
useful to contrast today’s production scenarios (i.e., sharding over multiple
domains) vs situations that are by now unrealistic (i.e., all content hosted on
a single “unsharded” domain) where H2 benefits are expected to appear [12].

Volunteers are exposed to experiments by randomly choosing one scenario
and by visiting the same page over H1 and H2 in unknown order. To avoid
biased ratings, only the website name is disclosed to users. Experiments have
been conducted in three sessions totaling to 147 volunteers who sampled a space
of 25 pages with 32 different scenarios. We followed the best practices suggested
by “The Menlo Report” [2], and in particular those for network measurements [1].

4 MOS on the Toy Page

We start the analysis of collected MOS grades focusing on the toy page https://
www.httpvshttps.com, which contains a HTML document (18 kB) and 360

https://www.httpvshttps.com
https://www.httpvshttps.com

The Web, the Users, and the MOS 53

 2

 3

 4

 5

 0 2000 4000 6000 8000

E
[M

O
S]

E[PLT] [ms]

H2 is better

H1
H2

0 ms
20 ms
50 ms

100 ms

Fig. 4. Sub-linear dependency between PLT increase and MOS reduction.

identical non-cacheable images of 20 × 20 pixels (1.7 kB each), for a total of
630 kB. All the content is hosted on a single domain, mapped to a single IP
address and served by a single server. This scenario is particularly adverse to H1
since the browser opens a large number of connections, each incurring in TCP
and TLS handshake overhead and in TCP slow-start. In contrast, H2 takes full
advantage of its capabilities by pipelining all requests over multiple streams
encapsulated in a single TCP connection and by performing HPACK header
compression. We expect H2 to reduce the PLT, ultimately providing a better
WebQoE.

We use this toy page to validate the testbed and calibrate MOS grades. On
the one hand, we aim at verifying whether expectations on H2 performance are
satisfied. On the other hand, we aim at assessing the MOS gap between H2 and
H1 by using this extreme scenario as a litmus paper [16,18,20]. We consider 4
different network setups, namely with RTT in {0, 20, 50, 100}ms, collecting 487
MOS samples in total. Figure 3 shows MOS (left plot) and PLT (right plot) for
H1 (red) and H2 (green). Each point corresponds to an experiment, adding jitter
(to x-y axis for MOS and to x axis only for PLT) to enhance the representation.

Consider Fig. 3a first and notice that MOS consistently decreases with
increasing RTT. This holds for H1 and H2, with H2 providing a better experience
at both low and high latencies. Also, the difference (Δ) between the average of
H1 and H2 MOS grades is always of at least 1 point, increasing along with RTT.

Consider now Fig. 3b, showing PLT. H1 is significantly more penalized than
H2, with PLT peaking at 8 s for RTT = 100 ms, while H2 keeps PLT below
2 s in all scenarios. As expected, H2 outperforms H1 PLT, meeting the original
design goal of “a 50% reduction in page load time” [11].

Next, we verify the existence of a sub-linear dependency of the subjec-
tive response to an objective impulse [20]. Here the impulse is the inflated
RTT (translating into a longer PLT), while the response is the MOS degra-
dation. Figure 4 reinterprets Fig. 3 as a scatter plot, where each point is the
(E[PLT],E[MOS]) pair over all samples for a given RTT. The figure also reports
the trend curve, clearly highlighting the expected sub-linear dependency.

54 E. Bocchi et al.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

-4 -3 -2 -1 0 1 2 3 4

median 0
ΔMOS

H1=H2 (52%)

H1 better (26%) H2 better (22%)

(a) Empirical probability mass function

-0.4

-0.2

 0

 0.2

 0.4

ΔM
O

S

Web pages

H2 better

H1 better

(b) Per-page MOS difference

Fig. 5. H1 vs H2 MOS grades (ΔMOS) for all 4,000 tests in the dataset.

A final remark is that excellent MOS (i.e., 4 or higher) is bestow only to pages
with a loading time lower than 1.25 s. This is in line with [14], which classifies
pages as reactive if they render the above-the-fold content in less then 1 s.

5 MOS on Real Pages

We here focus on real pages to compare H1 and H2 from a subjective perspective.
Our aim is to assess if and to what extent differences in user experience shown
earlier still hold in real-life scenarios. To do so, we consider a set of pages served
using multiple network and application configurations. On the one hand, we
revisit known results from the unique user MOS perspective. On the other
hand, we target the impact of less studied factors, such as implications of content
sharding [12] over multiple domains and differences caused by homogeneous vs
heterogeneous latency conditions towards servers.

5.1 Subjective MOS Differences

We start by assessing the per-user difference of H1 vs H2 MOS grades (ΔMOS)
for each page in the catalog. Figure 5 shows ΔMOS = MOSH2−MOSH1 over all
tests, detailing both the empirical probability mass function (Fig. 5a) and the
per-page MOS difference (Fig. 5b). The figure is annotated with statistics (e.g.,
median) and visual references (e.g., light-gray area for H2 better than H1).

Some insightful observations can be drawn from the plot: The distribution
is (i) monomodal with zero mean and median, (ii) bell shaped, but (iii) slightly
skewed. In other words, (i) in 50% of cases, users equally score H2 and H1,
(ii) cases where either H2 or H1 has higher score are roughly balanced, although
(iii) there is a slight yet noticeable bias towards negative ΔMOS, where MOS|H1

is higher than MOS|H2. That is, contrary to the previous results, the difference
between H2 and H1 is much more subtle and inconsistent.

This reinforces the need to perform experiments on real-world pages, as oppo-
site to benchmark pages that inflate MOS differences. Results are only partially
surprising. First, pages widely differ (see Fig. 2) and ΔMOS varies according to

The Web, the Users, and the MOS 55

-1.2
-0.9
-0.6
-0.3

 0
 0.3
 0.6
 0.9
 1.2

H2 H1

ΔM
O

S

Fig. 6. ΔMOS for 10 pages where we contrast unsharded vs sharded versions.

the page being considered, as shown by Fig. 5b (the order of web pages is con-
sistent with Fig. 2). Second, users have a different way to “value improvement”,
causing them to report the same score under both protocols, which contributes
to ΔMOS = 0. Third, pages in our catalog are likely optimized for H1. Fourth,
the H1 software has undergone decades of testing and optimization, while H2 is
a relatively new protocol.

5.2 Impact of Page Sharding

We now consider sharding [12], i.e., distributing page content over multiple
domains to exploit server parallelism. This practice helps in overcoming the lim-
itation on the maximum number of connections a browser can establish towards
the same domain. Given H2 benefits of using a single connection to a single
domain [7,15,22], one would expect that unsharding helps in taking advantage
of H2 pipelining features. In our evaluation, we consider 10 of the 25 pages
of the catalog and modify them so to have all the content hosted on a single
domain (i.e., unsharding the content). We then contrast MOS grades to assess
the impact of (un)sharding for H2 and H1 independently.

Figure 6 shows the per-page difference between the average MOS for the
unsharded and for the sharded content. In formulas, ΔMOS = E[MOS|unsharded]
– E[MOS|sharded]. Pages are sorted increasingly according to ΔMOS for H2.

It is straightforward to notice that the impact of sharding is page-dependent:
there are pages for which the user experience improves when they are served
through the unsharded deployment (ΔMOS > 0), as well as pages suffering
from usharding (ΔMOS < 0). 7 pages out of 10 show an improvement in MOS
when unsharded, even though the difference in perceived quality greatly changes,
from a minimum of 0.028 to a maximum of 1.020 ΔMOS points. H2 appears to
benefit more of unsharding, but 3 pages gets a sensibly reduced MOS. H1 is less
impacted, peaking at a difference of “only” 0.716 ΔMOS points.

5.3 Impact of Latency Diversity

Page latency is known to be impacted by client-server RTT. Here we investi-
gate how much impact it has on MOS. We contrast scenarios with homogeneous

56 E. Bocchi et al.

 2

 3

 4

 5

H2 H1

E
[M

O
S]

Heterog. Homog. (Low) Homog. (High)

Fig. 7. E[MOS] for heterogeneous vs homogeneous RTT settings.

RTT (usually considered in literature [17,21]) against heterogeneous RTT to
each domain. Clearly, homogeneous conditions are the ordinary solution in case
of proxy-based proposals [7,8,22] and is typically justified in testbed studies with
the assumption that sharding practice will ultimately be abandoned as counter-
ing H2 benefits. At the same time, sharding is by now a standard practice and
page redesign would happen conditionally on unsharding benefits being proved
and consistent. Total unsharding is unlikely as pages aggregate many contri-
butions (e.g., twitter feeds, advertisement, etc.) coming from multiple content
producers. As such, it is important to evaluate H2 performance also in controlled
conditions that are as close as possible to the real ones.

For this experiment, we select a subset of 3 pages sampled by 95 users for
a total of 362 experiments. Average MOS scores are reported in Fig. 7 for
different RTT configurations and for H2 and H1 separately. It emerges that
different RTT leads to opposite biases for H1 vs H2. For instance, in the case
of H2, low-RTT homogeneous scenarios provide about 0.35 better MOS than
heterogeneous RTT. When RTT is high (>50 ms), instead, MOS degrades loosing
0.58 points with respect to the low-RTT scenario. This happens in the case of
H1 too, where high-RTT homogeneous scenarios lead to a loss of about 0.5 MOS
points with respect to both heterogeneous and low-RTT homogeneous scenarios.
Interestingly, H1 in heterogeneous RTT conditions performs much better than
H2 in the same scenario. Similarly to [23], we noticed that macroscopic pages
characteristics are not telling as for user MOS. The performance gap has its roots
in page dependency graph [22], and homogeneous latencies may hide intricate
interactions in such dependencies that arise only under heterogeneous conditions.

6 Objective Metrics on Real Pages

We finally study the H1 vs H2 difference using objective metrics (OBJ in short).
As before, we quantify the difference in accessing the same page over the two
protocols with ΔOBJ = OBJH2 − OBJH1, where OBJ is the Time to the First
Byte (TTFB), the Document Object Model (DOM), or Page Load Time (PLT).
We additionally consider the ObjectIndex, a replacement metric for the SpeedIn-
dex [9] that has been shown to be strongly correlated with the latter [5].

The Web, the Users, and the MOS 57

0.00
0.10
0.20
0.30
0.40
0.50
0.60

median 1ms
ΔTTFB

H1=H2 (57%)

H1 better (4%)H2 better (39%)

0.00
0.05
0.10
0.15
0.20
0.25
0.30

-1000 -500 0 500 1000
Time [ms]

median -16ms
ΔDOM

H1=H2 (19%)

H1 better (26%)H2 better (55%)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

median -40ms
ΔObjectIndex

H1=H2 (16%)

H1 better (19%)H2 better (65%)

0.00

0.05

0.10

0.15

0.20

-1000 -500 0 500 1000
Time [ms]

median -22ms
ΔPLT

H1=H2 (16%)

H1 better (30%)H2 better (54%)

Fig. 8. Empirical probability mass function of ΔOBJ various objective metrics.

Figure 8 presents the results depicting the histogram of ΔOBJ using bins
of 100 ms. The figure is annotated with statistics (notice that H2 better than
H1 is represented by the negative semi-plane in this case). All OBJ exhibit an
empirical probability mass function that is similar to that of the ΔMOS grades
(i.e., roughly symmetric, peak close to zero, very low median). In addition, here
ΔOBJ attributes a (slight) advantage to H2, unlike in the ΔMOS case.

Excluding the TTFB, which is known to be not the most appropriate metric
for web pages performance assessment, H2 shows better results than H1 in at
least 54% of tests. That is, H2 speeds up the page loading process and the
time needed to load the DOM, but those improvements are not reflected in user
experience that rates H1 and H2 with the same score in 55% of cases (see Fig. 5).

7 Conclusions

This paper presents the first study comparing the performance of H2 and H1 in
terms of MOS. We contrast the two protocols using both subjective (i.e., a MOS
corpus of over 4,000 points) and objective metrics using a dedicated testbed.

The emerging picture does not allow the election of a single winner. While
H2 sensibly reduces the PLT on a toy page, ultimately improving the quality
of experience, it is not as effective when serving real-world web pages. Objective
metrics (e.g., DOM, PLT, etc.) show a performance improvement to the advan-
tage of H2 in more than 50% of cases, but they fail to predict users’ MOS that
is reported to be higher in the case of H1.

This highlights the importance of users feedbacks and calls for future research
on new models enhancing the correlation between MOS and QoE metrics.

Acknowledgments. This work has been carried out at LINCS (http://www.lincs.
fr) and benefited from support of NewNet@Paris, Cisco’s Chair “Networks for the
Future” at Telecom ParisTech (http://newnet.telecom-paristech.fr).

http://www.lincs.fr
http://www.lincs.fr
http://newnet.telecom-paristech.fr

58 E. Bocchi et al.

References

1. Allman, M., Paxson, V.: Issues and etiquette concerning use of shared measure-
ment data. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC 2007, pp. 135–140. ACM, New York (2007)

2. Bailey, M., Dittrich, D., Kenneally, E., Maughan, D.: The menlo report. IEEE
Secur. Priv. 10(2), 71–75 (2012)

3. Belshe, M., Peon, R., Thomson, M.: Hypertext transfer protocol version 2
(HTTP/2). In: IETF RFC7540 (2015)

4. Blackburn, B., Varvello, M., Schomp, K., Naylor, D., Finamore, A., Papagiannaki,
K.: Is the Web HTTP/2 yet? In: TMA PhD School (2016)

5. Bocchi, E., De Cicco, L., Rossi, D.: Measuring the quality of experience of web
users. In: Proceedings of ACM SIGCOMM Internet-QoE Workshop (2016)

6. Brutlag, J., Abrams, Z., Meenan, P.: Above the fold time: measuring web page
performance visually. http://conferences.oreilly.com/velocity/velocity-mar2011/
public/schedule/detail/18692. Accessed 15 Sept 2016

7. Butkiewicz, M., Wang, D., Wu, Z., Madhyastha, H.V., Sekar, V.: Klotski: reprior-
itizing web content to improve user experience on mobile devices. In: Proceedings
of USENIX NSDI, pp. 439–453 (2015)

8. Erman, J., Gopalakrishnan, V., Jana, R., Ramakrishnan, K.K.: Towards a
SPDY’Ier Mobile Web? In: Proceedings of ACM CoNEXT, pp. 303–314 (2013)

9. Google Inc. https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/
metrics/speed-index. Accessed 19 Sept 2016

10. Google Inc. QUIC. https://www.chromium.org/quic. Accessed 19 Sept 2016
11. Google Inc. SPDY. https://www.chromium.org/spdy/spdy-whitepaper. Accessed

19 Sept 2016
12. Grigorik, I.: HTTP/2 is here, let’s optimize! http://bit.ly/http2-opt. Accessed 10

Oct 2016
13. International Telecommunication Union. Subjective testing methodology for web

browsing. ITU-T Recommendation P.1501 (2014)
14. Irish, P.: Delivering the goods in under 1000 ms. http://bit.ly/1toUUA7 Accessed

10 Oct 2016
15. Varvello, M., Schomp, K., Naylor, D., Blackburn, J., Finamore, A., Papagiannaki,

K.: Is the web HTTP/2 yet? In: Karagiannis, T., Dimitropoulos, X. (eds.) PAM
2016. LNCS, vol. 9631, pp. 218–232. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-30505-9 17

16. Miller, R.B.: Response time in man-computer conversational transactions. In: Pro-
ceedings of AFIPS Fall Joint Computer Conference, pp. 267–277 (1968)

17. Netravali, R., Sivaraman, A., Das, S., Goyal, A., Winstein, K., Mickens, J.,
Balakrishnan, H.: Mahimahi: accurate record-and-replay for HTTP. In: Proceedings
of USENIX ATC, pp. 417–429 (2015)

18. Nielsen, J.: Response times: the 3 important limits.https://www.nngroup.com/
articles/response-times-3-important-limits/ (1993). Accessed 19 Sept 2016

19. Popa, L., Ghodsi, A., Stoica, I.: HTTP as the narrow waist of the future internet. In:
9th ACM SIGCOMM Workshop on Hot Topics in Networks (2010)

20. Reichl, P., Egger, S., Schatz, R., D’Alconzo, A.: The logarithmic nature of QoE and
the role of the Weber-Fechner law in QoE assessment. In: IEEE ICC (2010)

21. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: How speedy
is SPDY? In: Proceedings of USENIX NSDI, pp. 387–399 (2014)

http://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
http://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://www.chromium.org/quic
https://www.chromium.org/spdy/spdy-whitepaper
http://bit.ly/http2-opt
http://bit.ly/1toUUA7
http://dx.doi.org/10.1007/978-3-319-30505-9_17
http://dx.doi.org/10.1007/978-3-319-30505-9_17
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/

The Web, the Users, and the MOS 59

22. Wang, X.S., Krishnamurthy, A., Wetherall, D.: Speeding up web page loads with
Shandian. In: Proceedings of USENIX NSDI, pp. 109–122 (2016)

23. Zarifis, K., Holland, M., Jain, M., Katz-Bassett, E., Govindan, R.: Modeling
HTTP/2 speed from HTTP/1 traces. In: Karagiannis, T., Dimitropoulos, X. (eds.)
PAM 2016. LNCS, vol. 9631, pp. 233–247. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-30505-9 18

http://dx.doi.org/10.1007/978-3-319-30505-9_18
http://dx.doi.org/10.1007/978-3-319-30505-9_18

Internet Scale User-Generated Live Video
Streaming: The Twitch Case

Jie Deng(B), Gareth Tyson, Felix Cuadrado, and Steve Uhlig

Queen Mary University of London, London, UK
{j.deng,gareth.tyson,felix.cuadrado,steve.uhlig}@qmul.ac.uk

Abstract. Twitch is a live video streaming platform used for broad-
casting video gameplay, ranging from amateur players to eSports tour-
naments. This platform has gathered a substantial world wide commu-
nity, reaching more than 1.7 million broadcasters and 100 million visitors
every month. Twitch is fundamentally different from “static” content
distribution platforms such as YouTube and Netflix, as streams are gen-
erated and consumed in real time. In this paper, we explore the Twitch
infrastructure to understand how it manages live streaming delivery to
an Internet-wide audience. We found Twitch manages a geo-distributed
infrastructure, with presence in four continents. Our findings show that
Twitch dynamically allocates servers to channels depending on their pop-
ularity. Additionally, we explore the redirection strategy of clients to
servers depending on their region and the specific channel.

Keywords: Twitch.tv · Live video streaming · Video streaming
infrastructure

1 Introduction

Online live streaming has long been a popular application. However, recently,
there has been an interesting evolution, whereby everyday users provide streams
of their own activities, e.g., Facebook Live, Periscope [18], Meerkat. This
is termed user-generated live streaming, and unlike other platforms (e.g.,
YouTube [14,15] and Netflix [7,9]), often involves things like live social inter-
action. Thus, these platforms introduce two core innovations: (i) Any user can
provide a personal live stream (potentially to millions of viewers); and (ii) This
upload must occur in realtime due to live social interaction between consumers
and producers. One of the most popular examples of this is Twitch [3,21]. This
live broadcast platform is oriented towards video games, allowing users to broad-
cast their gameplay, as well as to watch large eSports tournaments with profes-
sional players. Though others have started similar services (e.g., YouTube Gam-
ing), they are yet to experience the demand of Twitch [17,18], which delivered
35 K streams to over 2 million concurrent users in real time during its peak [5].

The rapid expansion of user-generated live streaming platforms, like Twitch,
comes with fundamental challenges for the management of infrastructure and
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 60–71, 2017.
DOI: 10.1007/978-3-319-54328-4 5

Internet Scale User-Generated Live Video Streaming 61

traffic delivery.1 For example, in Twitch it is impossible to time-shift (cache)
video content, and often uploaders are not geographically near or well connected
to their subscribers. Further, live social interaction (e.g., via web cams and chat
feeds [16]) means that the real-time constraints are very strict. Thus, we argue
that Twitch might offer some important insights into how such challenges can
be overcome.

In this paper, we perform a large-scale measurement study of Twitch. Taking
advantage of a global network of proxy servers, we map the infrastructure used
by Twitch. We explore its content replication and server selection strategies, cor-
relating them with both viewer and broadcaster location. Note that broadcaster
selection is a unique aspect of personalised video streaming, as prior systems
lack the concept of user-generated live broadcasters. In this paper, we analyse
how Twitch has managed to scale-up to deal with its huge demand. In summary,
we make the following contributions:

– We map the infrastructure and internetworking of Twitch. Unlike YouTube
or Netflix which deploy thousands of caches in edge networks, Twitch serves
millions of users directly from relatively few server locations in North America
(NA), Europe (EU) and Asia (AS) (Sect. 3).

– Based on this, we expose how streams are hosted by Twitch at different loca-
tions (Sect. 4); we explore how Twitch scales-up depending on channel popu-
larity, and how clients are redirected to Twitch servers.

– We evaluate the client redirection strategy (Sect. 5) on a global scale. We find
multiple factors affecting the redirection policy, including channel popularity
and the client network configuration (peering). Due to the lack of peering in
Asia, 50% of the clients are exclusively served by NA servers.

2 Measurement Methodology

We begin by presenting our measurement methodology, which is driven by three
goals. First, we wish to discover the location and number of servers in Twitch’s
infrastructure. Second, we want to know how Twitch allocates individual live
streams onto these severs (note that this is a very different model to static video
content, which is usually reactively cached wherever it is requested). Third, we
want to understand how users are mapped to servers so that they can watch the
stream they are interested in.

We built a Python crawler that allows us to automatically request video
streams from Twitch channels. The responses to these requests allow us to inspect
which server the client has been redirected to.2 In order to comprehensively sam-
ple the infrastructure, and explore how different clients are redirected to Twitch
servers, we ran this crawler in many geographic locations to achieve global cov-
erage of Twitch’s infrastructure. To achieve this, we utilised a global network of

1 Note that Twitch is the fourth largest source of peak traffic in the US [4].
2 We distinguish unique servers based on their IP address — we note that each IP

address is also allocated a unique domain name.

62 J. Deng et al.

open HTTP proxies3 to launch the video requests from around the world. We
validated that the client IP address exposed to the server is the proxy address,
thus we can expect the Twitch server to redirect based on the proxy location.
In total, we routed through 806 proxies, from 287 ASes located in 50 countries
from Europe (154), Asia (372), Africa (24), Australia (4), North America (138)
and South America (114). Though there are several limitations with using open
proxies (e.g., unevenly distributed locations and no accurate feedback of the video
streaming latency), we argue that the proxy platform provides sufficient informa-
tion on Twitch infrastructure at scale.

We observed that Twitch frequently redirects a client to different servers
when requesting the same channel multiple times, thus evidencing some mech-
anism of load balancing. For each channel we sent the request multiple times
from each proxy in order to comprehensively sample the servers offered from
that location. Each channel was requested a variable number of times (from 15
to 300) based on how many unique servers our queries discovered. We first ran
the crawler for 5 months from December 2015 to April 2016. We continuously
launched requests to all online channels listed from public Twitch API,4 and
collected over 700 K requests indicating the Twitch servers that clients in that
region are redirected to.

Once we acquired the list of Twitch servers, we began to explore the strategy
that maps streams onto servers. First, we requested all online channels via proxy
servers in the countries in which Twitch servers are located; also each channel
was requested multiple times to discover as many servers hosting the stream
as possible. Second, we carried out the same experiment for around 30 selected
popular channels every 5 min. This was done to observe how the most popular
channels are managed over an extended period of time. A total of 1 m requests
were collected from these two experiments.

Finally, to further understand Twitch’s client redirection strategy on a global
scale, we also requested all online channels through all proxies one-by-one. We
then captured which server each proxy is redirected to. For each proxy, we
requested the channels only once to emulate a typical client. This resulted in
a further 1 m requests collected between April to June 2016.

3 Geographic Deployment of Twitch Infrastructure

We start the exploration of Twitch’s infrastructure by describing the locations of
its servers, as well as how they are connected to the Internet. Our logs show that
all Twitch video streams are served from hls.ttvnw.net subdomains. Each domain
consists of a server name with an airport code, hinting at a geographical location.
For example, video11.fra01.hls.ttvnw.net is a server in Frankfurt (fra), Germany.
We confirmed that there is a one-to-one mapping between each domain and an
IP address by performing global DNS queries from locations around the world.
3 These are servers that allow us to proxy web requests through them, thereby appear-

ing as it our requests come from them: https://incloak.com/.
4 https://github.com/justintv/Twitch-API.

https://incloak.com/
https://github.com/justintv/Twitch-API

Internet Scale User-Generated Live Video Streaming 63

In total, we discovered 876 servers distributed over 21 airport code subdomains
from 12 countries.

It is unclear how accurate these location-embedded domains are and, there-
fore, we compare the airport codes against the locations returned by three IP
geodatabases: ipinfo.io, DP-IP and Maxmind GeoLiteCity. Although the airport
locations embedded within the domains are always in the same continent, we
note that they are inconsistent with the locations returned from the databases.
Instead, the geodatabases report that Twitch operates a centralised infrastruc-
ture. All servers were mapped to just 4 countries: Switzerland (Europe),
Hong Kong (Asia), US (North America) and Sydney (Oceania). In total, our
traces reveal 360 servers in the North America (NA), 257 servers in Europe (EU),
119 in Asia (AS) and 47 in Oceania (OC).

To explore the discrepancy between the databases and airport codes, we
performed a TCP-based traceroute and ping campaign from 10 sites in East and
West US, Europe, Asia Pacific and South America. From the traceroute path we
see that servers sharing a prefix also pass through the same router when entering
Twitch’s AS, with only the last three hops differing. This, however, does not
confirm physical locations. Hence, we also check the Round Trip Time (RTT) to
each server using TCP ping. This shows a clear boundary between servers with
different airport codes. Servers inside the same sub-domains tend to differ by
under 5 ms; for servers on the same continent, the difference is within 50 ms; for
servers on different continents, this increases beyond 100 ms. We found a minimal
RTT of under 3 ms when accessing servers sharing the same country code. This
suggests that the airport country codes are a good indicator of physical location.
In other words, this highlights inaccuracy in the geolocation databases (this is
perhaps reasonable, as geodatabases are well known to suffer limitations such as
address registration [10]).

We gain additional confidence in our findings by checking the BGP routing
tables.5 Unlike other large content providers, we fail to find any third party host-
ing, as seen in other larger CDNs like Google [10] or Netflix. Instead, all servers
are located within Twitch’s own Autonomous System (AS46489). Importantly,
we find the prefixes are only announced in their appropriate continents. For
example, 185.42.204.0/22 is only announced in Europe and 45.113.128.0/22 is
only announced in Asia. Thus, we are confident that the geolocations are at least
accurate on a continent-level granularity

Finally, to dig deeper into the BGP interconnectivity of Twitch’s AS, we
utilise PeeringDB [2] to extract the locations of advertised public and private
peering facilities used by the 153 Twitch peers listed in [1]. Figure 1 presents the
number of potential peers that are collocated with Twitch in Internet Exchange
Points (IXPs) and private peering facilities. Unsurprisingly, we find a tendency
for more peering in countries where we also discover Twitch servers. For example,
most of the potential peerings are located in IXPs in the Netherlands (AMS-IX),
US (Equinix), UK (LONAP) and Germany (DE-CIX Frankfurt). Noteworthy is
that the number of potential peerings in Asia is actually quite small, with the

5 http://routeserver.org/.

http://routeserver.org/

64 J. Deng et al.

bulk in America and Europe (we acknowledge this could be caused by inaccu-
racies in PeeringDB). We find from BGP route records6 that the IP prefix for
the Asia presence was first advertised in June 2015. This recency could explain
the low number of peers. The same is for Oceania, which first was advertised
in November 2015. The low number of peers could affect the performance in
redirection, as we will illustrate later in Sect. 5.

 0

 20

 40

 60

 80

 100

 120

NL GB DE SE FR CZ PL HK JP SG AU US

IXP
Private peering

Fig. 1. Number of peers collocated with Twitch AS46489 at Internet Exchange Points
and private peering facilities in each country (from PeeringDB). There is more peering
in countries where Twitch servers are based.

The above results only allow us to definitively state that geolocations are
accurate on a per-continent basis. Hence, for the rest of this paper, we focus our
analysis on continent-level geolocation; where countries are mentioned, we use
airport codes as the ground truth. Due to the low utilisation of Oceania servers,
we will mainly focus on NA, EU and AS in the following sections.

4 Stream Hosting Strategy

The previous section has explored the location of Twitch’s infrastructure. How-
ever, this says little about how it is used to serve its dynamic workload. Next,
we look at how streams are allocated to Twitch’s servers.

4.1 How Important Is Channel Popularity?

We first look at the number of servers a channel is hosted on, based on how many
viewers it receives (i.e., popularity). It might be expected that the number of
servers hosting a channel scales linearly with the number of viewers. However,
we find this is not the case for Twitch. Figure 2 presents the number of servers

6 https://stat.ripe.net/.

https://stat.ripe.net/

Internet Scale User-Generated Live Video Streaming 65

 1

 10

 100

 1 10
 100

 1000
 10000

T
ot

al
 #

 o
f s

er
ve

rs

Current viewers

Fig. 2. Number of unique servers hosting each channel (found using requests from
multiple vantage points all over the world) against number of current viewers. Channels
with high view counts are replicated on a larger number of servers.

hosting a channel against the instant number of viewers per channel. Live viewer
figures are acquired from the Twitch API. Although there is an upward trend, it
is not that distinct (highest correlation is just 0.41). We also explored the total
number of viewers (accumulated viewers over time), however the correlation with
number of servers was not higher.

The low correlation suggests a more sophisticated methodology is used to
manage the scaling — it is not solely based on the number of viewers. To under-
stand this better, we take a temporal perspective to see how the number of
servers utilised for a channel evolves over time. We manually selected 30 popular
streamers from different countries and repeatedly requested their channels every
5 min from the proxies.

Figure 3 presents example results from a US streamer and a Chinese streamer.
Both channels have an initial allocation of 3 servers when they start the stream-
ing session. As more viewers join, the popularity is followed by an increase in the
number of servers provisioned by Twitch. The figure also shows how drops in
viewing figures are accompanied by a decrease in the number of servers. When
looking at the number of servers per continent, it can be seen that the capacity
is adjusted independently per region, with the Chinese streamer having only
3 instances in Europe and America. Again, this confirms that Twitch scales
dynamically the number of servers allocated to a channel, depending on the view
count. Moreover, it indicates that each region is scaled independently based on
the number of viewers in that region.

4.2 Scaling of Servers Across Continents

The previous section shows that the number of servers hosting the channel is
correlated with the number of viewers watching the channel per region. We
next investigate how the scaling works across continents. Figure 4 presents the
fraction of servers found in each continent for each channel (based on its number

66 J. Deng et al.

 0
 10
 20
 30
 40
 50
 60
 70

12:00 13:00 14:00 15:00 16:00 17:00 18:00
 0
 5000
 10000
 15000
 20000
 25000
 30000

N
um

be
r

of
 s

er
ve

rs

 fo
r

ni
gh

tb
lu

e3

N
um

be
r

of
 v

ie
w

er
s

Time

Servers in NA
Servers in EU
Servers in AS

Viewers

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00
 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000

N
um

be
r

of
 s

er
ve

rs

 fo
r

as
ia

go
dt

on
eg

g3
be

0

N
um

be
r

of
 v

ie
w

er
s

Time

Servers in NA
Servers in EU
Servers in AS

Viewers

Fig. 3. (a) Number of servers found for channel nightblue3 (US streamer) as a time-
series; (b) Number of servers found for channel asiagodtonegg3be0 (Asian streamer) as
a timeseries. The number of servers are scaled independently in each region.

Fig. 4. Fraction of servers found from NA, EU and AS cluster for the bottom 70%
(left) and top 10% channels (right). Only popular channels are replicated outside of
NA (Color figure online)

of viewers). We present both the bottom 70% and top 10% of all channels during
one snapshot.

We can see from Fig. 4 that channels with a small number of viewers tend
to be predominantly served from NA only (red). 67% of channels with 0 viewers
are exclusively hosted in the US; this drops to 63% for 1 viewer, 48% for 2
viewers, 40% for 4 viewers, and just 24% for 5 viewers. As the number of viewers
increases, the fraction of US servers hosting the stream decreases (to be replaced
by both EU and AS servers). Channels with over 50 viewers are nearly always
served from all three continents. Figure 4 also shows the server distribution of
the top 10% channels, with 21% of servers in NA, 53% in EU and 26% in AS
overall.

Briefly, we also see distinct patterns within each continent. For example, in
NA, channels are always first hosted in San Francisco (sfo) before being scaled

Internet Scale User-Generated Live Video Streaming 67

out to other server locations in the region. The same occurs in EU and AS,
with Amsterdam (ams) and Seoul (sel) usually hosting a stream before other
continental locations.

5 Client Redirection and Traffic Localisation

The previous section has shown that Twitch tries to adapt to the global demand
by progressively pushing streams to multiple servers on multiple continents. In
this section, we explore the mapping of clients to these regions by utilising our
full set of proxies. We perform a full channel crawl from each location, and
see where the clients are redirected to (cf. Sect. 2). Table 1 provides a break-
down of the redirections between different continents. In the majority of cases,
Twitch assigns a server from the nearest continent: 99.4% of the requests in
North America and 96% of requests in South America are handled by servers
in NA; 82% of the requests in Europe and 78.2% of the requests in Africa are
served by EU servers.

Table 1. Traffic distribution of Twitch clusters globally.

Fraction (%) NA cluster EU cluster AS cluster

North America 99.4 0.6 0

South America 96 4 0.01

Europe 17 82 1

Africa 21.8 78.2 0

Asia 34.4 20 45.6

Our results also contain some noticeable outliers. Asian servers handle only
45.6% of requests from Asian clients; more than one third of the requests are
handled by NA servers. That said, the NA cluster also absorbs the vast majority
of requests from other regions that are not resolved to their local servers, includ-
ing AS and EU. In order to explore the reasons behind this apparent mismatch,
we investigate for each proxy the fraction of redirections to its local (continen-
tal) servers when requesting the full list of channels. Figure 5 shows the empirical
CDF of the fraction of local servers observed by each proxy. We separate the
plots into each continent for comparison. A clear contrast can be seen among the
three different regions: nearly 90% of the clients in North America are always
served by NA servers; and almost 40% of the clients in Europe are always served
by EU servers. However, for Asia, 50% of the clients are never served by the
Asian servers, and only 10% are entirely served by Asian servers.

As previously noted, the number of servers that host a stream is closely
related to the stream’s popularity. Hence, we also inspect the relationship
between channel popularity and the ability of clients to access streams from
their local cluster. Figure 6 presents the fraction of requests that are redirected

68 J. Deng et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Fraction of local servers

NA clients
EU clients
AS clients

Fig. 5. Fraction of local servers observed for each proxy. Clients are grouped by con-
tinents for comparison. NA users are usually served locally, whereas most AS clients
must contact servers outside of AS.

to a cluster on the same continent, plotted against the popularity of the chan-
nels. Again, it can be seen that European clients get far more local redirects,
whilst Asian requests regularly leave the continent. This is consistent across all
channel popularities, although in both cases, more popular channels receive a
large number of local redirects.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000 10000

F
ra

ct
io

n
of

 lo
ca

l s
er

ve
rs

Number of viewers

Europe clients
Asia clients

Fig. 6. The fraction of local servers used vs. the total number of viewer for a channel.
More popular channels are more likely to be locally available on a continent.

An obvious question is why do the Asian clients suffer from such poorly
localised redirects. Only 15% of our Asian clients exclusively utilise Asian servers;
50% are never redirected within Asia. To analyse why this might be the case,
we revisit the peering policies of those particular networks. When inspecting the
15% of Asian clients that exclusively rely on Asian servers, we see that they all

Internet Scale User-Generated Live Video Streaming 69

share the same private peering facilities with Twitch (based on PeeringDB). For
example, AS36351, AS9381 and Twitch are all registered in Equinix, Hong Kong.
In contrast, the remaining networks do not peer. Therefore, it is likely that Asia
fails to localise its requests because of these poor existing peering arrangements
(Sect. 3). Even if the servers in Asia are geographically nearby, their network
distance might be higher. Similar scenarios can be found in previous work [13],
highlighting that topology and peering is far more important than geographic
distance.

6 Related Work

Live video streaming is challenging due to the size of video content and the time
constraints involved. Various architectures have been developed to support these
challenges. Peer-to-Peer (P2P) video streaming has emerged as one promising
solution, leveraging the resources of end users. For example, LiveSky [23] and
PPLive (CoolStreaming [22]) are two examples of deployed systems, relying on
P2P assistance. Other approaches rely on cloud assistance; Chen et al. used
Amazon Cloud, Microsoft Azure and Planetlab nodes to build an elastic system
to support various loads in live video streaming [11].

To date, this is the first work revealing the content delivery infrastructure of
Twitch; we believe this could be very influential when designing future Twitch-
like systems. That said, there has been a wealth of work looking, more gen-
erally, at content delivery infrastructures in Video on Demand and live video
streaming. For example, in [8], the authors use PlanetLab nodes to measure
YouTube’s infrastructure. They found that YouTube uses many different cache
servers hosted inside edge networks. Torres et al. [19] captured traces from a
campus network, showing that the server selected in the YouTube CDN is usu-
ally the closest one to the user. There has also been work looking at various
other systems, e.g., Netflix [7,9], YouPorn [20] and Hulu [6]. However, whereas
previous work has focussed on platforms in which static (i.e., non-live) content
is being delivered, Twitch suffers from far greater constraints due to its live real
time nature (making caching redundant). Critically, Twitch is the first major
platform to employ user generated live video streaming. In our past work [12],
we explored the nature of channel and game popularity to confirm the significant
scale of Twitch (channel peaks exceeding 1.2 million viewers).

7 Conclusion

In this paper, we have studied Twitch as an example of modern user generated live
streaming services. We have made a number of findings, which reveal how Twitch’s
infrastructure differs from traditional “static” streaming platforms like YouTube.
Through empirical measurements, we have shown that Twitch operates a much
more centralised infrastructure — in a single AS with POPs on four continents
(compared to the thousands used by YouTube). This is likely because the ben-
efits of using highly decentralised caches are less than for that of live streaming

70 J. Deng et al.

(as time-shifted caching cannot take place for live streams). These design choices
naturally lead to a different scale-up strategy to that of content delivery networks
like YouTube, which typically rely on reactive caching. Driven by the delay sen-
sitivity of live streaming, Twitch progressively and proactively replicates streams
across servers only after sufficient demand is observed. Critically, this occurs on
a pre-region basis, dynamically replicating streams based on local demand. This
more centralised approach places a much greater reliance on effective peering and
interconnection strategies (as Twitch does not place caches inside other networks).
We observed the challenges this brings in Asia, where clients were redirected to
NA due to poor local interconnectivity with Twitch’s AS.

Although Twitch is only one example of user generated live streaming, we
believe its scale and success indicates that its architecture could be an effective
design choice for other similar platforms. Hence, there are a number of future
lines of work that can build on this study. We are interested in exploring a range
of system improvements for Twitch-like platforms, including a more sophisti-
cated control plane that redirects on several factors, expanding their multicast
design, introducing peer-to-peer techniques, or addressing issues with peering.
We would also like to expand our study by measuring realtime streaming perfor-
mance and comparing with other platforms, such as YouTube’s recent gaming
service. Only through this will it be possible to evaluate the best architecture(s)
for future user generated streaming platforms.

References

1. AS46489 Twitch.tv IPv4 Peers. http://bgp.he.net/AS46489# peers
2. PeeringDB - AS46489 Twitch.tv. https://www.peeringdb.com/net/1956
3. Twitch. https://www.twitch.tv/
4. Twitch is 4th in Peak US Internet Traffic. https://blog.twitch.tv/
5. Twitch: The 2015 Retrospective. https://www.twitch.tv/year/2015
6. Adhikari, V.K., Guo, Y., Hao, F., Hilt, V., Zhang, Z.L.: A tale of three CDNs: an

active measurement study of Hulu and its CDNs. In: 2012 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pp. 7–12. IEEE
(2012)

7. Adhikari, V.K., Guo, Y., Hao, F., Varvello, M., Hilt, V., Steiner, M., Zhang, Z.L.:
Unreeling netflix: understanding and improving multi-CDN movie delivery. In: 2012
Proceedings of IEEE INFOCOM, pp. 1620–1628. IEEE (2012)

8. Adhikari, V.K., Jain, S., Chen, Y., Zhang, Z.L.: Vivisecting YouTube: an active
measurement study. In: 2012 Proceedings of IEEE INFOCOM, pp. 2521–2525.
IEEE (2012)

9. Böttger, T., Cuadrado, F., Tyson, G., Castro, I., Uhlig, S.: Open connect every-
where: a glimpse at the internet ecosystem through the lens of the netflix CDN
(2016). arXiv:1606.05519

10. Calder, M., Fan, X., Hu, Z., Katz-Bassett, E., Heidemann, J., Govindan, R.: Map-
ping the expansion of Google’s serving infrastructure. In: Proceedings of the 2013
ACM Conference on Internet Measurement (IMC 2013), pp. 313–326. ACM (2013)

11. Chen, F., Zhang, C., Wang, F., Liu, J., Wang, X., Liu, Y.: Cloud-assisted live
streaming for crowdsourced multimedia content. IEEE Trans. Multimed. 17(9),
1471–1483 (2015)

http://bgp.he.net/AS46489#_peers
https://www.peeringdb.com/net/1956
https://www.twitch.tv/
https://blog.twitch.tv/
https://www.twitch.tv/year/2015
http://arxiv.org/abs/1606.05519

Internet Scale User-Generated Live Video Streaming 71

12. Deng, J., Cuadrado, F., Tyson, G., Uhlig, S.: Behind the game: exploring the
Twitch streaming platform. In: 2015 14th Annual Workshop on Network and Sys-
tems Support for Games (NetGames). IEEE (2015)

13. Fanou, R., Tyson, G., Francois, P., Sathiaseelan, A., et al.: Pushing the frontier:
exploring the African web ecosystem. In: Proceedings of the 25th International
Conference on World Wide Web (WWW 2016). International World Wide Web
Conferences Steering Committee (2016)

14. Finamore, A., Mellia, M., Munafò, M.M., Torres, R., Rao, S.G.: YouTube every-
where: impact of device and infrastructure synergies on user experience. In: Pro-
ceedings of the 2011 ACM Conference on Internet Measurement (IMC 2011), pp.
345–360. ACM (2011)

15. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: YouTube traffic characterization: a view
from the edge. In: Proceedings of the 2007 ACM Conference on Internet Measure-
ment (IMC 2007), pp. 15–28. ACM (2007)

16. Hamilton, W.A., Garretson, O., Kerne, A.: Streaming on Twitch: fostering partic-
ipatory communities of play within live mixed media. In: Proceedings of the 32nd
Annual ACM Conference on Human Factors in Computing Systems, pp. 1315–
1324. ACM (2014)

17. Pires, K., Simon, G.: YouTube live and Twitch: a tour of user-generated live
streaming systems. In: Proceedings of the 6th ACM Multimedia Systems Con-
ference, MMSys 2015, pp. 225–230. ACM, New York (2015)

18. Siekkinen, M., Masala, E., Kämäräinen, T.: A first look at quality of mobile live
streaming experience: the case of periscope. In: Proceedings of the 2016 ACM on
Internet Measurement Conference, pp. 477–483. ACM (2016)

19. Torres, R., Finamore, A., Kim, J.R., Mellia, M., Munafo, M.M., Rao, S.: Dissect-
ing video server selection strategies in the YouTube CDN. In: 2011 31st Inter-
national Conference on Distributed Computing Systems (ICDCS), pp. 248–257.
IEEE (2011)

20. Tyson, G., El Khatib, Y., Sastry, N., Uhlig, S.: Measurements and analysis of a
major porn 2.0 portal. In: ACM Transactions on Multimedia Computing, Commu-
nications, and Applications (ACM ToMM) (2016)

21. Wang, B., Zhang, X., Wang, G., Zheng, H., Zhao, B.Y.: Anatomy of a personalized
livestreaming system. In: Proceedings of the 2016 ACM on Internet Measurement
Conference, pp. 485–498. ACM (2016)

22. Xie, S., Li, B., Keung, G.Y., Zhang, X.: Coolstreaming: design, theory, and practice.
IEEE Trans. Multimed. 9(8), 1661–1671 (2007)

23. Yin, H., Liu, X., Zhan, T., Sekar, V., Qiu, F., Lin, C., Zhang, H., Li, B.: Design and
deployment of a hybrid CDN-P2P system for live video streaming: experiences with
livesky. In: Proceedings of the 17th ACM International Conference on Multimedia,
pp. 25–34. ACM (2009)

Internet Access for All: Assessing
a Crowdsourced Web Proxy Service

in a Community Network

Emmanouil Dimogerontakis(B), Roc Meseguer, and Leandro Navarro

Universitat Politècnica de Catalunya, Barcelona, Spain
{edimoger,meseguer,leandro}@ac.upc.edu

Abstract. Global access to the Internet for all requires a dramatic
reduction in Internet access costs particularly in developing areas. This
access is often achieved through several proxy gateways shared across
local or regional access networks. These proxies allow individuals or
organisations to share the capacity of their Internet connection with
other users. We present a measurement study of a crowdsourced Inter-
net proxy service in the guifi.net community network that provides free
Web access to a large community with many small proxy servers spread
over the network. The dataset consists of Squid proxy logs for one month,
combined with network topology and traffic data. Our study focuses on
a representative subset of the whole network with about 900 nodes and
roughly 470 users of the web proxy service. We analyse the service from
three viewpoints: Web content traffic from users, performance of proxies
and influence of the access network. We find clear daily patters of usage,
excess capacity and little reuse of content which makes caching almost
unnecessary. We also find variations and small inefficiencies in the dis-
tribution of traffic load across proxies and the access network, related to
the locality and manual proxy choice. Finally, users experience an over-
all usable Internet access with good throughput for a free crowdsourced
service.

Keywords: Community network · guifi.net · User experience · Proxy
service

1 Introduction

The majority of the world’s population does not have any or an adequate Internet
access [12], implying that the Internet cannot provide service and reach everyone
without discrimination. Global access to the Internet for all requires a dramatic
reduction in Internet access costs especially in geographies and populations with
low penetration [9]. Community Networks (WMNs) [17] allow local communi-
ties to build their own network infrastructures and provide affordable inter-
networking with the Internet including the deepest rural communities world-
wide [15]. Internet companies have also tried to address the digital divide with
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 72–84, 2017.
DOI: 10.1007/978-3-319-54328-4 6

Internet Access for All: Assessing a Crowdsourced Web Proxy Service 73

initiatives such as Facebook’s FreeBasics [16] or the Google Global Cache. Shar-
ing resources, such as local access infrastructure or global Internet transport, is
encouraged at all levels [7,11] to lower the cost of network infrastructures and
Internet services.

Among many other community networks, guifi.net exemplifies how regional
communities can develop their own network infrastructures governed as a com-
mons [2], using wired and wireless links to create a regional IP network, and
sharing several Internet gateways among all their participants. These gateways
are usually web proxies for Web access, the most popular traffic, but can accom-
modate other traffic through HTTP CONNECT, SOCKS or tunneling. Proxies,
not exempt from the drawbacks of middleboxes, have also additional advan-
tages: some content and DNS resolution can be shared in caches, and most
important, proxies can protect the privacy of end users if they trust the proxy
provider. Access to the Internet through Web proxy gateways relies on individ-
uals or organisations sharing the full or spare capacity of its Internet connection
with other guifi.net users. However, these crowdsourced gateway nodes have lim-
ited processing and Internet transfer capacity and might be overloaded by the
demand.

In this paper we contribute an analysis of a large crowdsourced proxy service
in a regional community network. A large population of C clients can browse the
Web taking advantage of the aggregated capacity of a pool of P contributed web
proxies, with C > P, spread over a regional network infrastructure, at a fraction
of the cost of C Internet connections.

We first describe the guifi.net network, its proxy service and the collected
datasets in Sect. 2. Then we analyse the service from three viewpoints: (1) ser-
vice usage by end-users: patterns of usage and content in Sect. 3, (2) the proxy,
Sect. 4, in terms of caching, users, performance and variability, and (3) the local
network, Sect. 5, in terms of topology and usage. Our measurements describe the
effectiveness of a simple setup of a regional network sharing a set of Web proxies
in delivering free basic Web access to a large population.

2 The guifi.net Proxy Service

guifi.net is an open, free, and neutral network built by citizens and organisa-
tions pooling their resources to build and operate a local network infrastructure,
governed as a common pool resource [2]. The network infrastructure is mostly
wireless [17] with a fiber backbone. Participants can extend the network to reach
new locations and use it to access intranet services like the web proxy service.

The most popular application in community networks is web access and
guifi.net is no exception. Web proxy nodes connected both to guifi.net and an
ISP act as free gateways to the Internet to the community network users. Prox-
ies run on simple servers and take advantage of individuals or organisations
(like libraries or municipalities) offering their Internet access to other guifi.net
users. Using web proxies, public entities can provide free Internet access without
infringing telecom market competence regulations. While some of the web prox-
ies are kept as a private service, 356 out of the 477 registered web proxy servers in

74 E. Dimogerontakis et al.

the network (May 2016) are shared with all the network registered participants
(12,500). A registered member is allowed to use any proxy of their convenience,
although recommended to use one nearby. Users can select or change its choice
based on quality of experience. Therefore, while some proxies may become pop-
ular and highly used, others may remain underused.

Data collection: For our analysis we chose to study the Llucanes guifi.net
zone, a region in the Osona county of Catalunya, Spain. As explained in [6], this
zone is representative of other rural guifi.net networks. Furthermore, Llucanes
is the only guifi.net zone with published anonymized logs for all (four) involved
operational proxies. Even-day proxy log entries anonymise the client IP address
and show information about the requested URLs, while odd-day proxy logs show
the opposite. We assisted in the preparation and publication of these logs. The
logs combined with other openly accessible information about network topology,
network links and network traffic information, provide a consistent and complete
view of this regional network.

3 Service Usage Viewpoint

The behavior of the users and the service can be described at macro-level as a
set of time series concerning metrics that can be extracted from the monthly
logs, namely bytes per request, number of requests and number of users.

The traffic time series for the aggregate set of proxies shows a daily repeti-
tive pattern, but also strong aperiodic negative spikes, which were statistically
verified as a dominant period of 1 day, and the second largest peak at 12 h.

Service usage: The majority of the traffic is due to a relatively small number
of large requests (20% of the requests produce 97% of the traffic), while the
rest of the requests present little variation in size. Additionally, as expected,
the majority of the traffic (90%) is created by 15% of the users. However, in
contrast to the distribution of request size, the distribution of traffic and number
of requests per user varies exponentially across users. For the analysis of the
service processing rate we calculated the request processing throughput as
the bits per time elapsed for each request, depicted in Fig. 1, ranging from less
than 107 for the worst 10% to at least 108 for more than 80% of the requests.

Content analysis: Using the even-day proxy logs we looked at the request
types and target URL of the users’ requests. The majority of the traffic, almost
50%, consists of HTTP CONNECT requests, which is the method to establish
TCP tunnels over HTTP, mostly all HTTPS which is indisputably the main
usage appearing in the logs. While for HTTP CONNECT we cannot know the
corresponding content type, the most common type for the rest of the requests
is the generic application/* with 23%, followed by video/* (19%) and image/*
(5.5%).

The traffic for all analysed proxies in Table 1, including HTTP CONNECT,
shows that the top video portal traffic occupies 36% of the traffic, which is an
impressive large amount. For completeness, we mention that this is not reflected

Internet Access for All: Assessing a Crowdsourced Web Proxy Service 75

Fig. 1. Processing rate per request

Table 1. Top domains by traffic

Domain Traffic fraction

googlevideo 27.85%

mega 16.73%

fbcdn 5.40%

rncdn3 2.80%

nflxvideo 2.70%

xvideos 2.60%

tv3 2.54%

level3 2.51%

google 1.96%

apple 1.78%

in the number of requests, therefore it is attributed on the size of the objects
requested. Since video is by far the HTTP type with most traffic, it is not
surprising to find that 4 out of 10 top domains are video portals. We also found
that the distribution of web traffic per URL can roughly approximate a Zipf
distribution, equivalent to results in [14] with domestic Internet connections.

4 The Proxy Viewpoint

In this section we investigate the capabilities and influence of the proxy servers
involved. Our dataset concerns the only 4 proxies operating in the Llucanes zone.
Table 2 shows the CPU and RAM characteristics of the proxy servers, as well as
the nominal maximum throughput of the Internet connection they offer. They
are very diverse, with great differences in Internet throughput (4–80 Mbps). We
also observe that proxy 11252 has the slowest combined characteristics. Despite
that these servers provide other services, e.g. SNMP, the interference caused by
other services is expected to be negligible.

Table 2. Characteristics of the proxies

Id CPU RAM Max throughput

3982 Intel amd64 2-core 2.6 GHz 2 GB 80 Mbps

10473 Intel x86 2-core 2.6 GHz 0.5 GB 6 Mbps

11252 AMD Athlon(tm) XP 1700+ 0.5 GB 4 Mbps

18202 Intel amd64 2-core 2.7 2 GB 8 MBps

76 E. Dimogerontakis et al.

Table 3. Average volume of data in all proxies and ratios in a month of logs

Proxy Different data (MB) Data transferred (MB) Ratio (/all transfrd)

All Repetd Cached All Repetd Cached Connect Repetd Cached Connect

10473 606 37 9.2 1481 95 14.3 943 6.4% 0.9% 63.7%

11252 3572 1234 28 15352 5512 99 7578 35.9% 0.6% 49.4%

18202 6384 1498 151 15963 3039 253 9274 19.0% 1.6% 58.1%

3982 2542 435 55 6019 855 96 3128 14.2% 1.6% 52.0%

Avg 3276 801 61 9704 2376 115 5231 18.9% 1.2% 55.8%

The analysis of logs for the four proxies is summarized in Table 3. The values
are averages for each proxy over a month of daily logs. The first group of columns
(Different data) shows a data object storage perspective, with the amount of
different data objects requested (disregarding the number of requests for each).
The second group (Data transferred) shows a data transfer perspective, with
the amount of traffic in each category. The third group shows data transfer
ratios to the total transferred. We distinguish between “All” content, seen or
transferred by the proxy, content requested repeatedly (same URL, cacheable
or not), content served from the cache (checked or not against the server), and
content that is invisible (Connect method, typically HTTPS, passed through
blindly).

Cache effectiveness: As introduced before, the passed-through content
(HTTPS) represents the majority of the proxy traffic (49.4–64%). Although
URLs repeat significantly (6.4–36% of proxy traffic), the content successfully
served from the cache (after validation or not) only represents a negligible
amount (1–1.6%). Considering the number of requests instead of the amount
of data, despite URLs repeat often (20–41%), the content does not seem cache
friendly, as cache hits only represent a very small portion (3–10%). The analysis
in number of requests compared to byte count indicates that cached content
usually corresponds to small objects. Bad cache performance can be attributed
to characteristics of the proxy service, such as small cache size, small number
of concurrent users per proxy, or to increasingly non-cacheable served content.
We next look at how these apply to our scenario, claiming that non-cacheable
content is the main factor affecting cache performance.

Cache size: As far as the cache size, the default allocated cache size in guifi.net
proxy settings is 10 GB of secondary storage, while in some proxies caching is
not even enabled. However, we discovered that cached content that results in
cache hits only accounts for a maximum of 151 MB (if all repeated URLs were
cacheable) and an average of 61 MB (based on cache HITs) of data per day. In the
extreme case where all content were cacheable and discounting the transparent
CONNECT/HTTPS data, the amount of daily data seen (i.e. all content for
all URL seen) accounts for a maximum of 1.5 GB or 801 MB on average, easily
achievable with RAM-based caches.

Internet Access for All: Assessing a Crowdsourced Web Proxy Service 77

Fig. 2. Rank of URLs by number of clients requesting them per proxy

Sharing across clients: Proxies can provide the benefit of sharing network
resources, reusing not only HTTP content, but also reusing DNS resolution data
as client web browsers delegate, or even reusing (pooling) established TCP con-
nections among different clients. Figure 2 shows the popularity of URLs across
different clients in each proxy over a month, with top values between 60 to 212
different clients accessing each given URL. The number is related to the struc-
ture of the service, with many decentralized proxies with few users each and
no inter-cache cooperation, which limits the potential of sharing cached content
across more users.

Proxy selection: Users are instructed to check the public list of nearby prox-
ies (in their network zone) in the public network management directory of the
community network with shows a list of nearby proxies, including status and
availability ratio, or follow the advice of trusted neighbors with previous usage
experience. Therefore the choice is influenced by social factors and the reputa-
tion of each proxy, but in most cases the first choice is the nearest operational
proxy with acceptable availability or reputation. Typically several nearby Web
proxy services are configured in client Web browsers. As all federated proxies
use the same authentication service, users are free to choose whatever proxy
they prefer. The choice of proxy is rather fixed and prioritized, only switching
to lower choice proxies when the first fails to reply.

Users and proxies: Figure 3 presents the distribution of the average number
of users per hour. The different proxies show similar distributions, though we
observe that proxy 10473 has a differentiated demand, with 40% of time without
any user and a maximum of 10 users per hour. The rest of proxies, the majority
of time (60%) have an almost linear distribution between 5 and 25 users, with
near equally distributed values, and an average of around 17 users per hour for
proxies 11252 and 18202, and an average of 12 users for proxy 3982. The different
distributions among proxies is a result of preference for proximity and manual
selection. To complete the picture, we found an average of 10 users in periods
of 10 s, an average of 76 different users per proxy and day, and a maximum
of 254 in a month. The user’s distribution among proxies has a clear impact

78 E. Dimogerontakis et al.

in the distribution of the number of requests in Fig. 4. The ordering of proxies
according to the number of users remains visible in the distribution of requests.
Also, there is near-linear behavior between 20% and 60% for all proxies except
10473. For proxies 11272 and 18202 the number of requests per hour is typically
between 1 K and 10 K requests, with a mean of 8187 and 6716 respectively. In
proxy 3982 typical values are between 500 and 1 K requests per hour.

Fig. 3. Hourly average users per proxy Fig. 4. Hourly average requests per
proxy

Fig. 5. Network usage per proxy Fig. 6. Hourly average request
processing throughput per proxy

Regarding the number of clients seen by a proxy every day, the values (min,
average, max) range from the lowest in proxy 10473 (14, 20, 27) to the high-
est in proxy 3982 (59, 82, 101). These numbers reflect the spirit of a highly
decentralized service with many small capacity local proxies.

Internet connection and processing performance: Figure 5 provides the
distribution of the Internet connection usage per proxy, calculated as the approx-
imate instant connection throughput of each proxy normalized by its maximum
Internet throughput as provided in Table 2. All proxies show low utilization of
their network resources, being approximately less than 0.3 (30%) for all the prox-
ies for 80% of the time. Nevertheless, proxies 11252 and 18202 have significantly

Internet Access for All: Assessing a Crowdsourced Web Proxy Service 79

Fig. 7. Daily average request process-
ing throughput compared to traffic

Fig. 8. Daily median loadavg per
proxy normalized by #CPUs

higher traffic. Moreover, Fig. 6 shows the distributions of the request processing
throughput. We observe that all proxies have almost identical distribution but
around different mean values, depending on the individual characteristics of the
proxy. Moreover, we can see that a significant percentage (>60%) of the time
proxies serve at a very narrow range of processing throughput, meaning they
can offer a stable service. Even in the worst cases, the service does not suffer
from extreme degradation, while remaining higher than 100 Kbps 80% of the
time. We also observe that for proxies 3982 and 11252, the processing through-
put distribution resembles the number of requests distribution in Fig. 4 possibly
indicating, as before, that the proxies are not saturated.

To gain a more complete perspective we also studied the daily aggregates of
the traffic, users and requests clearly observing not only the expected human
daily pattern but also a clear effect of the different way each proxy receives and
serves request as a result of the users’ manual proxy selection. Moreover, study-
ing the mean daily patterns, we noticed that, as seen in Fig. 7, the processing
throughput presents very small variations implying a stable service behavior.
Furthermore, the traffic volume varies more than 1.5 orders of magnitude. The
fact that the processing throughput is not affected by the traffic size confirms our
observation that the servers are not saturated. Additionally, in order to verify
that the processing capabilities of proxies are not a bottleneck for the service,
we monitored the proxies’ CPU using the loadvg Linux metric. The results, pre-
senting a strong daily cyclic pattern, are summarized in Fig. 8 that shows the
daily median of the per-minute loadavg for each proxy normalized by the num-
ber of CPUs. Except from 3982, affected by other co-located network services,
the proxies are not overloaded. The brief daily peak in each proxy is due to the
daily restart of the proxy that includes a cache reindexing. Even at that small
scale, we observed the daily cycle of human activity with preference for evenings
and really reduced traffic during the first hours of the day. The pattern is visible
in all the described metrics in different degrees.

From all the above we can conclude that the proxies are able to offer a stable
service, with respect to the traffic load, allowing them to be used as an alternative
domestic Internet connection. Moreover, in our concrete scenario, the network

80 E. Dimogerontakis et al.

Table 4. Summary of Llucanes network graph

Graph Nodes Edges Degree max/mean/min Diameter

Base-graph 902 914 98/2.04/1 11

Proxy-clients-graph 463 472 60/2.04/1 10

Backbone-graph 47 56 10/2.38/1 9

capacity of the proxies is underutilized assuming that no other services co-located
in the host of the proxy are heavily using the Internet network capacity.

5 The Local Network Viewpoint

The local network infrastructure has also an influence in the final user experience.
For the analysis we used information extracted from odd day logs that provide
these details while hiding URL destinations.

Network structure: We refer to the entire zone network as the base graph.
Moreover, we refer as proxy-clients graph to the part of the Llucanes network
including only the nodes (clients, routers, proxies) that participate in the proxy
service. Similarly to many rural community network deployments, the network
consists of a small set of interconnected routers, the backbone graph, where each
router is connected with a large number of end nodes, mostly 802.11b wireless
links [17]. Users access the entire guifi.net network from the end nodes. Some of
the routers act also as hosts for various guifi.net services, including the proxy
service. More information concerning the network structure, hardware charac-
teristics, and protocols used in guifi.net is available in [17].

Table 4 describes the main characteristics of the aforementioned graphs. We
notice that the mean degree of the base graph and of the proxy-clients graph
is very low since the end-nodes dominate the distribution of degrees. The low
mean degree value in the backbone graph is more interesting though, since it
implies that the majority of the routers have only two neighbors. Figures 9 and
10 provide a view of the proxy-clients graph and the backbone graph. The colors
of the participating nodes and routers indicate that they are using the proxy
with the same color. Moreover, in Fig. 10 the darkness of the link color denotes
the cost in latency for a byte to cross this link, therefore the darker the color
the more expensive is the link to use.

Network usage: Due to the almost static (manual) proxy selection, the analy-
sis of local network usage can show the effect of selection on local network usage
and the perceived user experience. Towards that end, we first analyse metrics of
distance between the users and the proxies. Figure 11 shows the distribution of
the number of hops between users and their selected proxies. The distribution is
almost uniform for 95% of the users with values from 1 to 6 hops. The remain-
ing 5% is split between 7 and 8 hops. Nevertheless, we observe that manual
choices result to a slight increase in number of hops, possibly introducing small

Internet Access for All: Assessing a Crowdsourced Web Proxy Service 81

Fig. 9. Llucanes proxies and clients
(Color figure online)

Fig. 10. Llucanes backbone (Color
figure online)

unnecessary overheads. The latency involved, depicted in Fig. 12, shows a dif-
ferent behavior. Almost 80% of the users experience an average latency smaller
than 15 ms to reach their proxy. The remaining 20% lies between 20 ms to 35 ms.
Despite the almost uniform distribution of hops, latency values vary much less,
implying that during normal network conditions, the distance between the users
and proxies is not significantly deteriorating the user experience for web services.

Fig. 11. Number of network hops
between users and their selected proxies

Fig. 12. Average latency between
users and their selected proxies

Download throughput: As described earlier, the request processing through-
put is calculated using the request elapsed time, which includes the time the
proxy requires until the last byte of the web object is sent to the client. There-
fore, any significant local network deterioration affects the throughput behavior.
Based on this observation we can utilize the request processing throughput met-
ric for objects larger than 1 MB, in order to estimate significant degradation on
the user experience. Including smaller objects would give unreliable throughput
results due to the noticeable influence of network buffering in the proxy, DNS

82 E. Dimogerontakis et al.

Fig. 13. Estimation of user experience
throughput with objects >1 MB

Fig. 14. User cost as sum of download
times (1 month)

caching and network latency variations for short connections. Figure 13 illus-
trates the individual user experience in throughput estimated for objects larger
than 1 MB, under the simplifying assumption that users focus on few or a single
large object at a time. If so, our measures could be taken as a lower bound for
the experienced individual download throughput. Median values of download
throughput appear quite stable with median values ranging from 0.1 Mbps to
10 Mbps for different users. A quite good result for the many users of a free
crowdsourced service.

Furthermore, in order to show the margin for improvement in the user expe-
rience using other proxy selection strategies, we simulated the traffic of the users
using a min hop and a random strategy considering local link latencies. As seen
in Fig. 14, the total download time of each user throughout the month in the man-
ual selection is asymptotically better than the random selection while asymptot-
ically worse than the min hop selection. Considering that the proxies are not the
bottleneck, this result shows that a proxy selection mechanism could improve
the user experience of the proxy service. Nevertheless, we plan to extend our
simulations taking into account the proxies processing and download speed.

6 Related Work

Most work on wireless networks focuses on usage traffic patterns, link level char-
acteristics and topologies, but not user experience, e.g. MadMesh [4], Google
WiFi [1] and Meraki [3] networks. In these studies, Internet access is direct
instead of using proxies, and these wireless networks are homogeneous. Thus,
measurement results cannot easily be compared with this. In the Google WiFi
and MadMesh transfer rates are limited to 1 Mbps, but 80% getting less than
80 Kbps in Google WiFi. In MadMesh 80% get less than 1 Mbps with 85% of the
clients connected within 3 hops to Internet, comparable with our results that
achieve higher speed but more hops to a web proxy.

Facebook’s Free Basics [16] shows comparable performance (80–600 Kbps for
FB vs. 0.1–10 Mbps median speeds) better in our case, despite significant differ-
ences: in clients (mobile devices vs. any device), access network (cellular mobile

Internet Access for All: Assessing a Crowdsourced Web Proxy Service 83

carrier vs. wireless fixed community network), web proxies (centralized large
servers vs. distributed small servers with network locality), and web service and
content providers (redesigned and optimized vs. unmodified content).

The web proxy business has changed significantly over the years. The percent-
age of cacheable content has been decreasing, coupled with a dramatic increase of
HTTPS traffic. The performance of web proxies is not only about high-level met-
rics such as hit rates. Low-level details such as HTTP cookies, aborted connec-
tions, and persistent connections between clients and proxies as well as between
proxies and servers have a visible impact on performance, particularly in hetero-
geneous bandwidth environments [8]. In [5], authors analyse a mobile network
topology with a two level cache hierarchy. Their claim that a caching system
can be efficient when 5.1% of traffic is suitable for caching, shows that the lower
rates of caching in our case may not be that beneficial.

Wireless network user experience has been characterized previously. The first
[13] focuses on web traffic and the use of proxies to access Internet content
in rural areas. Five years ago, using a single high latency and slower VSAT
Internet connection (64–128 Kbps) obtained RTT values sometimes over 10 s,
closer to a DTN case, and cache hit rates of 43%. There are also complementary
lessons, about security or that content from CDN is usually not cacheable, but
the scenarios are too different. The second study [10] looks at web traffic patterns
and content caching. They mention the decreasing cache hit rates over previous
studies, even lower in our study 5 years later with a dramatic increase of HTTPS
traffic.

7 Summary of Lessons Learned

The analysis of the guifi.net proxy service describes a crowdsourced, social sol-
idarity driven, free basic Internet service built from many small proxy servers
spread across a regional community network, contributed by locals for locals.
These proxies act as gateways to Web content and DNS, that can be cached and
shared among clients or act as middleboxes for HTTPS transfers, the majority
of traffic. Being in the middle can also help protect the privacy of clients.

The analysis confirms the trend to non-cacheable content, small cacheable
objects, and therefore small object caches that can even fit in RAM. Each proxy
has a small number of clients, ranging from 14 to 101 per day. Moreover, there is a
good balance of traffic and number of clients per proxy despite the manual proxy
selection, driven by locality (same zone), end-user choice and advice from people
living nearby. The system is simple and resilient since each proxy is independent
and clients just switch to their next choice in case of failure of their proxy.

The service has satisfactory performance (0.1–10 Mbps, good client-proxy
latency), without perceived Internet, access network or service congestion,
despite the typical daily usage patterns. That can be attributed to the structure
of the service with many small servers across a regional access network, close to
end-users with locality preference. Nevertheless, scaling or coordination between

84 E. Dimogerontakis et al.

services between different zones is not trivial. Future work lies in exploring opti-
mization by automating service selection with a global perspective, under diverse
cost and performance metrics.

In summary, a crowdsourced service that fulfills the goal of an usable, satis-
factory and inexpensive free basic alternative Internet access service for many.

Acknowledgments. This work was partially supported by the EU funded Erasmus
Mundus Joint Doctorate in Distributed Computing (EMJD-DC) (FPA 2012-0030),
the EU Horizon 2020 project netCommons (H2020-688768), the Spanish government
(TIN2016-77836-C2-2-R), and the Generalitat de Catalunya (2014-SGR-881). Our
thanks to Davide Vega, Roger Baig and several guifi.net members that have made
this work possible.

References

1. Afanasyev, M., Chen, T., Voelker, G., Snoeren, A.: Usage patterns in an urban
wifi network. IEEE/ACM Trans. Netw. 18(5), 1359–1372 (2010)

2. Baig, R., Roca, R., Freitag, F., Navarro, L.: guifi.net, a crowdsourced network
infrastructure held in common. Comput. Netw. 90, 150–165 (2015)

3. Biswas, S., et al.: Large-scale measurements of wireless network behavior. ACM
SIGCOMM Comput. Commun. Rev. 45(4), 153–165 (2015)

4. Brik, V., et al.: A measurement study of a commercial-grade urban wifi mesh. In:
Internet Measurement Conference (IMC), pp. 111–124 (2008)

5. Catrein, D., et al.: An analysis of web caching in current mobile broadband sce-
narios. In: New Technologies, Mobility and Security (NTMS), pp. 1–5 (2011)

6. Cerdà, L.: On the topology characterization of guifi.net. In: Wireless and Mobile
Computing, Networking and Communications (WiMob), pp. 389–396 (2012)

7. European Parliament and Council: Directive 2014/61/EU on measures to reduce
the cost of deploying high-speed electronic communications networks, May 2014

8. Feldmann, A., et al.: Performance of web proxy caching in heterogeneous band-
width environments. In: INFOCOM, pp. 107–116 (1999)

9. Gaia, W.G.: Global access to the internet for all research group. https://irtf.org/
gaia (2016). Accessed 14 Sept 2016

10. Ihm, S., Pai, V.S.: Towards understanding modern web traffic. In: Internet Mea-
surement Conference (IMC), pp. 295–312 (2011)

11. International Telecommunication Union: Trends in telecommunication reform
2008: six degrees of sharing (d-pref-ttr.10), July 2009

12. Internet Society: Global internet report 2015, October 2015
13. Johnson, D.L., Pejovic, V., Belding, E.M., van Stam, G.: Traffic characterization

and internet usage in rural Africa. In: World Wide Web, pp. 493–502 (2011)
14. Maier, G., et al.: On dominant characteristics of residential broadband internet

traffic. In: Internet Measurement Conference (IMC), pp. 90–102 (2009)
15. Rey-Moreno, C., et al.: Experiences, challenges and lessons from rolling out a rural

wifi mesh network. In: ACM Computing for Dev (ACM-DEV), p. 11 (2013)
16. Sen, R., et al.: on the free bridge across the digital divide: assessing the quality

of Facebook’s free basics service. In: Proceedings of the 2016 ACM on Internet
Measurement Conference (IMC), pp. 127–133 (2016)

17. Vega, D., et al.: A technological overview of the guifi.net community network.
Comput. Netw. 93, 260–278 (2015)

https://irtf.org/gaia
https://irtf.org/gaia

Security

A First Look at the CT Landscape: Certificate
Transparency Logs in Practice

Josef Gustafsson1, Gustaf Overier1, Martin Arlitt2, and Niklas Carlsson1(B)

1 Linköping University, Linköping, Sweden
niklas.carlsson@liu.se

2 University of Calgary, Calgary, Canada

Abstract. Many of today’s web-based services rely heavily on secure
end-to-end connections. The “trust” that these services require builds
upon TLS/SSL. Unfortunately, TLS/SSL is highly vulnerable to com-
promised Certificate Authorities (CAs) and the certificates they gener-
ate. Certificate Transparency (CT) provides a way to monitor and audit
certificates and certificate chains, to help improve the overall network
security. Using an open standard, anybody can setup CT logs, monitors,
and auditors. CT is already used by Google’s Chrome browser for vali-
dation of Extended Validation (EV) certificates, Mozilla is drafting their
own CT policies to be enforced, and public CT logs have proven valu-
able in identifying rogue certificates. In this paper we present the first
large-scale characterization of the CT landscape. Our characterization
uses both active and passive measurements and highlights similarities
and differences in public CT logs, their usage, and the certificates they
include. We also provide insights into how the certificates in these logs
relate to the certificates and keys observed in regular web traffic.

1 Introduction

The internet today involves billions of devices and millions of services that require
private or confidential communication. Unfortunately, it is unthinkable to trust
that every entity on the internet is who they claim to be. Instead, protocols such
as Transport Layer Security (TLS) and its predecessor Secure Sockets Layer
(SSL) rely heavily on the trust in Certificate Authorities (CAs) [2].

With TLS/SSL, CAs are responsible for verifying the identity of entities and
issuing electronic proof in the form of X.509 certificates. For example, in the
case of HTTPS, a server or domain that wants to prove its identity typically
pays a CA (or an organization that a CA has delegated trust to, using chained
certificates) to create a signed certificate that connects its identity with a public
key that others can use to securely communicate with the server/domain. If that
CA’s root certificate is available in the browser’s root store, the browser can then
use the root certificate to validate this certificate. Once validated, the browser
trusts that the public key belongs to the claimed server/domain.

Conceptually, certificates enable a user to trust that a service provider they
want to use is who they say they are. However, in practice, there are numerous
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 87–99, 2017.
DOI: 10.1007/978-3-319-54328-4 7

88 J. Gustafsson et al.

issues that can undermine that trust, including human error, intentional fraud,
etc. [13]. Many of these issues stem from every CA having the power to issue
certificates for any domain and that there are no mechanisms to inform the
domain owners of issued certificates. This has resulted in many hard-to-detect
incidents, including a recent incident where Symantec issued test certificates for
76 domains they did not own (including domains owned by Google) and another
2,458 unregistered domains [23].

To improve the situation, the use of Certificate Transparency (CT) [17] has
been proposed and standardized through IETF. In fact, after the Symantec
incident mentioned above, Google demanded that Symantec log all of their cer-
tificates in public CT logs. With CT, certificates should be published in public
append-only logs, whose content is verified by monitors, and whose cryptographic
integrity are verified by auditors. Any organization or individual can operate a
monitor to verify these public records.

Google’s Chrome browser was the first to enforce CT, with Chrome 41 and
later requiring CT for Extended Validation (EV) certificates (issued after Jan.
1, 2015). Before displaying visual cues to the user that normally come with
EV certificates, the certificate needs to be accompanied by Signed Certificate
Timestamps (SCTs), where an SCT is a promise that the certificate is included
in a public log. Chrome requires an EV certificate to be included in at least
one Google operated log and one non-Google operated log [15]. The choice to
start with EV certificates was motivated by the EV certificates themselves being
intended to follow stricter issuing criteria than regular Domain Validated (DV)
and Organization Validated (OV) certificates.1 Mozilla is currently drafting their
own CT policies (expected to require that certificates are present in logs operated
by two organizations separate from the CA) and are on track to start enforcing
CT for EV later 2017. Both Chrome and Mozilla are expected to enforce CT
also for DV some time in the future.

Although CT is standardized [17] and used at large scale, it is not publically
known how CT logs are used in practice. In this paper we present the first large-
scale characterization of the CT landscape. First, we implemented a basic CT
monitor [17] that actively monitors all public logs submitted to Chrome up to
Dec. 2015 (3 Google operated and 7 CA operated) and one large log operated
by NORDUnet.2 Second, we characterize both differences in basic properties
related to how different policies are implemented at the logs and properties
related to the log content itself, including the certificates they include, their
overlap in coverage, as well as temporal differences between the logs and their
usage. Third, to glean some insight into how the certificates in these logs and
their usage relate to that seen in regular web traffic, we also use the certificates
observed across 232 million HTTPS sessions observed on a university network.

1 EV certificates were themselves introduced to address waning user trust.
2 Technically, Google is also a CA. At the time of the measurements, no other pro-

duction logs were known - only logs for testing purposes - although more production
logs have appeared since. https://www.certificate-transparency.org/known-logs.

https://www.certificate-transparency.org/known-logs

A First Look at the CT Landscape: Certificate Transparency Logs 89

Our results highlight differences and similarities between the different logs.
In general, there are significant differences in the certificates included in Google
operated logs (that relies heavily on web crawls to identify certificates) and
smaller CA operated logs. The coverage of the logs is broad. For example, for
almost all domains observed in the university traces, there is at least one log with
a valid DV certificate (despite such logging being voluntary for all CAs except
Symantec), and for EV certification there are only small differences between the
certificates that are included in Google logs and in CA operated logs.

The remainder of the paper is organized as follows. We first give a brief
overview of CT (Sect. 2) and describe our collection methodology (Sect. 3). Next,
we characterize the logs from the perspective of their properties alone (Sect. 4)
and then based on the HTTPS traffic observed on campus (Sect. 5). Finally,
related work (Sect. 6) and conclusions (Sect. 7) are presented.

2 Certificate Transparency

Certificate Transparency attempts to address flaws in the TLS/SSL certificate
system [17,18]. CT extends classic TLS/SSL operation with CT logs, auditors,
monitors, as well as new communication interfaces between all these entities.
With CT, each log maintains an append-only hash tree based on a binary Merkle
Hash Tree [20] and newly issued certificates are appended to one or more CT
log. The logs return a signed promise of inclusion, called an SCT, which is used
by the TLS server to prove to clients that the certificate is logged.

Logs commit to publishing a Signed Tree Head (STH) within a fixed amount
of time of issuing the SCT, called the Maximum Merge Delay (MMD). The STH
can be used to prove both that a certain entry was included at a certain point
in time and that the log maintains consistency over time (i.e., every new tree is
a superset of every old tree). A log that cannot prove consistency between two
STHs is likely to be distrusted immediately. In practice, the inclusion process can
be broken into an update interval (UI) and the time to publish (TTP), where
UI is the time between issuing an SCT and incorporating the corresponding
entry into the STH and TTP is the time between signing and publishing STHs.
In general, a CT log is itself considered compliant with regards to the MMD
(offering an acceptably small attack window) if UI+TTP < MMD.

Once the STH is published, monitors will have access to the certificate
chain to detect any irregularities. A log can prove that a certain certificate has
been included using an inclusion proof [17]. Auditors and monitors cooperate to
ensure that logs are behaving correctly and that the log content corresponds to
what the domain owners intended. In contrast to CAs, the CT logs are publicly
auditable and enable anyone to verify claims of correctness. Furthermore, anyone
can operate logs, monitors and auditors, making it infeasible for an adversary
to control all instances.

90 J. Gustafsson et al.

3 Methodology and Datasets

For our data collection we implemented a basic CT monitor [17] in Python,
which monitors the public logs and various domains, but that does not try to
determine the legitimacy of the certificates. For the purpose of our study, we
collected all certificates that have been added to eleven CT logs: the ten public
logs submitted to Chrome (3 operated by Google and 7 CA operated logs) at the
time of our last measurement (Dec. 2015) and one (non-production) log operated
by NORDUnet. We recorded all fields of the individual certificates and validated
the certificates against the Mozilla root store, as observed on Dec. 1, 2015.

Furthermore, to understand how representative the observed certificates of
the different logs are compared with what a typical internet user sees, we also use
a one-week long complementary dataset collected by passively monitoring the
internet traffic to/from the University of Calgary, Canada [22]. Using Bro, we log
specific information about the non-encrypted part of the TLS/SSL handshake,
including all digital certificates sent. This dataset was collected Oct. 11–17, 2015,
and covers 232 million HTTPS sessions, 67,644 unique certificates, and 552 mil-
lion certificate exchanges. For most of our analysis we focus on the CT logs, and
use the university dataset as a reference point.

4 Analysis of Logs

4.1 Basic Log Properties and Operational Measures

Table 1 summarizes the basic properties of the eleven logs we used. The logs are
ordered based on when they were submitted to Chrome (second column). All logs
allow HTTPS to be used when accessing the logs. Furthermore, all logs except
Venafi (who uses RSA with SHA-256) use ECDSA (over the NIST P-256 curve)

Table 1. Basic properties of the CT logs.

Log name Operated by Submitted URL Roots MMD UI TTP

Pilot Google 2013-03-25 ct.googleapis.com/pilot 474 24 h 1 h 22 min

Aviator Google 2013-09-30 ct.googleapis.com/aviator 474 24 h 1 h 22 min

Rocketeer Google 2014-09-01 ct.googleapis.com/rocketeer 474 24 h 30 min 34 min

Digicert Digicert 2014-09-30 ct1.digicert-ct.com/log 57 24 h 1 h 12 h

Izenpe Izenpe 2014-11-10 ct.izenpe.com 40 24 h 1 min < 1 min

Certly Certly 2014-12-14 log.certly.io 183 24 h 10 min < 1 min

Symantec Symantec 2015-05-01 ct.ws.symantec.com 19 24 h 6 h < 1 min

Venafi Venafi 2015-06-11 ctlog.api.venafi.com 357 24 h 2 h 3 min

WoSign WoSign 2015-09-22 ct.wosign.com 12 24 h 1 min < 1 min

Vega Symantec 2015-11-13 vega.ws.symantec.com 19 24 h 6 h < 1 min

Plausible NORDUnet Not Subm plausible.ct.nordu.net 442 24 h∗ 12 min 2 min
∗Plausible operates with an unofficial MMD of 24 h.

http://ct.googleapis.com/pilot
http://ct.googleapis.com/aviator
http://ct.googleapis.com/rocketeer
http://ct1.digicert-ct.com/log
http://ct.izenpe.com
http://log.certly.io
http://ct.ws.symantec.com
http://ctlog.api.venafi.com
http://ct.wosign.com
http://vega.ws.symantec.com
http://plausible.ct.nordu.net

A First Look at the CT Landscape: Certificate Transparency Logs 91

to sign data structures (STHs and SCTs). Both techniques are recommended in
RFC6962 [17] and are expected to provide roughly the same security.

The last four columns indicate large differences in how the logs are imple-
mented and maintained. The roots column shows the number of accepted
certificate-chain roots for the logs. We used the APIs provided by the CT logs to
download all roots accepted by each log. Out of the 503 unique roots we observed
across all logs, the three Google logs included 474 in their root store. In contrast,
the CA operated logs typically included much fewer roots. For example, the two
Symantec logs (Symantec and Vega) and the WoSign log only allowed certifi-
cates signed by 19 and 12 of the roots, respectively. These observations point to
differing usage patterns. Based on the Google CT policy, for example, CAs may
be incentivized to log any certificates they issue themselves, but there is little
incentive for them to log certificates issued by competitors. In contrast, browser
vendors may prefer to log at least the certificates accepted by the browser.

0

2

4

6

8

10

0 100 200 300 400 500

Lo
gs

 w
ith

 r
oo

t

Rank of root

50
3

un
iq

ue
 r

oo
tsAll logs

CA logs

0

2

4

6

8

10

1 4 16 64 256

Lo
gs

 w
ith

 r
oo

t

Rank of root

50
3

un
iq

ue
 r

oo
tsAll logs

CA logs

Fig. 1. Number of logs accepting each root for submitted entries.

With browsers increasingly requiring certificates to be found in multiple logs,
many roots are starting to be included in several logs. Figure 1 shows the number
of logs that include each root. In general, we have found that roughly 10% of
the roots are included in six or more of the logs’ root stores, and most of the
roots are included in 3–5 of the root stores. Again, the three Google operated
logs include the majority of the observed roots.

The last two columns provide insights into the time granularity at which
the logs operate and how well the MMD is satisfied. First, referring to Sect. 2,
remember that UI+TTP must be less than the MMD for the log to be considered
compliant. In general, the (load dependent) UIs are substantially smaller than
the 24-hour MMDs, suggesting that all logs typically require much less time
to merge the certificate chain than the upper bound. However, the UIs differ
substantially between logs. For example, the median UI observed in Table 1
varies from minute scale (e.g., Izenpe and WoSign) to hours (e.g., the Symantec
and Google logs). In fact, on Oct. 16, 2016, the Aviator log (Google operated)
overshot its MMD by 2.2 h. As a result, since Dec. 1, 2016, the log has been frozen
and is no longer accepting new submissions.3 This is a form of “soft untrusting”
3 https://bugs.chromium.org/p/chromium/issues/detail?id=389514.

https://bugs.chromium.org/p/chromium/issues/detail?id=389514

92 J. Gustafsson et al.

as old SCTs issued by Aviator are still honored. The incident has sparked a
debate on if the policy needs to be updated. In general, a shorter interval can be
convenient for both operators and clients, as it reduces the size of each merge
and reduces the time until clients can request inclusion proofs.

The TTPs also differ substantially between logs. The notable outlier is Dig-
icert with a 12-hour delay between signing and publishing STHs. When we asked,
Digicert said that they sign STHs every hour, but use the extra delay for syn-
chronizing between servers located in multiple datacenters. All other logs publish
STHs within 1 h, although some have much shorter TTPs. While Table 1 reports
median values, UIs and TTPs were relatively stable with small variations over
the time we monitored the logs (up to Dec. 2015). The spike in UI that Aviator
saw on Oct. 16, 2016, shows that there since have been larger variations.

4.2 Certificate Analysis

CT logs can be a valuable tool for monitoring newly issued certificates. For
example, we can examine the strength of the encryption algorithms used, as
well as detect CAs that backdate certificates to circumvent restrictions. To gain
insight into the differences in the certificates logged by the different CT logs,
Table 2 shows a breakdown of the different certificate entries of each log.

In general, the logs can be divided into three size-based groups: (i) large logs
with more than 5, 000, 000 entries, (ii) medium-sized logs with 50, 000−1, 000, 000
entries, and (iii) small logs with less than 50, 000 entries. We observed significant
differences in the types of certificates being stored in each log category. Columns
2–4 in Table 2 show a breakdown between EV, DV, and OV certificates. The large
difference in the ratio between DV and EV certificates observed for the four large
logs (Pilot, Aviator, Rocketereer, and Plausible; each with 5% EV certificates)
and the top-four CA operated logs (Digicert, Izenpe, Certly, and Symantec; all
in the 61–78% range) can be explained by the relative log sizes and differences
in how the certificates are submitted. While the Google logs and Plausible have
been populated by crawling the internet and submitting encountered certificates
(capturing all types of certificates, including certificates of domains that may not
themselves have chosen to participate in CT), it appears that Digicert, Izenpe,
Certly, and Symantec primarily use the logs to store entries with the intent of
using the SCTs in EV validation. The focus on EV certificates of both Digicert
and Symantec is also visible in the university dataset, where these two CAs are
responsible for 27.6% and 56.2% of the EV sessions (and a combined 37.9% of
the unique EV certificates). However, in absolute numbers, the four large logs
all include more EV certificates than the CA logs. We also note that the fraction
of EV certificates observed in the three Google operated logs and Plausible
are similar to the fractions observed in the wild. For example, in our university
dataset EVs are observed in 4.9% of the observed leaf certificates and 6.3% of all
sessions. The small logs (Venafi, WoSign, and Vega) are younger logs that at the
time of the measurements still contained a large fraction of test entries, rather
than entries intended for CT. These logs therefore have substantially different
properties than the other categories.

A First Look at the CT Landscape: Certificate Transparency Logs 93

Table 2. Distribution of certificate validation types and signature hashes.

Validation Encryption algorithm

RSA RSA RSA EC

Log name Operated by Entries DV OV EV (1024) (2048) (4096) (256)

Pilot Google 10,831,024 87% 8% 5% 2% 79% 3% 16%

Aviator Google 10,069,865 87% 8% 5% 1% 78% 3% 17%

Rocketeer Google 8,140,991 87% 8% 5% 1% 75% 4% 21%

Digicert Digicert 229,858 18% 5% 78% 0% 96% 3% 0%

Izenpe Izenpe 65,812 31% 1% 68% 0% 95% 5% 0%

Certly Certly 161,740 36% 3% 61% 0% 94% 5% 0%

Symantec Symantec 113,674 21% 5% 74% 0% 97% 2% 0%

Venafi Venafi 4,626 85% 10% 5% 0% 93% 5% 1%

WoSign WoSign 11,188 97% 1% 2% 0% 99% 1% 0%

Vega Symantec 80 95% 0% 5% 0% 95% 0% 2%

Plausible NORDUnet 5,893,906 88% 7% 5% 3% 90% 3% 4%

In general, the logging of other certificates than EV certificates can be used
for testing and to preserve public records of certificates. The use of public logs
provides the true owners of domains (or monitors) a much easier means to iden-
tify rogue certificates than having to search the web, especially since many rogue
certificates may not be reachable from the internet. This has proven valuable in
identifying certificates violating regulations, including improper certificates from
both Comodo4 and Symantec5. Finally, we note that the certificate ratios of the
CA operated logs are expected to change as browsers start to require logging of
DV and OV certificates too.

In general, most logged certificates we observed use strong algorithms, with
the majority of certificates in all logs using RSA with 2048 bit keys (≥75%).
Columns 5–8 in Table 2 break down the distribution of algorithms used for the
certificates in each log. In addition to RSA keys (of different lengths), we note
that the three Google logs include a significant number (16–21%) of certificates
using Elliptic Curve (EC) signatures.

However, the logs also capture many certificates with weak keys or signa-
tures. First, despite that NIST recommended to stop using 1024-bit RSA keys
in 2013 [4], before the first entries of any of the CT log, we observed a non-
negligible use of such short keys in the logs that use crawling of the web to fill
their records. All these four logs include 1–3% such entries. This is consistent
with the 1.3% authority and 5.6% leaf certificates we observed on campus [22].

4 https://cabforum.org/pipermail/public/2015-November/006226.html.
5 https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.

html.

https://cabforum.org/pipermail/public/2015-November/006226.html
https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html
https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html

94 J. Gustafsson et al.

 0

 20

 40

 60

 80

 100

Pilot
Aviator

Rocketeer

Digicert

Izenpe

Certly
Symantec

Venafi

W
oSign

Vega
Plausible

Netw. (’13)

Leaf (’15)

Auth. (’15)

P
er

ce
nt

 c
er

tif
ic

at
es

 (
%

) SHA1
SHA256

(a) All logs (Dec. 1, 2015)

 0

 20

 40

 60

 80

 100

Jan 2013 Jan 2014 Jan 2015 Jan 2016

C
D

F
 (

%
)

Date of inclusion

SHA1
SHA256

(b) Pilot log over time

Fig. 2. Signatures used for certificates.

Second, despite that the SHA1 hash algorithm is susceptible to known attacks
and CAs no longer sign new certificates with SHA1, SHA1 is observed in 17−97%
of signatures across the logs. Figure 2(a) breaks down the use of SHA1 and
SHA256 across the logs. As reference points we also include values by Durumeric
et al. [9] (Aug. 2013) and the university dataset (Oct. 2015) [22]. We note that
most of the logs have numbers in-between those observed in the wild in 2013
and 2015, and that Plausible has a smaller fraction SHA1 usage than the three
older Google logs. Given the append-only properties of these logs, this is to-be
expected and supports observations that there is a reduction of SHA1 usage
for new certificates. To understand the shift, Fig. 2(b) shows the cumulative
distribution function (CDF) of all SHA1 and SHA256 certificates inserted as a
function of time for the oldest and largest log (Pilot). As expected, the SHA1
inclusion rate is steadily decreasing, while the SHA256 rate is steadily increasing.
Again, the newer logs (with fewer entries) stick out with a large fraction SHA1
certificates. These certificates have been added relatively recently and include a
large fraction weaker self-signed SHA1 test certificates from Google CT.

One explanation that the outphasing of SHA1 is taking a long time is that
many service providers, including Facebook and Twitter, are concerned that mil-
lions of users with older devices would lose access to their services and therefore
want to delay the outphasing of SHA16. With Facebook and Twitter only being
responsible for 287 and 9 of the 250,000 most recently logged SHA1 certificates
in the Pilot log, many other service providers also appear to be stalling.

As mentioned, the small logs (Venafi, WoSign, and Vega) have quite different
key strength properties than the other logs. These logs stick out even more when
looking at the validity of the certificates in the logs. Figure 3 shows the percent of
the certificates in each log that validate using the Mozilla root store. The large
fraction of invalid certificates is again explained by a relatively large fraction
of test certificates. For these logs almost none of the invalid certificates are
due to expired roots. In contrast, for the other logs about half of the invalid
certificates are due to expired roots. However, despite all logs being append-only

6 https://blog.cloudflare.com/sha-1-deprecation-no-browser-left-behind/.

https://blog.cloudflare.com/sha-1-deprecation-no-browser-left-behind/

A First Look at the CT Landscape: Certificate Transparency Logs 95

 0

 20

 40

 60

 80

 100

Pilot
Aviator

Rocketeer

Digicert

Izenpe

Certly
Symantec

Venafi

W
oSign

Vega
Plausible

Uni (’15)

P
er

ce
nt

 c
er

tif
ic

at
es

 (
%

)

Valid Invalid Root exp

Fig. 3. Validation tests using the Mozilla
root store.

 0

 20

 40

 60

 80

 100

Digicert

Izenpe

Certly
Symantec

Venafi

W
oSign

P
er

ce
nt

 c
er

tif
ic

at
es

 (
%

)

2

All
Pilot

Aviator
Rocketer

Fig. 4. Percent of entries in CA operated
logs seen in at least one Google log.

and certificates eventually expiring, most of the observed certificates for the
other logs are still valid. Furthermore, we again observe similar characteristics
for the large crawled logs (86–90% still valid certificates) and campus (94.8% as
measured by the fraction of HTTPS sessions that had a valid certificate).

4.3 Cross-Log Publication

To improve security and increase assurance, several SCTs can be used when val-
idating certificates. For example, to pass Chrome’s CT checks, an EV certificate
must be accompanied by multiple valid SCTs: one operated by Google, one by
another operator, and in some cases (depending on the validity period of the
certificate) additional SCTs [15]. While Mozilla currently is drafting their own
CT policies, it appears that their requirement of at least two independent logs
will be similar in flavor to the policy applied by Chrome.

Motivated by Chrome’s policy, we considered what fraction of the certificates
in the six CA operated logs with at least 10,000 entries was included in at least
one Google operated log. Figure 4 shows that at least 80% of the entries in
each of the four large CA logs (Digicert, Izenpe, Certly, and Symantec) also are
included in at least one of the three Google operated logs. Again, it appears that
the remaining two smaller logs (Venafi and WoSign) contain a larger fraction of
test certificates. This is expected to change when they become more mature.

The use of the Google logs also varies among the certificates in the top-four
CA logs. For example, Certly certificates appear to be submitted to all three
logs, whereas the certificates of the other three (Digizert, Izenpe, and Symantec)
primarily are submitted to Pilot and Aviator. Part of the bias towards Pilot may
be due to it being the first public log and rich-get-richer effects.

4.4 Temporal Analysis

All CT logs are strictly append-only. Figure 5 shows the number of certificate
entries (logarithmic scale) as a function of time for the different logs. To tie with
the above discussion, we order the logs based on their start dates. While the

96 J. Gustafsson et al.

100

101

102

103

104

105

106

107

Jan 2013 Jan 2014 Jan 2015 Jan 2016

Lo
g

si
ze

 (
nu

m
be

r
en

tr
ie

s)

Pilot
Aviator

Rocketeer
Digicert
Izenpe
Certly

Plausible
Symantec

Venafi
Wosign

Vega

Fig. 5. Number of entries submitted to the logs
over time. (Color figure online)

0

50

100

Jan 2013 Jan 2014 Jan 2015 Jan 2016

C
D

F
 (

%
) DV,OV

EV

(a) Pilot

0

50

100

Jan 2013 Jan 2014 Jan 2015 Jan 2016

C
D

F
 (

%
) DV,OV

EV

(b) Digicert

0

50

100

Jan 2013 Jan 2014 Jan 2015 Jan 2016

C
D

F
 (

%
) DV,OV

EV

(c) Symantec

Fig. 6. Submissions of certifi-
cates for three example logs.

Google logs (red curves) have a strict size ordering, the size-order changes over
time among the CA operated logs (blue). The generally increasing growth rates
can be explained by increasing use of short-lived certificates and general use of
HTTPS. Some of the spikes can be explained by bulk registrations of certificates
and the advent of enforcing CT for DV certificates.

Among the crawl-based logs we have observed steady inclusion rates of DV
and OV certificates (e.g., Fig. 6(a)), whereas the inclusion rates of EV certifi-
cates have been increasing. This suggests a relative increase in the use of EV
certificates in the wild, but may also be affected by how Google extracts cer-
tificates. We also observe a significant peak in additions around Jan. 1, 2015,
when Chrome’s EV policy took effect. This is also around the time that Digicert
(Fig. 6(b)) started its log. Since then, Digicert have added EV certificates at a
fairly steady rate. We also include results for Symantec (Fig. 6(c)) as an example
where the insertion rates of EV and DV certificates goes hand-in-hand. Again,
Google requires Symantec to log all their certificates; not only EVs.

5 Popularity-Based Analysis

We next look at the certificates of the domains associated with the HTTPS
sessions on campus. For this analysis we extract the domain name associated
with each HTTPS session and map them to the certificates observed in the
public logs (excluding Plausible). Furthermore, we rank each domain from most
popular to least popular and report statistics for domains of different popularity.

Figure 7(a) shows the average number of logs (broken down into Google
and non-Google logs) that domains in each popularity category observed (each
category given a logarithmic-sized bucket of popularity ranks). The top-10
domains (google.com, apple.com, facebook.com, icloud.com, live.com, fbcdn.net,
akamaihd.net, gstatic.com, microsoft.com, doubleclick.net) are observed in more
logs than the less popular domains. The difference is largest for the EV certifi-
cates, although we see a decrease also for the other types. On average the EV

https://www.google.co.in
http://www.apple.com/
http://facebook.com/
http://icloud.com/
https://mail.live.com
http://fbcdn.net/
http://akamaihd.net/
http://gstatic.com/
https://www.microsoft.com/en-in/
http://doubleclick.net/

A First Look at the CT Landscape: Certificate Transparency Logs 97

 0

 1

 2

 3

 4

 5

 6

 7

[1,10]
(10,10 2

]

(10 2
,10 3

]

(10 3
,10 4

]

(10 4
,--]

N
um

be
r

of
 lo

gs
EV (all)

EV (Google)
DV (all)

DV (Google)
OV (all)

OV (Google)

(a) Number of logs

0

20

40

60

80

100

[1,10]
(10,10 2

]

(10 2
,10 3

]

(10 3
,10 4

]

(10 4
,--]

P
er

ce
nt

 o
f d

om
ai

ns
 (

%
)

EV
EV(1+1)

DV
OV

(b) Percent domains

Fig. 7. Average number of public logs that domains with different popularity occur in.

certificates of this top category are observed in 3.5 logs, while DV and OV certifi-
cates are seen in 6 and 4 logs, respectively. In general, however, the CA logs have
much worse coverage of the less popular domains. Perhaps more encouraging is
that the Google logs include DV certificates for almost all domains (regardless
of popularity). The total coverage is shown in Fig. 7(b). The fraction of domains
that have valid EV (or OV) certificates inserted in at least one log is smaller,
and sharply decreasing with the domains popularity. We also note that the frac-
tion of domains that satisfies Chrome’s 1+1 requirement is even less. This is
indicated by the × markers.

When interpreting the above results, note that the top-10 are responsible for
39% of the sessions and the top-100 for 75% (36% if not including the top-10).
This shows that the average session is more likely to be to a domain included in
at least one log than if considering a random domain from across all popularities)
and that the more popular domains may be more willing to pay the extra cost of
EV certificates. It will be interesting to see how websites will adopt if and when
browsers start applying stricter CT policies also for non-EV certificates.

6 Related Work

Certificate Transparency (CT) is a fairly new topic. Measurement-based research
has instead often focused on the TLS/SSL landscape with CT excluded and
only commented that it may significantly change the landscape. Related studies
include works that have analyzed the trust graphs in the HTTPS ecosystem [2],
identified occurrences of man-in-the-middle attacks on Facebook [13], considered
the trustworthiness of CAs and the countries they represent [10], and identified
SSL error codes and their reasons [1].

CT is not the only attempt to reinforce the CA-based authentication system
of TLS/SSL. Most approaches try to reduce the reliance on the trust of the
CAs. This includes client-centric approaches that try to bypass the CAs during

98 J. Gustafsson et al.

the certificate validation process [24], approaches that leverage the existing DNS
infrastructure to limit the trust in CAs [11,12], and log-based approaches [5,14].
Log-based approaches have also been used to provide key distribution in other
contexts [19], and to provide transparency for other data than X.509 certifi-
cates [26]. In contrast to CT, these other approaches have seen little adoption.

Other researchers have characterized certificate revocation [25] and developed
hybrid techniques for certificate revocation that use transparency logs [16] to
resolve some of the problems with current techniques [8]. In this article, we also
briefly refer to studies that have examined attacks targeting particular aspects of
the TLS/SSL connection establishment [3,7], when discussing the characteristics
of the certificates themselves and the included public keys.

7 Conclusions

This paper presents the first large-scale characterization of the CT landscape.
Using both active measurements obtained with a basic CT monitor and passively
collected measurements in a university network, we characterize eleven CT logs
and highlight similarities and differences across multiple dimensions. We find
significant differences in the selection of root stores and how new certificates
are added. For example, Google operated logs use large root stores and add
certificates primarily through crawling, resulting in these logs including broad
categories of certificates. The certificates in these crawl-based logs are more
representative of the web traffic that browsers may see (e.g., on campus) than
the certificates in the CA operated logs are. In general, the crawl-based logs have
greater diversity in the types of certificates observed, are much larger, and include
many certificates with weak keys or hashes. Analysis of the large CA operated
logs and cross-log submissions suggest that CAs try to comply to Chrome’s EV
certificate policy, but that the submission rates of DV certificates have differed
over time between CAs. In addition, by comparing with the certificates, keys,
and domains observed in 232 million HTTPS sessions on a university network,
we demonstrate how the coverage of the crawled logs captures the certificates
observed during typical internet usage and that popular domains appear to be
more willing to pay the extra cost of EV certificates. Future work could try to
intercept the exchange of SCTs, so to also capture the potential validation that
clients could do directly with the CT logs or the additional protection against
partitioning that gossiping [6,21] and client-to-client communication may offer.

Acknowledgements. The authors are thankful to our shepherd Ralph Holz and the
anonymous reviewers for their feedback. This work was funded in part by the Swedish
Research Council (VR) and the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

A First Look at the CT Landscape: Certificate Transparency Logs 99

References

1. Akhawe, D., Amann, B., Vallentin, M., Sommer, R.: Here’s my cert, so trust me,
maybe?: understanding TLS errors on the web. In: Proceeding of WWW (2013)

2. Amann, B., Sommer, R., Vallentin, M., Hall, S.: No attack necessary: the surprising
dynamics of SSL trust relationships. In: Proceeding of ACSAC (2013)

3. Beurdouche, B., et al.: A messy state of the union: Taming the composite state
machines of TLS. In: Proceeding of IEEE S&P (2015)

4. Barker, E., Barker, W., Burr, W.P.W., Smid, M.: Recommendation for key man-
agement, part 1: General (rev. 3). NIST Special. Publication 800–57 (2012)

5. Basin, D., Cremers, C., Kim, T.H.-J., Perrig, A., Sasse, R., Szalachowski, P.: Arpki:
Attack resilient public-key infrastructure. In: Proceeding of ACM CCS (2014)

6. Chuat, L., Szalachowski, P., Perrig, A., Laurie, B., Messeri, E.: Efficient gossip
protocols for verifying the consistency of certificate logs. In: Proceeding of IEEE
CNS (2015)

7. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: Proceeding of ACM CCS (2015)

8. Duncan, R.: How certificate revocation (doesn’t) work in practice (2013)
9. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the HTTPS

certificate ecosystem. In: Proceeding of IMC (2013)
10. Fadai, T., Schrittwieser, S., Kieseberg, P., Mulazzani, M.: Trust me, I’m a root CA!

Analyzing SSL root CAs in modern browsers and operating systems. In: Proceeding
of ARES (2015)

11. Hallam-Baker, P., Stradling, R.: RFC6844: DNS Certification Authority Autho-
rization (CAA) Resource Record. IETF (2013)

12. Hoffman, P., Schlyter, J.: RFC6698: The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. IETF (2012)

13. Huang, L., Rice, A., Ellingsen, E., Jackson, C.: Analyzing forged SSL certificates
in the wild. In: Proceeding of IEEE S&P (2014)

14. Kim, T.H.-J., Huang, L.-S., Perrig, A., Jackson, C., Gligor, V.: Accountable key
infrastructure (AKI): A proposal for a public-key validation infrastructure. In:
Proceeding of WWW (2013)

15. Laurie, B.: Improving the security of EV certificates (2015)
16. Laurie, B., Käsper, E.: Revocation transparency. Google Research, September 2012
17. Laurie, B., Langley, A., Käsper, E.: RFC6962: Certificate Transparency. IETF

(2013)
18. Laurie, B., Langley, A., Käsper, E., Messeri, E., Stradling, R.: RFC6962-bis: Cer-

tificate Transparency draft-ietf-trans-rfc6962-bis-10. IETF (2015)
19. Melara, M., Blankstein, A., Bonneau, J., Felten, E., Freedman, M.: Coniks: Bring-

ing key transparency to end users. In: Proceeding of USENIX Security (2015)
20. Merkle, R.: Merkle Tree Patent, US4309569A (1979)
21. Nordberg, L., Gillmor, D.K., Ritter, T.: Gossiping in CT. IETF (2015)
22. Ouvrier, G., Laterman, M., Arlitt, M., Carlsson, N.: Characterizing the HTTPS

trust landscape: a passive view from the edge. Technical report (2016)
23. Sleevi, R.: Sustaining digital certificate security, Google Security Blog,

28 October 2015. https://security.googleblog.com/2015/10/sustaining-digital-
certificate-security.html

24. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: improving SSH-style host
authentication with multi-path probing. In: Proceeding of USENIX ATC (2008)

25. Liu, Y., et al.: An end-to-end measurement of certificate revocation in the web’s
PKI. In: Proceeding of IMC (2015)

26. Zhang, D., Gillmor, D.K., He, D., Sarikaya, B.: CT for Binary Codes. IETF (2015)

https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html
https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html

Where Is the Weakest Link? A Study
on Security Discrepancies Between Android

Apps and Their Website Counterparts

Arash Alavi1(B), Alan Quach1, Hang Zhang1, Bryan Marsh1, Farhan Ul Haq2,
Zhiyun Qian1, Long Lu2, and Rajiv Gupta1

1 University of California, Riverside, Riverside, USA
{aalav003,quacha,hzhan033,marshb,zhiyunq,gupta}@cs.ucr.edu

2 Stony Brook University, Stony Brook, USA
{fulhaq,long}@cs.stonybrook.edu

Abstract. As we move into the mobile era, many functionalities in stan-
dard web services are being re-implemented in mobile apps and ser-
vices, including many security-related functionalities. However, it has
been observed that security features that are standardized in the PC
and web space are often not implemented correctly by app developers
resulting in serious security vulnerabilities. For instance, prior work has
shown that the standard SSL/TLS certificate validation logic in browsers
is not implemented securely in mobile apps. In this paper, we study
a related question: given that many web services are offered both via
browsers/webpages and mobile apps, are there any discrepancies between
the security policies of the two?

To answer the above question, we perform a comprehensive study on
100 popular app-web pairs. Surprisingly, we find many discrepancies – we
observe that often the app security policies are much weaker than their
website counterparts. We find that one can perform unlimited number
of login attempts at a high rate (e.g., 600 requests per second) from
a single IP address by following the app protocol whereas the website
counterpart typically blocks such attempts. We also find that the cookies
used in mobile apps are generally more valuable as they do not expire as
quickly as the ones used for websites and they are often stored in plain-
text on mobile devices. In addition, we find that apps often do not update
the libraries they use and hence vulnerabilities are often left unpatched.
Through a study of 6400 popular apps, we identify 31 apps that use one
or more vulnerable (unpatched) libraries. We responsibly disclosed all
of our findings to the corresponding vendors and have received positive
acknowledgements from them. This result is a vivid demonstration of
“security is only as good as its weakest link”.

1 Introduction

Many web services are now delivered via mobile apps. Given that a large number
of services already exist and are offered as traditional websites, it is expected
that many apps are basically remakes or enhanced versions of their website
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 100–112, 2017.
DOI: 10.1007/978-3-319-54328-4 8

Where Is the Weakest Link? A Study on Security Discrepancies 101

counterparts. Examples of these include mobile financial applications for major
banking corporations like Chase and Wells Fargo or shopping applications like
Amazon and Target. The software stack for the traditional web services has been
well developed and tested, including for both browsers and web servers. The
security features are also standardized (e.g., cookie management and SSL/TLS
certificate validation). However, as the web services are re-implemented as mobile
apps, many of the security features need to be re-implemented as well. This
can often lead to discrepancies between security policies of the websites and
mobile apps. As demonstrated in a recent study [9], when the standard feature
of SSL/TLS certificate validation logic in browsers is re-implemented on mobile
apps, serious flaws are present that can be exploited to launch MITM attacks.
Such an alarming phenomenon calls for a more comprehensive analysis of aspects
beyond the previous point studies.

In this paper, we examine a number of critical website security policies that
need to be re-implemented in mobile apps. We hypothesize that such security
policies in mobile apps are significantly weaker than those in traditional website
environment, due to the following observations: (1) mobile devices are much more
limited in terms of power and screen size; thus, many of the stringent security
features such as CAPTCHAs are likely to be relaxed; (2) many mobile apps are
newly developed and may naturally lack the maturity of web services that are
developed and tested for a much longer period of time.

To verify our hypothesis, we study the top 100 popular Android apps (each of
which has more than 5,000,000 installs) from various categories in Google play,
as well as their website counterparts, to perform a comprehensive study about
their security discrepancies. The contributions of the paper can be summarized
as follows:

• We identify a set of critical security policies that are commonly employed
by (app, web service) pairs. Since such pairs represent essentially the same
services, the discrepancy in security policies effectively lowers the security of
the overall service.

• For the authentication related security policies, we find significant differences
in the way their backend services handle login attempts (even when they are
essentially the same company, e.g., Expedia app vs. Expedia website). We
report 14 high-profile apps without any obvious security layer against failed
login attempts while their website counterparts do have security protections.
Thus these apps allow unlimited number of login attempts at a high rate that
can be used for dictionary attacks. We also find that in 8 apps, the discrepancy
allows one to perform an unlimited number of requests and learn whether a
user ID has been registered with the service.

• For the cookie management related security policies, we find that cookies
managed by mobile apps are generally (1) easier to steal as they are often
stored in plaintext and accessible in a number of ways; (2) more valuable to
steal as many of them do not expire any time soon; and (3) more usable by
an attacker as they can be used from almost any IP address in the world.

102 A. Alavi et al.

• For the use of libraries, we find 2 of the above 100 apps use vulnerable ver-
sions of libraries. By extending our study to 6400 apps, we find 31 potential
vulnerable apps due to their use of vulnerable libraries.

The rest of this paper is organized as follows. We first introduce the necessary
background information for the rest of the paper in Sect. 2. Then we discuss the
methodology and implementation details in Sect. 3. We describe our observations
for different tests that we have performed in Sect. 4. Section 5 lists the related
works and Sect. 6 concludes the paper.

2 Background

In this section, we begin with the introduction to different authentication security
policies, and then we discuss the storage encryption methods that are used by
different browsers and in mobile apps. Finally, we give a brief overview of library
use in Android apps and how it differs from the browser scene.

Authentication Security Policies. We anticipate to see many different forms
of authentication security policies in place for both apps and websites. One of the
most common forms of authentication policies that can be seen are CAPTCHAs.
Others include a mandatory wait period or denial of access either to an account
or service. All three of these have potential to be IP/machine-based or global.

CAPTCHA. Though CAPTCHAs are designed with the purpose of defeat-
ing machines, prior research has shown that they can be defeated by machines
algorithmically [14] or via speech classification [18]. Due to the possibility of
CAPTCHA replay attacks, Open Web Application Security Project (OWASP)
recommends that CAPTCHA be only used in “rate limiting” applications due
to text-based CAPTCHAs being crackable within 1–15 s [16].

W aiting Time. A less common method of authentication policy is the usage
of waiting periods to limit the number of logins that can be attempted. The
response is in the form of an explicit message or disguised through a generic
“Error” message. Waiting periods, either for a single IP or for the user account
is a very effective method to slow down and mitigate aggressive online credential
guessing attacks. Depending on the implementation, it may operate on a group
of IPs (e.g., belonging to the same domain).

Denial of Access. An extreme policy is the denial of access, where an account
is essentially “locked” and additional steps are necessary to regain access (e.g.,
making a phone call) [19]. If an attacker knows the login ID of an account, then
he can lock the account by repeatedly failing the authentication. Though very
secure against online password guessing attacks, OWASP recommends that such
methods be used in high-profile applications where denial of access is preferable
to account compromises [15].

Storage Encryption Methods. Browsers on PCs by default encrypt critical
data for long term storage. In the case of Chrome on Windows, after a successful
login into a website, by clicking “Save Password”, the browser stores the pass-
word in encrypted form using the Windows login credential as the key. It is not

Where Is the Weakest Link? A Study on Security Discrepancies 103

the same for mobile apps. For instance, the APIs for managing cookies do not
require the cookies to be encrypted.

Libraries. Mobile apps use libraries for different functionalities such as adver-
tisements, audio and video streaming, or social media. Previous studies [1,7,11]
have shown security and privacy issues that arise by use of some libraries which
can lead to leakage of sensitive user information, denial-of-service, or even arbi-
trary code execution. For services delivered through websites on the other hand,
no website-specific native libraries are loaded. Unlike libraries embedded in apps
that may be out-of-date and vulnerable, libraries used in browsers (e.g., flash)
are always kept up-to-date and free of known vulnerabilities.

3 Methodology and Implementation

In this section we describe our methodology and implementation details of our
approach to analyze app-web pairs. We selected the top 100 popular Android
apps (each of which has more than 5,000,000 installs) from popular categories
such as shopping, social, news, travel & local, etc. in Google play. All apps have a
corresponding website interface that offers a similar functionality. For each app-
web pair, we created legitimate accounts using default settings. This was done
to mimic the processes of an actual user interacting with an app or website.

Login Automation Analysis. We automate logins and logging for apps and
websites for the purposes of this study. For each app-web pair, we perform 101
login attempts automatically using randomly generated alphanumeric passwords
for the first 100 attempts followed by an attempt with the correct password. 100
attempts was chosen as this was an order of magnitude larger than what an aver-
age user would perform within a span of 24 h [6]. Allowing unlimited number of
login attempts is a security vulnerability because it allows an attacker to perform
brute force or dictionary attacks. Another security aspect of login attempts is
that if the system leaks the user ID (e.g., email) during the login authentication
checking, by returning error messages such as “wrong password” either in the
UI or in the response message, then an attacker can send a login request and
learn whether a user ID has been registered with the service. Therefore, we also
compare the servers’ responses to login requests, either shown in the UI or found
in the response packet, for both apps and websites.

Sign Up Automation Analysis. Besides login tests, we perform the sign up
tests that can also potentially leak if the username has been registered with
the service. Again, we simply need to compare the servers’ responses to sign up
requests for apps and websites. For both login and sign up security policies, if
a service where the website allows for only a limited number of logins/sign-ups
before a CAPTCHA is shown whereas the mobile app never prompts with a
CAPTCHA, an attacker would be inclined to launch an attack following the
mobile app’s protocol rather than the website’s. Test suites for the purposes of
testing mobile apps and websites were created using monkeyrunner and Selenium
Webdriver, respectively.

104 A. Alavi et al.

Authentication Throughput Analysis. From the login automation analysis,
we collect the set of app-web pairs where we find different behaviors between the
app and the website counterpart, we call this set “discrepancy list”. Using the
network traffic monitoring tools Fiddler and mitmproxy, we log network traffic
traces for all app-web pairs in the discrepancy list. Using the information in the
network traffic traces, we analyze how authentication packets are structured for
each client as well as finding what sort of information is being shared between a
client and server. This enables us to determine whether the app-web pair has the
same authentication protocol and share the same set of backend authentication
servers. In addition, this allows us to construct tools capable of sending login
request packets without actually running the mobile app, pushing for higher
throughput of authentication attempts. The tool also logs all responses received
from a server. To push the throughput even further, we can optionally paral-
lelize the login requests (from the same client) by targeting additional backend
authentication server IPs simultaneously. Our hypothesis is that the throughput
can be potentially multiplied if we target multiple servers simultaneously.

IP-Changing Clients Analysis. Using VPN Gate and a sequence of 12 IP
addresses from different geographical locations, including 3 from North Amer-
ica and 9 from other countries, we test the apps and websites regarding their
response to accounts being logged in from multiple locations separated by hun-
dreds of miles in a short span of time. The motivation of this analysis was to
determine whether app/website has a security policy against IP changes can
indicate session hijacks [8]. If not, then an attacker can use the hijacked cookies
anywhere without being recognized by the web service. For example an attacker
can use a stolen cookie from an app with any IP address to obtain personal
and/or financial information pertaining to the user account.

Cookie Analysis. For each app-web pair, we analyze the cookies that are saved
on the phone/PC. We collect all the cookies and analyze cookie storage security
policies to find whether they are stored in plaintext and more easily accessible.
We also perform expiration date comparison testing on 18 shopping app-web
pairs from our list of app-web pairs. The hypothesis is that mobile apps run
on small screens and it is troublesome to repeatedly login through the small
software keyboard; therefore the corresponding app’s servers will likely have
a more lenient policy allowing the cookies to stay functional for longer time
periods.

Vulnerable Library Analysis. While both apps and websites execute client-
side code, app code has access to many more resources and sensitive function-
alities compared to their website counterpart, e.g., apps can read SMS on the
device while javascript code executed through the browser cannot. Therefore,
we consider the app code more dangerous. Specifically, vulnerable app libraries
running on the client-side can cause serious attacks ranging from denial of ser-
vice (app crash) to arbitrary code execution. Because of this, for each app, we
identify if it uses any vulnerable libraries. We conduct the analysis beyond the
original 100 apps to 6400 apps in popular categories. Ideally the libraries should

Where Is the Weakest Link? A Study on Security Discrepancies 105

be tagged with versions; unfortunately, we discover that most libraries embed-
ded in Android apps do not contain the version information as part of their
metadata. Therefore, in the absence of direct version information, we perform
the following steps instead. First, we search the extracted libraries through the
CVE database. If there is any library that is reported to have vulnerabilities,
we perform two tests to conservatively flag them as vulnerable. First is a sim-
ple time test: we check if the last update time of the app is before the release
time of patched library. Obviously, if the app is not updated after the patched
library is released, then the app must contain a vulnerable library. If the time
test cannot assert that the library is vulnerable, we perform an additional test on
the symbols declared in the library files. Specifically, if there is a change (either
adding or removing a function) in the patched library, and the change is lacking
in the library file in question, then we consider it vulnerable. Otherwise, to be
conservative, we do not consider the library as vulnerable.

4 Observations

We present our results obtained from following the methodology outlined earlier.

Security Policies Against Failed Login and Sign up Attempts. By per-
forming login attempts automatically for each pair of app and website, many
interesting discrepancies in security policies have been found. Figure 1 summa-
rizes the main results for all 100 pairs, considering their latest versions at the
time of experiment. In general, we see that the security policy is weaker on the
app side. There are more apps without security policies than websites. We also
see that there are significantly fewer apps asking for CAPTCHA, presumably
due to the concern about usability of the small keyboards that users have to
interact with. Interestingly, in the case when CAPTCHAs are used both by app
and website, the CAPTCHA shown to app users is usually simpler in terms of
the number of characters and symbols. For instance, LinkedIn website asks the
user to enter a CAPTCHA with 2 words while its app CAPTCHA only has 3
characters. Unfortunately, an attacker knowing the difference can always imper-
sonate the mobile client and attack the weaker security policy. We also observe

Fig. 1. Security policies against failed login attempts in apps vs. websites

106 A. Alavi et al.

that more apps employ IP block policies for a short period of time. This is effec-
tive against naive online credential guessing attacks that are not operated by real
players in the underground market. In reality, attackers are likely operating on
a large botnet attempting to perform such attacks, rendering the defense much
less effective than it seems. In fact, if the attackers are aware of the discrepancy,
they could very well be impersonating the mobile client to bypass stronger pro-
tections such as CAPTCHA (which sometimes requires humans to solve and is
considered additional cost to operate cyber crime).

Table 1 lists app-web pairs in detail where apps operate without any security
protections whatsoever, at least for the version when we began our study but
their websites have some security policies. In total, we find 14 such app-web pairs;
8 apps have subsequently strengthened the policy after we notified them. There
are however still 6 that are vulnerable to date. We also provide a detailed list of
all 100 app-web pairs on our project website [2]. To ensure that there is indeed
no security protection for these apps, we perform some follow-up tests against
the 14 applications and confirm that we could indeed reach up to thousands
of attempts (without hitting any limit). Note that our approach ensures that
no hidden security policy goes unnoticed (such as the account being silently
blocked), as our test always concludes with a successful login attempt using
the correct password, indicating that it has not been blocked due to the failed
attempts earlier. In the table, we also list the URLs that correspond to the
login requests. Since both the domain names and resolved IP addresses (which
we did not list) are different, it is a good indication that apps and websites go
through different backend services to perform authentications, and hence there
are different security policies.

Impact of Online Credential Guessing Attacks. To perform online pass-
word guessing attacks, one can either perform a brute force or dictionary attack
against those possibilities that are deemed most likely to succeed. As an example,
the recent leakage of passwords from Yahoo [4] consisting of 200 million entries
(without removing duplicates). According to our throughput result, at 600 login
attempts per second (which we were able to achieve against some services), one
can try every password in less than 4 days against a targeted account (if we elim-
inate duplicate passwords the number will be much smaller). Let us consider an
attacker who chooses the most popular and unique 1 million passwords; it will
take less than half an hour to try all of them. Note that this is measured from
a single malicious client, greatly lowering the requirement of online password
guessing attacks, which usually are carried out using botnets. Another type of
attack which can be launched is Denial of Service (DoS) attack. By locking large
amount of accounts through repeated logins, attackers could deny a user’s access
to a service. As we mentioned earlier, we find more apps than websites which
have the account lock security policy against the failed authentication (11 apps
vs. 9 websites). Account lock security policy is a double edge sword: while it
provides security against unauthorized login attempts, it also allows an attacker
to maliciously lock legitimate accounts with relative ease. The result shows that
this kind of attack can be more easily launched on the app side. We verify this

Where Is the Weakest Link? A Study on Security Discrepancies 107

Table 1. Discrepancy of authentication policies among app-web pairs. In all cases,
the apps have no security policy while their website counterparts do have security
policies. This allows attackers to follow the app protocol and gain unlimited number
of continuous login attempts (confirmed with 1000+ trials). A subset of them (8) have
subsequently patched the security flaw after our notifications.

App-web App security layer

(app version)

Website

security

layer

App host Website host

Babbel None (5.4.072011)

Account lock

(5.6.060612)

Account

lock

www.babbel.com/api2/login accounts.babbel.com/en/

accounts/sign in

Ebay None (3.0.0.19)

IP block (5.3.0.11)

Captcha mobiuas.ebay.com/servicesmobile/

v1/UserAuthenticationService

signin.ebay.com/ws/

eBayISAPI.dll

Expedia None (5.0.2) Captcha www.expedia.com/api/user/signin www.expedia.com/user/login

Hotels.com None (12.1.1.1) IP

block (20.1.1.2)

Captcha ssl.hotels.com/device/signin.html ssl.hotels.com/profile/

signin.html

LivingSocial None (3.0.2)

IP block (4.4.2)

Wait

time

accounts.livingsocial.com/v1/

oauth/authenticate

accounts.livingsocial.com/

accounts/authenticate

OverDrive None (3.5.6) Captcha overdrive.com/account/sign-in www.overdrive.com/account/sign-

in

Plex None (4.6.3.383)

IP block

(4.31.2.310)

IP block plex.tv/users/sign in.xml plex.tv/users/sign in

Quizlet None (2.3.3) Wait

time

api.quizlet.com/3.0/directlogin quizlet.com/login

Skype None (7.16.0.507) Wait

time &

Captcha

uic.login.skype.com/login/

skypetoken

login.skype.com/login

SoundCloud None (15.0.15)

IP block

(2016.08.31-

release)

Captcha api.soundcloud.com/oauth2/token sign-in.soundcloud.com/sign-

in/password

TripAdvisor None (11.4)

IP block (17.2.2)

Captcha api.tripadvisor.com/api/

internal/1.5/auth/login

www.tripadvisor.com/

Registration

Twitch None (4.3.2)

Captcha (4.11.1)

Captcha api.twitch.tv/kraken/oauth2/login passport.twitch.tv/authorize

We Heart It None (6.0.0) Captcha api.weheartit.com/oauth/token weheartit.com/login/

authenticate

Zappos None (5.1.2) Captcha api.zappos.com/oauth/access token secure-www.zappos.com/

authenticate

claim against our own account and confirm that we are unable to login with the
correct password even if the login is done from a different IP address.

To perform online account-ID/username guessing attacks, we report the result
of the sign up (registration) security policy testing, which aligns with the login
results. We find 5 app-web pairs — 8tracks, Lovoo, Newegg, Overdrive, Stumble-
Upon — where the app has no security protection against flooded sign up requests
while the website has some security protection such as CAPTCHA. We also find
that 14 websites leak the user email address during the authentication checking
by returning error messages such as “wrong password”. In contrast, 17 apps leak
such information. The three apps with weaker security policies are AMC Theaters,
Babbel, and We Heart It. The discrepancy allows one to learn whether a user ID
(e.g., email) has been registered with the service by performing unlimited regis-

108 A. Alavi et al.

tration requests. Combined with the password guessing, an attacker can then also
attempt to test a large number of username and password combinations.

Throughput Measurement. In throughput testing, we tested authentications-
per-second (ApS) that are possible from a single desktop computer. Table 2 shows
the throughput results for login testing. An interesting case was Expedia, which
allowed ∼150 ApS when communicating with a single server IP and upwards
of ∼600 ApS when using multiple server IPs during testing. The existence of
multiple server IPs, either directly from the backend servers or CDN, played a
role in the amplification of an attack. It is interesting to note that in the case
of Expedia, different CDN IPs do not in fact allow amplification attacks. We
hypothesize that it is due to the fact that these CDNs still need to access the
same set of backend servers which are the real bottleneck. To identify backend
server IPs, we perform a step we call “domain name scanning” and successfully
locate a non-CDN IP for “ftp.expedia.com”. From this IP, we further scan the
subnet and find 19 other IPs capable of performing authentication. By talking
to these IPs directly, we are able to improve the throughput from 150 to 600.

Finally, we also obtain throughput results for 4 of the applications in sign up
testing and their average throughput is around 90 to 240 ApS.

Client IP Changing. During IP address testing, we find that 11 app-web pairs
have client IP changing detection and associated security policy on the server
side. The remaining 89 app-web pairs have no visible security policy. Among
them there are 8 app-web pairs for which both the app and the website have
the same behavior against IP changing. For the remaining 3 pairs, — Target,
Twitch, Steam — the app and website have different behaviors where the website
returns an access denied error for some IP address changes (in the case of Target
and Twitch) or forces a logout for any change of the IP address (in the case of
Steam) but the app allows changing client IP address frequently.

One main consequence is that when an app/website has no security policy
against IP changing, an attacker can perform HTTP session hijacking with stolen
cookies more easily without worrying about what hosts and IP addresses to
use in hijacking. For instance, Steam is a gaming client; it does have security
protection in its websites. When a cookie is sent from a different IP, the website
immediately invalidates the cookie and forces a logout. However, using the Steam
app and the associated server interface, if the attacker can steal the cookie, he
can impersonate the user from anywhere (i.e., any IP address).

Table 2. Throughput results for login testing.

App ApS (Single-server-IP) ApS (Multi-server-IP) # of IPs found CDN/Host

Ebay ∼77 ∼100 2 Ebay

Expedia ∼150 ∼600 20 Akamai/Expedia

SoundCloud ∼77 ∼178 2 EdgeCast

We Heart It ∼83 ∼215 5 SoftLayer/ThePlanet.com

Zappos ∼84 ∼188 20 Akamai

http://www.ftp.expedia.com

Where Is the Weakest Link? A Study on Security Discrepancies 109

Cookies. Cookies are commonly used for web services as well as mobile apps.
In browsers, cookie management has evolved over the past few decades and grad-
ually become more standardized and secure. However, on the mobile platform
every app has the flexibility to choose or implement its own cookie management,
i.e. cookie management is still far from being standardized.

We observe that many apps store their cookies unencrypted (47 apps among
all 100 apps). An attacker can access the cookie more easily as compared to
browsers on PCs. First, smartphones are smaller and more likely to be lost or
stolen. Therefore, a simple dump of the storage can reveal the cookies (assuming
no full-disk encryption). In contrast, in the case of browsers on PCs, cookies
are often encrypted with secrets unknown to the attacker even if the attacker
can gain physical access to the device. For instance, Windows password (used
in Chrome) and master password (used in Firefox) are used to encrypt the
cookies [20]. Second, if the device is connected to an infected PC (with adb
shell enabled), any unprivileged malware on PC may be able to pull data from
the phone. For instance, if the app is debuggable then with the help of run-as
command, one can access the app data such as cookies. Even if the app is not
debuggable, the app data can still be pulled from the device into a file with
.ab(android backup) format [12].

We also report another type of important discrepancy — cookie expiration
time. Here we focus on 18 shopping app-web pairs (a subset from the list of 100
pairs). We observe that app cookies remain valid for much longer time than web
cookies. The cookie expiration time in all 18 shopping websites is around 3 h
on average, whereas it is several months in their app counterparts. The result
is shown in Table 3. We find that 6 apps have cookie expiration time set to at
least 1 month while their websites allow only minutes before the cookies expire.
An attacker can easily use a stolen cookie for these apps and perform unwanted
behavior such as making purchases as the cookie is not expired. For instance,
based on our personal experience, Amazon app appears to use cookies that never
expire to give the best possible user experience. We confirmed that a user can
make purchases after 1 year since the initial login in.

Vulnerable Libraries.During vulnerable library testing, we find two apps (Vine
and Victoria’s Secret) use unpatched and vulnerable libraries from FFmpeg [3]

Table 3. Cookies expiration time.

App-web App cookies expiration time Website cookies expiration time

AliExpress Several months 60 min

Amazon Several months 14 min

Best Buy Several months 10 min

Kohl’s Several months 20 min

Newegg Several months 60 min

Walmart Several months 30 min

110 A. Alavi et al.

Table 4. Vulnerable libraries used by apps.

Library Vulnerabilities # of apps Example vulnerable
apps (version) (# of
installs)

libzip DoS or possibly
execute arbitrary code
via a ZIP archive

13 com.djinnworks.StickmanBasketball
(1.6) (over 10,000,000)
com.djinnworks.RopeFly.lite(3.4)
(over 10,000,000)

FFmpega DoS or possibly have
unspecified other
impact

9 co.vine.android (5.14.0)
(over 50,000,000)
com.victoriassecret.vsaa
(2.5.2) (over 1,000,000)

libxml2 DoS via a crafted XML
document

8 com.avidionmedia.iGunHD
(5.22) (over 10,000,000)
com.pazugames.girlshairsalon
(2.0) (over 1,000,000)

Obtain sensitive
information

5 com.pazugames.girlshairsalon
(2.0) (over 1,000,000)

com.flexymind.pclicker
(1.0.5) (over 100,000)
com.pazugames.cakeshopnew
(1.0) (over 100,000)

DoS or obtain sensitive
information via crafted
XML data

5

DoS via crafted XML
data

5

libcurl Authenticate as other
users via a request

1 sv.com.tigo.tigosports
(6.0123) (over 10,000)

aFFmpeg includes 7 libraries: libavutil, libavcodec, libavformat, libavdevice, libavfilter,
libswscale, and libswresample.

framework, which motivates us to look at a larger sample of 6,400 top free apps
in different categories. Table 4 summarizes our observation for vulnerable libraries
with the number of apps using them. For example, an attacker can cause a DoS
(crash the application) or possibly execute arbitrary code by supplying a crafted
ZIP archive to an application using a vulnerable version of libzip library [5]. As
we discussed before, javascript vulnerabilities are unlikely to cause damage to the
device compared to app libraries, especially given the recent defences implemented
on WebView [10].

5 Related Work

As far we know, there are no in depth studies that explicitly analyze the similar-
ities and differences between mobile applications and their website counterparts

Where Is the Weakest Link? A Study on Security Discrepancies 111

in terms of security. Fahl et al. [9] understood the potential security threats
posed by benign Android apps that use the SSL/TLS protocols to protect data
they transmit. Leung et al. [13] recently studied 50 popular apps manually to
compare the Personally Identifiable Information (PII) exposed by mobile apps
and mobile web browsers. They conclude that apps tend to leak more PII (but
not always) compared to their website counterparts, as apps can request access
to more types of PII stored on the device. This is a demonstration of the dis-
crepancy of privacy policies between apps and websites. In contrast, our work
focuses on the discrepancy of security (not so much privacy) policies between
apps and websites. Zuo et al. [21] automatically forged cryptographically con-
sistent messages from the client side to test whether the server side of an app
lacks sufficient security layers. They applied their techniques to test the server
side implementation of 76 popular mobile apps with 20 login attempts each and
conclude that many of them are vulnerable to password brute-forcing attacks,
leaked password probing attacks, and Facebook access token hijacking attacks.
Sivakorn et al. [17] recently conducted an in-depth study on the privacy threats
that users face when attackers have hijacked a user’s HTTP cookie. They evalu-
ated the extent of cookie hijacking for browser security mechanisms, extensions,
mobile apps, and search bars. They observed that both Android and iOS plat-
forms have official apps that use unencrypted connections. For example, they
find that 3 out of 4 iOS Yahoo apps leak users’ cookies.

6 Conclusion

In this paper, we identify serious security related discrepancies between android
apps and their corresponding website counterparts. We responsibly disclosed all
of our findings to the corresponding companies including Expedia who acknowl-
edged and subsequently fixed the problem. The lesson learnt is that, for the
same web service (e.g., Expedia), even though their websites are generally built
with good security measures, the mobile app counterparts often have weaker or
non-existent security measures. As a result, the security of the overall service is
only as good as the weakest link — more often than not, the mobile apps.

Acknowledgments. We would like to thank our shepherd Kanchana Thilakarathna
for his feedback in revising the paper. This work is supported by NSF grant CNS-
1617424 to UC Riverside.

References

1. The Hacker News. Warning: 18,000 android apps contains code that spy on your
text messages. http://thehackernews.com/2015/10/android-apps-steal-sms.html.
Accessed 10 Nov 2016

2. Authentication Policy Table. http://www.cs.ucr.edu/∼aalav003/authtable.html.
Accessed 10 Nov 2016

3. FFmpeg. https://ffmpeg.org/. Accessed 10 Nov 2016

http://thehackernews.com/2015/10/android-apps-steal-sms.html
http://www.cs.ucr.edu/~aalav003/authtable.html
https://ffmpeg.org/

112 A. Alavi et al.

4. Hacker Selling 200 Million Yahoo Accounts On Dark Web. http://thehackernews.
com/2016/08/hack-yahoo-account.html. Accessed 10 Nov 2016

5. Red Hat Bugzilla Bug 1204676. https://bugzilla.redhat.com/show bug.cgi?id=
CVE-2015-2331. Accessed 10 Nov 2016

6. Amber. Some Best Practices for Web App Authentication. http://codingkilledthe
cat.wordpress.com/2012/09/04/some-best-practices-for-web-app-authentication/.
Accessed 10 Nov 2016

7. Book, T., Pridgen, A., Wallach, D.S.: Longitudinal analysis of android ad library
permissions. CoRR, abs/1303.0857 (2013)

8. De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: Secsess: keeping your session
tucked away in your browser. In: Proceedings of the 30th Annual ACM Symposium
on Applied Computing (SAC 2015) (2015)

9. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why eve and mallory love android: an analysis of android SSL (in)security. In:
ACM CCS (2012)

10. Georgiev, M., Jana, S., Shmatikov, V.: Breaking and fixing origin-based access
control in hybrid web/mobile application frameworks. In: 2014 Network and Dis-
tributed System Security (NDSS 2014), San Diego, February 2014

11. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.-R.: Unsafe exposure analysis of
mobile in-app. advertisements. In: WiSeC (2012)

12. Hwang, S., Lee, S., Kim, Y., Ryu, S.: Bittersweet ADB: attacks and defenses. In:
Proceedings of the 10th ACM Symposium on Information, Computer and Com-
munications Security, ASIA (CCS 2015) (2015)

13. Leung, C., Ren, J., Choffnes, D., Wilson, C.: Should you use the app for that?:
Comparing the privacy implications of app- and web-based online services. In:
Proceedings of the 2016 ACM on Internet Measurement Conference (IMC 2016),
New York, NY, USA, pp. 365–372. ACM (2016)

14. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: breaking a visual
captcha. In: Proceedings of the 2003 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (2003)

15. OWASP. Blocking Brute Force Attacks. http://www.owasp.org/index.php/
Blocking Brute Force Attacks. Accessed 10 Nov 2016

16. OWASP. Testing for Captcha (OWASP-AT-012). http://www.owasp.org/index.
php/Testing for Captcha (OWASP-AT-012). Accessed 10 Nov 2016

17. Sivakorn, S., Polakis, I., Keromyti, A.D.: The cracked cookie jar: http cookie hijack-
ing and the exposure of private information. In: Proceedings of the 2016 IEEE
Symposium on Security and Privacy. IEEE (2016)

18. Tam, J., Simsa, J., Hyde, S., Ahn, L.V.: Breaking audio captchas. In: Koller, D.,
Schuurmans, D., Bengio, Y., Bottou, L., (eds.) Advances in Neural Information
Processing Systems, vol. 21, pp. 1625–1632 (2008)

19. Wolverton, T.: Hackers find new way to milk eBay users. In: Proceedings of the
1998 Network and Distributed System Security Symposium (2002)

20. Wright, J.: How Browsers Store Your Passwords (and Why You Shouldn’t
Let Them). http://raidersec.blogspot.com/2013/06/how-browsers-store-your-
passwords-and.html/. Accessed 10 Nov 2016

21. Zuo, C., Wang, W., Wang, R., Lin, Z.: Automatic forgery of cryptographically
consistent messages to identify security vulnerabilities in mobile services. In: NDSS
(2016)

http://thehackernews.com/2016/08/hack-yahoo-account.html
http://thehackernews.com/2016/08/hack-yahoo-account.html
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2015-2331
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2015-2331
http://codingkilledthecat.wordpress.com/2012/09/04/some-best-practices-for-web-app-authentication/
http://codingkilledthecat.wordpress.com/2012/09/04/some-best-practices-for-web-app-authentication/
http://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
http://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
http://www.owasp.org/index.php/Testing_for_Captcha_(OWASP-AT-012)
http://www.owasp.org/index.php/Testing_for_Captcha_(OWASP-AT-012)
http://raidersec.blogspot.com/2013/06/how-browsers-store-your-passwords-and.html/
http://raidersec.blogspot.com/2013/06/how-browsers-store-your-passwords-and.html/

Patch Me If You Can: A Study on the Effects
of Individual User Behavior on the End-Host

Vulnerability State

Armin Sarabi1(B), Ziyun Zhu2, Chaowei Xiao1, Mingyan Liu1,
and Tudor Dumitraş2

1 University of Michigan, Ann Arbor, USA
{arsarabi,xiaocw,mingynan}@umich.edu

2 University of Maryland, College Park, USA
{zhuziyun,tdumitra}@umiacs.umd.edu

Abstract. In this paper we study the implications of end-user behavior
in applying software updates and patches on information-security vul-
nerabilities. To this end we tap into a large data set of measurements
conducted on more than 400,000 Windows machines over four client-side
applications, and separate out the impact of user and vendor behavior on
the vulnerability states of hosts. Our modeling of users and the empirical
evaluation of this model over vulnerability states of hosts reveal a pecu-
liar relationship between vendors and end-users: the users’ promptness in
applying software patches, and vendors’ policies in facilitating the instal-
lation of updates, while both contributing to the hosts’ security posture,
are overshadowed by other characteristics such as the frequency of vul-
nerability disclosures and the vendors’ swiftness in deploying patches.

1 Introduction

Software vulnerabilities represent a valuable resource for attackers. Exploits
for these vulnerabilities can allow miscreants to control the vulnerable hosts
remotely. Unpatched vulnerabilities also present a threat for enterprises, as an
outward facing machine with an exploitable vulnerability can provide unautho-
rized access to the company’s internal network [26]. Moreover, the emergence
of exploit kits [14], makes it easy for attackers to compromise hosts in an auto-
mated fashion. To counter these threats, software vendors create and dissemi-
nate patches that users then install to remove vulnerabilities on their machines.
Vendors have also increased the automation of their software updating mecha-
nisms [9,13] in an attempt to accelerate the patching process to sidestep possible
tardiness on the part of the end users.

It follows that the vulnerability state of any given end-host at any given
time, reflected in the number of known but unpatched vulnerabilities, and
unpatched vulnerabilities with known exploits, is the result of a combination
of factors, including (1) the user’s updating behavior, (2) the software prod-
ucts’ patch release timeliness with respect to the disclosure of vulnerabilities,
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 113–125, 2017.
DOI: 10.1007/978-3-319-54328-4 9

114 A. Sarabi et al.

Table 1. Summary of findings. +/− indicate positive and negative impacts.

Findings Implications

+ The user behavior can be summarized
using single parameter distributions

Users’ willingness to patch does not
seem to depend on the type of
improvements in new releases

+ The geometric distribution provides a
good fit, even for products with silent
updates

This simple model significantly
simplifies the analysis of the
relationship between user behavior and
the vulnerability state of their machines

+ Silent updates lead to shorter
windows of vulnerability for end-hosts
(as expected)

The product vendors can improve the
vulnerability state by adopting a silent
updating mechanism

− Even with silent updates, the majority
of hosts have long windows of
vulnerability

The large number of security flaws in
client-side applications limits the
benefits of silent updates

− Many hosts have long windows of
susceptibility to known exploits

Exploit kits present a direct threat to
these hosts

(3) the update mechanisms employed to deploy patches on hosts, and (4) the
frequency at which vulnerabilities are disclosed and exploits are developed.
While the latter three elements have been extensively studied in the literature—
see e.g., [2–5,7,8,18,20,22,25] on vulnerability disclosure and patch releases,
[11,17,21,23,30] on patch deployment, and [4,6,14,24] on exploits—relatively
less is known about the impact of individual user behavior. Prior work in this
area has introduced several hypotheses on why users might delay patching vul-
nerabilities [15,16,29], and aggregated patching measurements for individual vul-
nerabilities over the general population and over selected groups of users [17].

In this paper, we present a broad field study of individual user behavior,
including more than 400,000 users over a period of 3 years (01/2010 to 12/2012),
and their updating activities concerning 1,822 vulnerabilities across 4 software
products. The updating automation for these applications ranges from prompt-
ing users to install patched versions to silent updates, which require minimal
user interaction. Our goal is to understand (1) how users behave on an individ-
ual level, and (2) how different updating behaviors relate to the vulnerability
state of their machines, and how this relationship differs across products.

To achieve the above goal, we employ a combination of empirical analysis
and mathematical modeling. In summary, our main contributions are as follows.
We propose methods for quantifying the user updating behavior from field mea-
surements of patch deployment. Furthermore, we conduct a systematic study
of vulnerability patching, from the perspective of individual users (rather than
individual vulnerabilities), and quantify the corresponding vulnerability state
of the users’ machines. Finally, building on insights from our measurements, we

Patch Me If You Can: A Study on the Effects of Individual User Behavior 115

create and evaluate a parameterized model for individual patching behavior, and
discuss its implications for end-host security. Table 1 summarizes our findings.

2 Data Sets and Their Processing

We utilize a corpus of patch-deployment measurements collected by Nappa
et al., on user hosts that include average users, as well as professionals, software
developers, and security analysts, and mostly consist of Windows XP/Vista/7
machines[17]. These measurements were conducted by observing the installation
of subsequent versions of different applications, and are derived from the WINE
data set [10]. The set of security flaws affecting each version are extracted from
NVD [19], using the CVE-ID of the vulnerability, resulting in 1,822 vulnera-
bilities. We analyze users’ patching behavior over 4 products: Google Chrome,
Mozilla Firefox, Mozilla Thunderbird, and Adobe Flash Player, and only include
hosts that have recorded more than 10 events for at least one application. This
results in a data set consisting of 11,017,973 events over 426,031 unique hosts,
99.3% of which are between 01/2010 and 12/2012.

Although an open vulnerability indicates that the application could be
exploited, few vulnerabilities are actually exploited in the wild. We collect exploit
data from (1) public descriptions of Symantec’s anti-virus signatures [28] and (2)
metadata about exploit kits from Contagiodump [12]. Combining both sources
of exploit information results in exploit release dates for 21 CVEs. The median
time between vulnerability disclosure and an exploit kit targeting it is 17 days.

For Firefox, Flash Player, and Thunderbird, we manually scrape release his-
tory logs, either provided on the vendor’s website, or collected by a third party,
to find out when each version is released to the public. We have collected the
results along with the source for each entry in a single document [27].

2.1 Curated Data

Host state. Each update event corresponds to a (machine ID, product, version,
timestamp) tuple, indicating the installation of a software on the host. However,
the WINE database provides no information on when the product has been
removed, or if the user has installed multiple product lines in parallel (e.g. Firefox
3.6, and 4.0). We utilize the following heuristic to update the state of a machine
after each event. Assume that an event at time t signals the installation of
version v belonging to product line �, and we have detected the presence of
versions St− = {(�1, v1), . . . , (�n, vn)} on the machine prior to the event. For
each �i in St− , if there are no observations for the same line within 6 months
of the current event, we remove the (�i, vi) pair from St− . We then add the
(�, v) pair, or update the corresponding pair in St− if the same product line is
already installed on the host, to obtain the state St after the event. We then
take the union of vulnerabilities that affect each version in St from NVD, as the
set of vulnerabilities present on the host. The subset of vulnerabilities that have
already been disclosed, or exploited, represent the machine’s security posture.

116 A. Sarabi et al.

Version release date. For Firefox, Flash Player, and Thunderbird, we can
obtain the official release dates for each version by scraping version release notes
from the vendor, or release histories collected by a third party. For Chrome, we
tap into the patch measurement data to estimate release dates for each version.
In previous work, Nappa et al. [17] identify the release date automatically, by
selecting the first date when the version appears in WINE. However, we found
that this approach can be unreliable in some cases. The binary that corresponds
to a new version might appear in the wild half a year before it is made available
on the release channel. We observe that on a release date there is usually a high
volume of patching events. We thus first rank the dates by the count of patching
events, and then identify the patch release date as the earliest day among the
10 dates with top ranks. We compared the results from this method with the
release dates for Firefox and we found that they match for all the versions.

Purpose of updates. To determine if users are influenced by the purpose of
the updates, we identify four types of software releases: introducing new features
Ifeats, fixing bugs Ibugs, patching security vulnerabilities Ivulns, or introducing
a new product line ImajV er. Using these four categories, we manually label the
versions for Firefox and Flash Player. Since the release notes are not available for
every build and they switched to silent updates on 2012-08-28 and 2012-03-28,
respectively, the number of versions we labeled is 30 and 39, respectively.

User updates. To study the frequency of irregular user behavior, we first obtain
the number of events that result in the presence of more than one product line
on a host. For Chrome, Flash Player, Firefox, and Thunderbird, 0.9%, 4.9%,
1.2% and 0.3% of events lead to the installation of more than one product line.
For Flash Player, we further analyze the number of vulnerabilities associated
with each product line. On average, in the presence of multiple product lines,
79.5% of vulnerabilities come from the lowest product version installed on the
machine. Therefore, we take the lowest application version on the machine as its
current state, and only consider a new event as a version upgrade if it updates
the lowest installed version. Note that for evaluating whether a machine is prone
to a known vulnerability, we will still use the complete set of installed versions.

Finally, for each state transition that updates the lowest installed version,
we need to extract the user’s delay in applying the update. We first take the
timestamps for the current and previous events (denoted by T k

u and T k−1
u), and

extract the first time an update was released for the previously installed version
(denoted by Tr). The user’s delay is then Sk

u := T k
u − max(T k−1

u , Tr). This
means that we measure the users’ delay from the day an update is available
for the installed version, or the product installation date, whichever comes last;
the latter takes effect when the user installs an outdated version. Note that
successive versions do not necessarily follow a chronological order, as multiple
product lines are often developed in parallel. For each release, we take the next
version in the same line to be the update for that release. For end-of-life releases,
we pick the first version in the subsequent line as the next logical update.

Figure 1a depicts a sample scenario for 4 successive releases of Firefox,
released at times t = 0, 35, 50, 75 (t = 0 corresponds to “2012-09-11”). Firefox

Patch Me If You Can: A Study on the Effects of Individual User Behavior 117

0 20 40 60 80
Time (days)

0

2

4

6

V
ul

ne
ra

bi
lit

ie
s

15.0.1
16.0.1
16.0.2
17.0.0

Vulnerability
Disclosure

(a)

0 20 40 60 80
Time (days)

0

1

2

3

4

V
ul

ne
ra

bi
lit

ie
s User update

(b)

Fig. 1. The number of vulnerabilities in successive Firefox versions (left) and following
a user’s update events (right). Each color represents a single version. (Color figure
online)

v15.0.1 is prone to 6 vulnerabilities, all of which are undisclosed at the time of
release. However, these vulnerabilities are made public at times t = 34, 36, 53, 76,
and patched in subsequent versions. Figure 1b illustrates a sample user in our
data set who installs these versions at t = 5, 37, 58, 84, respectively. Note that
with each update, the user inherits the set of vulnerabilities in the new release.
An update is made available for the first version at time t = 35, and the user
initiates a software update at time T 1

u = 37, therefore the user’s delay for the
first update event is S1

u = 2 days. Similarly, S2
u = 8 days, and S3

u = 9 days.

3 Analysis of User Behavior and Its Security Implications

3.1 Modeling a User’s Patching Delay

We assume that the user’s update delays are drawn from a probability distribu-
tion specific to the (user, product) pair. In previous work, the survival function
for number of hosts without a security patch has been modeled as an exponen-
tial decay process [21,23]. We note that a geometric distribution for a user’s
delay in applying a software update leads to the same model for the survival
function. We independently test this assumption by performing a chi-squared
goodness-of-fit test between each sequence and a geometric distribution whose
parameter is calculated using a maximum likelihood estimate. The output of
the test is a p-value: small p-values reject the null hypothesis “The samples are
drawn from a geometric distribution”. Table 2 summarizes our results, for each
product we have included the number of users tested, and the percentage with
p-values higher than significance levels of 5% and 1%. For the test, we ignore
users with fewer than 20 update events. Our results show that for the majority
of users the geometric distribution is a good fit.

The above results suggest that the users’ response to new product releases are
fairly “simple-minded”, in the sense that they can be well-modeled using a one-
parameter distribution. In what follows, we examine the relationship between

118 A. Sarabi et al.

Table 2. Chi-squared test results over user update delays. We cannot reject the hypoth-
esis that these sequences are drawn from a geometric distribution.

Product Users >0.05 >0.01

Chrome 167592 87.8% 97.6%

Firefox 21174 74.6% 93.0%

Flash Player 7722 98.2% 99.9%

Thunderbird 1857 86.5% 97.5%

patch delays and vulnerability states. Note that due to this single-parameter
characterization, the average patching delay is sufficient for summarizing user
behavior, and we shall only rely on sorting users by this measure.

3.2 Vulnerability State

We take the fraction of time that a host remains susceptible to at least one
known vulnerability as an indicator of its security posture or vulnerability state.
Figures 2a, c, and e display scatter plots of this measure for Chrome, Firefox, and
Flash Player, respectively. For each figure we have randomly selected 5000 users,
where each point represents one user. A point’s x and y coordinates correspond
to the average patch delay of that host, and its measured vulnerability state. The
histogram at the bottom of each plot shows the distribution of users with respect
to their average patch time; generated for users with an observation interval of at
least one year, resulting in 140,588 sample points for Chrome, 64,016 for Firefox,
and 55,042 for Flash Player. Note that the majority of hosts are observed for
intervals smaller than 3 years, and we have omitted hosts with less than 10
update events (see Sect. 2). Therefore, our study does not capture users with
average patch delays greater than roughly 100 days; longer observation windows
are required to accurately assess the behavior of such users.

Vulnerability state as a function of average patch delay. We further
group users with similar behavior by sorting them according to their estimated
patch delay, and create bins consisting of 500 users. We calculate the median
vulnerability duration, and the first and third quartiles in each bin; the results
are illustrated in Figs. 2b, d, and f. We observe that a user with equal delays
in each product experiences similar vulnerability duration. At 20 days, the user
will remain vulnerable for 60% of the time, at 40 days this increases to 80%.

Across the three products, Chrome users clearly are more likely to have a
lower patch delay (as shown in the histograms), likely the effect of silent updates,
whereas Flash users are the most tardy. However, given the same average delay,
the amount of vulnerabilities a user faces is very consistent across all products.

Outliers. In Fig. 2c we see high variability in vulnerability durations for users
with similar patch times. Upon further inspection, we discovered two vulnera-
bilities for Firefox, CVE-2010-0654 and CVE-2010-1585, that were published on

Patch Me If You Can: A Study on the Effects of Individual User Behavior 119

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Vu
ln

er
ab

ilit
y

du
ra

tio
n

(a)

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

Vu
ln

er
ab

ilit
y

du
ra

tio
n

Median
First quartile
Third quartile

(b)
Chrome

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

(c)

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

Median
First quartile
Third quartile

(d)
Firefox

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

(e)

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

Median
First quartile
Third quartile

(f)
Flash Player

Fig. 2. Scatter plots of normalized vulnerability duration vs. average user delay in days
(top), and the mean, and first and third quartiles for different user types (bottom).
Each point in the scatter plots corresponds to a single user. In c the yellow/red dots
are users active in 2010/only active starting 2011. (Color figure online)

“2010-02-18” and “2010-04-28”, but first patched on “2010-07-20” and “2011-
03-01”, respectively. As a result, users that have been observed during 2010,
have remained vulnerable for most of that year, regardless of their behavior. In
Fig. 2c, we have used a lighter color to display hosts that have been observed
at any time during 2010. The rest of the hosts (those that have opted in after
2010), exhibit similar variability to Chrome and Flash Player users.

Comparison across products. We further calculated the average vulnerabil-
ity duration, over all users of each application. Note that these values are affected
by the following properties of each product: (i) the distribution of different user
types (the histograms in Fig. 2), and (ii) the expected vulnerability duration for
each user type (Figs. 2b, d, and f). For Chrome, Firefox, Flash Player, and Thun-
derbird, the average host was susceptible to at least one vulnerability for 53.5%,
59.9%, 68.7%, and 55.7% of days. It follows that the improvement provided by
different updating mechanisms in these applications is marginal.

A host’s vulnerability state is influenced by two conditions. First, for a single
vulnerability, the patch should be applied before the vulnerability is publicly dis-
closed. Nevertheless, even if the user misses the disclosure date, the damage can
be minimized by prompt patching. However, when taking into account successive
vulnerabilities, if the user does not apply the patch before the next vulnerability
is disclosed, the clock is reset, and now they will have to apply a new patch
to secure their machine. Quantitatively, for Chrome and Firefox, our data set

120 A. Sarabi et al.

includes 124, and 114 vulnerability disclosures between 2010 and 2012, resulting
in an average of approximately 10 days between successive disclosures. However,
our estimated results show that the average patch times for users of Chrome and
Firefox, is 9.9 and 15.6 days, respectively, meaning that users often cannot patch
a vulnerability before the next one is discovered. For Chrome, adopting silent
updates does not seem to provide the necessary margin to see any significant
effect on the vulnerability duration of hosts.

Breakdown of the vulnerability window. Note that the vulnerability of a
machine can be caused due to the vendor’s failure to release a patch before a vul-
nerability is disclosed, or the user’s negligence in installing the patch. We found
that, summed over all users, for Chrome, Flash Player, Firefox, and Thunder-
bird, 59.3%, 61.6%, 47.9% and 55.7% of days where a machine was susceptible
to a known vulnerability was caused by user negligence.

3.3 Susceptibility to Vulnerability Exploits

Being prone to known vulnerabilities does not necessarily translate into an immi-
nent threat, as the machine can only be breached through a real exploit. We
perform a similar study on the percentage of days that a host remains suscepti-
ble to an exploitable vulnerability. Figures 3a and b display the scatter plot and
vulnerability trends for 15 exploits of Flash Player. We did not have a sufficient
amount of exploits for Chrome and Firefox, we were only able to find one known
exploit for Chrome, and 2 for Firefox. Comparing these plots to 2a–f, we observe
the same correlation between average patch times and vulnerability states. How-
ever, for similar patching delays, we generally see lower risk for known exploits.
This is due to the small number of exploited vulnerabilities for Flash. Neverthe-
less, we observe that many hosts are susceptible to exploits more than 50% of
the time, highlighting the threat exploit kits present to end-hosts.

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

V
ul

ne
ra

bi
lit

y
du

ra
tio

n

(a)

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

Median
First quartile
Third quartile

(b)

Fig. 3. Scatter plot (left) and mean, and first and third quartiles (right) for exploited
vulnerabilities of Flash Player.

Patch Me If You Can: A Study on the Effects of Individual User Behavior 121

3.4 Factors that Impact User Behavior

Version-specific factors. Suppose we take an interval of size 2T and look at
the total number of updating events that occur within the first and second half
of the interval, across all users and for a specific subset of releases of a given
product, and denote these by N1 and N2, respectively. We can then define a
population-wide willingness to update as W = 1 − (N2/N1)1/T . When looking
at a period immediately following a release, if more users consider a new patch
important and apply the patch promptly, then W tends to be high. Conversely,
if more users hesitate to install the new patch, then more patching events occur
at the second half of observation period resulting in a lower W .

For Firefox and Flash Player, we extract four features Ivulns, Ibugs, Ifeats,
and ImajV er, as described in Sect. 2. For each feature, we split the versions into
two groups: those that have the feature and those that do not, and measure
W within each group. We then conduct a statistical hypothesis test to deter-
mine if the updates from one group are deployed faster than the ones from the
other group. Specifically, we perform a T-test between two groups with the null
hypothesis “There is no difference in the mean of W”. Low p-values from the
T-test indicate that the factor affects the user’s behavior. Here, we choose the
significance level α = 0.05. As we perform multiple hypothesis tests on the same
data set, increasing the likelihood that we will find a significant result by pure
chance, we apply the Bonferroni correction [1], by dividing α by the number of
hypotheses tested. The adjusted α is 0.0125. The results are shown in Table 3.
ImajV er for Firefox is the only factor with p-value below 0.05. However, this is
not statistically significant after applying Bonferroni correction. This indicates
that changes in versions have no statistically significant effect on user behavior.

Note that our results do not necessarily reflect users’ indifference to these
categorizations. In a recent user study [15], 80% of users state that update cate-
gories can influence their decision on applying a software update, and two-thirds
react positively to a prototype that tags each update with one of five categories.
Our results indicate that for the examined products, this information may not
be readily available (we had to manually tag the release notes ourselves), which
in turn causes users to behave independently of the update’s intent.

Different countries and patch delivery. Table 4 shows the average time to
patch for the top 10 countries with the largest numbers of users. Note that
Chrome uses silent updates, and therefore has the lowest patch times. Firefox
and Thunderbird versions prior to 15.0, and 16.0 (released 2012-08-28, and 2012-
10-09, respectively) download updates in the background and prompt users for
installation. Flash Player versions prior to 11.2 (released 2012-03-28) prompt
users to download and install updates, and consequently exhibit the longest
patch times. All three products switch to silent updates after the indicated dates;
however these changes do not apply to the majority of our samples. For all four
products, patching behavior is remarkably consistent, suggesting that cultural
differences among these countries do not play a significant role in user behavior.

122 A. Sarabi et al.

Table 3. p-values from T-test on version-
specific factors.

Application Ivulns Ibugs Ifeats ImajV er

Flash Player 0.860 0.416 0.736 0.419

Firefox 0.109 0.226 0.126 0.027

Table 4. Average patch times by country.

Country Chrome Firefox Flash Thunderbird

All 9.9 15.6 29.7 15.2

AU 10.6 16.3 30.1 15.1

CA 10.4 15.6 30.7 14.6

DE 10.9 15.3 24.9 14.7

FR 10.4 16.2 28.8 14.4

IT 8.8 15.9 26.1 13.5

JP 13.0 14.2 26.6 16.3

NL 10.4 15.2 28.5 14.7

PL 8.2 13.8 26.9 14.2

UK 9.2 15.7 28.3 13.9

US 10.5 15.5 32.1 15.4

4 Related Work

Rescorla [23] studied a 2002 OpenSSL vulnerability and observed two waves of
patching: one in response to the vulnerability disclosure and one after the release
of the Slapper worm exploit. Ramos [21] analyzed several remotely-exploitable
vulnerabilities and reported a slow decay rate in some cases and some vulner-
abilities that did not decay at all. Yilek et al. [30] scanned OpenSSL servers
affected by a 2008 key generation vulnerability in Debian Linux and found a
high patch rate in the first 30 days, followed by patching waves for the next six
months. Durumeric et al. [11] showed that more than 50% of servers affected
by the recent Heartbleed vulnerability in OpenSSL remained vulnerable after
three months. Zhang et al. [31] showed that, even after patching OpenSSL, most
websites remained vulnerable because they had not revoked certificates that may
have been compromised owing to Heartbleed. The rate of updating is consider-
ably higher for systems that employ automated updates [9,13]. Gkantsidis et al.
[13] concluded that 80% of Windows Update users receive patches within 24 h
after their release. Dübendorfer et al. [9] suggested that Google Chrome’s silent
update mechanism is able to update 97% of active browser instances within 21
days. Nappa et al. [17], measured vulnerability decay in 10 client-side applica-
tions and identified security threats presented by multiple installations of the
same program and by shared libraries distributed with several applications.
Alhazmi and Malaiya [2] examined five different vulnerability discovery mod-
els, fitting the models using data from three operating systems.

On factors that may affect vulnerability patching and user behavior, Schneider
and Schneider [16] proposed several hypotheses, including an under-appreciation
of risks and a fear of destabilizing other software. Vaniea et al. [29] suggested
that negative experiences with past updates affect the users’ willingness to deploy
patches. Mathur et al. [15] study 30 users’ updating practices, and design and eval-
uate a prototype updating interface based on their feedback.

Patch Me If You Can: A Study on the Effects of Individual User Behavior 123

5 Conclusions

In this paper we have conducted an in-depth analysis of the dynamics between
vendors and consumers when it comes to software security. To the best of our
knowledge, this is the first study on how individual behavior can influence the
security state of a user’s machine over long periods, where the continuous dis-
covery of vulnerabilities, patch deployment by vendors, and the installation of
patches create windows of opportunities for malicious entities to exploit open
vulnerabilities on the machine. We have shown that frequent updating, and
steps taken by vendors to speed up the installation of patches, provide marginal
benefits when the rate at which new vulnerabilities are introduced into the prod-
uct’s code is high. Consequently, developers’ should exercise due diligence when
shipping new products to end-users, as the detrimental effects of releasing vul-
nerable applications to the public often cannot be eliminated by prompt patch
deployment.

Our results also represent a first step toward understanding the deployment-
specific barriers for updating software. We observe that user behavior can
be modeled well using a simple and elegant mathematical model. We do not
observe clusters of users with respect to the patching delay or the vulnerability
state. Moreover, users do not make patching decisions depending on the type of
improvements introduced with each new release (possibly due to how this infor-
mation is presented), and the willingness to patch does not vary significantly
across different countries. However, users seem to exhibit different behavior for
different products, suggesting that vendors may be able to influence the users’
patching delays. For example, Fig. 2 suggests that the vulnerability duration for
Flash Player exhibits a lower variability than for Chrome and Firefox, despite
the lack of a silent updating mechanism. This consistency may result from the
fact that users are compelled to upgrade when sites remove backward compat-
ibility for older Flash versions. A deeper understanding of these barriers could
enable improvements in the software updating process.

Although we have shown that users’ behavior can effectively be explained
using a simple model, we are not able to build similar profiles for vendors. This
is partly due to lack of a large data set on software vulnerability cycles. The
set of unique vulnerability disclosures and patch deployments concerning the
products under examination was too small to carry out a comprehensive study
on product behavior. Such an analysis could close the loop when assessing the
security posture of an end-user, by predicting the host’s vulnerability state across
different products, or for new products entering the market. Finally, leveraging
additional data sources that can reveal the whole extent of user behavior, such
as extending the study to other operating systems, and measuring periods of
time where the system or a specific application are not used (this would lead to
an overestimation of the vulnerability window in our current analysis) are other
possible directions for future work.

124 A. Sarabi et al.

References

1. Abdi, H.: Bonferroni and Šidák corrections for multiple comparisons. Sage (2007)
2. Alhazmi, O., Malaiya, Y.: Modeling the vulnerability discovery process. In: Inter-

national Symposium on Software Reliability Engineering (2005)
3. Alhazmi, O., Malaiya, Y., Ray, I.: Measuring, analyzing and predicting security

vulnerabilities in software systems. Comput. Secur. 26(3), 219–228 (2007)
4. Arbaugh, W., Fithen, W., McHugh, J.: Windows of vulnerability: a case study

analysis. IEEE Comput. 33(12), 52–59 (2000)
5. Arora, A., Krishnan, R., Nandkumar, A., Telang, R., Yang, Y.: Impact of vulner-

ability disclosure and patch availability - an empirical analysis. In: Workshop on
the Economics of Information Security (2004)

6. Bilge, L., Dumitraş, T.: Before we knew it: an empirical study of zero-day attacks
in the real world. In: ACM Conference on Computer and Communications Security
(2012)

7. Cavusoglu, H., Cavusoglu, H., Raghunathan, S.: Emerging issues in responsible
vulnerability disclosure. In: Workshop on Information Technology and Systems
(2004)

8. Clark, S., Collis, M., Blaze, M., Smith, J.: Moving targets: security and rapid-
release in Firefox. In: ACM SIGSAC Conference on Computer and Communica-
tions Security (2014)

9. Duebendorfer, T., Frei, S.: Web browser security update effectiveness. In: Rome,
E., Bloomfield, R. (eds.) CRITIS 2009. LNCS, vol. 6027, pp. 124–137. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14379-3 11

10. Dumitraş, T., Shou, D.: Toward a standard benchmark for computer security
research: the worldwide intelligence network environment (WINE). In: Workshop
on Building Analysis Datasets and Gathering Experience Returns for Security
(2011)

11. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., et al.: The
matter of heartbleed. In: Internet Measurement Conference (2014)

12. Exploit kits. http://contagiodump.blogspot.com
13. Gkantsidis, C., Karagiannis, T., Rodriguez, P., Vojnovic, M.: Planet scale software

updates. In: ACM SIGCOMM Computer Communication Review (2006)
14. Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C., et al.: Manufac-

turing compromise: the emergence of exploit-as-a-service. In: ACM Conference on
Computer and Communications Security (2012)

15. Mathur, A., Engel, J., Sobti, S., Chang, V., Chetty, M.: “They keep coming back
like zombies”: improving software updating interfaces. In: Symposium on Usable
Privacy and Security (2016)

16. Mulligan, D., Schneider, F.: Doctrine for cybersecurity. Daedalus, J. Am. Acad.
Arts Sci. 140(4), 70–92 (2011)

17. Nappa, A., Johnson, R., Bilge, L., Caballero, J., Dumitraş, T.: The attack of the
clones: a study of the impact of shared code on vulnerability patching. In: IEEE
Symposium on Security and Privacy (2015)

18. Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software
components. In: ACM Conference on Computer and Communications Security
(2007)

19. NIST: National Vulnerability Database. https://nvd.nist.gov
20. Ozment, A., Schechter, S.: Milk or wine: does software security improve with age?

In: USENIX Security Symposium (2006)

http://dx.doi.org/10.1007/978-3-642-14379-3_11
http://contagiodump.blogspot.com
https://nvd.nist.gov

Patch Me If You Can: A Study on the Effects of Individual User Behavior 125

21. Ramos, T.: The laws of vulnerabilities. In: RSA Conference (2006)
22. Rescorla, E.: Is finding security holes a good idea? In: IEEE Security and Privacy

(2005)
23. Rescorla, E.: Security holes. . . who cares. In: USENIX Security Symposium (2003)
24. Sabottke, C., Suciu, O., Dumitraş, T.: Vulnerability disclosure in the age of social

media: exploiting Twitter for predicting real-world exploits. In: USENIX Security
Symposium (2015)

25. Shahzad, M., Shafiq, M., Liu, A.: A large scale exploratory analysis of software vul-
nerability life cycles. In: International Conference on Software Engineering (2012)

26. Shankland, S.: Heartbleed bug undoes web encryption, reveals Yahoo passwords
(2014). http://www.cnet.com/news/heartbleed-bug-undoes-web-encryption-
reveals-user-passwords

27. Software release dates. http://bit.ly/2jKrMPj
28. Symantec Corporation: Symantec threat explorer (2012). http://www.symantec.

com/security response/threatexplorer/azlisting.jsp
29. Vaniea, K., Rader, E., Wash, R.: Betrayed by updates: how negative experiences

affect future security. In: ACM Conference on Human Factors in Computing (2014)
30. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys

are public: results from the 2008 Debian OpenSSL vulnerability. In: Internet Mea-
surement Conference (2009)

31. Zhang, L., Choffnes, D., Dumitraş, T., Levin, D., Mislove, A., et al.: Analysis of
SSL certificate reissues and revocations in the wake of Heartbleed. In: Internet
Measurement Conference (2014)

http://www.cnet.com/news/heartbleed-bug-undoes-web-encryption-reveals-user-passwords
http://www.cnet.com/news/heartbleed-bug-undoes-web-encryption-reveals-user-passwords
http://bit.ly/2jKrMPj
http://www.symantec.com/security_response/threatexplorer/azlisting.jsp
http://www.symantec.com/security_response/threatexplorer/azlisting.jsp

Performance

Application Bandwidth and Flow Rates from 3
Trillion Flows Across 45 Carrier Networks

David Pariag1 and Tim Brecht2(B)

1 Sandvine Incorporated, Waterloo, Canada
2 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

brecht@cs.uwaterloo.ca

Abstract. Geographically broad, application-aware studies of large
subscriber networks are rarely undertaken because of the challenges of
accessing secured network premises, protecting subscriber privacy, and
deploying scalable measurement devices. We present a study examining
bandwidth consumption and the rate at which new flows are created in 45
cable, DSL, cellular and WiFi subscriber networks across 26 countries on
six continents. Using deep packet inspection, we find that one or two appli-
cations can strongly influence the magnitude and duration of daily band-
width peaks. We analyze bandwidth over 7 days to better understand the
potential for network optimization using virtual network functions. We
find that on average cellular and non-cellular networks operate at 61% and
57% of peak bandwidth respectively. Since most networks are over provi-
sioned, there is considerable room for optimization.

Our study of flow creation reveals that DNS is the top producer of
new flows in 22 of the 45 networks (accounting for 20–61% of new flows in
those networks). We find that peak flow rates (measured in thousands of
flows per Gigabit) can vary by several orders of magnitude across appli-
cations. Networks whose application mix includes large proportions of
DNS, PeerToPeer, and social networking traffic can expect to experience
higher overall peak flow rates. Conversely, networks which are dominated
by video can expect lower peak flow rates. We believe that these find-
ings will prove valuable in understanding how traffic characteristics can
impact the design, evaluation, and deployment of modern networking
devices, including virtual network functions.

1 Introduction

The Internet continues to grow in geographic reach and data volume. This growth
is facilitated by considerable investment from fixed and cellular service providers
into network infrastructure. This infrastructure includes numerous devices such
as switches, routers, caches, middle boxes and other devices to supply provider
branded services (e.g., streaming video). Traffic incurs higher cost and increased
latency as it moves from the network’s edge towards its core. This offers a natural
incentive for providers to invest in infrastructure that reduces traffic to Internet
Exchange Points (IXPs) and backbone networks by placing devices closer to sub-
scribers. However, there are relatively few studies which provide an application-
aware view of broad scale traffic across multiple ISP networks. This is primarily
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 129–141, 2017.
DOI: 10.1007/978-3-319-54328-4 10

130 D. Pariag and T. Brecht

due to the difficulty of building and deploying scalable measurement devices in
independent, geographically distributed networks. We believe that a large scale,
application-aware study of Internet traffic can provide valuable insights into how
application protocols drive consumption of bytes and flows in network devices.

In this paper, we conduct a detailed analysis of data that has been gathered
as part of Sandvine’s series of Internet Phenomena reports [27]. The collection
of this data is facilitated by an ongoing partnership between Sandvine and par-
ticipating ISPs. Our key contributions in this paper are:

– We find that there is a wide variety in the bandwidth consumed and rate at
which new flows are created by the same application or service across networks.
This makes it very difficult to describe a “typical network”.

– We analyze bandwidth over time with respect to peak bandwidth and show
that, on average, non-cellular and cellular networks operate at 57% and 61% of
peak bandwidth, respectively. Since most networks are over provisioned, this
suggests that the use of virtual network functions to offer elastic bandwidth
may offer significant reductions in operating costs.

– We find that DNS is the top producer of flows in 22 of 45 networks, accounting
for 20% to 61% of flows in those networks. We believe this places a significant
load on flow-aware network devices including SDN routers, security middle
boxes, and subscriber billing systems.

2 Methodology

Table 1 details the size and scope of the data used in our study. The dataset covers
22 3G and 4G subscriber networks (which we refer to as either cellular or mobile)
and 23 cable, DSL and WiFi (fixed or non-cellular) subscriber networks across
26 countries on six continents. These networks range from a cellular network
with peak bandwidth of 240 Mbps to a fixed network with peak bandwidth of
nearly 600 Gbps. In total, our dataset covers 7 days in each network for a total
of 62.8 PB and over 3 trillion flows of anonymized traffic.

This data was obtained from networks which have deployed Sandvine’s Policy
Traffic Switch (PTS). The PTS is a family of programmable network appliances
which can be configured for applications including traffic inspection, subscriber
billing, and network attack mitigation. It is a high performance device, capable
of inspecting traffic in real time at network line rates. As such, our methodology
does not rely on flow or packet sampling. We are able to inspect every packet
of every flow. The PTS is usually deployed at the edge of the network, typically
connected to termination points for cable and/or digital subscriber lines. The
PTS is often used for subscriber billing purposes, which guarantees visibility of
all subscriber traffic. Other deployments are possible, but we believe them to be
uncommon in our dataset.

The PTS software stack examines packet headers at Ethernet, IP, and
TCP/UDP layers as well as packet payloads at higher network layers. In con-
cert with information gathered from lower layers, packet payloads are matched

Application Bandwidth and Flow Rates from 3 Trillion Flows 131

against an extensive collection of known signatures. Strong signatures can iden-
tify an application after a single packet. Other signatures may require multi-
ple consecutive packets before a match is returned. Categorization of encrypted
traffic relies on heuristic methods instead of payload inspection. For example,
encrypted HTTPS traffic is usually immediately preceded by a DNS request
from the client endpoint. The IP address in the DNS response primes the PTS
to expect a new flow from the client to the resolved hostname in the near future.
Similarly, SSL handshakes are sent as clear text and include information that
identifies the server endpoint. These methods allow the PTS to identify services
being delivered over HTTPS with a high degree of confidence. The accuracy of
the Sandvine recognition engine is verified using a regression suite consisting of
several thousand flows generated from live application testing (i.e., ground truth
data). The recognition engine is updated on a monthly basis to account for new
or changed application signatures.

Table 1. Scope of data collected

Region Abbrev. Countries Sites Traffic (PB) New flows
(billions)

Asia Pacific APAC 3 3 1.0 152.9

Caribbean and Central
America

CCA 5 7 1.7 162.1

Europe ERP 8 13 22.7 949.1

Middle East and Africa MEA 5 5 25.3 1, 276.5

North America NA 1 11 11.3 327.6

South America SA 4 6 0.8 152.9

Total 26 45 62.8 3, 021.0

The aforementioned recognition engine is run against every new flow in the
network. A new flow is one whose 5-tuple (source IP, source port, destination
IP, destination port, transport protocol) has no entry in the device flow table.
Each new 5-tuple adds an entry to this flow table. For UDP flows, the flow
entry is expired after 10 s without a packet transmission. Any subsequent packets
transmitted with that 5-tuple are treated as a new flow. The 10 second UDP
flow timeout is a default PTS configuration which conserves flow-related memory
while accurately representing flow lifetimes. As a result, all UDP flows in our
data are defined by this flow timeout. For TCP connections, the flow entry
is terminated after a proper connection termination (i.e., after a TCP four-
way handshake) or after the TCP TIME-WAIT timeout has expired without
a packet transmission (i.e., at least 2 Maximum Segment Lifetimes, which is
240 s). The PTS classifies each new flow into one of nearly 2,000 application
protocols. Once a flow is categorized, the PTS attributes all bytes and packets of
that flow towards the identified application protocol. These application protocols
include well-specified protocols such as DNS, FTP, SIP and MGCP. However,

132 D. Pariag and T. Brecht

they also include traffic generated by well-known applications or services such
as Skype, Windows Update, and WhatsApp. The popularity of HTTP as a
transport protocol has led to several refinements of HTTP being classified as
separate applications. For example, YouTube, Facebook, and Hulu are recognized
as separate application protocols even though each is delivered over HTTP. In
the interest of succinct analysis, we have created 21 application categories. Most
categories are self-explanatory; those that require explanation are discussed when
they are introduced. However, it is worth mentioning that the Misc category
includes traffic that does not fit in any of the other 21 categories, as well as
traffic that the PTS could not recognize.

Each PTS logs time-series data including byte, packet, and flow counts per
application protocol to a centralized data store every 15 min. For the purposes
of our study, we have retrieved the aforementioned time-series data from each
network site for 7-day periods from June 2014 to September 2015. Note that
packet payloads are not captured, only metadata gathered from payload inspec-
tion. Data collection and retention policies vary across operators, and as a result
the 7-day periods vary across networks. Ownership of the data remains with the
network operator and access to the data must be granted by each operator. Our
analysis is based on post-processing data extracted from data stores.

3 Understanding Bandwidth Consumption

This section seeks to identify the applications which drive byte consumption
and peak bandwidth in the networks under study. Figure 1 plots byte consump-
tion by application category for all 45 networks. The x-axis lists each of the 21
application categories, and the y-axis shows the percentage of bytes consumed
by each category. Fixed (non-cellular) networks are plotted to the left of the
grid line using a green square, while mobile (cellular) networks are plotted to
the right of the grid line using a red circle. Recall that the 7 day periods may
differ across networks.

 0

 5

 10

 15

 20

 25

 30

 35

 40

YouTube

Netflix
OtherStreamingVideo

Facebook

OtherSocialNetworking

PeertoPeer

HTTP
Google

Apple
Microsoft

Tunneling

CloudStorage

Gaming
Antivirus

StreamingMusic

RegionalPortal

UDP
DNS

FTP Mail
Misc

%
 o

f
to

ta
l b

yt
es

Non-Cellular
Cellular

Fig. 1. Percentage of bytes by application (Color figure online)

Application Bandwidth and Flow Rates from 3 Trillion Flows 133

As might be expected, video traffic (YouTube, Netflix and OtherStream-
ingVideo) is a significant consumer of bytes on many networks. The byte con-
sumption ranges for YouTube are similarly large on both fixed and mobile
networks, while Netflix consumption is noticeably lighter on mobile networks.
Facebook byte consumption on many mobile networks is higher than seen on
fixed networks. However, the most striking feature of Fig. 1 is that most applica-
tion categories exhibit a large spread in byte consumption across many networks.
For example, PeerToPeer traffic ranges from 0.35% of bytes in a Central Amer-
ican mobile network, to 35.49% of bytes in an Asian fixed network. Netflix,
YouTube, Facebook, and other traffic categories exhibit similarly large spreads
in either fixed or mobile networks. Figure 1 shows that there is wide diversity in
the popularity of different application categories in different networks. We have
examined traffic by region, and except for noting that several non-cellular North
American networks are dominated by Netflix traffic, we find few similarities
across different networks, even within the same region.

Fig. 2. Bandwidth in fixed North American (top-left), fixed European (top-right),
mobile South American (bottom-left) and mobile African (bottom-right) networks

Figure 2 presents 7-day bandwidth versus time plots for four different net-
works. Data points are plotted every 15 min, with each point representing the
average bandwidth over the previous 15 min. Each graph consists of two panels,
with the top panel showing bandwidth for individual applications which con-
sume more than 10% of bandwidth at any point during the week. The bottom
panel plots total bandwidth for all applications over the week.

134 D. Pariag and T. Brecht

The top two graphs in Fig. 2 show video-dominated networks in North Amer-
ica (top-left) and Europe (top-right). The North American network is dominated
by Netflix video. During peak bandwidth (which occurs at approximately 8 pm
local time), Netflix consumes 40% of network bandwidth. Interestingly, the band-
width plot also shows a local maxima just before noon on weekdays. As the bot-
tom panel shows, the shape of the total bandwidth curve is shaped by Netflix
usage patterns. More importantly, we have observed a similar degree of influence
in nine other fixed North American networks where Netflix dominates band-
width. The European network (top-right) is also video-dominated, with Netflix,
YouTube and a regional provider (labelled OtherStreamingVideo, and intention-
ally anonymized) each consuming more than 10% of bandwidth. However, it is
the regional service that exerts the greatest influence on peak bandwidth. Band-
width for the regional service peaks between 8 pm and midnight on weekdays,
and causes sharp but fairly short-lived peaks in total bandwidth.

The two lower graphs of Fig. 2 show a South American mobile network
(bottom-left), and a network from the Middle East and Africa (MEA) region
(bottom-right) that are not video-dominated. Facebook is the leading consumer
of bandwidth in the South American network, while PeerToPeer and HTTP are
the top protocols in the MEA network. Our primary point in presenting these
four graphs is to illustrate that there is no such thing as a typical network. In
our dataset, networks differ significantly in terms of the applications which con-
sume the most bandwidth, and the magnitude and duration of peak bandwidth.
In addition, we have not seen any clear patterns emerge by region or network
type, except in North American fixed networks where Netflix dominates the
percentage of bytes consumed and peak traffic.

4 Peak Versus Off Peak Bandwidth

This section examines how daily patterns in bandwidth consumption can be used
to identify opportunities for network function virtualization (NFV) to reduce
resource consumption (including energy conservation). NFV presents network
operators with the opportunity to replace dedicated physical appliances with vir-
tual appliances built on commodity hardware. This can potentially reduce energy
consumption during off peak periods by consolidating load onto a smaller pool
of dynamically provisioned virtual appliances [17]. The use of commodity hard-
ware permits operators to take advantage of the power management technology
leveraged in data centers [10,24,26]. The combination of Software Defined Net-
working (SDN) and NFV allows network operators to establish tradeoffs between
power consumption and network performance [6], ultimately leading to signif-
icantly more efficient network infrastructures [5]. For example, Bolla et al. [4]
have examined the traffic profiles of a Greek research network and a Telecom
Italia subscriber network, and they argue that energy-efficient techniques may
offer energy savings in excess of 60%.

Intuitively, networks with low night time troughs and sharp peaks offer
greater opportunity for energy savings than networks with higher troughs and

Application Bandwidth and Flow Rates from 3 Trillion Flows 135

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
ve

ra
ge

 B
an

dw
id

th
 /

Pe
ak

Sites

Non Cellular Networks
Cellular Networks

Fig. 3. Average bandwidth to peak ratio

Table 2. Reduction bounds

r Cellular Fixed

0 0.39 0.43

1 1.39 1.43

2 2.39 2.43

3 3.39 3.43

broad daytime plateaus. Figure 3 shows the average bandwidth consumed rela-
tive to the peak over the 7-day period for each network. This chart shows that
the average bandwidth consumed relative to the peak is slightly higher for cellu-
lar than non-cellular networks. This is because many non-cellular networks tend
to have sharper, more short-lived daily peaks than cellular networks.

At first glance, the potential for savings may not seem very large. For exam-
ple, for the two networks with the highest bandwidth to peak ratios (0.80 and
0.81), the potential for reduction would seem to be no more than 20%. However,
most networks are provisioned with capacity that exceeds the 7-day observed
peak. If we denote peak bandwidth by p, capacity by c, and define r as the
ratio of network capacity to the observed peak (i.e., r = c

p), then for networks
which can dynamically adjust resources to meet demand, a bound on the possible
bandwidth reduction is: r + (1− average to peak bandwidth ratio).

Across the networks studied on average these reduction bounds are: r+ (1−
0.61) = r+0.39 for cellular networks and r+(1−0.57) = r+0.43 for non-cellular
networks. Table 2 shows these reduction bounds for some values of r. If as one
study has suggested, r = 2 [4], and more in some instances, then on average these
networks provide significant opportunities for resource reductions by adjusting
resources to efficiently meet demand.

5 Peak Flow Rates

Networking devices often store per-flow state in memory, and perform a flow
lookup to associate each packet with a new or existing flow. Flow state is useful
for detecting network threats [3,21,23] such as address scans, port scans, and
reflector attacks. In addition, per-flow state is required for usage-based subscriber
billing, which is required by many network operators.

In flow aware devices, which may include intrusion detections systems, carrier
grade NATs, and some load balancers, the incoming packet rate determines the
flow lookup rate, and the new flow rate determines the flow table insertion rate.
The arrival of a new flow often triggers additional processing. For example, in
an OpenFlow router, a new data flow may trigger a request to a controller node
in order to complete the routing decision [12]. Similarly, the recognition engine
of the Sandvine PTS executes on every new flow arrival. The new flow rate is
thus an important determinant of performance for flow-aware systems as high
new flow rates can lead to high processor load [13], and even flow exhaustion.

136 D. Pariag and T. Brecht

Fig. 4. New flow rates of fixed access (left) and mobile (right) European networks

In this section we study the applications that drive the creation of new flows.
Figure 4 plots new flow rates over 7 days for fixed and mobile networks located in
the same European country. As before, only applications which contribute more
than 10% of total flows are plotted. In the fixed network (left graph), PeerToPeer
applications are the chief creators of new flows, with peak new flow rates over
250,000 new flows/sec. At their peak, PeerToPeer flows constitute nearly 45%
of all new flows. In the mobile network (right graph), it is DNS that drives flow
creation with daily peak flow rates between 16,000 and 18,000 new flows/second.
We offer these networks as examples of a broader trend: DNS and PeerToPeer
applications account for the majority of new flows across all networks. DNS
accounts for the highest percentage of new flows in 22 of 45 networks and more
than 50% of all new flows in 3 networks. PeerToPeer flows account for the largest
percentage of new flows in 22 of the remaining 23 networks, and comprise more
than 50% of new flows in 8 networks. Interestingly, while PeerToPeer protocols
dominate new flows in many fixed networks, they also account for the largest
percentage of flows in several cellular networks.

The proportion of PeerToPeer flows is not unexpected because (1) The Bit-
Torrent protocol is often served over uTP, which is a transport protocol layered
on top of UDP [1]. (2) Some P2P implementations will actively change source
and destination ports in an attempt to evade detection. (3) Peers send control
messages (e.g., keep-alives) to each connected peer every two minutes. Many
of these will count as new flows if the same 5-tuple is not reused within 10 s.
The proportion of DNS flows captured by our data may be initially surprising.
Early studies (circa 1997) [28] report that DNS constitutes less than 18% of
flows. More recent work [8] tracks the incidence of DNS flows in a longitudinal
dataset, and reports 22.55% to 54.87% of flows being DNS. However, we have
identified several factors which help to explain the large proportion of DNS flows
in many networks. First, many application protocols utilize DNS. If the name
being resolved is not found in the local host’s cache, this will result in DNS
request(s). Second, DNS is commonly served over UDP, which is not connection
oriented, causing each transaction to generate a separate sequence of datagrams.
Operating system implementations now randomize the source port used in suc-
cessive DNS requests [9,18] resulting in new 5-tuples (and thus flows) being
generated. Third, popular web browsers such as Chrome, Firefox, and Internet

Application Bandwidth and Flow Rates from 3 Trillion Flows 137

Explorer implement DNS prefetching in which the browser speculatively resolves
hostnames for embedded page objects [19]. Modern web pages contain a median
of 40 embedded objects, with 25% to 55% of pages requiring contact with at
least 10 servers [7]. Lastly, many DNS responses use very short TTL values to
better support load balancing and fault tolerance across multiple servers. As a
result, even hostnames that are frequently referenced may require repeated DNS
resolution.

5.1 Peak Flow Rates by Application

Intuitively, one would expect streaming video services and bulk download proto-
cols like FTP to transfer a large number of bytes over a small number of flows.
At the other extreme, one would expect DNS to transfer relatively little data
over each flow. However, the flow profile of other applications (e.g., Facebook)
is more difficult to intuit.

Figure 5 plots bandwidth normalized peak flow rates by application for all
45 networks. We calculate these rates by first identifying the 15 min window
with the maximum flow rate (Flows/sec). This flow rate is broken down by
application, and then normalized with respect to the bit rate (Gbps) over the
15 min window. This results in a ratio with units of Flows/Gbit. We only include
data points if either the number of flows or bytes accounts for more than 0.5%
of the application’s flow or byte count, respectively. We normalize by bandwidth
to compare networks of different sizes.

101

102

103

104

105

106

107

YouTube

Netflix
OtherStreamingVideo

Facebook

OtherSocialNetworking

PeertoPeer

HTTP
Google

Apple
Microsoft

Security-Tunneling

CloudStorage

Gaming
Antivirus

StreamingMusic

RegionalPortal

UDP
DNS

FTP Mail
Misc

Fl
ow

s/
G

bi
t

Non-Cellular
Non-Cellular Avg and 95% CI
Cellular
Cellular Avg and 95% CI

Fig. 5. Peak flow rates by application (log scale) (Color figure online)

In Fig. 5 the units on the y-axis are plotted using a log scale. Fixed networks
are plotted to the left of the grid lines using a green square. Mobile networks
are plotted in red and are offset to the right. Two trend lines are included to
show the mean peak flow rates for each application along with 95% confidence

138 D. Pariag and T. Brecht

intervals (CIs). Note that the CIs shown for Antivirus, RegionalPortal and FTP
should be ignored because there were insufficient data points to compute CIs.

Figure 5 provides a number of key insights. First, we see that an individual
application’s peak new flow rates can vary by one or two orders of magnitude
across different networks (e.g., YouTube ranges from 119 Flows/Gbit in one
North American network to 2,347 Flows/Gbit in a MEA network). However, the
variation across applications can be even larger, as can be seen by comparing the
flow rates for Netflix and DNS in Fig. 5. Lastly, for several application groups
the cellular networks have significantly higher peak new flow rates.

As expected, video services are at the low end of the spectrum with YouTube,
Netflix and OtherStreamingVideo averaging, 352, 49, and 326 Flows/Gbit in
fixed networks, respectively. At the other extreme, DNS averages 549,651 new
flows per gigabit (and 936,399 in cellular networks). In fixed networks, appli-
cation groups like Facebook, OtherSocialNetworking, PeerToPeer, and HTTP
average 3,679, 4,484, 22,531, and 4,593 Flows/Gbit peak, respectively.

Networks whose application mix includes large proportions of DNS, Peer-
ToPeer, social networking, and other flow-intensive applications can expect to
experience higher overall peak flow rates. Conversely, networks which are domi-
nated by video can expect lower peak flow rates. The overall peak flow rate can
impact processing load for flow aware devices including OpenFlow routers, secu-
rity devices, and billing systems. The large range of flow rates observed across
different networks poses challenges when building and deploying cost-effective
devices. We believe our data will be useful in the design, sizing, and testing of
future devices.

6 Related Work

Very early traffic studies focused on individual backbone networks [28] or
research networks [14]. However, the constantly changing nature of Internet traf-
fic [20] limits their value and necessitates new research. More recent reports from
Akamai [2] and Cisco [11] have included more geographically diverse data but
are not application-aware. Sandvine’s Internet Phenomena reports [27]) ana-
lyze regional traffic composition, often with a focus on identifying longitudinal
changes or documenting the impact of special events. This paper focuses on
identifying applications which drive bandwidth and flow creation over time and
at peak.

Maier et al. [22] study the characteristics of residential broadband traffic
circa 2009. They report that HTTP dominated byte consumption (57% of bytes),
and that peer to peer traffic may not be as high (14% of bytes) as previously
reported [15]. This study [22] covers a single digital subscriber line (DSL) net-
work, and their application analysis is based on two 24 hour packet captures and
fourteen 90 min captures. While their analysis of HTTP traffic reports HTTP
content types, they do not differentiate services delivered over HTTP (e.g., Face-
book).

Labovitz et al. [20] examine the evolution of inter-domain traffic from 2007
to 2009. They use deep packet inspection (DPI) to categorize traffic on five

Application Bandwidth and Flow Rates from 3 Trillion Flows 139

subscriber networks. They note the rise of legacy video protocols (e.g., RTSP),
and the decline of peer to peer traffic over the study period. However, they do
not separate video delivered over HTTP from other Web traffic. As a result,
they attribute less than 3% of traffic to video.

Richter et al. [25] conduct an application-aware study of Internet traffic at
one European IXP. Their methodology relies on random packet sampling (which
may miss packets containing rich identifying information), and their application
recognition examines just 74 bytes of TCP payload. They report that 57% of
traffic is HTTP and 10% is HTTPS but offer no insight into the services that
are delivered using those protocols.

As more services are delivered over HTTP, it is increasingly important to
differentiate these services. As noted above, several earlier papers [16,20,22,25]
have broadly classified 20% to 58% of bytes as HTTP, Web, or browsing. Our
methodology can inspect entire packet payloads, and reliably identify HTTP-
based services as well as proprietary protocols (e.g., Skype). This is important
because, as we have demonstrated, peak utilization can vary by service and
understanding such patterns can enable more efficient network management.
Additionally, our data set is taken from the network’s edge and spans 45 provider
networks across 26 countries. As a result, we measure traffic that may not be
routed to IXPs (e.g., PeerToPeer and content that is cached near the edge). Both
IXP and edge perspectives are valuable, but we believe that edge measurements
provide an important view that is under-represented in the literature.

7 Conclusions

This paper presents an application and service aware analysis of bytes and flows
from 7 days of Internet traffic from 22 cellular and 23 non-cellular networks
across 26 countries to better understand how application traffic patterns impact
network resource consumption. The analysis covers 62.8 PB of payload data and
over 3 trillion flows, which makes it one of the largest such studies that we are
aware of. We find that flow rates and bandwidth patterns are highly localized,
with little similarity among networks or network types. In our analysis, we have
not found factors which define a typical network.

We demonstrate that one or two applications can drive peak bandwidth and
influence the shape of a network’s bandwidth curve. This is important because
the width and height of peak bandwidth and the depth of nightly troughs defines
a peak reduction bound that can guide the deployment of NFV and SDN solutions
which aim to reduce equipment and energy costs. We find that DNS traffic
accounts for 25% of the three trillion flows examined and more than 50% of
flows in several networks. We believe this is due to the large number of links
embedded in modern web pages, aggressive DNS pre-fetching implemented in
modern browsers, and short time-to-live settings for many DNS responses.

140 D. Pariag and T. Brecht

Acknowledgments. Tim Brecht’s work was partially supported by a Natural Sciences
and Engineering Research Council of Canada Discovery Grant. Thanks to Dan Deeth,
Ian Wormsbecker, and Sau Cheng Lim at Sandvine for their assistance in gathering
data, understanding network deployments, and for feedback on several drafts of this
paper. We also thank Bernard Wong and S. Keshav from the University of Waterloo
for their comments on an earlier version of this paper.

References

1. http://www.bittorrent.org/beps/bep 0029.html
2. Akamai Technologies Inc., Akamai’s State of the Internet, vol. 7, no. 4, Q4 (2014)
3. Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of network traffic

anomalies. In: 2nd ACM SIGCOMM Workshop on Internet Measurement (2002)
4. Bolla, R., Bruschi, R., Carrega, A., Davoli, F., Suino, D., Vassilakis, C., Zafeiropou-

los, A.: Cutting the energy bills of internet service providers and telecoms through
power management: an impact analysis. Comput. Netw. 56(10), 2320–2342 (2012)

5. Bolla, R., Bruschi, R., Lombardo, C., Mangialardi, S.: Dropv2: energy efficiency
through network function virtualization. IEEE Netw. 28(2), 26–32 (2014)

6. Bolla, R., Bruschi, R., Lombardo, C., Suino, D.: Evaluating the energy-awareness
of future Internet devices. In: IEEE Conference on High Performance Switching
and Routing, July 2011

7. Butkiewicz, M., Madhyastha, H.V., Sekar, V.: Understanding website complexity:
measurements, metrics, and implications. In: ACM IMC (2011)

8. Carela-Español, V., Barlet-Ros, P., Bifet, A., Fukuda, K.: A streaming flow-based
technique for traffic classification applied to 12 + 1 years of Internet traffic.
Telecommun. Syst. 63(2), 191–204 (2016)

9. Castro, S., Zhang, M., John, W., Wessels, D., Claffy, K.: Understanding and
preparing for DNS evolution. In: Ricciato, F., Mellia, M., Biersack, E. (eds.)
TMA 2010. LNCS, vol. 6003, pp. 1–16. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12365-8 1

10. Christensen, K., Reviriego, P., Nordman, B., Bennett, M., Mostowfi, M., Maestro,
J.A.: IEEE 802.3 az: the road to energy efficient ethernet. IEEE Commun. Mag.
48(11), 50–56 (2010)

11. Cisco Systems Inc. The Zettabyte Era: Trends and Analysis, May 2015
12. Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee,

S.: Devoflow: scaling flow management for high-performance networks. In: ACM
SIGCOMM (2011)

13. Estan, C., Keys, K., Moore, D., Varghese, G.: Building a better NetFlow. In: ACM
SIGCOMM (2004)

14. Fomenkov, M., Keys, K., Moore, D., Claffy, K.: Longitudinal study of internet traf-
fic in 1998–2003. In: Winter International Symposium on Information and Com-
munication Technologies (2004)

15. Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R.,
Seely, T., Diot, C.: Packet-level traffic measurements from the sprint IP backbone.
IEEE Netw. Mag. 17(6), 6–16 (2003)

16. Fukuda, K., Asai, H., Nagami, K.: Tracking the evolution and diversity in network
usage of smartphones. In: ACM IMC (2015)

17. Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization: chal-
lenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015)

http://www.bittorrent.org/beps/bep_0029.html
http://dx.doi.org/10.1007/978-3-642-12365-8_1
http://dx.doi.org/10.1007/978-3-642-12365-8_1

Application Bandwidth and Flow Rates from 3 Trillion Flows 141

18. Kaminsky, D.: Black ops 2008: It’s the end of the cache as we know it (2008).
http://www.slideshare.net/dakami/dmk-bo2-k8

19. Krishnan, S., Monrose, F.: DNS prefetching and its privacy implications: when
good things go bad. In: USENIX Conference on Large-scale Exploits and Emergent
Threats (2010)

20. Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., Jahanian, F.: Inter-
net inter-domain traffic. In: ACM SIGCOMM (2010)

21. Mai, J., Chuah, C.-N., Sridharan, A., Ye, T., Zang, H.: Is sampled data sufficient
for anomaly detection? In: ACM IMC (2006)

22. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On dominant characteristics of
residential broadband internet traffic. In: ACM IMC (2009)

23. Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring internet
denial-of-service activity. ACM Trans. Comput. Syst. 24(2), 115–139 (2006)

24. Nedevschi, S., Popa, L., Iannaccone, G., Ratnasamy, S., Wetherall, D.: Reducing
network energy consumption via sleeping and rate-adaptation. In: NSDI (2008)

25. Richter, P., Chatzis, N., Smaragdakis, G., Feldmann, A., Willinger, W.: Distilling
the internet’s application mix from packet-sampled traffic. In: Mirkovic, J., Liu, Y.
(eds.) PAM 2015. LNCS, vol. 8995, pp. 179–192. Springer, Cham (2015). doi:10.
1007/978-3-319-15509-8 14

26. Rotem, E., Naveh, A., Ananthakrishnan, A., Rajwan, D., Weissmann, E.: Power-
management architecture of the Intel microarchitecture code-named Sandy Bridge.
IEEE Micro 2(2), 20–27 (2012)

27. Sandvine Inc., Global Internet Phenomena, December 2015. https://www.
sandvine.com/trends/global-internet-phenomena/

28. Thompson, K., Miller, G., Wilder, R.: Wide-area Internet traffic patterns and
characteristics. IEEE Netw. 11(6), 10–23 (1997)

http://www.slideshare.net/dakami/dmk-bo2-k8
http://dx.doi.org/10.1007/978-3-319-15509-8_14
http://dx.doi.org/10.1007/978-3-319-15509-8_14
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/

Measuring What is Not Ours:
A Tale of 3rd Party Performance

Utkarsh Goel1(B), Moritz Steiner2, Mike P. Wittie1, Martin Flack2,
and Stephen Ludin2

1 Montana State University, Bozeman, USA
{utkarsh.goel,mwittie}@cs.montana.edu

2 Akamai Technologies, Inc., San Francisco, USA
{moritz,mflack,sludin}@akamai.com

Abstract. Content Providers make use of, so called 3rd Party (3P) ser-
vices, to attract large user bases to their websites, track user activities
and interests, or to serve advertisements. In this paper, we perform an
extensive investigation on how much such 3Ps impact the Web perfor-
mance in mobile and wired last-mile networks. We develop a new Web
performance metric, the 3rd Party Trailing Ratio, to represent the frac-
tion of the critical path of the webpage load process that comprises of
only 3P downloads. Our results show that 3Ps inflate the webpage load
time (PLT) by as much as 50% in the extreme case. Using URL rewrit-
ing to redirect the downloads of 3P assets on 1st Party infrastructure,
we demonstrate speedups in PLTs by as much as 25%.

1 Introduction

Content Providers (CPs) such as Facebook, Google, and others seek to attract
large number of users to their websites and to generate high revenue. As a result,
CPs strive to develop attractive and interactive websites that keep their users
engaged. JavaScript libraries from online social networks, advertisements, and
user tracking beacons allow CPs to personalize webpages based on end-users’
interests, while various CSS frameworks make websites aesthetically pleasing [8,
10]. Further, webpage analytic APIs and performance monitoring tools allow CPs
to monitor the user-perceived performance of their websites [9]. However, as CPs
continue to evolve their websites with increasing number of features, the webpage
load time (PLT) starts to increase – resulting in poor user experience [6,13].

To speed up the delivery of static Web content to end-users, CPs make con-
tracts with Content Delivery Networks (CDNs), such as Akamai. CDN servers
are distributed deep inside many last mile wired and mobile ISPs worldwide
and thus provide low-latency paths to end-users [23,25]. Additionally, CDNs
are motivated to adopt new and upcoming faster Internet technologies, such
as HTTP/2 and IPv6 to achieve even faster content delivery for their CP cus-
tomers [16,19,22]. Although CDNs are effective in reducing download times of
Web objects they serve, as CPs continue to enhance their websites by embedding

c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 142–155, 2017.
DOI: 10.1007/978-3-319-54328-4 11

Measuring What is Not Ours: A Tale of 3rd Party Performance 143

external resources that the surrogate CDN does not serve, it becomes challeng-
ing for the CDN to speed up components of webpages beyond its control [15,17].
More generally, the usage of external resources have increased in last few years
and have thus imposed a much harder challenge on CDNs to improve PLTs.

The performance of such external resources have been a great area of inter-
est in the Web performance community. Previous attempts to classify exter-
nal resources as 3rd Party (3P) involves comparing object hostnames to the
hostname of the base page URL. However, such techniques often lead to inac-
curate classification. For example, while the two hostnames www.qq.com and
btrace.qq.com appear to be from the same party, objects from www.qq.com are
served from a surrogate CDN infrastructure, whereas objects from btrace.qq.com
are served from an origin infrastructure. To bring clarity to classification of 3P
assets, we refer the server infrastructure that serves the base page HTML as the
1st Party (1P) provider, such as a CDN provider acting as surrogate infrastruc-
ture for its CP customers. Additionally, we refer as to 3P as any asset embedded
in the webpage that is not served by the same infrastructure as the base page
HTML. The downloads of such assets cannot be optimized by 1P provider.

Current 3P performance analysis techniques only investigate the overall load
time of 3P assets [6,11], however, such techniques fail to investigate the exis-
tence of 3P assets on webpage critical path [27]. Moreover, previous work mea-
sures 3P performance by comparing PLTs for a webpage with and without 3P
resources [3]. However, we show in Fig. 1 that such techniques may not result
in accurate comparison of PLTs, as removing a 3P resource may also remove
other resources that are dependent on the removed resource. For example, while
50% of the 3P resources initiate download of at least one other resource on the
webpage, many 3P resources initiate downloads of upto 10 other resources.

We argue that the key to minimize 3P impact on PLT is to first under-
stand which specific 3P assets lie on webpages’ critical path. In this paper, we
extend our previous work of evaluating the impact of 3Ps on PLT over mobile
networks [21]. Specifically, we investigate 3P impact on PLT over wired and
well-provisioned datacenter networks and suggest a potential solution to mit-
igate their impact through experimental evaluation. Specifically, we make the
following four contributions in this paper:

Fig. 1. Dependency on 3P assets. Fig. 2. A waterfall diagram with one 3P
and two 1P objects.

http://www.qq.com
http://btrace.qq.com
http://www.qq.com
http://btrace.qq.com

144 U. Goel et al.

Analysis of webpage structure: We make extensive use of the open-source
data available at the HTTP Archive [2] to expose the characteristics of 3P assets
embedded into the top 16,000 Alexa webpages [7], currently served by four major
CDN providers. Specifically, for 3P assets in each webpage in our dataset, we
calculate the number of unique domain names resolved, HTTP requests sent,
total bytes, and total uncompressed bytes downloaded, among many other char-
acteristics.

Extensive Measurement: To measure the impact of 3P downloads on Web
performance, we devise a new Web performance metric, 3rdParty Trailing Ratio
(3PTR), that represents the PLT fraction of the download time of 3P assets on web-
page critical path.As shown inFig. 2, the 3PTR is thePLT fraction that is accounted
for by the sum of the download times of 3P objects whose download times do not
overlap with any 1P object, as highlighted by the shaded areas. To calculate 3PTR
from HTTP Archive (HAR) files, we encourage readers to experiment with http://
nl.cs.montana.edu/tptr.

Next, using cellular and wired clients of Gomez Mobile and Gomez Last-
Mile testbeds [4], we run several active experiments for three months in 2016 to
calculate 3PTR for hundreds of webpages and identify which 3P resources impact
PLTs. We also use measurement data from HTTP Archive to calculate 3PTR
for the top 16,000 Alexa webpages loaded from a well-provisioned datacenter
network [2].

Problems Discovered and Solutions: In our analysis of 3P performance,
we discover two major problems. First, we identify that for many webpages, 3P
assets that lie on the webpage critical path contribute up to 50% of the total
PLT. To the best of our knowledge, there is currently no known best-practice as
to how 1Ps could optimize 3P downloads to mitigate their impact on the PLT.

Solution: We investigate how 1P providers could safely redirect 3P downloads
onto their infrastructures for faster delivery of 3P assets. Based on our mea-
surements, we demonstrate that rewriting 3P URLs in a way that enables 1P
servers to deliver 3P assets improves PLTs by up to 25%. The faster PLTs are
achieved as rewritten URLs eliminate DNS lookups to 3P hostnames, the clients
download 3P assets from 1Ps using an existing TCP connection to the 1P server,
and that the 1P (surrogate CDN) servers are likely closer to clients than the 3P
servers. Additionally, 1P servers could compress any uncompressed 3P assets
before transferring them to clients. And finally, 1Ps could use new content deliv-
ery protocols, such as HTTP/2 and IPv6 for even faster delivery that many 3Ps
do not employ.

Second, using the HTTP Archive data we identify that several 3P vendors do
not compress Web objects even when clients indicate support for compression in
HTTP request headers. Incidentally, we identify that some 1P providers deliver
uncompressed objects as well, even when clients indicate support for compres-
sion. Our investigation suggests that this behavior is due to misconfigured HTTP
response headers on 1P servers.

http://nl.cs.montana.edu/tptr
http://nl.cs.montana.edu/tptr

Measuring What is Not Ours: A Tale of 3rd Party Performance 145

Solution: We made recommendations to several 1P providers, providing them
with a list of URLs to configure compression for the objects that they currently
serve uncompressed.

2 Data Collection

We use the open-sourced HTTP Archive dataset, an initiative by Google,
Mozilla, and other industry leaders, to analyze structures of different websites [2].
The HTTP Archive data is collected using the WebPageTest framework, where
webpages are loaded over virtual machines inside a datacenter [14]. The page
loads are then translated into a format similar to HTTP Archive format (HAR)
containing the timing data and as well as the HTTP request and response head-
ers for each object embedded in the webpage under test.

For our analysis, we extract only the HTTP request and response headers
pertaining to the top 16,000 Alexa webpages. In particular, for each requested
object we extract HTTP headers indicating the response size, Cache-Control,
associated hostname, and whether the response was compressed when the client
indicates support for compression in the HTTP request headers. Since many
3P assets load after the onLoad event triggered by the Web browser and since
we only focus on understanding how much 3P downloads impact the PLT, we
consider the measurement data for objects loaded only until the onLoad event.1

Next, for each hostname we perform a dig operation to check whether the
hostname resolves to a canonical name (CNAME) associated with any of the
four CDN providers we use in this study. If a hostname for an object does not
resolve to a CNAME associated to the 1P serving the base page HTML, we
consider that object as a 3P asset, with respect to that 1P. Additionally, if the
hostname does not resolve to any CNAME, we consider that hostname as 3P
for all four 1P CDN providers. While many 1P providers use anycast addressing
for their CDN servers, the four CDN providers we use in this study perform
DNS-based addressing and resolve hostnames to CNAMEs associated to them.

Finally, for each webpage, we calculate the total number of domain names
resolved and HTTP requests sent for objects that we label as 3P. We also cal-
culate the total number of bytes, total number of uncompressed bytes, and
total number of cacheable bytes delivered by various 3P vendors by parsing the
Content-Encoding and Cache-Control headers in the HTTP response, respec-
tively. Our total dataset consists of structures for 16,000 webpages requesting a
total of 1.6 M objects, out of which about 525 K (32%) objects belong to different
3P providers.

To collect measurement data pertaining to 3P impact on PLT, we con-
duct several active experiments using the Gomez Mobile testbed to load 60
mobile-specific webpages served by the production servers of a major CDN
provider [1,4]. We also conduct active experiments using Gomez Wired Last-
Mile testbed to load a set of 376 webpages designed for larger screens from
1 We refer to the time Web browsers take to trigger the onLoad event as the webpage

load time (PLT) [5].

146 U. Goel et al.

the same CDN. The selected webpages are limited to a few hundred because of
the operational costs related to running Gomez experiments and that the cho-
sen webpages are among the most popular sites served by the CDN. Next, we
configure both Gomez mobile and wired clients to load each website 400 times
and record the browser exposed Navigation and Resource Timing data after
each page load [5,12]. The Navigation and Resource Timing data we obtain
from Gomez consists of timestamps when the page starts to load, timestamps
when each object starts and finishes loading (including the time to perform DNS
lookup, TCP handshake time, SSL handshake time, time to receive the first bit,
and the object download time), and the timestamp when the onLoad event is
triggered by the Web browser. Our configured Gomez clients also record the host-
names associated with each requested object, which we use to identify whether
the object downloaded is a 3P asset or a 1P asset, similarly to how we iden-
tify this information using the HTTP Archive data. In addition to using Gomez
clients, we use measurement data from the HTTP Archive to extract Resource
Timing data pertaining to each object downloaded for the top 16000 Alexa web-
pages. Such a comprehensive measurement allows us to understand the impact
of 3P assets on PLTs when loaded under different network conditions, such as
cellular, wired, and well-provisioned datacenter networks.

3 Exposing Characteristics of 3P Assets

Using the HTTP Archive data, in Fig. 3 we show the distribution of the number
of unique domain names resolved and total number of HTTP requests sent by
clients to download 3P assets for different webpages. In general, we observe that
50% of the webpages resolve atleast 10 unique 3P domain names and issue a
total of about 50 HTTP requests to different 3P vendors. For mobile clients,
where radio latency and the latency to cellular DNS servers is a few hundred
milliseconds, resolving multiple 3P domain names introduces significant latency
to the overall PLT [22,23,26]. Further, such a large number of DNS lookups could
result in many round trips to establish several new TCP connections to distant

1 2 5 10 50 200 500

0.
0

0.
4

0.
8

Number of 3rd Party Requests

Fr
ac

tio
n

of
 W

eb
pa

ge
s

DNS
HTTP

Fig. 3. Distribution of the number of
DNS lookup and HTTP requests made
to download 3P assets.

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Amount of 3rd Party Data (KB)

Fr
ac

tio
n

of
 W

eb
pa

ge
s

Uncompressed
Cacheable
Total

Fig. 4. Distribution of total, uncom-
pressed, and cacheable bytes down-
loaded from 3P vendors.

Measuring What is Not Ours: A Tale of 3rd Party Performance 147

3P servers – introducing additional delay to the object load times, especially
during the TCP slow start phase of each connection.

Next, in Fig. 4, we show the distribution of the total amount of data down-
loaded from 3P servers, and as well as the total number of uncompressed bytes
transferred by 3P servers, when clients indicate support for compression in the
HTTP request headers. 50% of the webpages download atleast 400 KB data from
different 3P providers, out of which at least 40 KB of data is transferred uncom-
pressed, and almost all of the data transferred by 3P servers is cacheable by
clients or any intermediate Web proxy. The opportunity to cache 3P data allows
1Ps to compress and serve requests from their infrastructures.

4 Third Party Trailing Ratio

3P assets embedded on a webpage require multiple DNS lookups and down-
load of hundreds of kilobytes of data, however, 3P assets that do not lie
on the webpage critical path do not impact the PLT. Therefore, we investi-
gate the time spent by 3P downloads on the critical paths of webpages. For
the purposes of this investigation, we devise a new Web performance metric,
3rd Party Trailing Ratio (3PTR), that represents the fraction of PLT that is
spent only by 3P downloads and during which no 1P asset is downloading in
parallel, as denoted by the two shaded areas in Fig. 2.

To calculate 3PTR, we employ a two step process as follows: First, using start
and end timestamps of all object downloads, we calculate all non-overlapping
time intervals of 1P and 3P downloads independently [20]. Second, using the
above time intervals, for each 3P interval we identify whether there is any time
duration that does not overlap with any 1P interval. The sum of all such 3P time
intervals results in the 3P delay. Finally, the percentage of PLT that belongs to
3P delay is referred to 3PTR.

In Fig. 5, we show the 3PTR distributions for 60 webpages served by a major
CDN provider, where we load each webpage 400 times from Gomez Mobile clients
connected to cellular networks. For figure clarity, we sort pages along the x-axis
based on the median 3PTR value. In general, we observe that 3P downloads do not
impact PLT for about half of the webpages in our dataset. With these webpages,
when 3P assets are being downloaded, one or more longer 1P assets are also being

0
20

40
60

80

Distinct Webpages

TP
TR

 (%
)

Fig. 5. 3PTR distributions for webpages
served to Gomez Mobile.

0
20

40
60

80

Different 3rd party Vendors

TP
TR

 (%
)

Fig. 6. 3PTR distributions of 3P
providers served to Gomez Mobile.

148 U. Goel et al.

0
20

40
60

80
10

0

Distinct Webpages

TP
TR

 (%
)

Fig. 7. 3PTR distributions for different webpages served to wired clients.

downloaded in parallel. Therefore, for these webpages, the 3P downloads do not
lie on the critical path. However, for other webpages, 3P downloads contribute
to up to 50% of the total PLT, in the median case. For these webpages, when 3P
assets are downloaded, none of the 1P assets are being downloaded. Therefore,
for these webpages, 3P downloads lie on the webpage critical path and thus
introduce additional latency to the overall PLT. Note that the variation in 3PTR
in Fig. 5 arises from the variation in the network conditions, or server processing
time. Specifically, as the load time of a 3P asset changes, the 3PTR changes as
well.

In Fig. 6, we separate 3PTR based on 3P providers. Specifically, for each 3P
provider on the critical path, we show a boxplot distribution of the 3PTR con-
tributed by that 3P provider. From the figure we observe that while some 3P
providers impact PLT of some pages by as low as 5%, other 3Ps contribute
up to 40% of PLT for some webpages. Therefore, to speedup websites it is first
important to understand which 3P provider impacts PLT and then mitigate its
impact.

We observe similar impact of 3P on PLT when loading a different set of
376 webpages using Gomez Wired Last-Mile clients. In Fig. 7, we show that the
median 3PTR is zero for about 40% of the webpages. For the rest 60% of the
webpages, 3Ps contribute as much as 50% of the PLT in the median case. As
observed earlier, the variation in 3PTR comes from the variation in load times of

0
20

40
60

80
10

0

Different 3rd party Vendors

TP
TR

 (%
)

Fig. 8. 3PTR distributions for various 3P providers for pages served to Gomez Wired
Last-Mile clients.

Measuring What is Not Ours: A Tale of 3rd Party Performance 149

3P assets. Additionally and similarly to Fig. 6, in Fig. 8 we observe that some
3Ps impact PLTs of some webpages as low as 1%, while other 3Ps impact PLT
as much as 50%.

Finally, using the measurement data from HTTP Archive, in Fig. 9 we show
the 3PTR distribution for the top 16,000 Alexa webpages. For example, we see
that for about 50% of the webpages served by CDNs A, B, and C, 3Ps contribute
at least 20% of the total PLT, even when webpages are loaded from a cloud
datacenter network. For webpages served by CDN D we see that about 65% of
the webpages have zero 3PTR, because many webpages served by CDN D are for
its own products that do not contain any 3P assets.

5 Selecting Third Party Objects for Optimization

Based on our analysis of 3P impact on PLT in different types of networks,
we argue for 1Ps (such as a CDN provider) to rewrite critical 3P URLs and
redirect requests onto their infrastructures to reduce 3PTR. Specifically, rewriting
critical 3P URLs eliminates DNS lookup time for multiple 3P hostnames, as a
rewritten URL can point to the hostname of the basepage that the browser has
resolved already. Additionally, URL rewriting allows clients to connect to already
warmed-up TCP connections to much closer 1P servers and download 3P content
while eliminating TCP slow start and time to setup new TCP connections to
distant 3P servers.

Next, when the request to download a 3P resource arrives at the 1P server,
the 1P delivers the requested content in one of the following two ways: (1) either
from the server’s cache; or (2) by retrieving the requested resource from the 3P
server over a proactively established TCP connection. For example, while the
first request for a 3P resource is fetched from 3P servers, subsequent requests for
the same resource are served from 1P cache. While it is possible that many clients
request a specific resource URL, the response for which needs to be personalized
according to the user profile, the 1Ps will need to always fetch the resource from
the original 3P server. For such resources, the client requests contain a cookie in
the HTTP headers that enables 3P servers to customize responses accordingly.

Rewriting 3P URLs for resources that require a 3P cookie in the request, or
in the response, introduces challenges for 1Ps to reliably perform URL rewriting.
Specifically, many 3P providers process cookies to perform visitor counts for each
resource, track user activities, generate responses based on user’s recent activi-
ties, among others. Therefore, when 1Ps proxy 3P traffic on their infrastructure,
requests may appear to originate from a smaller pool of 1P server IP addresses –
negatively impacting the visitor count and user tracking services for 3P providers.
Although, 1Ps could add an x-Forwarded-For header in the forwarded HTTP
requests, 3P servers will need to process this header to accurately track users.
Finally, if many 3P requests containing user cookies originate from a unreason-
ably small pool of 1P IP addresses, 3P servers may interpret these requests as a
part of a Denial-of-Service (DOS) attack.

In Fig. 10, we show the number of 3P objects that require cookies in requests
and/or responses for the top 16,000 Alexa webpages. From the figure we observe

150 U. Goel et al.

0 20 40 60 80 100

0.
0

0.
4

0.
8

TPTR (%)

Fr
ac

tio
n

of
 P

ag
es

CDN A
CDN B
CDN C
CDN D

Fig. 9. 3PTR distribution for webpages
served by four CDN providers.

0 20 40 60 80 100

0.
0

0.
4

0.
8

3rd Party Objects (%)

Fr
ac

tio
n

of
 P

ag
es

None

in Resp.

in Req.
in Req.
& Resp.

Fig. 10. Distributions of cookie-based
requests and responses.

that for about 50% of the total websites, at least 70% of the 3P objects do
not require cookies in requests and responses. Therefore, it is promising for 1P
providers to speed up webpages by rewriting URLs for those critical 3P resources
that do not require cookies neither in HTTP requests, nor in HTTP responses.
We argue that for each webpage that a 1P provider serves, the provider could
proactively download 3P resources to identify those that do not contain any
cookies and thereafter apply URL rewriting to redirect requests for only those
3P resources to its own infrastructure before sending the basepage HTML to the
client.

6 Third Party Content Acceleration via URL Rewriting

We clone several webpages on a major CDN provider’s infrastructure, where
each webpage has two versions: (1) where 3P resources are downloaded from 3P
servers, and (2) where URLs of 3P resources are rewritten to download from 1P
servers. In Figs. 11, 12, 13, 14, 15 and 16, we show distributions of 200 PLTs for
different webpages loaded under different mobile and wired network conditions.
Note that the y-axis in these figures is on a log scale. To measure PLTs under
different mobile network conditions, we utilize our previous work on simulating
cellular networks [24]. For simulating wired network conditions, we only control
end-to-end (E2E) latency between clients and servers, as in our observations
packet loss on wired networks is minimal and bandwidth is not the limiting
factor.

In Figs. 11 and 12, we select a webpage with 3PTR of about 49% and compare
its PLTs in various mobile and wired network conditions respectively. Our results
show that rewriting 3P URLs for webpages with such high 3PTR values result
in significantly lower PLTs compared to original page. For example, under Fair
mobile conditions, the median PLT and the 3PTR is reduced by 28% by rewriting
URLs of 3P assets on the webpage critical path. Additionally, in a last-mile wired
network with E2E latency of 20 ms (typical latency between clients and CDN
providers), we observe that the median PLT and the 3PTR with rewritten 3P
URLs is 24% lower than original webpages.

Measuring What is Not Ours: A Tale of 3rd Party Performance 151

2
5

10
20

No Loss Good Fair Passable Poor
Network Conditions

Pa
ge

 L
oa

d
Ti

m
e

(S
) Original Page

3rd Party Rewritten

Fig. 11. PLTs in cellular conditions for
a page with TPTR of 49%.

1.
0

1.
5

2.
0

3.
0

100 50 20 5
Last Mile (Wired) Latency (ms)

Pa
ge

 L
oa

d
Ti

m
e

(S
) Original Page

3rd Party Rewritten

Fig. 12. PLTs in wired conditions for
a page with TPTR of 49%.

0.
5

1.
0

2.
0

5.
0

No Loss Good Fair Passable Poor
Network Conditions

Pa
ge

 L
oa

d
Ti

m
e

(S
) Original Page

3rd Party Rewritten

Fig. 13. PLTs in cellular conditions for
a page with TPTR of 25%.

0.
2

0.
4

0.
8

100 ms 50 ms 20 ms 5 ms
Last Mile (Wired) Latency

Pa
ge

 L
oa

d
Ti

m
e

(S
) Original Page

3rd Party Rewritten

Fig. 14. PLTs in wired conditions for
a page with TPTR of 25%.

Similarly, when comparing PLTs for webpages with 3PTR of 25% and 5% in
Figs. 13, 14 and Figs. 15, 16 respectively, we observe reduced PLTs by rewriting
3P URLs. However, for these webpages the improvements are less pronounced
than we observe in Figs. 11 and 12, as the 3PTR for these webpages is less.
For example in Figs. 13 and 14, the median PLTs and 3PTR of a webpage with
rewritten 3P URLs under Fair mobile conditions and 20 ms E2E wired latency
are 15% and 10% lower than original webpage, respectively. Similarly, in Figs. 15
and 16, the median PLTs and the 3PTR under same conditions are 3% and 2.2%
lower than for the original webpage.

Note: For CP customers that desire to enable 3P content acceleration for
their webpages, rewriting of all 3P objects served over HTTPS should be per-
formed only when the CDN provider makes legal agreements with individual
3P providers to terminate HTTPS connections to their servers and cache the
requested content. Additionally, URL rewriting does not introduce any opera-
tional complexity to CPs. As CDN providers fetch HTML from their CP cus-
tomers, CDNs could parse the HTML and apply URL rewriting to 3P objects
that lie on the critical path. Further, as CDNs cache 3P objects, these objects
can be refreshed similarly to how CDNs refresh objects from their CP customers.

152 U. Goel et al.

0.
5

1.
0

2.
0

No Loss Good Fair Passable Poor
Network Conditions

Pa
ge

 L
oa

d
Ti

m
e

(S
) Original Page

3rd Party Rewritten

Fig. 15. PLTs in cellular conditions for
a page with TPTR of 5%.

0.
2

0.
3

0.
5

0.
7

100 ms 50 ms 20 ms 5 ms
Last Mile (Wired) Latency

Pa
ge

 L
oa

d
Ti

m
e

(S
) Original Page

3rd Party Rewritten

Fig. 16. PLTs in wired conditions for
a page with TPTR of 5%.

7 Discussion

The improvements in PLTs depend on the value of 3PTR – higher the value of
3PTR, the more potential for reducing PLTs exists. While our URL rewriting
technique demonstrates improvements in PLTs, we argue that for certain 3Ps,
rewriting URLs may degrade the performance. For example, in Fig. 17 we com-
pare performance of a popular 3P resource in terms of DNS lookup time, TCP
handshake time, time to receive first bit, download time, and the total load time,
when loaded from a major CDN provider network and 3P servers respectively.
We observe that DNS lookup time for the 3P resource is significantly lower than
the DNS lookup time for the 1P CDN provider, likely because the 1P domain
name created for this experiment is not very popular and therefore is not cached
by the local DNS resolver. The TCP handshake, first bit, and download time
are similar when downloading the same object from 3P or 1P servers. As such,
the total load time is governed by the DNS lookup time.

Similarly, in Fig. 18, we show the same performance metrics for a differ-
ent 3P resource. We observe that while DNS lookup time is still higher for a
1P hostname, the TCP handshake, first bit times are significantly lower when
downloading the resource from a 1P server, which translates to a lower total
load time with rewritten URLs. Therefore, we argue that careful performance
analysis should be performed for each critical 3P resource before transmitting

0
10

0
20

0
30

0

DNS TCP 1st Bit Download Total
Web Performance Metric

Ti
m

e
(m

s)

3rd Party URL
Rewritten URL

Fig. 17. Comparing performance met-
rics of a 3P objects.

0
40

0
80

0
14

00

DNS TCP 1st Bit Download Total
Web Performance Metric

Ti
m

e
(m

s)

3rd Party URL
Rewritten URL

Fig. 18. Comparing performance met-
rics of another 3P objects.

Measuring What is Not Ours: A Tale of 3rd Party Performance 153

1
2

5
10

No Loss Good Fair Passable Poor
Network Conditions

Pa
ge

 L
oa

d
Ti

m
e

(S
) Original Page

3rd Party Rewritten

Fig. 19. PLTs distributions when
rewriting URLs for an h2 page.

0.
2

0.
6

1.
0

1.
4

Bing Turn Yahoo
3rd Party Vendors on Critical Path

O
bj

ec
t L

oa
d

Ti
m

e
(S

)

Fig. 20. Distributions showing the
variation in 3P load times.

HTML with rewritten URLs to clients. For example, if DNS lookup time impacts
the overall load time of the object, either the 3P resource need not be rewritten,
or the rewritten URL should use a hostname that client should have already
resolved, or configure clients to coalesce TCP connections to multiple 3P host-
names. In fact, a recent Internet draft by Microsoft and Mozilla details how to
present additional certificates during an existing connection and serve content
for the domains referenced in the additional certificates [18].

Next, in Fig. 19 we show the impact of URL rewriting when the base page
is served over HTTP/2 (h2). This webpage uses many 3P hostnames for which
the client establishes several TCP connections. When rewriting such a webpage
we rewrite all critical 3P URLs to send requests to the basepage hostname –
reducing the total number of connections from several dozen to just one h2
connection. For such webpages, single TCP connection degrades PLTs as loss
interpreted by TCP due to variable radio latency in cellular networks degrades
HTTP/2 performance [24]. When measuring PLTs for the same page over h2
in wired networks, we observe that without packet loss, h2 offers faster PLTs.
Therefore, we argue that for content delivery optimized for mobile networks, it
is important to consider impact on PLT of the number of TCP connections that
remain after rewriting URLs.

Finally, for another webpage with over 40 different 3P hostnames and 3PTR
of about 30%, we identify that the performance variation from a few 3P
resources (for which we could not perform URL rewriting as they contain cook-
ies) negate the benefits of URL rewriting for other 3P resources. As shown in
Fig. 20, the three 3P resources downloaded from Bing, Turn, and Yahoo servers
vary by over 1 second. For example, a resource loaded from Yahoo servers takes
anywhere from 300 ms to 1.5 s. Therefore, we argue that for webpages that embed
cookie-based 3P objects with high performance variation may not assist the URL
rewriting technique to improve PLTs.

Limitation: The one (minor) limitation of 3PTR is that for some webpages,
3PTR may give a lower bound on the impact of 3P downloads on PLT. For
example, when a 3P object initiates the download of a 1P object and the 3P
downloads in parallel with some other 1P object, the TPTR is calculated as

154 U. Goel et al.

zero. As the 3P object initiates the download of a 1P object, that 3P lies on
the webpage critical path, however, 3PTR does not consider object dependencies
within a webpage when calculating impact of 3P downloads on PLT. To detect
object dependencies, the Referrer header in the HTTP requests can be used to
identify the initiator of the request. However, the Resource Timing API does not
record the Referrer header and thus we designed 3PTR to utilize the start and
end timestamps for each loaded object. Using HTTP Archive data, we identify
that less than 2–10% of the webpages possess such dependencies and therefore
3PTR calculates accurate 3P impact for majority of the webpages.

8 Conclusions

Our large scale investigation on 3rd Party performance reveals that 3Ps can
impact the overall webpage load time by up to 50%. Through extensive exper-
imentation, we demonstrate that redirecting 3P traffic to 1P infrastructure
improves webpage load times. We, therefore, make recommendations to 1P
providers to investigate the existence of 3P resources the critical path of web-
pages and utilize URL rewriting to improve Web performance for end-users. In
the future, we plan to perform even larger scale measurements on production
Web traffic.

Acknowledgments. We thank Ilya Grigorik, Shantharaju Jayanna, Wontaek Na, and
Kanika Shah for their help. We also thank National Science Foundation for supporting
this work via grants CNS-1555591 and CNS-1527097.

References

1. Gomez Last-Mile Testbed, November 2009. https://goo.gl/BtwSWY
2. HTTP Archive: Interesting stats (2010). http://httparchive.org/
3. Performance of 3rd Party Content, February 2010. http://stevesouders.com/p3pc/
4. Gomez (Dynatrace Synthetic Monitoring), July 2015. https://goo.gl/4JTjJy
5. Navigation Timing, August 2015. http://w3c.github.io/navigation-timing/
6. The Truth Behind the Effect of Third Party Tags on Web Performance, December

2015. https://goo.gl/24f09c
7. Alexa Top Sites, July 2016. http://www.alexa.com/topsites
8. Facebook for Developers, June 2016. https://developers.facebook.com/
9. Google Analytics Solutions, June 2016. https://analytics.googleblog.com/

10. Google Fonts, June 2016. https://fonts.google.com/
11. Performance Measurement for the Real World, August 2016. https://www.soasta.

com/performance-monitoring/
12. Resource Timing, July 2016. https://www.w3.org/TR/resource-timing/
13. Third-party content could be slowing Britain’s retail websites, March 2016. https://

goo.gl/1gi1Li
14. WebPageTest Framework, July 2016. http://www.webpagetest.org/
15. Alstad, K.: Can third-party scripts take down your entire site? June 2014. https://

goo.gl/V0iLfa

https://goo.gl/BtwSWY
http://httparchive.org/
http://stevesouders.com/p3pc/
https://goo.gl/4JTjJy
http://w3c.github.io/navigation-timing/
https://goo.gl/24f09c
http://www.alexa.com/topsites
https://developers.facebook.com/
https://analytics.googleblog.com/
https://fonts.google.com/
https://www.soasta.com/performance-monitoring/
https://www.soasta.com/performance-monitoring/
https://www.w3.org/TR/resource-timing/
https://goo.gl/1gi1Li
https://goo.gl/1gi1Li
http://www.webpagetest.org/
https://goo.gl/V0iLfa
https://goo.gl/V0iLfa

Measuring What is Not Ours: A Tale of 3rd Party Performance 155

16. Belshe, M., Peon, R., and E. M. Thomson. Hypertext Transfer Protocol Version 2
(HTTP/2), RFC 7540, May 2015

17. Bermes, B.: Third Party Footprint: Evaluating the Performance of External
Scripts, September 2014. https://goo.gl/Cqhafq

18. Bishop, M., Thomson, M.: Secondary Certificate Authentication in HTTP/2, May
2016. http://www.ietf.org/internet-drafts/draft-bishop-httpbis-http2-additional-
certs-01.txt

19. Chen, F., Sitaraman, R.K., Torres, M.: End-user mapping: next generation request
routing for content delivery. In: ACM SIGCOMM, August 2015

20. Enaganti, R.C.: Merge Overlapping Intervals, August 2015. http://www.
geeksforgeeks.org/merging-intervals/

21. Goel, U., Steiner, M., Na, W., Wittie, M.P., Flack, M., Ludin, S.: Are 3rd parties
slowing down the mobile web? In: ACM S3 Workshop, October 2016

22. Goel, U., Steiner, M., Wittie, M.P., Flack, M., Ludin, S.: A case for faster mobile
web in cellular IPv6 networks. In: ACM MobiCom, October 2016

23. Goel, U., Steiner, M., Wittie, M.P., Flack, M., Ludin, S.: Detecting cellular middle-
boxes using passive measurement techniques. In: Karagiannis, T., Dimitropoulos,
X. (eds.) PAM 2016. LNCS, vol. 9631, pp. 95–107. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-30505-9 8

24. Goel, U., Steiner, M., Wittie, M.P., Flack, M., Ludin, S.: HTTP/2 performance in
cellular networks. In: ACM MobiCom (Poster), October 2016

25. Nygren, E., Sitaraman, R.K., Sun, J.: The Akamai network: a platform for high-
performance internet applications. In: ACM SIGOPS, July 2010

26. Rula, J.P., Bustamante, F.E.: Behind the curtain: cellular dns and content replica
selection. In: ACM IMC, November 2014

27. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: Demystify
page load performance with WProf. In: USENIX NSDI, April 2013

https://goo.gl/Cqhafq
http://www.ietf.org/internet-drafts/draft-bishop-httpbis-http2-additional-certs-01.txt
http://www.ietf.org/internet-drafts/draft-bishop-httpbis-http2-additional-certs-01.txt
http://www.geeksforgeeks.org/merging-intervals/
http://www.geeksforgeeks.org/merging-intervals/
http://dx.doi.org/10.1007/978-3-319-30505-9_8

The Utility Argument – Making a Case
for Broadband SLAs

Zachary S. Bischof1(B), Fabián E. Bustamante1, and Rade Stanojevic2

1 Northwestern University, Evanston, USA
zbischof@eecs.northwestern.edu

2 Qatar Computing Research Institute, Al-Rayyan, Qatar

Abstract. Most residential broadband services are described in terms
of their maximum potential throughput rate, often advertised as having
speeds “up to X Mbps”. Though such promises are often met, they are
fairly limited in scope and, unfortunately, there is no basis for an appeal
if a customer were to receive compromised quality of service. While this
‘best effort’ model was sufficient in the early days, we argue that as broad-
band customers and their devices become more dependent on Internet
connectivity, we will see an increased demand for more encompassing
Service Level Agreements (SLA).

In this paper, we study the design space of broadband SLAs and
explore some of the trade-offs between the level of strictness of SLAs
and the cost of delivering them. We argue that certain SLAs could be
offered almost immediately with minimal impact on retail prices, and
that ISPs (or third parties) could accurately infer the risk of offering
SLA to individual customers – with accuracy comparable to that in the
car or credit insurance industry – and price the SLA service accordingly.

1 Introduction

In today’s broadband markets, service plans are typically described in terms of
their maximum download throughput rate, often advertised as “up to X Mbps”.
This advertised capacity, along with the associated monthly cost, are the two
primary, and many times only, pieces of information available to consumers
when comparing service providers. Such “constrained” service agreements place
services using technologies as diverse as fiber, DSL, WiMAX or satellite on
nearly equal grounds, and leave consumers without clear expectations given that,
strictly speaking, any speed less than X would meet such a guarantee.

We argue that as Internet users and their devices become more dependent
on connectivity and consistency, broadband will move from a loosely regulated
luxury to a key utility. This in turn will usher in a growing demand for more
encompassing, well-defined SLAs similar to those of other utilities, such as elec-
tricity and water.

We believe that the adoption of SLAs could benefit all players in the broad-
band market – service providers, customers, and regulators. From the ISP’s
perspective, contracts with SLAs could allow them to better differentiate their
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 156–169, 2017.
DOI: 10.1007/978-3-319-54328-4 12

The Utility Argument – Making a Case for Broadband SLAs 157

retail services and fine-tune their contracts to the needs of particular classes of
customers (e.g., a service for gamers or business users).1 For customers, SLAs
could significantly simplify the process of comparing services offered by differ-
ent providers, allowing customers to make more informed decisions. This could
improve competition and potentially lower prices. Similarly, for regulators and
policymakers, SLAs would provide a better way to gauge broadband infrastruc-
ture across communities and justify investments.

Despite these potential benefits, there are several challenges in defining SLAs
for broadband services that range from identifying metrics and defining the
appropriate SLA structures to engineering compliance monitoring.

SLAs must be designed so that they can be accurately and efficiently mon-
itored and that they add value to providers and consumers, while limiting the
risk of non-compliance. We expect broadband SLAs to be specified, as other
network SLAs, in terms of transport-level performance assurances using Quality
of Service metrics such as bandwidth, packet loss, delay and availability. While
the relationship between such QoS metrics and users’ experience with different
applications is a topic of ongoing research, existing approaches rely on such QoS
metrics as input to application specific models of QoE estimation (e.g., [5,15]).

An SLA could be seen as an insurance policy against the risk of not receiv-
ing the contracted level of service. Consequently, SLA-enhanced services would
come with a price-tag for providers that depends on the structure of the SLA
and degree of risk involved in the delivering the desired levels of service. Using
four-years of data from the largest, publicly available dataset of broadband per-
formance [10], we study the design space of broadband SLAs and demonstrate
that certain SLAs could be offered almost immediately with minimal impact on
retail prices and network investment.

In this paper, we make a case for broadband SLAs and follow a data-driven
approach to explore some of these key challenges. We makes the following con-
tributions:

– We analyze different QoS metrics for use in SLA and define a set of broad-
band SLAs (Sect. 2). We find that, across all ISPs and access technologies,
bandwidth is the most consistent of the studied performance metrics.

– We evaluate the relationship between SLA structure and the cost of supporting
them with different access technologies (Sect. 3). We show that many of the
studied ISPs could offer moderate SLAs with minimal impact on their existing
business, but that SLAs with stringent constraints are much harder to deliver
across the whole user-base.

– We show that ISPs (or third parties) could accurately infer the risk of offering
SLA to individual customers – with accuracy comparable to that in the car
or credit insurance industry – and price the SLA service accordingly (Sect. 4).

We conclude the paper (Sects. 5 and 6) with a discussion of some of the key
open issues and potential future directions for this work.
1 Some ISPs already try this if in coarser terms; e.g., Comcast’s “What type of

Internet connection is right for you?” http://www.xfinity.com/resources/internet
-connections.html.

http://www.xfinity.com/resources/internet-connections.html
http://www.xfinity.com/resources/internet-connections.html

158 Z.S. Bischof et al.

Table 1. Three examples of possible broadband SLAs.

SLA Throughput (% of service) Latency Packet loss Description

A >90% <50 ms <1% Demanding applications (e.g., real-time gaming)

B >50% <150 ms <5% Video streaming, telephony

C >10% <250 ms <10% Web browsing, email

2 Metrics for a Broadband SLA

An SLA is a contract between a service provider and its customers that speci-
fies what services the provider will support and what penalties it will pay upon
violations. A meaningful SLA should (i) capture the needs of consumers, (ii) be
feasible to support by most service providers today and (iii) be expressed in mea-
surable terms that can be validated by both consumers and services providers.

To understand the need of broadband consumers, we must consider the
requirements of commonly used network applications. Clearly, one would not
expect that “broadband consumers” would be a homogeneous class in either
the type of applications they value most or their expectations. For some con-
sumers, being able to browse the web or read their email may be sufficient,
and paying for a higher guaranteed throughput would not be a priority. Others
may have higher performance requirements, wanting a connection that reliably
allows them to stream HD video content or play online games with strict timing
requirements.

Driven by these observations, current literature on the needs of different
application classes (e.g., [6,7,27]) and our dataset [10], we drafted three poten-
tial broadband SLAs that cover a wide range of user requirements. Note that
these are mere examples of possible SLAs, focused on the points relevant to our
argument, and ignoring the specifics of a practical SLA, such as the form of
reporting quality of service violations, the procedure to be invoked in case of
violations or the exact cost model of violations.

Our basic SLAs (see Table 1) are stated in terms of throughput, latency
and packet loss. Considering that subscription capacity is already advertised
by ISPa and varies across users, we structure SLAs in terms of the percentage
of subscription speed available. For latency and packet loss, we adopt a simple
“below-threshold” model. SLA A represents a service that should be able to fit
the demands of users with very strict performance requirements for applications
such as real time gaming. SLA C characterizes a service that could support
simple applications, such as browsing the web or email. Finally, SLA B matches
the middle-of-the-road services, capable of supporting most applications, such
as video chat or video streaming, but with less than perfect performance for
network-intensive applications.

Although they are somewhat arbitrary, the thresholds we use for our sample
SLAs – from fractions of throughput to latency and loss rate – are based on
existing literature and earlier studies of broadband services.

For service capacity, we selected 10% of capacity as a bottom threshold
(SLA C) since the vast majority of users in our dataset had a connection much

The Utility Argument – Making a Case for Broadband SLAs 159

faster than 1 Mbps and that 100 kbps can support basic browsing and email
requirements. We opted for 50% as a threshold for SLA B following a 2010 report
from the UK Office of Communication (Ofcom) reporting that surveyed users
received, on average, nearly half (46%) of the their advertised speed [16]. Finally,
for our highest SLA we opted for 90% as a threshold to highlight providers that
consistently deliver capacities close to their subscription speeds.

In terms of packet loss, previous work has shown that rates above 1% can have
a negative impact on users’ QoE while using gaming applications [7]. High loss
rates can also affect other common services such as audio and video calls [6]. Xu
et al. [27], for instance, shows that loss rates above 4% can significantly degrade
iChat video calls and rates larger than 10% result in a sharp increase in packet
retransmissions.

We selected thresholds for latency in a similar manner. Our least demanding
SLA, SLA C, has a latency threshold of 250 ms, since larger latencies can signifi-
cantly increase page loading time [3] and would likely have a negative impact on
QoE. End-to-end latencies below approximately 150 ms, the threshold for SLA
B, should be sufficient for Skype calls [21]. Last, our low threshold for SLA A
is based on previous work showing that an increase of just 10 ms can yield an
increase in page loading delays by hundreds of milliseconds [25].

3 Supporting SLA Today

Building on these SLAs that would be meaningful to end-users, we now explore
what sort of service guarantees it would be feasible for ISPs to provide to sub-
scribers. We do this by looking at the performance and consistency of broadband
services offered by US-based ISPs. We first describe the dataset on broadband
services used throughout our analysis.

3.1 Dataset

We leverage the largest, publicly available dataset of broadband performance
collected through the FCC’s Measuring Broadband America effort [10]. Since
2011, the US FCC has been working with SamKnows to distribute home gate-
ways (“whiteboxes”) to broadband customers that conduct and report network
measurements. These devices have collected increasingly rich data, including
metrics such as latency, throughput and page loading time for a number of pop-
ular websites. A full description of all the tests performed and data collected is
available in the FCC’s technical appendix [9]. This data has been mostly used
by the FCC to create periodic reports on the state of broadband access in the
United States.

We employ the full four years of measurements made available in order
to quantify network performance in terms of latency, packet loss, and down-
load/upload throughput. For this, we used three different measurement tables
(out of eleven present) from the dataset for our analysis: (1) UDP pings, (2)

160 Z.S. Bischof et al.

HTTP GETs, which measure download throughput, and (3) HTTP POSTs,
which measure upload throughput.

The UDP pings run continuously, measuring round-trip time to two or three
measurement servers. These servers are hosted by either M-Lab or within the
user’s provider’s network. Over the course of each hour, the gateway will send
up to 600 probes to each measurement server at regular intervals, less if the link
is under heavy use for part of the hour. Each gateway reports hourly statistical
summaries of the latency measurements (mean, min, max, and standard devi-
ation) as well as the number of missing responses. We use the average latency
to the nearest server (in terms of latency) to summarize the latency during that
hour. We also use the number of missing responses to calculate the packet loss
rate over the course of each hour.

As mentioned above, the HTTP GET and POST tables record the mea-
sured download and upload throughput rate, respectively. Similar to the latency
measurements, throughput measurements are typically done to two different tar-
get servers. However, throughput measurements are run once every other hour,
alternating between measuring upload and download throughput rates.

We combined these performance measurements with user metadata, which
includes the user’s provider, service tier (i.e., subscription speed), service tech-
nology (e.g., cable or DSL), and geographic region. This allows us to group
measurements by ISP, compare the achieved throughput as a fraction of the
subscription capacity and differentiate between subscribers of the same ISP with
different access technologies (e.g., Verizon customers with DSL or fiber).

3.2 Throughput

We first analyze ISPs’ download and upload throughput. A challenge in compar-
ing performance across providers and services, is that users do not have the same
subscription speeds; individual ISPs typically offer a number of service capac-
ities and the stated capacities of such offerings vary from one ISP to another.
In order to directly compare the consistency of performance, we first normal-
ize throughput measurements by the speed that each user should be receiving.

Fig. 1. CDF of measured download throughput rates as a fraction of the subscriber’s
service capacity.

The Utility Argument – Making a Case for Broadband SLAs 161

For this, we use the reported download and upload subscription rate included
as part of the FCC dataset, as described in Sect. 3.1.

Throughput distribution. Figure 1 shows a CDF of each normalized download
throughput measurement from subscribers of four services: AT&T’s DSL service,
Clearwire, Comcast, and Frontier’s fiber service. Of the services we studied,
Frontier’s fiber had the most consistent throughput rates, both in terms of the
fraction of probes that measured at least 90% of the subscription speed and
the variations between measurements. Although measurements were unlikely to
achieve download rates significantly higher than their subscription speed, 96%
of measurements were above 90% of the subscription speed.

For Comcast (cable), measurements were slightly less likely to reach 90% of
the subscription speed (about 91%). However, download throughput measure-
ments were often much higher than the user’s subscription speed – the median
measurement on Comcast’s network was 135% of the subscription speed. We
observed a similar trend for most cable broadband providers, as well as Veri-
zon’s fiber service.

Download throughput measurements from subscribers of AT&T’s DSL ser-
vice were fairly consistent (i.e., showing little variation). However, in contrast
to cable and fiber services, they rarely exceeded the subscription speed, with
less than 10% of measurements at or above the subscription speed. Nearly half
(48%) of measurements were below 90% of the subscription speed. Other DSL
providers showed a similar trend. Of the ISPs in our study, Clearwire had the
largest fraction of measurements (73%) below 90% of the subscription speed.

Variation over time. Looking only at Fig. 1, it is still unclear how much per-
formance can vary for an individual subscriber over the course of a month.
To capture this, we aggregated all measurements that were conducted from the
same vantage point and run during the same month, which we refer to as a
“user-month”. For each user-month, we calculate the fraction of measurements
that were below a threshold of 10%, 25%, 50%, 75%, and 90% of the subscription
speed.

Figure 2 shows, for AT&T, Comcast and Frontier fiber subscribers, how fre-
quently measurements during the same month measured below a particular
threshold. The vertical gray lines represent a particular frequency of throughput
measurements being below a given threshold (from left to right): once a month,
once a week, once a day, and once every other hour.

In the case of AT&T, shown in Fig. 2a, during 47% of the user-months,
subscribers got less than 90% of their service capacity at least once every other
hour (the right-most vertical line). In contrast, for Comcast subscribers, shown in
Fig. 2b, only about 9% of user-months measured less than 90% of the subscription
speed at the same frequency. Comcast users were also less likely to receive less
than 50% of their subscription speed. Frontier’s fiber was even less likely to have
degradations in download throughput every other hour; less than 3% of months
of Frontier measurements saw throughput rates below 90% of the subscription
speed.

162 Z.S. Bischof et al.

In general, the distributions of upload (Fig. 3) and download throughput mea-
surements shown similar trends. The most obvious difference was that upload
measurements from Clearwire subscribers were noticeably higher, more consis-
tent, and much closer to the subscription speed. For each ISP in Fig. 3, the
median measurement was at least 90% of the subscription speed.

3.3 Latency

As mentioned in Sect. 3.1, we use the average latency (measured over an hour)
to the nearest measurement server as an estimate of the subscriber’s latency.
Figure 4 shows a CDF of the hourly average latency for five ISPs. Cablevision,
with 96% of hourly averages below 20 ms, showed the lowest latencies of all ISPs
in our dataset and appeared to consistently meet even the most demanding SLA.
Other fiber, DSL, and cable ISPs had slightly higher latencies, but were fairly
consistent, with at least 90% of average latency reports for each provider being
less than 70 ms. AT&T, with 95% of measurements below 57 ms had the lowest
latencies of all DSL providers, but the overall distribution was higher than most
cable providers.

Latency measurements from Clearwire subscribers were noticeably higher,
with a median of approximately 90 ms. Satellite providers had the highest latency

(a) AT&T (DSL) (b) Comcast (c) Frontier (fiber)

Fig. 2. CCDF of the fraction of a user’s download throughput measurements per month
that are below a percentage of the subscription capacity. Each gray vertical line rep-
resents a frequency of (from left to right) once a month, once a week, once a day, and
once every other hour.

Fig. 3. CDF of upload throughput rates as a fraction of the subscriber’s service
capacity.

The Utility Argument – Making a Case for Broadband SLAs 163

Fig. 4. CDF of latency measurements
to servers.

Fig. 5. CCDF of hourly loss rates to
servers.

measurements, consistently above 600 ms, as a result of the fundamental limita-
tions of the technology.

3.4 Packet Loss

Using the number of UDP pings that succeeded and failed to the target mea-
surement server, we calculated the percentage of packets lost over each hour.
Figure 5 shows the CCDF of the hourly packet loss rates for four ISPs. On aver-
age, fiber providers tended to have lower loss rates and had the lowest frequency
of high loss. More specifically, Verizon had the lowest frequency of loss rates
above 1%, occurring during only 0.82% of hours. Comcast (not in the figure)
and TimeWarner had the lowest frequency for cable providers, with loss rates
above 1% occurring in approximately 1.5% of hours. Satellite providers had the
highest frequency of loss rates above 1%, occurring during over 26% of hours.

3.5 Applying an SLA

In Sect. 2, we defined SLAs in measurable terms with thresholds that would be
meaningful to users’ Quality of Experience. Building on our characterization, we
now explore how effectively today’s ISPs could meet our proposed set of SLAs.

There are a number of ways that a broadband SLA could be structured in
terms of how users are compensated for periods of poor performance. As an
example, we looked at how some broadband ISPs structure the agreements that
they offered to businesses. In the case of Comcast [8], business class subscribes
are compensated once the network become unavailable for more than four hours
in a single month. For each hour of downtime after the first four, customers
are reimbursed 1/30 of the monthly subscription price.2 We believe that general
broadband service plans could have a similar structure. For example, the SLA
could state that the network may be unavailable for up to two hours per day (or
about 8.33% of hours in a month). This would allow ISPs to schedule downtime

2 This effectively means that if the service was ‘unavailable’ for 34 h in a month
(approximately 5% of the month) the user gets the monthly subscription for free.

164 Z.S. Bischof et al.

for maintenance and provide a guarantee for subscribers that their service will
not be down for days at a time (or that they will be compensated if it is).

However, our focus in this paper is not on the structure of compensation for
SLA violations. Instead, we look at how well the ISPs in the FCC’s dataset are
able to meet the SLAs defined in Sect. 2, and whether it would be at all feasible
to provide guarantees of service.

(a) AT&T (DSL) (b) Clearwire (c) Comcast (d) Verizon (fiber)

Fig. 6. CDF of the percent of hours per month in violation of each SLA for four
providers.

Figure 6 summarizes the total number of SLA violations per month for four
example ISPs. AT&T, shown in Fig. 6a struggles to meet the requirements of
SLA A but is able to meet SLA B during 90% of hours per month for 73% of
users and meets SLA C during 90% of hours for 82% of users.

The wireless provider in our dataset, Clearwire (Fig. 6b), face difficulties in
meeting SLA A, as the average latencies were almost always higher than 50 ms.
This appears to be a result of the underlying technology and many cellular
providers are unable to meet this latency requirement [18]. Interestingly, Clear-
wire actually did a better job of meeting SLA C than AT&T, with 94% of users
meeting SLA C performance during at least 90% of hours in a month.

Both Comcast and Verizon’s fiber service did a relatively good job of meeting
the requirements of all three SLAs. Comcast was able to meet SLA A during
90% of hours in a month for 75% of users while Verizon was able to do the
same for 83% of fiber subscribers. Both were able to provide both SLA B and
C during 90% of hours for at least 90% of users.

To summarize our findings in this section, moderate SLAs (those which
require SLA compliance up to 90% of time) are feasible nowadays and could
be offered by many ISPs with minimal effect on their current business. However,
stricter SLAs (those which require SLA compliance 99% of the time or more)
would be much more challenging to offer across the whole user base. In the fol-
lowing section, we examine how difficult it would be to assess the individual risk
of breaking and SLA, a central challenge in personalized SLA offerings.

4 Personalized SLAs

As we noted in a previous section, SLA can be seen as an insurance policy against
poor broadband experience, which may in turn have financial consequences in

The Utility Argument – Making a Case for Broadband SLAs 165

case of broken SLA. In this section we study if SLAs could be tailored for each
end-user individually.

The key question we try to answer is whether the provider could infer the
likelihood of delivering the SLA. For instance, it is possible that certain user
characteristics are correlated with the quality of service the user receives and
hence the SLA provider may choose to price the service (premium in insurance
terms) according to the risk of not delivering promised SLA to this set of users.
With a good understanding of how likely it is to break the SLA the insurer (either
a third party or the broadband provider itself) can fine tune the SLA parameters
and the premium3 (in $ per month) in order to improve user satisfaction with
the service and ensure the profitability of the SLA service.

We train a simple model to examine the predictability of the service of indi-
vidual subscribers complying to an SLA based on several simple user features
available to us: (1) access technology, (2) base latency (to the nearest measure-
ment server), (3) aggregate usage (in bytes per month) and (4) city popula-
tion (a proxy of urban/rural residence). More advanced models, using a range
of additional demographic and technological features, would likely improve the
prediction accuracy, yet such analysis is out of scope of this short study and is
left for future work.

We use supervised learning for estimating the likelihood of breaking the SLA,
for the three SLA types described in Table 1 with 95% time threshold (i.e., the
users’ performance complies with the SLA 95% of the time). This is basically
a binary classification task, where we use four user features described above to
predict whether the user complies with SLA or not. The features are extracted
on 4038 active users in October and November 2014. The categorical feature
describing access technology is projected to a binary vector (of length 4) encoding
the access technology of every user.

We experimented with several classification methods including L2-regularized
logistic regression, gradient boosting trees and random forests. We report the
results from random forests which showed slightly better performance although
the performance of all methods were comparable. The hyper-parameters were
optimized using a grid-search over a validation set extracted from the training
set. We use fourfold cross validation to predict the chance of breaking SLA.
The features are extracted in October 2014 and the (binary) SLA compliance is
extracted for November 2014.

We use Area Under Curve Receiver Operating Characteristic (AUCROC), a
standard metric for measuring the performance of the binary classifiers [13]. The
ROC curve as well as the AUCROC are reported in Fig. 7 for the three SLAs
from Table 1.

The AUCROC for all three SLAs: A, B and C, is similar and is around 0.8. Such
AUCROC is comparable to the precision of classifiers build from demographic
user information in other insurance products such as cars and credit ratings [17].

3 The key cost for the ISP selling an SLA is the loss of revenue when the SLA is
broken. Hence the stricter SLA the higher expected cost for the ISP which may be
passed down to the end-user in the form of higher premium/monthly subscription.

166 Z.S. Bischof et al.

Fig. 7. Area under ROC for Random Forest classifiers.

This accuracy of prediction for SLA compliance suggests that it would be possible
to offer personalized SLAs with a price which accurately matches the likelihood
of breaking the SLA.

City population and population density are loosely correlated with last-mile
performance, especially in the context of DSL [1]. However, city population
appears to have minor predictive power for inferring the likelihood of SLA vio-
lations in our dataset.

5 Discussion

Recent efforts [4,19,20,24] have attempted to address the lack of detailed evalu-
ations of ISPs. Annual reports published by the FCC in the US and Ofcom in the
UK have studied whether or not ISPs are providing the capacities promised to
users. The recent Net Neutrality ruling from the FCC [11,12] discussed the issue
of how service plans are described to subscribers. One part of the ruling states
that ISPs must disclose reasonable estimates of performance metrics, including
both latency and packet loss. Unfortunately, what exactly is a “reasonable” esti-
mate of these metrics is somewhat unclear. Additionally, providing the estimates
alone does not offer any protection for consumers that may experience seriously
degraded performance.

This work points to a number of interesting research directions that are cru-
cial for implementing broadband SLAs. For example, perhaps the largest road-
block to adoption of broadband SLAs is the lack of infrastructure for monitor-
ing performance and reporting SLA violations. One potential avenue to explore
would be the deployment of a system, such as SLAM [23], on home gateways or
modems that could monitor SLA compliance. These devices could be distributed
by the SLA provider (either the ISP or a third party). The design of a reliable
processes for the automatic generation and filing of SLA violation reports and
reporting, to both the subscriber and the ISP, is another interesting research
direction.

There is also a need to consider factors beyond throughput, latency, and
packet loss. For example, high packet delay variations could impact user quality

The Utility Argument – Making a Case for Broadband SLAs 167

of experience. Furthermore, recent peering disputes between content providers
and broadband access providers [14,22] highlight the importance of measuring
congestion on a provider’s peering links and its potential impact on performance.
Poor quality of experience while streaming via Netflix or making Skype calls
would not be captured by the measurements used in this paper if this is caused
by congestion at the edge of the provider’s network.

Another aspect we have not explored is the design of SLAs that both fit
what a user’s needs and what they can afford, an area we have explored in past
work [2]. For example, an SLA that promises to provide lower latency, from 25 ms
to 15 ms, could come at a hefty price for the ISP and yet provide little value
to subscribers. Additionally, the availability of other services that are typically
hosted by the ISP, such as DNS or email, may be more important to some users
than a guaranteed throughput rate.

Previous work has suggest that consumers could benefit from improvements
in how service offerings are described to customers [26] and shown that the
relationship between QoS metrics (as those we used in our definitions of SLA)
and users’ experience with different applications is an open research problem.
Nevertheless, all existing approaches we are aware of rely on such QoS metrics
as input to application specific models of QoE estimation (e.g., [5,15]).

6 Conclusion

This work is partially motivated by the FCC’s recent classification of broadband
as a utility. We believe that this is a natural course for broadband Internet, as
it progresses from a luxury to a key utility and, in some countries, considered a
basic human right. The growing understanding of broadband connectivity as a
utility will, in turn, usher in a demand for more encompassing, well-defined SLAs.
The introduction of SLAs could enable broadband operators to personalize the
service offerings down to the individual customer and improve their efficiency
and overall user satisfaction. Broadband SLAs could also facilitate transparent
competition, ultimately benefiting both consumers and service providers. In this
paper, we explored the possibility of implementing broadband SLAs and demon-
strated that certain SLAs could be offered almost immediately with small impact
on the retail prices and network investment. We showed that ISPs (or third par-
ties) could accurately infer the risk of offering SLA to individual customers, with
accuracy comparable to that in other insurance markets, and price SLA services
accordingly.

Acknowledgments. We thank our shepherd Monia Ghobadi and the anonymous
reviewers for their invaluable feedback. This work was supported in part by the National
Science Foundation through Award CNS 1218287.

References

1. Bischof, Z., Bustamante, F., Feamster, N.: (The Importance of) Being connected:
on the reliability of broadband internet access. Technical report NU-EECS-16-01,
Northwestern University (2016)

168 Z.S. Bischof et al.

2. Bischof, Z.S., Bustamante, F.E., Stanojevic, R.: Need, want, can afford - broadband
markets and the behavior of users. In: Proceedings of IMC, November 2014

3. Bischof, Z.S., Otto, J.S., Bustamante, F.E.: Up, down and around the stack: ISP
characterization from network intensive applications. In: Proceedings of W-MUST
(2012)

4. Bischof, Z.S., Otto, J.S., Sánchez, M.A., Rula, J.P., Choffnes, D.R., Bustamante,
F.E.: Crowdsourcing ISP characterization to the network edge. In: Proceedings of
W-MUST (2011)

5. Casas, P., Gardlo, B., Schatz, R., Melia, M.: An educated guess on QoE in opera-
tional networks through large-scale measurements. In: Proceedings of SIGCOMM
Workshop Internet-QoE, August 2016

6. Chen, K.-T., Huang, C.-Y., Huang, P., Lei, C.-L.: Quantifying Skype user satis-
faction. In: Proceedings of ACM SIGCOMM (2006)

7. Chen, K.-T., Huang, P., Lei, C.-L.: How sensitive are online gamers to network
quality? Commun. ACM 49(11), 34–38 (2006)

8. Comcast Business Class: Service level agreement. http://business.comcast.com/
pdfs/cbc-trunks-sla-110922.pdf

9. FCC: 2013 measuring broadband America February report. http://data.fcc.gov/
download/measuring-broadband-america/2013/Technical-Appendix-feb-2013.pdf

10. FCC: Measuring Broadband America. http://www.fcc.gov/measuring-broadband-
america

11. FCC: In the matter of preserving the Open Internet broadband industry practices,
December 2010

12. FCC: In the matter of protecting and promoting the Open Internet, February 2015
13. Green, W.: Econometric Analysis. Prentince Hall, Upper Saddle River (2003)
14. Higginbotham, S.: Why the consumer is still held hostage in peering disputes.

http://bit.ly/1KbBBhl
15. Nikravesh, A., Hong, D.K., Chen, Q.A., Madhyastha, H.V., Mao, Z.M.: QoE

inference without application control. In: Proceedings of SIGCOMM Workshop
Internet-QoE, August 2016

16. Office of Communication (Ofcom). UK fixed broadband speeds, Novem-
ber/December 2010. Technical report, London, UK, March 2011

17. Pedro, J.S., Proserpio, D., Oliver, N.: Mobiscore: towards universal credit scoring
from mobile phone data (2015)

18. Rula, J.P., Bustamante, F.E.: Behind the curtain: cellular DNS and content replica
selection. In: Proceedings of IMC (2014)

19. SamKnows.: Samknows & the FCC American broadband performance measure-
ment. http://www.samknows.com/broadband/fcc and samknows, June 2011

20. Sánchez, M.A., Otto, J.S., Bischof, Z.S., Choffnes, D.R., Bustamante, F.E.,
Krishnamurthy, B., Willinger, W.: Dasu: pushing experiments to the Internet’s
edge. In: Proceedings of USENIX NSDI (2013)

21. Skype.: Plan network requirements for skype for business. https://technet.
microsoft.com/en-us/library/Gg425841.aspx

22. Solsman, J.E.: Cogent: Comcast forced netflix with clever traffic clogging. http://
cnet.co/1l3aDw1, May 2014

23. Sommers, J., Barford, P., Duffield, N., Ron, A.: Accurate and efficient SLA com-
pliance monitoring. In: Proceedings of ACM SIGCOMM (2007)

24. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè,
A.: Broadband internet performance: a view from the gateway. In: Proceedings of
ACM SIGCOMM (2011)

http://business.comcast.com/pdfs/cbc-trunks-sla-110922.pdf
http://business.comcast.com/pdfs/cbc-trunks-sla-110922.pdf
http://data.fcc.gov/download/measuring-broadband-america/2013/Technical-Appendix-feb-2013.pdf
http://data.fcc.gov/download/measuring-broadband-america/2013/Technical-Appendix-feb-2013.pdf
http://www.fcc.gov/measuring-broadband-america
http://www.fcc.gov/measuring-broadband-america
http://bit.ly/1KbBBhl
http://www.samknows.com/broadband/fcc_and_samknows
https://technet.microsoft.com/en-us/library/Gg425841.aspx
https://technet.microsoft.com/en-us/library/Gg425841.aspx
http://cnet.co/1l3aDw1
http://cnet.co/1l3aDw1

The Utility Argument – Making a Case for Broadband SLAs 169

25. Sundaresan, S., Feamster, N., Teixeira, R., Magharei, N.: Measuring and mitigating
web performance bottlenecks in broadband access networks. In: Proceedings of
IMC, October 2013

26. Sundaresan, S., Feamster, N., Teixeira, R., Tang, A., Edwards, W.K., Grinter, R.E.,
Chetty, M., de Donato, W.: Helping users shop for ISPs with internet nutrition
labels. In: Proceedings of HomeNets (2011)

27. Xu, Y., Yu, C., Li, J., Liu, Y.: Video telephony for end-consumers: measurement
study of Google+, iChat, and Skype. In: Proceedings of IMC (2012)

Latency

Why Is the Internet so Slow?!

Ilker Nadi Bozkurt1(B), Anthony Aguirre4, Balakrishnan Chandrasekaran2,
P. Brighten Godfrey3, Gregory Laughlin5, Bruce Maggs1,6, and Ankit Singla7

1 Duke University, Durham, USA
{ilker,bmm}@cs.duke.edu

2 TU Berlin, Berlin, Germany
balac@inet.tu-berlin.de
3 UIUC, Champaign, USA

pbg@illinois.edu
4 UC Santa Cruz, Santa Cruz, USA

aguirre@scipp.ucsc.edu
5 Yale University, New Haven, USA

greg.laughlin@yale.edu
6 Akamai, Cambridge, USA

7 ETH Zürich, Zürich, Switzerland
ankit.singla@inf.ethz.ch

Abstract. In principle, a network can transfer data at nearly the speed
of light. Today’s Internet, however, is much slower: our measurements
show that latencies are typically more than one, and often more than
two orders of magnitude larger than the lower bound implied by the
speed of light. Closing this gap would not only add value to today’s
Internet applications, but might also open the door to exciting new appli-
cations. Thus, we propose a grand challenge for the networking research
community: building a speed-of-light Internet. To help inform research
towards this goal, we investigate, through large-scale measurements, the
causes of latency inflation in the Internet across the network stack. Our
analysis reveals an under-explored problem: the Internet’s infrastructural
inefficiencies. We find that while protocol overheads, which have domi-
nated the community’s attention, are indeed important, reducing latency
inflation at the lowest layers will be critical for building a speed-of-light
Internet. In fact, eliminating this infrastructural latency inflation, with-
out any other changes in the protocol stack, could speed up small object
fetches by more than a factor of three.

1 Introduction

Measurements and analysis by Internet giants have shown that shaving a few
hundred milliseconds from the time per transaction can translate into millions
of dollars. For Amazon, a 100 ms latency penalty implies a 1% sales loss [18];
for Google, an additional delay of 400 ms in search responses reduces search

B. Chandrasekaran—This work was done when the author was a graduate student
at Duke University.

c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 173–187, 2017.
DOI: 10.1007/978-3-319-54328-4 13

174 I.N. Bozkurt et al.

volume by 0.74%; and for Bing, 500 ms of delay decreases revenue per user
by 1.2% [10,13]. The gaming industry, where latencies larger than even 80 ms
can hurt gameplay [19], has even tougher latency requirements. These numbers
underscore that latency is a key determinant of user experience.

We take the position that the networking community should pursue an ambi-
tious goal: cutting Internet latencies to close to the limiting physical constraint,
the speed of light, roughly one to two orders of magnitude faster than today.
Beyond the obvious gains in performance and value for today’s applications,
such a technological leap may help realize the full potential of certain applica-
tions that have so far been confined to the laboratory, such as tele-immersion.
For some applications, such as massive multi-player online games, the size of the
user community reachable within a latency bound plays an important role in
user interest and adoption, and linear decreases in communication latency result
in super-linear growth in community size [25]. Low latencies on the order of a
few tens of milliseconds also open up the possibility of instant response, where
users are unable to perceive any lag between requesting a page and seeing it ren-
dered in their browsers. Such an elimination of wait time would be an important
threshold in user experience.

But the Internet’s speed is quite far from the speed of light. As we show later,
the time to fetch just the HTML document of the index pages of popular Web
sites from a set of generally well-connected clients is, in the median, 37 times
the round-trip speed-of-light latency. In the 80th percentile it is more than 100
times slower. Given the promise a speed-of-light Internet holds, why are we so
far from the speed of light?

While ISPs compete primarily on the basis of peak bandwidth offered, band-
width is no longer the bottleneck for a significant fraction of the population: for
instance, the average Internet connection speed in the US is 15.3 Mbps [9], while
the effect of increasing bandwidth on page load time is small beyond as little as
5 Mbps [17]. If bandwidth isn’t the culprit, then what is? In our short workshop
paper [25], we staked out our vision of a speed-of-light Internet, discussed why
it is a worthy goal to pursue, and, provided a preliminary analysis of latency
inflation across the network stack. In this work, we present a more thorough
analysis of latency inflation using three new data sets. Our contributions are as
follows:

1. We quantify the factors that contribute to large latencies today using four
sets of measurements: from PlanetLab nodes to Web servers1; between a
large CDN’s servers and end hosts; from volunteer end-user systems2 to Web
servers; and between RIPE Atlas nodes. Our analysis breaks down Inter-
net latency inflation across the network stack, from the physical network
infrastructure to the transport layer (including, in some instances, TLS).

1 Data sets (gathered in 2016) and code are available at https://cgi.cs.duke.edu/
∼ilker/cspeed/pam2017-data/.

2 Explicit volunteer consent was obtained, listing precisely what tests would be run.
We have a letter from the IRB stating that our tests did not require IRB approval.

https://cgi.cs.duke.edu/~ilker/cspeed/pam2017-data/
https://cgi.cs.duke.edu/~ilker/cspeed/pam2017-data/

Why is the Internet so slow?! 175

2. This work places in perspective the importance of latency inflation at the
lowest layers. While in line with the community’s understanding that DNS,
TCP handshake, and TCP slow-start are all important factors in latency
inflation, the Internet’s infrastructural inefficiencies are also important. We
consider this an under-appreciated piece of the latency puzzle.

3. We find that removing latency inflation in the physical infrastructure and
routing without any changes at layers above, could improve latencies for
fetching small objects by more than 3 times.

2 The Internet Is Too Slow

We pooled the top 500 Web sites from each of 138 countries listed by Alexa [7].
We followed redirects on each URL, and recorded the final URL for use in our
measurements; the resulting data set contains 22,800 URLs. We fetched just the
HTML at these URLs from 102 PlanetLab locations using cURL [1], and 25%
of all fetches in our experiments were over HTTPS3.

Fig. 1. (a) Inflation in fetch time, and (b) its breakdown across various components of
HTTP fetches of just the HTML of the landing pages of popular Web sites.

For each connection (or fetch), we geolocated the Web server using six com-
mercial geolocation services, and (since we do not have any basis for deciding
which service is better than another) used the location identified by their major-
ity vote (MV). We computed the time it would take for light to travel round-trip
along the shortest path between the same end-points, i.e., the c-latency. Finally,
we calculated the Internet’s latency inflation as the ratio of the fetch time to
c-latency. Figure 1(a) shows the CDF of inflation over 1.9 million connections.
The HTML fetch time is, in the median, 36.5 times the c-latency, while the 80th

percentile exceeds 100 times. We note that PlanetLab nodes are generally well-
connected, and latency can be expected to be poorer from the network’s true
edge. We verify that this is indeed the case with measurements from end users
in Sect. 3.7.

3 We do not claim this is the percentage of Web sites supporting HTTPS.

176 I.N. Bozkurt et al.

3 Why Is the Internet so Slow?

To identify the causes of Internet latency inflation, we break down the fetch time
across layers, from inflation in the physical path followed by packets to the TCP
transfer time.

3.1 Methodology

We use cURL to obtain the time for DNS resolution, TCP handshake, TCP
data transfer, and total fetch time for each connection. For HTTPS connections,
we also record the time for TLS handshake. TCP handshake is measured as
the time between cURL sending the SYN and receiving the SYN-ACK. The TCP
transfer time is measured as the time from cURL’s receipt of the first byte of
data to the receipt of the last byte. We separately account for the time between
cURL sending the data request and the receipt of the first byte as ‘request-
response’ time; this typically comprises one RTT and any server processing time.
For each connection, we also run a traceroute from the client PlanetLab node
to the Web server. We then geolocate each router in the traceroute path, and
connect successive routers with the shortest paths on the Earth’s surface as
an optimistic approximation for the route the packets follow. We compute the
round-trip latency at the speed of light in fiber along this approximate path, and
refer to it as the ‘router-path latency’. From each client, we also run 30 successive
pings to each server, and record the minimum and median across these ping
times. We normalize each of these latency components by the c-latency between
the respective connection’s end-points.

Our experiments yielded 2.1 million page fetches with HTTP status code 200,
which corresponds to 94% of all fetches. We also filtered out connections which
showed obvious anomalies such as c-latency being larger than TCP handshake
time or minimum ping time (probably due to errors in geolocation), leaving us
with 1.9 million fetches.

3.2 Overview of Results

Figure 1(b) shows the results for all connections over HTTP. DNS resolutions
are shown to be faster than c-latency 14% of the time. This is an artifact of the
baseline we use—in these cases, the Web server happens to be farther than the
DNS resolver, and we always use the c-latency to the Web server as the baseline.
(The DNS curve is clipped at the left to more clearly display the other results.)
In the median, DNS resolutions are 6.6× inflated over c-latency.

The TCP transfer time shows significant inflation—12.6 times in the median.
With most pages being at most tens of KB (median page size is 73 KB), band-
width is not the problem, but TCP’s slow start causes even small data trans-
fers to require several RTTs. 6% of all pages have transfer times less than the
c-latency—this is due to all the data being received in the first TCP window. The
TCP handshake (counting only the SYN and SYN-ACK) and the minimum ping
time are 3.2 times and 3.1 times inflated in the median. The request-response

Why is the Internet so slow?! 177

Fig. 2. (a) Various components of latency inflation over HTTPS connections, and (b)
the median, 80th% and 95th% of inflation in min. ping (red), router-path (blue) and
total (green) latency using 6 different geolocation databases as well as their majority
vote. (Color figure online)

time is 6.5 times inflated in the median, i.e., roughly twice the median RTT.
However, 24% of the connections use less than 10 ms of server processing time
(estimated by subtracting one RTT from the request-response time). The median
c-latency, in comparison, is 47 ms. The medians of inflation in DNS time, TCP
handshake time, request-response time, and TCP transfer time add up to 28.8
times, lower than the measured median total time of 36.5 times, since the dis-
tributions are heavy-tailed.

Figure 2(a) shows the results for fetches over HTTPS. The inflations in DNS
resolution and TCP handshake are similar to those for HTTP (6.3 times and 3.1
times in the median respectively). The largest contributor to the latency infla-
tion is the TLS handshake, which is 10.2 times inflated in the median, roughly
corresponding to 3 RTTs. Inflation in TCP transfer time, being 5.2 times in
the median, is significantly lower than for HTTP connections. This difference
is partly explained by the smaller size of pages fetched over HTTPS, with the
median fetch size being 43 KB. The median inflation in request-response times
increases from 6.5 times for HTTP to 7.7 times for HTTPS.

3.3 Impact of IP Geolocation Errors

The correctness of our latency inflation analysis crucially depends on geoloca-
tion. While we cull data with obvious anomalies, such as when the min. ping time
is smaller than c-latency, arising from geolocation errors (some of which may be
due to Anycast), less obvious errors could impact our results. For PlanetLab node
locations, we have ground truth data and our tests did not indicate any erro-
neous location. Retrieving similar ground truth data for the large IP space under
consideration appears infeasible. Thus, we focused our efforts on comparing the
results we obtained by using 6 different commercial IP geolocation services, as
well as a location computed as their majority vote. We computed latency infla-
tion in router-path, minimum ping, and total time using each of these 7 sets of IP
geolocations (Fig. 2(b)). As we might expect, router-path latency (blue) is most

178 I.N. Bozkurt et al.

susceptible to differences in IP geolocation—the result there depends on geolo-
cating not only the Web server, but also each router along the path. Even so, all
6 median inflation values are in the 1.9–2.4 times range. Differences in results
for minimum ping time (red) and total time (green) are much smaller. Even the
95th-percentile values for inflation in minimum ping time all lie within 10.4–12.0
times, while the medians lie within 3.0–3.1 times. The results for median infla-
tion in total time all lie between 35.5–38.0 times, but variation at the higher
percentiles is larger. Thus, largely, our conclusions, particularly with regards to
median values are robust against the significant differences in the geolocations
provided by these services. Needless to say, we cannot, without ground truth,
account for systematic errors that may impact all geolocation services. Except
in Fig. 2(b), we use the majority vote geolocation throughout.

On a related note, small client-server distances can cause a small absolute
latency increase to translate into a large inflation over c-latency; effect of geolo-
cation errors can also be more pronounced at short distances. When we restricted
our analysis to connections with client-server distances above 100 km, 500 km and
1000 km, we found that the median inflations are relatively close to each other,
being 35.5, 33.7 and 31.9 respectively. So, large inflations are not just caused
by short distances, and even after limiting ourselves to connections at long dis-
tances we observe significant inflation. Section 3.5 (and Fig. 3(a)) discusses in
more detail on the relationship between latency inflation and client-server dis-
tances (equivalently, c-latency) and locations.

3.4 Results Across Page Sizes

While we fetch only the HTML for the landing pages of Web sites in our experi-
ments, some of these are still larger than 1 MB. Most pages, however, are much
smaller, with the median being 67 KB. To analyze variations in our results across
page sizes, we binned pages into 1 KB buckets, and computed the median infla-
tion for each latency component across each bucket. While the median inflation
in minimum ping time shows little variation, inflation in TCP transfer time
increases over page sizes in an expected linear fashion, also causing an increase
in total fetch time.

We also examine latency inflation in a narrow range of Web page sizes around
the median, using pages within 10% of the median size of 67 KB. These pages
comprise roughly 7% of our data set. The results of this analysis are similar
to the overall results in Fig. 1(b), with expected differences in the transfer time
(8% smaller) and total time (5% smaller). The request-response time is 10%
larger. Other components of inflation are within 1% of the corresponding values
in Fig. 1(b).

3.5 Results Across Geographies

We fetch pages in 138 countries from 81 unique PlanetLab locations, leading
to a wide spread in the pairwise c-latencies observed across these connections.
The median c-latency is 47 ms, with 5th and 95th percentiles being 2 ms and

Why is the Internet so slow?! 179

101 ms respectively. In a manner similar to our analysis across page sizes, we
also analyzed latency inflation in router-path latency, minimum ping time, and
total time across c-latencies (Fig. 3(a)).

An interesting feature of these results is the inflation bump around a
c-latency of 30 ms. It turns out that some countries connectivity to which may
be more circuitous than average, are over-represented at these distances in our
data. For instance, c-latencies from the Eastern US to Portugal are in the 30
ms vicinity, but all transatlantic connectivity hits Northern Europe, from where
routes may go through the ocean or land southward to Portugal, thus incurring
significant path ‘stretch’. That the differences are largely due to inflation at the
lowest layers is also borne out by the inflation in minimum ping and total time
following the inflation in the router-path latency.

Fig. 3. Inflation in router-path latency, minimum ping time, and total time: (a) as a
function of c-latency; and (b) as a function of Web server country.

An encouraging observation from Fig. 3(a) is that the inflation in minimum
ping and total time follows the inflation in the router-path latency. Thus, despite
the router-path latency estimation containing multiple approximations (omitting
routers that did not respond to traceroutes or we could not geolocate, as well as
paths between successive routers themselves potentially being circuitous), it is
a useful quantity to measure.

To compare measurements from a geographically balanced set of client loca-
tions, we selected 20 PlanetLab hosts such that no two were within 5◦ of longi-
tude of each other. Then we looked at requests from these PlanetLab clients to
Web servers in each country. Figure 3(b) shows the median inflation in router-
path latency, minimum ping time, DNS, and total time across each of the 7
countries for which we had 5, 000+ connections. The median c-latencies from
these selected PlanetLab hosts to each of these 7 countries all lie in the 48–55 ms
range, with the exception of Japan (12 ms). Most of the latencies are fairly con-
sistent across geographies, with the exception of DNS and total time for Japan.
We observed that roughly half of the requests to Web servers in Japan come from
two PlanetLab nodes in Japan, and it is likely that DNS resolvers are further
away than the Web servers causing the larger inflation.

180 I.N. Bozkurt et al.

3.6 The Role of Congestion

Figure 1(b) shows that TCP transfer time is more than 10 times inflated over
c-latency. It is worth considering whether packet losses or large packet delays
and delay variations are to blame for poor TCP performance. Oversized and
congested router buffers on the path may exacerbate such conditions—a situation
referred to as bufferbloat.

In addition to fetching the HTML for the landing page, for each connection,
we also sent 30 pings from the client to the server’s address. We found that
variation in ping times is small: the 2nd-longest ping time is only 1.1% larger
than the minimum ping time in the median. While pings (using ICMP) might use
queues separate from Web traffic, even the TCP handshake time is only 1.6%
larger than the minimum ping time in the median. We also used tcpdump at
PlanetLab clients to analyze the inter-arrival times of packets. More than 92%
of the connections we made experienced no packet loss (estimated as packets
reordered by more than 3 ms). These results are not surprising—PlanetLab nodes
are (largely) well-connected, university-based infrastructure, and likely do not
have similar characteristics in terms of congestion and last-mile latency to typical
end-user systems.

3.7 End-User Measurements

To complement our PlanetLab measurements, in this section we present results
from three sets of measurements from the real edge of the network.

Client Connections to a CDN. For a closer look at congestion, we examined
RTTs in a sample of TCP connection handshakes between the servers of a large
CDN and clients (end users) over a 24-hour time period, passively logged at the
CDN. (Most routes to popular prefixes are unlikely to change at this time-scale
in the Internet [24].) We exclude server-client pairs with minimum latencies of
less than 3 ms—‘clients’ in this latency range are often proxy servers in a data
center or colocation facility rather than our intended end users.

To evaluate the impact of congestion, we examine our data for both variations
across time-of-day (perhaps latencies are, as a whole, significantly larger in peak
traffic hours), and within short periods of time for the same server-client pairs
(perhaps transient congestion for individual connections is a significant prob-
lem). Thus, we discard server-client pairs that do not have repeat measurements.
We only look at server-client pairs in the same timezone to simplify the time-
of-day analysis. Server locations were provided to us by the CDN, and clients
were geolocated using a commercial geolocation service. We include results for
a few geographies that have a large number of measurements after these restric-
tions. We bin all RTT measurements into 12 2-hour periods, separately for each
country, and produce results aggregated over these bins.

Time-of-Day Latency Variations Across Bins. We selected server-client
pairs that have at least one RTT measurement in each of the twelve bins. For

Why is the Internet so slow?! 181

Fig. 4. Variations in latencies of client-server pairs grouped into 2-hr windows in dif-
ferent geographic regions: (a) 90th percentile of RTTs of client-server pairs with mea-
surements in each 2-hr window; and (b) medians of maximum change in RTTs (max -
min) in repeat measurements within each time window.

pairs with multiple RTTs within a bin, we use the median RTT as representative,
discarding other measurements. This leaves us with the same number of samples
between the same host-pairs in all bins. Figure 4(a) shows the 90th percentile of
RTTs in each 2-hour bin for each of 5 timezones. For the United States (US),
we show only data for the central (CST) and eastern (EST) timezones, but
the results are similar for the rest. The timezone classification is based on the
location of the client; servers can be anywhere in the US and not necessarily
restricted to the same timezone as that of the clients. Median latency across our
aggregate (not shown) varies little across the day, most timezones seeing no more
than 3 ms of variation. The 90th percentile in each bin (Fig. 4(a)) shows similar
trends, although with larger variations. In Great Britain, RTTs are higher in
the evening (and results for a different 24-hour period look similar.) It is thus
possible that congestion is in play there, affecting network-wide latencies. But
across other timezones, we see no such effect.

Transient Latency Variations Within Bins. To investigate transient con-
gestion, we do not limit ourselves to measurements across the same set of host-
pairs across all bins. However, within each bin, only data from host-pairs with
multiple measurements inside that time period is included. For each host-pair
in each bin, we calculate the maximum change in RTT (Δmax)—the difference
between the maximum and minimum RTT between the host-pair in that time
period. We then compute the median Δmax across host-pairs within each bin.
The variation within bins (in Fig. 4(b)) is a bit larger than variations across
median latencies across the day, e.g., for US (CST), the median Δmax is as
large as 9 ms in the peak hours. That Δmax also shows broadly similar time-
of-day trends to median latency is not surprising. Great Britain continues to
show exceptionally large latency variations, with a Δmax � 25 ms at the peak,
and also large variations across the day. In summary, in end-user environments,
network-wide latency increases in peak hours were largely limited in our data set

182 I.N. Bozkurt et al.

to one geography (GB). However, individual flows may sometimes experience a
few additional milliseconds of latency.

MOOC-Recruited End Users. 678 students in a Massive Open Online
Course (MOOC) run by two of the authors volunteered to run experiments for
us. The experiments are identical to our PlanetLab experiments, but performed
with a smaller list of Web pages. Each volunteer fetched (only the HTML of) 50
pages, with a fixed set of 25 pages for all the participants and another 25 chosen
randomly from a handpicked, safe, set of 100 URLs. We deliberately chose a
small number of Web sites so that each volunteer could look at the provided
descriptions, and make an informed decision to participate. We also asked each
volunteer to provide their location and various characteristics of their Internet
service such as download speed and connection type.

A total of 24,784 pages were fetched in these experiments. The latency infla-
tion measured in these experiments was much larger than in our PlanetLab data
set—even after filtering out connections between clients and servers within a 100
km distance of each other, we found that total fetch time is 66 times inflated
in the median. One reason for this significantly larger latency inflation is the
over-representation of shopping and news Web sites in the handpicked URLs,
resulting in larger HTML pages, with the median fetch size being 148 KB. To
investigate further, we also computed results over the same set of pages by fetch-
ing them from PlanetLab. Over this set, with the same filtering (client-server
distances of at least 100 km), median inflation in total fetch time is 49.4 times.
This is still smaller than the measurements from the volunteer systems.

Another factor causing this difference is the larger latency inflation in mini-
mum ping time: 4.1 times in the median over the volunteer-runs, compared to 3
times over PlanetLab (over this set of URLs). Of course, if each RTT is longer
in this way, the total fetch time will also be longer. In fact, both numbers differ
by roughly a factor of 4/3.

One possible reason of larger inflation in minimum ping time in the end-user
experiments is the connection type of the user, affecting the last mile latency.
Even though our data is small, we get a glimpse of the situation when we com-
pare different user provided connection types in terms of inflation of minimum
ping time over c-latency. The lowest median inflation (3.76) is observed over
connections users described as Company/University network, whereas the worst
median inflations are observed for mobile and DSL connections, for which min-
imum ping time is inflated 5.4× and 5.2× respectively in the median.

RIPE Atlas. So far, we have limited ourselves to client-server connections,
where the server belongs to a popular Web service. In this section, we describe
our measurements between RIPE Atlas platform [6] probes, which are small
network devices that are typically deployed in end-user networks. The locations
of the RIPE Atlas probes are known within 1 km resolution, obviating the need
for IP geolocation.

Why is the Internet so slow?! 183

Fig. 5. (a) Minimum pings between RIPE Atlas nodes are highly inflated regardless
of IPv4 or IPv6, inter- or intra-AS connections; (b) comparison of fiber lengths of the
Internet2 network to road distances.

We collected ICMP pings over IPv4 (IPv6) between 935 (1012) sources in 26
(34) countries and 72 (97) destinations in 29 (40) countries every 30 min for 24 h.
The data set contains ping measurements between 288,425 (63,884) unique IPv4
(IPv6) endpoint (or source-destination) pairs; 85% (78%) of the IPv4 (IPv6)
endpoint pairs are inter-AS pairs with the source and destination belonging to
different ASes. To account for the skew in inter-AS and intra-AS pairs, we com-
pute the round-trip distance between the endpoints and bin them into 5 km wide
buckets. From each bucket, we uniformly sample an equal number of inter-AS and
intra-AS pairs and compute the inflation of the min. pings (minimum across the
entire day of measurements) of these endpoint pairs. Figure 5(a) shows that the
median inflation in minimum ping times (ranging from 7.2–11.6 times) is signifi-
cantly larger than that in our PlanetLab measurements, where median inflation
in minimum ping latency was 3.1 times. That the latencies between Atlas probes
(typically attached to home networks) are larger than that between PlanetLab
nodes and Web servers should not be suprising—home networks surely add more
latency than servers in a university cluster or a data center. Perhaps paths from
clients to Web servers are also much shorter than between arbitrary pairs of
end-points on the Internet, since Web servers are deliberately deployed for fast
access, and the Internet’s semi-hierarchical nature can make paths between arbi-
trary end-points long. Interference from concurrent measurements may also be
a contributing factor [16], albeit the effect on inflation might be marginal.

4 Infrastructural Latency

In line with the community’s understanding, our measurements affirm that TCP
transfer and DNS resolution are important factors causing latency inflation.
However, as we shall detail in this section, our measurements also reveal that
the Internet’s infrastructural inefficiencies are an equally, if not more important
culprit.

In Fig. 1(b), the router-path is only 2.1 times inflated in the median. The
long tail is, in part, explained by ‘hairpinning’, i.e., packets between nearby end

184 I.N. Bozkurt et al.

Fig. 6. (a) Comparison of fiber lengths of the ESnet and GÉANT network to road
distances; (b) various components of latency inflation normalized by minimum ping
time.

points traversing circuitous routes across the globe. Note that 1.5 times inflation
would occur even along the shortest path along the Earth’s surface because the
speed of light in fiber is roughly 2/3rd the speed of light in vacuum. In that light,
the router-path inflation of 2.1× (which already includes the 1.5× factor) may
appear small, but this estimate is optimistic.

The gap between minimum ping time and the router-path latency may be
explained by two factors: (a) we perhaps see artificially shorter paths, since
traceroute often does not yield responses from all the routers on the path; and
(b) even between successive routers, the physical path may be longer than the
shortest arc along the Earth’s surface. We investigate the latter aspect using data
from 3 research networks: Internet2 [5], ESnet [2], and GÉANT [3]. We obtained
point-to-point fiber lengths for these networks and calculated end-to-end fiber
distances between all pairs of end points in each network. We also computed the
shortest distance along the Earth’s surface between each pair of end points, and
obtained the road distances for comparison using the Google Maps API [4]. In
Fig. 6(a), road distances are close to shortest distances (i.e., smaller inflations),
while fiber lengths are significantly larger and have a long tail. The median
inflation in the three networks, after accounting for the lower speed of light in
fiber is 2.6× (Internet2), 2.7× (ESnet), and 3.6× (GÉANT). A recent analysis
of US long-haul fiber infrastructure [12] found results that support ours: even for
cities directly connected by fiber conduits, the mean conduit’s latency was in the
median more than 2× worse than the line-of-sight latency. Of course, we expect
end-to-end inflation between cities not connected directly to be higher. Thus,
infrastructural inflation (which includes routing sub-optimalities and inflation
of end-to-end fiber-distances over geodistance) is likely to be larger than the
optimistic estimate from router-path latency (2.1 times), bringing it closer to
the inflation in minimum ping latency (3.1 times).

As Fig. 1(b) shows, DNS resolution (6.6× inflated over c-latency), TCP
handshake (3.2×), request-response time (6.5×), and TCP transfer (12.6×),
all contribute to a total time inflation of 36.5×. With these numbers, it may
be tempting to dismiss the 3.1× inflation in the minimum ping time. But

Why is the Internet so slow?! 185

this would be incorrect because lower-layer inflation, embodied in RTT, has
a multiplicative effect on each of DNS, TCP handshake, request-response, and
TCP transfer time. The total time for a page fetch (without TLS) can be bro-
ken down roughly (ignoring minor factors like the client stack) as: Ttotal =
TDNS +Thandshake +Trequest +Tserverproc +Tresponse +Ttransfer. If we changed
the network’s RTTs as a whole by a factor of x, everything on the RHS except
the server processing time (which can be made quite small in practice) changes
by a factor of x (to an approximation; TCP transfer time’s dependence on RTTs
is a bit more complex), thus changing Ttotal by approximately a factor of x as
well.

What if there was no inflation in the lower layers, i.e., RTTs were the same as
c-latencies? For an approximate answer, we can normalize DNS, TCP handshake,
request-response (excluding the server processing time, i.e., only the RTT) and
TCP transfer time by the minimum ping time instead of c-latency, as shown in
Fig. 6(b).

The medians are 2 times (DNS), 1.02 times (TCP handshake), 4 times (TCP
transfer), and 10.7 times (Total time) respectively. (Request-response is excluded
because processing time at the server does not depend on the RTT.) When the
3.1 times inflation in minimum ping time is compared to these numbers, instead
of the medians without such normalization, it appears much more significant.
Also consider that if, for example, TCP transfer could be optimized such that
it happens within an RTT, the Internet would still be more than ∼25 times
slower than the c-latency in the median, but if we could cut inflation at the
lower layers from 3.1 times to close to 1, even if we made no transport protocol
improvements, we would get to around ∼10.7 times.

5 Related Work

There is a large body of work on reducing Internet latency. However, this work
has been limited in its scope, its scale, and most crucially, its ambition. Several
efforts have focused on particular pieces; for example, [23,31] focus on TCP
handshakes; [11] on TCP’s initial congestion window; [28] on DNS resolution; [14,
20] on routing inflation due to BGP policy. Other work has discussed results from
small scale experiments; for example, [26] presents performance measurements
for 9 popular Web sites; [15] presents DNS and TCP measurements for the
most popular 100 Web sites. The WProf [29] project profiles 350 pages and
produces a break down of time spent in various browser activities. Wang [30]
investigate latency on mobile browsers, but focus on the compute aspects rather
than networking.

The central question we have not seen answered, or even posed before, is
‘Why are we so far from the speed of light?’. Even the ramifications of a speed-
of-light Internet have not been explored in any depth. The 2013 Workshop on
Reducing Internet Latency [8] focused on potential mitigation techniques, with
bufferbloat and active queue management being among the centerpieces. The
goal of achieving latencies imperceptible to humans was also articulated [27]. Our

186 I.N. Bozkurt et al.

measurements and analysis put the focus on an aspect of the latency problem
that has been largely ignored so far: infrastructural inefficiencies. We hope that
our work urges greater consideration for latency in efforts for expanding Inter-
net’s reach to under-served populations. However, so far, infrastructural latency
has only garnered attention in niche scenarios, such as the financial markets, and
isolated submarine cable projects aimed at shortening specific routes [21,22].

6 Discussion and Conclusion

Speed-of-light Internet connectivity would be a technological leap with the
potential for new applications, instant response, and radical changes in the inter-
actions between people and computing. To shed light on what’s keeping us from
this vision, in this work, we quantify the latency gaps introduced by the Inter-
net’s physical infrastructure and its network protocols. Our analysis suggests
that the networking community should, in addition to continuing efforts for
protocol improvements, also explore methods of reducing latency at the lowest
layers.

Acknowledgments. Dhruv Diddi helped process the ESnet data. Data on fiber
mileages from GÉANT, the high-speed pan-European research and education network,
was obtained through personal communication with Xavier Martins-Rivas, DANTE.
DANTE is the project coordinator and operator of GÉANT.

References

1. cURL. http://curl.haxx.se/
2. ESnet. http://www.es.net/
3. GÉANT. http://www.geant.net/
4. Google Maps API. http://goo.gl/I4ypU
5. Internet2. http://www.internet2.edu/
6. RIPE Atlas. https://atlas.ripe.net
7. Top 500 sites in each country or territory, Alexa. http://goo.gl/R8HuN6
8. Workshop on reducing internet latency (2013). http://goo.gl/kQpBCt
9. Akamai: State of the Internet, Q1 (2016). https://goo.gl/XQt324

10. Brutlag, J.: Speed matters for Google Web search (2009). http://goo.gl/t7qGN8
11. Dukkipati, N., Refice, T., Cheng, Y., Chu, J., Herbert, T., Agarwal, A., Jain,

A., Sutin, N.: An argument for increasing TCP’s initial congestion window. In:
SIGCOMM CCR (2010)

12. Durairajan, R., Barford, P., Sommers, J., Willinger, W.: Intertubes: a study of the
US long-haul fiber-optic infrastructure. In: ACM SIGCOMM (2015)

13. Schurman, E., (Bing), Brutlag, J., (Google): Performance related changes and their
user impact. http://goo.gl/hAUENq

14. Gao, L., Wang, F.: The extent of AS path inflation by routing policies. In: GLOBE-
COM (2002)

15. Habib, M.A., Abrams, M.: Analysis of sources of latency in downloading web pages.
In: WEBNET (2000)

http://curl.haxx.se/
http://www.es.net/
http://www.geant.net/
http://goo.gl/I4ypU
http://www.internet2.edu/
https://atlas.ripe.net
http://goo.gl/R8HuN6
http://goo.gl/kQpBCt
https://goo.gl/XQt324
http://goo.gl/t7qGN8
http://goo.gl/hAUENq

Why is the Internet so slow?! 187

16. Holterbach, T., Pelsser, C., Bush, R., Vanbever, L.: Quantifying interference
between measurements on the RIPE Atlas platform (2015)

17. Grigorik, I., (Google): Latency: the new web performance bottleneck. http://goo.
gl/djXp3

18. Liddle, J.: Amazon Found Every 100ms of Latency Cost Them 1% in Sales. http://
goo.gl/BUJgV

19. Maynard-Koran, P.: Fixing the Internet for real time applications: Part II. http://
goo.gl/46EiDC

20. Mühlbauer, W., Uhlig, S., Feldmann, A., Maennel, O., Quoitin, B., Fu, B.: Impact
of routing parameters on route diversity and path inflation. Comput. Netw. 54(14),
2506–2518 (2010)

21. NEC: SEA-US: Global Consortium to Build Cable System Connecting Indonesia,
the Philippines, and the United States. http://goo.gl/ZOV3qa

22. Nordrum, A.: Fiber optics for the far North [News]. IEEE Spectr. 52(1), 11–13
(2015)

23. Radhakrishnan, S., Cheng, Y., Chu, J., Jain, A., Raghavan, B.: TCP fast open.
In: CoNEXT (2011)

24. Rexford, J., Wang, J., Xiao, Z., Zhang, Y.: BGP routing stability of popular des-
tinations. In: ACM SIGCOMM Workshop on Internet Measurment (2002)

25. Singla, A., Chandrasekaran, B., Godfrey, P.B., Maggs, B.: The Internet at the
speed of light. In: HotNets. ACM (2014)

26. Sundaresan, S., Magharei, N., Feamster, N., Teixeira, R.: Measuring and mitigating
web performance bottlenecks in broadband access networks. In: IMC (2013)

27. Täht, D.: On reducing latencies below the perceptible. In: Workshop on Reducing
Internet Latency (2013)

28. Vulimiri, A., Godfrey, P.B., Mittal, R., Sherry, J., Ratnasamy, S., Shenker, S.: Low
latency via redundancy. In: CoNEXT (2013)

29. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: Demystify
page load performance with WProf. In: NSDI (2013)

30. Wang, Z.: Speeding up mobile browsers without infrastructure support. Master’s
thesis, Duke University (2012)

31. Zhou, W., Li, Q., Caesar, M., Godfrey, P.B.: ASAP: a low-latency transport layer.
In: CoNEXT (2011)

http://goo.gl/djXp3
http://goo.gl/djXp3
http://goo.gl/BUJgV
http://goo.gl/BUJgV
http://goo.gl/46EiDC
http://goo.gl/46EiDC
http://goo.gl/ZOV3qa

Anycast Latency: How Many Sites Are Enough?

Ricardo de Oliveira Schmidt1(B), John Heidemann2, and Jan Harm Kuipers1

1 University of Twente, Enschede, The Netherlands
r.schmidt@utwente.nl, j.h.kuipers@student.utwente.nl
2 USC/Information Sciences Institute, Marina Del Rey, USA

johnh@isi.edu

Abstract. Anycast is widely used today to provide important services
such as DNS and Content Delivery Networks (CDNs). An anycast service
uses multiple sites to provide high availability, capacity and redundancy.
BGP routing associates users to sites, defining the catchment that each
site serves. Although prior work has studied how users associate with
anycast services informally, in this paper we examine the key question
how many anycast sites are needed to provide good latency, and the worst
case latencies that specific deployments see. To answer this question, we
first define the optimal performance that is possible, then explore how
routing, specific anycast policies, and site location affect performance.
We develop a new method capable of determining optimal performance
and use it to study four real-world anycast services operated by different
organizations: C-, F-, K-, and L-Root, each part of the Root DNS service.
We measure their performance from more than 7,900 vantage points
(VPs) worldwide using RIPE Atlas. (Given the VPs uneven geographic
distribution, we evaluate and control for potential bias.) Our key results
show that a few sites can provide performance nearly as good as many,
and that geographic location and good connectivity have a far stronger
effect on latency than having many sites. We show how often users see the
closest anycast site, and how strongly routing policy affects site selection.

1 Introduction

Internet content providers want to provide their customers with good service,
guaranteeing high reliability and fast performance. These goals can be limited by
underlying resources at servers (load) and in the network (throughput, latency,
and reliability). Replicating instances of the service at different sites around the
Internet can improve all of these factors by increasing the number of available
servers, moving them closer to the users, and diversifying the network in between.

Service replication is widely used for naming (DNS) and web and media
Content Delivery Networks (CDNs). Two different mechanisms associate users
with particular service instances: DNS-based redirection [12] and IP anycast [1,
30], and they can be combined [13,28]). When the service is DNS, IP anycast is
the primary mechanism, used by many operators, including most root servers,
top-level domains, many large companies, and public resolvers [22,38]. IP anycast
is also used by several web CDNs (Bing, CloudFlare, Edgecast), while others use
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 188–200, 2017.
DOI: 10.1007/978-3-319-54328-4 14

Anycast Latency: How Many Sites Are Enough? 189

DNS-based redirection (Akamai, Google, and Microsoft), or their combination
(LinkedIn). This paper, however, focuses only on IP anycast.

In IP anycast, service is provided on a specific service IP address, and that
address is announced from many physical locations (anycast sites), each with
one or multiple servers1. BGP routing policies then associate each user with
one site, defining that site’s catchment. Optimally users are associated with the
nearest site, minimizing latency. BGP provides considerable robustness, adapt-
ing to changes in service or network availability, and allowing for some policy
control. However, user-to-site mapping is determined by BGP routing, a distrib-
uted computation based on input of many network operators policies. Although
mapping generally follows geography [27], studies of routing have shown that
actual network topology can vary [36], and recent observations have shown that
the mapping can be unexpectedly chaotic [6,23].

Anycast has been widely studied, typically with measurement studies that
assess anycast coverage and latency [5,8,9,17,21,25,26,29,34], and also to enu-
merate anycast sites [19]. Latency studies using server-side traces show that any-
cast behaves roughly as expected—many geographically distributed sites reduce
latency. These studies also show surprising complexity in how users are assigned
to anycast sites. While prior studies cover what does happen, no prior work
defines what could and should happen—that is, what latency is possible, and
the reasons actual latency may differ from this ideal.

The main contribution of this paper is to develop a new measurement
methodology that identifies optimal latency in IP anycast systems (Sect. 2),
enabling a first evaluation of how close actual latencies are to their potential. Our
insight is that we can determine optimal anycast latency by measuring unicast
latency to all anycast sites of a system, providing a comparison to the assigned
site by BGP. Thus, while prior work reports only latency for the selected anycast
site, we can see when catchments differ from optimal and then study why. Our
dataset from this study is publicly available at http://traces.simpleweb.org/.

Our second contribution is to carry out a measurement study of four IP
anycast deployments: the C-, F-, K- and L-Root DNS services, consisting of more
than 240 sites together. These services have different architectures and deploy-
ment strategies, that we study from around 7,900 RIPE Atlas probes worldwide,
creating a rich dataset to inform our understanding of anycast latency.

The final contribution of this work is what we learn from this first compar-
ison of actual and optimal anycast latency. Our central question is: How many
anycast sites are “enough” to get “good” latency? To answer this question, we
must first answer several related questions: Does anycast give good absolute
performance (Sect. 3.1)? Do users get the closest anycast site (Sect. 3.2)? How
much does the location of each anycast site affect the latency it provides overall
(Sect. 3.3)? How much do local routing policies affect performance (Sect. 3.5)?
With these questions resolved, we return to our key contribution and show that
a modest number of well-placed anycast sites—as few as twelve—can provide

1 The term anycast instance can refer to a site or to specific servers at a site. Because
of this ambiguity we avoid that term in this paper.

http://traces.simpleweb.org/

190 R. de Oliveira Schmidt et al.

nearly as good performance as many (Sect. 3.6). We also show that more sites
improve the tail of the performance distribution (Sect. 3.4).

This paper focuses on anycast latency. We consider latency because it moti-
vates huge investments, such as Google’s 2013 expansion to thousands of loca-
tions [12], gradual expansion of Root DNS anycast to more than 500 sites [18],
and CDN design in multiple companies. We recognize that anycast serves other
purposes as well, including distributing load, improving resilience to Denial-
of-Service attacks, and to support policy choices. These are, however, out of
the scope of this paper. Our population of vantage points is European-centric
(Sect. 3.3); while this skew affects our specific results, it does not change our
qualitative conclusions. Broader exploration of CDNs, other metrics, and other
sets of vantage points are future work (some in-progress).

2 Measurement Methodology

Our approach to observe anycast latency is straightforward: from as many loca-
tions (vantage points, or VPs) as we can, we measure latency to all anycast sites
of each service that we study. These measurements approximate the catchment
of VPs that each site serves. We use RIPE Atlas probes as VPs, and we study
the C-, F-, K- and L-Root DNS services as our targets. We measure latency with
pings (ICMP echo requests), and identify sites with DNS CHAOS queries. Prior
studies [6,19] have used both of these mechanisms, but only to preferred site; to
our knowledge, we are the first to measure latency to all anycast sites from all
VPs, the key that allows us to study optimal latency (not just actual), and to
explore policy questions (Sect. 3).

Measurement sources: We use more than 7,900 VPs (probes) in the RIPE
Atlas framework [32]. Figure 1 shows the locations of all VPs: these cover 174
countries and 2927 ASes. We maximize coverage by using all probes that are
available at each measurement time. The exact number, shown in Table 1, varies
slightly as VPs come and go over measurements taken in 2015 and 2016. While
RIPE VPs are global, their geographic distribution does not exactly match that
of the overall Internet population. We show in Sect. 3 that this skew strongly
affects the specific quantitative latencies we observe, favoring sites and VPs in
Europe. But it does not affect our qualitative results about the number of anycast
sites and the effects of routing policies.

Measurement targets: We study four operational anycast services: the C-,
F-, K- and L-Root DNS services [18] (Fig. 2). Each service is run by a different
operator and is optimized to meet their goals. They are diverse in both number
of sites (with C small, F and K mid-sized, and L numerous), and in routing
policy: all C and L sites are global (available to all), while many K and most
F sites are local (service limited to specific AS). To identify optimal possible
latency (Sect. 3), we chose these services because they all make public the uni-
cast IP address of each site. We measure K Root both in 2015 (K), and again

Anycast Latency: How Many Sites Are Enough? 191

Fig. 1. Locations of more than 7,900
vantage points we use from RIPE
Atlas.

C-Root
F-Root
K-Root
L-Root

F

F FF

F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F
FF

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F
F

FF

F

L

L

L

L

L L

L

L
L

L
L

L

L

L

L

L

L

L

L
L

L

LL

L

L

L

L

L

L

L
L

L

L

L

L

L
LL L

L

L L

L
L

L

L

L

L

L
L

L

L

L

L

L

L

L LL
L

L

L

L

LL

L

L

LL

L

L

L

L

L

LL

L

L

L

L

L

L

L

L

L

L

L

L

L
LL

L

L

L
L

L

L

L

L
L

L
L

LL

L
L

L

L

LL

L L

L

L

L

L
L

L

L

L
L

L

L
L

L L

L

LL

L

L

L

L

L
L

LL
L

L
L

KK
K

K

KK
KKK

K

K

K

K

K
K

K

K

K

KK
K

K

K KKK
K

K

K

CC

C
C CC

C

C

F
KL

Fig. 2. Locations of sites for each service
(each site is identified by its letter).

Table 1. Summary of each root service, its size in sites, and their routing policy;
measurement date and number of VPs then available; how many hits are optimal,
latency for each type of hit, and the cost of mishits (Sect. 3.2). We measure K-Root
both before (K) and after (NK) its change in routing policy (Sect. 3.5).

letter sites (local) date VPs hit type median RTT (ms) mishit penalty(ms)

optimal mishit all optimal mishit (pref.) 25%ile 50%ile 75%ile

C 8 (0) 2015-09 5766 84% 16% 32 28 61 55 2 5 10

F 58 (53) 2015-12 6280 44% 56% 25 12 39 20 8 15 51

K 33 (14) 2015-11 6464 41% 59% 32 14 43 23 8 18 42

NK 36 (1) 2016-04 5557 40% 60% 30 12 41 19 9 18 48

L 144 (0) 2015-12 5351 24% 76% 30 11 47 16 10 24 82

in 2016 (NK—New K) after major changes on its anycast policies, discussing
implications in Sect. 3.5.

Measuring anycast catchments: We map the catchments of each anycast
service by observing DNS CHAOS queries [39] (with name hostname.bind and
type TXT) from each VP. The reply to each VP’s CHAOS query indicates its
anycast site, as determined by BGP routing. The exact contents of the reply
are service-specific, but several root operators (including C, F, K and L) reply
with the unicast hostname of the reached site. For example, a reply for C Root
is lax1b.c.root-servers.org, where lax gives the geographic location of the
replying site and 1b identifies the replying server within the site. The resolution
of this name gives the unicast IP address of that server. Sites sometimes have
multiple servers, but we treat all servers at a site as equivalent.

Measuring latency: We use ICMP ECHO requests (pings) to measure latency
from VPs to both the public anycast service address (BGP-assigned site), and
the unicast address of all sites for each service. To suppress noise in individual
pings, we use multiple pings and report the 10th-percentile value as the measured
latency. On average VPs send 30 pings to each anycast site, but the exact number
varies due to dynamics on the RIPE Atlas framework, limitations on availability
of probes, and measurement scheduling.

192 R. de Oliveira Schmidt et al.

3 Observation and Findings

3.1 Does Anycast Give Good Absolute Performance?

We first look at absolute latency seen from VPs for each anycast service. The
solid lines in Fig. 3 show the distribution of latency seen from each VP to the
service of the four measured letters. It reports the actual RTT to each VP’s
BGP-assigned site. We see that all letters provide low latency to most users:
median RTT for C and K Root is 32 ms, L’s median is 30 ms and F’s is 25 ms.

Is 30 ms latency “good”? For DNS during web browsing (DNS on www.
example.com), every millisecond matters. However, names at the root (like com)
are easily cachable: there are only around 1000 names and they allow caching
for two days, so shared caches at recursive resolvers are very effective. But we
consider 30 ms great, and somewhat arbitrarily define 100 ms as high latency
(matching ideal network latencies from New York to California or Sydney).

More study is needed to understand the relationship between Root DNS
performance and user-perceived latency to provide definitive thresholds.

This data shows that median latency does not strictly follow anycast size—
while F and L have better latency than C and K, corresponding with their
larger number of anycast sites (58 and 144 vs. 8 and 33), the improvement is
somewhat modest. Actual latency is no more than 30 ms different between any
letter in most of the distribution. (At the tail of the distribution however, this
difference increases up to 135 ms.) This result is quite surprising since there is a
huge difference on the sizes of the anycast deployments of the measured letters.
For services with many sites, careful route engineering can also make a large
difference in latency. F’s median latency is lower than L’s (25 ms vs. 30 ms),
even though it has about half the sites (58 vs. 144). This difference may be from
route engineering by F, explicitly using RIPE Atlas for debugging [6].

3.2 Do Users Get the Closest Anycast Site?

While we showed a few sites can provide good latency, do they provide optimal
latency? Anycast relies on BGP to map users to sites, but BGP only approxi-
mates shortest-path routing. The dotted lines in Fig. 3 show the optimal possible
performance based on unicast routing to each individual site of all measured
letters, ignoring anycast routing policies and catchments. We see that C-Root’s
actual service is very close to optimal (solid and dotted lines nearly overlap). We
believe that this is because C has only a few, geographically distributed sites,
and all sites are global—that is, C’s sites are all visible across the Internet.

By contrast, larger anycast deployments show a larger difference between
actual and optimal latency. These differences arise because more sub-optimal
choices are available, and because these services have some or many local nodes
that might place policy limitations on routing (Sect. 3.5). Looking at optimal
possible performance in Fig. 3 we see that routing freedom would improve median
latency for F-, K- and L-Root by 16 ms, 19 ms and 14 ms, which represents an
improvement of 36%, 40% and 53% respectively. (We recognize that constraints

www.example.com
www.example.com

Anycast Latency: How Many Sites Are Enough? 193

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

C
D

F

RTT (ms)

C-Root actual
C-Root optimal

median RTT = 32ms

(a) C-Root

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

C
D

F

RTT (ms)

F-Root actual
F-Root optimal

median RTT = 25ms

(b) F-Root

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

C
D

F

RTT (ms)

K-Root actual
K-Root optimal

median RTT = 32ms

(c) K-Root

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

C
D

F

RTT (ms)

L-Root actual
L-Root optimal

median RTT = 30ms

(d) L-Root

Fig. 3. Distribution of RTT to all four measured letters: optimal RTT ignoring BGP
assignment (dotted line) compared to all actual RTT (solid line).

on routing may be a condition of site deployment, but we wish to understand
the potential optimal absent such constraints.)

We define mishits as the cases when VPs are sent to sites other than the
lowest latency. Table 1 shows how often mishits occur for each measured letter.
Missing the nearest site often has a serious cost: the median RTT for VPs that
mishit is 40 ms or higher for all letters. These large latencies are reflected in large
penalties: the difference between latency cost of the mishit relative to the best
possible choice (i.e., optimal hit ignoring BGP). Table 1 shows the 25, 50 and
75th percentiles of the distribution of mishit penalties to all four letters.

Surprisingly, C-Root’s few sites also have the lowest penalty of mishitting
(median of 5 ms). We believe that this low penalty is because C’s site are well
connected and relatively close to each other (in the U.S. or Europe), so missing
the closest often results in finding another site on the same continent, incurring
little additional delay. In fact, 70% of all mishits for C-Root reached a site in
the same continent as their optimal hit. The opposite is seen for L-Root, which
shows the highest mishit penalty (median of 24 ms). L’s many sites give many
opportunities for mishit, and mishits incur much greater latency, often being
served by a distant site with a global routing policy. (Consequences of mishits
and differences in the distribution tail are discussed in Sect. 3.4.)

194 R. de Oliveira Schmidt et al.

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 50 100 150 200 250 300 350

LA
X

(o
nl

y)

LA
X

+O
R

D

LA
X

+O
R

D
+I

A
D

LA
X

+O
R

D
+I

A
D

+J
F

K

C
-R

oo
t o

pt
im

al

C
D

F

RTT (ms)

(a) U.S.-based sites

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 50 100 150 200 250 300 350

C
D

F

RTT (ms)

C-Root optimal
CDG

CDG + LAX
CDG + LAX + JFK

CDG + LAX + JFK + FRA

(b) U.S. and Europe-based sites

Fig. 4. Distribution of RTT to two different anycast services with 1 to 4 sites.

3.3 Effects of Anycast Location on Latency and Observation Bias

It is well known that no single location can provide equally low latency to the
global Internet, one motivation for the use of anycast by root letters. We next
show that the latency of anycast service is affected more by site location than the
absolute number of sites, and consider how to manage bias due to the location of
our VPs. For this study we draw locations from C Root to simulate artificial ser-
vices of different sizes. We then estimate client latency assuming all VPs choose
their closest site (an optimistic assumption, but close, as shown in Sect. 3.2).

Effects of Site Location: Figure 4a compares the RTT distribution of four
subsets of C-Root’s U.S.-based sites to C-Root’s optimal. The subsets begin on
the right using a single location in Los Angeles (LAX), then sites are added
going eastward until New York (JFK). As each site is added, the distribution
shifts to the left, improving performance. In all configurations, 80% of VPs see
relatively large latencies: from 150 ms for LAX-only down to 75 ms for the four-
site configuration. This trend reflects speed-of-light from European VPs to the
U.S., with latency improving as sites closer to Europe are added.

Effects of VP Location: The analysis in Fig. 4a shows our measurements are
dominated by the many RIPE VPs in Europe (Fig. 1), characterizing a bias that
weights our quantitative results to services with sites in Europe. However, this
bias in VP location does not change our qualitative conclusion that site location
dominates latency. In addition, this bias is reflected in measurement tools based
on RIPE Atlas, such as DNSMON [31], and others have recognized that RIPE
Atlas does not represent all global traffic [33].

Low latency with geographically distributed locations: While Fig. 4a
shows a pessimal selection of locations, we can minimize latency by selecting
geographically distant sites. Figure 4b again compares the RTT distribution of
four subsets of C-Root’s sites, but now mixing sites located in U.S. and in Europe.
We start with a site in Paris (CDG), close to the majority of our VPs in Europe,
and with a tail elsewhere in the world—this configuration is within 20% of opti-

Anycast Latency: How Many Sites Are Enough? 195

 0

 100

 200

 300

 400

S
C

 (
6)

R
E

 (
5)

M
U

 (
5)

U
G

 (
5)

T
Z

 (
5)

Z
A

 (
52

)
K

E
 (

10
)

S
N

 (
6)

B
J

(6
)

T
N

 (
7)

M
Y

 (
20

)
ID

 (
33

)
B

D
 (

13
)

N
P

 (
8)

C
N

 (
14

)
B

T
 (

5)
IN

 (
15

)
S

G
 (

45
)

P
H

 (
26

)
P

K
 (

7)
H

K
 (

22
)

T
W

 (
5)

LK
 (

22
)

K
R

 (
10

)
A

E
 (

8)
JP

 (
72

)
LB

 (
5)

IR
 (

28
)

K
Z

 (
21

)
IL

 (
18

)
A

M
 (

17
)

G
E

 (
8)

T
R

 (
20

)

A
U

 (
69

)
N

C
 (

5)
N

Z
 (

53
)

G
U

 (
5)

U
Y

 (
10

)
C

L
(1

6)
A

R
 (

18
)

B
R

 (
49

)

C
R

 (
5)

P
R

 (
6)

S
E

 (
96

)
C

A
 (

13
2)

U
S

 (
68

2)

A
D

 (
9)

C
Y

 (
10

)
G

R
 (

46
)

IS
 (

8)
R

U
 (

30
7)

B
Y

 (
15

)
M

K
 (

9)
A

L
(1

5)
IE

 (
75

)
B

A
 (

7)
F

I (
59

)
N

O
 (

83
)

LT
 (

10
)

LV
 (

15
)

E
E

 (
18

)
P

T
 (

48
)

R
O

 (
28

)
U

A
 (

12
8)

B
G

 (
66

)
IT

 (
15

3)
M

D
 (

8)
P

L
(9

2)
R

S
 (

29
)

H
R

 (
26

)
E

S
 (

93
)

B
E

 (
14

0)
C

Z
 (

16
6)

H
U

 (
36

)
D

E
 (

61
2)

D
K

 (
78

)
G

B
 (

34
7)

C
H

 (
16

3)
F

R
 (

47
7)

S
I (

28
)

A
T

 (
10

6)
N

L
(3

30
)

S
K

 (
32

)
LU

 (
25

)

R
T

T
 (

m
s)

country code (# of VPs)

Africa Asia Oceania

S America

N America Europa

(a) C-Root

 0

 100

 200

 300

 400

S
C

 (
6)

S
N

 (
6)

B
J

(6
)

K
E

 (
15

)
R

E
 (

5)
M

U
 (

5)
Z

A
 (

64
)

M
Z

 (
5)

B
D

 (
14

)
N

P
 (

9)
IR

 (
26

)
P

H
 (

20
)

B
T

 (
6)

S
G

 (
48

)
G

E
 (

11
)

JP
 (

88
)

H
K

 (
25

)
LK

 (
20

)
IL

 (
20

)
IQ

 (
7)

M
Y

 (
20

)
LB

 (
6)

IN
 (

13
)

P
K

 (
7)

K
Z

 (
21

)
T

H
 (

5)
ID

 (
30

)
A

E
 (

6)
K

R
 (

14
)

T
R

 (
24

)
A

M
 (

18
)

A
U

 (
81

)
N

Z
 (

58
)

G
U

 (
5)

N
C

 (
6)

P
E

 (
5)

A
R

 (
20

)
C

L
(1

1)
B

R
 (

42
)

U
Y

 (
13

)

P
R

 (
5)

D
O

 (
6)

C
A

 (
15

0)
U

S
 (

81
2)

M
X

 (
5)

S
E

 (
13

5)
C

R
 (

6)

P
T

 (
52

)
B

Y
 (

13
)

H
R

 (
37

)
B

A
 (

6)
E

S
 (

11
2)

A
L

(1
7)

IS
 (

10
)

M
T

 (
5)

C
Y

 (
13

)
IT

 (
18

9)
M

K
 (

13
)

E
E

 (
24

)
LT

 (
15

)
M

D
 (

9)
B

G
 (

70
)

N
L

(4
07

)
H

U
 (

56
)

S
I (

34
)

P
L

(1
20

)
S

K
 (

36
)

D
E

 (
73

0)
A

T
 (

14
7)

R
O

 (
34

)
A

D
 (

8)
C

Z
 (

21
4)

F
I (

84
)

IE
 (

88
)

LU
 (

37
)

G
B

 (
46

4)
LV

 (
20

)
R

U
 (

37
1)

B
E

 (
17

1)
G

R
 (

62
)

U
A

 (
17

2)
F

R
 (

57
2)

C
H

 (
19

1)
D

K
 (

98
)

N
O

 (
10

7)

R
T

T
 (

m
s)

country code (# of VPs)

Africa Asia Oceania

S America

N America Europa

(b) L-Root

Fig. 5. Median RTT (quartiles as error bars) for countries with at least 5 VPs (number
of VPs per country is given between parenthesis). Letters at top indicate continents.

mal (as defined by C’s 8 sites). We then add U.S. west (LAX) and east (JFK)
coasts, and then Frankfurt (FRA), each pulling the distribution closer to opti-
mal, particularly in the tail. With the four-site combination, we virtually reach
C’s optimal possible performance. This data shows that geographically distributed
anycast sites can improve latency for the most distant users. Wide geographic
distribution helps because mature networks become well-connected, with latency
converging down to the speed-of-light (in fiber) limit.

Although both network topology and routing policies mean network and
geographic proximity may diverge [36], dispersion in geography correlates with
network dispersion.

Finally, comparing these figures shows that site location matters more than
number of sites. Four ideally positioned sites do well (the CDG, LAX, JFK,
and FRA line in Fig. 4b is leftmost), while four poorly chose sites are far from
optimal (compare the LAX, ORD, IAD, JFK line against optimal in Fig. 4a).

3.4 How Much Do “Many Sites” Help?

A key result of Fig. 3 is that the four letters provide roughly similar latency across
most VPs, in spite of an 18× more sites (C- and L-Root show similar median
latencies, 32 ms vs. 30 ms). While many sites does not affect median latency,
more sites help the tail of the distribution, from 70th to 90th percentiles. To
evaluate this tail, we next examine each country with at least 5 VPs. (We omit
countries with fewer to avoid potential bias from bad “last miles” [3].)

196 R. de Oliveira Schmidt et al.

With countries grouped by continent, Fig. 5 reports the median latency for
C- (Fig. 5a) and L-Root (Fig. 5b). Latency is highest for countries in Africa and
Asia for both roots, and also in Oceania and South America for C-Root. We
expect high latency for C-Root in these areas because its anycast sites are only
in Europe and North America. With global anycast sites, high latency for L-Root
is surprising. Using our 100 ms threshold for high latency (Sect. 3.1), we observe
that C has about 38 countries above that threshold, while L has only about 21.
L’s many additional sites improve latency, but not everywhere. Somewhat more
troubling is that L shows high latency for several European countries (Portugal,
PT; Belarus, BY; Croatia, HR; Bosnia, BA; and Spain, ES). Even with European
sites, routing policies send traffic from these countries to long distances.

When we look at countries with highest latency in Fig. 5, L’s many sites do
improve some VPs in each country, as shown by the lower quartiles. However, the
high median shows that these improvements are not even across all VPs in these
countries. This wide variation suggests interconnection inside these countries can
be poor, resulting in good performance for those VPs in ISPs that have a local
anycast site, while VPs in other ISPs have to travel long distances. For example,
from all 20 VPs in the Philippines (PH), 7 VPs are able to reach their optimal
L sites located in the Philippines itself, with average RTT of 18 ms. The other
13 VPs, however, reach L sites in U.S. and Australia, seeing average RTT of
56 ms. None of the “unlucky” 13 VPs are within the same ASes than the other 7
“lucky” ones. We therefore conclude that routing policies can drastically reduce
the benefits of many sites.

3.5 Do Local Anycast Policies Hurt Performance?

Anycast sites are often deployed with a local routing policy, where the site is
only available to the hosting AS, or perhaps also directly adjacent ASes. An
important question in anycast deployments is how much these policies impact
on performance. The anycast deployments we studied allow us to answer if policy
routing matters. The similar distributions of latency among the four letters we
study (Fig. 3) show that policy does not matter much. C- and L-Root place no
restriction on routing, while about half of F- and most of K-Root sites are local
in our initial study (Table 1). We also observe K after they changed almost all
sites to global (NK in Table 1).

We study mishits to get a more detailed look into this question. In Table 1,
mishits are VPs that do not hit the optimal site. We have examined mishits based
on those that go to local or global sites in detail in our technical report [35]. Due
to space, we summarize those findings here and refer that report for the detailed
analysis. We see that a fair number of VPs are prevented from accessing their
nearest site because they instead go to a global site: this case accounts for about
58% of F-root VPs that mishit, and 42% of K-Root mishits. Thus, restrictive
local routing does add latency; and relaxing this policy could improve median
latency from 37 ms to 19 ms in F-Root, and from 43 ms to 25 ms in K-root.

K-Root provided a natural experiment to evaluate if relaxing routing helps.
After our initial measurements of K-Root in 2015-11, K changed all but one

Anycast Latency: How Many Sites Are Enough? 197

site to global routing; our NK dataset re-examines K-Root in 2016-04, after this
policy change. Comparing K and NK in Table 1, we see only modest changes
in latency: 2 ms drop in median latency, and no real change in the fraction
of mishits. From discussion with the K-Root operators, we learned that local
routing policies were inconsistently applied (routing limits were often ignored by
peers), thus routing policies can be dominated by routing bugs.

Our main conclusion is that careful examination and debugging routing polices
of local sites can make a large difference in performance. Bellis’ tuning of F-Root
anycast routing showed that debugging can improve performance [6].

3.6 How Many Sites?

Given this analysis, how many sites are needed for reasonable latency? Section 3.1
shows minimal difference for median latency from 8 to 144 sites, suggesting 8
sites are reasonable based on C-Root measurements from RIPE Atlas. If we
consider two sites per six continents for some redundancy, and account for under-
representation of VPs in some areas, we suggest twelve sites can provide
reasonable latency. We caution that this number is only a rough suggestion—
by no means do we suggest that 12 is perfect but 11 or 13 is horrible. This
count considers only latency; we recognize more sites may be needed for many
other reasons (for example, DDoS-defense and many dimensions of diversity),
and it applies to an individual IP anycast service, not DNS or a CDN, which
often employ multiple, independent IP anycast services. It assumes geographic
distribution (Sect. 3.3) and that routing problems allow use of geographically
close sites (Sects. 3.4 and 3.5), and effective DNS caching (Sect. 3.1).

4 Related Work

The DNS Root has been extensively studied in the past. CAIDA’s measurement
infrastructure skitter [11] has enabled several early studies on DNS perfor-
mance [8,9,21,25]. In 2004, Pang et al. [29] combined probing and log analy-
sis to show that only few DNS servers were being used by a large fraction of
users. Following works studied the performance of DNS, focusing on latency
between clients and servers [5,17,34]. DNS CHAOS has been used to study client-
server affinity [7,34]. Liu et al. [27] used clients geolocation to estimate RTT,
and others evaluated the effect of route changes on the anycast service [4,10].
Liang et al. [26] used open resolvers to measure RTT from the DNS Root and
major gTLDs. Bellis [6] carried out a comprehensive assessment of latency in
F Root’s anycast, fixing faulty route announcements to improve performance.
Other work [14,24] used large and long-term datasets to show that the expan-
sion of the anycast infrastructure improved overall performance of the Root DNS.
Finally, Calder et al. [13] studied the choice of anycast or LDNS for redirection
to CDN services.

Our work differs from these prior studies in methodology and analysis. We
build on prior studies, but define optimal possible performance and measure

198 R. de Oliveira Schmidt et al.

it with probes to unicast addresses of all sites. This new methodology allows
our analysis to go beyond measurements of what happens to statements about
what could happen, allowing the first answers about effects of routing policy.
In addition, this methodology allows us to estimate performance of alternate
anycast infrastructures that are subsets of current deployments, enabling strong
conclusions about the effect of numbers of sites on latency.

Furthermore, complementing our work are studies that enumerate and char-
acterize content delivery services that use IP anycast. To exemplify some, Calder
et al. [12] used EDNS client subnet (ECS) and latency measurements to char-
acterize Google’s serving infrastructure. Streibelt et al. [37] also used ECS to
study Google’s, Edgecast’s and CacheFly’s ancyast user to server mapping. Fan
et al. [19] combined DNS queries and traceroutes to study the anycast at TLDs.
Cicalese et al. [16] used latency measurements to geolocate anycast services, and
later characterize IPv4 anycast adoption [15]. Fan et al. [20] combined ECS and
open resolvers to measure Google’s and Akamai’s front-ends. Finally, Akhtar
et al. [2] proposed a statistical approach for comparing CDNs performance.

5 Conclusions

We studied four real-world anycast deployments (the C-, F-, K- and L-Root DNS
nameservers) with 7,900 VPs (RIPE Atlas probes) to systematically explore
the relationship between IP anycast and latency. Unique to our collection is
the combination of latency to each VP’s current site, and to all sites, allowing
evaluation of optimal possible latency. We collected new data for each of the
measured services in 2015 and revisited K-Root in 2016 to evaluate changes
in its routing policies. Our methodology opens up future directions, including
assessment of anycast for resilience to Denial-of-Service and load balancing in
addition to latency reduction.

Our new ability to compare actual to optimal latency allows us untangle
several aspects of our central question: how many anycast sites are “enough”.
Our data shows similar median performance (about 30 ms) from 8 to 144 sites,
suggesting that as few as twelve sites can provide reasonable latency,
provided they are geographically distributed, have good local interconnectivity,
and DNS caching is effective.

Acknowledgments. We thank Geoff Huston (APNIC), George Michaelson (APNIC),
Ray Bellis (ISC),Cristian Hesselman (SIDN Labs), Benno Overeinder (NLnet Labs) and
Jaap Akkerhuis (NLnet Labs), Duane Wessels (Verisign), Paul Vixie (Farsight), Romeo
Zwart (RIPE NCC), Anand Buddhdev (RIPE NCC), and operators from C Root for
their technical feedback.

This research uses measurements from RIPE Atlas, operated by RIPE NCC.
Ricardo Schmidt’s work is in the context of SAND (Self-managing Anycast Net-

works for the DNS: http://www.sand-project.nl) and DAS (DNS Anycast Security:
http://www.das-project.nl) projects, sponsored by SIDN, NLnet Labs and SURFnet.

John Heidemann’s work is partially sponsored by the U.S. Dept. of Homeland Secu-
rity (DHS) Science and Technology Directorate, HSARPA, Cyber Security Division,

http://www.sand-project.nl
http://www.das-project.nl

Anycast Latency: How Many Sites Are Enough? 199

via SPAWAR Systems Center Pacific under Contract No. N66001-13-C-3001, and via
BAA 11-01-RIKA and Air Force Research Laboratory, Information Directorate under
agreement numbers FA8750-12-2-0344 and FA8750-15-2-0224. The U.S. Government is
authorized to make reprints for Governmental purposes notwithstanding any copyright.
The views contained herein are those of the authors and do not necessarily represent
those of DHS or the U.S. Government.

References

1. Abley, J., Lindqvist, K.E.: Operation of Anycast Services. RFC 4786 (2006)
2. Akhtar, Z., Hussain, A., Katz-Bassett, E., Govindan, R.: DBit: assessing statisti-

cally significant differences in CDN performance. In: IFIP TMA (2016)
3. Bajpai, V., Eravuchira, S.J., Schönwälder, J.: Lessons learned from using the RIPE

atlas platform for measurement research. ACM CCR 45(3), 35–42 (2015)
4. Ballani, H., Francis, P.: Towards a global IP anycast service. In: ACM SIGCOMM,

pp. 301–312 (2005)
5. Ballani, H., Francis, P., Ratnasamy, S.: A measurement-based deployment proposal

for IP anycast. In: ACM IMC, pp. 231–244 (2006)
6. Bellis, R.: Researching F-root Anycast Placement Using RIPE Atlas (2015).

https://labs.ripe.net/
7. Boothe, P., Bush, R.: Anycast Measurements Used to Highlight Routing Instabil-

ities. NANOG 34 (2005)
8. Brownlee, N., Claffy, K.C., Nemeth, E.: DNS Root/gTLD performance measure-

ment. In: USENIX LISA, pp. 241–255 (2001)
9. Brownlee, N., Ziedins, I.: Response time distributions for global name servers. In:

PAM (2002)
10. Bush, R.: DNS anycast stability: some initial results. In: CAIDA/WIDE Workshop

(2005)
11. CAIDA. Skitter. http://www.caida.org/tools/measurement/skitter/
12. Calder, M., Fan, X., Hu, Z., Katz-Bassett, E., Heidemann, J., Govindan, R.: Map-

ping the expansion of Google’s serving infrastructure. In: ACM IMC, pp. 313–326
(2013)

13. Calder, M., Flavel, A., Katz-Bassett, E., Mahajan, R., Padhye, J.: Analyzing the
performance of an anycast CDN. In: ACM IMC, pp. 531–537 (2015)

14. Castro, S., Wessels, D., Fomenkov, M., Claffy, K.: A day at the root of the internet.
ACM CCR 38(5), 41–46 (2008)

15. Cicalese, D., Augé, J., Joumblatt, D., Friedman, T., Rossi, D.: Characterizing IPv4
anycast adoption and deployment. In: ACM CoNEXT (2015)

16. Cicalese, D., Joumblatt, D., Rossi, D., Buob, M.-O., Augé, J., Friedman, T.: A
fistful of pings: accurate and lightweight anycast enummeration and geolocation.
In: IEEE INFOCOM, pp. 2776–2784 (2015)

17. Colitti, L.: Effect of anycast on K-root. In: 1st DNS-OARC Workshop (2005)
18. DNS Root Servers. http://www.root-servers.org/
19. Fan, X., Heidemann, J., Govindan, R.: Evaluating anycast in the domain name

system. In: IEEE INFOCOM, pp. 1681–1689 (2013)
20. Fan, X., Katz-Bassett, E., Heidemann, J.: Assessing affinity between users

and CDN sites. In: Steiner, M., Barlet-Ros, P., Bonaventure, O. (eds.) TMA
2015. LNCS, vol. 9053, pp. 95–110. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17172-2 7

https://labs.ripe.net/
http://www.caida.org/tools/measurement/skitter/
http://www.root-servers.org/
http://dx.doi.org/10.1007/978-3-319-17172-2_7
http://dx.doi.org/10.1007/978-3-319-17172-2_7

200 R. de Oliveira Schmidt et al.

21. Fomenkov, M., Claffy, K.C., Huffaker, B., Moore, D.: Macroscopic internet topol-
ogy and performance measurements from the DNS root name servers. In: USENIX
LISA, pp. 231–240 (2001)

22. Google Public DNS. https://developers.google.com/speed/public-dns/
23. Kuipers, J.H.: Analysing the K-root anycast infrastructure (2015). https://labs.

ripe.net/
24. Lee, B.-S., Tan, Y.S., Sekiya, Y., Narishige, A., Date, S.: Availability and effective-

ness of root DNS servers: a long term study. In: IFIP/IEEE NOMS, pp. 862–865
(2010)

25. Lee, T., Huffaker, B., Fomenkov, M., Claffy, K.C.: On the problem of optimization
of DNS root servers’ placement. In: PAM (2003)

26. Liang, J., Jiang, J., Duan, H., Li, K., Wu, J.: Measuring query latency of top level
DNS servers. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp.
145–154. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36516-4 15

27. Liu, Z., Huffaker, B., Fomenkov, M., Brownlee, N., Claffy, K.C.: Two days in the
life of the DNS anycast root servers. In: Uhlig, S., Papagiannaki, K., Bonaventure,
O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 125–134. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-71617-4 13

28. Palsson, B., Kumar, P., Jafferalli, S., Kahn, Z.A.: TCP over IP anycast - pipe
dream or reality? (2015). https://engineering.linkedin.com/

29. Pang, J., Hendricks, J., Akella, A., Prisco, R.D., Maggs, B., Seshan, S.: Availability,
usage, and deployment characteristics of the domain name server. In: ACM IMC,
pp. 1–14 (2004)

30. Partridge, C., Mendez, T., Milliken, W.: Host Anycasting Service. RFC 1546 (1993)
31. RIPE NCC. Dnsmon (2015). https://atlas.ripe.net/dnsmon/
32. RIPE NCC Staff: RIPE Atlas: a global Internet measurement network. Internet

Protocol J. 18(3), 2–26 (2015)
33. Rootops. Events of 2015–11-30. Technical report, Root Server Operators (2015)
34. Sarat, S., Pappas, V., Terzis, A.: On the use of anycast in DNS. In: ICCCN, pp.

71–78 (2006)
35. Schmidt, R.d.O., Heidemann, J., Kuipers, J.H.: Anycast latency: how many sites

are enough? Technical report ISI-TR-2016-708, USC-ISI, May 2016
36. Spring, N., Mahajan, R., Anderson, T.: Quantifying the causes of path inflation.

In: ACM SIGCOMM, pp. 113–124 (2003)
37. Streibelt, F., Böttger, J., Chatzis, N., Smaragdakis, G., Feldman, A.: Exploring

EDNS-client-subnet adopters in your free time. In: ACM IMC, pp. 305–312 (2013)
38. Toonk, A.: How OpenDNS achieves high availability with anycast routing (2013).

https://labs.opendns.com/
39. Woolf, S., Conrad, D.: Requirements for a Mechanism Identifying a Name Server

Instance. RFC 4892 (2007)

https://developers.google.com/speed/public-dns/
https://labs.ripe.net/
https://labs.ripe.net/
http://dx.doi.org/10.1007/978-3-642-36516-4_15
http://dx.doi.org/10.1007/978-3-540-71617-4_13
https://engineering.linkedin.com/
https://atlas.ripe.net/dnsmon/
https://labs.opendns.com/

Where Has My Time Gone?

Noa Zilberman(B), Matthew Grosvenor, Diana Andreea Popescu,
Neelakandan Manihatty-Bojan, Gianni Antichi,

Marcin Wójcik, and Andrew W. Moore

Computer Laboratory, University of Cambridge, Cambridge, UK
{noa.zilberman,matthew.grosvenor,diana.popescu,

neelakandan.manihatty-bojan,gianni.antichi,

marcin.wojcik,andrew.moore}@cl.cam.ac.uk

Abstract. Time matters. In a networked world, we would like mobile
devices to provide a crisp user experience and applications to instan-
taneously return results. Unfortunately, application performance does
not depend solely on processing time, but also on a number of different
components that are commonly counted in the overall system latency.
Latency is more than just a nuisance to the user, poorly accounted-for, it
degrades application performance. In fields such as high frequency trad-
ing, as well as in many data centers, latency translates easily to financial
losses. Research to date has focused on specific contributions to latency:
from improving latency within the network to latency control on the
application level. This paper takes an holistic approach to latency, and
aims to provide a break-down of end-to-end latency from the applica-
tion level to the wire. Using a set of crafted experiments, we explore the
many contributors to latency. We assert that more attention should be
paid to the latency within the host, and show that there is no silver bul-
let to solve the end-to-end latency challenge in data centers. We believe
that a better understanding of the key elements influencing data center
latency can trigger a more focused research, improving the user’s quality
of experience.

1 Introduction

Time plays a major role in computing, as it translates directly to financial
losses [6,13]. User demands for a highly interactive experience (e.g., online shop-
ping, web search, online gaming etc.) has put stringent demands on applications
to consistently meet tight deadlines. Nowadays, the question Can the application
(job) meet a deadline? is replaced by Will the application get the consistent, low
latency, guarantees needed to meet user demands?

In the past, large propagation delays and unoptimized hardware have eclipsed
inefficiencies in end-system hardware and software: operating systems and appli-
cations. Yet decades ago, latency was identified as a fundamental challenge [2,11].
The emergence of data centers increased the importance of the long tail of latency
problem: due to the scaling effect within a data center, every small latency issue
is having an increasing effect on the performance [1]. Only 5 years ago a switch
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 201–214, 2017.
DOI: 10.1007/978-3-319-54328-4 15

202 N. Zilberman et al.

latency of 10µs and an OS stack latency of 15µs were considered the norm [12],
however, since then, a significant improvement has been achieved [3,5]. To fully
understand this latency improvement, this paper takes an end-to-end approach,
focusing upon the latency between the time a request is issued by an applica-
tion to the time a reply has returned to that application. This approach has the
advantage of maximizing the throughput of a system, which is the main goal
of a user, rather than optimizing discrete parts of the system. We consider the
best-possible configurations, which may not be identical to the most realistic
configuration, and further focus on the Ethernet-based systems common in data
centers.

In this paper we use bespoke experiments (described in Sect. 2) to derive a
breakdown to the end-to-end latency of modules in commodity end-host sys-
tems (discussed in Sect. 3). We identify the latency components that require
the most focus for improvement and propose trajectories for such work. Finally,
we contribute a taxonomy of latency contributors: low-latency/low-variability:
the “Good”, high-latency/high-variability: the “Bad”, and heavy-tailed or oth-
erwise peculiar latency: the “Ugly”, while also noting the challenge of profiling
application network performance.

1.1 Motivation

The contribution of latency affects a user-experience in a significant, sometimes
subtle, manner. More than a simple, additive, increase in run-time, application
performance can be dramatically decreased with an increase in latency. Figure 1
illustrates the impact of latency upon performance for several common data
center applications.

0.
0

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.
0

Added Delay [µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or
m
al
iz
ed

Pe
rf
or
m
an
ce

Apache

Memcached

TPCCMySQL

Fig. 1. Delay effect on application performance.

Where Has My Time Gone? 203

Using an experimental configuration described in Sect. 2, Fig. 1 illustrates
experimental results for three application-benchmarks. Each benchmark reports
results for an application-specific performance metric. These application-specific
benchmarks are normalized to allow comparisons to be made among the
applications.

The three benchmarks we use are Apache benchmark1 reporting mean
requests per second, Memcached benchmark2 reporting throughput, and TPC-
C MySQL benchmark3 reporting New-Order transactions per minute, (where
New-Order is one of the database’s tables).

Between the two hosts of the experimental configuration described in Sect. 2,
we insert a bespoke hardware device to inject controlled latency. We imple-
mented a latency-injection appliance4 that allows us to add arbitrary latency
into the system. Past latency injection has been done with approaches such as
NetEm [4], yet this proved inappropriate for our work. Alongside limited gran-
ularity, such approaches may not reliably introduce latency of less than several
tens of microseconds [8]. In contrast, our latency gadget adds 700 ns of base
latency and permits further additional latency, at 5 ns granularity, up to a max-
imum5 determined by the rate of operation.

Each test begins by measuring a baseline, which is the performance of each
benchmark under the default setup conditions, taking into account the base
latency introduced by the latency-injection appliance. Latency is then artificially
inserted by the appliance, and the application-specific performance is measured.
We can derive the impact on experiments of the artificially inserted latency
by removing the baseline measurement. For the three benchmarks, Fig. 1 shows
the effect of added latency. Each benchmark was run 100 times for the base-
line and for each added latency value. The graph plots the average values, and
standard errors are omitted for clarity, as they are below 0.005. In one run, the
Apache benchmark sends 100000 requests and the Memcached benchmark sends
10 million requests. The TPC-C benchmark runs continuously for 1000 s, with
an additional time of 6 minutes of warm-up, resulting in 100 measurements over
10 s periods. The application most sensitive to latency is Memcached: the addi-
tion of 20µs latency leads to a performance drop of 25%, while adding 100µs
will reduce its throughput to 25% of the baseline. The TPC-C benchmark is
the least sensitive to latency, although still exhibits some performance loss: 3%
reduction in performance with an additional 100µs. Finally, the Apache bench-
mark observes a drop in performance that starts when 20µs are added, while
adding 100µs leads to a 46% performance loss.

1 https://httpd.apache.org/docs/2.4/programs/ab.html.
2 http://docs.libmemcached.org/bin/memaslap.html.
3 https://github.com/Percona-Lab/tpcc-mysql.
4 Our latency-injection appliance is an open-source contributed project as part of

NetFPGA SUME since release 1.4.0.
5 The maximum latency introduced is a function of the configured line-rate. The appli-

ance can add up to 700µs of latency at full 10Gb/s rate, and up to 7 s at 100Mbps.

https://httpd.apache.org/docs/2.4/programs/ab.html
http://docs.libmemcached.org/bin/memaslap.html
https://github.com/Percona-Lab/tpcc-mysql

204 N. Zilberman et al.

While the results above are obtained under optimal setup conditions, within
an operational data center worse-still results would be expected as latency is
further increased under congestion conditions and as services compete for com-
mon resources. The results of Fig. 1 show clearly that even a small increase in
latency, of the scale shown in this paper, can significantly affect an application’s
performance.

2 Experiments

This section presents experiments we used to provide a decomposition of the
latency between the application and the physical-wire of the host. Full results
of these experiments are given in Sect. 3 with the outcome of successive tests
presented in Table 1. Each experiment in this section is annotated with the
corresponding entry number in Table 1.

2.1 Tests Setup

For our tests setup we use two identical hosts running Ubuntu server 14.04 LTS,
kernel version 4.4.0-42-generic. The host hardware is a single 3.5 GHz Intel Xeon
E5-2637 v4 on a SuperMicro X10-DRG-Q motherboard. All CPU power-saving,
hyper-threading and frequency scaling are disabled throughout our tests. Host
adapter evaluation uses commodity network interface cards (NICs), Solarflare
SFN8522, and Exablaze X10, using either standard driver or a kernel bypass
mode (test dependent). For minimum latency, interrupt hold-off time is set to
zero. Each host uses identical NICs for that particular NIC experiment and
we only consider Ethernet-based communication. As illustrated in Fig. 3, an
Endace 9.2SX2 DAG card (7.5 ns time-stamping resolution) and a NetOptics
passive-optical tap are used to intercept client-server traffic and permit inde-
pendent measurement of client & server latency. The experiments are repro-
ducible using the procedures documented at http://www.cl.cam.ac.uk/research/
srg/netos/projects/latency/pam2017/.

2.2 In-Host Latency

Figure 2 illustrates the various elements contributing to the experienced latency
within the host.

Timestamp Counter Latency (1). To accurately measure latency, we set an
accuracy baseline for our methods. Our latency measurements are based on the
CPU’s Time Stamp Counter (TSC). TSC is a 64-bit register, present on the
processor, it counts the number of cycles since reset and thus provides a res-
olution of approximately 288 ps-per-cycle although realistically there is tens of
cycles resolution due to CPU pipeline effects. Access to TSC is done using rdtsc
x86 assembly instruction. In order to understand hidden latency effects, and
following the Intel recommendations for TSC access [10], we conduct two read

http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/pam2017/
http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/pam2017/

Where Has My Time Gone? 205

Fig. 2. End host tests setup. Fig. 3. Client-server tests setup.

operations consecutively. We repeat this simple TSC read operation a large num-
ber of times (order of 1010 events), and study the time gaps measured between
every pair of consecutive reads. Results are saved into previously allocated and
initialized buffers, and access to the buffers is outside the measurement mainline.

This test is conducted in three different modes: firstly, Kernel Cold Start
(1a) which serves as our approximation of a bare metal test. Kernel Cold Start
measures very early within the kernel boot process, before the scheduler, mul-
tiprocessing and multicore support have been started. The second test, Kernel
Test (1b), runs from within the kernel, and represents an enhanced version of
the recommended test described in [10]. The third test, User Space Test (1c),
provides high-accuracy time stamping measurement from within a user-space
application. The application is pinned to a single CPU core and all other tasks
and interrupts are moved to other cores. This is representative of real-time appli-
cation operation. In contrast to the Kernel Test, interrupts, such as scheduling
pre-emption, are not disabled so as to represent the runtime conditions of real
applications.

User Space + OS Latency (2). This experiment investigates the combined
latency of the (user-space) application and the operating system. The test sets up
two processes and opens a datagram socket between them, measuring the round
trip time (RTT) for a message sent from a source process to the destination
process, and back. TSC is used to measure the latency and the time is measured
by reading TSC before and after the message reply is received. While this does
not fully exercise the network stack, it does provide useful insight into the kernel
overhead.

Virtualized Environment (1d). The contribution of a virtualized environ-
ment is examined by repeating the TSC tests from within a Virtual Machine
(VM). We used VirtualBox [9] version 4.3.36 as the hypervisor, with an Ubuntu
VM (same version as the base OS). The VM was configured to run the guest
OS on a single dedicated CPU core with no co-located native operating system
activities.

Host Interconnect (3). To evaluate the latency of the host interconnect (e.g.,
PCI-Express), we used the NetFPGA SUME platform [16], which implements x8

206 N. Zilberman et al.

PCIe Gen3 interface. The DMA design is instrumented to measure the intercon-
nect latency. As the hardware and the processor use different clock sources,
the one-way latency can not be directly measured. Instead, the round trip
latency of a read operation (a non-posted operation that incorporates an explicit
reply) is measured. Every read transaction from the NetFPGA to the CPU is
timestamped at 6.25 ns accuracy within the DMA engine when each request is
issued and when its reply returns. The cache is warmed before the test, to avoid
additional latency due to cache misses, and the memory address is fixed. The
measured latency does not account for driver latency, as neither the driver nor
the CPU core participate in the PCIe read transaction.

Host Latency (4). To measure the latency of an entire host we use a bespoke
request-reply test to measure the latency through the NIC, PCIe Interconnect,
Kernel and network stack, the application level, and back to the NIC. Contrast
to the User Space + OS Latency experiment, here packets traverse the networks
stack only once in each direction. Packets are injected by a second host, and
using the DAG card we isolate the host latency, measuring the latency from the
packet’s entrance to the NIC and until it returns from the NIC.

Kernel Bypass Influence (5). Kernel bypass is promoted as a useful method-
ology and we consider the latency contribution of the operating-system kernel
alone and the impact of kernel-bypass upon latency. Using tests comparable to
those of Host Latency experiment we can then measure latency using the kernel
bypass supported by our NICs (X10, SFN8522). Our performance comparison
contrasts the kernel with bypass enabled and disabled.

2.3 Client-Server Latency (6)

Experiments are extended from single-host (and, where appropriate, hardware
request-reply server) to a pair of network-hosts as shown in Fig. 3. The two
servers are directly connected to each other. Using a test method based upon
that described in the Host Latency experiment, we add support for request-
reply at both hosts. This allows us to measure latency between the user-space
application of both machines. We further extend this experiment to measure
the latency of queries (both get and set) under the Memcached benchmark,
indicative of realistic user-space application latency.

2.4 Network Latency

We measure three components that contribute to network latency: networking
devices within the network, cabling (e.g., fiber, copper), and networking devices
at the edge. The network device at the edge is represented in this study by the
NIC. For networking devices within the network we focus on electrical packet
switches (EPS) as the most commonly used networking devices within data
center today. Networking devices such as routers will inherently have a latency
that is the same or larger than a switch, thus we do not study them specifically.

Where Has My Time Gone? 207

Our focus in this work is on the minimum latency components within a
system. We therefore do not evaluate latency components of networking devices
such as queueing and buffering or congestion. We consider these out of scope in
our attempt to understand the most-ideal latency situation.

Cabling. The propagation delay over a fiber is 4.9 ns per meter, and the delay
over a copper cable varies between 4.3 ns and 4.4 ns per meter, depending on the
cable’s thickness and material used. We corroborate these numbers by sending
packet trains over varying lengths of cable and measuring using DAG the latency
between transmit and receive6. In our reported tests we use fiber exclusively.

NIC Latency (7). Measuring NIC-latency is a subtle art. At least three compo-
nents contribute to a typical NIC latency figure: the NIC’s hardware, the Host
Bus Adapter (a PCI-Express interconnect in our case) and the NIC’s driver.
There are two ways to measure the latency of a NIC: the first is injecting pack-
ets from outside the host to the NIC, looping the packets at the driver and
capturing them at the NIC’s output port. The second is injecting packets from
the driver to the NIC, using a (physical or logical) loopback at the NIC’s ports
and capturing the returning packet at the driver. Neither of these ways allows
us to separate the hardware-latency contribution from the rest of its latency
components or to measure one way latency. Acknowledging these limitations, we
opt for the second method, injecting packets from the driver to the NIC. We
use a loopback test provided by Exablaze with the X10 NIC7. The test writes
a packet to the driver’s buffer, and then measures the latency between when
the packet starts to be written to PCIe and when the packet returns. This test
does not involve the kernel. A similar open-source test provided by Solarflare
as part of Onload (eflatency), which measures RTT between two nodes, is used
to evaluate SFN8522 NIC. The propagation delay on the fiber is measured and
excluded from the NIC latency results.

Switch Latency (8). We measure switch latency using a single DAG card to
timestamp the entry and departure time of a packet from a switch under test.
The switch under test is statically configured to send packets from one input
port to another output port. No other ports are being utilized on the switch
during the test, so there is no crosstalk traffic. We vary the size of the packets
sent from 64B to 1514B.

We evaluate two classes of switches, both of them cut-through switches: an
Arista DCS-7124FX layer 2 switch, and an ExaLINK50 layer 1 switch. The
latency reported is one way, end of packet to end of packet.

Caveats: Latest generation cut through switching devices, such as Mellanox Spec-
trum and Broadcom Tomahawk, opt for lower latency than we measure, on the
order of 330 ns. We were not able to obtain these devices. As a result, later dis-
cussion of these, as well as of large store-and-forward spine switches (e.g., Arista
7500R) relies on results taken from vendors’ datasheet and industry analysis [15].
6 We note that the resolution of the DAG of 7.5 ns puts short fiber measurements

within this range of error.
7 The source code for the test is provided with the NIC, but is not open source.

208 N. Zilberman et al.

3 Latency Results

The results of the experiments described in Sect. 2 are presented in Table 1. The
accuracy of time-measurements in kernel space, user space, or within a VM is
on the order of tens of CPU clock cycles (approximately 10 ns in our system).
Any operation beyond that is on the order of between hundreds of nanoseconds
and microseconds. To better understand this, Fig. 4 shows the relative latency
contribution of each component. The figure makes it clear that there is no sin-
gle component that contributes overwhelmingly to end-host latency: while the
kernel (including the network stack) is certainly important, the application level
also makes significant contribution to latency as, even in our straightforward
evaluation example, applications incur overheads due to user-space/kernel-space
context switches.

Deriving the latency of different components within the network is not as
straightforward as within the host, and depends on the network topology.

To illustrate this impact we use four typical networking topologies, depicted
in Fig. 6, combined with the median latency results reported in Table 1. Repre-
senting the store-and-forward spine switch we use the latency of Arista-7500R
switch. Figure 5 shows the relative latency contribution within each network
topology.

While differences in latency contribution here are enormous, just as in the
end-host case single huge contributor to network latency. Furthermore, the

Table 1. Summary of latency results.

Experiment Minimum Median 99.9th Tail Observation period

1a TSC - Kernel Cold Start 7 ns 7 ns 7 ns 11 ns 1 h

1b TSC - Kernel 9 ns 9 ns 9 ns 6.9µs 1 h

1c TSC - From User Space 9 ns 10 ns 11 ns 49µs 1 h

1d TSC - From VM User Space 12 ns 12 ns 13 ns 64ms 1 h

2a User Space + OS (same core) 2µs 2µs 2µs 68µs 10M messages

2b User Space + OS (other core) 4µs 5µs 5µs 31µs 10M messages

3a Interconnect (64B) 552 ns 572 ns 592 ns 608 ns 1M transactions

3b Interconnect (1536B) 976 ns 988 ns 1020 ns 1028 ns 1M transactions

4 Host 3.9µs 4.5µs 21µs 45µs 1M packets

5 Kernel Bypass 895 ns 946 ns 1096 ns 5.4µs 1M packets

6a Client-Server (UDP) 7µs 9µs 107µs 203µs 1M packets

6b Client-Server (Memcached) 10µs 13µs 240µs 20.3ms 1M queries

7a NIC - X10 (64B) 804 ns 834 ns 834 ns 10µs 100K packets

7b NIC - SFN8522 (64B) 960 ns 985 ns 1047 ns 3.3µs 100K packets

8a Switch - ExaLINK50 (64B) 0a 2.7 nsa 17.7 nsa 17.7 nsa 1000 packets

8b Switch - ExaLINK50 (1514B) 0a 2.7 nsa 17.7 nsa 17.7 nsa 1000 packets

8c Switch - 7124FX (64B) 512 ns 534 ns 550 ns 557 ns 1000 packets

8d Switch - 7124FX (1514B) 512 ns 535 ns 557 ns 557 ns 1000 packets

Entries marked a return results that are within DAG measurement error-range.

Where Has My Time Gone? 209

Fig. 4. End host latency contribution. Fig. 5. Network latency contribution.

latency of the fibers, which is often disregarded, has a magnitude of microsec-
onds in big data centers and becomes a significant component of the overall
latency. However, unlike any other component, propagation delay is one aspect
that can not be improved, hinting that minimizing the length of the traversal
path through data centers needs to become a future direction of research.

Fig. 6. Different network topologies.

4 Tail Latency Results

Results in the previous section range between their stated minimum and the
99.9th percentile. However, our experiments also provide insight into heavy-tail
properties of the measured latency. Such results, which are not caused by network
congestion or other oft-stated causes of tail-latency, are briefly discussed in this
section.

The relative scale of these tail latency cases is usefully illustrated by con-
sidering the TSC (1). The tail latency values are clearly illustrated when using
the TSC experiment (Sect. 2.2) and all subsequent experiments using the TSC
measurement.

210 N. Zilberman et al.

Fig. 7. CDF of TSC tail latency. Fig. 8. CCDF of aggregated TSC tail
latency.

While up to 99th percentile for the typical TSC measurements, the latency
is in the order of 10 ns, in both kernel and user space, TSC latencies can be in
the order of microseconds or hundreds of microseconds. VMs show even greater
sensitivity with higher-still outlier values. The CDF of these results is shown
in Fig. 7. While long latency events may be infrequent, even a single outlier
event can overshadow hundreds to thousands of other operations. This is keenly
illustrated in Fig. 8 with a complementary CDF (CCDF) the aggregated time
wasted on tail events. This graph illustrates that while only 364 out of 22G
events of TSC latency in VM user space are 1 ms or longer, these events take
almost 5% of the observation period.

The OS kernel is a natural source of latency. While in Kernel Cold Start
tests (1a) we did not find any outliers that approach a microsecond, microsecond-
long gaps do occur in a TSC Kernel test (1b) run at the end of our initialization
sequence. In user space (1c), gaps can reach tens of microseconds, even under our
best operating conditions. Some of these events are the clear results of scheduling
events, as disabling pre-emption is not allowed in user space. Experimenting with
different (Linux) OS schedulers (e.g., NOOP, CFQ and Deadline) show that
such events may shift in time, but remain at the same magnitude and frequency.
Further, changing some scheduler parameters, e.g. CFQ’s “low latency” and “Idle
slice”, does not reduce the frequency of microsecond-long gaps.

The most prominent cause of long time-gaps is not running an application in
real time or pinned to a core. While the frequency of gaps greater than 1µs does
not change significantly, the latency does increase. When pinned in isolation on
a CPU, 99.9th percentile of the 1µs-or-more gaps are less than 10µs. Without
pinning and running in real time, over 10% of the gaps are 10µs or longer,
and several hundreds-of-microsecond long gaps occur every second. A pinned
application sharing a core with other processes exhibits latency in-between the
aforementioned results - which makes clear VMs are more prone to long latencies,
especially when the VM is running on a single core.

A different source of latency is coding practice: Listings 1.1 and 1.2 show
two ways to conduct the TSC user-space test. While Listing 1.1 measures the
exact gap between two consecutive reads, it potentially misses longer events
occurring between loops. Listing 1.2 overcomes this problem, but also captures

Where Has My Time Gone? 211

1 while (!done) {
2 //Read TSC twice , one immedately after the other
3 do_rdtscp(tsc , cpu);
4 do_rdtscp(tsc2 ,cpu2);
5 //If the gap between the two reads is above a threshold , save

it
6 if ((tsc2 - tsc > threshold) && (cpu == cpu2))
7 buffer[samples ++] = tsc2 -tsc; }

Listing 1.1. Reading and Comparing TSC - Code 1.

1 while (!done) {
2 //Read TSC once
3 do_rdtscp(tsc , cpu);
4 //If the gap between the current and the previous reads is

above a threshold , save it
5 if ((tsc - last > threshold) && (cpu == lastcpu))
6 buffer[samples ++] = tsc -last;
7 last = tsc;
8 lastcpu = cpu; }

Listing 1.2. Reading and Comparing TSC - Code 2.

gaps caused by the code itself. Consequently, Listing 1.2’s minimal gap grows
from 9 ns to 14 ns, while the maximal gap is about twofold longer. In addition,
page faults lead to hundreds of microseconds latencies that can be avoided using
e.g. mlock.

5 Discussion

This paper contributes a decomposition of the latency-inducing components
between an application to the wire. We hope that other researchers can make
use of this work to calibrate their design goals and results, and provide a better
understanding of the key components of overall latency. The results are gener-
alizable also to other platforms and other Linux kernel versions8.

Four observations summarize the lessons learned. First, there is no single
source of latency: using ultra low latency switches or NICs alone are insufficient
even when using sophisticated kernel bypass options. It is only the combination
of each of these efforts which may satisfactorily reduce latency experienced in
a network system. Second, tail events are no longer negligible and result in two
side effects: (1) latency-sensitive transactions may experience delays far worse
than any performance guarantee or design for resilience (e.g. if the event is longer
than retransmission timeout (RTO)) and (2) the “noise” – events well beyond
the 99.9th percentile – potentially consume far more than 0.01% of the time.
This calls for a change of paradigm: instead of qualifying a system by its 99.9th

percentile, it may be that a new evaluation is called for; for example a system
might need to meet a certain signal-to-noise ratio (SNR) (i.e. events below 99.9th

percentile divided by events above it), as in other aspects of engineered systems.

8 Based on evaluation on Xeon E5-2637 v3, i7-6700K and i7-4770 based platforms,
and Linux kernels ranging from 3.18.42 to 4.4.0-42.

212 N. Zilberman et al.

Finally, in large scale distributed systems (e.g., hyper data center) the impact
of the speed of light increases. When a data center uses hundreds of meters long
fibers [14] and the RTT on every 100 m is 1µs, the aggregated latency is of
the order 10µs to 20µs. Consequently, the topology used in the network and
the locality of the data become important, leading to approaches that increase
networking locality, e.g. rack-scale computing. While hundred-meter long fibers
can not be completely avoided within hyper-data center, such traversals should
be minimized.

5.1 The Good, the Bad and the Ugly

The obtained results can be categorized into three groups: the “Good”, the
“Bad”, and the “Ugly”.

The Good are the latency contributors whose 99.9th percentile is below 1µs.
This group includes the simple operations in kernel and user space, PCIe and a
single switch latency.

The Bad are the latency contributors whose 99.9th percentile is above 1µs,
but less than 100µs. This includes the latency of sending packets over user
space+OS, entire host latency, client-server latency, RTT over 100 m fibers and
multi-stage network topology.

The Ugly are the large latency contributors at the far end of the tail, i.e. the
“noise”, contributing more than 100µs. These happen mostly on the user space
and within a VM. “Ugly” events will increasingly overshadow all other events,
thereby reducing the SNR. Some events outside the scope of this paper, such as
network congestion, also fall within this category [7].

5.2 Limitations

This paper focuses upon the unavoidable latency components within a sys-
tem. It thus does not take into account aspects such as congestion, queueing or
scheduling effects. No attempt is made to consider the impact of protocols, such
as TCP, and their effect on latency and resource contention within the host is
also outside the scope.

This work has focused on commodity hardware and standard networking
practices and on PCIe interconnect and Ethernet-based networking, rather than,
e.g., RDMA and RCoE, reserved for future work.

6 Conclusion

Computer users hate to wait – this paper reports on some of the reasons for
latency in a network-based computer system. Using a decompositional analysis,
the contribution of the different components to the overall latency is quantified,
and we show that there is no single overwhelming contributor to saving the end-
to-end latency challenge in data centers. Further we conclude that more and

Where Has My Time Gone? 213

more latency components, such as the interconnect and cabling, will become
significant as the latency of other components continues to improve. We also
conclude that the long tail of events, beyond the 99.9th percentile, is far more
significant than its frequency might suggest and we go some way to quantify this
contribution.

“Good”,“Bad”, and “Ugly” classes are applied to a range of latency-
contributors. While many of the “Bad” latency contributors are the focus of
existing effort, the “Ugly” require new attention, otherwise performance can-
not be reasonably guaranteed. Giving the “Ugly” latencies attention will require
concerted effort to improve the state of instrumentation, ultimately permitting
end-to-end understanding.

Acknowledgments. We would like to thank the many people who contributed to this
paper. We would like to thank Salvator Galea and Robert N Watson, who contributed
to early work on this paper. This work has received funding from the EPSRC grant
EP/K034723/1, Leverhulme Trust Early Career Fellowship ECF-2016-289, European
Union’s Horizon 2020 research and innovation programme 2014-2018 under the SSI-
CLOPS (grant agreement No. 644866), ENDEAVOUR (grant agreement No. 644960)
and EU FP7 Marie Curie ITN METRICS (grant agreement No. 607728).

Dataset. A reproduction environment of the experiments, and the experimental
results, are both available at http://www.cl.cam.ac.uk/research/srg/netos/projects/
latency/pam2017/ and https://doi.org/10.17863/CAM.7418.

References

1. Barroso, L.A.: Landheld Computing. In: IEEE International Solid State Circuits
Conference (ISSCC) (2014). Keynote

2. Cheshire, S.: It’s the latency, stupid. http://www.stuartcheshire.org/rants/
Latency.html. Accessed July 2016

3. Guo, C., et al.: RDMA over commodity ethernet at scale. In: SIGCOMM 2016
(2016)

4. Hemminger, S.: NetEm - Network Emulator. http://man7.org/linux/man-pages/
man8/tc-netem.8.html. Accessed July 2016

5. Kalia, A., et al.: Design guidelines for high performance RDMA systems. In:
USENIX ATC, vol. 16, pp. 437–450 (2016)

6. Mayer, M.: What Google knows. In: Web 2.0 Summit (2006)
7. Mittal, R., et al.: TIMELY: RTT-based congestion control for the datacenter. SIG-

COMM Comput. Commun. Rev. 45, 537–550 (2015). ACM
8. Nussbaum, L., Richard, O.: A comparative study of network link emulators. In:

SpringSim 2009, pp. 85:1–85:8 (2009)
9. Oracle: Oracle VM VirtualBox. https://www.virtualbox.org/. Accessed Oct 2016

10. Paoloni, G.: How to benchmark code execution times on Intel IA-32 and IA-64
instruction set architectures. Technical report 324264–001, Intel (2010)

11. Patterson, D.A.: Latency lags bandwidth. Commun. ACM 47(10), 71–75 (2004)
12. Rumble, S.M., et al.: It’s time for low latency. In: HotOS 2013, p. 11. USENIX

Association (2011)
13. SAP: Big data and smart trading (2012)

http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/pam2017/
http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/pam2017/
https://doi.org/10.17863/CAM.7418
http://www.stuartcheshire.org/rants/Latency.html
http://www.stuartcheshire.org/rants/Latency.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.virtualbox.org/

214 N. Zilberman et al.

14. Singh, A., et al.: Jupiter rising: a decade of clos topologies and centralized control in
Google’s datacenter network. SIGCOMM Comput. Commun. Rev. 45(4), 183–197
(2015)

15. Tolly Enterprises: Mellanox spectrum vs. broadcom StrataXGS Tomahawk 25GbE
& 100GbE performance evaluation - evaluating consistency & predictability. Tech-
nical report 216112 (2016)

16. Zilberman, N., et al.: NetFPGA SUME: toward 100 Gbps as research commodity.
IEEE Micro 34(5), 32–41 (2014)

Characterization and Troubleshooting

Mind the Gap Between HTTP and HTTPS
in Mobile Networks

Alessandro Finamore(B), Matteo Varvello, and Kostantina Papagiannaki

Telefonica Research, Barcelona, Spain
{alessandro.finamore,matteo.varvello,

kostantina.papagiannaki}@telefonica.com

Abstract. Fueled by a plethora of applications and Internet services,
mobile data consumption is on the rise. Over the years, mobile operators
deployed webproxies to optimize HTTP content delivery. Webproxies also
produce HTTP-logs which are a fundamental data source to understand
network/services performance and user behavior. The recent surge of
HTTPS is progressively reducing such wealth of information, to the point
that it is unclear whether HTTP-logs are still representative of the overall
traffic. Unfortunately, HTTPS monitoring is challenging and adds some
extra cost which refrains operators from “turning on the switch”. In this
work, we study the “gap” between HTTP and HTTPS both quantifying
their intrinsic traffic characteristics, and investigating the usability of the
information that can be logged from their transactions. We leverage a 24-
hours dataset collected from a webproxy operated by a European mobile
carrier with more than 10M subscribers. Our quantification of this gap
suggests that its importance is strictly related to the target analysis.

1 Introduction

Mobile operators are facing an explosion of demand for data access services.
Recent estimates forecast an eight-fold increase of demand between 2015 and
2020, a rate three times higher than for fixed access networks [15]. This explosion
is driven both by the constant evolution of the mobile apps and Internet services
ecosystem, and the roll out of 4G technologies.

In this dynamic and demanding scenario, traffic monitoring is paramount.
Accurate understanding of both user behavior and service quality are key to drive
network investments. To study data services, mobile operators rely on Usage
Data Records (UDRs) and HTTP-logs. UDRs aggregate users data activity over
periods of time lasting from minutes up to multiple hours. They are collected
for billing purposes and do not detail the apps/services used [8,9].

Differently from UDRs, HTTP-logs contain detailed information on individ-
ual HTTP transactions. They are usually collected by webproxies, middle-boxes
that aim at optimizing HTTP delivery through in-network caching and con-
tent modification (e.g., image resolution reduction) [4,13]. HTTP-logs have been
extensively used both by operators and academia to characterize mobile network
traffic [2,3,6,11,12,16].
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 217–228, 2017.
DOI: 10.1007/978-3-319-54328-4 16

218 A. Finamore et al.

Fig. 1. Sketch of a mobile network architecture where a web acceleration proxy is
deployed.

With the rise of HTTPS, this scenario is however rapidly changing.
For instance, between June 2015 and June 2016,1 Google reported a +13%
increase of requests served over HTTPS. Sandvine also reports that more than
60% of mobile traffic worldwide is currently encrypted [10]. While this calls for
instrumenting webproxies to also log HTTPS transactions, it is unclear whether
the additional cost is justified. In fact, HTTPS exposes little information about
the service and content users access. In addition, network performance indexes
(e.g., throughput and latency) can only be computed on the whole TLS connec-
tion and not on individual transactions, as commonly done for HTTP.

In this work we present the first comparative study between HTTP and
HTTPS traffic for mobile networks. Our goal is to quantify the “gap” between
HTTP and HTTPS both in term of their macroscopic qualities and of their
accuracy when singularly used to perform common analysis such as data con-
sumption, user mobility, etc. The input of our study is a unique dataset spanning
HTTP and HTTPS traffic, radio-layer information, and device information from
a 10M-subscriber European mobile operator.

Our quantification of this gap suggests that its importance is strictly related to
the target analysis.When focusing on volume, neither HTTPnor HTTPSalone are
enough to characterize users activity. This is because of a combination of factors
including type of device and usage pattern across time. Conversely, both traffic
types are capable to capture human-driven behaviors like user mobility, which in
turn drives analysis like traffic consumption in space and cell towers utilization.

2 Background

This section overviews the classic mobile network architecture while emphasiz-
ing the role of webproxies in it (Fig. 1). The Radio Access Network (RAN),
commonly called “last mile”, is composed of thousands of elements such as cell
1 https://www.google.com/transparencyreport/https/?hl=en.

https://www.google.com/transparencyreport/https/?hl=en

Mind the Gap Between HTTP and HTTPS in Mobile Networks 219

sectors, towers, and radio controllers. The Core Network (CN) bridges the RAN
with the Internet by mean of packet data gateways (GGSN and PGW) which
allow mobile users to access data services. The Mobility Management Entity
(MME) servers handle network events related to handovers, paging, and access
control to radio channels, each carrying the device id and the sector from which
the event was triggered. The MME is the control plane of a mobile network.

Figure 1 also shows an acceleration webproxy ; this is a transparent (or explicit)
HTTP proxy that operators deploy to speed up content delivery at the RAN while
reducing traffic volume at the CN. Common webproxy services are: (i) content
caching, (ii) content compression (e.g., reducing image size/resolution or video
format re-encoding), and (iii) dynamic traffic policies enforcement (e.g., band-
width throttling for users that reach their monthly data cap, protection from mal-
ware and third party tracking services). Webproxies log each HTTP transaction
into HTTP-logs, but some vendors provide monitoring solutions that also log the
remaining TCP activity [10]. We call such “extended” logs web-logs .

3 Dataset

We consider web-logs collected for 24 consecutive hours (April 27th, 2016) by the
acceleration webproxy of a major European mobile operator serving more than
10M subscribers. The considered webproxy usually logs HTTP traffic only, but
it can be sporadically instrumented to report on other TCP traffic like HTTPS.

We call transaction an entry in the web-logs. Each transaction contains at
least the following fields: IPs/ports tuple (source and destination), timestamp,
duration, user-id, and bytes delivered. Additional fields can be provided based
on the transaction type. Specifically, an “HTTP transaction” corresponds to an
HTTP request/response exchange for which the webproxy further logs HTTP
meta-data such as hostname, URL, user-agent, and content-type. User privacy
is guaranteed by hashing sensible information like user-id, requested URL, etc.
For the remainder of the traffic, a transaction corresponds to a TCP connection.
If the ClientHello message from a TLS handshake is detected, the webproxy
also logs the Service Name Identification (SNI), when provided.

We combine the webproxy dataset with two additional data sources.

Radio-layers enrichment: We process MME network events (see Sect. 2) to
create mobility radio-layers, i.e., per user timelines detailing to which sectors
each user’s device connects to over time. It follows that given the tuple (user-id,
timestamp, duration) of a web-log transaction we can identify the list of sectors
the transaction relates to. This enables us to investigate how content is consumed
by users while moving across the network (see Sect. 5) at a finer granularity with
respect to the literature [12,16].

TAC enrichment: The Type Allocation Code (TAC) database is an internal
resource of the considered operator, and it is based on the GSMA TAC database,2

2 https://imeidb.gsma.com/imei/login.jsp.

https://imeidb.gsma.com/imei/login.jsp

220 A. Finamore et al.

Fig. 2. Dataset overview.

i.e., the standardized allocation of TAC among vendors.3 The TAC database is
a static table mapping vendor and device model to a user-id. This mapping is
more robust than the classic approach based on HTTP user-agent string, and it
works also in presence of HTTPS.

3.1 Dataset Curation

Following the logic described in Fig. 2, we split web-log transactions into three
classes: HTTP, HTTPS, and TCP-oth (i.e., the TCP traffic that is neither
HTTP nor HTTPS). Since the webproxy does not explicitly label web-log entries
originated by TLS traffic, we identify HTTPS based on the destination port
(443). The webproxy logs the HTTP METHOD for each HTTP transaction which
eases the identification of HTTP traffic. In presence of a CONNECT, i.e., for clients
explicitly connecting through a proxy, we still use the destination port to distin-
guish between HTTP and HTTPS.

The middle of Fig. 2 reports the percentage of users, bytes, and transac-
tions of each classification tree leaf, while aggregated statistics are reported at
the bottom. Overall, HTTPS dominates the volume of bytes (66.3%) but we
also find a non negligible 2.5% of TCP-oth volume. When we focus on transac-
tions, we notice that they are equally distributed between HTTPS (48.7%) and
HTTP (46.5%), which is counter-intuitive due to the bytes difference observed
above. This is due to the presence of persistent connections that go undetected
in HTTPS. We further analyze this issue in the following.

Content consumed in mobile networks is usually “small”, e.g., the
average object size is in the order of tens of kB [5,16]. To reduce the TCP
handshake overhead, HTTP 1.1 introduced the concept of persistent connec-
tions which allow devices to use a single TCP connection to send multiple
requests. Such technique is common to both HTTP and HTTPS, but it is a

3 The TAC is part of the IMEI, i.e., the unique identifier of a mobile device.

Mind the Gap Between HTTP and HTTPS in Mobile Networks 221

Fig. 3. Impact of persistent connections: transaction duration (left) and percentage of
HTTP persistent connections (right).

hassle only when monitoring HTTPS. In fact, encryption does not allow to iden-
tify request/response pairs over the same TLS connection, resulting in a coarser
view over HTTPS traffic if compared to HTTP.

To visualize the impact of the latter limitation, Fig. 3 (left) shows the Cumu-
lative Distribution Function (CDF) of the transaction duration for HTTP,
HTTPS, and TCP-oth. If on the one hand the three traffic classes are sub-
ject to different dynamics due to how different services use them, on the other
hand such huge differences hint to the presence of persistent connections.

We further corroborate on this by counting the percentage of TCP connec-
tions having more than one HTTP transaction for each user. Figure 3 (right)
shows the CDF of the fraction of persistent HTTP connections during one peek
hour (results hold for different hours). The figure shows that the usage of persis-
tent connections is indeed extremely common and proportional to user activity,
e.g., 90% of the very active users (trans> 1,000 in the plot) have more than 65%
of their HTTP connections being persistent.

To the best of our knowledge, no previous study has quantified the adoption of
persistent connections in the wild. Our results indicate that their high popularity
can introduce substantial errors when comparing HTTP with HTTPS traffic.
Accordingly, to enable a meaningful comparison among the considered traffic
classes, we have opted for pre-processing HTTP traffic to aggregate different
transactions belonging to the same individual TCP connections.

4 Overall Volumes

We start our analysis with a top-down characterization of how traffic volume
(bytes) is split between traffic types.

Daily aggregate breakdown: Figure 4 (left) shows the CDF of the percentage
of HTTP, HTTPS, and TCP-oth volume, per user. As expected, HTTPS is the
dominant traffic type: 50% of users have more than 77.6% of their volume carried

222 A. Finamore et al.

Fig. 4. Comparing traffic volume: on the left, overall percentage of per user HTTP,
HTTPS, and TCP-oth; on the right, further breakdown with respect to absolute con-
sumption (lines reflect the 50th percentile of each volume decile, while shaded areas
indicate 25th–75th).

over encrypted connections. The figure also shows that TCP-oth volume is far
from being negligible: 5.6% of users have more than 70% of TCP-oth traffic.

We further dig into the TCP-oth traffic using the destination port to classify
the specific service being used. We find that 84% of volume is associated to
email (e.g., 995/IMAP-SSL, 993/POP3-SSL, 110/POP3) and push notification
services (5223 for Apple, 5228 for Android). We also find a few thousands users
with “suspicious” behaviors: they contact 227 k IP addresses using 49 k ports
(in a peak hour) and do not transfer any data on the opened TCP connection. For
these 227 k IP addresses, we further retrieve the Autonomous System Number
(ASN) using Team Cymru4 and its classification using PeeringDB5 and CAIDA
AS ranking [1]. Such analysis reveals that 97% of these IPs belong to fixed and
mobile ISPs, and are not linked to classic services. We conjecture the presence of
malware, of which we also find evidences,6 or some form of P2P communication.

We further divide users into ten groups based on the deciles of the distribution
of their volume consumption. For each group we then extract the 25th, 50th, and
75th percentiles of the share of HTTP, HTTPS, and TCP-oth. Figure 4 (right)
reports the results (the x-axis details the used deciles). Beside noticing that
HTTPS dominates indistinctly within each bin, we observe that TCP-oth shares
are inversely proportional to the overall volume consumed, while the opposite
is true for HTTP. Results reported in Fig. 4 hold also when considering the
number of transactions (we avoid reporting them for brevity). Those differences
are possibly due to the combination of apps/services used, but to the best of our
knowledge, there are not robust techniques available to classify mobile traffic.
Hence we leave a detailed characterization for the future.

4 http://www.team-cymru.org/IP-ASN-mapping.html#dns.
5 www.peeringdb.com.
6 http://bit.ly/1Uv9hNF.

http://www.team-cymru.org/IP-ASN-mapping.html#dns
www.peeringdb.com
http://bit.ly/1Uv9hNF

Mind the Gap Between HTTP and HTTPS in Mobile Networks 223

Fig. 5. Comparing OS per-device volume: daily aggregate (left) and related percentage
of HTTPS (right).

Device type: We here investigate the relationship between device type and
consumed volume. Figure 5 (left) shows the boxplots (5th, 25th, 50th, 75th,
95th percentiles) of the users absolute volume consumption per vendor. Notice
the y-axis in logscale. For the sake of visibility, we only report on vendors with
at least 1% of users and we group the remaining vendors as “other”. The figure
shows that Apple devices consume 3.6× and 1.6× (median values) more traffic
than Microsoft and Android devices, respectively. If we focus on the fraction of
HTTPS traffic (Fig. 4, right), we notice that the share of HTTPS is inversely
proportional to the absolute volume, e.g., 50% of the Microsoft devices only
consume about 2 MB, out of which 90% is HTTPS.

We further investigate the HTTPS traffic generated by Microsoft devices and
find that, on average, 60% of their traffic is addressed to Windows services like
.bing. and *.live.*. A similar result holds for Motorola devices as well (having
Google instead of Microsoft services). This suggests that most of this HTTPS
traffic consists of “background noise”, i.e., communications generated by the
operating system and apps but not strictly triggered by users activity. However,
corroborating this belief with numbers is hard based on the available data.

Second Level Domain: Finally, we process the transaction hostnames to
understand if they offer visibility on the HTTPS services. Recall that for HTTPS
the hostname corresponds to the SNI communicated in the TLS handshake.

Fromeachhostname,we remove theTopLevelDomain (TLD)using theMozilla
Public Suffix list [7]. Then, for each Second Level Domain (SLD) found we com-
pute the total number of bytes, and the associated share of HTTP and HTTPS.
Overall, we find 1.6M SLDs, out of which 92% and 15% are used in HTTP and
HTTPS transactions respectively. The heatmaps in Fig. 6 show the top-50 (left)
and top-1000 (right) SLDs which account for 79.5% and 93.8% of volume in the
whole day. SLDs mostly coincide with CDN providers; however, in some cases
they accurately identify actual services (e.g., streaming – googlevideo, spotify;
social network – facebook, instagram, twitter, snapchat, whatsapp; gaming –
applifier, etc.).

224 A. Finamore et al.

Fig. 6. Top Second Level Domain (SLD) volume breakdown.

Takeaways: We observed and quantified a “traffic gap” between HTTP and
HTTPS. This gap originates from the different mix of services behind each pro-
tocol as well as OS (and device vendors). It follows that focusing on either one of
the two protocols only for traffic-based analysis introduces a substantial bias not
only on the overall volume, but also to capture device type diversity, and accessed
services. A proper characterization of these aspects is key for mobile operators.

5 Spatial and Temporal Analysis

Mobile operators are extremely interested in understanding where/how/when
their customers consume data when moving across the network. This is crucial
to drive investments (e.g., where to deploy/upgrade towers) and to support novel
services such as geofencing and SON (Self Organizing Networks). In the liter-
ature, Call Data Records (CDRs) have been largely exploited to study human
mobility [14]. However, a recent study [9] shows that UDRs (see Sect. 1) offer
a richer vision on user mobility. We argue that web-logs enable an even finer
grained spatial-temporal analysis than UDRs. This is because UDRs aggregate
activities in (large) time windows, and associate them with coarse spatial infor-
mation. Unfortunately, our dataset does not include UDRs and we thus cannot
further quantify this intuition.

We here explore to which extent HTTP traffic is representative of how users
consume content across time and space when compared with HTTPS. As done
in the literature [9], we approximate a user location with the position of the

Mind the Gap Between HTTP and HTTPS in Mobile Networks 225

Fig. 7. HTTP and HTTPS activity
over time (30 k random users).

Fig. 8. Number of towers used (all
users).

Fig. 9. Percentage of users consuming HTTP, HTTPS, and TCP-oth traffic with
respect to time of the day.

cell towers she is connected to. Note also that HTTP(S) transactions can be
associated to different towers during their lifetime due to user mobility and/or
load balancing at the radio layer. Our enrichment process (see Sect. 3) allows to
identify all the towers associated to a transaction.

Traffic discontinuity: For each user we group HTTP and HTTPS transactions
in 10 min bins. Each bin has a binary value depending if at least 1 transaction
has been found or not. Figure 7 shows the obtained bitmaps for 30,000 random
users (results hold for other users). Notice how HTTP traffic (left plot) is more
“discontinued” than HTTPS (right plot), i.e., HTTP activity is more occasional
and sparse across the day.

Figure 9 shows a more detailed quantification of traffic variation across the
day. We partition the day in 6 h bins starting from midnight. Within each bin,
we compute the percentage of users having 0%, >50%, or >80% of volume
over HTTP(S). Notice how HTTP better captures users activity during daily
hours; instead, at night time (00:00–05:00) 50% of the users do not generate any
HTTP traffic. As also observed for the device analysis (see Sect. 4), this suggests

226 A. Finamore et al.

that HTTP traffic better captures real user activity rather than (automatic)
background services.

Cell tower perspective: We here investigate how HTTP and HTTPS are
consumed from a cell tower perspective. Figure 8 reports the CDF of the number
of distinct towers each device connect to during the day. When focusing on HTTP
traffic only, we underestimate the set of towers contacted by a device. Specifically,
only 6% of devices contact more than 10 towers, while such value doubles when
focusing on HTTPS traffic only. The figure also shows that the HTTPS curve
matches quite well the “all traffic” curve, which suggests that HTTPS is a very
good “proxy” of the overall activity.

Next, we quantify how traffic is distributed among towers with the goal to
identify per user “hot spots”, i.e., which towers carry most of the traffic for
each user. We do this in term of number of transactions rather than volume as
the presence of undetectable persistent connections in HTTPS can introduce a
non-negligible error. Specifically, it is not easy to accurately split the volume
of an HTTPS transaction across the towers it uses (see Sect. 3). We find that,
for HTTP, 93% of the users consume at least 80% of their HTTP traffic in
just 5 hot spots; this percentage reduces to 80% of the users when considering
HTTPS. In term of hot spot similarity, we find a strong intersection: for 70%
of the users, 7 out of 10 HTTP hot spots are also HTTPS hot spots. In other
words, HTTP traffic alone seems to capture well the important locations where
content is consumed.

Mass centers: To further corroborate on the previous result, we conclude
our spatial analysis investigating “how distant in space” is HTTP traffic from
HTTPS, and vice-versa. For each user, we compute a mass center [9] represent-
ing where HTTP, HTTPS, and the whole traffic is consumed. A mass center
is computed as the average of towers coordinates weighted by their number
of transactions. Let us call those points mass-HTTP , mass-HTTPS , and mass-
ALL respectively. We then compute the Euclidean distance between (mass-ALL,
mass-HTTP) and (mass-ALL, mass-HTTPS) for each user. Figure 10 (left)
shows the CDF of the obtained distances. Results show that HTTP content
tends to be consumed further away than the majority of the traffic. This result
is independent from users activity, e.g., the plot obtained for very active HTTP
users (trans > 1,000) is not significantly different from the plot obtained for the
whole set of users.

To further quantify the “spatial gap” between HTTP and HTTPS, we nor-
malize the euclidean distances with respect to the user radius of gyration com-
puted considering the whole traffic activity. The gyration radius is a well estab-
lished metric to characterize user mobility [9,14]; it captures the average distance
between a point (the mass center) and another set of points (all towers locations).
For each user, we normalize the Euclidean distance between (mass-ALL, mass-
HTTP) and (mass-ALL, mass-HTTPS) with the gyration obtained considering
the whole traffic. Figure 10 reports the CDFs of the normalized Euclidean dis-
tances. The figure shows that HTTPS captures very well user mobility, e.g., 97%
of users have a normalized Euclidean distance <0.5. The mobility observed from

Mind the Gap Between HTTP and HTTPS in Mobile Networks 227

Fig. 10. Euclidean distance between mass centers (left) and normalized distance with
respect to overall gyration (right).

HTTP is very close to the overall one, and the normalized Euclidean distance
tends to decrease for heavy HTTP users.

We conjecture that the latter result derives from the human component of
the mobility problem. Users do not explicitly choose to use HTTP or HTTPS;
the presence of a traffic type is an “artifact” of the device and applications
used. However, a user chooses the location to visit and, as far as some traffic is
consumed, this is enough to characterize her mobility pattern.

Takeaways: The “time gap” between HTTP and HTTPS is substantial, with
each protocol being respectively the most popular one at different points in time.
Conversely, the “spatial gap” between HTTP and HTTPS is limited and both
protocol are quite good in approximating user mobility.

6 Conclusions

In this work we presented the first comparative study between HTTP and
HTTPS traffic for mobile networks. The input of our study was a unique dataset
including HTTP and HTTPS traffic, radio-layer information, and device infor-
mation from a 10M-subscriber European mobile operator. Our analysis high-
lighted three different “gaps” between HTTP and HTTPS. First, a “traffic
gap” related to how different services and OS/vendors use HTTP and HTTPS.
Second, a “time gap” due to protocols being more used at different time of the
day. Third a surprisingly small “spatial gap”, probably motivated by the human
component of mobility.

From an operator perspective, logging non-HTTP traffic implies additional
investments. Based on the available dataset, we estimate that for a mid/large
mobile operator such logging requires few additional TB of storage each day.
This is an affordable investment compared to the potential need to upgrade the
processing cluster along with the monitoring solution. Similarly, the extensive
adoption of persistent connections represent a hassle for monitoring network
metrics that accurately reflect service performance. Overall, we argue that state

228 A. Finamore et al.

of the art monitoring solutions are not yet ready to properly characterize HTTPS
traffic. We hope that the results provided in this work quantify the importance
of monitoring HTTPS, and they further stimulate the discussion in the research
community towards creating better monitoring systems.

References

1. CAIDA: As rank. http://as-rank.caida.org
2. Casas, P., Fiadino, P., Bär, A.: Understanding HTTP traffic and CDN behav-

ior from the eyes of a mobile ISP. In: Faloutsos, M., Kuzmanovic, A. (eds.)
PAM 2014. LNCS, vol. 8362, pp. 268–271. Springer, Cham (2014). doi:10.1007/
978-3-319-04918-2 28

3. Erman, J., Ramakrishnan, K.: Understanding the super-sized traffic of the super
bowl. In: Proceedings of the ACM Internet Measurement Conference (IMC), Octo-
ber 2013

4. Erman, J.E., Gerber, A., Hajiaghayi, M., Pei, D.: To cache or not to cache: The
3G case. IEEE Internet Comput. 15(2), 27–34 (2011)

5. Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., Estrin, D.: A first look
at traffic on smartphones. In: Proceedings of the ACM Internet Measurement Con-
ference (IMC), November 2010

6. Keralapura, R., Nucci, A., Zhang, Z.L., Gao, L.: Profiling users in a 3G network
using hourglass co-clustering. In: Proceedings of the ACM MobiCom, September
2010

7. Mozilla: Public suffix list. http://publicsuffix.org/
8. Mucelli, E., Oliveira, R., Carneiro, A.V., Naveen, K.P., Sarraute, C.: Measurement-

driven mobile data traffic modeling in a large metropolitan area. In: Proceedings
of the IEEE Conference on Pervasive Computing and Communications (PerCom),
St. Luis, March 2015

9. Ranjan, G., Zang, H., Zhang, Z.L., Bolot, J.: Are call detail records biased for
sampling human mobility? ACM SIGCOMM Mob. Comput. Commun. Rev. 16(3),
33–44 (2012)

10. Sandvine, Global Internet Phenomena: Spotlight: encrypted internet traffic.
https://www.sandvine.com/trends/encryption.html

11. Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Venkataraman, S., Wang, J.: A first look at
cellular network performance during crowded events. In: Proceedings of the ACM
SIGMETRICS, June 2013

12. Trestian, I., Ranjan, S., Kuzmanovic, A., Nucci, A.: Measuring serendipity: con-
necting people, locations and interests in a mobile 3G network. In: Proceedings of
the ACM Internet Measurement Conference (IMC), November 2009

13. Vallina-Rodriguez, N., Sundaresan, S., Kreibich, C., Weaver, N., Paxson, V.:
Beyond the radio: illuminating the higher layers of mobile networks. In: Proceed-
ings of the ACM MobiSys, November 2015

14. Blondel, V.D., Adeline Decuyper, G.K.: A survey of results on mobile phone
datasets analysis. CoRR arXiv arXiv:1502.03406 (2015)

15. Vni, C.: The Zettabyte Era: Trends and analysis. http://www.cisco.com/
c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
vni-hyperconnectivity-wp.html

16. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying
diverse usage behaviors of smartphone apps. In: Proceedings of the ACM Internet
Measurement Conference (IMC), November 2011

http://as-rank.caida.org
http://dx.doi.org/10.1007/978-3-319-04918-2_28
http://dx.doi.org/10.1007/978-3-319-04918-2_28
http://publicsuffix.org/
https://www.sandvine.com/trends/encryption.html
http://arxiv.org/abs/1502.03406
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

Using Loops Observed in Traceroute
to Infer the Ability to Spoof

Qasim Lone1(B), Matthew Luckie2, Maciej Korczyński1, and Michel van Eeten1

1 Delft University of Technology, Delft, The Netherlands
{Q.B.Lone,Maciej.Korczynski,M.J.G.vanEeten}@tudelft.nl

2 University of Waikato, Hamilton, New Zealand
mjl@wand.net.nz

Abstract. Despite source IP address spoofing being a known vulner-
ability for at least 25 years, and despite many efforts to shed light on
the problem, spoofing remains a popular attack method for redirection,
amplification, and anonymity. To defeat these attacks requires operators
to ensure their networks filter packets with spoofed source IP addresses,
known as source address validation (SAV), best deployed at the edge
of the network where traffic originates. In this paper, we present a new
method using routing loops appearing in traceroute data to infer inade-
quate SAV at the transit provider edge, where a provider does not filter
traffic that should not have come from the customer. Our method does
not require a vantage point within the customer network. We present
and validate an algorithm that identifies at Internet scale which loops
imply a lack of ingress filtering by providers. We found 703 provider ASes
that do not implement ingress filtering on at least one of their links for
1,780 customer ASes. Most of these observations are unique compared
to the existing methods of the Spoofer and Open Resolver projects. By
increasing the visibility of the networks that allow spoofing, we aim to
strengthen the incentives for the adoption of SAV.

1 Introduction

Despite source IP address spoofing being a known vulnerability for at least 25
years [6], and despite many efforts to shed light on the problem (e.g. [7–9]), spoof-
ing remains a viable attack method for redirection, amplification, and anonymity,
as evidenced in February 2014 during a 400 Gbps DDoS attack against Cloud-
fare [19]. That particular attack used an amplification vector in some imple-
mentations of NTP [19]; a previous attack against Spamhaus [10] in March
2013 achieved 300+ Gbps using an amplification vector in DNS. While some
application-layer patches can mitigate these attacks [20], attackers continuously
search for new vectors.

Defeating amplification attacks, and other threats based on IP spoofing,
requires providers to filter incoming packets with spoofed source IP addresses [11]
– in other words, to implement BCP 38, a Best Current Practice also known as
source address validation (SAV). SAV suffers from misaligned incentives: a net-
work that adopts SAV incurs the cost of deployment, while the security benefits
c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 229–241, 2017.
DOI: 10.1007/978-3-319-54328-4 17

230 Q. Lone et al.

diffuse to all other networks. That being said, SAV is a widely supported norm
in the community. Increasing the visibility of which networks have or have not
adopted SAV reduces the incentive problem by leveraging reputation effects and
the pressure of other providers and stakeholders. These factors put a premium
on our ability to measure SAV adoption.

In this paper, we report on the efficacy of a new measurement technique that
is based on an idea of Jared Mauch. It allows an external observer to use tracer-
oute to infer the absence of filtering by a provider AS at a provider-customer
interconnect. This study makes the following five contributions: (1) We show
that it is generally feasible for providers to deploy static ingress ACLs, as their
customers rarely change address space. (2) We describe a scalable algorithm
for accurately inferring the absence of ingress filtering from specific patterns in
traceroute data. (3) We validate the algorithm’s correctness using ground truth
from 7 network operators. (4) We demonstrate the utility of the algorithm by
analyzing Internet-scale inferences we made. (5) We build a public website show-
ing the provider-customer edges that we inferred to imply the absence of filtering,
combined with actionable data that operators can use to deploy filtering.

2 Background on Ingress Filtering

The canonical documents describing the use of ingress filtering methods for SAV
are RFCs 2827 [11] and 3704 [5], known in the network operations and research
communities as BCPs 38 and 84. BCP 38 describes the basic idea: the source
address of packets should be checked at the periphery of the Internet against
a set of permitted addresses. For an access network, this check could be at the
point of interconnection with a single customer; for an enterprise, this could be
on their edge routers to their neighbors; and for a transit provider, this could
be on the provider-edge router where a customer connects. For single-homed
customers, a transit provider can discard packets that have a source address
outside the set of prefixes the customer announces to the transit provider, using
Strict or Feasible Reverse Path Forwarding (RPF). A router using Strict RPF
will drop a packet if it arrived on a different interface than the router would
choose when forwarding a packet to the packet’s source address; a router using
Feasible RPF will consider all paths it could use to reach the source address, not
just the best path.

BCP 84 discusses challenges in deploying ingress filtering on multi-homed
networks. Both Strict and Feasible RPF are not always feasible if a customer is
multi-homed and does not announce all of its prefixes to each neighbor router, as
it might do for traffic engineering purposes. Instead, an operator might define a
set of prefixes covering source addresses in packets the router will forward, known
as an Ingress Access List, or Ingress ACL. BCP 84 states that while ingress ACLs
require manual maintenance if a neighbor acquires additional address space, they
are “the most bulletproof solution when done properly”, and the “best fit ... when
the configuration is not too dynamic, .. if the number of used prefixes is low.”

Using Loops Observed in Traceroute to Infer the Ability to Spoof 231

3 Related Work

Testing a network’s SAV compliance requires a measurement vantage point inside
(or adjacent to) the network, because the origin network of arbitrary spoofed
packets cannot be determined [5]. The approach of the Spoofer project [7] is to
allow volunteers to test their network’s SAV compliance with a custom client-
server system, where the client sends spoofed packets in coordination with the
server, and the server infers that the client can spoof if the server receives these
spoofed packets. However, the Spoofer project requires volunteer support to
run the client to obtain a view from a given network. In May 2016, CAIDA
released an updated client [1] that operates in the background, automatically
testing attached networks once per week, and whenever the system attaches to
a network it has not tested in the previous week. The number of prefixes tested
per month has increased from ≈400 in May 2016 to ≈6000 in December 2016 [1].

Jared Mauch deployed the first technique to infer if a network had inade-
quate SAV without requiring a custom client-server system. As a product of the
Open Resolver Project [3], he observed DNS resolvers embedded in home routers
forwarding DNS queries from his system with IPX to other resolvers, without
rewriting the source IP address of the packet. These other resolvers returned the
subsequent answer directly to IPX , rather than to the DNS resolver in the home
router as they should have.

We emphasize that these methods are complementary, and that no one tech-
nique is able to test deployment of SAV for all networks.

4 Motivation of Ingress ACLs

As described in Sect. 2, the best place to deploy filtering is at the edge. How-
ever, not all edge networks have the technical ability or motivation to filter
their own traffic. A transit provider, however, is often managed by skilled net-
work operators who may already deploy defenses to prevent their customers
from announcing inappropriate routes. The provider-customer interconnect for
an edge network represents the other straightforward place to deploy ingress
filtering.

BCP−84BCP−38

Fr
ac

tio
n

of
 S

tu
b

A
Se

s

 5

 10

 15

 20

 25

Jan
’98

Jan
’00

Jan
’02

Jan
’04

Jan
’06

Jan
’08

Jan
’10

Jan
’12

Jan
’14

Jan
’16

IPv6
IPv4

 0

Fig. 1. Fraction of ASes whose prefix announcements changed month-to-month.

232 Q. Lone et al.

August 2016:

 0

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10
Prefixes in Ingress ACL

Fr
ac

tio
n

of
 S

tu
b

A
Se

s

IPv6, 7265 ASes
IPv4, 46693 ASes

 0.2

(a) Size of Ingress ACLs

IPv4 ASes
IPv6 ASes

 0

 0.6

 0.8

 1

Jan
’12

Jan
’13

Jan
’14

Jan
’15

Jan
’16

Fr
ac

tio
n

un
ch

an
ge

d

 0.2

 0.4

(b) Dynamism of Ingress ACLs

Fig. 2. Size and dynamism of ACLs to filter traffic from stub ASes.

Figure 1 quantifies the dynamism of address space announced by stub ASes
over time. Using BGP data collected by Routeviews and RIPE RIS with the
method described in Sect. 5.1, we aggregated the prefixes each stub AS originated
in BGP into the minimum prefix set, and examined month-to-month changes in
the set. Perhaps a consequence of IPv4 address exhaustion, we see a trend toward
stable announcement patterns. This trend may improve the practicality of static
ingress ACLs: in May 2000, ≈15% of stub ASes would have required deployment
of a different IPv4 ingress ACL month-to-month, but in 2015, less than 5% of
ASes would have required the same.

As BCP 84 states that because ingress ACLs require manual maintenance
they are best suited “when the configuration is not too dynamic” and “if the
number of used prefixes is low”, Fig. 2 examines the size and dynamism of ingress
ACLs required for stub ASes in August 2016. Figure 2a shows that 88.9% of
stub ASes would require an IPv4 ACL of no more than 4 prefixes, and 85.6%
of stub ASes would require an IPv6 ACL of a single prefix. Figure 2b shows the
dynamism of these ACLs over time, based on ACLs that could have been defined
for all stub ASes in January 2012, 2013, 2014, and 2015. For stub ASes for these
times, at least 77.4% of IPv4 ACLs would not have had to change over the course
of one year; for those defined in January 2012, 54.4% of the inferred ACLs would
not have required change even up to August 2016. Further, required IPv6 ACLs
would be even less dynamic: more than 74.6% of IPv6 ACLs would not have
needed to change over the course of 4.5 years until August 2016. We believe the
observed number of prefixes and dynamism over time imply that ingress ACLs
are feasible in the modern Internet.

5 Inferring Absence of Ingress Filtering Using Traceroute

The key idea of our approach is that traceroute can show absence of ingress
filtering by providers of stub ASes when a traceroute path reaches the stub AS
and then exits out of the stub, as the traceroute packets contain a source address
belonging to the vantage point (VP) launching the traceroute. If the provider’s

Using Loops Observed in Traceroute to Infer the Ability to Spoof 233

border router is performing SAV, it should filter the traceroute packet when it
arrives from the stub AS, as the packet has a source address not belonging to
the stub AS. If the provider’s router does not perform SAV, it will forward the
packet, and the traceroute will show an apparent IP-level forwarding loop as the
provider’s router returns subsequent packets to the stub AS.

Xia et al. found that 50% of persistent loops were caused by a border router
missing a “pull-up route” covering address space not internally routed by the
customer [21]. However, a forwarding loop does not imply absence of SAV at the
edge: a loop resulting from a transient misconfiguration or routing update can
occur anywhere in the network. The key challenge in this work is inferring the
provider-customer boundary in traceroute [16,18]. In this paper, we superimpose
millions of traceroutes towards random IP addresses in /24 prefixes to build a
topology graph, and use a small set of heuristics to infer provider-customer edges
for stub ASes in the graph. Sect. 5.1 describes the Internet topology datasets that
we used, and Sect. 5.3 describes the algorithm we used to filter the loops that
imply the absence of ingress filtering by the provider – in other words, the lack
of compliance with BCP 38.

5.1 Input Data

CAIDA IPv4 routed /24 topology datasets: We used CAIDA’s ongo-
ing traceroute measurements towards every routed /24 prefix in the Internet.
CAIDA’s probing of all routed /24s is especially useful here, as the goal is to
find unrouted space that can result in a forwarding loop. CAIDA’s traceroute
data is collected with scamper [15] using Paris traceroute which avoids spurious
loops by keeping the ICMP checksum value the same for any given traceroute [4].
As of August 2016, CAIDA probes every routed /24 using 138 Vantage Points
(VPs) organized into three teams; each team probes the address space indepen-
dently. Each team takes roughly 1.5 days to probe every routed /24.

CAIDA IPv4 AS relationships: We used CAIDA’s ongoing BGP-based AS
relationship inferences [17] to identify customer-provider interconnections in
traceroute paths. The relationship files were inferred by CAIDA using public
BGP data collected by Routeviews and RIPE RIS, using RIB files recorded on
the 1–5 of each month. We also used the same BGP data to identify the origin
AS announcing each prefix measured with traceroute.

CAIDA Sibling Inferences: We used CAIDA’s ongoing WHOIS-based AS-to-
organization inference file [13] to identify ASes that belong to the same under-
lying organization (are siblings). The sibling files were inferred by CAIDA using
textual analysis on WHOIS databases obtained from Regional Internet Registries
(RIRs) at 3-month intervals. We used sibling inferences to avoid mis-classifying
a loop that occurs within a single organization using multiple ASes as one that
occurs between distinct provider and customer ASes.

234 Q. Lone et al.

5.2 Construction of Topology

Our first goal is to correctly identify the provider-customer boundaries towards
stub ASes with high precision. Because the customer usually uses address space
provided by the provider to number their interface on their router involved in the
interconnection, the customer-edge router usually appears in traceroute using an
IP address routed by the provider. Therefore, one of our goals is to accurately
identify customer routers using provider address space without incorrectly infer-
ring that a provider’s backbone router belongs to a customer.

We assemble all traceroutes collected for a single cycle by a single team that
do not contain loops, and label each interface with (1) the origin AS of the
longest matching prefix for the interface address, and (2) the set of destination
ASes the interface address is in the path towards. If an address is in the path
towards multiple ASes, the address could not be configured on a customer router
of a stub AS.

5.3 Algorithm to Infer Absence of Ingress Filtering from Loops

Our algorithm considers two different ways a traceroute path may enter a stub
AS and exit through a provider AS: (1) a simple point-to-point loop between a
single provider-edge router and a single customer-edge router, (2) a loop from a
customer-edge router that exits using a different provider.

Simple point-to-point loops: Figure 3 illustrates the first case, where R3 is
a customer-edge router belonging to AS B configured with a default route via
R2. If the operator of B announces address space in BGP but does not have an
internal route for a portion of that address space, and does not have a “pull-up
route” covering the unused portion on R3, then R3 forwards the packet back
to R2 using the default route [21]. R2 will then forward the packet back to R3,

Fig. 3. A simple loop between AS A and its customer B implying absence of filtering
by A at R2. R2 should discard packet 4 because it arrives with a source address outside
of B’s network, rather than send it back to B (5).

Using Loops Observed in Traceroute to Infer the Ability to Spoof 235

Fig. 4. A two-provider loop between ASes A and C and their customer B implying
absence of filtering by C at R5. R5 should discard packet 5 because it arrives with a
source address outside of B, rather than forward the packet to R6.

the loop sequence will likely be a5 (customer-edge router), a4 (provider-edge
router), and a5 (customer-edge router), with a4 and a5 assigned from the same
IPv4 /30 or /31 prefix the routers use to form the point-to-point link. Therefore,
our criteria are: (1) that the addresses in the loop are assigned from a single
/30 or /31 prefix, (2) that the AS originating the longest matching prefix is
an inferred provider of the stub AS and not a sibling of the stub AS, (3) that
the assumed customer router only appears in traceroute paths towards the stub
AS, (4) that there is at least one other address originated by the provider in
the traceroute path towards the stub. Criteria #3 avoids incorrectly inferring a
provider-operated router as a customer-edge router when a loop occurs before
the stub AS (e.g. a1 a3 a2 a3) as a3 appears in traceroute paths towards both
B and C. Criteria #4 avoids incorrectly inferring which router in a traceroute
path is the customer-edge router when the customer-edge router is multi-homed
and the traceroute path enters via a second provider AS D (e.g., d2 a4 a5 a4).

Two-provider loops: Figure 4 illustrates the second case, where R3 and R4

are customer-edge routers belonging to AS B, with default routes configured
on R3 and R4. The underlying routing configuration issues are the same as a
point-to-point loop, except the default route is via a different AS than the AS
the traceroute entered the network. Figure 4 shows the traceroute visiting two
routers operated by AS B; however, it is possible that the traceroute will never
contain an IP address mapped to B, depending on how many routers in B the
traceroute visits, and how the routers respond to traceroute probes. Therefore,
our criteria are: (1) that the assumed customer router where the traceroute exits
appears only in paths towards the stub AS, (2) that both the ingress and egress
AS in the traceroute path are inferred providers of the stub AS and not a sibling
of the stub AS, (3) that there is no unresponsive traceroute hop in the traceroute
path where a customer router could be located, (4) that at least two consecutive
IP addresses mapped to the same egress AS appear in the loop. Criteria #2
does not require different provider ASes: if the stub AS is multi-homed to the
same provider with different routers, our method will still infer an absence of

236 Q. Lone et al.

filtering. Criteria #3 ensures that we do not mis-infer where the customer router
is located in the path, and thus incorrectly infer the AS that has not deployed
ingress filtering. Finally, criteria #4 reduces the chance that a loop inside the
customer network is mis-classified as crossing into a provider network if the
customer router responds with a third-party IP address.

5.4 Finding Needles in a Haystack

As discussed in Sect. 5.1, CAIDA uses three teams of Ark VPs to probe a random
address in every routed /24 prefix. In this section, we report on the characteristics
of cycle 4947 conducted by team 3. The characteristics of data conducted by
other teams and for other cycles is quantitatively similar. In total, cycle 4947
contains 10,711,132 traceroutes, and 163,916 (1.5%) of these contain a loop.
105,685 (64.5%) of the traceroutes with loops were not towards a stub network.

Of the remaining 58,231 traceroutes with loops towards stub ASes, we
inferred 31,023 (53.3%) had a loop within the stub network, i.e. the addresses
in the loop were announced in BGP by the stub, or involved the customer-edge
router. A further 11,352 traceroutes (19.5%) contained a loop with an unrespon-
sive IP address, and 1,373 traceroutes (2.4%) contained an unrouted IP address
that prevented us from inferring if the loop occurred at a provider-customer
interconnect. 610 traceroutes (1.0%) had a loop that we disqualified as occur-
ring at a customer-provider boundary, as the loop occurred at a router that
also appeared in paths towards multiple destination ASes, and 494 traceroutes
(0.8%) contained an IP address that could have been a third party address on
a customer router, rather than a router operated by a provider. In total, only
2,530 traceroutes with loops (4.3%) contained simple point-to-point loops, and
only 93 (0.2%) contained more complex two-provider loops.

5.5 Persistence of Loops

Given that we are looking for needles in haystacks, how reliably can we find
them? Ideally, we would be able to consistently reproduce the loops that imply
absence of ingress filtering, and discard observations caused by transient events.
Unfortunately, there is currently no straightforward way of doing so.

The data we used was collected by CAIDA using traceroutes conducted by
a distributed set of VPs towards a random IP address in each routed /24 prefix.
This approach adds efficiency by reducing the number of probes, at the cost of
potentially missing loops that occur for smaller prefixes. It also means that when
such a loop is in fact discovered, the next probe might miss it again by selecting
a random address outside the smaller prefix. In other words, the traceroute data
itself does not tell us much about the persistence of loops.

To better understand the impact of random address selection and the persis-
tence of loops, we collected traceroutes towards the same addresses that revealed
the loops. We first applied the algorithm outlined in Sect. 5.3 to the traceroute
data for August 2016 and found 2,500 unique loops between 703 provider and
1,780 customer ASes. In October 2016, we collected traceroutes towards the

Using Loops Observed in Traceroute to Infer the Ability to Spoof 237

same IP addresses that revealed the loops, using two different vantage points.
We were able to reproduce 1,240 of the loops between 461 provider and 1,026
customer ASes. Next, we repeated this procedure for over a year of traceroute
data: August 2015–August 2016. We found 7,784 unique loops between 1,286
provider and 3,993 customer ASes. In October 2016, we were able to reproduce
1,542 unique loops between 505 provider and 1,176 customer ASes. In other
words, the additional data identified 342 loops that persisted.

A significant portion of all loops could not be reproduced and the longer
the time lag, the higher the odds of failure, for four reasons. First, the loop
might have been transient, i.e., it only occurred during routing protocol con-
vergence [12] or temporary misconfiguration [21]. Second, it might depend on
the vantage point of the probe, e.g., because of multi-homed routers. Third, the
provider might have fixed the routing issue that caused the loop. Fourth, and
most relevant, the provider has implemented ingress filtering.

Future work is needed to untangle these causes. We know from our validation
effort (Sect. 6) that even loops that appeared only once can correctly signal
absence of ingress filtering. Some of the loops that we could not reproduce had
already been validated by the provider as true positives. In the remainder of the
paper, we will work with the full set of loops as identified by our algorithm.

6 Validation by Network Providers

In order to validate our results and obtain ground truth, we contacted providers
in two rounds: September 2015 and September 2016. We got feedback from one
hosting provider, one data center provider, one ISP, two national research and
education networks, and two Tier 1 networks. We contacted some providers only
in one round, some in both, depending on whether we inferred absence of ingress
filtering for links involving their network at both times, and our ability to reach
the right specialist in the organization. We gave all providers a formal assurance
that their names would not be included in the paper.

Feedback from the providers during the first round resulted in improvements
in our methodology. We applied the final methodology to both the August 2015
and August 2016 data. We then compared the final results to the feedback that
we received from the providers in both rounds. We talked to 6 providers in round
1 and 4 in round 2, and 3 providers participated in both rounds.

We defined a result as a true positive if we identified a provider-to-customer
link where the provider does not perform ingress filtering and an operator at the
provider confirms this. That is, we correctly inferred the absence of SAV as well as
the boundary between provider and customer. A false positive occured when we
either incorrectly detected the boundary or the provider is actually performing
SAV at the boundary. Our methodology correctly identified the absence of ingress
filtering on the provider boundary in 94 out of 98 IP links between provider and
customer ASes (45 of 49 links in round 1, and 49 of 49 links in round 2).

The four false positives had different causes. Three of them occurred because
of route aggregation. Providers perform route aggregation by consolidating mul-
tiple routes in a single, more general route. This practice can lead to problems

238 Q. Lone et al.

with our border router detection. Imagine this scenario: a provider is assigned a
/16 prefix X by the Regional Internet Registry (RIR). The provider allocates a
/24 subnet Y from prefix X to a customer, and the customer assigns addresses
from Y to its routers. The customer also has its own prefix Z allocated by an
RIR. If the provider aggregates Y into a single /16 advertisement for X, we would
infer that customer routers with addresses in Y belong to the provider AS. Our
methodology would then categorize a loop between provider prefix X and cus-
tomer prefix Z as signaling the absence of SAV, when the loop was actually
within the customer network.

For the fourth false positive, the provider informed us that the traceroute
data suggested that the loop had occurred inside their network rather than on
the boundary. However, they could not reproduce it anymore and blamed it on
a transient event. Note that in the second round, we found 3 loops for the same
provider and they were all true positives.

One additional piece of feedback that we received was that some of the
providers, while confirming the validity of our inference that they were not doing
ingress filtering on their boundary, objected to the implication that they should
be filtering. They saw their services as offering transit and contracted them
as such, which meant no filtering on the provider’s side. In the view of these
providers, the downstream customer AS should perform SAV at their border
router. The customer ASes were business entities like ISPs, hosting providers or
large enterprises. Evaluating whether this interpretation of BCP 38 [11] is mer-
ited falls outside the scope of this paper and is for the community to address.
For this paper, the key point is that the proposed method performed accurately.

7 Results

We first summarize the results in terms of the number of networks that do
not implement SAV. We then compare our method to the two alternatives: the
Spoofer and the Open Resolver projects. Like those methods, our approach only
observes a subset of the networks without SAV. In the absence of loops, we
cannot tell anything about the presence of ingress filtering.

Using one month of CAIDA’s traceroute data from August 2016, our app-
roach identified 2,500 unique loops involving 703 provider ASes as lacking SAV on
one or more of their customer-facing links and 1,780 customer ASes. These repre-
sent approximately 1.3% and 3.2% of all advertised ASes, respectively. Moreover,
when compared to all advertised stub ASes and their providers [17], we found
9.0% of provider ASes without ingress filtering involving 3.8% of all stub ASes.

As discussed in Sect. 6, some providers argued that customer ASes should be
responsible for SAV within their networks or at their borders. However, we found
that about 63% of the involved customer ASes advertise /20 or smaller prefix
lengths. It is unlikely that such small entities have the resources and incentives
to implement SAV in their networks. On the other hand, such small prefixes
should allow the providers to implement static ACLs.

We now compare our results to the data from the Spoofer and Open Resolver
projects (see Sect. 3 for details). Our method only detects the lack of ingress

Using Loops Observed in Traceroute to Infer the Ability to Spoof 239

filtering for provider networks, which means that their customer ASes might
be able to spoof. We compared those customer ASes with the Spoofer data
from February to August 2016 [1]. Of 54 overlapping ASes, 38 of the Spoofer
tests were only conducted from behind a Network Address Translation (NAT)
device that likely prevented spoofing. Of the systems not behind a NAT, 10
of the 16 stub ASes allowed spoofing, i.e., more than half of these ASes had
not deployed SAV, suggesting the provider’s expectation for their customers to
deploy filtering is not being met, and supporting the case for transit providers
to filter their customers. This means that the connected provider ASes do not
implement ingress filtering, which is consistent with our results. Packets with
spoofed source addresses from Spoofer tests in the 6 remaining customer ASes
were not received, suggesting that filtering took place in the customer AS. The
overlap between both methods contains only a small sample, but it does indicate
that the majority of the overlapping customer networks were not doing SAV – a
finding that reinforces the point that providers should not expect their customer
ASes to be willing and able do SAV, even if they are not that small.

Kührer et al. used the Open Resolver data in 2014 by to identify 2,692 unique
ASes from within which spoofing was possible [14]. Following the same approach,
we analyzed the August 2016 data from the Open Resolver project, generously
provided to us by Jared Mauch, and found a total of 3,015 unique ASes that
were able to spoof. We compared these to the customer ASes that our method
identified as allowing spoofing – i.e., those connected to the providers which lack
ingress filtering. We found only a modest overlap: 244 ASes.

In sum: these findings show that our method can add unique data points to
both existing methods, and improve visibility of networks lacking SAV. In terms
of the volume of observations, it resides between Spoofer and Open Resolver.
The three methods are complementary and provide views into the problem,
contributing to improved overall visibility of SAV adoption.

8 Conclusion

In this paper we implemented and validated an algorithm that uses traceroute
data to infer a lack of SAV between a stub and provider network. We inferred
703 providers that do not implement ingress filtering on at least one of their
links facing 1,780 customer ASes. We also built a public website showing the
provider-customer edges that we inferred as lacking ingress filtering: https://
spoofer.caida.org/. Providers can use the data to deploy filtering, which would
not only stop attackers from sending packets with spoofed addresses from the
customer’s network, but also block attempts to attack the provider-customer
link by sending packets to addresses that enter the forwarding loop [21].

To improve the reliability of the method, future work is needed on border
detection and on untangling the different factors that prevent loops from being
reproduced, to separate the implementation of ingress filtering from the other
causes. A completely different direction for future work is to experimentally test
the strength of reputation effects among providers and network operators. The

https://spoofer.caida.org/
https://spoofer.caida.org/

240 Q. Lone et al.

networks that allow spoofing could be made public in varying ways, to see which
mechanism best incentivizes providers into taking action.

For the community of network operators, the results support efforts such as
the Routing Resilience Manifesto [2] and other community initiatives to improve
network security. By complementing the Spoofer and Open Resolver data, our
method increases visibility into the adoption of SAV. Public visibility of spoofing-
enabled networks is a critical step in incentivizing providers to deploy ingress
filtering in their networks. The dataset is also useful for the national CERTs
who want to push BCP 38 compliance in their countries. The problems caused
by IP spoofing have been recognized for years [6], and the task to reduce its role
in attacks is becoming increasingly urgent.

Acknowledgments. The technique in this paper is based on an idea from Jared
Mauch. Christian Keil (DFN-CERT) provided informative feedback. This work was
partly funded by the EU Advanced Cyber Defence Centre (ACDC) project CIP-ICT-
PSP.2012.5.1 #325188. This material is based on research sponsored by the Department
of Homeland Security (DHS) Science and Technology Directorate, Homeland Security
Advanced Research Projects Agency, Cyber Security Division BAA HSHQDC-14-R-
B0005, and the Government of United Kingdom of Great Britain and Northern Ireland
via contract number D15PC00188.

References

1. CAIDA spoofer project. https://spoofer.caida.org/
2. Mutually Agreed Norms for Routing Security (MANRS). https://www.

routingmanifesto.org/manrs/
3. Open Resolver Project. http://openresolverproject.org/
4. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,

Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute.
In: IMC, pp. 153–158, October 2006

5. Baker, F., Savola, P.: Ingress filtering for multihomed networks. RFC 3704, IETF
BCP84, March 2004

6. Bellovin, S.: Security problems in the TCP/IP protocol suite. CCR 19(2), 32–48
(1989)

7. Beverly, R., Bauer, S.: The spoofer project: inferring the extent of source address
filtering on the Internet. In: Proceedings of USENIX SRUTI, July 2005

8. Beverly, R., Berger, A., Hyun, Y., claffy, k.: Understanding the efficacy of deployed
Internet source address validation. In: IMC, pp. 356–369, November 2009

9. Beverly, R., Koga, R., claffy, kc.: Initial longitudinal analysis of IP source spoofing
capability on the Internet, July 2013. http://www.internetsociety.org/

10. Bright, P.: Spamhaus DDoS grows to Internet-threatening size, March 2013
11. Ferguson, P., Senie, D.: Network ingress filtering: defeating denial of service attacks

which employ IP source address spoofing. RFC 2827, IETF BCP38, May 2000
12. Francois, P., Bonaventure, O.: Avoiding transient loops during IGP convergence

in IP networks. In: INFOCOM, pp. 237–247, March 2005
13. Huffaker, B., Keys, K., Koga, R., claffy, kc.: CAIDA inferred AS to organization

mapping dataset. https://www.caida.org/data/as-organizations/

https://spoofer.caida.org/
https://www.routingmanifesto.org/manrs/
https://www.routingmanifesto.org/manrs/
http://openresolverproject.org/
http://www.internetsociety.org/
https://www.caida.org/data/as-organizations/

Using Loops Observed in Traceroute to Infer the Ability to Spoof 241

14. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? Reducing the
impact of amplication DDoS attacks. In: USENIX Security, August 2014

15. Luckie, M.: Scamper: a scalable and extensible packet prober for active measure-
ment of the Internet. In: IMC, pp. 239–245, November 2010

16. Luckie, M., Dhamdhere, A., Huffaker, B., Clark, D., claffy, k.: bdrmap: inference
of borders between IP networks. In: IMC, pp. 381–396, November 2016

17. Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., claffy, k.: AS relationships,
customer cones, and validation. In: IMC, pp. 243–256, October 2013

18. Marder, A., Smith, J.M.: MAP-IT: multipass accurate passive inferences from
traceroute. In: IMC, November 2016

19. Prince, M.: Technical details behind a 400 Gbps NTP amplification DDoS attack.
http://blog.cloudflare.com/

20. Vixie, P.: Rate-limiting state: the edge of the Internet is an unruly place. ACM
Queue 12(2), 1–5 (2014)

21. Xia, J., Gao, L., Fei, T.: A measurement study of persistent forwarding loops on
the Internet. Comput. Netw. 51(17), 4780–4796 (2007)

http://blog.cloudflare.com/

A Characterization of Load Balancing
on the IPv6 Internet

Rafael Almeida1(B), Osvaldo Fonseca1, Elverton Fazzion1,2, Dorgival Guedes1,
Wagner Meira Jr.1, and Ítalo Cunha1

1 Department of Computer Science,
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

{rlca,osvaldo.morais,elverton,dorgival,meira,cunha}@dcc.ufmg.br
2 Department of Computer Science,

Universidade Federal de São João del-Rei, São João del-Rei, Brazil

Abstract. As IPv6 deployment grows, it is important to develop new
measurement techniques that allow us to study the IPv6 Internet. We
implement an IPv6 version of the Multipath Detection Algorithm and
use it from 12 geographically-distributed vantage points on two differ-
ent platforms to characterize IPv6 routers that perform load balancing.
Overall, we find that 74% of IPv6 routes traverse at least one router
that performs load balancing. Similar to previous reports for IPv4, we
find per-destination is the most prevalent type of load balancing; sur-
prisingly, we find a significantly higher prevalence of per-packet load
balancing for IPv6 traffic than previously reported for IPv4. We investi-
gate which header fields are used for load balancing, and find that 4% of
IPv6 routers that perform load balancing consider IPv6’s Traffic Class
or Flow Label fields. Finally, we quantify how often routers modify the
Traffic Class and Flow Label IPv6 header fields and their impact on load
balancing.

Keywords: IPv6 · Traceroute · Measurement · Load balancing ·
Topology

1 Introduction

The growing deployment of IPv6 [7] increases its relevance for application perfor-
mance and reliability. As a result, the networking community has developed new
(and adapted existing IPv4) measurement tools to collect datasets and study the
IPv6 Internet (e.g., [4,12]).

Topology measurements collected with traceroute serve a number of pur-
poses in Internet studies [17]. The introduction of Paris traceroute in 2006 [1]
showed that load balancing is widely used in the Internet and causes several
measurement artifacts in traceroute measurements. Since then, most traceroute
implementations—including those used in Ark, iPlane, and RIPE Atlas—were
updated to keep probe flow identifiers fixed to prevent load balancing and avoid

c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 242–254, 2017.
DOI: 10.1007/978-3-319-54328-4 18

A Characterization of Load Balancing on the IPv6 Internet 243

measurement artifacts. This approach is adequate for ongoing measurement cam-
paigns, as it prevents artifacts without increasing measurement cost; unfortu-
nately, it does not identify if routers perform load balancing.

Studying load balancing properties, like the number of simultaneous routes
between two networks, helps us understand the impact of load balancing on per-
formance (e.g., due to out-of-order packet delivery) and robustness (e.g., against
failures and congestion). Studying load balancing also provides insight into traffic
engineering practices.

In this paper we implemented an IPv6 version of the Multipath Detection
Algorithm (MDA) [16].1 Our implementation identifies routers that perform load
balancing and classifies load balancing behavior by systematically varying four
different fields in the IPv6 and TCP headers.

We analyze IPv6 route measurements from 12 vantage points distributed
across 7 countries in 3 continents. We characterize the prevalence of load balanc-
ing in the IPv6 Internet, different load balancing behaviors, and load balancing
properties such as asymmetry. We also study whether routers overwrite the IPv6
traffic class and flow label fields, which might impact load balancing. Whenever
possible, we compare our results against previous observations for IPv4 load
balancing by Augustin et al. [1]. Our main findings are:

– IPv6 load balancing is widespread, although less so than previously observed
for IPv4. We find 74% of IPv6 routes traverse at least one load balancer.

– Similar to IPv4, IPv6 per-destination is the most common class of load bal-
ancing. However, we find that IPv6 per-packet load balancing is significantly
more common than previously reported for IPv4.

– A non-negligible fraction (4%) of IPv6 routers performing load balancing con-
sider the traffic class and flow label header fields.

Our results further our understanding of the IPv6 Internet; as far as we are
aware, this is the first study of IPv6 load balancing. Although IPv6 and IPv4
load balancing have many similarities, we identify differences. In particular, the
higher prevalence of per-packet load balancing for IPv6 might negatively impact
TCP performance as a result of higher risk of packet reordering.

2 Load Balancing

Load balancing is traffic engineering and can be configured manually or auto-
matically by mechanisms such as ECMP and EIGRP. Motivations for load bal-
ancing include increasing bandwidth and reducing maximum link utilization.
Figure 1 shows a route traversing four routers that perform load balancing (load
balancers) measured from a vantage point in the Linode cloud hosting service.

Load balancers choose the next hop of a packet based on a flow identifier
computed from the packet’s headers. Augustin et al. [1] defined three classes of
load balancers depending on what header fields are used as flow identifiers. In
decreasing order of load balancing granularity, the three classes are:
1 Code available at https://www.github.com/TopologyMapping/mda6.

https://www.github.com/TopologyMapping/mda6

244 R. Almeida et al.

Fig. 1. Real route measurement with four load balancers (A, B, C, and D) and two
diamonds (A-D and D-E).

– Per-destination load balancers use a packet’s source and destination IP
addresses as the packet’s flow identifier. This behavior ensures all packets
exchanged between a source and a destination traverse the same sequence of
interfaces and experience similar performance.

– Per-flow load balancers use a 5-tuple—source and destination addresses,
source and destination ports, and protocol number—as the flow identifier.
This guarantees that all packets belonging to the same connection will follow
the same sequence of interfaces and experience similar performance. Differ-
ent connections between the same source and destination pair might traverse
different sequences of interfaces and experience different performance.

– Per-packet load balancers send packets to a random next hop regardless of
header field values. Per-packet load balancing may result in packets from the
same connection traversing different sequences of interfaces and experienc-
ing different performance. This incurs higher risk of packet reordering, which
might negatively impact traffic, e.g., decreasing TCP performance [5].

To detect load balancing, the Multipath Detection Algorithm (MDA) [16]
systematically varies the flow identifier in traceroute probes to detect different
next hops after a load balancer. MDA proceeds hop-by-hop. MDA assumes each
load balancer b in hop h has Nb + 1 next hops, where Nb is the number of next
hops of b detected so far. MDA then computes the number of probes necessary
to identify Nb + 1 next hops with a given confidence α, usually set to 0.95.2

This computation assumes load balancer b distributes flow identifiers uniformly
among its next hops. If the number of computed probes is larger than the number
of probes already sent to b’s next hops, MDA sends additional probes to cover the
difference. If the additional probes detect no new next hop, then MDA proceeds
to the next load balancer or hop. If the additional probes detect new next hops,
then MDA updates Nb and repeats the process.

Augustin et al. [1] characterize load balancer diamonds, defined as a sub-
graph containing all hops between a divergence hop (a load balancer) and a
convergence hop, with the condition that all flow identifiers traverse both diver-
gence and convergence hops. Figure 1 shows two diamonds. Augustin et al. [1]
2 More precisely, MDA computes the number of probes required to bound the proba-

bility of not detecting a next hop, across all load balancers, to 1 − α.

A Characterization of Load Balancing on the IPv6 Internet 245

defined the length of a diamond as the number of edges in the longest sequence
of interfaces across the diamond; the min-width of a diamond as the number of
edge-disjoint sequences of interfaces across the diamond; the max-width as the
maximum number of reachable interfaces at any given hop; and asymmetry as
the maximum length difference between any sequence of interfaces across the
diamond (a diamond with asymmetry zero is said to be symmetric). In Fig. 1,
diamond 1 has asymmetry 1, length 4, min-width 2, and max-width 4; while
diamond 2 is symmetric, has length 2, min-width 3, and max-width 3.

3 IPv6 Load Balancing and Measurement Methodology

The IPv6 header, shown in Fig. 2, is simpler than the IPv4 header. To identify
load balancing, we vary the IPv6-specific traffic class and flow label fields. The
traffic class field serves a purpose similar to the TOS field in IPv4. RFC2460 says
that routers may modify the traffic class field. Other routers or the destination
should not expect the traffic class field to have the same value of when the packet
was first created. The flow label field allows IPv6 routers to efficiently identify
flows.3 RFC6437 recommends that source hosts set one flow label value for all
IPv6 packets belonging to the same connection or application. RFC6437 also
specifies that a router may initialize the flow label when it is zero, but should not
modify a nonzero flow label.

IPv6 version traffic class flow label

size next header hop limit

source address

destination address

TCP source port destination port

sequence number (used to store the probe identifier)
...

...

Fig. 2. IPv6 header and first 8 bytes of the TCP header. We systematically vary gray
bits to identify IPv6 load balancing.

3 The usual 5-tuple flow definition used in IPv4 is unsuitable in IPv6 as routers need
to follow the variable-length chain of IPv6 extension headers (starting at the next
header field) until the end to find the TCP header.

246 R. Almeida et al.

We also vary the last 8 bits of the destination address to identify per-destination
load balancers. Current IPv6 prefixes routed in the Internet are less specific than
/48s [2]; packets with differences in the last 8 bits of the destination address will
take the same route up to the destination’s network. Finally, we also vary the
TCP source port to check whether IPv6 routers also consider port numbers for
per-flow load balancing, as in IPv4. We choose source port numbers starting from
33435, as typically done in traceroute implementations. We use TCP packets to
destination port 80 to improve reachability [13] and avoid complaints. We store
probe identifiers in the TCP sequence number field.

We execute MDA between each source and destination pair. Each execution
varies the four gray fields in Fig. 2. This lets us identify load balancers and which
header fields they use when computing a probe’s flow identifier. At each hop,
we probe with up to 256 different flow identifiers, a limitation imposed by the
8 bits available in the traffic class field and in the destination address. Having 256
different flow identifiers lets MDA identify up to 39 distinct next hops at the
chosen α = 0.95 confidence level; 256 probes were enough for 99.99% of the hops
measured.

4 Dataset

We collect IPv6 route measurements4 from 7 vantage points on CAIDA’s Ark
platform and from 5 vantage points on the Linode cloud hosting service, as shown
on Table 1. The vantage points are spread across 7 countries in 3 continents. Each
vantage point measures routes to a list of 51927 destinations built by sampling
two addresses from each /48 prefix in a hitlist of 700 thousand IPv6 addresses by
Gasser et al. [9]. The dataset was collected on Ark from August 29th to October
3rd, 2016; and on Linode from September 12th to October 3rd, 2016. We chose
these platforms because, at the time of writing, PlanetLab does not support
IPv6 and RIPE Atlas does not support MDA.

We discard MDA measurements that have loops at the interface level or that
do not observe any router (less than 1% of measurements). We do consider MDA
measurements that do not reach the destination up to the furthest hop common
to all four MDA runs toward that destination. We look at IP interfaces and do
not perform IP-to-router aliasing; as a result, one (physical) router might be
counted multiple times (once for each interface we measure).

For IPv6 to AS mapping we use the AS mapping database provided by Team
Cymru.5 To better understand load balancing behavior, we also queried reverse
DNS entries (PTR records) for IPv6 addresses in our measurements.

5 Results

In this section we characterize the prevalence of IPv6 load balancing (Sect. 5.1),
the behavior of IPv6 routers performing load balancing (Sect. 5.2), and diamond
4 Dataset available at http://www.dcc.ufmg.br/∼cunha/datasets.
5 Available at http://www.team-cymru.org/IP-ASN-mapping.html.

http://www.dcc.ufmg.br/~cunha/datasets
http://www.team-cymru.org/IP-ASN-mapping.html

A Characterization of Load Balancing on the IPv6 Internet 247

Table 1. Vantage point locations and prevalence of load balancing

Platform Location Routes with load balancing (Sect. 5)

Overall Filtered

Ark Ballerup, DK (AS59469) 58% 31% �

Berkeley, CA, US (AS25) 100% 22% �

Quezon City, PH (AS6360) 16% 16%

Los Angeles, US/CA (AS2152) 25% 25%

San Diego, US/CA (AS1909) 23% 23%

Singapore, SG (AS37989) 99% 27% �

Barrie, CA (AS19764) 84% 38% �

Linode Fremont, US/CA 100% 28% �

London, UK 99% 37% �

Frankfurt, DE 100% 31% �

Newark, US/NJ 97% 35% �

Singapore, SG 98% 38% �

properties (Sect. 5.3). Finally, we discuss some IPv6-specific confounding factors
(Sect. 5.4). Our results mostly match previous reports on the IPv4 Internet, but
we discuss a few punctual differences.

5.1 Load Balancing Prevalence

Table 1 shows the fraction of routes from each vantage point that traverse a load
balancer (‘Overall’ column). We find load balancing is prevalent in IPv6 routes.
The heterogeneity among vantage points can be explained by load balancers one
or two hops upstream of some of the vantage points (marked with a �). In the case
of Linode, these load balancers are inside Linode’s own network (as identified by
IP-to-AS mapping). These load balancers appear on most routes and significantly
impact observations. To remove the impact of these load balancers, we also show
the fraction of routes traversing a load balancer when we ignore load balancers
two IP hops upstream of vantage points if they are on the same (origin) AS
(‘Filtered’ column). After filtering we observe more homogeneous prevalence of
load balancing across vantage points. The filtered results give a better picture
of load balancing on IPv6 transit networks and might be representative of other
vantage points. We find that of the 45% of routes that traverse a Tier-1 AS, as
identified by CAIDA’s AS-relationship inference algorithm [10], 29% traverse a
load balancer inside the Tier-1.

Figure 3 shows the distribution of the number of load balancers over all routes
in our dataset for each platform. We find routes traverse multiple load balancers.
(Note that one hop can have multiple load balancers, e.g., hop 2 in Fig. 1.) In
particular, 76% of Linode routes traverse three or more load balancers. This
is because routes often traverse three load balancers in Linode’s network (see

248 R. Almeida et al.

Fig. 3. Load balancers Fig. 4. Number of diamonds

‘Diamond 1’ in Fig. 1). Figure 3 also shows the number of load balancers traversed
when we ignore load balancers two IP hops upstream of vantage points if they
are on the same (origin) AS (dotted lines). After filtering, we observe similar
load balancing from Ark and Linode vantage points.

Figure 4 shows the distribution of the number of diamonds over all routes in
our dataset. As diamonds start and end on interfaces that all packets traverse,
the number of diamonds on a route gives a lower bound of the number of load
balancers that packets traverse to reach the destination. Although Fig. 3 shows
routes can traverse many load balancers, these are grouped into a small number
of diamonds. As we will show later (Sect. 5.3), diamonds are complex and contain
many load balancers. This result is similar to previous results for IPv4 load
balancing [1].

5.2 Classes of Load Balancing Behavior

We now investigate what IPv6 header fields load balancers use to compute
flow identifiers to choose next hops. We identify load balancers by their IPv6
addresses. Table 2 shows the fraction of load balancers in each class and the
percentage of routes that traverse at least one load balancer in each class. We
also report results from Augustin et al. [1] for IPv4 load balancers. (Note that
Augustin’s results are from 2011, so the differences we discuss might also be due
to network evolution and not only IP version).

We find per-destination, per-flow, and per-packet load balancers are not only
the most common load balancer classes, but also the most prevalent across route
measurements. This is expected, as these classes were used for IPv4 load bal-
ancing. Despite this similarity, we observe a significantly higher fraction of IPv6
routes traverse per-packet load balancers. We discuss this further in Sect. 5.4.

We also find other classes of load balancers. We find 3.2% of load balancers
perform per-flow load balancing considering the traffic class field (in addition to
the destination address and source port). This behavior is the default in at least
JunOS 15.1. We could not find any reports on how many IPv4 load balancers

A Characterization of Load Balancing on the IPv6 Internet 249

Table 2. Classes of load balancing behavior

Overall Filtered

Fraction of Balancers % Routes Fraction of Balancers % Routes

IPv6 IPv4 [1] IPv6

Per-destination 29.3% 43.5% 78.0% 29.2% 11.1%

Per-flow 50.0% 30.0% 54.8% 50.1% 17.7%

Per-packet 10.7% 30.1% 1.0% 10.6% 7.7%

Per-flow with TC 3.2% 14.8% — 3.2% 3.3%

Per-application 6.0% 5.1% — 6.0% 3.3%

Others 0.8% 1.2% — 0.9% 0.6%

Total 100% 74% 92% 100% 29%

consider the TOS field to compare. Interestingly, we find 6% of load balancers
that use only the TCP ports for load balancing. We manually investigated these
load balancers and found this behavior can be configured in RouterOS under
the name of “per-application load balancing.” Perhaps surprisingly, we find only
0.8% of load balancers that consider IPv6’s flow label (with or without other
fields). Overall, 4% of the load balancers consider either IPv6’s traffic class or flow

label fields.

5.3 Diamond Characteristics

We now characterize diamonds on routes with load balancing using the same
methodology and metrics as Augustin et al. [1] and compare the observations.

Diamond length. Figure 5 shows the distribution of diamond lengths. We find
diamonds are usually short, and that load balancers one or two hops upstream
of vantage points have longer diamonds than average. If we ignore these load
balancers (dashed lines), then both datasets observe very similar distributions
of diamond length, with 93% of diamonds of length 5 or less.

Diamond asymmetry. Figure 6 shows the distribution of diamond asymmetry
in our dataset. Linode has asymmetric diamonds in its network that show up
on many routes (solid blue line). If we ignore load balancers one or two hops
upstream of the vantage point (dashed lines), these diamonds are not consid-
ered and we observe that 96% of diamonds are symmetric. The few asymmet-
ric diamonds usually have asymmetry less than or equal to 2. We find that
71% of asymmetric diamonds are instances of inter-domain load balancing, i.e.,
when the diamond starts and ends in different ASes.6 This illustrates that more
complex inter-domain traffic engineering leads to more complex load balancing

6 This can happen as a result of traffic engineering or, for example, when a BGP router
with ECMP enabled receives and installs multiple routes to a prefix (e.g., at an IXP)
or when multiple BGP routers redistribute different routes to the same prefix into
an IGP (e.g., OSPF) with ECMP enabled.

250 R. Almeida et al.

Fig. 5. Diamond length Fig. 6. Diamond asymmetry (Color
figure online)

configurations. Conversely, only 26% of symmetric load balancers are instances
of inter-domain load balancing. Different inter-domain routes might have differ-
ent performance, fortunately, we find that 70% of asymmetric diamonds start at
per-destination load balancers, which will send all packets from the same source
and destination pair on the same inter-domain route.

Diamond max-width. Figure 7 shows the distribution of max-width for all
diamonds in our dataset. By definition, the minimum max-width for a diamond
is 2. We find most diamonds are narrow, in particular around 81% of diamonds
across both platforms have max-width equal or less than 5. By varying the last
8 bits of the destination address, probe packets will follow the same route since
IPv6 prefixes in global routing tables are usually shorter than /48 [2]. However,
when reaching the destination network, packets may be directed to different
hosts whose addresses share a /116 prefix with the destination. (We found this
to be common in Microsoft’s datacenters.) Figure 7 includes these measurements
as diamonds with very large max-width, and shows that such errors are rare and
do not impact the overall findings.

Diamond min-width. Figure 8 shows the distribution of min-width over all
diamonds in our dataset. By definition, the minimum min-width is 2 and is
bounded by the max-width. We find most diamonds have a min-width of 2.

Comparison to IPv4 diamonds. Our findings for diamond lengths, asym-
metry, max-widths, and min-widths are similar but not quantitatively close to
findings on IPv4 load balancers by Augustin et al. [1]. For example, they found
that load balancers are often short and narrow, and reported that 55% of routes
with load balancing traverse a diamond of length 2 and max-width less than
or equal to 3; in our dataset, we find 24% diamonds of this kind. Augustin et
al. also found that long and wide diamonds are rare; in our dataset, only 14% of
diamonds have both length and max-width larger than 3. Similar to our results,
Augustin et al. also found that most IPv4 load balancers are symmetric.

A Characterization of Load Balancing on the IPv6 Internet 251

Fig. 7. Max-width Fig. 8. Min-width

5.4 Confounding Factors

Routers may override the traffic class or flow label fields for traffic engineering or
other reasons. Such routers may interfere with our identification of load balancers
by modifying a probe’s traffic class or flow label fields with a variable value when
we try to keep the values fixed, and by overwriting fields with a fixed value when
we try to vary them.

ICMPv6 time-exceeded messages encapsulate the header of the expired TTL-
limited probe. We use the encapsulated header to identify the values of the traffic

class and flow label fields on all probes received by each router in a route. If we
identify a router that received a probe with a traffic class or flow label field different
from the expected value we infer that the previous router has overwritten it. If the
field is overwritten, we identify whether it is overwritten with a fixed or variable
value. Note that the ‘expected’ values for the traffic class and flow label fields
change along the route as routers overwrite them. We identify router behavior
proceeding hop-by-hop starting from the vantage point.

Table 3. Fraction of routers that overwrite the traffic class and flow label fields.

Overwriting behavior Field

Traffic class Flow label

Variable value 0.7% 0.0%

Fixed value 4.7% 0.0%

We find that a small (but not negligible) portion of the routers overwrite the
traffic class field. Table 3 summarizes router behavior. The few routers (0.7%) that
overwrite the traffic class field with a variable value might lead to the (incorrect)
identification of per-packet load balancers. Routers that overwrite the traffic class

field with a fixed value do not impact the identification of load balancing, but

252 R. Almeida et al.

prevent us from identifying whether routers use the traffic class field for load
balancing (leading to underestimation of ‘per-flow with TC’ in Table 2).

In general, traceroute measurements are challenged by factors such as tun-
neling and router behavior [14] as well as routers that do not respond to TTL-
expired probes or firewalls that drop measurement probes [13]. As a result of
these factors, we might underestimate the amount of load balancing.

6 Related Work

Load balancing and its impact. The impact of load balancing on IPv4 tracer-
oute measurements was first reported on by Augustin et al. in 2006 (see [1]). Since
then, MDA has been proposed to bound load balancer identification errors [16]
and an extensive characterization of IPv4 load balancing was published [1].
Paris traceroute was the first, but today most traceroute tools and measurement
platforms keep flow identifiers fixed to avoid load balancing. Besides impact-
ing traceroute measurements, load balancing has also been reported to impact
latency measurements [15] and observed routing dynamics [6].

IPv6 measurement tools and characterization studies. As far as we are
aware, Scamper [11] is the only other implementation of MDA that supports
IPv6. Also, we are not aware of any other characterization of IPv6 load balancers.
Other work have developed techniques to measure IPv6 routers, including IPv6
alias resolution [3,12] and router availability [4]; while others have quantified
IPv6 deployment and performance [7,8].

7 Conclusions and Future Work

We implemented an IPv6 version of the MDA to identify routers that perform
load balancing and classify their behavior. We collected measurements from 12
nodes in 7 countries to 51927 destinations. We find that IPv6 load balancing
shares many similarities with IPv4 load balancing, with a few differences. First,
although IPv6 load balancing is widespread, it is less so than IPv4 load bal-
ancing. Second, IPv6 routes have significantly higher probability of traversing
per-packet load balancers than IPv4 routes, which may negatively impact TCP
performance. Although we cannot explain the causes behind the higher preva-
lence of per-packet load balancers, this is partially explained by routers that
overwrite the traffic class field in IPv6 headers with variable values. Other pos-
sible explanations include less mature IPv6 load balancing implementations or
less established best practices when compared to IPv4.

The prevalence of per-packet load balancers we observe motivate investiga-
tion of the impact of IPv6 load balancing on IPv6 traffic. As future work, we plan
to correlate performance metrics with load balancing behavior. We also plan to
extend our MDA implementation to allow more fine-grained classification of load
balancers. In particular, we plan to add support for IPv6 extension headers and
to allow measurements varying a combination of fields in probe headers.

A Characterization of Load Balancing on the IPv6 Internet 253

Acknowledgements. We thank Young Hyun for the support in setting up and run-
ning our measurements on the Ark platform. This work is supported by Comcast and
Brazilian research funding agencies (CAPES, CNPq, and FAPEMIG).

References

1. Augustin, B., Friedman, T., Teixeira, R.: Measuring multipath routing in the inter-
net. IEEE/ACM Trans. Netw. 19(3), 830–840 (2011)

2. Bayer, D.: Visibility of Prefix Lengths in IPv4 and IPv6 (2010). https://labs.ripe.
net/Members/dbayer/visibility-of-prefix-lengths

3. Beverly, R., Brinkmeyer, W., Luckie, M., Rohrer, J.P.: IPv6 alias resolution via
induced fragmentation. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol.
7799, pp. 155–165. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36516-4 16

4. Beverly, R., Luckie, M., Mosley, L., Claffy, K.: Measuring and characterizing IPv6
router availability. In: Mirkovic, J., Liu, Y. (eds.) PAM 2015. LNCS, vol. 8995, pp.
123–135. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15509-8 10

5. Blanton, E., Allman, M.: On making TCP more robust to packet reordering. ACM
SIGCOMM Comput. Commun. Rev. 32(1), 20–30 (2002)

6. Cunha, Í., Teixeira, R., Diot, C.: Measuring and characterizing end-to-end route
dynamics in the presence of load balancing. In: Spring, N., Riley, G.F. (eds.) PAM
2011. LNCS, vol. 6579, pp. 235–244. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19260-9 24

7. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 adoption. In: Proceedings of SIGCOMM (2014)

8. Dhamdhere, A., Luckie, M., Huffaker, B., Claffy, K., Elmokashfi, A., Aben, E.:
Measuring the deployment of IPv6: topology, routing and performance. In: Pro-
ceedings of the ACM Internet Measurement Conference (IMC) (2012)

9. Gasser, O., Scheitle, Q., Gebhard, S., Carle, G.: Scanning the IPv6 internet:
towards a comprehensive hitlist. In: Proceedings of the Traffic Monitoring and
Analysis Workshop (TMA) (2016)

10. Luckie, M., Huffaker, B., Claffy, K., Dhamdhere, A., Giotsas, V.: AS relationships,
customer cones, and validation. In: Proceedings of the ACM Internet Measurement
Conference (IMC) (2013)

11. Luckie, M.: Scamper: a scalable and extensible packet prober for active measure-
ment of the internet. In: Proceedings of the ACM Internet Measurement Conference
(IMC) (2010)

12. Luckie, M., Beverly, R., Brinkmeyer, W., Claffy, K.: Speedtrap: internet-scale IPv6
alias resolution. In: Proceedings of the ACM Internet Measurement Conference
(IMC) (2013)

13. Luckie, M., Hyun, Y., Huffaker, B.: Traceroute probe method and forward IP path
inference. In: ACM Internet Measurement Conference (IMC) (2008)

14. Marchetta, P., Montieri, A., Persico, V., Pescape, A., Cunha, I., Katz-Bassett,
E.: How and how much traceroute confuses our understanding of network paths.
In: Proceedings of the International Symposium on Local and Metropolitan Area
Networks (LANMAN) (2016)

https://labs.ripe.net/Members/dbayer/visibility-of-prefix-lengths
https://labs.ripe.net/Members/dbayer/visibility-of-prefix-lengths
http://dx.doi.org/10.1007/978-3-642-36516-4_16
http://dx.doi.org/10.1007/978-3-319-15509-8_10
http://dx.doi.org/10.1007/978-3-642-19260-9_24
http://dx.doi.org/10.1007/978-3-642-19260-9_24

254 R. Almeida et al.

15. Pelsser, C., Cittadini, L., Vissicchio, S., Bush, R.: From paris to tokyo: on the
suitability of ping to measure latency. In: Proceedings of the ACM Internet Mea-
surement Conference (IMC) (2013)

16. Veitch, D., Augustin, B., Friedman, T., Teixeira, R.: Failure control in multipath
route tracing. In: Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM) (2009)

17. Willinger, W., Roughan, M.: Internet topology research redux. In: Recent Advances
in Networking, ACM SIGCOMM eBook, vol. 1 (2013)

Wireless

Enhancing WiFi Throughput with PLC
Extenders: A Measurement Study

Kittipat Apicharttrisorn1(B), Ahmed Osama Fathy Atya1, Jiasi Chen1,
Karthikeyan Sundaresan2, and Srikanth V. Krishnamurthy1

1 University of California, Riverside, Riverside, CA, USA
kapic001@ucr.edu

2 NEC Labs, Princeton, NJ, USA

Abstract. Today, power line communications (PLC) based WiFi exten-
ders are emerging in the market. By simply plugging an extender to a
power outlet, a user can create a second access point which connects to
a master AP/router using the power line infrastructure. The underlying
belief is that this can enhance the throughput that a user can achieve at
certain locations (closer to the extender) and potentially increase wire-
less capacity. In this paper, we conduct an in-depth measurement study
to first see if this belief always holds true, and if it does, the extent
to which the end-to-end throughput improves. Our measurement study
covers both homes and enterprise settings, as well as single and multi-
user (or multi-device) settings. Surprisingly, we find that in 46% of cases
in an office environment, using a PLC extender does not result in an
increase in throughput, even when a single client accesses the network
and is located close to the extender. This is because unlike in the case of
an Ethernet backhaul, the PLC backhaul could consist of poor quality
links (49% of the time in an office environment). We also find that the
further away the extender is from the master router, the more likely this
possibility becomes. We find that sharing of the PLC backhaul across
devices could also be undesirable in some cases, and certain users should
connect directly to the master AP in order to improve total throughput.
Our study sheds light on when these effects manifest themselves, and
discusses challenges that will need to be overcome if PLC extenders can
be effectively used to enhance wireless capacity.

1 Introduction

Today there are a number of power line communications (PLC) based WiFi
extenders from different vendors on the market (e.g., TP-Link, Netgear, Zyxel,
Linksys, and Amped). A user can plug in these extenders (we call them PLC
extenders or EXT) into power outlets and they interface with an access point
(AP) or router that has access to the Internet (we call this the master router or
MRT) using power lines, to essentially act as (additional) APs. By using these
plug-and-play extenders in homes or enterprises, users can conceivably improve
the quality of their wireless links; this is because clients can now potentially

c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 257–269, 2017.
DOI: 10.1007/978-3-319-54328-4 19

258 K. Apicharttrisorn et al.

connect to an extender which is closer and clear of obstructions than to an AP
that is obstructed or far away.

Objectives: In this paper, we conduct an in-depth measurement study to see
if the better quality wireless links translate to real throughput gains with PLC
extenders. We also seek to quantify these gains (or losses if they occur) and deter-
mine the root causes for these. We perform this measurement study despite the
common belief that these extenders are beneficial because of two motivating
observations. First, the throughputs achievable on power lines are not determin-
istic; in other words, the throughputs achievable between the master router and
different PLC extenders could be different. Second, if multiple client devices (or
users) share the PLC backhaul, there could be contention on the backhaul that
results in degraded performance.

Take aways: In brief, the key take aways of our measurement study are as
follows: (1) While using a PLC extender does provide throughput benefits in
majority of the cases, it does not always do so. In some cases, even with a single
client, a throughput degradation is observed compared to connecting to the
master router, even if the client is much closer to the extender. (2) The sharing
of the PLC backhaul among multiple connections (to a plurality of clients) could
hurt the overall performance of the network. The overall performance could
improve if some of the clients connect directly to the master router as opposed to
the closest PLC extender (which provides the strongest WiFi signal). In addition
to the above key take aways, our study provides an understanding of how many
other factors such as the distance and the number of walls between the extender
and the master router, as well as the configuration of the electrical distribution
circuits, influence performance.

Our work in perspective: To the best of our knowledge, our work is the first
study on the effectiveness of PLC extenders in providing enhanced throughputs
in homes and offices. The work also sheds light on the factors that influence
whether or not throughput gains can be realized and can thus influence future
work on configuration solutions for integrated PLC/WiFi networks. Unlike in
traditional WiFi networks wherein the performance on an underlying backhaul
(such as Ethernet) is assumed to be commensurate with that of the WiFi links,
care must be taken in terms of accounting for PLC idiosyncrasies.

2 PLC Background and Related Work

The PLC Channel: In the US, broadband PLC operates in the 1.7–80 MHz
band. It is similar to wireless communications in that the PLC signal is atten-
uated with distance due to cable branching/losses. While a wireless signal is
obstructed by walls and floors, a PLC signal is degraded by (a) noise generated
by electrical apparatuses sharing the cables and (b) electrical components, e.g.
transformers, that sit between end points. At the MAC layer, although both
PLC and WiFi standards (IEEE 1901 and 802.11) use CSMA/CA to avoid col-
lisions when multiple stations share the same channel, IEEE 1901 uses deferral

Enhancing WiFi Throughput with PLC Extenders: A Measurement Study 259

counters to prevent collisions from happening so that congestion windows of the
stations do not grow rapidly.

PLC-based WiFi Extenders: PLC extenders on the market couple PLC’s
AV2 and WiFi’s 802.11 to take advantage of existing power lines and enhance
WiFi performance and coverage to end users. Recent products typically support
HomePlug AV2 and 802.11ac (which operates in the 5 GHz band). However,
according to a recent survey [3], 2.4 GHz WiFi access points are still dominant
in homes and offices. As a result, in this paper, we focus on networks using
2.4 GHz 802.11n for front-end access and AV2 as a backhaul.

Related work: To the best of our knowledge, we are the first to do an in-
depth measurement study on the use of PLC extenders towards improving WiFi
coverage or performance. Below, we briefly summarize related work.

Hybrid networks: In [6,9], the authors consider a network where clients have two
interfaces viz., a PLC interface and a WiFi interface. They propose metrics for
comparing the performance on the two interfaces and consider methods to use
them jointly as parallel links. They do not perform measurements on commercial
PLC extenders, which concatenate PLC and WiFi links, as we do.

PLC vs WiFi: There has been work to compare the WiFi MAC and the IEEE
1901 MAC that is used with PLC [7]. However, this does not yield any insights
on why PLC extenders may be useful (or not) in enhancing WiFi throughputs.

PLC studies: There are also a number of studies on PLC. For example, [2,5]
provide insights on current PLC standards (AV2). However, they do not consider
the use of PLC in building extenders to improve WiFi coverage or throughput.
There have also been efforts to enhance PLC performance either by tuning MAC
parameters [8] or by using an application level learning based framework [1].
However, again these efforts do not consider interactions between PLC and WiFi.

3 The Influence of Power Line Configurations

Measurement Setup: Our equipment consists of a commercial WiFi router
(Netgear Nighthawk AC1900), six commercial PLC extenders (TP-Link TL-
WPA8630), and four clients (Lenovo Ideapad 300S). We perform measurements

Table 1. Properties of the four testbeds

Name Description Area (m2) Walls Floors Client locations PLC extenders

ENT1 Multi-room office 350 14 1 87 (hallways) 6

ENT2 Single-room lab 213 0 1 20 (room) 4

HNW1 Two-story house 245 10 2 8 (bedrooms) 3

HNW2 One-story apartment 170 6 1 6 (bedrooms) 4

260 K. Apicharttrisorn et al.

50 Mbps

T
hr

ou
gh

pu
t (

M
bp

s)

0

500

Testbeds
ENT1 ENT2 HNW1 HNW2

(a) Throughput Ranges of the Four
Testbeds

Common Neutral
Common Board
Across Board

T
hr

ou
gh

pu
t (

M
bp

s)

0

500

Distance (m)
0 20 40

(b) Impact of Power Distribution on
PLC Throughput (ENT1)

Fig. 1. PLC-only throughputs in typical home and work environments.

in four environments: a 10-room office space (ENT1), a large single-room labora-
tory (ENT2), a two-story home (HNW1), and a one-story apartment (HNW2);
further details are omitted due to space limitations. Clients are placed roughly
uniformly in each environment, and by default choose a WiFi access point with
the highest RSSI. Further details of the measurement environments are pro-
vided in Table 1. We perform 10-minute iperf3 tests between the PLC extenders
or clients, and the master router, to measure the total achievable (saturation)
TCP throughputs between each pair. We also experiment with web browsing
and video streaming applications to showcase application performance. On all
four testbeds, we measure the pairwise throughput between unoccupied power
outlets.

Table 2. Network conditions

PLC condition Throughput (Mbps)
Good ≥50
Bad <50

We classify connections based on the
achieved throughput into two classes viz.,
good and bad PLC connections (Table 2).
Since the maximum throughputs achiev-
able over WiFi to nearby extenders is
50 Mbps, we set this as the threshold to
delineate good and bad PLC connections.

Results and analysis: Our results are shown in Fig. 1(a). We find that in all
but the ENT1 testbed, the achievable saturation throughputs are higher than
the threshold. We then look at the power circuit diagrams of ENT1 to determine
when the saturation throughputs are lower than the threshold. We find that if
two power outlets connect to circuits that use a common neutral line, they have
very high throughput (around 400 Mbps). If two power outlets connect to the
circuits that belong to the same distribution board but different neutral lines,
the throughput between them drops to less than 200 Mbps. Most importantly, if
two power outlets connect to circuits that belong to different distribution boards,
the throughput becomes lower than 50 Mbps, causing the PLC connection to
become a bottleneck. The reason for the above is that in order to go between
the distribution boards, the connection has to traverse an electrical transformer
which attenuates a range of frequencies also used by PLC [10].

Our studies reveal that (Fig. 1(b)) even if the distance between two power
outlets is relatively small (they are in close proximity), it is still possible that

Enhancing WiFi Throughput with PLC Extenders: A Measurement Study 261

the PLC throughput between them is very low. However, the larger the distance
between two power outlets, the more likely it is that they can only sustain a
lower PLC throughput between them. Note here that these effects are not seen
in the other three testbeds since they use a single distribution board.

4 Single-User Studies

In this section, we investigate whether PLC extenders can improve through-
put compared to a WiFi-only scenario, when there is only a single client. We
evaluate throughput gains in typical home and enterprise environments, includ-
ing the impact of distance between routers, extenders, and clients, density of
extenders, and attenuation from walls and floors. Our main finding is that PLC
can improve average throughput, particularly when there are multiple walls, but
careful placement/activation of the extenders is necessary to achieve these gains.

4.1 Throughputs with PLC Extenders

We first examine the improvements in client throughputs in each of our four
test environments (Table 1). We measure the end-to-end throughput between
the router and the client, when (a) the client associates with the default PLC
extender or (b) directly with the master router. We find that the improvements
due to PLC extenders depend on the environment, with higher gains in multi-
room and multi-story environments (and lesser gains in single large rooms).

When and to what extent do PLC extenders help? The percentage
of client locations where the PLC+WiFi throughput exceeds the WiFi-only
throughput are plotted in Fig. 2(a). The results suggest that in office, home,
and apartment environments, PLC extenders help in the majority of client loca-
tions, but not in the laboratory environment. To showcase the gains in these
environments, we plot the ratio of the PLC+WiFi (connection via a PLC exten-
der) to WiFi-only (connection to the master router) throughput in Fig. 2(b). In
ENT1, which is large and contains many walls obstructing the WiFi signal from
the main router, the PLC extenders can potentially provide very high through-
put gains of up to 30x. In contrast, in ENT2 where there are no walls, the

C
lie

nt
 L

oc
at

io
ns

 (
%

)

0

50

ENT1 ENT2 HNW1 HNW2

(a) % of Client Locations Where
PLC+WiFi > WiFi-only

T
hr

ou
gh

pu
t R

at
io

1

10

ENT1 ENT2 HNW1 HNW2

(b) Ratio of PLC+WiFi to WiFi-
only throughput

Fig. 2. Throughput gains from PLC extenders over WiFi-only.

262 K. Apicharttrisorn et al.

Is PLC+WiFi better than WiFi-only?

Yes, No,

I. Client distance to master
router > 10m, at least 1 wall
between client and master

router, and
II. PLC backhaul is good

I. Client distance to master
router > 13m, at least 1 wall
between client and master

router, even though
II. PLC backhaul is bad

I. Client distance to master
router < 13m, clear line of

sight, even though
II. PLC backhaul is good

I. Client distance to master
router < 13m, clear line of

sight, and
II. PLC backhaul is bad

20%

46%

34%

54%

10% 36%

Fig. 3. Reasons why PLC extenders help (or not) compared to WiFi-only (ENT1).

throughput gains are negligible, since the WiFi signal from the master router is
strong. The HNW1 and HNW2 environments contain a mix of walls and floors,
and can thus benefit from PLC extenders, but not to the extent as in the ENT1
case. Interestingly, we note that in HNW1, despite the master router and PLC
extenders being spread over two floors, the throughput gains are minor. This is
because the master router WiFi signal can easily penetrate a single floor, sug-
gesting that PLC extenders may be more beneficial in the multiple-wall rather
than multiple-floor scenarios.

Reasons for throughput gains from PLC extenders. To delve further into
the office environment (ENT1) where PLC can be most helpful, we analyze the
reasons for the throughput gains. Specifically we ask the following questions.
Can PLC extenders help even when the PLC backhaul quality is poor? Are
there cases where good PLC backhaul is not helpful, because the WiFi-only
throughput is very high?

For each client location, in addition to the end-to-end throughput, we mea-
sure the throughput of the PLC backhaul, and classify it as good or bad accord-
ing to Table 2. Figure 3 summarizes our results. In 34% of cases, we have the
expected scenario where throughput gain results from a poor (direct) master
WiFi and a good PLC backhaul connection. However, in 20% of cases, even a
poor-quality PLC backhaul connection can help if the WiFi link to the master

EXT1 (4.6m)
EXT2 (15.6m)
EXT3 (18m)

C
D

F

0

1

Throughput Ratio (EXT/MRT)
0

(a) Poor PLC backhaul

EXT4 (10m)
EXT5 (12.7m)
EXT6 (16.3m)

C
D

F

0

1

Throughput Ratio (EXT/MRT)
1 1 1 10

(b) Good PLC backhaul

Fig. 4. Impact of PLC extender backhaul and router distance on throughput gain.

Enhancing WiFi Throughput with PLC Extenders: A Measurement Study 263

router is poor (due to at least one obstructing wall). We also see the opposite
scenario where in 10% of locations, a good-quality PLC backhaul link does not
help because the WiFi link to the master router is still very good (due to the
clear line of sight).

4.2 Impact of Distance

In reality, users who purchase off-the-shelf PLC devices may not have access
to electrical diagrams and thus may be unable to infer which PLC connections
are good or bad as we did in Sect. 3. Therefore, we next examine benefits from
PLC extenders given easy-to-estimate quantities such as physical distance. We
conduct an in-depth study in the office environment (ENT1). Our main findings
are that (1) throughput gains improve with distance between the router and the
extender, especially when the extender has a good PLC connection to the router,
(2) the location of the extender must be chosen based on both the PLC backhaul
throughput and the PLC extender’s WiFi throughput, in order to ensure that
neither hop becomes the bottleneck for end-to-end throughput.

Throughput changes with distance from the master router: We first
examine the impact of distance of the PLC extender from the master router.
If the extender is close to the router, we expect the throughput gains for the
client to be minimal, because the master router’s WiFi signal will be already
strong. However, as the distance between the extender and the router increases,
the master router’s WiFi quality will degrade, and the PLC extenders should
help, especially when the PLC backhaul is good. In Fig. 4, we plot the CDF of
throughput gains of each client when they associate with their default extender
(highest received signal strength or RSS) in lieu of the master router. Figure 4(a)
indicates that even a poor-quality PLC backhaul yields throughput gains if (and
only if) the extender is quite far (18 m or further) from the router. When the
PLC backhaul is good however, we see a throughput gain when the extender is
as close as 12.7 m away from the router (Fig. 4(b)).

Since the default association of the client is to a nearby extender, we expect
that the impact of distance on throughput gains enjoyed by clients to be similar
to that in our aforementioned study with just the extenders. In Fig. 5(a), we

13m

T
hr

ou
gh

pu
t R

at
io

1

10

Distance (m)
0 5 10 15 20

(a) Client Distance from Router vs.
Throughput Ratios (EXT/MRT)

PLC only
WiFi only
End to End

T
hr

ou
gh

t (
M

bp
s)

0

50

PO-1 (30m)

PO-2 (15m)

PO-3 (1m)

(b) Client Distance from Extender

Fig. 5. Impact of distance from the master router on throughput.

264 K. Apicharttrisorn et al.

plot the relationship between client distance from the master router and the
throughput gain. We observe that the client begins to see a throughput gain at
distances that are greater than ∼13 m, across all extenders (with good or bad
PLC backhaul connections).

Impact of distance between a client and its extender: In this set of
experiments, we seek to answer the question: Given a client that is located very
far from the master router, where should the extender be placed to maximize
throughput? Placing the extender close to the client will result in good WiFi
signal quality but may result in a poor PLC backhaul quality, especially if the
outlet is on a different distribution board than the master router. On the other
hand, placing the extender close to the router to ensure good PLC backhaul
quality may result in a poor quality WiFi link between the client and the exten-
der (low signal strength). We place a client 35 m from the master router and
examine cases where it associates with three possible power outlets. We plot the
PLC backhaul throughput, the extender WiFi throughput, and the end-to-end
throughput in Fig. 5(b). The closest power outlet to the client (PO-3) is sub-
optimal because a poor PLC backhaul bottlenecks the end-to-end throughput.
On the other hand, the power outlet (PO-1) with the best PLC backhaul qual-
ity is also suboptimal, because it has a poor WiFi connection to the client. The
extender that maximizes end-to-end throughput is PO-2, which has both good
(but not best) PLC backhaul and extender WiFi throughputs. In summary, the
PLC extender must be carefully placed between the client and router to balance
PLC and WiFi throughput bottlenecks. Since it may be difficult for a casual user
to measure and optimize extender placement, a reasonable approach may be to
provide simple guidelines for extender placement, and focus on the appropriate
client association strategy. A simple strategy might be to consider the end-to-end
throughput as a metric for association instead of the WiFi signal strength.

4.3 Can More Extenders Help?

Next we ask: Are more extenders always helpful, or is there decreasing marginal
utility? To measure this, we activate each of the six extenders one-by-one in
decreasing order of throughput gain. For each client location, the client associates
with either the master router or the activated PLC extenders based on the default

ENT1
HNW1

T
hr

ou
gh

pu
t (

M
bp

s)

30

40

50

Number of Activated Extenders
0 1 2 3 4 5 6

(a) Throughput (Mbps)

ENT1
HNW1

R
SS

I
(d

B
m

)

0

0

Number of Activated Extenders
0 1 2 3 4 5 6

(b) RSSI (dBm)

Fig. 6. Single client: Impact of number of PLC extenders on throughput.

Enhancing WiFi Throughput with PLC Extenders: A Measurement Study 265

association policy (highest RSSI). We plot the average throughput across all
client locations versus the number of activated PLC extenders in Fig. 6(a). In
the house environment (HNW1), as expected, increasing the number of extenders
improves the client throughput, due to better spatial coverage of WiFi signal
throughout the home. However, in the office environment of ENT1, adding too
many extenders actually decreases average throughput. This is because some
outlets in the office environment have poor PLC backhaul quality. Clients see
higher RSSI values (Fig. 6(b)) and associate with the new extenders, but since the
last three extenders have poor PLC backhaul, the clients inadvertently associate
with an extender with poor end-to-end throughput. Therefore, before adding
PLC extenders, it is important to consider both the PLC backhaul quality and
the WiFi signal strength in the deployment environment; otherwise, poor PLC
connectivity may result in reduced network throughput.

5 Multi-user Studies

Building on our studies in Sect. 4, we next examine if the benefits of using PLC
extenders carry over when there are multiple clients or users present. Our main
findings are: (1) to relieve PLC backhaul contention and improve throughput
for clients far from the master router, some clients close to the master router
should connect directly to it, possibly at the expense of their own throughputs;
and (2) in an office setting (ENT1), adding new PLC extenders may decrease
average client throughput because the extenders choose the same WiFi frequency
to avoid contention with existing WiFi APs.

5.1 Sharing PLC Backhaul

In the single-user scenario, we found that in 54% of locations in the office envi-
ronment (ENT1), a client can benefit by connecting to a PLC extender. However,
in the multi-user scenario, the client’s benefit from connecting to a PLC extender
may be reduced due to increased PLC backhaul contention. Should clients close
to the master router connect to it, relieving contention on the PLC backhaul for
the remaining clients on PLC? If this causes a reduction in the switching client’s
throughput, does the resulting gain of the other clients provide a net benefit?

EXT1 EXT3EXT2 EXT4

Good
PLC

Good
PLC

Bad
PLC

Bad
 PLC

WiFi to Extender (default user association)

WiFi to Master Router (when switching connection)

Client AC lient BC lient CC lient D

Master
Router
(MRT)

6HC11HC6HC1HCC H1

(a) Experimental setup

A
B
C
D

T
hr

ou
gh

pu
t

(M
bp

s)

0

20

40

Client(s) that switch connection to MRT
None AB A+B

(b) Throughput

Fig. 7. Clients switch connection to master router.

266 K. Apicharttrisorn et al.

To investigate this, we consider four clients in the office environment (ENT1)
which can potentially associate with four PLC extenders, as shown in Fig. 7(a).1

In the single-user case, a client far away from the master router (client D)
received 12 Mbps when connecting to a PLC extender, but in the multi-user
case when three other clients also connect via PLC extenders (clients A, B, C),
its throughput drops to 2.98 Mbps. What if the client closest to the master router
(client A) switches? If that case, we see that all clients increase their through-
puts, as shown in Fig. 7(b). However, if a client slightly further away from the
master router switches (client B), it slightly sacrifices its own throughput to
benefit the other clients.

If switching one client helps, does switching both clients help? We find that
switching both clients (A, B) to the master router lowers total throughput due to
increased contention on the master router’s WiFi. This suggests that when mul-
tiple clients are present, a few clients close to the master router should connect
to it in order to reduce PLC backhaul contention and improve throughput for
distant users; however, switching too many clients2 causes contention between
the master router’s clients and lowers total throughput. We envision that an
iterative approach where clients closest to the master router are sequentially
switched could help effectively identify the optimal set that should be switched.

5.2 Can More Extenders Help?

In the single-user case, increasing the number of PLC extenders sometimes
resulted in suboptimal throughput, due to clients associating with extenders
with poor PLC backhaul. We investigate whether this holds in the multi-user
case, and what additional complexities arise from inter-client interference. We
expect that the benefits of additional extenders depends on the spatial configu-
ration of the clients, and so we setup clients in two configurations: distributed,
where a client is placed at each of the four corners of the office (ENT1), and clus-
tered, where all the four clients are situated in the middle of the office area. We
activate each of the six extenders one-by-one in decreasing order of average RSSI.

Distributed
Clustered

T
hr

ou
gh

pu
t (

M
bp

s)

10

20

Number of Activated Extenders
0 1 2 3 4 5 6

(a) Average Throughput

Distributed
ClusteredR

SS
I

(d
B

m
)

0

0

Number of Activated Extenders
0 1 2 3 4 5 6

(b) Average RSSI

Fig. 8. Multiple clients: Impact of number of PLC extenders on average throughput.

1 To focus on PLC backhaul contention and avoid WiFi interference issues, we config-
ure the WiFi channels of the PLC extenders for maximum frequency reuse.

2 In our testbed, one switching client is optimal.

Enhancing WiFi Throughput with PLC Extenders: A Measurement Study 267

In Fig. 8(a), we plot the average client throughput versus the number of PLC
extenders. Initially, we see that the first 1–2 extenders increases average through-
put, because clients experience higher RSSI (Fig. 8(b)) and the PLC backhaul is
good. However, in distributed configurations, further adding PLC extenders can
result in decreased average throughput (e.g., from 25 Mbps to 12 Mbps when a
fourth extender is added). This is because in addition to poor user association
policies discussed previously, the additional extenders choose the same WiFi
frequency band to avoid interfering with existing office WiFi networks, caus-
ing inter-client interference.3 In the clustered configuration, adding more PLC
extenders is unhelpful because clients associate with the first 1–2 extenders with
higher RSSI and ignore later extenders.

In conclusion, although more PLC extenders results in higher client RSSI,
it does not necessarily lead to higher throughput. Two main factors directly
impact the performance of PLC+WiFi: frequency reuse and user association.
PLC extenders may not be helpful in environments with multiple existing WiFi
networks, as the PLC extenders try to avoid interfering with external APs, choos-
ing the same frequency band and decreasing the throughput of their own clients.
For client association, as in the single-user case, clients may need to consider
the quality of the PLC extender’s backhaul connection when deciding which
extender to associate with.

6 Applications

In the previous sections, we studied saturation throughput of PLC+WiFi net-
works. In this section, we wish to understand how PLC extenders impact appli-
cation performance. To do this, we conduct experiments with two popular appli-
cations viz., video streaming and web browsing (hosted on local machines).

Video Streaming: Dynamic adaptive streaming over HTTP (DASH) is one
of the most common video streaming protocols in use today. However, previous
studies have shown that multiple clients sharing a bottleneck link unfairly choose

Isolation Contention

V
id

eo
 B

itr
at

e
(M

bp
s)

6

8

Bad PLC

Good PLC

Bad PLC

Good PLC

(a) Video bitrates

WRS / EXT
WLC / EXT
WRS / MRT
WLC / MRT

No MRT Connectivity

L
at

en
cy

 (
m

s)

100

1000

Distance (m)
10 20 30 40 50

(b) Web browsing latency

Fig. 9. Video and web browsing performance

3 For example, in our setup, existing WiFi networks use channel 1 and 6, so all PLC
extenders choose channel 11.

268 K. Apicharttrisorn et al.

video bitrates that allow some clients to monopolize the link, and also experience
a high degree of instability [4]. In our study, we find that not only does this issue
manifest over PLC links, but in addition the magnitude of the video bitrate and
frequency of bitrate switches depends on the quality of the PLC backhaul.

In our setup, we stream an 8-minute 1080p DASH video4 encoded at four
different bitrates (1.6, 2.4 4.8, 8 Mbps) to two clients5. To see the impact of
the PLC backhaul, one client is associated with a good PLC extender, and
the other with a bad PLC extender. The video bitrates are plotted in Fig. 9(a)
across ten trials. In the multi-user case, both clients are negatively impacted by
PLC contention, decreasing the average video bitrate and increasing the average
number of switches compared to the single-user case. Moreover, both metrics
have higher variance. In particular, the good-PLC client suffers a higher variance
despite enjoying a higher video bitrate on average, than the bad-PLC client. This
is because it occasionally suffers from very low bitrates due to contention on the
PLC backhaul. Similarly, the good-PLC client enjoys a fewer number of bitrate
switches on average but occasionally sees a large number of bitrate switches (not
shown due to space limitations).

Web Browsing: How does good and bad PLC impact page load time? In con-
trast to video streaming applications, which suffer from reduced video bitrates
when the PLC backhaul is poor, we find that web-browsing clients can still enjoy
low page load times even when they are located far from the master router.

To show this, we load the Top 100 Alexa websites on a client and record two
metrics: (a) web response start (WRS), the latency between when the browser
requests the page and when it receives the first web object, (b) web load complete
(WLC), the latency between when the browser requests the page and when it
receives the last web object. We evaluate this in the office environment (ENT1),
and place the client close to each extender to focus on impact due to PLC
backhaul quality. In Fig. 9(b), we plot the WRS and WLC as a function of
the client’s distance from the master router. If the client connects to the PLC
extenders we can see that no matter the client’s distance from the master router,
the WRS and WLC are nearly constant. However, if the client connects to the
master router, it experiences relatively high WLC after 29 m. Notably, at the two
user locations that are most distant from the master router (40 and 48 m), the
client loses WiFi connectivity to the master router and can only load the webpage
via the PLC extenders. This suggests that for web browsing, PLC extenders can
be beneficial even if the quality of the PLC backhaul link is poor.

7 Conclusions

In this paper, we perform an in-depth measurement study of the benefits of
commercial PLC extenders to improve WiFi throughputs. We find that PLC
extenders can be most beneficial in multi-room environments (e.g., office spaces),

4 https://peach.blender.org/.
5 http://dashif.org/reference/players/javascript/.

https://peach.blender.org/
http://dashif.org/reference/players/javascript/

Enhancing WiFi Throughput with PLC Extenders: A Measurement Study 269

but can also suffer from degraded throughput due to more complex power line
configurations resulting in poor-quality PLC backhaul. Our results suggest that
more sophisticated client association policies (instead of highest RSSI by default)
and frequency planning around existing WiFi APs, taking into account the qual-
ity of the PLC backhaul, could potentially help realize maximum benefits from
PLC+WiFi. We intend to investigate these avenues as future work.

Acknowledgments. This work was partially supported by the NSF NeTS grant
1528095.

References

1. Atya, A.O.F., Sundaresan, K., Krishnamurthy, S.V., Khojastepour, M.A.,
Rangarajan, S.: Bolt: realizing high throughput power line communication net-
works. In: ACM CoNEXT (2015)

2. Cano, C., Pittolo, A., Malone, D., Lampe, L., Tonello, A.M., Dabak, A.G.: State of
the art in power line communications: from the applications to the medium. IEEE
JSAC 34(7), 1935–1952 (2016)

3. Fukuda, K., Asai, H., Nagami, K.: Tracking the evolution and diversity in network
usage of smartphones. In: ACM IMC (2015)

4. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in
HTTP-based adaptive video streaming. In: ACM CoNEXT (2012)

5. Yonge, L., Abad, J., Afkhamie, K., et al.: An overview of the homeplug AV2 tech-
nology. J. Electr. Comput. Eng. 2013(Article ID 892628), 20 (2013). doi:10.1155/
2013/892628

6. Lin, Y.J., Latchman, H.A., Newman, R.E., Katar, S.: A comparative performance
study of wireless and power line networks. IEEE Commun. Mag. 41(4), 54–63
(2003)

7. Vlachou, C., Herzen, J., Thiran, P.: Fairness of MAC protocols: IEEE 1901 vs.
802.11. In: IEEE International Symposium on Power Line Communications and
Its Applications (2013)

8. Vlachou, C., Banchs, A., Herzen, J., Thiran, P.: Analyzing and boosting the per-
formance of power-line communication networks. In: ACM CoNEXT (2014)

9. Vlachou, C., Henri, S., Thiran, P.: Electri-fi your data: measuring and combining
power-line communications with WiFi. In: ACM IMC (2015)

10. Yenamandra, V., Srinivasan, K.: Vidyut: exploiting power line infrastructure for
enterprise wireless networks. ACM SIGCOMM 44(4), 595–606 (2014)

http://dx.doi.org/10.1155/2013/892628
http://dx.doi.org/10.1155/2013/892628

Cutting Internet Access
Costs Through HTTPS Caching:

A Measurement Study

Prerna Gupta, Mohammedsalman Patel, and Kameswari Chebrolu(B)

Department of Computer Science and Engineering, IIT Bombay, Mumbai, India
chebrolu@cse.iitb.ac.in

Abstract. In this paper, we look at web caching as a means to cut
Internet access costs. We specifically look at caching of HTTPS traffic
which has thus far not received much attention. We first look at client
side caching on smartphones in mobile web scenarios to evaluate the
potential for bandwidth savings. Our analysis based on user logs reveals
that app traffic dominates browser traffic at 82.7% and HTTPS traf-
fic dominates HTTP traffic at 82.3%. There is around 15% redundancy
in this traffic, however much of this redundancy does not lend itself to
practical savings since app logic or server cache configurations cannot be
controlled.

Given the negative result of above approach, we shifted our atten-
tion to infrastructure side caching (wired) in an organizational setting.
Analysis of our logs indicate that HTTPS accounts for 91.6% of all con-
sidered traffic and YouTube accounts for 82% of this HTTPS traffic.
We found that there is some amount of redundancy in this traffic and
hence potential for bandwidth savings. However proxying HTTPS traffic
is challenging given that the proxy has to act as a man in the middle
of a secure transaction. To circumvent this problem, we propose a new
architecture that serves only insensitive HTTPS traffic from the proxy.
We validate the feasibility of this approach via an implementation. A
trace driven simulation shows that one can realize bandwidth savings of
between 13–17% with our architecture.

1 Introduction

Web browsing is a popular activity and web caching both at client and infrastruc-
ture side is often employed to eliminate redundant transfers. This helps not only
to improve user experience but can also cut Internet access costs. HTTP is the
protocol behind web browsing but with increasing concern over security and pri-
vacy, there has been a drastic rise in the use of HTTPS, a secure version of HTTP
that runs on top of TLS/SSL. All of the prior work we are aware of has focused
exclusively on HTTP based caching. In this paper, we delve into HTTPS traffic
with an aim to understand the scope for caching and the resulting bandwidth
savings one can achieve.

c© Springer International Publishing AG 2017
M.A. Kaafar et al. (Eds.): PAM 2017, LNCS 10176, pp. 270–282, 2017.
DOI: 10.1007/978-3-319-54328-4 20

Cutting Internet Access Costs Through HTTPS Caching 271

We first look at client side caching on smartphones to cut down Inter-
net access costs. Compared to network/infrastructure side caching, client-side
caching alone can eliminate redundancy over the last mile (cellular link). To aid
this analysis, we collected HTTP as well as HTTPS logs over 25 days across 27
smartphone users. We analyzed the logs to (A) quantify the extent of HTTPS
traffic; (B) validate if scope for HTTPS caching is similar to HTTP caching as
carried out in various other studies, notably [2] and (C) quantify how effective
current solutions are in realizing savings in practice.

Our logs revealed that smartphone apps account for 82.7% of overall traffic
while the rest is due to the browser. HTTPS traffic is significant and accounts for
82.3% of overall traffic. Within HTTPS, there is only 13.9% redundancy, while
in HTTP, there is 23.2% redundancy. Our analysis also showed that 15.8% of
browser and 15.4% of app traffic is redundant. These percentages are basically
an upper bound and may not be realizable in practice since we have no control
over app cache logic or server-side cache configurations. The overall savings that
we could practically realize is a meagre 2.4%. So, client-side mobile web caching
is not very promising.

Given the not so encouraging results with client-side caching in mobile web
scenarios, we shifted our attention to infrastructure side caching (via a proxy)
in an organization. To analyze the potential for bandwidth savings, we collected
browser based user-logs across 29 laptop/desktop users for 75 days. Even here,
HTTPS dominates and accounts for 91.6% of all considered traffic with YouTube
accounting for 82% of this HTTPS traffic. A preliminary analysis revealed that
there is good scope for caching at the proxy since we can leverage redundancy
across users. However realizing the same is difficult since to cache, the proxy
has to act as a man-in-the-middle of a secure transaction. Further YouTube
traffic does not lend itself to URL based caching after its migration to adaptive
streaming. We found that many parameters vary from URL to URL and there
is no easy way to determine if they refer to the same video.

To solve this problem, we propose a new architecture, where a browser sepa-
rates out URLs corresponding to insensitive HTTPS traffic (e.g. public YouTube
videos where the same video is served irrespective of user login credentials) from
sensitive traffic such as bank transactions. The browser then relies on the proxy
to serve insensitive content. To show the feasibility of this approach, we used
the dominant YouTube traffic as a case study. We implemented the concept
by building a Chrome browser extension and modifying Squid proxy since the
default URL based caching does not work for YouTube. We tested this imple-
mentation and observed that the YouTube player accepted our cached responses
across a variety of videos. To quantify the bandwidth savings that can be real-
ized in practice, we also ran trace based simulations. We found that 13.4% of
YouTube traffic can be served from cache. This can be extended upto 22% if
we can prevent videos repeating with different resolutions. In terms of overall
savings across all traffic (both HTTP and HTTPS) upto 17% savings is feasible.

Our solution shows some promise but our data set is small. One has to evalu-
ate whether these savings translate to an organizational level. Further, whether

272 P. Gupta et al.

the savings are worth the implementation hassles of client side browser changes
which are not user friendly and easy to implement. The rest of the paper is orga-
nized as follows. Section 2 covers related work. Section 3 describes measurements
related to client side caching on smartphones while Sect. 4 covers infrastructure
side caching in an organization. We conclude the paper in Sect. 5.

2 Related Work

There are two solutions commonly employed when caching: client-side and
infrastructure-side. We cover related work specific to the two.

In the recent past, client side solutions [3–5] have predominantly focused
on improving latency in mobile web scenarios and have exclusively focused on
HTTP traffic. In contrast, our goal is cutting Internet access costs and our
analysis extends to both HTTP and HTTPS traffic. In [3], user’s instant brows-
ing experience is improved by prefetching dynamic web content using a machine
learning model. Such solutions can cut down on delay but can increase Internet
access costs which goes against our main focus. In [4] three client-only solutions
to improve mobile browser speed were evaluated: caching, speculative loading
and prefetching. They concluded that caching and prefetching are ineffective
while speculative loading shows promise. They attribute reason for ineffective-
ness of caching to expired timers and large percentage of revalidations increasing
RTT. Our focus is again not on delay. The authors in [2] carried out an exten-
sive study of smartphone traffic and found that 17–20% of smartphone traffic
is redundant due to imperfect web caching implementation of HTTP libraries
and developers not utilizing the library caching support. Our client-side caching
analysis is a revalidation of this work but extended to HTTPS traffic. Flaws in
imperfect web caching are also cited in [5], further, to solve the problem they
propose a novel system wide caching architecture that can cache content across
apps. However this does not work with HTTPS traffic since apps have to reveal
employed security keys to cache.

In the wired domain, use of infrastructure-side web caching to reduce band-
width costs and improve user experience is a well known technique. However,
with the dominance of HTTPS traffic, caching is often disabled in many organi-
zation settings to avoid the proxy acting as a man-in-the-middle. In [6], authors
propose outsourcing middlebox functionality to a trusted cloud, but these allow
decryption of traffic at the middlebox and raise security concerns. There is also
effort in the security domain [7] involving homomorphic and other encryption
schemes to support middlebox functionality over encrypted traffic. These are
still at an early stage of research and do not currently support all web caching
primitives, neither are they compatible with current HTTPS standard.

As part of our analysis, we also analysed YouTube architecture. Prior
work [8–10] have looked at efficiency of caching YouTube content at campus
networks and ISPs. However, all of these approaches are applicable to a pre-
vious version of YouTube that employed HTTP based progressive download.
Our study in contrast focuses on the latest version of YouTube which employs
HTTPS based adaptive streaming.

Cutting Internet Access Costs Through HTTPS Caching 273

3 Client-Side Web Caching on Smartphones

Modern web is witnessing a shift from HTTP to HTTPS traffic due to most web-
sites adopting SSL/TLS encryption in order to provide privacy and security. In
this section, we evaluate the efficacy of client side solutions to web caching.
Specifically we provide answers to these three questions: (A) The extent of
HTTPS traffic in current smartphone traffic; (B) Validate if scope for HTTPS
caching is similar to HTTP caching as carried out in various other studies,
notably in [2]; (C) Quantify how effective current solutions are in realizing band-
width savings.

3.1 Data Collection and Properties

Our dataset consists of HTTP(S)records collected across 27 smartphone users
for a period of 25 days amounting to 9.6 GB of data. All the users are stu-
dents from the same department at IIT Bombay and used local WiFi to access
Internet. Since we are interested in HTTPS traffic specifically, we used Charles
web proxy [1] as a man-in-the-middle to record all transactions between users
and servers. To handle user security concerns, we also logged only HTTP(S)
headers with the payload hashed. In the user’s smartphone, we configured the
proxy settings to redirect all network traffic to our proxy running Charles. In the
process, we had to install Charles root certificate in each user’s phone. Since one
of our requirements is to segregate smartphone app traffic from browser traffic,
we modified firefox browser’s ‘User-Agent’ string in each user’s phone so that
we can easily segregate the traffic. Given the ethical considerations involved,
we recruited only volunteers and took an informed consent from them all after
explaining and demonstrating the entire process.

The collected dataset can be viewed as a series of HTTP(S) records
(request/response pair) of all users. From this data set, we rejected records
corresponding to POST (34% of the total records but only 3.1% in bytes) since
they cannot be cached. The remaining data is divided into 2 categories based on
user-agent string: (1) Browser and (2) App traffic. The browser traffic accounted
for 17.3(34)% of bytes (records) on average per user, while app traffic accounted
for 82.7(66)% of bytes (records) on average per user. We further categorized
the records into 6 categories to know the potential for caching in the dataset.
‘Normally Cacheable’ refers to records with valid expiration time and cache-
control headers; ‘Non Storable’ refers to records with cache directive set to
no-store; ‘No Cache’ refers to records with cache directive set to no-cache or
max-age-value set to 0 or expiration time set to some old time (these can be
cached but require revalidation); ‘Heuristically Cacheable’ refer to records with
no cache control directive (in this case browsers typically assign heuristic expira-
tion times); ‘Always Expired’ is similar to ‘No Cache’ but with no Last-Modified
and ETag fields (we cannot revalidate these requests i.e. use conditional GET)
and ‘Others’ corresponds to records with status code such as 204, 304, 404 etc.
Table 1 shows the properties of the data (ignore columns starting with Repeat).

274 P. Gupta et al.

Table 1. Percentage is relative to total data in that category post cleanup.

Browser App

Tags [Records,

Bytes]

Repeat:

Same-URL

Repeat:

Diff-URL

[Records,

Bytes]

Repeat:

Same-

URL

Repeat:

Diff-

URL

Support

Cache

Normally Cacheable [37.1%,

75%]

8.60% 2.2% [24%,

56%]

5.80% 4.00% Yes

Non-Storable [15.6%,

3%]

0.20% 0.07% [11%,

2%]

0.00% 0.14% No

No-Cache [7.1%, 7%] 0.48% 0.08% [13%,

19%]

1.02% 0.50% Yes

Heuristically Cacheable [9.2%,

13%]

3.78% 0.18% [20%,

14%]

2.89% 0.07% Yes

Always Expired [9%, 2%] 0.20% 0.01% [10%,

9%]

0.62% 0.33% No

Others [22%,

∼0%]

0.00% 0% [22%,

∼0%]

0.00% 0.00% No

Out of the above six categories, ‘Non-Storable’, ‘Always Expired’ and ‘Oth-
ers’ do not lead to any caching benefit. The percentage of traffic in bytes that can
leverage caching is large; 95% and 89% for browser and app categories respec-
tively. The percentage of No-Cache is higher in case of app traffic. This shows
that the application developers likely want requests to hit their server. The per-
centage of ‘Heuristically-Cacheable’ content is also not very small. This means
that the mobile content developers are negligent towards caching.

3.2 Dataset Analysis

We now answer the 3 questions we set out to answer. The first being, what is
the extent of HTTPS traffic in current smartphone traffic?

Our analysis reveals that HTTPS traffic does indeed dominate accounting for
82.3(61)% of overall bytes (records). Within browser traffic, HTTPS accounts
for 79.3(67)% in bytes (records), while within app traffic, HTTPS accounts for
83.0(59)% in bytes (records). While the above results are aggregated across users,
this trend prevails at the individual user level in most cases. In [11], the authors
showed that the HTTPS traffic has nearly doubled in just 2 years and stood at
50% in 2014, albeit over a dataset captured in a residential ADSL network. Two
years hence, our results show a further increase in dominance of HTTPS traffic
which stands at around 82% in 2016, albeit over smartphone traffic.

Our second question was on validating if scope for HTTPS caching is similar
to HTTP caching? Since caching is client-based, we analyzed the percentage of
redundant data in our traces on a per user basis. Any downloaded content is
redundant if it should have been served from cache of the user but is actually
downloaded from Internet. This we check by comparing the hash of the payloads.
Note that our definition of redundancy is based on content not URL since the
same content can be served from multiple URLs due to use of CDNs.

Table 1 shows the results of this analysis both for ‘Repeated-Content-Same-
URLs’ and ‘Repeated-Content-Different-URLs’. The results are averaged across

Cutting Internet Access Costs Through HTTPS Caching 275

users. Overall 15.8% of the browser and 15.4% of the app traffic in bytes is
redundant (summation of all cells corresponding to repeat). The same if analyzed
over protocol type, 23.2% of HTTP and 13.9% of HTTPS traffic is redundant.
Though HTTPS is merely the addition of transport layer security (TLS), the
scope for HTTPS caching is not similar to HTTP based on our dataset.

Redundant transfer could arise in the case of ‘Repeated-Content-Different-
URLs’ due to the URL having changed but in case of ‘Repeated-Content-Same-
URLs’, this could be due to two reasons. One, the validation mechanism (condi-
tional GET) is not being used due to improper implementation of cache libraries
on the client handset. Two, content developers are not configuring caching
semantics or configuring very strict expiration time. From the table, the cat-
egories ‘Non-Cacheable’ and ‘Heuristically-Cacheable’ contribute to most of this
redundancy. Redundancy due to content repeated with different URLs is lesser
than the content repeated with same URL, though this difference is less in case
of app traffic. This shows improper implementation of HTTP caching libraries
in browsers/apps is the leading cause for redundancy in smartphone traffic.

It is important to note that redundant data transfer specifies the upper bound
on the savings we can achieve for a given user. Actual savings will depend on the
techniques that can be implemented in practice. We answer this question next.

3.3 Bandwidth Savings

Our original goal was to design a framework which when implemented on the
smartphone cuts redundancy and hence Internet access costs or alternatively
gets more bytes out of a given data plan. The apps/browser already may be
implementing some caching framework, our framework is supposed to handle
redundancy missed by them (due to say improper implementation; this redun-
dancy is what is captured in Sect. 3.2). We make the following two assumptions
going forward. (1) We ignore revalidation requests in calculating bandwidth sav-
ings. No doubt they increase delay but in terms of bytes which is our main
focus their contribution is minimal. (2) We assume we have no control over apps
or web content when it comes to implementing novel ideas. It is unreasonable
to expect app or website developers (whose number is many) to follow caching
semantics or other mechanisms to facilitate caching. Note also that the redun-
dancy as captured in Sect. 3.2 is redundancy arising on top of whatever caching
framework the apps/browser our framework

We begin our answer by observing that app traffic accounts for a high 82.7%
of overall traffic. Further HTTPS traffic also dominates and accounts for 82.3%
of overall traffic in bytes. Given the dominance of app traffic and the fact that
we have very little control over apps, the only way redundancy can be cut is
via system wide caching as proposed in [5]. Unfortunately system wide caching
required un-encrypted data and does not work with HTTPS traffic unless the
apps share security keys with the cache. So, there is really no easy way to cut
redundancy in app traffic. Browser traffic on the other hand can be handled by
the design of a new browser that follows caching semantics and which can imple-
ment newer techniques. Even with browser traffic, if we could achieve the upper

276 P. Gupta et al.

bound of 15.8% savings as calculated in the previous section, the overall savings
we get is a mere 2.7% since browser traffic accounts to just 17.3% of overall
traffic. Nonetheless, to take this thread to its logical conclusion, we evaluated
the savings that can be achieved by a browser in practice.

Since a browser cannot control server side cache configurations, the best it
can do is (1) implement proper cache validation mechanism (note that this also
handles heuristically cacheable content since, even with improperly set expira-
tion timers, the revalidation will avoid unnecessary download of repeat content)
and (2) employ prefix-based web caching [12] to eliminate redundancy due to
‘Repeated-Content-Different-URLs’. In prefix-based web caching, in case of a
cache miss, hash of the N-byte prefix from the downloaded response along with
content length is compared with hashed objects in cache. If there is a match,
downloading stops and the leftover is delivered from the cache instead.

The above two mechanisms basically take care of all the repeated content
resulting from same URL/different URL corresponding to categories “Normally-
Cacheable”, “No-cache”, “Heuristically-cacheable”. This amounts to 14% sav-
ings on average per user for browser content (this does not exactly match the
values from the table due to the initial prefix download in case of prefix-based
caching). But since the browser portion is 17.3% of overall considered traffic, the
overall savings realized is a mere 14% * 17.3% = 2.4% in practice.

4 Infrastructure-Side Web Caching

Given the low potential for practical bandwidth savings in the smartphone sce-
nario, we shifted our attention to see if savings are feasible in a proxy-based
organizational settings. In this setting we could leverage redundancy across users
and further browser traffic dominates giving us better control to implement novel
ideas. The challenge in this setting is however the need for the proxy to act as
a man-in-the-middle which is problematic in case of HTTPS traffic since it vio-
lates confidentiality and privacy concerns. Nonetheless we examine the nature
of HTTPS traffic and the scope for bandwidth savings before deciding on a
mechanism that can trade-off savings with security considerations.

We collected web logs (both http and HTTPS) from 29 laptops/desktops
users for a duration of around 2.5 months amounting to 480 GB. Users are
all students from the same department at IIT Bombay whose informed con-
sent was again taken. Unlike the earlier approach, where we collected logs at
Charles proxy, in this case, we instrumented a Chrome extension to intercept
every request/response and log HTTP headers (not payload) to a file in the local
system which in turn is pushed to our logging server via rsync. The reason for
this change of approach was that that desktop version of Chrome did not autho-
rize third party certificates (like Charles) for websites like Facebook, Google,
YouTube etc.

Cutting Internet Access Costs Through HTTPS Caching 277

4.1 Dataset Analysis

Before starting the analysis of logs, we cleaned them up to remove all trans-
action that have no potential for caching at the proxy. This includes removing
transactions which can be served from user’s client cache, records correspond-
ing to POST/no-store/non-200-ok responses. We also removed entries with no
‘Content-Length’ field set since we cannot measure bandwidth savings for them.
Among the removed content, user’s client cache and no-store dominate at 14.7%
and 23.5% respectively. Post clean-up, we were left with 288 GB of traffic, which
is 60% of total traffic.

Table 2. Dataset properties

Records (Million) Bytes (GB) Repeat-records (Million) Repeat-bytes (GB)

All 3.1 288 0.8 24

HTTP 0.6 24 0.3 5

HTTPS 2.5 264 0.5 19

Table 2 shows the results of the analysis. Repeated Records/Bytes were cal-
culated based on URL based caching at the proxy, which is typical in real life.
The percentage of repeated bytes within HTTP is 20.8% (5/24) and for HTTPS
this number is 7.2% (19/264). Across all traffic, the overall repeated content is
8.3% since HTTPS traffic dominates (91.6%) here as well and has less repetition.
We found this low repeated content in HTTPS in absolute terms as well as in
comparison with HTTP a bit surprising. To understand the reasons behind this,
we split the HTTPS traffic (Bytes) based on content type as shown in Table 3.
Repeated bytes specifies the percentage of bytes that repeated within that con-
tent type. Cumulatively audio and video traffic contribute to 85.4% of total
HTTPS traffic in bytes, yet the repeated content in the individual categories
is negligible. YouTube turns out to be the dominant player here accounting for
96.4% of the HTTPS video and 99.94% of HTTPS audio.

Table 3. HTTPS Byte distribution and redundancy

Content-type Video Audio Images Other

Distribution 72.1% 13.3% 6.2% 8.4%

Repeated bytes 0.01% 0.03% 16.6% 74.0%

Given the popularity of YouTube, which accounts for 75% of all con-
sidered traffic (216 GB/288 GB), we set to understand the cause for low
repetition in this traffic. Normally a user accesses YouTube videos via
https://www.YouTube.com/watch?v=videoid, where video-id is a unique 11

https://www.YouTube.com/watch?v=videoid

278 P. Gupta et al.

character string. Based on this, an analysis of the logs showed that 73% of
all distinct videos never repeated but 27% videos repeated at-least once, some
as many as 25 times. Then why the low percentage of repetition? To understand
this it is important to understand how YouTube which a few years back shifted
to adaptive streaming loads videos in the browser. These steps listed below have
been identified after performing downloads of a variety of videos both with and
without Google login.

1. In response to a video request (of the form https://www.YouTube.com/
watch?v=videoid), rather than a complete video download, YouTube front-
end server responds with the name of the content server to be contacted in
order to download the video.

2. The actual video is downloaded from the content server in chunks i.e. as
separate requests (which we will refer to as video-playback requests). Note
video and audio are downloaded independently and synced locally.

3. The video-playback requests contain very long URLs that apart from spec-
ifying the byte range of the chunk, also includes other parameters such as
mime-type (audio/video), resolution etc.

4. YouTube dynamically adapts the video resolution based on Internet speed of
the user; hence resolution parameter can vary from request to request.

5. Further the video-id which is part of the very first main request is nowhere
mentioned as part of the video-playback URLs.

The above operation explains why our analysis based on URL caching yielded
poor results. When a user watches the same video the main URL repeats but
videoplayback URLs do not1. A simple idealized analysis based on the video ids
observed in our logs, assuming unlimited cache size and user always watching
the video in full at same resolution as 1st video download, revealed that 29.5%
of YouTube traffic can potentially be served from the cache. Since YouTube
accounts for 75% of all considered traffic, this can give 22.1% bandwidth savings.
This is worth further exploration. But a URL based caching is not adequate due
to nature of YouTube traffic. We need to device a new mechanism and validate
the same via implementation.

4.2 Caching HTTPS Traffic: YouTube as a Case Study

Above analysis of HTTP(S) traffic shows good potential for caching and hence
bandwidth savings for an organization. However caching HTTPS traffic and
serving it from a proxy raises security as well as privacy concerns. Most orga-
nizations by default disable HTTPS caching. This tradeoff between savings and
security/privacy is a difficult one to handle. As a first step towards solving this
tradeoff, we begin with an observation. As far as confidentiality is concerned,
there is considerable traffic like YouTube videos where the same content is served
1 In the smartphone logs, the redundancy in HTTPS was also less than HTTP, but

the analysis there was based on content not URL. That was the nature of HTTPS
traffic in smartphone logs, which seems to differ from desktop logs.

https://www.YouTube.com/watch?v=videoid
https://www.YouTube.com/watch?v=videoid

Cutting Internet Access Costs Through HTTPS Caching 279

to different users. There isn’t anything secret about such content (we can view
it as being open) but HTTPS is likely used to address privacy/integrity. In con-
trast, URLs of banks or e-commerce sites carry sensitive password or account
details and it is important that this information (private) not be exposed at a
proxy. If one could devise rules at a browser to separate out such open vs private
content and use the proxy to serve open content, we could have it both ways.
Integrity is less of a concern in an organizational setting where the proxy can
be trusted to not modify content. Privacy i.e. who is accessing which URLs can
still be a concern if the proxy directly handles the user’s requests. So our solu-
tion as explained below works if we make the assumption that an organization is
unwilling to compromise on confidentiality but would like to place its bandwidth
savings ahead of privacy/integrity concerns. This we believe may work in many
organizations since after all the organization is the one paying for user traffic.

In our solution, end users in an organization need to install a browser exten-
sion that examines URLs and matches them against a preconfigured list (hence-
forth referred to as white list). The proxy then redirects these URLs to the
proxy which then serves the content from cache if there is a hit. The white list
can be generated after suitable analysis of an organization’s encrypted HTTPS
traffic (IP addresses can be manually mapped to specific URLs). The list should
naturally include URLs who are heavy consumers of bandwidth and yet whose
content is open and static. Based on our analysis, having just YouTube on this
white list may suffice in most settings. This approach however requires users in
the organization to install the extension, which many may not without some form
of enforcement. For this, the firewall within the organization could be configured
to drop packets from users (not proxy) destined to domains corresponding to the
preconfigured URLs. While a user can access all websites outside the preconfig-
ured list, she can access the preconfigured list URLs (hopefully a very small set),
only if she installs the extension. We emphasize that the solution above is only a
first step, a complete and comprehensive security vs bandwidth savings tradeoffs
require more detailed study.

As a proof of concept of above proposal, we implemented the idea and use
the dominant YouTube traffic as a case study and the only URL in our white
list. We built a browser extension for Chrome to process URLs and redirect only
YouTube video related requests to our HTTPS proxy which is based on Squid.
Note user login requests for YouTube are not directed to our proxy since they
map to a different URL. We installed the proxy certificate in the browser and
used HTTPS as the means of communication between proxy and browser. Since
YouTube employs adaptive streaming, URL based caching will not work. To fix
this, rather than use a plain URL as a hash key for caching at the proxy, we use a
4 tuple of [video-id, range, mime-type, resolution] which uniquely identifies each
video-playback request. Since the video-id information is not part of the playback
URL, the browser extension tracks this information across requests and appends
relevant video-id to video-playback requests sent to the proxy. Note that caching
at the proxy is chunk based not video based. If a user fetches only two chunks and
then stops watching the video, another user requesting the same video will get a

280 P. Gupta et al.

hit only for the first two chunks. We tested our implementation for a variety of
YouTube videos including ones whose HTTP cache timers expired and observed
that in all cases YouTube player accepted our cached responses from the proxy.

4.3 Evaluation of Bandwidth Savings

Given the success of our implementation, we ran a trace driven simulation on
YouTube traffic extracted from our logs to determine the bandwidth savings
that can be achieved in practice. Note that in this analysis we assumed that the
video content corresponding to a given video id does not change for the duration
of our logs, which is true in practice. Table 4 shows the results of our analysis
for varying cache sizes based on Least-Recently-Used caching policy. Even with
a small cache size, the savings are close to the infinite cache size.

Table 4. % Bandwidth savings of YouTube traffic

Cache size (GB) infinite 216 100 50 25

Savings 13.4% 13.4% 12.7% 11.5% 10.2%

The achieved savings which is around 10–13% is much lower than the pro-
jected ideal savings of 29.5% as discussed in Sect. 4.1. The reasons for this are
mainly due to (1) videos repeating with different resolutions; (2) users not watch-
ing the full video and (3) mismatch in downloaded chunk ranges when the video
is repeated with same resolution.

Out of total repeated videos, 69% videos repeat in same resolution while
23% in different resolution and remaining 8% repeated in multiple resolutions
due to the autoplay feature of YouTube. These (23 + 8)% cannot contribute to
bandwidth savings in our current cache model and responsible for a loss of 9.6%
savings from the ideal case. However, in our current logs, the content is accessed
directly from YouTube servers over a WAN link. But with a proxy in place,
the content will be accessed over a high speed LAN and it is possible that the
video resolution may not vary during play-out and across users. Given this, it is
possible to boost our bandwidth savings from 13% upto 22.6%.

With respect to the second cause of loss in savings, if a user stops watching
the video in the middle, there is not much that can be done. We find that approx-
imately 70% of the videos were downloaded fully while the rest downloaded in
varying amounts. This aspect contributes to a loss of 6.1% bandwidth savings
from the ideal case. With respect to the third cause, if ranges do not overlap
for the same resolution video, then according to our model it will be a miss and
the chunk has to be downloaded from the YouTube server. We found that when
we download the same video multiple times, most of the time the range URLs
coincide. In our logs, range mismatch is mainly due to user jumping forward and
backward within video. This was found to be a very small percentage and not a
major factor for loss of bandwidth savings.

Cutting Internet Access Costs Through HTTPS Caching 281

To put the overall savings in perspective, the total HTTP(S) logs accounted
for 480 GB. From this we do need to exclude content that can be served from
a user’s browser cache, this left us with 408 GB. YouTube traffic accounted for
216 GB (216/408 = 53%). Of this traffic we can potentially save 29 to 47 GB
(13.5%–22% of YouTube traffic) depending on how effective we are at preventing
videos repeating with different resolutions. This accounts for an overall savings
of 7.1–11.5% (29/408 to 47/408) if only YouTube traffic was cached. If one were
to include potential savings from the remaining 47% of overall traffic (HTTP
as well as non YouTube HTTPS traffic; see last column of Table 2), we can
potentially save a total of 53–71 GB provided all of the HTTPS traffic URLs are
in the white list. So, in practice the savings will range from 13–17.4% (53/408
to 71/408).

Our design shows promise, however our data set is small. One has to evaluate
if these savings translate to a much larger data set at the organization level. In a
larger data set, the number of users will increase leading to more redundancy but
at the same time number of requests will also increase. One has also to evaluate
whether the savings are worth the client side browser changes which are not user
friendly and easy to implement (transparent proxies will not work with HTTPS
traffic; a certificate has to be installed at the client).

5 Conclusion

With the dominance of HTTPS traffic, we re-evaluated the effectiveness of web
caching as a means to cut Internet access costs. An analysis of user collected logs
showed that client side caching on smartphones are not very effective in saving
bandwidth due to lack of control over app logic and server side cache configu-
rations. The total realized savings is a meagre 2.4%. Infrastructure side proxy
based caching in an organization on the other hand show more promise but this
needs an altogether different architecture to handle security concerns of HTTPS
traffic. Our proposed architecture and its implementation using YouTube as a
case study show that HTTPS caching is realizable in practice. The savings real-
ized currently over our data set can go upto 17% and are worthy of further
exploration at an organization level.

References

1. Charles Proxy. http://www.charlesproxy.com
2. Qian, F., et al.: Web caching on smartphones: ideal vs. reality. In: MobiSys 2012

(2012)
3. Lymberopoulos, D., et al.: PocketWeb: instant web browsing for mobile devices.

In: ASPLOS 2012 (2012)
4. Wang, Z., et al.: How far can client-only solutions go for mobile browser speed?

In: WWW 2012 (2012)
5. Zhang, Y., Tan, C., Qun, L.: CacheKeeper: a system-wide web caching service for

smartphones. In: UbiComp 2013 (2013)

http://www.charlesproxy.com

282 P. Gupta et al.

6. Sherry, J., et al.: Making middleboxes someone else’s problem: network processing
as a cloud service. In: SIGCOMM 2012 (2012)

7. Lan, C., et al.: Embark: securely outsourcing middleboxes to the cloud. In: NSDI
2016 (2016)

8. Zink, M., et al.: Characteristics of YouTube network traffic at a campus network
measurements, models, and implications. Comput. Netw. 53(4), 501–514 (2009)

9. Guillemin, F., et al.: Experimental analysis of caching efficiency for YouTube traffic
in an ISP network. In: Teletraffic Congress (ITC) (2013)

10. Lothar, B., et al.: Analyzing caching benefits for YouTube traffic in edge networks—
a measurement-based evaluation. In: NOMS (2012)

11. Naylor, D., et al.: The Cost of the “S” in HTTPS. In: CONEXT 2014 (2014)
12. Woo, S., et al.: Comparison of caching strategies in modern cellular backhaul net-

works. In: MobiSys 2013 (2013)

Author Index

Aguirre, Anthony 173
Alavi, Arash 100
Almeida, Rafael 242
Antichi, Gianni 201
Apicharttrisorn, Kittipat 257
Arlitt, Martin 87
Atya, Ahmed Osama Fathy 257

Bischof, Zachary S. 156
Bocchi, Enrico 47
Borgolte, Kevin 30
Bozkurt, Ilker Nadi 173
Brecht, Tim 129
Bustamante, Fabián E. 156

Carlsson, Niklas 87
Chandrasekaran, Balakrishnan 173
Chebrolu, Kameswari 270
Chen, Jiasi 257
Cuadrado, Felix 60
Cunha, Ítalo 242

De Cicco, Luca 47
de Oliveira Schmidt, Ricardo 17, 188
Deng, Jie 60
Dimogerontakis, Emmanouil 72
Dumitraş, Tudor 113

Fazzion, Elverton 242
Feldmann, Anja 3
Fiebig, Tobias 30
Finamore, Alessandro 217
Fonseca, Osvaldo 242
Flack, Martin 142

Godfrey, P. Brighten 173
Goel, Utkarsh 142
Grosvenor, Matthew 201
Guedes, Dorgival 242
Gupta, Prerna 270
Gupta, Rajiv 100
Gustafsson, Josef 87

Hao, Shuang 30
Haq, Farhan Ul 100
Heidemann, John 188
Hendriks, Luuk 17

Korczyński, Maciej 229
Krishnamurthy, Srikanth V. 257
Kruegel, Christopher 30
Kuipers, Jan Harm 188

Laughlin, Gregory 173
Liu, Mingyan 113
Lone, Qasim 229
Lu, Long 100
Luckie, Matthew 229
Ludin, Stephen 142

Maggs, Bruce 173
Manihatty-Bojan, Neelakandan 201
Marsh, Bryan 100
Meira Jr., Wagner 242
Mellia, Marco 47
Meseguer, Roc 72
Moore, Andrew W. 201

Navarro, Leandro 72

Overier, Gustaf 87

Papagiannaki, Kostantina 217
Pariag, David 129
Patel, Mohammedsalman 270
Popescu, Diana Andreea 201
Pras, Aiko 17
Pujol, Enric 3

Qian, Zhiyun 100
Quach, Alan 100

Richter, Philipp 3
Rossi, Dario 47

Sarabi, Armin 113
Singla, Ankit 173
Stanojevic, Rade 156
Steiner, Moritz 142
Sundaresan, Karthikeyan 257

Tyson, Gareth 60

Uhlig, Steve 60

van Eeten, Michel 229
van Rijswijk-Deij, Roland 17

Varvello, Matteo 217
Vigna, Giovanni 30

Wittie, Mike P. 142
Wójcik, Marcin 201

Xiao, Chaowei 113

Zhang, Hang 100
Zhu, Ziyun 113
Zilberman, Noa 201

284 Author Index

	Preface
	Organization
	Contents
	IPv6
	Understanding the Share of IPv6 Traffic in a Dual-Stack ISP
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Measuring IPv6 Connectivity
	3.2 From IPv6 Connectivity to IPv6 Usage

	4 Dataset
	5 A Dual-Stack ISP Perspective on IPv6 Traffic
	5.1 The Subscribers' Side
	5.2 The Service Providers' Side
	5.3 IP Traffic: Barriers and Intent for IPv6
	5.4 Case Studies

	6 Discussion
	7 Conclusion
	References

	On the Potential of IPv6 Open Resolvers for DDoS Attacks
	1 Introduction
	2 Background
	2.1 Using DNS to Traverse from IPv4 to IPv6
	2.2 Possible Resolving Setups

	3 Methodology
	3.1 Finding IPv4 Open Resolvers
	3.2 Measurement Setup
	3.3 Determining IPv6 Connectivity
	3.4 Distinguishing Dual-Stack and Infrastructural Setups
	3.5 Comparison of Response Sizes for IPv4 and IPv6

	4 Results
	4.1 What Share of the Resolvers Generate IPv6 Traffic?
	4.2 Caching Characteristics
	4.3 Amplification Factor
	4.4 Distribution of Open Resolvers per Network
	4.5 Interface Identifier Analysis

	5 Discussion
	5.1 Ethical Considerations
	5.2 Pitfalls in Scanning/Great Firewall of China
	5.3 Response Size Difference

	6 Related Work
	7 Conclusions
	References

	Something from Nothing (There): Collecting Global IPv6 Datasets from DNS
	1 Introduction
	2 Previous Work
	3 DNS Enumeration Techniques
	4 Methodology and Algorithmic Implementation
	5 Evaluation
	6 Case-Study
	7 Conclusion
	References

	Web and Applications
	The Web, the Users, and the MOS: Influence of HTTP/2 on User Experience
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Page Catalog
	3.2 Testbed Engineering
	3.3 Scenarios and MOS Dataset Collection

	4 MOS on the Toy Page
	5 MOS on Real Pages
	5.1 Subjective MOS Differences
	5.2 Impact of Page Sharding
	5.3 Impact of Latency Diversity

	6 Objective Metrics on Real Pages
	7 Conclusions
	References

	Internet Scale User-Generated Live Video Streaming: The Twitch Case
	1 Introduction
	2 Measurement Methodology
	3 Geographic Deployment of Twitch Infrastructure
	4 Stream Hosting Strategy
	4.1 How Important Is Channel Popularity?
	4.2 Scaling of Servers Across Continents

	5 Client Redirection and Traffic Localisation
	6 Related Work
	7 Conclusion
	References

	Internet Access for All: Assessing a Crowdsourced Web Proxy Service in a Community Network
	1 Introduction
	2 The guifi.net Proxy Service
	3 Service Usage Viewpoint
	4 The Proxy Viewpoint
	5 The Local Network Viewpoint
	6 Related Work
	7 Summary of Lessons Learned
	References

	Security
	A First Look at the CT Landscape: Certificate Transparency Logs in Practice
	1 Introduction
	2 Certificate Transparency
	3 Methodology and Datasets
	4 Analysis of Logs
	4.1 Basic Log Properties and Operational Measures
	4.2 Certificate Analysis
	4.3 Cross-Log Publication
	4.4 Temporal Analysis

	5 Popularity-Based Analysis
	6 Related Work
	7 Conclusions
	References

	Where Is the Weakest Link? A Study on Security Discrepancies Between Android Apps and Their Website Counterparts
	1 Introduction
	2 Background
	3 Methodology and Implementation
	4 Observations
	5 Related Work
	6 Conclusion
	References

	Patch Me If You Can: A Study on the Effects of Individual User Behavior on the End-Host Vulnerability State
	1 Introduction
	2 Data Sets and Their Processing
	2.1 Curated Data

	3 Analysis of User Behavior and Its Security Implications
	3.1 Modeling a User's Patching Delay
	3.2 Vulnerability State
	3.3 Susceptibility to Vulnerability Exploits
	3.4 Factors that Impact User Behavior

	4 Related Work
	5 Conclusions
	References

	Performance
	Application Bandwidth and Flow Rates from 3 Trillion Flows Across 45 Carrier Networks
	1 Introduction
	2 Methodology
	3 Understanding Bandwidth Consumption
	4 Peak Versus Off Peak Bandwidth
	5 Peak Flow Rates
	5.1 Peak Flow Rates by Application

	6 Related Work
	7 Conclusions
	References

	Measuring What is Not Ours: A Tale of 3rd Party Performance
	1 Introduction
	2 Data Collection
	3 Exposing Characteristics of 3P Assets
	4 Third Party Trailing Ratio
	5 Selecting Third Party Objects for Optimization
	6 Third Party Content Acceleration via URL Rewriting
	7 Discussion
	8 Conclusions
	References

	The Utility Argument -- Making a Case for Broadband SLAs
	1 Introduction
	2 Metrics for a Broadband SLA
	3 Supporting SLA Today
	3.1 Dataset
	3.2 Throughput
	3.3 Latency
	3.4 Packet Loss
	3.5 Applying an SLA

	4 Personalized SLAs
	5 Discussion
	6 Conclusion
	References

	Latency
	Why Is the Internet so Slow?!
	1 Introduction
	2 The Internet Is Too Slow
	3 Why Is the Internet so Slow?
	3.1 Methodology
	3.2 Overview of Results
	3.3 Impact of IP Geolocation Errors
	3.4 Results Across Page Sizes
	3.5 Results Across Geographies
	3.6 The Role of Congestion
	3.7 End-User Measurements

	4 Infrastructural Latency
	5 Related Work
	6 Discussion and Conclusion
	References

	Anycast Latency: How Many Sites Are Enough?
	1 Introduction
	2 Measurement Methodology
	3 Observation and Findings
	3.1 Does Anycast Give Good Absolute Performance?
	3.2 Do Users Get the Closest Anycast Site?
	3.3 Effects of Anycast Location on Latency and Observation Bias
	3.4 How Much Do ``Many Sites'' Help?
	3.5 Do Local Anycast Policies Hurt Performance?
	3.6 How Many Sites?

	4 Related Work
	5 Conclusions
	References

	Where Has My Time Gone?
	1 Introduction
	1.1 Motivation

	2 Experiments
	2.1 Tests Setup
	2.2 In-Host Latency
	2.3 Client-Server Latency (6)
	2.4 Network Latency

	3 Latency Results
	4 Tail Latency Results
	5 Discussion
	5.1 The Good, the Bad and the Ugly
	5.2 Limitations

	6 Conclusion
	References

	Characterization and Troubleshooting
	Mind the Gap Between HTTP and HTTPS in Mobile Networks
	1 Introduction
	2 Background
	3 Dataset
	3.1 Dataset Curation

	4 Overall Volumes
	5 Spatial and Temporal Analysis
	6 Conclusions
	References

	Using Loops Observed in Traceroute to Infer the Ability to Spoof
	1 Introduction
	2 Background on Ingress Filtering
	3 Related Work
	4 Motivation of Ingress ACLs
	5 Inferring Absence of Ingress Filtering Using Traceroute
	5.1 Input Data
	5.2 Construction of Topology
	5.3 Algorithm to Infer Absence of Ingress Filtering from Loops
	5.4 Finding Needles in a Haystack
	5.5 Persistence of Loops

	6 Validation by Network Providers
	7 Results
	8 Conclusion
	References

	A Characterization of Load Balancing on the IPv6 Internet
	1 Introduction
	2 Load Balancing
	3 IPv6 Load Balancing and Measurement Methodology
	4 Dataset
	5 Results
	5.1 Load Balancing Prevalence
	5.2 Classes of Load Balancing Behavior
	5.3 Diamond Characteristics
	5.4 Confounding Factors

	6 Related Work
	7 Conclusions and Future Work
	References

	Wireless
	Enhancing WiFi Throughput with PLC Extenders: A Measurement Study
	1 Introduction
	2 PLC Background and Related Work
	3 The Influence of Power Line Configurations
	4 Single-User Studies
	4.1 Throughputs with PLC Extenders
	4.2 Impact of Distance
	4.3 Can More Extenders Help?

	5 Multi-user Studies
	5.1 Sharing PLC Backhaul
	5.2 Can More Extenders Help?

	6 Applications
	7 Conclusions
	References

	Cutting Internet Access Costs Through HTTPS Caching: A Measurement Study
	1 Introduction
	2 Related Work
	3 Client-Side Web Caching on Smartphones
	3.1 Data Collection and Properties
	3.2 Dataset Analysis
	3.3 Bandwidth Savings

	4 Infrastructure-Side Web Caching
	4.1 Dataset Analysis
	4.2 Caching HTTPS Traffic: YouTube as a Case Study
	4.3 Evaluation of Bandwidth Savings

	5 Conclusion
	References

	Author Index

