
Chapter 2

Estimation of Costs and Time
for the Development of Distributed Software

Manal El Bajta, Ali Idri, Joaquı́n Nicolas Ros,

José Luis Fernandez-Aleman, and Ambrosio Toval

2.1 Introduction

Most of today’s software development organizations aspire to save time and reduce

costs. Therefore, globally distributed environment has invaded the software devel-

opment industry. The strategy of distributed software development generates many

benefits that support the development of software product in an effective way, but

this strategy still faces many challenges which may hinder the success of globally

distributed software development projects. In this context, a significant number of

projects failed to deliver within time and budget in globally distributed environment

[1]. Thus, managing the globally distributed environment is a key characteristic.

However, in order to successfully plan software development projects’ activities, it
is important to sustain a high level of accuracy to cost and time estimation methods.

Developing software products in a cost-effective way is the overwhelming

objective of many organizations. In addition, the ultimate goal is the accurate

estimation of the required amount of effort for the completion of each project.

Many research studies indicate that projects without realistic planning and accurate

estimation are often beyond their allocated budget and the proposed completion

time [2–4].

The drivers involved in the distributed environment are investigated with respect

to four aspects: (1) software product, (2) personnel attributes, (3) computer

M. El Bajta (*) • A. Idri

Software Project Management Research Team, ENSIAS, Mohammed V University, Rabat,

Morocco

e-mail: manal.elbajta@gmail.com

J.N. Ros • J.L. Fernandez-Aleman • A. Toval

Software Engineering Research Group, Regional Campus of International Excellence,

“Campus Mare Nostrum”, University of Murcia, Murcia, Spain

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_2

25

mailto:manal.elbajta@gmail.com


attributes, and (4) project attributes [5]. We also suggest that distributed software

development projects’ success is never isolated to one particular driver.

Although there are many methods and techniques available to assist in creating

distributed software project effort estimates, they are still far from the required

accuracy. Several authors concerned with software development have given varied

suggestions for these inaccuracies and ways to overcome some of them [6, 7]. In

contrast, this chapter focuses on ways in which existing effort estimation methods

can be tailored to account for global software development. It investigates the

influence of the different factors that affect the effort estimation method’s accuracy
in the context of globally distributed software development projects. Furthermore,

this chapter presents the effort estimation methods based on the treated factors.

The chapter is structured as follows: Sect. 2.2 presents the globally distributed

environments. Section 2.3 reports the software effort estimation process.

Section 2.4 outlines software cost/time estimation techniques for global software

development (GSD). Section 2.5 discusses the main cost and time drivers.

Section 2.6 presents the risk analysis; finally, the conclusions and future work are

presented in Sect. 2.7.

2.2 Globally Distributed Environment (GSD)

GSD refers to software development that is done by multiple teams in different

geographic locations. The teams are separated physically, and they are located in

different countries within one region or around the world. The teams can either be

from one organization or from multiple different organizations (outsourcing) [8].

Global software development is usually considered to be much more difficult

than collocated software development given the many different challenges related

to the software development in a globally distributed setting. These challenges

include negative impact of physical distance, cultural differences, and many other

complexity factors which are elaborated in the following subsections [9, 10].

Past studies have shown that tasks take about 2.5 times longer in distributed

setting than in collocated setting [11, 12]. Other studies reported that about 40% of

GSD projects fail to deliver the expected benefits, due to the lack of theoretical

basis and difficult complications in GSD project [13, 14]. On the other hand,

Teasley et al. [15] reported that in collocated teams, productivity and job satisfac-

tion are much higher than projects that do locate the entire project team in a

war room.

The additional activities and difficulties in global software development require

additional effort for substantial planning, coordination, and control overhead in the

day-to-day governance of global software development. This additional effort

should be considered in the time and cost estimation. Hence the time and cost

estimation in GSD is more complex than in local development.

26 M. El Bajta et al.



2.2.1 Challenges

Although GSD offers several benefits, the distributed work has also many chal-

lenges (Table 2.1). If globally distributed software projects are not managed neatly,

then they are likely to turn any company into a loss-making business [16]. That

means that there are many challenges associated with global software development.

Physical separation among project members has diverse effects on many levels. The

following factors have been gathered from research literature [17] to have an

impact on the amount of effort and cost required for global software development.:

• Geographic distance: Software development, particularly in the early stages,

requires much communication, coordination, and control [18]. Geographical

distance is a measure of the effort required for one actor to visit another and

can be seen as reducing the intensity of communication [19], especially when

people experience problems with media and have difficulties finding a suffi-

ciently good substitute for face-to-face interaction [20]. Kraut and Streeter [21]

found that formal communication is useful for routine coordination, while

informal communication is needed to face uncertainty and unanticipated prob-

lems, which are typical of software development. They observed that the need

for informal communication increases dramatically as the size and complexity of

the software increase. In a large software organization, developers can spend on

average up to 75 min per day for informal unplanned communication [22]. In

general, low geographical distance offers greater opportunity for periods of

collocated teamwork.

• Temporal distance: Time zone differs among project members when develop-

ment team is distributed around the world. Temporal distance is a measure of the

dislocation in time experienced by two actors wishing to interact [19]. Temporal

distance can be caused by time zone difference or time shifting work patterns

and can be seen as a factor that reduces opportunities for real-time collaboration,

as response time increases when working hours at remote locations do not

overlap [23]. Temporal dispersion reduces the possibilities of synchronous

interaction, which is a critical communicational attribute for real-time problem

solving and design activities. In practice, teams in different time zones have few

hours in the work day when multiple sites can participate in a joint synchronous

meetings and discussions. Temporal dispersion can also make misunderstand-

ings and errors more likely to occur [24].

This leads to delay in response to asynchronous communication. For exam-

ple, an e-mail sent from one site arrives after working hours at the destination; as

a consequence, the response cannot be sent until the next day begins, and it will

be visible to the sender only when he/she comes to office on the following day.

• Linguistic distance: The lack of a common native language creates further

barriers to communication [25, 26]. Linguistic distance limits the ability for

coherent communication to take place [27]. English has become the popular

language of GSD [28]. This affects not only the quality of communication but

also the choice of communication media. Language skills can impede

2 Estimation of Costs and Time for the Development of Distributed Software 27



communication in more subtle ways. When participants to a conversation have

different levels of proficiency, the group with better language skills occupies a

position of strength and can appear to be more powerful and thus suppress

important communication through unintended intimidation [28]. Further, lack

of proficiency in the chosen language can lead to a preference for asynchronous

communication, which can be an impediment if video and teleconferencing are

important communication media [29].

• Cultural distance: GSD requires close cooperation of individuals with different

cultural backgrounds which often creates another barrier for efficient work.

Cultures differ on many critical dimensions, such as the need for structure,

attitudes toward hierarchy, sense of time, and communication styles. These

differences have been recognized as major barriers to communication. Culture

also affects interpretation of requirements; domain knowledge used to fill in gaps

or place requirements in context varies considerably across national culture

[30]. Culture also interferes with collaboration when cultural norms result in

conflicting approaches to problem solving.

• Social challenges: Another fundamental challenge in global software develop-

ment is the social issues like fear and trust. Fear and distrust can negatively

impact the motivation, the desire to work, the cooperation, and the communica-

tion and share of knowledge with remove colleagues. Hence, it has a direct

bearing on the success of implementing global software development [31]. It is

very difficult for individuals and groups to trust and build relationships with

people they feel threaten their jobs. On-site teams in expensive countries are

fearful of their job security when off-site teams are added in less expensive

locations; this creates mistrust to their off-site colleagues as well as their own

management’s motives. This can result in clear examples of not wanting to

cooperate and share knowledge with remote [26, 31].

Table 2.1 Challenges in global software development

Challenges

Temporal distance Reduced opportunities for synchronous communication

Typically increased coordination costs

Management of project artefacts may be subject to delays

Geographic distance Face to face meeting difficulties

Lack of critical task awareness

Difficulties to convey vision and strategy

Linguistic distance Knowledge transfer will not occur smoothly

Language confusion and misunderstandings

Sociocultural distance Cultural misunderstandings

Reduced cooperation arising from misunderstanding

Different perceptions of authority can undermine morale

Adaptation of managers to local regulations

Impact on coordination caused by inconsistent work practices

28 M. El Bajta et al.



In some cases, wherein people have successfully worked together for up to year

in a collocated situation, once a virtual team strategy was fully implemented, these

problems soon came to the fore.

2.2.2 Benefits

This section identifies the main benefits that have been associated with global

software development.

2.2.2.1 Cost Savings

One of the most obvious reasons for organizations to embark on a challenging

and risky endeavor such as GSD is, not surprisingly, the potential to reduce

development costs. By moving parts of the development work to low-wage

countries, the same work can be done for a fraction of the cost [32]. The basis

for this benefit is that companies are globalizing their software development

activities to leverage cheaper employees located in lower-cost economies. This

has been made possible by the deployment of cross-continental high-speed

communication links enabling the instantaneous transfer of the basic product at

hand: software.

The difference in wages across regions can be significant, with a US software

engineer’s salary being multiple times greater than that of a person with equivalent

skills (at least parts) from Asia or South America. However, this seems to be rising,

and there has been hyper-growth in local IT employment markets such as in

Bangalore. It is our experience that companies are now looking at alternative

locations, which offer more acceptable attrition rates with the continued promise

of cheaper labor.

2.2.2.2 Reduced Time

Having developers located in different time zones can allow organizations to

increase the number of daily working hours in a “follow-the-sun” development

model which can decrease cycle time. Time zone effectiveness is the degree to

which an organization manages resources in multiple time zones, maximizing

productivity by increasing the number of hours during a 24-h day that software

is being developed by its teams. When time zone effectiveness is maximized to

span 24 h of the day, this is referred to as the “follow-the-sun” development

model. This is achieved by handing off work from one team at the end of

their day to another team located in another time zone. The approach can

aid organizations which are under severe pressure to improve time to

market [11].

2 Estimation of Costs and Time for the Development of Distributed Software 29



2.3 Software Effort Estimation Process

In software project management, effort estimation is the process of developing an

approximation of the monetary and temporal resources needed to complete project

activities [33]. Usually software is developed in projects, and hence software cost

and time estimate can be considered as an approximation of the monetary and

temporal resources needed to complete software.

2.3.1 Estimation Process

In order to establish an accurate effort estimate for software, a structured approach

with significant amount of work is needed. The software effort estimation can be seen

as a small size project which needs to be carefully planned, managed, and followed

up. Many organizations have different processes for software effort estimation. These

processes vary in many aspects, and there does not seem to be one common process

which is used in all organizations and in research. The process for software cost and

time estimation data gathered from the NASA’s Handbook for Software Cost Esti-
mation [34] enables us to develop the following table (Table 2.2). It consists on

preparing a description of cost analysis requirements, revising its processes and its

procedural requirements document and cost/time estimation handbook accordingly.

Most of the software effort estimation models view the estimation process as

being a function that is computed from a set of cost drivers. And in most estimation

techniques, the primary driver or the most important driver is believed to be the

software size. As illustrated in Fig. 2.1, a view of software estimation process, the

software requirements are the primary input to the process and also form the basis

for the estimation.

2.3.2 Estimation Accuracy

The effort estimation accuracy helps to determine how well or how accurate our

estimation is when using a particular model or technique. In addition to the degree

of project determination, estimate accuracy is driven by:

• Level of non-familiar technology in the project

• Complexity of the project

• Quality of reference cost estimating data

• Quality of assumptions used in preparing the estimate

• Experience and skill level of the estimator

• Estimating techniques employed

• Time and level of effort budgeted to prepare the estimate

• The accuracy of the composition of the input and output process streams

30 M. El Bajta et al.



We can assess the performance of the software estimation technique by the

following two mechanisms:

2.3.2.1 Mean Absolute Error (MAE)

Mean of absolute error (MAE) (Eq. 2.1) [35] is computed by averaging the total of

absolute errors (AE) (Eq. 2.2).

MAE ¼ 1

n

Xn
i¼1

AEi ð2:1Þ

AEi ¼ ei � beij j ð2:2Þ

Table 2.2 Software cost estimation process from NASA

Number Action Description

Step 1 Gather and analyze software

functional and programmatic

Analyze and refine software requirements, soft-

ware architecture, and programmatic constraints

Step 2 Define the work elements and

procurements

Define software work elements and procurements

for specific project

Step 3 Estimation software size Estimate size of software in logical Source lines of

code

Step 4 Estimate software effort Convert software size to software development

effort

Step 5 Schedule the effort Determine length of time needed to complete the

software effort

Step 6 Calculate the cost and time Estimate the total cost and time of the software

project

Step 7 Determine the impact of risks Identify software project risks, estimate their

impact, and revise estimates

Step 8 Validate and reconcile the

estimate via models

Develop alternate effort, schedule, and cost esti-

mates to validate original estimates and to improve

accuracy

Step 9 Reconcile estimates, budget,

and schedule

Review above size, effort, schedule, and cost esti-

mates and compare with project budget and

schedule

Step 10 Review and approve the

estimates

Review and approve software size effort, schedule,

and cost estimates

Step 11 Track, report, and maintain the

estimates

Compare estimates with actual data

Fig. 2.1 View of software

estimation process

2 Estimation of Costs and Time for the Development of Distributed Software 31



2.3.2.2 Mean Magnitude of Relative Error (MMRE)

MMRE is defined in Eq. 2.3. This measure is derived from the magnitude of the

relative error (MRE) as shown in Eq. 2.4. ThisMRE criterion has been criticized by

some researchers for being biased toward underestimates, which makes it not

significant for being an accuracy measure [36, 37].

MMRE ¼ 1

n

Xn
i¼0

MREi ð2:3Þ

MRE ¼ AEi

ei
ð2:4Þ

where ei and bei are the actual and predicted effort for the ith project.

Each of the error calculation techniques has advantages and disadvantages. For

example, absolute error fails to measure the size of the project especially in GSD

context, and mean magnitude of relative error will mask any systematic bias (do not

know if the estimation is over or under).

2.4 Software Cost/Time Estimation Techniques for GSD

The cost/time estimation has been in the focus of software engineering research for

many decades, and hence a high number of different estimation techniques have

been developed [38–40]. Unfortunately most of the techniques for software cost

estimation have been developed before the recent trend on global software devel-

opment. Many techniques assume that the software is developed locally, and

therefore they do not take into account the additional challenges for the develop-

ment of distributed software [41, 42].

Estimation for the development of distributed software differs from estimation

of local software development at least in two different ways. Firstly, there is a

large overhead effort caused by several factors such as language differences;

cultural barriers, or time shifts between sites; etc. Secondly, many factors (such

as the skills and experience of the workforce) are specific and cannot be consid-

ered globally for a project. In many projects, the development sites have very

different characteristics, and thus the productivity and cost rate is different

between sites.

In the recent research, techniques used to estimate project effort and task

duration in distributed context [43] include expert judgment, estimation by analogy,

and algorithmic models (i.e., COCOMO II, SLIM, and recently function point

analysis-based models) [41].

32 M. El Bajta et al.



2.4.1 Expert Judgment

Experts’ judgment is one of the methods by which assessors conduct their effort

estimation via using their expertise and their logical reasoning to estimate the

required amount of effort needed to develop a software product. The accuracy of

this method mainly depends on the skills, knowledge, and experience of the

assessors to estimate the required amount of effort to complete a given project.

Expert judgment can be very accurate, but it fails to provide an objective and

quantitative analysis of what are the factors that affect effort and duration in GSD

context, and it is hard to separate real experience from the expert’s subjective view
[44]. The accuracy of the estimates depends on how closely the project correlates

with past experience and the ability of the expert to recall all the facets of historic

projects.

2.4.2 Estimation by Analogy

Estimating by analogy means comparing the proposed project to previously com-

pleted similar project, where the project development information is known. Actual

data from the completed projects are extrapolated to estimate the proposed project.

This technique is relatively straightforward. Actually in some respects, it is a

systematic form of expert judgment since experts often search for analogous

situations so as to inform their opinion. The methodology that should be followed

to succeed the estimations by analogy involves characterizing the proposed project,

selecting the most similar completed projects whose characteristics have been

stored in the historical data base, and deriving the estimate for the proposed project

from the most similar completed projects by analogy [41, 45].

2.4.3 Algorithmic Models

The algorithmic methods are designed to provide some mathematical equations

to perform software estimation. These mathematical equations are based on

research and historical data and resort to inputs such as source lines of code,

number of functions to perform, and other cost/time drivers such as project

effort, design methodology, task allocation, team size, etc. The algorithmic

methods have been largely studied and offer several advantages such as gener-

ating repeatable estimations, refining and customizing formulas, supporting a

family of estimations or a sensitivity analysis, and calibrating previous experi-

ence. Models such as COCOMO II (Constructive Cost Model) and SLIM Model

are the most frequently algorithmic methods used in a GSD context [43]. In the

following, we present:

2 Estimation of Costs and Time for the Development of Distributed Software 33



2.4.3.1 Constructive Cost Model

One of the popular and extensively used algorithmic models for the estimation of

cost and schedule of a developing software was given by Shruti Jain [46] and is

known as the Constructive Cost Model (COCOMO) [47, 48]. The parameters and

equations that are used in this model are obtained through previous software pro-

jects. The size of code is usually given in KLOC (thousand lines of code), and the

obtained effort is in person months (PM). The PM represents the number of hours

that a person spend to complete a given task presented in a calendar month.

COCOMO II deals with variety of factors that influence development of distributed

software projects’ effort estimation. There are three submodels for COCOMO II:

Application Composition Model, Post-architecture Model, and Early Design

Model. COCOMO II includes factors in order to steer the effort estimation team

to make better approximation based on the influencing factors. These factors are

related to organizational and team characteristics. Each factor has values from

range of very low to extra high rating level. The weight of scaling factors could

divert according to organizations and projects. The following are the equations

which COCOMO II proposed to estimate the required effort:

PM ¼ A� SizeE �
Yn

i¼0
EMi ð2:5Þ

where:

• n represents the number of drivers in a GSD context.

• A ¼ 2.94 (for COCOMO II). size is estimated by kilo source lines of code

(KSLOC) measure.

• E ¼ Bþ 0:01�P4
i¼1

Factor

• EM represents the effort multiplier; B ¼ 0.91 for COCOMO II.

Duration ¼ C� PMDþ0:2� E�Bð Þ ð2:6Þ

where C ¼ 3.67, D ¼ 0.28, and B ¼ 0.91

2.4.3.2 Slim

SLIM [49] is an algorithmic method that is used to estimate effort and schedule for

projects. The underlying reason for developing SLIM is to measure the overall size

of a project based on its estimated SLOC. It is represented by two equations: Eq. 2.7

for allocating productivity parameter (PP), expressed in man years, which would be

required in Eq. 2.8 for calculating effort.

34 M. El Bajta et al.



PP ¼ SizeSLOC

EMan,Year=B
1:13

� �� Duration Y4=3
� � ð2:7Þ

EMan,Year ¼ SizeSLOC

PP� DurationYearsð Þ3=4
" #3

ð2:8Þ

where:

• EMan,Year represents the amount of effort required to accomplish a given task in a

man-year unit.

• Y is the development time in years.

• B is a special skill factor and is based on size and duration.

Muhairat et al. [43] investigated the effects of different factors on the accuracy

of effort estimation methods in GSD environments. Precisely, COCOMO II and

SLIM methods of estimating project efforts were considered. They discovered that

the estimation methods were less accurate in determining the actual time of

completion of some software development projects. The main factor that affected

this outcome included the project environment. They concluded that developing

software in a GSD environment always requires more effort and time to complete.

2.5 Cost and Time Drivers

As already known, the distributed software development introduces new challenges

in the software engineering area. In order to have a better project planning for

multisite projects, it is important to identify the main drivers that can increase the

project’s effort. This section aims to describe these main effort drivers and their

impacts on a distributed project.

Analyzing the main researches found in the literature and the feedback from

project managers about the impact on project duration and effort would enable us to

suggest some effort drivers for distributed software development projects. We

present the effort drivers extracted from theoretical research and interview ana-

lyses. The effort drivers are split into four categories depicted in Table 2.3 [41]:

product, platform, personnel, and project factors. Therefore, the effort drivers tend

to be measures of system size and complexity, personnel capabilities and experi-

ence, hardware constraints, and availability of software development tools.

2.5.1 Product Factors

The product factors are determined by the novelty of the software to be developed.

This category factors indicates the degree of innovation which is directly

2 Estimation of Costs and Time for the Development of Distributed Software 35



proportional to the level of spontaneous communication, the need for specific

domain knowledge, and the frequency of unforeseen changes. Another important

factor is the work assignments that have to be carefully crafted and taking into

account the organizational structure and the functional coupling among software

units [50]. Therefore, the architecture has major influence on the efforts needed to

coordinate the development phase. Indicators for the degree of architectural ade-

quacy might be modularity, interface match and dependencies, and communicabil-

ity of the architecture. Examples of product cost drivers of COCOMO II are:

• Required Software Reliability (RELY): This is the measure of the extent to which

the software must perform its intended function over a period of time.

• Date Base Size (DATA): Measure to capture the effect of large data requirements

have on product development.

• Required Reusability (RUSE): This cost driver accounts for the additional effort
to construct components intended for reuse on the current or future projects.

• Documentation Match to Life Cycle Needs (DOCU): Measure of the suitability

of the project’s documentation to its life cycle needs.

2.5.2 Platform Factors

The platform factor refers to the target-machine complex of hardware and infra-

structure software. Platform products have more demanding task characteristics

than derivative products. Specifically, platform projects undertake development of

Table 2.3 Software drivers Category Drivers

Product Code size

Reuse

Product complexity

Platform Design and technology newness

Time zone

Platform volatility

Personal Team size

Team culture

Team trust communication

Development productivity

Project Project effort

Project management effort

Process model

Task allocation

Work pressure

Client involvement

Work dispersion

36 M. El Bajta et al.



greater levels of new technology and have higher levels of project complexity.

Examples of platform cost drivers of COCOMO II are:

• Execution Time Constraint (TIME): This is a measure of the execution time

constraint imposed upon a software system.

• Main Storage Constraint (STOR): This is a rating that represents the degree of

main storage constraint imposed on a software system or subsystem.

• Platform Volatility (PVOL): This is a measure of the complex of hardware and

software.

2.5.3 Personnel Factors

As for the personnel factors, it includes cultural fit mainly related to closeness of

team members’ mental models [51] which is influenced by the combination of

countries involved, the international experience of the teams, etc., skill level

measured by educational level and language skills indicating the formal abilities

of remote team(s) [50], shared understanding embodied by tacit knowledge that is

required indicating the level of completeness of documentation and specification

and the common knowledge about goals, and finally information sharing constraints

representing competitive restrictions on information distribution, e.g., when work-

ing with external subcontractors or in security-sensitive environments. Examples of

personnel cost drivers of COCOMO II are:

• Programmer Capability (PCAP): Current trends continue to emphasize the

importance of highly capable analysts.

• Applications Experience (AEXP): This rating is dependent on the level of

application experience of the project team developing the software system.

• Language and Tool Experience (LTEX): This is a measure of the level of

programming language and software tool experience of the project team devel-

oping the software system.

2.5.4 Project Factors

Regarding project factors, we might consider the novelty of collaboration model by

analyzing the initial cost for the search of offshore partners and contract negotia-

tion. The tools and infrastructure represent the homogeneity of the tool chains used

in all sites and potential ramp-up costs for setting up the infrastructure in remote

sites and finally the physical distance representing the potential overlaps of working

time and, accordingly, the intensity of use of asynchronous communication media

and collaboration tools [52]. Examples of project cost drivers of COCOMO II are:

2 Estimation of Costs and Time for the Development of Distributed Software 37



• Multisite Development (SITE): The assessment and averaging of two factors, site

collocation and communication support.

• Required Development Schedule (SCED): This rating measures the schedule

constraint imposed on the project team developing the software.

2.6 Risk Analysis

In order to analyze the impact of risk involved in the development of software, the

project manager has to identify the risk drivers. Software risk components can be

classified as “cost” and “time” risks. The degree of uncertainty that the project

budget will be maintained is the cost risk. The degree of uncertainty that the project

schedule will be maintained and that the product will be delivered in time is the

time risk.

Software risks are managerial issues which should be handled through proper

management of the project especially when estimating costs and times. Only expert

manger associated with software project office can handle these issues, while a less

experienced software manager may lead to un-controlling the risks and ultimately

result in the failure of the project. Software risks should be monitored and con-

trolled since the starting phases of the project management life cycle [53].

The GSD is becoming very difficult, complex, and challenging in the context of

software project management as the user problem is getting more and more

challengeable [19, 54]. In this respect, the risk management in distributed software

development is also much complex than in local software development. It partic-

ularly has specific concerns that may not be obvious until their impact has been

realized. Many projects got failed they did not realize, soon enough, the importance

of certain common factors in GSD projects [41]. Table 2.4 presents the potential

risks in a GSD project and provides their cost and time impact in this respect.

To systematically identify risks and evaluate appropriate risk mitigation for

estimating cost and time in the GSD context, we analyze the features of GSD and

then elaborate how they are impacted by risks [55].

Efficiency

Software and IT companies need to deliver promptly and reliably while the

competition is literally a mouse click away. Hardly any other business has so low

entry barriers as IT and therefore stimulates an endless fight for efficiency along the

dimensions of improved cost, quality, and time to profit. GSD clearly helps in

improving efficiency due to labor cost differences across the world, better quality

with many well-trained and process-minded engineers especially in Asia, and

shorter time to profit with following the sun and developing and maintaining

software in two to three shifts in different time zones. Risks directly related to the

efficiency target are project delivery failures, requirement, and design quality

(Table 2.4).

38 M. El Bajta et al.



Flexibility

Software organizations are driven by fast changing demands on skills and sheer

numbers of engineers. With the development of a new and innovative product,

many people are needed with broad experiences. However, when arriving in

maintenance, these skill needs look different and manpower distributions are also

changing. Such flexible demand cannot anymore be handled inside the enterprise.

GSD is the answer to provide skilled engineers just in time and thus allows building

flexible ecosystems combining suppliers, customers with engineering and service

providers. Directly related risks to the flexibility goal are poor management visi-

bility and distance and culture clashes (refer to Table 2.4).

2.7 Conclusion

There is a strong surge for global software development to countries with lower

labor cost. This chapter promotes analysis of project drivers to gain insights into

comparing development costs and time for distributed software development pro-

jects as compared to collocated projects.

Even though most of the evaluated software effort estimation techniques do not

have any of the GSD-related cost/time factors included by default, these techniques

are still suitable and applicable for estimation of GSD project with some setup and

calibration work. Estimation methods such as estimation by analogy and algorith-

mic models can be applied to the development of distributed software if the person

doing the estimation model setup is experienced in outsourcing. Then, the person

would be able to include all necessary cost/time factors into the estimation model.

Also, all expertise-based techniques can be directly applied for GSD projects,

but they require experts with experience and knowledge on GSD. The available

development of distributed software specific techniques can naturally be also

directly applied for GSD projects.

Future work of this research includes on one hand the verification and improve-

ment of the factors of a distributed development project and on the other hand the

application of methods on projects while collecting effort data to calibrate the

relevance of each project driver.

Table 2.4 Risk items and their impacts

Risk item Cost/time impact

Efficiency Late delivery of software Computer time costs

Feasibility of requirements Staffing to conduct analysis

Feasibility of design Recruiting and training costs and times

Added time and cost for review preparation

Flexibility Lack of management visibility Added time and cost to prepare inputs for reports

Lack of a test discipline Cost and time of using test group

2 Estimation of Costs and Time for the Development of Distributed Software 39



References

1. Kile JF (2005) The Importance of effective requirements management in offshore software

development projects. Doctoral dissertation, Pace University

2. Nguyen V, Steece B, Boehm B (2008) A constrained regression technique for COCOMO

calibration. In: Proceedings of the second ACM-IEEE international symposium on empirical

software engineering and measurement. ACM, pp 213–222

3. Anderson SD, Molenaar KR, Schexnayder CJ (2007) Guidance for cost estimation and

management for highway projects during planning, programming, and preconstruction, vol

574. Transportation Research Board, Washington, DC

4. Wallace L, Keil M (2004) Software project risks and their effect on outcomes. Commun ACM

47(4):68–73

5. Ashiegbu BC, Ahaiwe J (2011) Software cost drivers and cost estimation in Nigeria.

Interdiscip J Contemp Res Bus 3(8):431

6. Herbsleb JD (2007) Global software engineering: the future of socio-technical coordination. In

2007 future of software engineering. IEEE Computer Society, pp 188–198

7. Nicholson B, Sahay S (2001) Some political and cultural issues in the globalisation of software

development: case experience from Britain and India. Inf Organ 11(1):25–43

8. Gopal A, Gosain S (2010) Research note-the role of organizational controls and boundary

spanning in software development outsourcing: implications for project performance. Inf Syst

Res 21(4):960–982

9. Holmstrom H, Conchúir EÓ, Agerfalk J, Fitzgerald B (2006) Global software development.

challenges: a case study on temporal, geographical and socio-cultural distance. In: 2006 I.E.

international conference on global software engineering (ICGSE’06). IEEE, pp 3–11

10. Lanubile F, Damian D, Oppenheimer HL (2003) Global software development: technical,

organizational, and social challenges. ACM SIGSOFT Softw Eng Notes 28(6):2–2

11. Herbsleb JD, Moitra D (2001) Global software development. IEEE Softw 18(2):16–20

12. Nguyen T, Wolf T, Damian D (2008) Global software development and delay: does distance

still matter? In: 2008 I.E. international conference on global software engineering. IEEE, pp

45–54

13. Betz S, Mäki€o J (2008) Amplification of the COCOMO II regarding offshore software pro-

jects. Offshoring of software development: methods and tools for risk management;

[OUTSHORE; Proceedings], 33

14. Peixoto CEL, Audy JLN, Prikladnicki R (2010) Effort estimation in global software develop-

ment projects: preliminary results from a survey. In: 2010 5th IEEE international conference

on global software engineering. IEEE, pp 123–127

15. Teasley SD, Covi LA, Krishnan MS, Olson JS (2002) Rapid software development through

team collocation. IEEE Trans Softw Eng 28(7):671–683

16. Yadav MS, Prabhu JC, Chandy RK (2007) Managing the future: CEO attention and innovation

outcomes. J Mark 71(4):84–101

17. Noll J, Beecham S, Richardson I (2010) Global software development. And collaboration:

barriers and solutions. ACM Inroads 1(3):66–78

18. Yadav V (2016) A flexible management approach for globally distributed software projects.

Glob J Flex Syst Manag 17(1):29–40

19. Agerfalk PJ, Fitzgerald B, Holmstrom Olsson H, Lings B, Lundell B, Ó Conchúir E (2005) A

framework for considering opportunities and threats in distributed software development

20. Smith PG, Blanck EL (2002) From experience: leading dispersed teams. J Prod Innov Manag

19(4):294–304

21. Kraut RE, Streeter LA (1995) Coordination in software development. Commun ACM 38

(3):69–82

22. Perry DE, Staudenmayer NA, Votta LG (1994) People, organizations, and process improve-

ment. IEEE Softw 11(4):36–45

40 M. El Bajta et al.



23. Sarker S, Sahay S (2004) Implications of space and time for distributed work: an interpretive

study of US–Norwegian systems development teams. Eur J Inf Syst 13(1):3–20

24. Espinosa JA, Nan N, Carmel E (2007) Do gradations of time zone separation make a difference

in performance? A first laboratory study. In: ICGSE, pp 12–22

25. Herbsleb JD, Grinter RE (1999) Splitting the organization and integrating the code: Conway’s
law revisited. In: Proceedings of the 21st international conference on Software engineering.

ACM, pp 85–95

26. Niinimaki T, Piri A, Lassenius C (2009) Factors affecting audio and text-based communication

media choice in global software development projects. In: 2009 fourth IEEE international

conference on global software engineering. IEEE, pp 153–162

27. Casey V, Richardson I (2006) Uncovering the reality within virtual software teams. In:

Proceedings of the 2006 international workshop on Global software development for the

practitioner. ACM, pp 66–72

28. Lutz B (2009) Linguistic challenges in global software development: lessons learned in an

international SW development division. In: 2009 fourth IEEE international conference on

global software engineering. IEEE, pp 249–253

29. Lings B, Lundell B, Agerfalk J, Fitzgerald B (2007) A reference model for successful

distributed development of software systems. In: International conference on global software

engineering (ICGSE 2007). IEEE, pp 130–139

30. Herbsleb JD, Paulish DJ, Bass M (2005) Global software development at siemens: experience

from nine projects. In: Proceedings of the 27th international conference on software engineer-

ing. ICSE 2005. IEEE, pp 524–533

31. Casey V, Richardson I (2008) The impact of fear on the operation of virtual teams. In: 2008 I.

E. international conference on global software engineering. IEEE, pp 163–172

32. Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software

development. IEEE Softw 18(2):22–29

33. PMBoK, A (2000) Guide to the project management body of knowledge. Project Management

Institute, Pennsylvania

34. Lum K, Bramble M, Hihn J, Hackney J, Khorrami M, Monson E (2003) Handbook for

software cost estimation. NASA Jet Propuls Lab JPL D-26303

35. Shepperd M, MacDonell S (2012) Evaluating prediction systems in software project estima-

tion. Inf Softw Technol 54(8):820–827

36. Myrtveit I, Stensrud E, Shepperd M (2005) Reliability and validity in comparative studies of

software prediction models. IEEE Trans Softw Eng 31(5):380–391

37. Miyazaki Y, Takanou A, Nozaki H, Nakagawa N, Okada K (1991) Method to estimate

parameter values in software prediction models. Inf Softw Technol 33(3):239–243

38. Idri A, azzahra Amazal F, Abran A (2015) Analogy-based software development effort

estimation: a systematic mapping and review. Inf Softw Technol 58:206–230

39. Jorgensen M, Shepperd M (2007) A systematic review of software development cost estima-

tion studies. IEEE Trans Softw Eng 33(1):33–53

40. Wen J, Li S, Lin Z, Hu Y, Huang C (2012) Systematic literature review of machine learning

based software development effort estimation models. Inf Softw Technol 54(1):41–59

41. El Bajta M, Idri A, Fernández-Alemán JL, Ros JN, Toval A (2015) Software cost estimation

for global software development a systematic map and review study. In: Evaluation of Novel

Approaches to Software Engineering (ENASE), 2015 international conference on. IEEE, pp

197–206

42. El Bajta M (2015) Analogy-based software development effort estimation in global software

development. In: 2015 I.E. 10th international conference on global software engineering

workshops. IEEE, pp 51–54

43. Muhairat M, Aldaajeh S, Al-Qutaish RE (2010) The impact of global software development

factors on effort estimation methods. Eur J Sci Res 46(2):221–232

44. Jorgensen M (1995) Experience with the accuracy of software maintenance task effort

prediction models. IEEE Trans Softw Eng 21(8):674–681

2 Estimation of Costs and Time for the Development of Distributed Software 41



45. Amazal FA, Idri A, Abran A (2014) Software development effort estimation using classical

and fuzzy analogy: a cross-validation comparative study. Int J Comput Intell Appl 13

(3):1450013

46. Jain MS (2012) Survey of various cost estimation techniques. Int J Adv Res Comput Eng

Technol (IJARCET) 1(7):229

47. Boehm BW, Madachy R, Steece B (2000) Software cost estimation with Cocomo II with

Cdrom. Prentice Hall PTR, Upper Saddle River

48. Boehm B, Clark B, Horowitz E, Westland C, Madachy R, Selby R (1995) Cost models for

future software life cycle processes: COCOMO 2.0. Ann Softw Eng 1(1):57–94

49. Kemerer CF (1987) An empirical validation of software cost estimation models. Commun

ACM 30(5):416–429

50. Sosa ME, Eppinger SD, Rowles CM (2004) The misalignment of product architecture and

organizational structure in complex product development. Manag Sci 50(12):1674–1689

51. O’Hara M, Johansen R (1994) Global work: bridging distance, culture and time. Jossey-Bass,

San Francisco

52. Sosa ME, Eppinger SD, Pich M, McKendrick DG, Stout SK (2002) Factors that influence

technical communication in distributed product development: an empirical study in the

telecommunications industry. IEEE Trans Eng Manag 49(1):45–58

53. Boehm BW (1988) A spiral model of software development and enhancement. Computer 21

(5):61–72

54. Tufekci O, Cetin S, Arifoglu A (2010). Proposing a federated approach to global software

development. In Digital Society, 2010. ICDS’10. Fourth International Conference on. IEEE,

pp 150–157

55. Ebben JJ, Johnson AC (2005) Efficiency, flexibility, or both? Evidence linking strategy to

performance in small firms. Strateg Manag J 26(13):1249–1259

42 M. El Bajta et al.


	Chapter 2: Estimation of Costs and Time for the Development of Distributed Software
	2.1 Introduction
	2.2 Globally Distributed Environment (GSD)
	2.2.1 Challenges
	2.2.2 Benefits
	2.2.2.1 Cost Savings
	2.2.2.2 Reduced Time


	2.3 Software Effort Estimation Process
	2.3.1 Estimation Process
	2.3.2 Estimation Accuracy
	2.3.2.1 Mean Absolute Error (MAE)
	2.3.2.2 Mean Magnitude of Relative Error (MMRE)


	2.4 Software Cost/Time Estimation Techniques for GSD
	2.4.1 Expert Judgment
	2.4.2 Estimation by Analogy
	2.4.3 Algorithmic Models
	2.4.3.1 Constructive Cost Model
	2.4.3.2 Slim


	2.5 Cost and Time Drivers
	2.5.1 Product Factors
	2.5.2 Platform Factors
	2.5.3 Personnel Factors
	2.5.4 Project Factors

	2.6 Risk Analysis
	2.7 Conclusion
	References


