
Chapter 5

Software Project Management as a Service
(SPMaaS): Perspectives and Benefits

Muthu Ramachandran and Vikrant Chaugule

5.1 Introduction

Cloud computing has evolved to address the availability of computing resources

which can be accessed from anywhere and anytime. In particular, computing

hardware and software often gets outdated, and hence, it is wise to outsource

computing resources and to manage their IT infrastructures outside of their com-

pany premises, which is more cost-effective than is the case at present. Applications

can be leased (like pas-as-you-go service) rather than being purchased, and com-

panies have increased their data centers due to demand (Amazon, Microsoft, and

IBM) [1]. Cloud computing is heavily based on “software as a service” concept and

needs high-speed web access. It provides services on demand utilizing resources

more effectively within the cloud environment. The cloud architecture, its layers,

and its composition of components and services need to be designed for scalability,

security, and re-configurability as they support services and its agreements (e.g.,

service level agreements). In this scenario, the resource management of cloud

computing is the key to achieving potential benefits.

Cloud computing, one of the greatest developments in the field of computing,

has the ability to transform and change the work of an IT industry. It has definitely

helped in making the way software can be offered more attractively and also

changing the way hardware is purchased and designed. It has led to a complete

M. Ramachandran (*)

School of Computing, Creative Technologies and Engineering, Leeds Beckett University,

Leeds LS6 3QS, UK

e-mail: M.Ramachandran@leedsbeckett.ac.uk

V. Chaugule

Department of Computer Science and Engineering, National Institute of Technology,

Surathkal, Karnataka 575025, India

e-mail: vikrant.chaugule@gmail.com

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_5

87

mailto:M.Ramachandran@leedsbeckett.ac.uk
mailto:vikrant.chaugule@gmail.com

change especially that developers coming up with new Internet services need not

require a large investment in hardware or the human resources to operate the

hardware. The developers need not waste costly resources and face losses in case

the product fails, and on the other hand, they do not need to worry about scalability

if the idea turns out to be successful and popular. This versatility about resources,

without paying a premium for vast scale, is phenomenal for the IT industry.

Cloud computing consists of both applications provided as services over the

Internet and the hardware and systems software which provide such services in the

data centers. The services themselves have long been referred to as software as a

service (SaaS) [2]. Together, the hardware and software at the datacenter comprises

the cloud. When this is made available in the form of a pay-as-you-go fashion, to

the people, it is called a public cloud, whereas utility computing is the service being

sold. If the cloud is owned privately by an organization only for storing their

information and is not made available to the public, it is called a private cloud.

Thus, the addition of SaaS and utility computing is called cloud computing. People

can be users or providers of utility computing, or users or providers of SaaS. We

would like to focus on SaaS project management with the help of improving the

way services are provided such that it is more convenient for users to use and

benefit from them.

Some of the benefits of using cloud computing are [3]:

• It leads to lowering of project costs. Since the model used for billing is pay as per

usage, maintenance is reduced since infrastructure required is not purchased.

• A massive infrastructure is provided by all the cloud service providers, and

therefore, managing large volumes of data has become a reality. The cloud can

be scaled dynamically, and sudden workload spikes can be handled very

efficiently.

• It is very flexible. With enterprises having to adapt and adjust very rapidly,

delivery speed becomes very critical. Hence, more emphasis is given on getting

applications to market very quickly.

With the emergence of cloud computing, the focus moves to the interface, that is,

interface between the service consumers and service providers. Some areas like

distributed services, risk assessment, procurement, and service negotiation will

demand expertise from enterprises, but most of them are only modestly equipped

to take care of them.

Cloud computing is based on web access; therefore, we need to design web

applications which are designed for security. Hence, it is essential to design cloud

applications as web service components based on well-proven software process,

design methods, and techniques such as component-based software engineering

(CBSE). Wand and Laszewski [4] define cloud computing as a set of network-

enabled services which provides scalable, guaranteed QoS (quality of service),

inexpensive computing platforms on demand, customizable (personalized), and

all of which can be accessed in a simple and pervasive way. An overview of the

different cloud computing paradigms is discussed and presented with definitions,

business models, and technologies by Wand and Laszewski [4] and by many others.

88 M. Ramachandran and V. Chaugule

Software components provide a good design rationale supporting various

requirements of application developments, design flexibility, system composition,

testability, reusability, and other design characteristics. Component-based designs

are customizable, and interfaces can be designed supporting SLA (service level

agreement). SLAs vary between service providers which need to be customized

without much effort. This can only be achieved using a component which has been

designed for flexible interface that links to a number of SLAs. Each SLAs and

business rules can be represented as a set of interfaces that can be mapped onto

knowledge-based database or a data server. This also allows the reuse of SLAs for

any individual service providers. Some of the important characteristics of the cloud

computing mentioned are:

• On-demand service

• Handling multi tenancy service requirements

• Resource grouping

• Efficient elasticity

• Measurable service delivery

Our earlier work described by Ramachandran [5] on component model for web

services and service-oriented architecture (SOA), grid computing, and various other

systems can become an integrated aspect of any cloud computing architectures and

application design. We also need to understand the basic differences among SOA

(service-oriented architecture), grid, and cloud computing. SOA is to offer services

which are based on open standard Internet services and virtualization technology

and have been running in a different environment, grid offers services from

multiple environments and virtualization, and cloud combines both. We also need

to identify a specific development process for capturing requirements, design and

implementation strategies, security, and testing cloud applications. Cloud comput-

ing paradigm has lots to offer, but at the same time, we need to consider building a

secured and resilient architecture and services that are reliable and trustworthy. In

this chapter, a generic component model and a web service component model have

been developed meeting the design demands for building cloud application archi-

tectures. In this research, we have also proposed architectural composition strate-

gies which can be customized for various cloud services.

This chapter presents our work on software development process model for

building cloud services as it is necessary to follow a systematic approach. The

organization is as follows. Section 5.2 gives a detailed explanation on the software

development process for Cloud computing, Sect. 5.3 talks about the service devel-

opment process, Sect. 5.4 compares classical and cloud-based project management

tools, Sect. 5.5 provides a critical evaluation of some existing project management

tools, Sect. 5.6 discusses the integrated software development process, and Sect. 5.7

gives a detailed explanation on the service-oriented architecture. Conclusions are

summarized in Sect. 5.8.

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 89

5.2 Software Development Process for Cloud Computing

In order to define a process model, it is useful to capture some of our thoughts on

understanding the very nature of cloud characteristics and its type of services that

aims to provide. Identifying characteristics of a service-oriented system is vital for

designers such that they can select, design, and evaluate those characteristics that

are applicable to their applications. Service-oriented computing (SoC) [6] involves

integration of several disciplines and subject areas, and therefore, some of the

characteristics will overlap. Some of the identified services and component char-

acteristics are:

• Reusable web services and some other core services

• Enterprise integration services

• Dynamic binding and reconfigurable at run-time

• Granularity

• Publish, subscribe, and discover

• Open world where components must be able to connect and plug to third party

software systems or components.

• Heterogeneity supporting cross-platform applications

• Reconfigurable

• Self-composable and self-recoverable

• Cloud infrastructure and resources management

• Autonomic framework

• Middleware

• QoS

This is illustrated in Fig. 5.1, which shows some of the above characteristics that

are the key to developing software components. In the modern software develop-

ment, characteristics such as open world where components can be customizable

and connectable to third party systems and their components and heterogeneity are

crucial to developing highly reusable web services that will apply across domains

and services.

The main reason for presenting such characteristics is to understand the basis for

service-oriented systems and hence providing good practice design guidelines. The

next section looks at the distinct features and differences between services and

components. Again these characteristics need to overlap as we are also interested in

applying component-based development for service-oriented systems. In particular

web services need to possess both services and component characteristics. After

looking at service-oriented computing and the characteristics of SaaS systems in

this section, we shall look at the service-oriented development process in detail in

the next section.

90 M. Ramachandran and V. Chaugule

5.3 Service Development Process

The identification of service requirements [6] needs a new RE process and model-

ling techniques as it is highly dependent on multilevel enterprises across corpora-

tion. Identifying and knowing all requirements for all expected and even

unexpected services is very hard. The idea in software as a service is to publish

automatically new services whereby service agents can then be able to request and

take advantage of required services for their customers. Figure 5.2 shows a devel-

opment process model for service-oriented computing where initial requirements

are captured based on enterprise-wide techniques and perhaps using domain anal-

ysis which should focus on a family of products and services. The second phase

(RE services) involves identifying a set of requirements of system services. This

process involves service modelling and service specification for which we can use

any well-known techniques such as use case design and a template for software as a

service (SaaS).

The third phase (categorizing services) involves classifying and distinguishing

services into various categories such as enterprise integration services (services

across corporations, departments, other business services); software services which

represents core functionality of software systems; business logic services which

represents business rules and its constraints; web services (a self-contained and

web-enabled entity which provides services across businesses and customizable at

SaaS
Systems

Open-
world

QoS

Autonomic
Frameworks

Web
Services

Composability

Extensibility

Dynamic
Binding

Publish/Subscribe

Multi-tenancy

Elastic
Resource

Management

Cloud
Infrastructure

Middleware
and IoT

Integration

Enterprise
Integration

Fig. 5.1 Characteristics of software as a service systems (SaaS)

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 91

run-time); IT core services which include resource management, help desk systems,

IT infrastructure, and procurement; and delivery services, B2B and B2C services,

data services, QoS services, middleware services, transaction management ser-

vices, process integration services, re-configurability services, and grid services

which include grid resource management and re-configurations. Service design

stage has been proposed with designing services using OMG standard design

notation known as SoaML which consists of a five-stage design:

• Design Service Interfaces: This offers services to other services through well-

designed interfaces (the value provided), it allows design for service reuse, and it

allows modelling of service specification.

Enterprise
Requirements

• Identify enterprise cloud service requirements
• Identify enterprise integration and architectural integrity requirements
• Identify continuous delivery, integration, security and QoS requirements

Service
Requirements
Engineering

• Identify Business Services
• Service Modelling
• Service Specification

• Enterprise Integration Services
• Software Services
• Business Logic Services
• Web Services
• IT Core Services
• IT Infrastructure Services
• IT procurement and delivery services
• B2B Services

• Design Service Interfaces
• Specify Service Choreography
• Design Service Participant Diagrams
• Design Service Contract Diagrams
• Design Services Architecture Diagrams

• Use secure cloud service development process which is engineered for service
reuse and QoS

• Use Agile Test Driven Approaches with cloud based STaaS (Softwar Testing
as a Service)

• Use Continuous Delivery and Integration Practices
• Conduct Performance Metrics and QoS Testing

Design with
SoaML

Categorize
Services

Development,
Test &
Delivery

Fig. 5.2 Service-oriented software development process

92 M. Ramachandran and V. Chaugule

• Specify service choreography which defines the interaction between the provider

and consumer in completing a service, and this can be modelled using UML

sequence diagrams.

• Design Service Participant Diagrams: The concept of a participant, in SoaML,

represents certain party or component that provides a transaction through its

interface to a consume service(s). Participants can be software components,

organizations, system, or individuals. The participant design should be designed

with SoaML participant diagrams which are similar to a UML component

service with provider and require interfaces designed through the concept of a

port. Service participant diagram allows for modeling primarily the participants

that play role(s) in services architectures. It also presents the services provided

and used by these participants.

• Design Service Contract Diagrams: As we have discussed, there are three

approaches to specify a service: the above two interface-based approaches –

simple interface and service interface – and, thirdly, through a service contract.

Service contract defines the agreement between parties about how a service is to

be provided and consumed. “Agreement” here refers to interfaces, choreography

and any terms and conditions. Interacting participants MUST agree to the

agreement in order for the service to be enacted. In SoaML, this is designed

using service contract diagrams.

• Design Services Architecture Diagrams: This stage of the design offers features

to express the complete list of services and their interactions. A service-oriented

architecture, abbreviated as SOA, shows the participant roles that provide and

consume services to fulfill certain purpose. In SoaML, this is represented as large

globe with all interacting services connected.

We discuss in detail, in the last section of this chapter, SoaML design for

SPMaaS. Based the above finding, we can propose a new paradigm for cloud

application engineering as shown in Fig. 5.3. This illustration provides a relevant

link to classical software engineering process.

As shown in Fig. 5.3, the requirements phase is linked to identifying cloud

requirements which should in particular identify service requirements and relevant

software security requirements so that cloud services are built with security rather

than adding security batches after release. The design phase is linked to designing

services for cloud environment and reuse as services are loosely coupled and have

high potential for reuse. The code/implementation phase is linked to service

development. Likewise testing and QA are related to cloud testing strategies and

quality engineering. The next section discusses classical software project manage-

ment activities and the need of cloud-based project management tools and high-

lights the advantages of cloud-based project management tools [11–17].

With increase in the use of service-oriented architecture, software projects and

systems can get very complex. With the aim of managing this complexity, a number

of SDLC models have been used:

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 93

• Waterfall model

• Spiral model

• Rapid prototyping

• Agile method

• Incremental

• Synchronize and stabilize

The above mentioned models have been in existence for many years, and each of

them has their own advantages. For instance, the waterfall model is simple to

understand, use, and manage. High amount of risk analysis is done with the spiral

model, and hence avoidance of risk is enhanced. The agile method allows regular

adaptation to changing circumstances, and even late changes in requirements are

welcomed. The incremental model provides benefits like easier testing and

debugging during smaller iterations and also lowers initial delivery cost. Though

these models have their own advantages, there are many issues which exist:

• Fulfilling compatibility criteria of numerous services from various vendors

• Sufficient bout of resources and accordingly manage them

• Lack of required coordination between client and provider to provide what was

required

• Managing responsiveness and streamline changes as requested

• Deviation from anticipated product

• Difficult to come back to initial stages in case they had not turned out as

expected

Understanding and keeping all of the above issues in mind, mainly relating to the

vendor-based SDLC, the cloud-based service would typically offer the following:

• Requirements Engineering as a cloud service (REaaS) menas it supports reuse of

requirements, traceability, and commonality and variability analysis for a

familay of related systems. At this pahse of any project management activities

Software Engineering Lifecycle

Cloud Application Engineering Lifecycle

Requirements
Engineering Design

Cloud
Requirements

Design
for Cloud
Services

Cloud
services

development

Cloud services
testing

Service
Quality

Assurance

Code Testing
Software
Quality

Assurance

Cloud services
deployment

Fig. 5.3 Software engineering vs. cloud application engineering lifecycle

94 M. Ramachandran and V. Chaugule

using REaaS can also support contractual regulations, project initiion, accep-

tance testing and planning.

• Product design based on the collected requirements and documented artifacts.

• Implementation through cloud service based on customer chosen environment.

• Un-optimized and deviation from the required product needs to be checked, and

hence testing is performed.

• Option of upgrading and updating the services to incorporate changing and

dynamic requirements of the client.

Similar work done previously in this area can be seen in paper [7] where authors

have focused on a cloud-based management of projects through the means of

software as a service and its various augmentable utilities. They have proposed a

model on the cloud which provides SDLC phases as coordinated services. In this

proposed model, services will be able to interact with one another and either

providers or consumers of data and behavior, instead of letting the client collect

all the data and put it altogether after gathering from numerous vendors. A tech-

nique and approach for the implementation of the model is also stated in detail. The

internal working of the model makes use of two services – IaaS and SaaS. SaaS

(software as a service) borrows services and resources from IaaS (Infrastructure as a

Service) providers and in turn leases those services to the users. This maximizes

resource utilization and also results in increasing customer satisfaction level (CSL).

The SaaS contains two vital layers, namely, platform layer and application layer.

While the platform layer would be responsible for the admission control depending

on how many projects are already admitted, scheduling process, etc., the applica-

tion layer is required to assemble the service from IaaS and integrate the resources

with it to perform the job which conventionally is done by a third party system. The

model proposed by them can be implemented not only for small term developer

level projects but also higher level project management for which the number of

resources to be utilized is a long-term and non-ephemeral function of usage and

maintenance.

5.4 Classical vs. Cloud-Based Software Project
Management

As management is said to both science and the art, so is project management. The

careful process of bringing together economics, software technology, and human

relations for a software project is not a simple task. A software project is an

extremely people-intensive exertion that traverses an exceptionally long period,

with crucial ramifications on the work and execution of a wide range of classes of

individuals.

A software project can be regarded as the assembling of tasks that create an

identifiable and valuable outcome. In its fundamental form, project management

[8–9] consists of planning, executing, and monitoring these activities (Fig. 5.4).

Notwithstanding, the high expenses and failure rates of software projects keep on

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 95

engaging analysts and specialists, and regardless of a few advances, the successful

administration of the project is still a challenging process. Dealing with the one of a

kind and complex procedures that constitutes a task includes the execution of

particular administration exercises. In programming improvement, as in most

different organizations, there has been an inclination toward institutionalizing

these exercises by method for formalized, nonexclusive project management meth-

odologies like PRINCE2 [8], which was created and championed by the UK

government. In spite of the fact that there is a worldwide origination of the project

management marvel, there is no brought together hypothesis of project manage-

ment or very much characterized measure of project success. It is beyond the

capabilities of project teams of large software projects to decide the technological,

environmental, and organizational states which might have an influence on the

outcome of the desired product. Another challenge faced is that the information

required to extrapolate most software problems depends upon the individual’s idea
for solving them. The sort of issues that software projects manage have a tendency

to be exceptional and hard to define, and arrangements have a tendency to advance

constantly as designers pick up a more prominent appreciation of what must be

settled. Adding to the many-sided quality of the issue and its answer is the quick

changing and very questionable environment, for instance, market turbulence and

changes in client prerequisites and project goals [10]. It is vital along these lines to

acknowledge that our suspicions and forecasts about future occasions will, by

nature, be indeterminate. While overseeing software projects, we should be to a

great degree careful of extrapolating past patterns or depending too vigorously on

past experience. The more noteworthy the instability inborn in a project, the more

the project needs to move from customary methodologies that depend on an altered

succession of exercises to methodologies that permit to reclassify the exercises – or

even the structure of the project arrangement – in mid course. Hence, as the

Fig. 5.4 Project management lifecycle

96 M. Ramachandran and V. Chaugule

uncertainty and complexity of a project increases, managers need take on roles

toward flexibility and learning rather than the traditional risk management.

Some of the important project management software features to be considered

are [20]:

1. Task Management: To simplify managing and achieving goals, they are broken

down into a set of tasks. Tasks are created and managed during the entire

process. Tasks such as creating tasks, managing subtasks from larger tasks, set

tasks to recur or repeat should be handled by the software.

2. Team Collaboration: This forms one of the most important features especially in

a distributed team environment. A virtual space needs to be created for discus-

sions among team members. It should allow creation and sharing of documents

as well as sending messages to one or more people.

3. Email Integration: Integration of the project management software with email

turns out to be very beneficial as well as powerful. It can be used for sending

updates, information about new tasks, and status reports to a predefined list of

members.

4. File Management: The online application can provide storage space to manage

the files and documents easily with or without the help of a third party. Features

like adding notes to files, uploading files, having a version control, and organiz-

ing files can also be provided.

5. Scheduling: This feature of the software deals with setting time lines and

creating milestones for completion of various tasks and also identifying depen-

dencies between resources. This might not be very important for a small team or

simple project.

6. Project Management: Project management is very crucial for larger organiza-

tions where templates need to be created, issues need to be managed, and

prioritization among projects is required [9].

7. Time Management: Project management software can help in providing a certain

degree of control in accepting submitted reports, timesheets, etc. This is valuable

to project teams handling many resources and running for longer duration

of time.

Software projects have many properties and attributes which make them

different from any other engineering project. For instance, the product is intan-

gible due to which we can say that a product is 90% complete even though there

are not any visible outcome. Due to such issue, it is very important to have proper

project management to ensure a quality product to the clients. The core activities

involved in software project management are project planning, project schedul-

ing, risk management, control, and managing people. An efficient software

project management focuses on people, problem, and the process. People must

be organized into teams and motivated to do quality work and should coordinate

well to achieve effective communication and results. The problem must be

communicated clearly from customer to developer which must then be

decomposed into goals and assigned to the respective teams. Finally, the process

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 97

should consist of a set of work tasks chosen which must be adapted to the people

and problem.

With all of the above in mind, we can see that the use of cloud computing

[18, 19] in software project management will prove to be immensely beneficial.

Cloud-based project management tools can be used to set priorities and align teams

to work faster and smarter across the organization. Business is moving faster,

becoming increasingly collaborative, and embracing more remote workers every

day. Hence, a system is needed which allows us to plan and adjust in real time. With

the help of the cloud, it is possible to have a central tool to manage the entire

software development process and track progress of the project and also monitor

whether the employees are working toward the goals of the project and company.

Another prime reason for shifting to cloud-based tools would be cost-effectiveness.

Some advantages of using a cloud-based tool are shown in Fig. 5.5.

As it can be seen, the major advantages of using cloud-based project manage-

ment tools include lower maintenance cost, and also it can be easily upgraded.

Maintenance of servers and systems is one area where organizations tend to spend a

lot of money. This cost can be drastically reduced with the use of the cloud. The

other advantage cloud provides is that it can be easily upgraded and no extra

hardware and systems need to be set up in case there is a need for scaling the

services. The next section gives a critical evaluation of some of the popularly used

cloud-based project management tools which have been compared using certain

criteria.

Easily Upgraded

Lower ownership
costs

Always Up
Disaster Assistance

Benefits of
Cloud

Productivity Anywhere

Off-site data storage

No IT maintenance
costs

Fig. 5.5 Advantages of using cloud-based PM tools

98 M. Ramachandran and V. Chaugule

5.5 Evaluation of Cloud-Based Software Project
Management Tools

In the manner in which programs can be written either in editors such as notepad

through Vi to eclipse, online project management tools range from shared to-do

lists to multimedia collaborative environments. In order for a portal to be consid-

ered as a software project management tool, it must have a few specific features.

Some of the criteria for evaluating the tools are bug tracker, to-do lists or some kind

of task management support, and a document repository which helps the stake-

holders to share and modify content and understand what work have been done so

far. Another important feature is conversational tools like emails, chat, wikis, blogs,

etc. which provide a mechanism for stakeholders to communicate and collaborate.

All the other components like calendar sharing, report generation, tagging mecha-

nism, and time tracking tools which may be provided are offshoots of the core

features, namely, task management, document repository, and conversational

tools [20].

There are many existing project management tools available online/in the cloud.

Some of the popular tools are listed with the features they offer and the different

industries they are used in:

1. Freshdesk [21]: It is the most recent in cloud-based support tech that comes with

everything needed to manage and track projects. They follow a simple goal of

making the process of brands talking to their customers and also making it easier

for customers to get in touch with their businesses. An array of features like issue

tracking, SLAmanagement, smart automations, SEO ready FAQ section, knowl-

edge base, and customizable self-service portals are provided by Freshdesk

which helps increase agent productivity and reduce burnout.

Used by: Real estate, professional service providers, healthcare, and insurance

2. Zoho Projects [22]: Zoho projects are the project management software from

Zoho. It provides features like project planning, assigning tasks, effective

communication, update reminders, and detailed reports on progress. Unlimited

users can be added to all plans with no extra cost.

Used by: Small and large teams across various industries

3. TouchBase [23]: TouchBase is totally a state-of-the-art, web-based project

management software. It offers an incorporated bundle with management,

asset tracking, purchasing, contract management, self-service portal, and knowl-

edge base at a reasonable cost point. TouchBase gives all that you need an

undeniable IT Help Desk and a beneficial Help Desk staff for your project

management team. TouchBase can be easily customized as per your industry

requirements.

Used by: Global corporations around the world

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 99

4. SpiraPlan [24]: SpiraPlan provides a complete agile project management system

in one package that manages your project’s requirements, releases, iterations,

tasks, and issues in one environment, fully synchronized. Designed specifically

to support agile methodologies such as Extreme Programming (XP),Kanban,

Scrum, DSDM, and Agile Unified Process (AUP), it allows teams to manage all

their information in one environment.

Used by: Project managers and IT professionals

5. Easy Redmine [25]: Easy Redmine is an open-source software for complex

project management with extensions for resources, finance, and customer man-

agement. In the cloud or on your own server, all comes with professional

implementation and support. Easy Redmine supports whole project lifecycle,

so you can start with an area where you feel the most urgent need. Afterward,

Easy Redmine can grow with you, thanks to the features which work as sepa-

rately installable extensions. Over 20,000 users worldwide

Used by: Software developers, education, healthcare, media, government

6. eXo [26]: eXo platform is an open-source social-collaboration software designed

for enterprises. It is full featured, based on standards, and extensible and has an

amazing design. eXo helps companies connect their employees, customers, and

developers through social, collaborative, and content-driven intranets, websites,

and dashboards.

Used by: Large enterprises, mid-size businesses, public administrators

7. Basecamp [27]: Web-based software that makes it simple to communicate and

collaborate on projects. It is used by millions of people, and 98% of its customers

recommend it, primarily for its simplicity. It supports multiple languages and

can be accessed on your mobile phone.

Used by: Freelancers, entrepreneurs, small businesses

8. Genius Project [28]: Genius inside offers its prime solution Genius Project since

2008 as cloud-based as well as on-premise solution for its project management

software. Apart from the typical project management features, some of its

noteworthy features include simulator which gives visual representation of the

what-if scenario’s in the project and phase and gate review support process for

new product development, and it also provides Agile and SCRUM support.

Genius Project is available in three deployment options: hosted on premise,

SaaS, or installed on IBM’s Lotus Notes. Extremely user friendly and custom-

izable user interface with built in social collaboration platform, Genius Project

fits the needs of every industry and provides benefits for everyone in the

organization: PMO, executive, project manager, and team member.

Used by: Project centric companies of all industries

9. Trello [29]: Trello lets you organize anything with anyone. It is a flexible project
management solution that fits into your workflow in a visual, collaboratively

100 M. Ramachandran and V. Chaugule

focused way. Trello replaces post-it notes in a digital whiteboard format that can

be used for anything from redesigning a website, to posting company updates

regularly for management, to complex projects with many participants.

Used by: Project management teams of any size

10. Kanzen [30]: Kanzen is a project management and collaboration tool that

focuses on but is not limited to Kanban method to improve business processes.

A unique set of features allows user to view their workload in three views – a

Kanban board, task list, personal task list, and a calendar. Intuitive interface

and the ease of use will allow you to concentrate on your tasks rather than

struggling with the software. Features include e-mail notifications, analytics,

access rights, and more.

Used by: Businesses, project management teams, and individuals

11. Salesforce [31–32]: Uses the world’s best CRM for small businesses in com-

bination with a top project management tool from our AppExchange to better

manage and gain visibility into all stages of your company’s projects. The

power of Salesforce plus a project management partner on our AppExchange

will allow your company to reach its peak efficiency and productivity.

Salesforce’s Sales, Service, and AppExchange applications help companies

connect with customers, partners, and employees in entirely new ways.

Used by: Companies of various industries and any team size

As seen in Table 5.1, the tools were compared and evaluated on the

abovementioned criteria. Upon the evaluation of these tools, we find that most of

the portals offer some kind of repository and ticketing mechanism and support for

communication tools. A role-based access control was another feature common in

many of the portals. Some major differences can be seen in the target markets of

these tools apart from the usual pricing and licensing differences. For instance,

BaseCamp [27] primarily targets small organizations that are staffed by nonpro-

grammers working on short- or medium-length projects. Though there are many

software developers using it, it still forms a minority of the users. This might be the

reason it offers a simple and easy-to-use file upload system rather than a version-

control system. Another trend observed is that companies are giving more emphasis

on agile methods which also have a big influence on the features offered by them.

This explains the shift from asynchronous communication like bulletin boards to

synchronous communication like chats.

After studying these tools, we understand the real importance of requirements

elicitation and the importance of a structured development process in the success of

a software project. This is one of the critical areas where we would like to target in

SPMaaS. In addition, other research issues include are whether the information

provided in the portal is sufficient enough to carry out the process or do the team

members need to depend on other means of communication like personal commu-

nication which might not be recorded in the portal. With such problems arising, we

feel that by addressing such issues, the next generation of tools can be designed to

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 101

T
a
b
le

5
.1

T
ab
le

co
m
p
ar
in
g
to
o
ls
b
as
ed

o
n
fe
at
u
re
s
p
ro
v
id
ed

F
ea
tu
re
s

T
o
o
ls

Z
o
h
o
P
ro
je
ct
s

T
o
u
ch
B
as
e

S
p
ir
aP
la
n

E
as
y
R
ed
m
in
e

eX
o
P
la
tf
o
rm

B
as
ec
am

p
T
re
ll
o

B
u
d
g
et

m
ai
n
te
n
an
ce

✓
✓

✓
✓

C
o
ll
ab
o
ra
ti
o
n

✓
✓

✓
✓

✓
✓

✓

P
ri
o
ri
ti
za
ti
o
n

✓
✓

E
m
ai
l
in
te
g
ra
ti
o
n

✓
✓

✓
✓

F
il
e
sh
ar
in
g

✓
✓

✓
✓

✓
✓

G
an
tt
ch
ar
ts

✓
✓

✓
✓

Is
su
e
m
an
ag
em

en
t

✓
✓

✓
✓

M
il
es
to
n
e
tr
ac
k
in
g

✓
✓

✓
✓

P
ro
je
ct

p
la
n
n
in
g

✓
✓

✓
✓

✓

R
eq
u
ir
em

en
ts
m
an
ag
em

en
t

✓
✓

✓
✓

S
ta
tu
s
tr
ac
k
in
g

✓
✓

✓

T
im

e
an
d
ex
p
en
se

tr
ac
k
in
g

✓
✓

102 M. Ramachandran and V. Chaugule

better satisfy the real users’ needs, and it is our aim to do this with the help of a

cloud-based service SPMaaS.

5.5.1 Integrated Software Engineering as a Service

After evaluating the existing tools, we have realized the need of integrating project

management in the software development cycle. The project management phase

will begin immediately once the project development has begun. This can be seen

clearly in Fig. 5.6.

Figure 5.6 clearly shows the overall proposed infrastructure of the proposed

project management as a cloud service and how it will sit in the cloud. It will begin

with software requirements as a (SRMaaS) service followed by software security

management (SSMaaS). After this, the development will begin (SDMaaS), and

project management will begin soon after (SPMaaS). The lifecycle will end with

software testing (STaaS) and ensuring quality of the product (QoSaaS). The next

section gives a detailed explanation on our proposed approach of SPMaaS and

highlights its core activities.

SRMaaS

SSMaS

SDaaS

SPMaaS

STaaS

Quality of Service
as a Service

(QoSaaS)

Fig. 5.6 Integrated

software engineering as a

service

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 103

5.6 Integrated Service Development Process and Software
Project Management for SPMaaS

Project management can help companies, managers, and project teams to consum-

mate client requirements, budget, manage time, and scope constraints. It is very

important for the companies to choose the right tools so that it can help them save

project cost and project time. Basically, there are two types of project management

software:

• On premise [33]: These software systems reside in the data center owned by the

company and runs on their own server. It is maintained by the IT employees of

that company: Microsoft

• Cloud based [34]: This uses cloud technology and is offered by service providers

as SaaS(software as a service). Many small- and medium-sized enterprises use

cloud-based project management tools across different industries.

Figures 5.7 and 5.8 show the core activities which will be offered as a cloud

service SPMaaS. It includes software project planning (SPPaaS), software cost

estimation (SPCEaaS), software team management with support to handle virtual

teams and multi-tenancy (STMaaS), and continuous delivery (CDaaS).

SPMaaS

Software Project
Planning as a

Service (SPPaaS)

Software Project
Cost Estimation as

a Service
(SPCEaaS)

Software Team
Management as a
Service (STMaaS)-
deals with virtual
teams and multi-

tenancy

Continous Delivery
as a Service

(CDaaS)

Fig. 5.7 Core activities of SPMaaS

104 M. Ramachandran and V. Chaugule

A detailed explanation of the features provided by SPMaaS is as follows:

• Requirements Management as a Service: Requirements management refers to

the process of documenting, tracing, analyzing, agreeing, and prioritizing on

requirements and then controlling change and then communicating it to the

appropriate stakeholders. Any capability to which a product or service should

conform is called a requirement. Poor requirements management is one of the

major causes of project failure, and hence, it is a very important phase. This can

help us exceed stakeholder expectations, improve performance, and meet the

expected project goals. Refer to Fig. 5.9.

• Design as a Service: Unified modeling languages (UML) are used to provide a

standardized way to visualize the design of a system. A set of diagrams can be

drawn to visualize the system such as activities, individual components of the

system, interaction among software components, external user interface, etc.

The types of diagrams include structure diagrams like class diagram, component

diagram, object diagram, and behavior diagrams like activity diagram, use-case

diagram, interaction diagram, etc. UML diagrams help in simplifying the soft-

ware development process and reducing development time.

• Risk Management as a Service: It refers to the identification, assessment, and

prioritization of risks. The objective of risk management is to assure that

uncertainty does not deflect the endeavor from the business goals. Risks need

to be identified as early as possible to avoid any obstacles in smooth develop-

ment process. Since there are infinite number of events that can have negative

effect on a project, no project can ever be risk-free. Good an efficient risk

management increases the likelihood of a successful project.

• People Management as a Service: People management aims at getting things

done from people through effective management to produce outstanding results.

It deals with understanding, managing, and delivering people’s expectations.

People management is one of the hardest aspect of a project management.

A good team manager needs to understand strengths and wekaness of the team

Software Project Management (Traditional)

Requirements
Management

Requirements
Management as

s Service
(RMaaS)

Design as a
Service (Unified

Modeling)

Software
 Project
Planning

Risk
Management

People
Management

Software Quality
Assurance

Management

Risk
Management as

a Service
(RiMaaS)

People
Management as

a Service
(PeMaaS)

QoS as a
Service
(QaaS)

Cloud Managed
Services Deployment

SPMaaS

Fig. 5.8 Software project management as a service (SPMaaS)

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 105

members and being able to be a motivator and should be willing to take the

leadership of the team work. However, if we have a good team processe in place,

it is then possible to achieve the common objectives of the team as well as the

project.

• Quality as a Service: Apart from delivering the product on time, the quality of

the product also plays an important role. There is a need of a process which

ensures that the developed software meets and complies with standardized

quality specifications. It needs to be an ongoing process within the lifecycle

that routinely checks the software and hence ensures the development of a high-

quality product.

With all of the above services provided as a cloud service, the process of project

management is simplified, and the project can be managed very effectively and

efficiently. The next section gives a detailed explanation of the architectural design

with service-oriented architecture and SoaML diagram.

5.7 Architectural Design of SPMaaS with SOA

The idea of a service has been defined by many people in numerous ways. While it

has been described as an encapsulated unit of functionalities, it has also been

considered as a logical manifestation of some physical resources grouped as a

process that an organization exposes to a network. A service has been defined as

an externally observable behavior of a software/hardware component in which the

internal working and processing details are well hidden and made available through

a set of well-defined interfaces [35]. A service in the context of web services can

also be viewed as an application or business logic that exposes its functional

capabilities to clients by running on a server. Refer to Fig. 5.10. One thing which

is common and is being tried to be explained in all of the definitions is that service

can be viewed as conceptual identity which supports certain actions in response to a

set of requests received. These requests can be in the form of messages or some

kinds of programs written to trigger the internal processing at the service providers’
end.

Software applications can be implemented using abstraction as the fundamental

design entity. Each service clearly encapsulates certain features while at the same

time hiding the underlying implementation details from the user/client. This con-

cept greatly benefits while building systems to implement higher level services. The

set of services which need to be provided are decided in the software development

Gather
Requirements

from stake
holders

-

Analyze
requirements
to overlook

for overlaps,
conflicts

Distinguish
wants from

needs

Baseline
needs before
commencing

solution

Fig. 5.9 Requirements management process

106 M. Ramachandran and V. Chaugule

phase. The complete system can then be built by having these services as the

fundamental design entities.

In this architectural style, an interaction model between parties is defined,

namely, service provider, service consumer, and service request. The provider

publishes the service description and provides implementation for a service. The

consumer can either use the URI for the service description directly or can find the

service description in a service registry and invoke and bind a service.

5.7.1 Types of Services Offered by SPMaaS

There can be many services provided by providers in software project management,

which depending on the complexity may require different levels of processing.

Services can be composed into three types: elementary services, collaborative

services, and composable services.

For instance, the features provided in software project management can be also

broadly classified into services for planning and scheduling, services for collabo-

ration, services for documentation, etc.

+

+
+

Publish (: Service Description.

+ bind (: Service
 Object)

+ Request
(: Service Object)

+ release (: Service
 Object)

Remove (: Service provider)

Discover (: Service Description)

Service Provider)
Remove

Service Registry

Service Provider Service Request

Publish Discover

0...* 0...*Bind

Fig. 5.10 Conceptual model of service-oriented paradigm

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 107

5.7.1.1 Elementary Services in SPMaaS

These refer to services which do not require complex processing and which are

independent in nature. There are no additional requirements or constraints that need

to be fulfilled in order to add these kinds of services. The client can add an

elementary service by making a simple request in any form, and the respective

service will be made available to the user. For example, services like software

testing (STaaS) can be invoked separately without any previous requirements.

5.7.1.2 Composable Services in SPMaaS

These are the services which are not readily available but can be provided by

invoking a set of services belonging to the same category of services. Consider a

scenario in which the client needs to add a new service. In order to provide the client

with this service, it might be possible that there must be some existing services the

client should already be using so that the new service can be provided with the help

of them. The new service which the client might want could need the support of

another service for its fulfillment or it might be an extension to some older service.

For example, if a client wish to add a calender shring feature, then, this should be

part of a Software Planning as a Service (SPPaaS).

5.7.1.3 Collaborative Services in SPMaaS

These services can neither be composed using the services at a service window nor

can be available readily. Basically, these are the services which can be provided

only if a set of conditions are followed. For example of a composite service

(consists of invoking a sequence of a number of other services), taking a hypothet-

ical situation, if you invoke a new software project cost estimation as a service

(SCEaaS) of the newly created instance of a SPMaaS project, then this service will

create autonomically new instance of software requirements engineering as a

service (SREaaS) and software security requirements engineering as a service

(SSREaaS) which in turn will also invoke software project planning as a service

(SPPaaS). Hence in this sequesnce of service invokation, one services is

interdependent on a set of other services and establishing service choreography.

5.7.2 Design of Cloud SPMaaS with SoaML

The SOA design for SPMaaS can be clearly explained with the help of the diagram

shown in Fig. 5.11. The diagram has been drawn using service-oriented architecture

modeling language (SoaML) which is an extension of UML 2.0 to support service

108 M. Ramachandran and V. Chaugule

concepts. SoaML provides a standard way to architect and model SOA solutions

using the unified modeling language (UML). A services architecture (SOA) is a

network of participant roles providing and consuming services to fulfill a purpose.

The services architecture defines the requirements for the types of participants and

services that fulfill those roles.

The diagram, in Fig. 5.11, shows various participants (rectangle boxes) such as

cloud software engineering team, project manager, testers, QoS teams, etc. Partic-

ipants can provide as well as use services (represented with oval shape). Some of

the services provided which can be seen in the diagram are creating a new project,

creating a project schedule and plan, and tracking project milestones and continu-

ous delivery and integration. The SoaML diagram also clearly shows which partic-

ipants can create a service, use a service, or invoke a service with the help of

messages. For example, we can see that a new project can only be created by

participant1, namely, cloud software engineer team and participant2, the cloud

project manager. Thus, with this diagram we can understand:

• The roles each participant plays in a service

• The message types that go between participants when a service is enacted

• Interfaces provided and used by each participant for the service

• Choreography of interactions between the participants while enacting the

services

Fig. 5.11 SOA design for SPMaaS with SoaML

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 109

5.7.2.1 Part I – SPMaaS Service Interface Model

Service interface diagram is one of the most important SoaML diagram types. The

idea of a service interface diagram is based on the core aspect being a service. A

service in this case can be defined as a value delivered to another through a well-

defined interface. In SoaML, a service can be specified using three approaches,

namely, simple interface, service interface, and a service contract. It can be seen in

Fig. 5.12 that a service interface SPMaaS: Project Cost Estimation Service is

created. A service interface involves communication and interaction between a

consumer and provider of services. In Fig. 5.12, it can be seen that the consumer is

Project Size which is provided with Cost Estimation Methods. There are also two

simple interfaces- Project Cost and Cost Estimation Methods which have beeen

provided. The service interface of the project cost estimation service specifies its

required needs through usage dependencies to the Project Size interface and the

receptions and operation it receives through the Cost Estimation Methods interface.

5.7.2.2 Part II – Specifying SPMaaS Choreography Using UML

Sequence Model

Service choreography defines the interaction between the provider and consumer in

completing a service. We can specify how the consumer interacts with the provider

<<use>>

SPMaaS Service Interface

<<Interface>>
Project Size

<<Interface>>
Cost Estimation Methods: COCOMO II

<<Service Interface>>
SP MaaS: Project Cost Estimation Service

- Consumer :
Project Size

-Provider : Cost
Estimation Methods:

COCOMO II

Fig. 5.12 SPMaaS service interface model

110 M. Ramachandran and V. Chaugule

of service with the help of sequence messages between the two lifelines. In

Fig. 5.13, it can be seen that the consumer begins by invoking the provider to

calculate the project cost. The provider in turn reacts by replying with the person

cost and effort in person month.

5.7.2.3 Part III – SPMaaS Service Participant Model

In SoaML, participant refers to a certain party or component that provides and/or

consumes a service. Participants can be software components, organizations, sys-

tems, or individuals. In Fig. 5.14, globally distributed teams/ virtual teams or client

has been taken as the participant. We can also see the services provided and used by

the participant. A square which represents the port can be seen providing the

interface for creating a new project and requiring the client requirements.

5.7.2.4 Part IV – SPMaaS Service Contract Design

A service contract specifies and defines the agreement between parties about how a

service is to be provided and consumed. Interfaces, choreographies, terms, and

conditions are used to define the agreement. The interacting participants must

compulsorily agree and adhere to these agreements in order for the service to be

enacted. Figure 5.15 shows the service contract for a new project contract service in

SPMaaS in which the consumer and provider need to agree to the project contract

agreement.

1: Calculate Project Cost (message project size)

1.1: Project Cost & Effort in Person Month

Provider : Cost Estimation Methods: COCOMO IIConsumer : Project Size

sd Specifying Choreography Using UML Sequence Diagram for SPMaaS: Project Cost Estimation

Fig. 5.13 SPMaaS choreography using UML sequence diagram

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 111

5.7.3 Results and Analysis of SPMaaS Design

The design for cloud services is challenging, and it is in its infancy for a proper and

systematic approach to engineering cloud service design and development as we

have shown in this chapter the importance of engineering cloud services with the

current state-of-the-art tools and standards such as SoaML which has been specif-

ically developed for cloud service engineering. Figure 5.16 shows how we have

measured a number of service components for each of the SoaML stages.

Service Participant Diagram1

<<Participant>>

<<Service>>

<<Request>>

SPMaaS: Globally Distributed and Virtual Teams and Project Clients

Clients Project Requirements

Create New Project

Project Status & Approval

Fig. 5.14 SPMaaS service participant model

SPMaas Project Contract

-Consumer :
Clients Project
Requirements

-Provider :
Create New

Project

Project Contract Agreement

<<ServiceContract>>

SPMaaS New Project Contract Service

Fig. 5.15 SPMaaS service contract design

112 M. Ramachandran and V. Chaugule

The graph shown in Fig. 5.16 shows a count of the service components for each

of the different five SoaML design categories like SPMaaS service interface model,

SPMaaS choreography, SPMaaS service participant model, SPMaaS service con-

tract, and SPMaaS SOA design. Three different service components have been

considered:

• Autonomic service components: These are the components that can work with

any dependency to complete a full service.

• Composite service components: These depend on other services to complete a

full service and cannot exist independently.

• Composable API services: These are the API services which can be created with
the support of existing APIs available and by integrating them with some new

features and providing them to the customers for easier and more specific use.

5.8 Conclusion

Cloud computing is emerging rapidly with increasing demand for service-oriented

computing and associated technologies. This is the right time to explore what works

better and what doesn’t work for cloud environment. Therefore, the proposed model

helps to understand how it should be developed to avoid classical issues related to

software development projects. We believe the proposed model will help us to

develop cloud applications systematically. Another major contribution of this

chapter is to use SoaML to design cloud-based software project management as a

service system (SPMaaS). SoaML provides a standard way to architect and model

SOA solutions using the unified modeling language (UML). A services architecture

(SOA) is a network of participant roles providing and consuming services to fulfill a

purpose. The services architecture defines the requirements for the types of partic-

ipants and services that fulfill those roles. This study discovered overall 70%

0
10
20
30
40
50
60
70
80

Number of
Autonomic Service
Components

No. of Composite
Service Components

No. of Composable
API Services

Fig. 5.16 Graph showing count of service components for different SoaML design categories

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 113

improvement of the cloud-based services by designing with SoaML by counting

number of service components during the design phase of this research.

References

1. Cloud: Amazon Elastic Compute (2011) Amazon web services. Retrieved 9 Nov 2011

2. Buxmann P, Thomas H, Sonja L (2008) Software as a service. Wirtschaftsinformatik 50

(6):500–503

3. Zhang QI, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research

challenges. J Int Serv Appl 1(1):7–18

4. Wang L, Laszewski VG (2008) Scientific cloud computing: early definition and experience.

http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf

5. Ramachandran M (2008) Software components: guidelines and applications. Nova Publishers,

New York

6. Bichier M, Lin K-J (2006) Service-oriented computing. Computer 39(3):99–101

7. Khan A et al (2012) Cloud service for comprehensive Project Management Software. Appli-

cation of Information and Communication Technologies (AICT), 2012 6th international

conference on IEEE

8. Bentley C (2010) Prince2: a practical handbook. Routledge

9. Thayer RH, Yourdon E. (1997) Software engineering project management. In: Software

engineering project management, pp 72–104

10. Helbig J (2007) Creating business value through flexible IT architecture, Special Issue on

Service-oriented Computing. IEEE Computer 40(11)

11. IaaS (2010) Cloud computing world forum. http://www.cloudwf.com/iaas.html

12. IThound Video whitepaper (2010) http://images.vnunet.com/video_WP/V4.htm. Accessed

Feb 2010

13. SaaS (2009) SaaS. http://www.saas.co.uk/

14. Science Group, 2020 Science Group: toward 2020 science, tech.report, Microsoft, 2006. http://

research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf

15. Vouk MA (2008) Cloud computing – issues, research and implementations. J Comput Inf

Technol, CIT 16

16. Wilson C, Josephson A (2007) Microsoft Office as a platform for softwareþ services. Archit J

13. www.architecturejournal.net

17. Zhang L-J, Zhou Q (2009) CCOA: cloud computing open architecture. In: IEEE international

conference on web services

18. Armbrust M, Fox A, Grifth R, Joseph AD, Katz R et al (2009) Above the clouds: a Berkeley

view of cloud computing. Technical report, University of California at Berkeley. URL http://

berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html

19. Foster IT, Zhao Y, Raicu I, Lu S. Cloud computing and grid computing 360-degree compared,

CoRR abs/0901.0131

20. Project Management Tools (2016) http://modeling-languages.com/survey-web-based-soft

ware-project-management-tools/. Accessed Sept 2016

21. Freshdesk (2016) https://freshdesk.com/. Accessed Sept 2016

22. Zoho projects (2016) https://www.zoho.com/projects/. Accessed Sept 2016

23. TouchBase (2016) http://www.productdossier.com/. Accessed Sept 2016

24. SpiraPlan (2016) https://www.inflectra.com/SpiraPlan/. Accessed Sept 2016

25. Easy Redmine (2016) https://www.easyredmine.com/. Accessed Sept 2016

26. eXo Platform (2016) https://www.exoplatform.com/. Accessed Sept 2016

27. BaseCamp (2016) https://basecamp.com/. Accessed Sept 2016

28. Genius Project (2016) http://www.geniusproject.com/. Accessed Sept 2016

29. Trello (2016) https://trello.com/. Accessed Sept 2016

114 M. Ramachandran and V. Chaugule

http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf
http://www.cloudwf.com/iaas.html
http://images.vnunet.com/video_WP/V4.htm
http://www.saas.co.uk/
http://research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf
http://research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf
http://www.architecturejournal.net
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://modeling-languages.com/survey-web-based-software-project-management-tools/
http://modeling-languages.com/survey-web-based-software-project-management-tools/
https://freshdesk.com/
https://www.zoho.com/projects/
http://www.productdossier.com/
https://www.inflectra.com/SpiraPlan/
https://www.easyredmine.com/
https://www.exoplatform.com
https://basecamp.com
http://www.geniusproject.com
https://trello.com

30. Kanzen (2016) https://mykanzen.com/. Accessed Sept 2016

31. Salesforce (2016) http://www.salesforce.com/in/. Accessed Sept 2016

32. Cost Estimation Techniques (2016) http://www.computing.dcu.ie/~renaat/ca421/report.

html#2.6. Accessed Sept 2016

33. Turner JR (1993) The handbook of project-based management: improving the processes for

achieving strategic objectives. McGraw-Hill, London

34. Sotomayor B et al (2009) Virtual infrastructure management in private and hybrid clouds.

IEEE Internet Comput 13(5):14–22

35. Wan K-M et al (2006) Service-oriented architecture

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 115

https://mykanzen.com
http://www.salesforce.com/in/
http://www.computing.dcu.ie/~renaat/ca421/report.html#2.6
http://www.computing.dcu.ie/~renaat/ca421/report.html#2.6

	Chapter 5: Software Project Management as a Service (SPMaaS): Perspectives and Benefits
	5.1 Introduction
	5.2 Software Development Process for Cloud Computing
	5.3 Service Development Process
	5.4 Classical vs. Cloud-Based Software Project Management
	5.5 Evaluation of Cloud-Based Software Project Management Tools
	5.5.1 Integrated Software Engineering as a Service

	5.6 Integrated Service Development Process and Software Project Management for SPMaaS
	5.7 Architectural Design of SPMaaS with SOA
	5.7.1 Types of Services Offered by SPMaaS
	5.7.1.1 Elementary Services in SPMaaS
	5.7.1.2 Composable Services in SPMaaS
	5.7.1.3 Collaborative Services in SPMaaS

	5.7.2 Design of Cloud SPMaaS with SoaML
	5.7.2.1 Part I - SPMaaS Service Interface Model
	5.7.2.2 Part II - Specifying SPMaaS Choreography Using UML Sequence Model
	5.7.2.3 Part III - SPMaaS Service Participant Model
	5.7.2.4 Part IV - SPMaaS Service Contract Design

	5.7.3 Results and Analysis of SPMaaS Design

	5.8 Conclusion
	References

