
Computer Communications and Networks

Software Project
Management
for Distributed
Computing

Zaigham Mahmood Editor

Life-Cycle Methods for Developing
Scalable and Reliable Tools

Computer Communications and Networks

Series editor

A.J. Sammes

Centre for Forensic Computing

Cranfield University, Shrivenham Campus

Swindon, UK

The Computer Communications and Networks series is a range of textbooks,

monographs and handbooks. It sets out to provide students, researchers, and non-

specialists alike with a sure grounding in current knowledge, together with

comprehensible access to the latest developments in computer communications and

networking.

Emphasis is placed on clear and explanatory styles that support a tutorial

approach, so that even the most complex of topics is presented in a lucid and

intelligible manner.

More information about this series at http://www.springer.com/series/4198

Zaigham Mahmood

Editor

Software Project
Management for Distributed
Computing

Life-Cycle Methods for Developing Scalable
and Reliable Tools

Editor
Zaigham Mahmood
Department of Computing and Mathematics
University of Derby
Derby, UK

Shijiazhuang Tiedao University
Hebei, China

ISSN 1617-7975 ISSN 2197-8433 (electronic)
Computer Communications and Networks
ISBN 978-3-319-54324-6 ISBN 978-3-319-54325-3 (eBook)
DOI 10.1007/978-3-319-54325-3

Library of Congress Control Number: 2017935573

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To
Zayb-un-Nisa Khan
On Her First Birthday,

With Best Wishes and
Prayers for a Long,
Contented and Happy Life

Preface

Overview

Software Project Management (SPM) is a subdiscipline of project management in

which software projects are planned, engineered, implemented and monitored. In

order that software products are delivered on time, within the allocated budgets and

fully conforming to the user requirements, it is imperative that software projects are

appropriately designed, managed and well executed, especially if these relate to

complex software systems. Many SPM paradigms have been suggested in the past

and successfully employed in recent years; however, with the advancement in

computing technologies, including cloud computing, distributed computing and

the Internet of Things, the existing frameworks and management approaches do

not necessarily satisfactorily apply. There is now a requirement for software to be

scalable, sustainable and suitable for distributed computing environments. This, in

turn, suggests a requirement for management methods with evolutionary life cycles

and software engineering approaches that take into account distributed working

practices and distributed team management working in virtual operating environ-

ments. It is for this reason that SPM is becoming an important research topic in the

field of software engineering.

In recent years, numerous newer approaches and tools for the development and

management of software products and projects have been suggested, some being

deployed with some degree of success to satisfy the requirements of scalability and

multi-tenancy. However, the research must continue to fully satisfy the require-

ments as briefly mentioned above.

With this background, the current volume, Software Project Management for
Distributed Computing: Life-Cycle Methods for Developing Scalable and Reliable
Tools, aims to investigate the latest management approaches to developing complex

software that is efficient, scalable, sustainable and suitable for distributed environ-

ments. The focus is primarily on newer methodologies with respect to management

processes. Emphasis is also on the use of latest software technologies and

vii

frameworks for the life-cycle methods including design, implementation and test-

ing stages of the software development.

Hopefully, this text will fill a gap in the SPM literature and practice by providing

scientific contributions from researchers and practitioners of international repute in

the fields of management and software engineering. Thirty-six authors have

presented latest research developments, frameworks and methodologies, current

trends, state-of-the-art reports, case studies and suggestions for further understand-

ing, development and enhancement of management approaches for developing

scalable and multi-tenant complex software.

Objectives

The aim of this volume is to present and discuss the state of the art in terms of

frameworks and methodologies for software project management for distributed

computing environments. The features that set this book apart from others in the

field include:

• Latest research, development and future directions in the proposed subject area

of software project management (SPM)

• Case studies describing challenges, best practices and solutions for SPM for

distributed computing environments

• Textbook and complete reference for students, researchers, practitioners and

project managers in the subject area of SPM

• Alignment of software engineering frameworks with SPM approaches using

latest technologies

• Corporate analysis presenting a balanced view discussing benefits and inherent

issues

Organization

There are 15 chapters in Software Project Management for Distributed Computing:
Life-Cycle Methods for Developing Scalable and Reliable Tools. These are orga-

nized in three parts as follows:

• Part I: Characteristics and Estimation of Software Projects for Distributed
Computing. This section has a focus on characteristics, perspectives and

estimation approaches. There are five chapters in this part of the book. The

first two chapters discuss the modelling of reusability and estimation of cost

and time for distributed software development projects. The focus of the third

contribution in the section is on functional size measurement of distributed

software applications, and the fourth chapter discusses the core characteristics

of large-scale defence-related software projects. The fifth contribution

viii Preface

introduces and presents software project management (SPM) as a distributed

service: SPMaaS.

• Part II: Approaches and Frameworks for Software Development and Software
Project Management. This part of the book also comprises five chapters that

focus on frameworks and methodologies. The first contribution presents

component-based reference architecture for embedded software development.

The next chapter proposes a 3PR framework for SPM based on people, pro-

cesses, products and risks, while the third contribution discusses a novel

crowdsourcing approach for software development. The fourth contribution

presents a migration and management approach for distributed environments.

The fifth chapter investigates a novel approach for modelling of large-scale

multi-agent software systems.

• Part III: Advances in Software Project Management and Distributed Software
Development. There are five chapters in this section as well that focus on latest

developments in SPM and software development for distributed computing. The

first contribution discusses an error proneness mechanism based on bird mating

algorithm. The next chapter presents a novel Scrum process relevant to defence

and security domain. The third chapter is on ontology annotation for SPM for

distributed computing environments. The fourth contribution investigates the

scope of Agile project management in an educational setting, while the final

chapter in the book focusses on SPM for combined software and data

engineering.

Target Audiences

The current volume is a reference text aimed at supporting a number of potential

audiences, including the following:

• Project managers and software engineers who wish to deploy the newer

approaches and technologies to ensure the development of software that is

scalable, sustainable and suitable for distributed computing environments

• Students and lecturers who have an interest in further enhancing the knowledge

of technologies, mechanisms and frameworks relevant to software project man-

agement (SPM) from a distributed computing perspective

• Researchers in this field who require up-to-date knowledge of the current

practices, mechanisms and frameworks relevant to SPM, to further extend the

body of knowledge in this field

Derby, UK

Hebei, China

Zaigham Mahmood

Preface ix

Acknowledgements

The editor acknowledges the help and support of the following colleagues during

the review, development and editing phases of this text:

• Josip Lorincz, FESB-Split, University of Split, Croatia

• Dr. N. Maheswari, School CS & Eng, Chennai, Tamil Nadu, India

• Aleksandar Milić, University of Belgrade, Serbia

• Dr. S. Parthasarathy, Thiagarajar College of Eng, Tamil Nadu, India

• Daniel Pop, Institute e-Austria Timisoara, West Univ. of Timisoara, Romania

• Dr. Pethuru Raj, IBM Cloud Center of Excellence, Bangalore, India

• Dr. Muthu Ramachandran, Leeds Beckett University, Leeds, UK

• Dr. Lucio Agostinho Rocha, State University of Campinas, Brazil

• Dr. Saqib Saeed, University of Dammam, Saudi Arabia

• Dr. Mahmood Shah, University of Central Lancashire, Preston, UK

• Dr. Fareeha Zafar, GC University, Lahore, Pakistan

I would also like to thank the contributors of this book: 36 authors and

co-authors, from academia as well as industry from around the world, who collec-

tively submitted 15 chapters. Without their efforts in developing quality contribu-

tions, conforming to the guidelines and meeting often the strict deadlines, this text

would not have been possible.

Grateful thanks are also due to the members of my family – Rehana, Zoya,

Imran, Hanya, Arif and Ozair – for their continued support and encouragement.

Every good wish, also, for the youngest in our family: Eyaad Imran Rashid Khan

and Zayb-un-Nisa Khan.

Department of Computing and Mathematics Zaigham Mahmood

University of Derby

Derby, UK

Shijiazhuang Tiedao University

Hebei, China

xi

Other Springer Books by Zaigham Mahmood

Data Science and Big Data Computing: Frameworks

and Methodologies

This reference text has a focus on data science and provides practical guidance on

big data analytics. Expert perspectives are provided by an authoritative collection

of 36 researchers and practitioners, discussing latest developments and emerging

trends, presenting frameworks and innovative methodologies and suggesting best

practices for efficient and effective data analytics. ISBN: 978-3-319-31859-2

Connectivity Frameworks for Smart Devices: The Internet

of Things from a Distributed Computing Perspective

This is an authoritative reference that focuses on the latest developments on the

Internet of Things. It presents state of the art on the current advances in the

connectivity of diverse devices and focuses on the communication, security, pri-

vacy, access control and authentication aspects of the device connectivity in

distributed environments. ISBN: 978-3-319-33122-5

Cloud Computing: Challenges, Limitations and R&D

Solutions

This reference text reviews the challenging issues that present barriers to greater

implementation of the cloud computing paradigm, together with the latest research

into developing potential solutions. This book presents case studies and analysis of

xiii

the implications of the cloud paradigm from a diverse selection of researchers and

practitioners of international repute. ISBN: 978-3-319-10529-1

Continued Rise of the Cloud: Advances and Trends

in Cloud Computing

This reference volume presents latest research and trends in cloud-related technol-

ogies, infrastructure and architecture. Contributed by expert researchers and prac-

titioners in the field, this book presents discussions on current advances and

practical approaches including guidance and case studies on the provision of

cloud-based services and frameworks. ISBN: 978-1-4471-6451-7

Cloud Computing: Methods and Practical Approaches

The benefits associated with cloud computing are enormous; yet the dynamic,

virtualized and multi-tenant nature of the cloud environment presents many challenges.

To help tackle these, this volume provides illuminating viewpoints and case studies to

present current research and best practices on approaches and technologies for the

emerging cloud paradigm. ISBN: 978-1-4471-5106-7

Software Engineering Frameworks for the Cloud

Computing Paradigm

This is an authoritative reference that presents the latest research on software

development approaches suitable for distributed computing environments. Contrib-

uted by researchers and practitioners of international repute, the book offers practical

guidance on enterprise-wide software deployment in the cloud environment. Case

studies are also presented. ISBN: 978-1-4471-5030-5

Cloud Computing for Enterprise Architectures

This reference text, aimed at system architects and business managers, examines

the cloud paradigm from the perspective of enterprise architectures. It introduces

fundamental concepts, discusses principles and explores frameworks for the adop-

tion of cloud computing. The book explores the inherent challenges and presents

future directions for further research. ISBN: 978-1-4471-2235-7

xiv Other Springer Books by Zaigham Mahmood

Requirements Engineering for Service and Cloud

Computing

This text aims to present and discuss the state of the art in terms of methodologies,

trends and future directions for requirements engineering for the service and cloud

computing paradigm. Majority of the contributions in the book focus on require-

ments elicitation, requirements specifications, requirements classification and

requirements validation and evaluation. ISBN: 978-3319513096

User Centric E-Government: Challenges and Opportunities

This text presents a citizens-focused approach to the development and implemen-

tation of electronic government. The focus is twofold: on challenges of service

availability and e-service operability on diverse smart devices as well as on

opportunities for the provision of open, responsive and transparent functioning of

world governments. It is forthcoming.

Other Springer Books by Zaigham Mahmood xv

Contents

Part I Characteristics and Estimation of Software Projects for

Distributed Computing

1 Modeling of Reusability Estimation in Software

Design with External Constraints . 3

R. Selvarani and P. Mangayarkarasi

2 Estimation of Costs and Time for the Development

of Distributed Software . 25

Manal El Bajta, Ali Idri, Joaquı́n Nicolas Ros,

José Luis Fernandez-Aleman, and Ambrosio Toval

3 Using COSMIC for the Functional Size Measurement

of Distributed Applications in Cloud Environments 43

Filomena Ferrucci, Carmine Gravino, and Pasquale Salza

4 Characteristics of Large-Scale Defense Projects

and the Dominance of Software and Software Project

Management . 59

Kadir Alpaslan Demir

5 Software Project Management as a Service (SPMaaS):

Perspectives and Benefits . 87

Muthu Ramachandran and Vikrant Chaugule

Part II Approaches and Frameworks for Software Development

and Software Project Management

6 Component-Based Hybrid Reference Architecture for

Managing Adaptable Embedded Software Development 119

Bo Xing

xvii

7 3PR Framework for Software Project Management:

People, Process, Product, and Risk . 143

Kadir Alpaslan Demir

8 CrowdSWD: A Novel Framework for Crowdsourcing Software

Development Inspired by the Concept of Biological Metaphor 171

Tarek A. Ali, Eman S. Nasr, and Mervat H. Gheith

9 An Approach to Migrate and Manage Software: Cloud-Based

Requirements Management . 209

Areeg Samir

10 A Novel Approach to Modelling Distributed Systems:

Using Large-Scale Multi-agent Systems . 229

Bogdan Okreša Ðurić

Part III Advances in Software Project Management

and Distributed Software Development

11 Optimizing Software Error Proneness Prediction

Using Bird Mating Algorithm . 257

Amrit Pal, Harsh Jain, and Manish Kumar

12 Improved Agile: A Customized Scrum Process for

Project Management in Defense and Security 289

Luigi Benedicenti, Paolo Ciancarini, Franco Cotugno, Angelo Messina,

Alberto Sillitti, and Giancarlo Succi

13 Ontology Annotation for Software Engineering Project

Management in Multisite Distributed Software Development

Environments . 315

Pornpit Wongthongtham, Udsanee Pakdeetrakulwong,

and Syed Hassan Marzooq

14 Investigating the Scope for Agile Project Management

to Be Adopted by Higher Education Institutions 345

Simon P Philbin

15 Software Project Management for Combined Software

and Data Engineering . 367

Seyyed M. Shah, James Welch, Jim Davies, and Jeremy Gibbons

Index . 387

xviii Contents

Contributors

Tarek A. Ali Department of Computer Science, Institute of Statistical Studies and

Research, Cairo University, Giza, Egypt

Luigi Benedicenti University of Regina, Regina, Canada

Vikrant Chaugule Department of Computer Science and Engineering, National

Institute of Technology, Surathkal, Karnataka, India

Paolo Ciancarini University of Bologna, Bologna, Italy

Franco Cotugno Italian Army General Staff, Rome, Italy

Jim Davies Software Engineering Group, Department of Computer Science,

University of Oxford, Oxford, UK

Kadir Alpaslan Demir Department of Software Development, Turkish Naval

Research Center Command, Istanbul, Turkey

Manal El Bajta Software Project Management Research Team, ENSIAS,

Mohammed V University, Rabat, Morocco

José Luis Fernandez-Aleman Software Engineering Research Group, Regional

Campus of International Excellence, “Campus Mare Nostrum”, University of

Murcia, Murcia, Spain

Filomena Ferrucci University of Salerno, Fisciano, Italy

Mervat H. Gheith Department of Computer Science, Institute of Statistical

Studies and Research, Cairo University, Giza, Egypt

Jeremy Gibbons Software Engineering Group, Department of Computer Science,

University of Oxford, Oxford, UK

Carmine Gravino University of Salerno, Fisciano, Italy

xix

Ali Idri Software Project Management Research Team, ENSIAS, Mohammed V

University, Rabat, Morocco

Harsh Jain Department of Information Technology, Indian Institute of Informa-

tion Technology, Allahabad, India

Manish Kumar Department of Information Technology, Indian Institute of Infor-

mation Technology, Allahabad, India

P. Mangayarkarasi Visvesvaraya Technological University, Belgaum, India

Syed Hassan Marzooq Curtin University, Perth, WA, Australia

Angelo Messina Innopolis University, Innopolis, Russian Federation

Eman S. Nasr Independent Researcher, Cairo, Egypt

Joaquı́n Nicolas Ros Software Engineering Research Group, Regional Campus of

International Excellence, “Campus Mare Nostrum”, University of Murcia, Murcia,

Spain

Bogdan Okreša Ðurić Artificial Intelligence Laboratory, Faculty of Organization

and Informatics, University of Zagreb, Varazdin, Croatia

Udsanee Pakdeetrakulwong Curtin University, Perth, WA, Australia

Amrit Pal Department of Information Technology, Indian Institute of Information

Technology, Allahabad, India

Simon P Philbin Enterprise Division, Imperial College London, London, UK

Muthu Ramachandran School of Computing, Creative Technologies and

Engineering, Leeds Beckett University, Leeds, UK

Pasquale Salza University of Salerno, Fisciano, Italy

Areeg Samir Faculty of Computer Science, Libera Universit�a di Bolzano,

Bolzano, Italy

R. Selvarani Department of CSE, ACED Alliance University, Bangalore, India

Seyyed M. Shah Software Engineering Group, Department of Computer Science,

University of Oxford, Oxford, UK

Alberto Sillitti Innopolis University, Innopolis, Russian Federation

Giancarlo Succi Innopolis University, Innopolis, Russian Federation

Ambrosio Toval Software Engineering Research Group, Regional Campus of

International Excellence, “Campus Mare Nostrum”, University of Murcia, Murcia,

Spain

James Welch Software Engineering Group, Department of Computer Science,

University of Oxford, Oxford, UK

xx Contributors

Pornpit Wongthongtham Curtin University, Perth, WA, Australia

Bo Xing Computational Intelligence, Robotics, and Cybernetics for Leveraging

E-future (CIRCLE), Institute of Intelligent System, Faculty of Engineering and the

Built Environment, University of Johannesburg, Johannesburg, Gauteng,

South Africa

Contributors xxi

About the Editor

Professor Dr. Zaigham Mahmood is a published author of 19 books, 6 of which

are dedicated to electronic government and the other 13 focus on the subjects of

cloud computing, data science, big data, Internet of Things, project management

and software engineering, including Cloud Computing: Concepts, Technology and
Architecture which is also published in Korean and Chinese languages. Addition-

ally, he is developing two new books to appear in 2018. He has also published more

than 100 articles and book chapters and organized numerous conference tracks

and workshops. Professor Mahmood is the editor-in-chief of the Journal of
E-Government Studies and Best Practices as well as the series editor-in-chief of

the IGI book series on E-Government and Digital Divide. He is a senior technology
consultant at Debesis Education UK and associate lecturer (research) at the Uni-

versity of Derby, UK. He further holds positions as professor at Shijiazhuang

Tiedao University in Hebei, China, and as foreign professor at NUST and IIU in

Islamabad, Pakistan. Professor Mahmood is also a certified cloud computing

instructor and a regular speaker at international conferences devoted to cloud

computing and e-government. His specialized areas of research include distributed

computing, project management and e-government.

xxiii

http://www.amazon.co.uk/Cloud-Computing-Concepts-Technology-Architecture/dp/0133387526/ref=la_B00B29OIK6_1_1?s=books&ie=UTF8&qid=1391968411&sr=1-1
http://www.amazon.co.uk/Cloud-Computing-Concepts-Technology-Architecture/dp/0133387526/ref=la_B00B29OIK6_1_1?s=books&ie=UTF8&qid=1391968411&sr=1-1

Part I

Characteristics and Estimation of Software
Projects for Distributed Computing

Chapter 1

Modeling of Reusability Estimation
in Software Design with External Constraints

R. Selvarani and P. Mangayarkarasi

1.1 Introduction

With the increasing trends of demands in dynamic applications by the users, the

software project development organizations are encountering a stiff competition

with each other in order to cater up such demands. Although new programming tool

along with new technologies evolved every 5–10 years of time, still the bases of all

the applications are ultimately programs and codes. Hence, source code becomes a

valuable asset for any IT firms, which is also considered as an intellectual property

for its existing customers. Apart from this, usually the software system sometimes

may not meet with consideration of the users due to some massive activities on the

design and the accomplishment of the software. An important reason for some of

the failures is the lack of ability to respond to the various needs of the user

requirements in the industry. Although there are various software, frameworks,

and tools that can perform a smart project management, there has always been a

lesser degree of inclination of the software engineering to be considered in project

management much. From the designers’ perspective, they evaluate the design on

reusability by how easily and how effectively it can be used by the customers in

different types of working environments. High-quality design systems have become

important to many academic researchers as well as commercial software builders. It

is measured by the way of flexibility, understandability, and reusability [1]. Fig-

ure 1.1 highlights the conventional iterative process of design phase on reusability

concept.

R. Selvarani

Department of CSE, ACED Alliance University, Bangalore, India

e-mail: selvarani.r@alliance.edu.in

P. Mangayarkarasi (*)

Visvesvaraya Technological University, Belgaum, India

e-mail: mangaivtu@gmail.com

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_1

3

mailto:selvarani.r@alliance.edu.in
mailto:mangaivtu@gmail.com

The concept of design reusability is meant for mitigating all the uncertainties in

the software design and development process. Such reusability theory is originally

meant for upgrading the software components by deploying existing ones. A health

practice of design reusability will always assist in providing better quality, produc-

tivity, reliability, minimal expenditure, and less probability of schedule slippage.

Design reusability is also dependent on the type of the projects that a team handles.

Let us assume that a team of 15 members is handling mobile application projects

from the past 7 years; then it is obvious that this team has increased their experience

and skills in design and development of mobile-based application. Hence, there is a

more likelihood that in future also they will be given similar kind of projects.

However, it can be assumed that this team of 15 members will not be given a very

new domain which they have zero work experience, but they may be given a project

which is little advanced form of mobile-based application with certain degree of

new components to be designed. In order to maintain a better turnaround time, it is

necessary that the team should explore the new challenges by classifying their

problems as – (i) find out what part of design components for new software project

matches with their earlier deliveries and (ii) find out probability of cost involved in

new development. Hence, there is always a preliminary investment in order to

perform design reusability modeling, but the return of investment of such modeling

is always good. Moreover, the development team starts working on exploring and

designing reusable design components; an organization is creating a valuable base

of design knowledge that has positive impact on productivity, financial planning,

and risk assessment.

There are two types of reuse practices, viz., horizontal reuse and vertical reuse

[2]. Horizontal reuse is mainly deployed for software components that are

System
Design

Architecture

Incorporate
the

discovered
components

Identify the
components

Search for
Reusable

Copmponents

Im
pr

ov
em

en
ts

 to
be

 u
pd

at
ed

 /
In

co
rp

or
at

ed

Assessment and
Recommentations

Identify the
sub m

odels

Requirement from
stakeholders

Reusability

Fig. 1.1 Conventional iterative process of design phase

4 R. Selvarani and P. Mangayarkarasi

incorporated on multiple types of applications. The system also consists of typical

library components, e.g., routines for string manipulation, class of linked list,

functions for user interface, etc. Various third party applications are also used in

horizontal reuse practices, and it is one of the most frequently used practices in

software engineering. Vertical reuse is quite less used but has a potential impact on

the design aspects. The core idea of the vertical reuse is to reuse the area of system

function as well as system domain. To nurture the practices of design reusability,

the following are some factors to be considered:

• Clear-cut organization structure of software development: This will assist in

proper archiving of the codes and IP (intellectual property) with all the protocols

for security in accessing and usage structure.

• Higher analytical and problem-solving skill: The technical team should have

higher problem-solving scheme to identify an appropriate segment of reusable

design without violating the copyright of IP.

• Good exposure to risk assessment: The technical team should be well aware of

the risk management and avoidance planning to avoid uncertainties of selecting

and planning for development of the reusable design.

This chapter reviews problems about some of the existing techniques to reus-

ability concept and introduces a novel framework that has the capability to pre-

cisely estimate design reusability along with optimization. The proposed model

discusses discretely reusability estimation technique followed by optimization

technique to perform cost-effective design reusability in software engineering.

Section 1.2 discusses the related works associated with reusability concept in

software engineering followed by a discussion on problem formulations in Sect.

1.3. The contribution of the proposed model for the reusable model is elaborated in

Sect. 1.4 followed by research methodology in Sect. 1.5. The design principle is

discussed in the following section, while the result discussion is carried out in Sect.

1.7. Finally, some concluding remarks are presented in Sect. 1.8.

1.2 Related Work

This section about the existing studies is carried out in the area of reusability about

software engineering. Our prior study already reviewed existing techniques of

enhancing design reusability in software engineering [3]. Recently, the work

carried out by Alonso et al. [4] discussed the standard framework usage for

reusability. Thakral et al. [5] presented a review work on reusability aspect

pertaining to software development. A similar form of discussion toward challenges

and importance of software reusability was presented by Soora [6]. Most recently,

Tahir et al. [7] presented modeling of reusability emphasizing on components of

software. Various techniques are briefed by the authors. Ahmaro et al. [8] discussed

the exercised reusability of software methods considering case study of Malaysia

using the qualitative approach. Singh and Singh [9] discussed reusability

1 Modeling of Reusability Estimation in Software Design with External Constraints 5

framework considering the case study of cloud computing. The authors used a

simulator called as CloudSim to validate their model. Basha and Moiz [10]

discussed different techniques of reusability and introduced a methodology to

perform configuration of vulnerable software components using coupling between

object (CBO) metric. Zhu et al. [11] developed a framework that focuses on reusing

a specific component in computational model.

Xiao et al. [12] developed a universal protocol for strengthening the reuse factor

by considering multiple agent systems. The authors emphasized the usage of the

design patterns for high-end architectures. The work carried out by Gupta and Rathi

[13] introduced a modeling using predictive principle for forecasting the reusable

software components based on original requirement of stakeholder and similarity

match. The technique also used Rabin-Karp algorithm for carrying out feature

selection, genetic algorithm for optimization, and k-means for clustering operation.

Adoption of evolution technique was also witnessed in the recent work of Singh

et al. [14] where the author adopted fuzzy logic for evaluating their reusability

modeling. The study considers multiple valued logical inputs for cohesion, cou-

pling, size, and complexity to compute reusability. Monga et al. [15] and Geertsema

[16] studied the potential influence of multiple parameters on software reusability.

The prime emphasis was laid over the quality parameters as well as selection of a

criterion of the software attributes, e.g., maintainability, understandability, flexi-

bility, quality, portability, complexity, cost, size, and independence. The study

outcome was assessed using cyclomatic complexity and Halstead complexity.

Lani et al. [17] developed a technique to deal with the complex mathematical

problems in the storage system. Nuseibeh et al. [18] studied about the inconsis-

tencies in the software engineering. The problems pertaining to software reuse have

been highlighted in the work of Andreou and Papatheocharous [19] where a

framework has been presented for identifying precise software components. The

framework targets to perform profiling that can directly assist in recognizing the

actual requirements of the system to increase the reusability factor. The study also

implements instances of ontologies to perform matching of software components.

Bombonatti et al. [20] presented a study of associated software reusability with

various nonfunctional software requirements along with a discussion of contextual

attributes. This study has particularly pointed at the role played by human factor in

an organization in software reusability concept. However, the entire study is based

on quantitative approach and doesn’t solve any problem. The contribution of this

paper is its findings from the survey about the importance of many contextual

factors. Similar direction of work was also carried out by Muller [21] where the

authors emphasized software reusability with an aid of multiple factors, e.g.,

challenges in an organization, evolution, issues in integrations, the demand of

reuse, etc. Rezaee and Pajohesh [22] have introduced a programmatic approach

to discuss software reusability. Oliveira et al. [23] have addressed the problem of

extraction of reusable assets in software in order to develop a recommendation-

based modeling for reusing such components. Different methods and classes are

considered as object-oriented entities that were extracted in this study to find out

methods or classes with equivalent name. Sharma et al. [24] have presented a

6 R. Selvarani and P. Mangayarkarasi

component-based software framework in order to enhance the operationality of

software reuse. The authors have presented an empirical-based approach that can

select software reusable components using evolutionary algorithms.

Stefi et al. [25] have adopted contingency approach to study the reusability factor

of external software components. Using qualitative-based study, the authors have

gathered primary information from the participants about the positive influence of

reusing external software components. The author’s discussed modeling by the

associate structure of decentralized organization, long-term orientation, and mod-

ularity in IT architecture with reusability of external software components. Subedha

and Sridhar [26] have addressed the problem of the verifying model for extracting

software components. The authors have also presented a contextual modeling

approach for software reusability along with optimization performed on it. The

prime contribution is task division for software reusability with respect to identifi-

cation of components, extraction of component, and qualification of components.

The study outcome was assessed using time required for extraction. Tibermacine

et al. [27] have presented a framework in order to address the constraints of

software architectures based on reusability concept.

There are many studies focused on enhancing reusability, but the trade-offs

being explored are, viz., (i) very few studies are considered (Small and Medium

Enterprises (SME)) into account while developing reusability factor, (ii) existing

studies on reusability lack any forms of numerical benchmarking considering the

frequently used software designs, (iii) software metric suites are in infancy stage

with respect to real-time possible constraints, and (iv) there is lack of computational

and optimization model in developing software reusability. Therefore, the absence

of all the above points renders to discuss the problems by considering the real-time

constraints for SMEs in software engineering. The next section discusses the

problems being formulated for the proposed model.

1.3 Problem Formulation

The proposed study considers the problem as – how to ensure better design

reusability in object-oriented software project development? The problem is par-

ticularly focused on small and medium enterprise who has small number of human

resource with more number of tasks to do from multiple clients. Hence, this is the

best possible scenario to check if an efficient optimization policy can be laid by a

novel technique. The proposed system identifies three different constraints for such

organization, viz., human resource, cost, and work schedule. Based on these

constraints, the problem is how to optimize productivity retaining the same or

highly minimal resources. The problem pertaining human resource is basically to

explore the possibility of using similar resources for ensuring increased productiv-

ity. Similarly, the problem pertaining to cost will focus on exploring the technique

of minimizing operational cost of production without affecting the quality of

delivery. Finally, work schedule is a hard constraint which will explore the chances

1 Modeling of Reusability Estimation in Software Design with External Constraints 7

of increased productivity keeping the uniform working schedule. The term produc-

tivity is strongly associated with design reusability, which will mean if the value of

design reusability of software projects is more, it means productivity (or quality of

the product) has been upgrading.

In order to understand the problem scenario, let us consider the criticality of the

considered constraints for the proposed system with respect to optimization:

• Human resource: Smaller organization has smaller number of human resources

who are always endowed with unproportionate workload. Although there is

always a breakpoint for the capability of the human resources, it is not possible

to identify the variable capacity of multiple human resources. For example, for a

given same job, one employee can have more efficiency as others. Hence,

modeling human resource as a constraint is one of the challenging tasks if

considered along with design reusability concept.

• Work schedule: There is always constant work timing for all the human

resources. However, the challenge is how much of the same work schedule

can be used by an employee to design a new component with maximum design

reusability? There may be multiple unseen factors that may have positive or

negative influence on the employee’s productivity (in perspective of designing

reusable components) in static work schedule.

• Cost: The term cost will mean amount of resources required by an employee to

develop a new software project with maximum reusable components. For better

margin of profit, the cost of new development must be as low as possible.

Although cost cannot be lowered down to zero, it is challenging to perform

predictive modeling to foresee some approximated value of cost of new devel-

opment of upcoming software project.

Hence, all the three real-life constraints, e.g., human resources, work schedules, and

cost, are most associated with uncertainty factors which are required to be com-

puted using optimization principle. More elaboration of the problem is given below:

To understand problem considered, we consider three phases of proposed sys-

tem, i.e., requirement gathering, evaluating existing design attributes, and analyz-

ing tentative cost of new development. Figure 1.2 highlights three essential blocks,

i.e., (i) requirement block, (ii) existing design attribute block, and (iii) new design

block. The requirement block represents a process management step that reviews

new project requirement of clients with a special insight on its design attributes.

The existing design attribute block performs the check if the new design could be

compatibly mapped with any existing reusable components with certain thresholds.

It evaluates the size of reusable components to be used in new product design. The

new design block basically evaluates the exact amount of reusable design for the

new segment of the product development from the scratch. The prime challenge in

this block is to perform a check if the newly developed content does reach some

specific limit of design reusability standard imposed by an organization. Not only

this, performing optimization principle over software engineering was less

attempted in prior research work that will also pose a serious impediment toward

8 R. Selvarani and P. Mangayarkarasi

evolving up a new model for design reusability. The next section is about the

proposed system and its significant contribution to address the problem.

Review new
Requirement

R
eq

ui
re

m
en

t
Ex

is
tin

g
D

es
ig

n
A

ttr
ib

ut
es

N
ew

D
ev

el
op

m
en

t

Review on Existing
Design Estimation

Framework < 30% of
new development

Framework from scratch
with 70% reusability

Match is equal to
or more than 70%

Iteration to meet the
reusability Level

Satisfies the reusability
level

Satisfies the reusability
level

Iteration to meet the
reusability Level

New Findings
with design
reusability

Fig. 1.2 Schematic representation of problem formulations

1 Modeling of Reusability Estimation in Software Design with External Constraints 9

1.4 Proposed Modeling

The prime purpose of the proposed system is to introduce a novel modeling

approach of optimization for estimating design reusability for software project.

The proposed system considers the real-time constraints and presents a unique

technique to enhance project management in software development firms. The

development scenario considers the case study of small and medium enterprises

which adheres to meet time- and mission-critical objection using small amount of

resources. From software engineering viewpoint, such corporates have higher

inclinations toward adoption of cost-cutting measures in production. Hence, the

proposed model offers a technique which is essentially meant for the stakeholder of

small and medium enterprises for evaluating two facts, viz.:

• How much reusable design components can be used for meeting new software

project development?

• Can the new production cost be lowered by incorporating reusable design

components in it?

The prime contributions of the proposed modeling approach are as follows:

• Novel approach in software engineering: For the first time in research, the

proposed model considers the real-world constraints for evolving up with a

mathematical model for enhancing the project management methodologies.

The proposed technique is designed based on simple tool, and modeling supports

extensive mathematical operations to superiorly enhance the optimization

process.

• Efficient design reusability: The proposed model uses probability theory

enriched with statistical operation in order to perform modeling. The technique

uses simple parameters like number of days, human resources, cost of the

production, working schedule, etc. and modeled them in simple design reusabil-

ity estimation technique.

• Highly adoptable design principle: The development of the proposed technique

uses open-source platform for extracting the software metric suite information

(CK metrics). Hence, the design principle can be considered to be platform

independent and can offer better flexibility of adoption even if different domains

of problems are given.

• Robust optimization technique: The proposed model uses backpropagation

learning technique which is used to ensure superior consistency and reduced

computational complexity in reusability estimation. It also uses Levenberg-

Marquardt optimization technique, which is used for solving nonlinear optimi-

zation problems. The problems considered in our case are also nonlinear in

nature; hence it finds better suitability.

The architecture of the proposed modeling is highlighted in Fig. 1.3. The architec-

ture is meant for taking four different inputs (number of developer, number of

client, cost, and errors) in order to perform estimation and optimization of amount

10 R. Selvarani and P. Mangayarkarasi

of reusable design components to be used. The proposed technique is essentially

meant for minimizing the new production cost along with effort and time without

any forms of negative influence to the quality of software project delivery.

Real
world

Problem

Im
p

ac
t

S
tu

d
y

Quantity

Work
Schedule

Cost of new
development

CBO RFC WMC DIT NOC

No of
Developers

No. of
Clients

Cost
Design

Attribute

CK_Metrics

Model
Parameters

Reusability analysis

Dynamic Reusability ModelProject

Threshold
factor

1

2 3a

3b 4

5
6

7

8

9a

9b

9c

Consistency
Adoptability Factor

Complexity
Factor

Estimated Complexcity

Trainingvalidation

Experimental Evaluation

P
re
d
ic
tiv

e
E
va

lu
a
tio

n

Optimization

Add Errors

Fig. 1.3 Proposed modeling of optimized reusability estimation

1 Modeling of Reusability Estimation in Software Design with External Constraints 11

1.5 Research Methodologies

The design of the proposed model is carried out using analytical research approach

emphasizing the critical factors involved in software development projects. The

flow of the adopted research methodology is highlighted in Fig. 1.4. The brief

discussions of an essential building block of the adopted research methodology are

as follows:

• Data collection: We consider some sample software projects (supply chain

management) which were developed using JSP, Servlets, or Struts just in order

to ensure that we have a good number of logical codes for developing designs.

We use Metrics 1.3.6 [28] tool in order to extract the original values of CK

metrics, e.g., CBO, RFC, WMC, DIT, and NOC.

• Assumption building: The study considers the real-life scenario of SMEs where

resources are always subjected to optimization. The three problems considered

are (i) resource quantity, (ii) work schedules, and (iii) cost of new development.

The proposed optimization technique is designed considering hard thresholding

scheme based on these three constraints.

• Descriptive statistics: The numerical outcome of the study uses simple descrip-

tive statistics (mean, median, mode, skewness, kurtosis, variance, standard

deviation, etc.) to observe the trend of data.

• Inferential Statistics: The study uses t-test and analysis of variance in order to

arrive at the p value of the numerical data. This is basically used for computing

significance value for all the CK metrics in order to check its possible impact on

design reusability.

• Formulate condition of reusability: We consider that formulation of code reus-

ability should be made in highly flexible way. We assume that a developer has a

possession of software design for a delivered project. Assuming the organization

is working on the similar domain, the developer can be easily thought of getting

a similar kind of software project with minor or some amount of changes. Hence,

the proposed model will be used to identify what amount of design for new

project matches with existing reusable design components (from the prior

project). The system will also need to design reusable components whose cost

will need to be determined. Hence, we assume a fixed threshold point where the

new component to be developed should have a minimum amount of specific

design reusability.

• Consider error: Uncertainty is always a part of project management as well as in

software development life cycle. Hence, we consider adding up hypothetical

errors to check the fault tolerance of the proposed model for any future upcom-

ing risk matching with incorporated errors.

• Apply BPA: The study uses backpropagation algorithm (BPA) to perform opti-

mization [29]. The reason of adoption of this algorithm is because (i) it is the

most simple optimization technique and (ii) it has faster convergence on

required local minima.

12 R. Selvarani and P. Mangayarkarasi

• Get final value of reusability: The final judgment of the proposed technique is

carried out considering the evaluation of consistency factor and complexity

factor. As the study uses a statistical approach, hence, inferences of the accom-

plished outcomes are quite comprehensive.

1.6 Design Principle

In our proposed approach, the project is broken down into two analysis groups, viz.,

reusability analysis and controlling analysis. The analysis is forward looking and

tells us what needs to be reused, where it is to be done, how it is to be reused, and

who is going to do it. Analysis usually occurs prior to embarking upon a project or

early in the project life cycle. Controlling is intended to identifying and developing

the new requirements which is deviated from the existing plan. It takes more narrow

Start

Data Collection

Assumption
Building

Descriptive
Statistics

Inferential
Statistics

Formulate a
condition of
reusability

Consider Error

Apply BPA

Get Final value
of Reusability

Stop

Problem: To create
a relationship
between CK
metrics and
Reusability

Problem: To check
the reusable

components and new
components to be

designed with
reusability

Software Projects (JSP/
Swing..)

3 Constraints

p-Significance
test for

hypothesis
test

XΔDA
Y−

Z
=

ing

Random / Gaussian
Error

Back propagation
AlgorithmDesign Optimization

Fig. 1.4 Flow of the research methodology adopted

1 Modeling of Reusability Estimation in Software Design with External Constraints 13

and immediate focus with the intention for alerting managers to significantly

deviate from plan while the project is in the process, where it is mandatory to

allot the work to senior developers, who already work in the similar project. The

proposed model considers multiple research approaches in order to fulfill the

research goal. A brief discussion of the objectives is carried out based on two

core module developments as follows:

1.6.1 Design of Reusability Estimation

The real-time software development methodologies are potentially affected by

various extrinsic and intrinsic factors. Such factors have a direct impact on the

reusability phenomenon. Hence, we consider some of the real-time constraints

which are witnessed in almost every project team. The study considers three such

real-time constraints, e.g., (i) human resources, (ii) cost, and (iii) work schedule.

The supporting justifications are briefed below:

• Human resources: Human resource will directly mean project team members

who are technically skilled to develop and deliver software projects:

– Justification: This factor plays a crucial role in our proposed model as our

investigation is focused toward exploring optimal number of team members

required to deliver a task which is bigger in dimension with higher scale of

difficulty in tentative number of workdays. The study will investigate the fact

if lower number of human resource can still deliver the quality in software

projects keeping profit in mind in terms of design reusability.

– Feature: The prime feature of this module will be to develop new applications

by reusing preexisting designs. Consequently development effort might be

low when the designs are predominantly reused.

– Correlation: Cost is measured as development effort which is directly pro-

portional to design reusability.

• Cost: The factor of cost can be defined as total expenditure borne by the project

team to deliver a software project with higher degree of design reusability:

– Justification: Consider an example that for a given software project design,

only 40% of the design components stored in database of projects could be

reused for new projects. Hence, a question arise that 60% of new develop-

ment has to be carried out for new projects where it is quite challenging part

to understand how much part of these 60% new design could be reusable.

Hence, a threshold-based factor is used which will always ensure that a

software development must propose a new design in such a way that it

must not be below the threshold limit in order to keep the cost as low as

possible.

14 R. Selvarani and P. Mangayarkarasi

– Feature: Cost calculation will be done on the basis on number of hours

involved, inclusion of new resources, score of new reusable design, etc.

Hence the capital investment on new development is essential.

– Correlation: Capital cost is measured as scratch development effort, which is

directly proportional to new design with respect to reusability in future needs.

• Work schedule: Work schedule will directly mean working hours:

– Justification: Smart employee management and performance enhancement

schemes always look for enhancement in production along with skill adhering

to same working hours. However, working hours are also governed by

various facts, e.g., how much skillful and target oriented an employee is or

inefficiency of team leader to make employee work off the working time. Or

it may be skill gap even. Ineffective work schedule results in inferior quality

and degraded productivity.

– Feature: The module of work schedule will look for the capability of an

employee to hold multiple responsibilities of multiple clients on stipulated

period of time.

– Correlation: Reuse of design considering invariants of work schedules for

multiple clients by a single developer. It is measured as rates to arrive at the

time and effort needed to complete the project.

The framework considers the formulations of real-world problem, i.e., human

resources, cost, and work schedule. Initially, the study investigates software pro-

jects designed by open-source programs, e.g., Java. We have used different types of

available tools, e.g., Metrics 1.3.6, for obtaining values in CK metrics. The frame-

work also extracts CK metrics from the object-oriented software projects, i.e.,

CBO, RFC, WMC, DIT, and NOC. Based on the input, let DA2 CK¼{CBO,

RFC, WMC, DIT, NOC } be one of the feature attributes where, initially, it can

be possible to find mean of their daily changes for each candidate class in object-

oriented programs over the whole development period not including days when the

class has been reused. Therefore,

X ¼
XN

k¼1

DA k:Δeð Þ ð1:1Þ

and

Y ¼
XN

k¼1

DA k � 1ð Þ:Δeð Þ ð1:2Þ

Z ¼ N � Tj j ð1:3Þ

where N is total number of days required to develop the complete projects

(Pmax ¼ P1+P2+. Pn) and Δe is time required in one single day effort. It should

1 Modeling of Reusability Estimation in Software Design with External Constraints 15

be noted that T is the actual duration of development required by the developers for

performing design reusability and T<N. This mean value for feature attribute CK is

represented as

ΔDA ¼ X � Y

Z
ð1:4Þ

The above equation yields the mean of the daily changes of quality CK metrics only

for the days in which a class has been reused. Therefore, the proposed model only

emphasizes on the days which were used for making the reusable components. A

closer look into all the above equation will show that if DA is lowered down, then

ΔDA will be considered to be optimized. It will mean that although CK metrics

gives potential information about the underlying association of various design

dependencies, higher values of any CK metrics are detrimental for an efficient

design principle. Hence, the proposed model can easily use Eq. 1.4 to assess if their

formulated design has better reusability or not. The complete approach is based on

non-iterative optimization principle which is faster and simple for the stakeholder

to assess their tentative profit margin by extracting maximum value of design

reusability. It also assists them to formulate strategical planning for future software

design requirements in order to ensure maximum reusable components, which are

very important in software engineering.

1.6.2 Design of Optimization in Reusability Estimation

The previous module of the study assists in calculating design attribute in terms of

reusability. This module of the study is more focused on performing optimization.

Therefore, along with human resource, cost, and work schedule, a new attribute

called as an error is also considered. Hence, the study performs optimization using

backpropagation algorithm on the four revised attributes, i.e., cost, quantity, work

schedule, and errors, in order to calculate the level of consistency and complexity

factor. The consistency adoptability (ω1) factor statistically evaluates the extent of

consistency after adopting inputs specified in Eq. 1.1.

ω1 ¼
X IPoDyRM � 0:1

0:8
:Δwt ð1:5Þ

Equation 1.5 considers inputs from prior model and generated weight (wt) and

considers the lower limit of 0.1 and higher limit of 0.8 in probability theory. The

system chooses to consider 0.8 as accomplishing higher consistency factor of 0.9,

and 1 is impractical assumption in probability theory. Complexity factor (ω2)

checks the uniformity of the generated values after performing validation to the

consistency adoptability factor (ω1). Hence, the proposed model introduces a

mathematical approach using analytical research methodology which ensures

16 R. Selvarani and P. Mangayarkarasi

design reusable components to be included in every software project deliveries in

order to optimize cost of new production. The first module assists in calculating

design reusability, while the second module applies backpropagation algorithm

along with incorporation of errors to check the level of consistency in adoptability

as well as complexity associated with the proposed model.

The next section discusses the outcome resulting from the proposed model.

1.7 Results and Discussion

This section discusses the outcomes accomplished from the proposed study. The

result discussion is carried out in two stages. The first stage of the result discussion

is carried out on total amount of reusability factor found from the existing con-

straints, whereas the second stage of the result discussion is carried out with respect

to optimization done in this model. For this purpose, we consider a simple software

project of supply chain management with high number of modules developed in

Java. The overall numerical outcome is just an approximation of five such types of

projects (two projects in supply chain, two projects in customer relationship

management, and one project in enterprise relationship management). We also

compare the proposed approach with nearly similar existing system to perform

benchmarking and assess the effectiveness in the proposed model of computing and

optimizing design reusability.

1.7.1 Numerical Outcome of Reusability Estimation Model

The numerical outcome of the proposed system is shown in Tables 1.1, 1.2, 1.3

and 1.4.

Figure 1.5 shows the outcome of the reusability factor ΔDA considering five

design attributes. The parameter Xi and Yi is used for computing reusability factor

ΔDA. The numerical outcome of the study shows accomplishment of superior value

of reusability factor of approximately 73%. In order to estimate the effectiveness of

the proposed outcome, we also compare the individual values of the CK metrics

with that of Zhou and Leung [30]. Although there are various forms of threshold-

based studies formulated by various researchers, the recent study conducted by

Antony [31] has shown that the study done by Zhou and Leung [30] has direct

interpreted values of threshold and was also found to be referred by almost

169 researchers till date and is one of the latest thresholds formulated till date.

We use statistical analysis to explore the cost of the individual CK metrics. For

better comparative analysis, we evaluate the accomplished values of proposed

model with respect to the standard threshold values fixed by Zhou and Leung

[30]. Our outcome shows that almost all the CK metrics considered for the study

1 Modeling of Reusability Estimation in Software Design with External Constraints 17

accomplished lower value, which is quite good for reusability factor. Lower value

of WMC (2.30) will also mean lower number of classes leading to fewer complexes

in accessing the program. Similar pattern of RFC (2.44) is also found in the

comparative analysis. Smaller values of DIT (2.77) accomplished also show

extremely lesser deeper class in hierarchy rendering it less complex. Even the

CBO value (2.57) is also less than the maximum limit of 8 thereby reducing the

dependencies of the inter-classes. Finally, moderate value of NOC (3.78) has kept a

good balance between reuse and less probability of testing the code. It is because if

NOC value is high, it ensures reusability, but at the same time, it minimizes

reliability and requires more number of testing of classes. Hence, the proposed

outcome shows a very good balance between the reusability and other performance

of classes.

Table 1.1 Reusability

calculations
DA k (days) (k�1) Δe Xi (Eq. 1.1) Yi (Eq. 1.2)

5 20 19 8 960 912

5 40 39 8 1920 1872

5 60 59 8 2880 2832

5 120 119 8 5760 5712

X ¼ 11,520 Y ¼ 11,328

Table 1.2 Reusability calculations considering constraint

Jr. Dev (Th ¼ 2)

Total dev duration

(months)

Actual development duration

(months) N D

Two

clients

Two

projects

6 + 8 4 + 6 364 260

Two projects 14 10

Sr. dev (Th ¼ 3)

Total dev duration

(months)

Actual development duration

(months) N D

Three

clients

Three

projects

6 + 8 + 10 4 + 6 + 8 624 468

Three projects 24 18

N ¼ N(Jr. Dev.)+N
(Sr. Dev.) ¼ 364 + 624 ¼ 988

|D| ¼ |D|(Jr. Dev.)+|D|
(Sr. Dev.) ¼ 260 + 468 ¼ 988

Table 1.3 Reusability

calculations considering

duration of development

N(days)¼ 988

|D|¼ 728

Z¼ 260

ΔDA 0.738461538

18 R. Selvarani and P. Mangayarkarasi

Table 1.4 Numerical analysis

Set no. C Q WS E CAFexp CAFpred CFexp CFpred

2 0.325 2 3 1 0.843 0.843 6.8 6.8

18 0.5 2.5 3 1 0.92 0.921 4.9 4.9

31 0.375 2 3 2 0.853 0.850 6.9 6.8

52 0.45 3 3 2 0.852 0.853 7.4 7.3

72 0.5 2.5 3 3 0.876 0.875 7 7.0

95 0.4 2.5 3 4 0.775 0.775 10.5 10.5

108 0.5 3 3 4 0.817 0.817 8.6 8.7

124 0.45 2.5 2 1 0.89 0.891 5.8 5.7

130 0.375 3 2 1 0.838 0.841 7.2 7.2

137 0.325 2 2 2 0.805 0.808 8.2 8.2

153 0.5 2.5 2 2 0.877 0.876 6 5.8

165 0.35 2 2 3 0.789 0.789 8.9 8.9

172 0.3 2.5 2 3 0.748 0.744 11.6 11.4

197 0.475 2 2 4 0.822 0.823 8.2 8.2

204 0.425 2.5 2 4 0.765 0.763 10.1 10.1

219 0.35 2 1 1 0.854 0.854 6.5 6.4

233 0.475 2.5 1 1 0.905 0.904 5.2 5.3

242 0.475 3 1 1 0.888 0.890 6.1 6.1

248 0.4 2 1 2 0.826 0.824 6.9 6.8

252 0.5 2 1 2 0.882 0.882 5.6 5.6

276 0.425 2 1 3 0.805 0.810 8.1 7.9

297 0.5 3 1 3 0.773 0.772 8.5 8.6

307 0.3 2.5 1 4 0.674 0.673 13.9 13.8

324 0.5 3 1 4 0.734 0.737 10.1 10.1

C cost, Q quantity, WS work schedule, E % errors, CAFexp consistency adoptability factor

(experimental), CAFpred consistency adoptability factor (predicted), CFexp complexity factor

(experimental), CFpred complexity factor (predicted)

2.15 2.44 2.77 2.57 3.78

15

35

6
8

6

0

5

10

15

20

25

30

35

40

Va
lu

e
of

 C
K

M
et

ric
s

Adopted CK Metrics

Achieved Value
Zhou & Lenug

WMC RFC DIT CBO NOC

Fig. 1.5 Comparative analysis of proposed and existing system

1 Modeling of Reusability Estimation in Software Design with External Constraints 19

1.7.2 Numerical Outcome of Optimized Model

The numerical outcome of optimization model is highlighted in Table 1.4. The

outcome shows the experimental and actually predicted value of consistency in

adoptability and complexity factor. Out of total set of 324 rows of observation, we

show only the significant reading in Table 1.4 with different value of costs quantity,

work schedule, and error. The calculation of cost, quantity, and work schedule is

carried out using statistical analysis of previous model (t-test, analysis of variance,

regression test, etc.). The proposed model considers 1–4% of errors in numerical

analysis of optimized model. In multilayered perceptron, error computation is

carried out by using subtracting desired result with actual result. We use curve

fitting toolbox of Matlab to obtain this objective of implementing optimization

model. Our experiment uses Levenberg-Marquardt backpropagation algorithm

using the toolbox. Usually the error value will lie between 0 and 0.05 using the

toolbox. Hence, we consider practical error values, e.g., 0–0.05, as according to

probability theory if p value lies between 0 and 0.05, it is considered as ideal value

for observation. Hence, we choose the error inclusion to be 0–0.04, which after

percentage conversion looks like 1–4%. A closer look into the tabulated data also

shows higher accomplishment of software consistency. The overall runtime of the

application takes around 2.3 s for a five-project data totaling to 975 MB of file size.

Therefore, depending on higher degree of consistency value and lower values of

complexities, it can be concluded that proposed model score is well in terms of

software reusability with better consistency factor.

1.7.3 Key Process Information

The key process information for the proposed design are basically (i) evaluating

mean value for feature attribute CK and (ii) applying backpropagation and

Levenberg-Marquardt optimization algorithm. As the proposed model performs

reusability of design considering constraint formulations of number of developers

and number of clients, cost, and errors, the accuracy depends on assumption of

formulation of such constraints. However, even presences of minor errors are

rectified in the optimization process using multilayered perceptron as core key

process of enhancing the design reusability. Another key process is the adherence to

the threshold value of design reusability considering only five CK metrics (i.e.,

CBO, RFC, WMC, DIT, and NOC). A significant process of the proposed model is

basically the consistency measurement with reduced computational complexity.

The entire process takes only 1.27–4.76 s to execute for normal operating system

without storing any transactional computational data. Hence, the proposed model is

highly computationally efficient model.

20 R. Selvarani and P. Mangayarkarasi

1.7.4 Threat to Validity

The validity of the proposed model is based on how much is the reduced value of

operational cost maintained by its design scheme. It will also mean that as the

proposed model adopts optimization, hence, its value of design reusability and

consistency has to be higher than any existing technique. We have seen from prior

subsection that the proposed model offers better performance of software metric

suite with respect to existing study of Zhou and Leung [30]. The entire design and

development of the proposed reusability concept are on the basis of the three real-

time constraint formulations. The proposed model is less prone to internal threats

and moderately prone to external threats. In case new constraint is added apart from

three core constraints, the study outcome may slightly differ. However, variance

will be minimal as it is compensated by considering external error in the optimiza-

tion process.

1.8 Conclusion

Developing software product with reusable design brings much to return to IT

industries. Reusability has several direct or indirect factors like cost, efforts, and

time toward software development. Reusability is the probability that the existing

concepts will be used in other scenarios with little modification or no change in

their functionality. It is a technology for improving software quality and produc-

tivity. Here we optimized three real-time constraints such as work schedule, cost,

and effort attribute to measure the external quality attribute reusability. The pro-

posed model offers the solution to finding the extent of design reusability for any

open-source software projects for any domain. This phenomenon potentially assists

the stakeholder to consider the situation which also assists in risk analysis and cost

prediction. As the study uses learning algorithm, so the technique can be said to

possess an intelligence to understand the uncertainties and errors in computational

values of design reusability. This fact will mean that this technique could be easily

adopted by any organization on any domain of work in software project develop-

ment. Finally, the outcome of the study is found to offer a better alignment between

predicted and estimated outcomes during optimization operations. However, the

validity of the entire study is high as long as a new variant of real-world constraint is

not introduced. We use probability theory to assume a new variant as external error

which takes the value between 0 and 1, which is quite easier to scale. Hence

external threat to validity of the proposed model is quite moderate. Hence, our

future work will be to check for further enhancement of this model. At present, we

used nonlinear optimization principle to maintain a well balance between design

reusability estimation, consistency, and reduced complexity. Our future study will

be therefore in the direction to further escalate the approach with new performance

parameters.

1 Modeling of Reusability Estimation in Software Design with External Constraints 21

References

1. Selvarani R, Nair TRG (2009) Software reusability estimation model using metrics governing

design architecture, International book: knowledge engineering for software development

cycles: support technologies and applications. Engineering Science Reference, IGI Publishing,

New York. doi:10.4018/978-1-60960-509-4.ch011

2. Hooper JW, Chester RO (1991) Software reuse: guidelines and methods. Springer Science &

Business Media

3. Selvarani R, Mangayarkarsi P (2015) Reviewing the significance of software metrics for

ensuring design reusability in software engineering. Int J Comput Sci Commun Netw 4

(6):208–213

4. Alonso D, Ledesma FS, Sanchez P (2014) Models and frameworks: a synergistic association

for developing component-based applications. Hindawi Publishing Corporation

5. Thakral S, Sagar S, Vinay (2014) Reusability in component based software development – a

review. World Appl Sci J 31(12):2068–2072

6. Soora SK (2014) A framework for software reuse and research challenges. Int J Adv Res

Comput Sci Softw Eng 4(10)

7. Tahir M, Khan F, Babar M, Arif F, Khan S (2016) Framework for better reusability in

component based software engineering. J Appl Environ Biol Sci 6(4S):77–81

8. Ahmaro IYY, Yusoff, M Z A, Abualkishik M (2014) The current practices of software

reusability approaches in Malaysia. IEEE Malaysian Software Engineering Conference

9. Singh S, Singh R (2012) Reusability framework for cloud computing. Int J Comput Eng Res 2

(6):169

10. Basha N, Md J, Moiz SA (2012) A methodology to manage victim components using CBO

measure. Int J Softw Eng Appl 3(2):87

11. Zhu F, Yao Y, Chen H Yao F (2014) Reusable component model development approach for

parallel and distributed simulation. Hindawi Publishing Corporation

12. Xiao X, Lina Y, Junwei L (2009) The reuse policy in developing multi-agent system. Int J

Distrib Sensor Netw 5:82

13. Gupta C, Rathi M (2013) A meta level data mining approach to predict software reusability. Int

J Inf Eng Electron Bus 6:33–39

14. Singh PK, Sangwan OP, Singh AP, Pratap A (2015) A framework for assessing the software

reusability using Fuzzy logic approach for aspect oriented software. Int J Inf Technol Comput

Sci 02:12–20

15. Monga C, Jatain A, Gaur D (2014) Impact of quality attributes on software reusability and

metrics to assess these attributes. IEEE Advance Computing Conference

16. Geertsema B, Jansen S (2010) Increasing software product reusability and variability using

active components: a software product line infrastructure. In: ACM-proceedings of the fourth

European conference on software architecture

17. Lania A, Quintinoa T, Kimpeb D (2006) Reusable object-oriented solutions for numerical

simulation of PDEs in a high performance environment. Sci Program 14:111–139

18. Nuseibeh B, Easterbrook S, Russo A (2000) Leveraging inconsistency in software develop-

ment. Inst Electr Electron Eng 33(4):24–29

19. Andreou AS Papatheocharous (2015) Towards a CBSE framework for enhancing software

reuse: matching component properties using semi-formal specifications and ontologies, In:

Evaluation of novel approaches to software engineering

20. Bombonatti D, Goul~ao M, Moreira A (2016) Synergies and tradeoffs in software reuse – a

systematic mapping study. Software: practice and experience

21. Muller G (2003) Software reuse; caught between strategic importance and practical feasibility.

Embedded Systems Institute, Article as part of the Gaudı́ project

22. Rezaee A, Pajohesh M (2016) Creating an environment for reusable software research. J

Harmonized Res (JOHR) 4(2):90–92

22 R. Selvarani and P. Mangayarkarasi

http://dx.doi.org/10.4018/978-1-60960-509-4.ch011

23. Oliveira J, Fernandes E, Souza M, Figueiredo E (2016) A method based on naming similarity

to identify reuse opportunities

24. Sharmaa S, Kumar A, Kavitaa (2016) A design based new reusable software process model for

component based development environment. Elsevier, Int Conf Comput Model Secur

85:922–928

25. Stefi A, Lang K, Hess T (2016) A contingency perspective on external component reuse and

software project success. A contingency perspective on external software reuse

26. Subedha V, Sridhar S (2012) Optimization of component extraction for reusable software

components in context level–a systematic approach. Proc Eng 38:561–571

27. Tibermacine C, Sadou S, That MTTT, Dony C (2016) Software architecture constraint reuse-

by-composition. Futur Gener Comput Syst 61:37–53

28. Eclipse Metrics (2016) http://metrics.sourceforge.net

29. Chauvin Y, Rumelhart D (2013) Backpropagation: theory, architectures, and applications.

Psychology Press

30. Zhou Y, Leung H (2006) Empirical analysis of object – oriented design metrics for predicting

high and low severity faults. IEEE Trans Softw Eng 32(10):771–789

31. Antony PJ (2013) Predicting reliability of software using thresholds of CK metrics. Int J Adv

Netw Appl 4(6)

1 Modeling of Reusability Estimation in Software Design with External Constraints 23

http://metrics.sourceforge.net

Chapter 2

Estimation of Costs and Time
for the Development of Distributed Software

Manal El Bajta, Ali Idri, Joaquı́n Nicolas Ros,

José Luis Fernandez-Aleman, and Ambrosio Toval

2.1 Introduction

Most of today’s software development organizations aspire to save time and reduce

costs. Therefore, globally distributed environment has invaded the software devel-

opment industry. The strategy of distributed software development generates many

benefits that support the development of software product in an effective way, but

this strategy still faces many challenges which may hinder the success of globally

distributed software development projects. In this context, a significant number of

projects failed to deliver within time and budget in globally distributed environment

[1]. Thus, managing the globally distributed environment is a key characteristic.

However, in order to successfully plan software development projects’ activities, it
is important to sustain a high level of accuracy to cost and time estimation methods.

Developing software products in a cost-effective way is the overwhelming

objective of many organizations. In addition, the ultimate goal is the accurate

estimation of the required amount of effort for the completion of each project.

Many research studies indicate that projects without realistic planning and accurate

estimation are often beyond their allocated budget and the proposed completion

time [2–4].

The drivers involved in the distributed environment are investigated with respect

to four aspects: (1) software product, (2) personnel attributes, (3) computer

M. El Bajta (*) • A. Idri

Software Project Management Research Team, ENSIAS, Mohammed V University, Rabat,

Morocco

e-mail: manal.elbajta@gmail.com

J.N. Ros • J.L. Fernandez-Aleman • A. Toval

Software Engineering Research Group, Regional Campus of International Excellence,

“Campus Mare Nostrum”, University of Murcia, Murcia, Spain

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_2

25

mailto:manal.elbajta@gmail.com

attributes, and (4) project attributes [5]. We also suggest that distributed software

development projects’ success is never isolated to one particular driver.

Although there are many methods and techniques available to assist in creating

distributed software project effort estimates, they are still far from the required

accuracy. Several authors concerned with software development have given varied

suggestions for these inaccuracies and ways to overcome some of them [6, 7]. In

contrast, this chapter focuses on ways in which existing effort estimation methods

can be tailored to account for global software development. It investigates the

influence of the different factors that affect the effort estimation method’s accuracy
in the context of globally distributed software development projects. Furthermore,

this chapter presents the effort estimation methods based on the treated factors.

The chapter is structured as follows: Sect. 2.2 presents the globally distributed

environments. Section 2.3 reports the software effort estimation process.

Section 2.4 outlines software cost/time estimation techniques for global software

development (GSD). Section 2.5 discusses the main cost and time drivers.

Section 2.6 presents the risk analysis; finally, the conclusions and future work are

presented in Sect. 2.7.

2.2 Globally Distributed Environment (GSD)

GSD refers to software development that is done by multiple teams in different

geographic locations. The teams are separated physically, and they are located in

different countries within one region or around the world. The teams can either be

from one organization or from multiple different organizations (outsourcing) [8].

Global software development is usually considered to be much more difficult

than collocated software development given the many different challenges related

to the software development in a globally distributed setting. These challenges

include negative impact of physical distance, cultural differences, and many other

complexity factors which are elaborated in the following subsections [9, 10].

Past studies have shown that tasks take about 2.5 times longer in distributed

setting than in collocated setting [11, 12]. Other studies reported that about 40% of

GSD projects fail to deliver the expected benefits, due to the lack of theoretical

basis and difficult complications in GSD project [13, 14]. On the other hand,

Teasley et al. [15] reported that in collocated teams, productivity and job satisfac-

tion are much higher than projects that do locate the entire project team in a

war room.

The additional activities and difficulties in global software development require

additional effort for substantial planning, coordination, and control overhead in the

day-to-day governance of global software development. This additional effort

should be considered in the time and cost estimation. Hence the time and cost

estimation in GSD is more complex than in local development.

26 M. El Bajta et al.

2.2.1 Challenges

Although GSD offers several benefits, the distributed work has also many chal-

lenges (Table 2.1). If globally distributed software projects are not managed neatly,

then they are likely to turn any company into a loss-making business [16]. That

means that there are many challenges associated with global software development.

Physical separation among project members has diverse effects on many levels. The

following factors have been gathered from research literature [17] to have an

impact on the amount of effort and cost required for global software development.:

• Geographic distance: Software development, particularly in the early stages,

requires much communication, coordination, and control [18]. Geographical

distance is a measure of the effort required for one actor to visit another and

can be seen as reducing the intensity of communication [19], especially when

people experience problems with media and have difficulties finding a suffi-

ciently good substitute for face-to-face interaction [20]. Kraut and Streeter [21]

found that formal communication is useful for routine coordination, while

informal communication is needed to face uncertainty and unanticipated prob-

lems, which are typical of software development. They observed that the need

for informal communication increases dramatically as the size and complexity of

the software increase. In a large software organization, developers can spend on

average up to 75 min per day for informal unplanned communication [22]. In

general, low geographical distance offers greater opportunity for periods of

collocated teamwork.

• Temporal distance: Time zone differs among project members when develop-

ment team is distributed around the world. Temporal distance is a measure of the

dislocation in time experienced by two actors wishing to interact [19]. Temporal

distance can be caused by time zone difference or time shifting work patterns

and can be seen as a factor that reduces opportunities for real-time collaboration,

as response time increases when working hours at remote locations do not

overlap [23]. Temporal dispersion reduces the possibilities of synchronous

interaction, which is a critical communicational attribute for real-time problem

solving and design activities. In practice, teams in different time zones have few

hours in the work day when multiple sites can participate in a joint synchronous

meetings and discussions. Temporal dispersion can also make misunderstand-

ings and errors more likely to occur [24].

This leads to delay in response to asynchronous communication. For exam-

ple, an e-mail sent from one site arrives after working hours at the destination; as

a consequence, the response cannot be sent until the next day begins, and it will

be visible to the sender only when he/she comes to office on the following day.

• Linguistic distance: The lack of a common native language creates further

barriers to communication [25, 26]. Linguistic distance limits the ability for

coherent communication to take place [27]. English has become the popular

language of GSD [28]. This affects not only the quality of communication but

also the choice of communication media. Language skills can impede

2 Estimation of Costs and Time for the Development of Distributed Software 27

communication in more subtle ways. When participants to a conversation have

different levels of proficiency, the group with better language skills occupies a

position of strength and can appear to be more powerful and thus suppress

important communication through unintended intimidation [28]. Further, lack

of proficiency in the chosen language can lead to a preference for asynchronous

communication, which can be an impediment if video and teleconferencing are

important communication media [29].

• Cultural distance: GSD requires close cooperation of individuals with different

cultural backgrounds which often creates another barrier for efficient work.

Cultures differ on many critical dimensions, such as the need for structure,

attitudes toward hierarchy, sense of time, and communication styles. These

differences have been recognized as major barriers to communication. Culture

also affects interpretation of requirements; domain knowledge used to fill in gaps

or place requirements in context varies considerably across national culture

[30]. Culture also interferes with collaboration when cultural norms result in

conflicting approaches to problem solving.

• Social challenges: Another fundamental challenge in global software develop-

ment is the social issues like fear and trust. Fear and distrust can negatively

impact the motivation, the desire to work, the cooperation, and the communica-

tion and share of knowledge with remove colleagues. Hence, it has a direct

bearing on the success of implementing global software development [31]. It is

very difficult for individuals and groups to trust and build relationships with

people they feel threaten their jobs. On-site teams in expensive countries are

fearful of their job security when off-site teams are added in less expensive

locations; this creates mistrust to their off-site colleagues as well as their own

management’s motives. This can result in clear examples of not wanting to

cooperate and share knowledge with remote [26, 31].

Table 2.1 Challenges in global software development

Challenges

Temporal distance Reduced opportunities for synchronous communication

Typically increased coordination costs

Management of project artefacts may be subject to delays

Geographic distance Face to face meeting difficulties

Lack of critical task awareness

Difficulties to convey vision and strategy

Linguistic distance Knowledge transfer will not occur smoothly

Language confusion and misunderstandings

Sociocultural distance Cultural misunderstandings

Reduced cooperation arising from misunderstanding

Different perceptions of authority can undermine morale

Adaptation of managers to local regulations

Impact on coordination caused by inconsistent work practices

28 M. El Bajta et al.

In some cases, wherein people have successfully worked together for up to year

in a collocated situation, once a virtual team strategy was fully implemented, these

problems soon came to the fore.

2.2.2 Benefits

This section identifies the main benefits that have been associated with global

software development.

2.2.2.1 Cost Savings

One of the most obvious reasons for organizations to embark on a challenging

and risky endeavor such as GSD is, not surprisingly, the potential to reduce

development costs. By moving parts of the development work to low-wage

countries, the same work can be done for a fraction of the cost [32]. The basis

for this benefit is that companies are globalizing their software development

activities to leverage cheaper employees located in lower-cost economies. This

has been made possible by the deployment of cross-continental high-speed

communication links enabling the instantaneous transfer of the basic product at

hand: software.

The difference in wages across regions can be significant, with a US software

engineer’s salary being multiple times greater than that of a person with equivalent

skills (at least parts) from Asia or South America. However, this seems to be rising,

and there has been hyper-growth in local IT employment markets such as in

Bangalore. It is our experience that companies are now looking at alternative

locations, which offer more acceptable attrition rates with the continued promise

of cheaper labor.

2.2.2.2 Reduced Time

Having developers located in different time zones can allow organizations to

increase the number of daily working hours in a “follow-the-sun” development

model which can decrease cycle time. Time zone effectiveness is the degree to

which an organization manages resources in multiple time zones, maximizing

productivity by increasing the number of hours during a 24-h day that software

is being developed by its teams. When time zone effectiveness is maximized to

span 24 h of the day, this is referred to as the “follow-the-sun” development

model. This is achieved by handing off work from one team at the end of

their day to another team located in another time zone. The approach can

aid organizations which are under severe pressure to improve time to

market [11].

2 Estimation of Costs and Time for the Development of Distributed Software 29

2.3 Software Effort Estimation Process

In software project management, effort estimation is the process of developing an

approximation of the monetary and temporal resources needed to complete project

activities [33]. Usually software is developed in projects, and hence software cost

and time estimate can be considered as an approximation of the monetary and

temporal resources needed to complete software.

2.3.1 Estimation Process

In order to establish an accurate effort estimate for software, a structured approach

with significant amount of work is needed. The software effort estimation can be seen

as a small size project which needs to be carefully planned, managed, and followed

up. Many organizations have different processes for software effort estimation. These

processes vary in many aspects, and there does not seem to be one common process

which is used in all organizations and in research. The process for software cost and

time estimation data gathered from the NASA’s Handbook for Software Cost Esti-
mation [34] enables us to develop the following table (Table 2.2). It consists on

preparing a description of cost analysis requirements, revising its processes and its

procedural requirements document and cost/time estimation handbook accordingly.

Most of the software effort estimation models view the estimation process as

being a function that is computed from a set of cost drivers. And in most estimation

techniques, the primary driver or the most important driver is believed to be the

software size. As illustrated in Fig. 2.1, a view of software estimation process, the

software requirements are the primary input to the process and also form the basis

for the estimation.

2.3.2 Estimation Accuracy

The effort estimation accuracy helps to determine how well or how accurate our

estimation is when using a particular model or technique. In addition to the degree

of project determination, estimate accuracy is driven by:

• Level of non-familiar technology in the project

• Complexity of the project

• Quality of reference cost estimating data

• Quality of assumptions used in preparing the estimate

• Experience and skill level of the estimator

• Estimating techniques employed

• Time and level of effort budgeted to prepare the estimate

• The accuracy of the composition of the input and output process streams

30 M. El Bajta et al.

We can assess the performance of the software estimation technique by the

following two mechanisms:

2.3.2.1 Mean Absolute Error (MAE)

Mean of absolute error (MAE) (Eq. 2.1) [35] is computed by averaging the total of

absolute errors (AE) (Eq. 2.2).

MAE ¼ 1

n

Xn
i¼1

AEi ð2:1Þ

AEi ¼ ei � beij j ð2:2Þ

Table 2.2 Software cost estimation process from NASA

Number Action Description

Step 1 Gather and analyze software

functional and programmatic

Analyze and refine software requirements, soft-

ware architecture, and programmatic constraints

Step 2 Define the work elements and

procurements

Define software work elements and procurements

for specific project

Step 3 Estimation software size Estimate size of software in logical Source lines of

code

Step 4 Estimate software effort Convert software size to software development

effort

Step 5 Schedule the effort Determine length of time needed to complete the

software effort

Step 6 Calculate the cost and time Estimate the total cost and time of the software

project

Step 7 Determine the impact of risks Identify software project risks, estimate their

impact, and revise estimates

Step 8 Validate and reconcile the

estimate via models

Develop alternate effort, schedule, and cost esti-

mates to validate original estimates and to improve

accuracy

Step 9 Reconcile estimates, budget,

and schedule

Review above size, effort, schedule, and cost esti-

mates and compare with project budget and

schedule

Step 10 Review and approve the

estimates

Review and approve software size effort, schedule,

and cost estimates

Step 11 Track, report, and maintain the

estimates

Compare estimates with actual data

Fig. 2.1 View of software

estimation process

2 Estimation of Costs and Time for the Development of Distributed Software 31

2.3.2.2 Mean Magnitude of Relative Error (MMRE)

MMRE is defined in Eq. 2.3. This measure is derived from the magnitude of the

relative error (MRE) as shown in Eq. 2.4. ThisMRE criterion has been criticized by

some researchers for being biased toward underestimates, which makes it not

significant for being an accuracy measure [36, 37].

MMRE ¼ 1

n

Xn
i¼0

MREi ð2:3Þ

MRE ¼ AEi

ei
ð2:4Þ

where ei and bei are the actual and predicted effort for the ith project.

Each of the error calculation techniques has advantages and disadvantages. For

example, absolute error fails to measure the size of the project especially in GSD

context, and mean magnitude of relative error will mask any systematic bias (do not

know if the estimation is over or under).

2.4 Software Cost/Time Estimation Techniques for GSD

The cost/time estimation has been in the focus of software engineering research for

many decades, and hence a high number of different estimation techniques have

been developed [38–40]. Unfortunately most of the techniques for software cost

estimation have been developed before the recent trend on global software devel-

opment. Many techniques assume that the software is developed locally, and

therefore they do not take into account the additional challenges for the develop-

ment of distributed software [41, 42].

Estimation for the development of distributed software differs from estimation

of local software development at least in two different ways. Firstly, there is a

large overhead effort caused by several factors such as language differences;

cultural barriers, or time shifts between sites; etc. Secondly, many factors (such

as the skills and experience of the workforce) are specific and cannot be consid-

ered globally for a project. In many projects, the development sites have very

different characteristics, and thus the productivity and cost rate is different

between sites.

In the recent research, techniques used to estimate project effort and task

duration in distributed context [43] include expert judgment, estimation by analogy,

and algorithmic models (i.e., COCOMO II, SLIM, and recently function point

analysis-based models) [41].

32 M. El Bajta et al.

2.4.1 Expert Judgment

Experts’ judgment is one of the methods by which assessors conduct their effort

estimation via using their expertise and their logical reasoning to estimate the

required amount of effort needed to develop a software product. The accuracy of

this method mainly depends on the skills, knowledge, and experience of the

assessors to estimate the required amount of effort to complete a given project.

Expert judgment can be very accurate, but it fails to provide an objective and

quantitative analysis of what are the factors that affect effort and duration in GSD

context, and it is hard to separate real experience from the expert’s subjective view
[44]. The accuracy of the estimates depends on how closely the project correlates

with past experience and the ability of the expert to recall all the facets of historic

projects.

2.4.2 Estimation by Analogy

Estimating by analogy means comparing the proposed project to previously com-

pleted similar project, where the project development information is known. Actual

data from the completed projects are extrapolated to estimate the proposed project.

This technique is relatively straightforward. Actually in some respects, it is a

systematic form of expert judgment since experts often search for analogous

situations so as to inform their opinion. The methodology that should be followed

to succeed the estimations by analogy involves characterizing the proposed project,

selecting the most similar completed projects whose characteristics have been

stored in the historical data base, and deriving the estimate for the proposed project

from the most similar completed projects by analogy [41, 45].

2.4.3 Algorithmic Models

The algorithmic methods are designed to provide some mathematical equations

to perform software estimation. These mathematical equations are based on

research and historical data and resort to inputs such as source lines of code,

number of functions to perform, and other cost/time drivers such as project

effort, design methodology, task allocation, team size, etc. The algorithmic

methods have been largely studied and offer several advantages such as gener-

ating repeatable estimations, refining and customizing formulas, supporting a

family of estimations or a sensitivity analysis, and calibrating previous experi-

ence. Models such as COCOMO II (Constructive Cost Model) and SLIM Model

are the most frequently algorithmic methods used in a GSD context [43]. In the

following, we present:

2 Estimation of Costs and Time for the Development of Distributed Software 33

2.4.3.1 Constructive Cost Model

One of the popular and extensively used algorithmic models for the estimation of

cost and schedule of a developing software was given by Shruti Jain [46] and is

known as the Constructive Cost Model (COCOMO) [47, 48]. The parameters and

equations that are used in this model are obtained through previous software pro-

jects. The size of code is usually given in KLOC (thousand lines of code), and the

obtained effort is in person months (PM). The PM represents the number of hours

that a person spend to complete a given task presented in a calendar month.

COCOMO II deals with variety of factors that influence development of distributed

software projects’ effort estimation. There are three submodels for COCOMO II:

Application Composition Model, Post-architecture Model, and Early Design

Model. COCOMO II includes factors in order to steer the effort estimation team

to make better approximation based on the influencing factors. These factors are

related to organizational and team characteristics. Each factor has values from

range of very low to extra high rating level. The weight of scaling factors could

divert according to organizations and projects. The following are the equations

which COCOMO II proposed to estimate the required effort:

PM ¼ A� SizeE �
Yn

i¼0
EMi ð2:5Þ

where:

• n represents the number of drivers in a GSD context.

• A ¼ 2.94 (for COCOMO II). size is estimated by kilo source lines of code

(KSLOC) measure.

• E ¼ Bþ 0:01�P4
i¼1

Factor

• EM represents the effort multiplier; B ¼ 0.91 for COCOMO II.

Duration ¼ C� PMDþ0:2� E�Bð Þ ð2:6Þ

where C ¼ 3.67, D ¼ 0.28, and B ¼ 0.91

2.4.3.2 Slim

SLIM [49] is an algorithmic method that is used to estimate effort and schedule for

projects. The underlying reason for developing SLIM is to measure the overall size

of a project based on its estimated SLOC. It is represented by two equations: Eq. 2.7

for allocating productivity parameter (PP), expressed in man years, which would be

required in Eq. 2.8 for calculating effort.

34 M. El Bajta et al.

PP ¼ SizeSLOC

EMan,Year=B
1:13

� �� Duration Y4=3
� � ð2:7Þ

EMan,Year ¼ SizeSLOC

PP� DurationYearsð Þ3=4
" #3

ð2:8Þ

where:

• EMan,Year represents the amount of effort required to accomplish a given task in a

man-year unit.

• Y is the development time in years.

• B is a special skill factor and is based on size and duration.

Muhairat et al. [43] investigated the effects of different factors on the accuracy

of effort estimation methods in GSD environments. Precisely, COCOMO II and

SLIM methods of estimating project efforts were considered. They discovered that

the estimation methods were less accurate in determining the actual time of

completion of some software development projects. The main factor that affected

this outcome included the project environment. They concluded that developing

software in a GSD environment always requires more effort and time to complete.

2.5 Cost and Time Drivers

As already known, the distributed software development introduces new challenges

in the software engineering area. In order to have a better project planning for

multisite projects, it is important to identify the main drivers that can increase the

project’s effort. This section aims to describe these main effort drivers and their

impacts on a distributed project.

Analyzing the main researches found in the literature and the feedback from

project managers about the impact on project duration and effort would enable us to

suggest some effort drivers for distributed software development projects. We

present the effort drivers extracted from theoretical research and interview ana-

lyses. The effort drivers are split into four categories depicted in Table 2.3 [41]:

product, platform, personnel, and project factors. Therefore, the effort drivers tend

to be measures of system size and complexity, personnel capabilities and experi-

ence, hardware constraints, and availability of software development tools.

2.5.1 Product Factors

The product factors are determined by the novelty of the software to be developed.

This category factors indicates the degree of innovation which is directly

2 Estimation of Costs and Time for the Development of Distributed Software 35

proportional to the level of spontaneous communication, the need for specific

domain knowledge, and the frequency of unforeseen changes. Another important

factor is the work assignments that have to be carefully crafted and taking into

account the organizational structure and the functional coupling among software

units [50]. Therefore, the architecture has major influence on the efforts needed to

coordinate the development phase. Indicators for the degree of architectural ade-

quacy might be modularity, interface match and dependencies, and communicabil-

ity of the architecture. Examples of product cost drivers of COCOMO II are:

• Required Software Reliability (RELY): This is the measure of the extent to which

the software must perform its intended function over a period of time.

• Date Base Size (DATA): Measure to capture the effect of large data requirements

have on product development.

• Required Reusability (RUSE): This cost driver accounts for the additional effort
to construct components intended for reuse on the current or future projects.

• Documentation Match to Life Cycle Needs (DOCU): Measure of the suitability

of the project’s documentation to its life cycle needs.

2.5.2 Platform Factors

The platform factor refers to the target-machine complex of hardware and infra-

structure software. Platform products have more demanding task characteristics

than derivative products. Specifically, platform projects undertake development of

Table 2.3 Software drivers Category Drivers

Product Code size

Reuse

Product complexity

Platform Design and technology newness

Time zone

Platform volatility

Personal Team size

Team culture

Team trust communication

Development productivity

Project Project effort

Project management effort

Process model

Task allocation

Work pressure

Client involvement

Work dispersion

36 M. El Bajta et al.

greater levels of new technology and have higher levels of project complexity.

Examples of platform cost drivers of COCOMO II are:

• Execution Time Constraint (TIME): This is a measure of the execution time

constraint imposed upon a software system.

• Main Storage Constraint (STOR): This is a rating that represents the degree of

main storage constraint imposed on a software system or subsystem.

• Platform Volatility (PVOL): This is a measure of the complex of hardware and

software.

2.5.3 Personnel Factors

As for the personnel factors, it includes cultural fit mainly related to closeness of

team members’ mental models [51] which is influenced by the combination of

countries involved, the international experience of the teams, etc., skill level

measured by educational level and language skills indicating the formal abilities

of remote team(s) [50], shared understanding embodied by tacit knowledge that is

required indicating the level of completeness of documentation and specification

and the common knowledge about goals, and finally information sharing constraints

representing competitive restrictions on information distribution, e.g., when work-

ing with external subcontractors or in security-sensitive environments. Examples of

personnel cost drivers of COCOMO II are:

• Programmer Capability (PCAP): Current trends continue to emphasize the

importance of highly capable analysts.

• Applications Experience (AEXP): This rating is dependent on the level of

application experience of the project team developing the software system.

• Language and Tool Experience (LTEX): This is a measure of the level of

programming language and software tool experience of the project team devel-

oping the software system.

2.5.4 Project Factors

Regarding project factors, we might consider the novelty of collaboration model by

analyzing the initial cost for the search of offshore partners and contract negotia-

tion. The tools and infrastructure represent the homogeneity of the tool chains used

in all sites and potential ramp-up costs for setting up the infrastructure in remote

sites and finally the physical distance representing the potential overlaps of working

time and, accordingly, the intensity of use of asynchronous communication media

and collaboration tools [52]. Examples of project cost drivers of COCOMO II are:

2 Estimation of Costs and Time for the Development of Distributed Software 37

• Multisite Development (SITE): The assessment and averaging of two factors, site

collocation and communication support.

• Required Development Schedule (SCED): This rating measures the schedule

constraint imposed on the project team developing the software.

2.6 Risk Analysis

In order to analyze the impact of risk involved in the development of software, the

project manager has to identify the risk drivers. Software risk components can be

classified as “cost” and “time” risks. The degree of uncertainty that the project

budget will be maintained is the cost risk. The degree of uncertainty that the project

schedule will be maintained and that the product will be delivered in time is the

time risk.

Software risks are managerial issues which should be handled through proper

management of the project especially when estimating costs and times. Only expert

manger associated with software project office can handle these issues, while a less

experienced software manager may lead to un-controlling the risks and ultimately

result in the failure of the project. Software risks should be monitored and con-

trolled since the starting phases of the project management life cycle [53].

The GSD is becoming very difficult, complex, and challenging in the context of

software project management as the user problem is getting more and more

challengeable [19, 54]. In this respect, the risk management in distributed software

development is also much complex than in local software development. It partic-

ularly has specific concerns that may not be obvious until their impact has been

realized. Many projects got failed they did not realize, soon enough, the importance

of certain common factors in GSD projects [41]. Table 2.4 presents the potential

risks in a GSD project and provides their cost and time impact in this respect.

To systematically identify risks and evaluate appropriate risk mitigation for

estimating cost and time in the GSD context, we analyze the features of GSD and

then elaborate how they are impacted by risks [55].

Efficiency

Software and IT companies need to deliver promptly and reliably while the

competition is literally a mouse click away. Hardly any other business has so low

entry barriers as IT and therefore stimulates an endless fight for efficiency along the

dimensions of improved cost, quality, and time to profit. GSD clearly helps in

improving efficiency due to labor cost differences across the world, better quality

with many well-trained and process-minded engineers especially in Asia, and

shorter time to profit with following the sun and developing and maintaining

software in two to three shifts in different time zones. Risks directly related to the

efficiency target are project delivery failures, requirement, and design quality

(Table 2.4).

38 M. El Bajta et al.

Flexibility

Software organizations are driven by fast changing demands on skills and sheer

numbers of engineers. With the development of a new and innovative product,

many people are needed with broad experiences. However, when arriving in

maintenance, these skill needs look different and manpower distributions are also

changing. Such flexible demand cannot anymore be handled inside the enterprise.

GSD is the answer to provide skilled engineers just in time and thus allows building

flexible ecosystems combining suppliers, customers with engineering and service

providers. Directly related risks to the flexibility goal are poor management visi-

bility and distance and culture clashes (refer to Table 2.4).

2.7 Conclusion

There is a strong surge for global software development to countries with lower

labor cost. This chapter promotes analysis of project drivers to gain insights into

comparing development costs and time for distributed software development pro-

jects as compared to collocated projects.

Even though most of the evaluated software effort estimation techniques do not

have any of the GSD-related cost/time factors included by default, these techniques

are still suitable and applicable for estimation of GSD project with some setup and

calibration work. Estimation methods such as estimation by analogy and algorith-

mic models can be applied to the development of distributed software if the person

doing the estimation model setup is experienced in outsourcing. Then, the person

would be able to include all necessary cost/time factors into the estimation model.

Also, all expertise-based techniques can be directly applied for GSD projects,

but they require experts with experience and knowledge on GSD. The available

development of distributed software specific techniques can naturally be also

directly applied for GSD projects.

Future work of this research includes on one hand the verification and improve-

ment of the factors of a distributed development project and on the other hand the

application of methods on projects while collecting effort data to calibrate the

relevance of each project driver.

Table 2.4 Risk items and their impacts

Risk item Cost/time impact

Efficiency Late delivery of software Computer time costs

Feasibility of requirements Staffing to conduct analysis

Feasibility of design Recruiting and training costs and times

Added time and cost for review preparation

Flexibility Lack of management visibility Added time and cost to prepare inputs for reports

Lack of a test discipline Cost and time of using test group

2 Estimation of Costs and Time for the Development of Distributed Software 39

References

1. Kile JF (2005) The Importance of effective requirements management in offshore software

development projects. Doctoral dissertation, Pace University

2. Nguyen V, Steece B, Boehm B (2008) A constrained regression technique for COCOMO

calibration. In: Proceedings of the second ACM-IEEE international symposium on empirical

software engineering and measurement. ACM, pp 213–222

3. Anderson SD, Molenaar KR, Schexnayder CJ (2007) Guidance for cost estimation and

management for highway projects during planning, programming, and preconstruction, vol

574. Transportation Research Board, Washington, DC

4. Wallace L, Keil M (2004) Software project risks and their effect on outcomes. Commun ACM

47(4):68–73

5. Ashiegbu BC, Ahaiwe J (2011) Software cost drivers and cost estimation in Nigeria.

Interdiscip J Contemp Res Bus 3(8):431

6. Herbsleb JD (2007) Global software engineering: the future of socio-technical coordination. In

2007 future of software engineering. IEEE Computer Society, pp 188–198

7. Nicholson B, Sahay S (2001) Some political and cultural issues in the globalisation of software

development: case experience from Britain and India. Inf Organ 11(1):25–43

8. Gopal A, Gosain S (2010) Research note-the role of organizational controls and boundary

spanning in software development outsourcing: implications for project performance. Inf Syst

Res 21(4):960–982

9. Holmstrom H, Conchúir EÓ, Agerfalk J, Fitzgerald B (2006) Global software development.

challenges: a case study on temporal, geographical and socio-cultural distance. In: 2006 I.E.

international conference on global software engineering (ICGSE’06). IEEE, pp 3–11

10. Lanubile F, Damian D, Oppenheimer HL (2003) Global software development: technical,

organizational, and social challenges. ACM SIGSOFT Softw Eng Notes 28(6):2–2

11. Herbsleb JD, Moitra D (2001) Global software development. IEEE Softw 18(2):16–20

12. Nguyen T, Wolf T, Damian D (2008) Global software development and delay: does distance

still matter? In: 2008 I.E. international conference on global software engineering. IEEE, pp

45–54

13. Betz S, Mäki€o J (2008) Amplification of the COCOMO II regarding offshore software pro-

jects. Offshoring of software development: methods and tools for risk management;

[OUTSHORE; Proceedings], 33

14. Peixoto CEL, Audy JLN, Prikladnicki R (2010) Effort estimation in global software develop-

ment projects: preliminary results from a survey. In: 2010 5th IEEE international conference

on global software engineering. IEEE, pp 123–127

15. Teasley SD, Covi LA, Krishnan MS, Olson JS (2002) Rapid software development through

team collocation. IEEE Trans Softw Eng 28(7):671–683

16. Yadav MS, Prabhu JC, Chandy RK (2007) Managing the future: CEO attention and innovation

outcomes. J Mark 71(4):84–101

17. Noll J, Beecham S, Richardson I (2010) Global software development. And collaboration:

barriers and solutions. ACM Inroads 1(3):66–78

18. Yadav V (2016) A flexible management approach for globally distributed software projects.

Glob J Flex Syst Manag 17(1):29–40

19. Agerfalk PJ, Fitzgerald B, Holmstrom Olsson H, Lings B, Lundell B, Ó Conchúir E (2005) A

framework for considering opportunities and threats in distributed software development

20. Smith PG, Blanck EL (2002) From experience: leading dispersed teams. J Prod Innov Manag

19(4):294–304

21. Kraut RE, Streeter LA (1995) Coordination in software development. Commun ACM 38

(3):69–82

22. Perry DE, Staudenmayer NA, Votta LG (1994) People, organizations, and process improve-

ment. IEEE Softw 11(4):36–45

40 M. El Bajta et al.

23. Sarker S, Sahay S (2004) Implications of space and time for distributed work: an interpretive

study of US–Norwegian systems development teams. Eur J Inf Syst 13(1):3–20

24. Espinosa JA, Nan N, Carmel E (2007) Do gradations of time zone separation make a difference

in performance? A first laboratory study. In: ICGSE, pp 12–22

25. Herbsleb JD, Grinter RE (1999) Splitting the organization and integrating the code: Conway’s
law revisited. In: Proceedings of the 21st international conference on Software engineering.

ACM, pp 85–95

26. Niinimaki T, Piri A, Lassenius C (2009) Factors affecting audio and text-based communication

media choice in global software development projects. In: 2009 fourth IEEE international

conference on global software engineering. IEEE, pp 153–162

27. Casey V, Richardson I (2006) Uncovering the reality within virtual software teams. In:

Proceedings of the 2006 international workshop on Global software development for the

practitioner. ACM, pp 66–72

28. Lutz B (2009) Linguistic challenges in global software development: lessons learned in an

international SW development division. In: 2009 fourth IEEE international conference on

global software engineering. IEEE, pp 249–253

29. Lings B, Lundell B, Agerfalk J, Fitzgerald B (2007) A reference model for successful

distributed development of software systems. In: International conference on global software

engineering (ICGSE 2007). IEEE, pp 130–139

30. Herbsleb JD, Paulish DJ, Bass M (2005) Global software development at siemens: experience

from nine projects. In: Proceedings of the 27th international conference on software engineer-

ing. ICSE 2005. IEEE, pp 524–533

31. Casey V, Richardson I (2008) The impact of fear on the operation of virtual teams. In: 2008 I.

E. international conference on global software engineering. IEEE, pp 163–172

32. Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software

development. IEEE Softw 18(2):22–29

33. PMBoK, A (2000) Guide to the project management body of knowledge. Project Management

Institute, Pennsylvania

34. Lum K, Bramble M, Hihn J, Hackney J, Khorrami M, Monson E (2003) Handbook for

software cost estimation. NASA Jet Propuls Lab JPL D-26303

35. Shepperd M, MacDonell S (2012) Evaluating prediction systems in software project estima-

tion. Inf Softw Technol 54(8):820–827

36. Myrtveit I, Stensrud E, Shepperd M (2005) Reliability and validity in comparative studies of

software prediction models. IEEE Trans Softw Eng 31(5):380–391

37. Miyazaki Y, Takanou A, Nozaki H, Nakagawa N, Okada K (1991) Method to estimate

parameter values in software prediction models. Inf Softw Technol 33(3):239–243

38. Idri A, azzahra Amazal F, Abran A (2015) Analogy-based software development effort

estimation: a systematic mapping and review. Inf Softw Technol 58:206–230

39. Jorgensen M, Shepperd M (2007) A systematic review of software development cost estima-

tion studies. IEEE Trans Softw Eng 33(1):33–53

40. Wen J, Li S, Lin Z, Hu Y, Huang C (2012) Systematic literature review of machine learning

based software development effort estimation models. Inf Softw Technol 54(1):41–59

41. El Bajta M, Idri A, Fernández-Alemán JL, Ros JN, Toval A (2015) Software cost estimation

for global software development a systematic map and review study. In: Evaluation of Novel

Approaches to Software Engineering (ENASE), 2015 international conference on. IEEE, pp

197–206

42. El Bajta M (2015) Analogy-based software development effort estimation in global software

development. In: 2015 I.E. 10th international conference on global software engineering

workshops. IEEE, pp 51–54

43. Muhairat M, Aldaajeh S, Al-Qutaish RE (2010) The impact of global software development

factors on effort estimation methods. Eur J Sci Res 46(2):221–232

44. Jorgensen M (1995) Experience with the accuracy of software maintenance task effort

prediction models. IEEE Trans Softw Eng 21(8):674–681

2 Estimation of Costs and Time for the Development of Distributed Software 41

45. Amazal FA, Idri A, Abran A (2014) Software development effort estimation using classical

and fuzzy analogy: a cross-validation comparative study. Int J Comput Intell Appl 13

(3):1450013

46. Jain MS (2012) Survey of various cost estimation techniques. Int J Adv Res Comput Eng

Technol (IJARCET) 1(7):229

47. Boehm BW, Madachy R, Steece B (2000) Software cost estimation with Cocomo II with

Cdrom. Prentice Hall PTR, Upper Saddle River

48. Boehm B, Clark B, Horowitz E, Westland C, Madachy R, Selby R (1995) Cost models for

future software life cycle processes: COCOMO 2.0. Ann Softw Eng 1(1):57–94

49. Kemerer CF (1987) An empirical validation of software cost estimation models. Commun

ACM 30(5):416–429

50. Sosa ME, Eppinger SD, Rowles CM (2004) The misalignment of product architecture and

organizational structure in complex product development. Manag Sci 50(12):1674–1689

51. O’Hara M, Johansen R (1994) Global work: bridging distance, culture and time. Jossey-Bass,

San Francisco

52. Sosa ME, Eppinger SD, Pich M, McKendrick DG, Stout SK (2002) Factors that influence

technical communication in distributed product development: an empirical study in the

telecommunications industry. IEEE Trans Eng Manag 49(1):45–58

53. Boehm BW (1988) A spiral model of software development and enhancement. Computer 21

(5):61–72

54. Tufekci O, Cetin S, Arifoglu A (2010). Proposing a federated approach to global software

development. In Digital Society, 2010. ICDS’10. Fourth International Conference on. IEEE,

pp 150–157

55. Ebben JJ, Johnson AC (2005) Efficiency, flexibility, or both? Evidence linking strategy to

performance in small firms. Strateg Manag J 26(13):1249–1259

42 M. El Bajta et al.

Chapter 3

Using COSMIC for the Functional Size
Measurement of Distributed Applications
in Cloud Environments

Filomena Ferrucci, Carmine Gravino, and Pasquale Salza

3.1 Introduction

Software sizing is a crucial management activity since it supports several other

software project management tasks, such as effort/cost estimation, project planning,

productivity benchmarking, and quality control. It is widely recognised that the

competitiveness of software companies greatly depends on the ability of their

project managers to carry out a reliable and accurate software size estimation. To

this aim, functional size measurement (FSM) methods have been extensively

investigated in software engineering research and are also widely applied in

industry. The success of those approaches is mainly due to the fact that sizing is

based on the functionality provided to the users, i.e., the Functional User Require-

ments (FURs), rather than on other software artefacts (e.g., code) that are not

available in the early phases of software life cycle when size estimation is espe-

cially important [1].

The Function Point Analysis (FPA) was the first FSMmethod to be introduced in

1979 [2]. Since then, several variants have been proposed (known as first-

generation FSM methods) to improve the size measurement or extend its applica-

tion domain. COSMIC [3] is a second-generation FSM method, being the first to

comply to the standard ISO/IEC14143/1 [1]. It is based on fundamental principles

of software engineering and measurement theory.

The COSMIC size is essentially obtained by counting the data movements

Entry, Exit, Read, and Write [3]. Although the method was conceived for business,

real-time, and infrastructure software (or hybrids of these), COSMIC turns out to be

applicable to other kinds of software systems (except for those characterised by

complex algorithms) provided that suitable guidelines are provided to ensure that

F. Ferrucci (*) • C. Gravino • P. Salza

University of Salerno, Fisciano, Italy

e-mail: fferrucci@unisa.it; gravino@unisa.it; psalza@unisa.it

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_3

43

mailto:fferrucci@unisa.it
mailto:gravino@unisa.it
mailto:psalza@unisa.it

the specific characteristics of those kinds of software are appropriately captured by

the measurer. As a matter of fact, recent empirical studies have been conducted in

order to verify the capability of COSMIC size to predict the effort needed to

develop web applications. Di Martino et al. [4] reported a better predictive capa-

bility of COSMIC against first FSM methods, namely, FPA. Moreover, recent

studies have investigated the applicability of COSMIC to mobile applications

[5, 6]. This domain is rapidly growing, and new software engineering processes,

including functional size measurement and estimation methods [7], are required to

improve the quality of these applications. Similarly, the explosive growth of cloud

computing requires suitable software size measurement approaches able to support

project managers in planning, management and control of software suitable for

distributed environments.

In this chapter, we analyse various aspects of the use of the COSMIC method to

measure distributed applications in cloud environments. The analysis considers the

three distinct provision models of the cloud computing stack: Software as a Service

(SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). Fur-

thermore, it deals with specific concepts of cloud computing such as orchestrations

and load balancing of several components that act together to realise the required

functionality and to ensure critical non-functional requirements (e.g., scalability,

reliability).

The rest of the paper is organised as follows. We first give an overview of the

FSM and COSMIC methods in Section 3.2. In Sect. 3.3, we analyse the different

approaches and guidelines present in the literature about functional size measure-

ment of distributed applications in cloud environments. Section 3.4 contains some

final remarks and future work.

3.2 Software Size and COSMIC Measurement

COSMIC is a second-generation function size measurement (FSM) method, and it

has some main characteristics in contrast to traditional function point methods. In

this section, we give an overview of the history of COSMIC with its main features

and usage.

3.2.1 FSM Methods

The measures proposed in the literature to size software can be grouped into two

main families: the functional and dimensional ones. A functional size measure is

defined as ‘a size of software derived by quantifying the Functional User Require-

ments (FURs)’ [1]. Thus, measures obtained by applying FSMs are particularly

suitable for the early phases of the software development process, when only FURs

are available. They can be then exploited for tasks such as estimating a project

44 F. Ferrucci et al.

development effort. Moreover, they can be employed for performing comparisons

among projects developed with different platforms, solutions and so on, since they

are independent of the adopted technologies. Differently, dimensional size mea-

sures basically allow counting structural properties of a software artefact, such as

LOCs, the number of web pages and so on. As a consequence, they are strongly

dependent on the adopted technological solutions, they can be employed only after

the artefact has been developed and often a standard counting procedure is missing

[8, 9].

Function Point Analysis (FPA) is considered the first FSM method proposed in

the literature. It was introduced by Albrecht in 1979 [10] to have a measure (the

function points) able to overcome the limitations of LOCs, by sizing the ‘function-
ality’ provided by a software, and from the point of view of end users. FPA is

considered a structured method to perform a functional decomposition of the

system whose size is the (weighted) sum of unitary elements (its FURs). The idea

is that unitary elements can be measured more easily than the whole system. FPA

has evolved in many ways. The original formulation was successively extended by

Albrecht and Gaffney [10]. Since 1986 FPA is managed by the International

Function Point Users Group (IFPUG) and it is named IFPUG FPA (IFPUG, for

short), which has been standardised by ISO as ISO/IEC 20926:2009. Nevertheless,

since FPA was originally designed from the experience gained by Albrecht on the

development of management information systems, some researchers have analysed

the applicability of FPA to other software domains [11, 12]. As a consequence of

this debate on the application of FPA, many variants of the method have been

defined for specific domains, such as MkII function point for data-rich business

applications, or full function point (FFP) method for embedded and control systems

[13]. All these variants are known and indicated as first-generation FSM methods

since they are all based on the original formulation by Albrecht.

In the middle of the 1990s, important issues in the foundations of FPA against

the measurement theory were highlighted in different researches. In particular, an

improper use of different types of scales was highlighted in many steps of the FPA

process. Moreover, the debate has interested how the ‘weights’ were defined and

used in the method [14, 15].

At the end of the 1990s, a group of experienced software measurers formed the

Common Software Measurement International Consortium (COSMIC) with the

aim of addressing and overcoming the issues highlighted about the application of

FPA and for defining a broader measurement framework able to tackle new IT

challenges. The result of this investigation was the COSMIC-FFP method, which is

considered the first ‘second-generation FSMmethod’. To highlight this concept, the
first version of the method was the 2.0. Successively, in 2007 the version 3.0 was

characterised by many refinements and standardised as ISO/IEC 19761:2011. The

method was named simply COSMIC. The current version of COSMIC is 4.0.1 [3],

introduced in April 2015.

3 Using COSMIC for the Functional Size Measurement of Distributed. . . 45

3.2.2 The COSMIC Method

The idea underlying the COSMIC method is that, for many types of software, most

of the development efforts is devoted to handling data movements from/to persis-

tent storage and users. Thus, a meaningful sight of the system size can be obtained

by considering the number of these data movements [3]. As a functional size

measurement method, the functional size is defined as the size of the software

derived by quantifying the Functional User Requirements (FURs) [3]. FURs

describe what the software is expected to do for its users. The standardised measure

defined by COSMIC allows quantifying the functional size of the software in terms

of COSMIC function point (CFP) units.

One of the main concepts underlying COSMIC is the functional process, which

is defined as a set of data movements representing an elementary part of the FURs.

A functional user is defined as a (type of) user that is a sender and/or an intended

recipient of data in the FURs. Thus, a human or, for instance, an external device as

well can play the role of a functional user. Another important concept that allows

determining data movements is the boundary, which can be seen as a conceptual

interface between the software being measured and its functional users. With these

definitions of functional users and boundary, four different data movement types

can be considered: an Entry (E) moves data from a functional user to a functional

process; an Exit (X) moves data from a functional process to a functional user; a

Write (W) moves data from a functional process to persistent storage; a Read

(R) moves data from persistent storage to a functional process. One CFP unit is

counted per each data movement, and the size of a software can be obtained by

summing all the identified data movements.

The measurement process of COSMIC [3] is defined in terms of three phases: the

‘Measurement Strategy Phase’, the ‘Mapping Phase’ and the ‘Measurement Phase’
as depicted in Fig. 3.1.

3.2.2.1 Measurement Strategy Phase

The concept of Measurement Strategy Phase has been introduced in the last current

version 4.0 of COSMIC [3], and it is meant to set the key parameters of the

measurement: the purpose of measurement, the scope, the functional users and

the level of granularity. The purpose defines what the measurement result will be

used for; the scope specifies which pieces of software (in terms of FURs) have to be

measured; the level of granularity describes how much detailed the documentation

about the software is (e.g., in terms of the requirements description or also the

structure description). The complete list of parameters can be found in the COSMIC

Context Software Model, and it is necessary to carefully define them.

46 F. Ferrucci et al.

3.2.2.2 Mapping Phase

This phase allows measurers to extrapolate the functional processes from the

available FURs of the software being measured. In particular, a technical work

has to be performed during Mapping Phase, carefully following the principles and,

above all, the rules of the COSMIC method reported in the COSMIC Generic

Software Model [3]. The potential functional processes inside the FURs can be

identified by measurers looking at each functional process that is started by a

triggering Entry and comprises at least two data movements: an Entry plus either

an Exit or a Write. Indeed, the Entry of the functional user that starts the functional

process can be identified as a triggering Entry. Other three crucial concepts are

subprocess, data group, and data attribute. A subprocess may be either a data

movement or a data manipulation. The COSMIC manual clearly suggests that the

data manipulations inside a functional process are not counted as CFP. They are

considered associated with the corresponding data movements. A data group is a

distinct, non-empty and non-ordered set of data attributes, where each attribute

describes a complementary aspect of the same object of interest. A data attribute is

the smallest piece of information, within an identified data group, carrying a

meaning from the perspective of the interested FUR. The object of interest is

defined as any ‘thing’ that is identified from the point of view of the FURs. Thus,

an object of interest may be any physical thing, as well as any conceptual object or

part of a conceptual object in the world of the functional user about which the

software is required to process and/or store data.

Four types of data movements are defined: each Entry, Exit, Read or Write is a

movement of the data group of a single object of interest. An Entry moves a data

group from a functional user across the boundary into the functional process where

it is required; an Exit moves a data group from a functional process across the

boundary to the functional user that requires it; a Read moves a data group from

persistent storage within each of the functional processes that require it; and a Write

moves a data group lying inside a functional process to persistent storage. There are

only two exceptions: the triggering Entry which can start a functional process

without data movement; e.g. in specific enquiry for a list of items, the error/

confirmation message that is defined as an Exit for the attention of a human user

Fig. 3.1 The COSMIC method measurement process

3 Using COSMIC for the Functional Size Measurement of Distributed. . . 47

that either confirms only that entered data is accepted or only that there is an error in

the entered data.

3.2.2.3 Measurement Phase

This Phase defines how to count data movements and it consists in associating a

CFP to each data movement. The functional value of the measurement is obtained

by considering the amount of all data movements. It is worth noting that the

Measurement Phase may become more complex in cases (differently from our

work) of aggregating measurement sizes (software stratified into different layers)

or when measuring the size of software changes [3].

It is important to mention that the COSMIC community has also proposed

approaches for counting the size of software in terms of COSMIC by exploiting

approximate counts. We can highlight a couple of situations when there is the need

of measuring a functional size approximately [3]: it can happen either early in the

life of a project before the FURs have been specified in detail (‘early sizing’) or
when a measurement is needed, but there is insufficient time or resources to apply

the standard detailed method (‘rapid sizing’). These motivations are not mutually

exclusive and contribute to reaching a trade-off between a correct measurement and

time and budget available.

3.3 Measuring Distributed Applications in Cloud
Environments with COSMIC

As for any kind of software, a project manager that intends to provide a functional

size of a project involving cloud environments must first define from which

perspective the distributed application needs to be considered. There are three

provision models of cloud computing, as shown in Fig. 3.2, in which the customers

and the cloud vendors play a different role and have different responsibilities in the

management of various aspects: Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service (SaaS).

In IaaS, the cloud vendor owns the hardware and network, and it is responsible

for housing, running, and maintenance aspects. The customers can use virtual

infrastructures (i.e., cloud instances), which run on physical resources but that

can be created, reconfigured, resized and removed in a few moments based on the

customers’ or distributed applications’ needs. The cloud instances consist of virtual
machines for which the customer has full control of the environment. Before

deploying a distributed application, the customer needs to install an operating

system (OS) and the software stack. The main targets of IaaS are the system admins.

In PaaS, a platform is provided to customers that can run their applications and

business in a distributed environment, without having to deal with lower-level

48 F. Ferrucci et al.

requirements such as configuration, security, and management aspects. PaaS

abstracts away all the aspects related to hardware decisions. Some examples of

PaaS are database, development tools, and web server services. The target of PaaS

is the developer, who writes codes that can run on the provided platforms.

SaaS is the top layer of cloud computing. The cloud vendor supplies software to

customers in the form of a service such as e-mail clients, virtual desktop and

communication services. The target user of SaaS is the end user, and it generally

works on a subscription model, which means that the customer pays for the duration

of time she/he uses the services. From an architectural point of view, distributed

applications at PaaS and SaaS levels can be considered as service-oriented archi-

tecture (SOA) services, and therefore every existent contribute for SOA is also valid

for distributed applications in the cloud environments.

The literature offers different approaches and guidelines [16–18] related to two

main possible interactions: between cloud vendor components and customers and

between SOA services. In the following, we collect and describe these literature

contributes [16–18], giving specific considerations for cloud environments.

3.3.1 Measuring the Interaction Between Cloud Customers
and Cloud Vendor Components

Schmietendorf et al. adapted the COSMIC method for cloud system size measure-

ment [16]. In particular, they focused on the interaction between a cloud customer

and the system provided by a cloud vendor.

Fig. 3.2 Cloud provision models

3 Using COSMIC for the Functional Size Measurement of Distributed. . . 49

For the authors, the COSMIC measurement strategy is defined considering the

size of a chosen part of the developed cloud system for the purpose of measurement.

They provided a rich list of possible size aspects such as the size of the involved

services, the interaction between them, the customers, the resources, etc.

The scope of measurement is identified as the application of a service in the

cloud system based on chosen characteristics (e.g., scalability, low cost), whereas

the decomposition and granularity are established at five different levels, described

below. The data movement-based interactions in the different cloud system levels

correspond to the functional processes.

The FURs in the scope of measurement are based on the following

characteristics:

• The on-demand services that are instantiated on the cloud system are controlled

by triggering events and special object of interest like costs and resources.

• The network is the channel with which services communicate as separate layers,

measured by means of COSMIC Entry and Exit data movements.

• Instead, Reads and Writes measure data movements from/to persistent storage

with which the resource pooling is performed.

• The elasticity factor involves functional processes of service scaling on data

groups like ‘storage size’ and ‘location’ requirements.

• The measured service itself supports the functional processes based on the object

of interest like billing and service level agreement (SLAs) terms.

Thus, they investigated the cloud systems defining the following five levels of

functionality (see also Fig. 3.3) and their interactions [16]:

1. The base level of virtualisation, representing the different virtual instances

producing a service

2. The level of instances clustering on machine level

3. The level of multi-data centres, representing the aspects of multiple redundan-

cies of machines on differently located data centres

4. The service level of the SOA, where the distributed application is run and the

measurement is performed in terms of service interactions

5. The service chain levels if the application is distributed through different cloud

vendors

Another important contribution is provided by Vogelezang et al. [17]. The

authors overviewed the application of the COSMIC method to modern software

such as mobile and cloud applications. They also established four possible contexts

in which different kinds of FURs can be identified, considering and measuring

different data movements (see Fig. 3.4). Each context is an extension of the

previous one, increasing the deepness in the cloud infrastructure:

1. The interactions are those between the functional user and the user interface

service (UIS) running in the cloud environment and between user interface and

some business processes.

50 F. Ferrucci et al.

2. The FURs generated involve functional changes to hosted services on different

machines in the same cluster.

3. The FURs include intra-component data movements between hosted services on

different clusters.

4. An integration service allows the direct interaction between all the services in

the application stack, using the integration service.

3.3.2 Measuring the Interaction Between SOA Services
in the Cloud Environments

Distributed applications in cloud environments can be considered as a particular

form of SOA software in which cloud-specific services can occur. Thus, the official

guideline for sizing SOA with COSMIC can be applied [18].

An SOA-based software is designed following a specific pattern in which

application components provide services to other components, exchanging data

through a communication protocol (e.g., messaging queue), typically over a net-

work. Even though sizing service-oriented software with Function Point Analysis

fails when reconstructing or mapping the Functional User Requirements, the

COSMIC method defines the concept of ‘layers’ that perfectly matches the

SOA-based software sizing, without needing to adapt the method in any

particular way.

The organisation for the Advancement of Structured Information Standards

(OASIS) defines SOA as ‘a paradigm for organising and utilising distributed

Fig. 3.3 Considered cloud system architecture

3 Using COSMIC for the Functional Size Measurement of Distributed. . . 51

capabilities that may be under the control of different ownership domains. It pro-

vides a uniform means to offer, discover, interact with and use capabilities to

produce desired effects consistent with measurable preconditions and

expectations’ [19].
Services are accessible to each other by means of a public interface, in the form

of application program interfaces (APIs) often through simple Create/Read/Update/

Delete (CRUD) operations. Not only do the APIs allow the services to communi-

cate with each other but also they make the service independent in terms of

development and execution. Indeed, the calling software does not have or need to

know anything about how a service actually performs its tasks. This eases the

independent work of parallel development teams and the inclusions of third-party

components in SOAs. APIs are also useful for COSMIC sizing since they are

independent of both involved technologies and implementations. Usually, APIs

strictly follow the definition of FURs of the distributed application, being available

from the early stages of the project.

Table 3.1 shows the classification given by the COSMIC guideline for SOA

software [19].

The ‘application services’ provide specific business operations. They implement

the features that characterise the distributed application; thus the most of the FURs

are related to them. Each functionality can be invoked using an API in the form of

network messages.

The role of ‘orchestration services’ is to call and control other services, often in

an automatic way. An example of cloud orchestration service is the load balancer: it

probes other services in the cloud system and checks the network and resource

Fig. 3.4 Example of data movements in cloud software

52 F. Ferrucci et al.

usage. It can scale the cloud system, by means of service instance replicas, to

guarantee a balancing of load between the services and their consumers’ satisfac-
tion. Usually, the load balancer communicates with other services and, at the same

time, with the cloud vendor, through the exposed API, being able to request the

allocation of new resources or destruction of useless ones.

The communication management is delegated to the ‘intermediary services’
(i.e., message brokers) that interconnect a requestor’s message with one or more

application services. The intermediary services oversee controlling request and

response messages, translating the language of messages and dealing with excep-

tion situations. Besides enabling service ‘requestors’ to communicate with service

‘providers’, another purpose of intermediary services is to ensure the independence

between the two actors. This ensures flexibility allowing service vendor to change

without needing to change service requestors and vice versa. This allows a high

level of modularisation of the distributed application. A good example of interme-

diary service is a message queuing protocol: it ensures that the sent messages reach

their destination, and it maintains a copy of messages until the requestors receive a

confirmation or in the case of problems.

The ‘utility services’ provide functionality independently from other applica-

tions or services. For instance, a log service can be employed to monitor the

application status to measure the service level agreement conditions. Also, they

can be used to monitor the performance of cloud instance for statistics purposes.

Another common example, especially in the cloud environment, is the discovery

service: it allows services to reach and be reachable from other services. It is

responsible for registering new services so that other services can query it and

retrieve information data.

3.3.2.1 Measurement Strategy Phase

As for any target of a COSMIC measurement, for the SOA it is needed to specify

the following elements.

In the case of measurement at the service level, usually the purpose of measure-

ment is the estimation of the effort needed for the development or modification of

Table 3.1 COSMIC guideline classification of service

Term used Alternative terms Description

Application

service

Business service,

entity service

Provides business functionality of an application

Orchestration

service

Process service,

task service

Controls (‘orchestrate’) application services to imple-

ment a (business) process

Intermediary

service

Internal service,

mediation service

Ensures independence of service requestors and service

vendors

Utility service Public service, soft-

ware service

Provides common functionality (business or

non-business) independent of, but made available to,

any other applications

3 Using COSMIC for the Functional Size Measurement of Distributed. . . 53

the system. The measurement can be performed with different scopes. The guide-

line for SOA [18] distinguishes between the cases where the purpose is to measure a

piece of software ‘using’multiple SOA services and when the purpose is to measure

a ‘collection’ of multiple SOA services. For the first cases, the scope should be

defined without considering internal data movements. In the latter cases, the size of

the distributed application is equal to the sum of the sizes of single services.

What makes the COSMIC method particularly suitable for SOA services is the

fact that it allows for the size measurement of multilayer applications. A layer, as

defined by COSMIC, provides a set of services, which can be utilised by the

software in other layers and can be part of a structure either hierarchical or

bidirectional. In particular, in SOA the orchestration services can call application

services but not vice versa establishing a hierarchical relationship. Intermediary

services can be called by application service and vice versa, and both orchestration

and application services can call utility services.

If the services in different layers need to be measured, the measurement scopes

must be different. Figure 3.5 shows that the definition of what is considered as

‘layer’ depends on the ‘view’ of the software architecture. If the purpose is to

measure the size of application A ‘as a whole’ as in (a), the measurement scope is

the whole of application A as a single layer. If application A has been built

according to the ‘three-layer’ architecture, the purpose is to measure the three

components separately in view (b). In the case of SOA, the measurement scope

must be defined separately for each SOA component.

Figure 3.6 shows an example of relationships between some SOA services

[3]. The possible data movements between services are in the form of COSMIC

Entry and Exit movements. COSMIC boundaries are set between a service and

another. In the cloud context, also a persistent storage can be expected if the

measurement scope includes the interaction between the service and the data

storage on the same virtual instance where the service is running, thus within the

boundary of the calling service. In this case, the data movements are expressed in

terms of COSMIC Write and Read movements. Otherwise, if the storage is pro-

vided as a separate data service (e.g., a database service), another boundary

involving Entry and Exit movements is needed.

The functional users of SOA services depend on the scope of the measurement

and the purpose of the measurement. For instance, the functional user of an

orchestration service is the application service that calls it. In the case of application

services, its functional users can be the end users or other kinds of services that call

it. For an intermediary service, the functional users are the application services that

call it and the application and utility services that are called by it.

Let us assume to have a distributed application, defined with an SOA and

composed of several services: the application itself, a log utility, a database and a

load balance services. From the application service perspective, its functional users

are all the other services. The log utility service interacts only with the application

service in the same way for the database service. The load balance service, instead,

can interact both with all the services of the SOA architecture but also with the

54 F. Ferrucci et al.

cloud vendor service aiming, at the same time, to monitor the status of the resources

in the system and demanding for creating/destroying resources to the cloud vendor.

3.3.2.2 Mapping and Measurement Phase

An FUR of a service may be restricted to define the ‘capability’ it provides for any
service requestor, ‘how’ to request the capability and the ‘form and content’ of the
request and reply messages. Some requirements that usually are considered as

non-functional, in the case of SOA services, may be implemented directly as

Fig. 3.5 Three views of the layers of an application

Fig. 3.6 Data movements between SOA services

3 Using COSMIC for the Functional Size Measurement of Distributed. . . 55

software and therefore are part of the software. For instance, the security require-

ments need to follow precise protocols (e.g., OAuth) and the protocols being

implemented in the software itself. If the protocol is in the scope of the measure-

ment, it requires being measured as well.

The COSMIC method considers that unique events give rise to one or more

functional processes whose role is to respond to the events. The first step for the

measurement is to identify these functional processes and events. In the field of

SOA, there are no standards about considering whether the concepts of ‘service’
and ‘functional process’ coincide; thus it is not excluded that one service may lead

to multiple functional processes.

As mentioned before, the communication between services consists of messages

exchanged, and therefore developing a service always involves developing the

request/reply mechanism. The exchange between components may be ‘synchro-
nous’ if the requesting service waits for the response before continuing its task. As

an example of cloud service, it may be a web server that queries a database service

to retrieve information. It can also be ‘asynchronous’ if the requestor functional

process does not wait for the response message. For instance, an application service

may ask for a time-consuming task to another service, without blocking its task.

Once the latter finishes its job, the result can go back to the original requestor. In

terms of COSMIC data movements, the main difference between the two kinds of

services is that with the asynchronous mode, the arrival of a response message

needs to be considered as another event triggering a separate functional process in

the requesting software.

Another important thing that a COSMIC measure must deal with when measur-

ing SOA services is the error message management. Technically speaking, in case a

requestor calls another service and any issue occurs, the response message is

replaced by the error data itself. In terms of COSMIC data movements, an Exit

only is considered in any case. Nevertheless, if a confirmation/error message is

notified to a human functional user or another service, an additional Exit must be

considered.

3.4 Conclusions and Future Research Directions

It is widely recognised that the competitiveness of software companies greatly

depends on the ability of their project managers to carry out a reliable and accurate

software size estimation. Among the approaches proposed to size software FSM

methods are widely applied in the industry since size estimation can be obtained

early, based on the functionality provided to the users. In this chapter, we have

analysed and discussed the main aspects of the use of the COSMIC method to

measure distributed applications in cloud environments. In the discussion, we have

considered the three distinct provision models of the cloud computing stack:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). Furthermore, we have analysed specific concepts for distributed

56 F. Ferrucci et al.

applications such as orchestrations and load balancing of several components that

act together to realise the required functionality and to ensure critical

non-functional requirements (e.g., scalability, reliability).

It is clear that the effort for a software project and its related cost depend on both

functional and non-functional aspects. On the basis of this consideration, in the last

years, some approaches have been defined to measure the non-functional require-

ments of software systems to complement the information given by FSM methods.

One of the most interesting examples is the Software Non-functional Assessment

Process (SNAP) [20] devised by the IFPUG community. The aim of IFPUG is to

capture functional aspects through the use of FPA and the non-functional ones with

SNAP. The SNAP model consists of four categories and 14 subcategories to

measure the non-functional requirements. Non-functional requirements are mapped

to the relevant subcategories, and each subcategory is sized, and the size of a

requirement is the sum of the sizes of its subcategories. These sizes are then

summed to give the measure of the non-functional size of the software application.

At the present, no empirical study demonstrating the effectiveness of SNAP is

reported in the literature. Moreover, one of the main challenges is to understand

which non-functional requirements do not give rise to functional components that

are measured by FSM methods. In particular, there is the need to understand these

aspects for the cloud environment also providing a specific SNAP approach. It is

our intention to fill this gap as future work, in order to give a measure of the

non-functional requirements of distributed applications.

Furthermore, empirical studies, possibly in the context of software companies,

should be carried out measuring distributed applications, applying both COSMIC

and SNAP and assessing the predictive accuracy of the built effort estimation

models.

References

1. ISO (2007) ISO/IEC 14143–1:2007: information technology – software measurement –

functional size measurement – part 1: definition of concepts

2. Albrecht AJ (1979) Measuring application development productivity. In: Joint

SHAREGUIDEIBM application development symposium. pp 83–92

3. Abran A, Baklizsky D, Desharnais J-M, Fagg P, Gencel C, Symons C, Ramasubramani JK,

Lesterhuis A, Londeix B, Nagano S-I, Santillo L, Soubra H, Trudel S, Villavicencio M,

Vogelezang F, Woodward C (2015) The COSMIC functional size measurement method,

measurement manual

4. Di Martino S, Ferrucci F, Gravino C, Sarro F (2016) Web effort estimation: function point

analysis vs. COSMIC. Inf Softw Technol 72:90–109. doi:10.1016/j.infsof.2015.12.001

5. van Heeringen H, van Gorp E (2014) Measure the functional size of a mobile App: using the

COSMIC functional size measurement method. In: Joint conference international workshop

software measurement and the international conference software process and product mea-

surement. IWSM-MENSURA. IEEE, pp 11–16

3 Using COSMIC for the Functional Size Measurement of Distributed. . . 57

http://dx.doi.org/10.1016/j.infsof.2015.12.001

6. Ferrucci F, Gravino C,Salza P, Sarro F (2015) Investigating functional and code size measures

for mobile applications: a replicated study. In: International conference prod.-Focus. Software

process improvement. PROFES. pp 271–287

7. Nitze A, Schmietendorf A (2014) An analogy-based effort estimation approach for mobile

application development projects. In: Joint conference international workshop software mea-

surement and the international conference software process and product measurement. IWSM-

MENSURA, pp 99–103

8. Zuse H (1997) A framework of software measurement. Walter de Gruyter & Co., Berlin

9. Trendowicz A, Jeferry R (2014) Software project effort estimation. Foundations and best

practice guidelines for success. Springer, Cham

10. Albrecht AJ, Gaffney JE (1983) Software function, source lines of code, and development

effort prediction: a software science validation. IEEE Trans Softw Eng 9:639–648

11. Conte SD, Dunsmore HE, Shen VY (1986) Software engineering metrics and models.

Benjamin-Cummings Publishing Co., Inc., Menlo Park

12. Fenton NE (1991) Software metrics: a rigorous approach. Chapman and Hall, London

13. Gencel Ç, Demir€ors O (2008) Functional size measurement revisited. ACM Trans Softw Eng

Methodol. doi:10.1145/1363102.1363106

14. Abran A, Robillard PN (1994) Function points: a study of their measurement processes and

scale transformations. J Syst Softw 25:171–184. doi:10.1016/0164-1212(94)90004-3

15. Kitchenham B (1997) Counterpoint: the problem with function points. IEEE Softw 14:29–31.

doi:10.1109/MS.1997.582972

16. Schmietendorf A, Fiegler A, Wille C, Dumke RR, Neumann R (2013) COSMIC functional

size measurement of cloud systems. In: Joint conference international workshop software

measurement and the international conference software process and product measurement.

IWSM-MENSURA. IEEE, pp 33–37

17. Vogelezang F, Ramasubramani JK, Arvamudhan S (2016) Estimation for mobile and cloud

environments. Mod Softw Eng Methodol Mob Cloud Environ

18. Baklizky D, Lesterhuis A, Ozkan B, Symons C, Frank V (2015) Guideline for sizing service-

oriented architecture software:1–31

19. Santillo L (2007) Seizing and sizing SOA applications with cosmic function points. Software

Measurement European Forum SMEF

20. International Function Point Users Group (IFPUG) (2015) Software non-functional assessment

process (SNAP), Assessment practices manual

58 F. Ferrucci et al.

http://dx.doi.org/10.1145/1363102.1363106
http://dx.doi.org/10.1016/0164-1212(94)90004-3
http://dx.doi.org/10.1109/MS.1997.582972

Chapter 4

Characteristics of Large-Scale Defense
Projects and the Dominance of Software
and Software Project Management

Kadir Alpaslan Demir

4.1 Introduction

A defense system may be defined as a system developed to increase the defense
capabilities of a nation or an alliance. Defense systems include weapon systems,

command, control, communications, computers, intelligence, surveillance and

reconnaissance (C4ISR) systems, warships, submarines, military aircrafts, helicop-

ters, tanks, missile systems, satellite systems, unmanned systems, all other types of

vehicles and systems developed for the military. While certain systems have

civilian counterparts such as satellites, the main difference lies in the adherence

to military standards mostly enforced by government acquisition regulations.

The global military expenditure exceeded $1.7 trillion in 2014 [1]. The USA led

in the military expenditure with $609 billion in 2014. A significant portion of this

spending goes to development and acquisition of defense systems. Defense projects

are strategic, costly, complex, and time-consuming. Development of large-scale

defense systems is challenging in many ways as evidenced by excessive cost and

schedule overruns [2]. Surprisingly, scientific literature on defense systems is

limited considering the importance and cost of these projects. The cost of defense

systems is constantly increasing [4, 5]. Furthermore, the average time to deliver an

initial capability to the warfighter is increasing [6], currently on average 1–2 months

every year [6, 7]. Defense systems project management needs improvement [7–

9]. Weapon system acquisitions are among high-risk areas in USA [7]. Overcoming

the challenges of large-scale defense system acquisition and development projects

starts with understanding the characteristics of these projects.

K.A. Demir (*)

Department of Software Development, Turkish Naval Research Center Command,

Istanbul, Turkey

e-mail: kadiralpaslandemir@gmail.com

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_4

59

mailto:kadiralpaslandemir@gmail.com

Like many other types of systems, defense systems are evolving. In the past,

defense systems were hardware-intensive. Today, they are software-intensive

systems. In 1960, in an F-4, a military fighter aircraft, 8% of the functions were

performed by software. In 2012, in an F-35 fighter aircraft, 90% of the functions are

performed by software. Naturally, most of the development effort goes to software

development in this defense project. Consequently, being a software-intensive system

became an important characteristic of defense systems. As a result, the defense project

management effort is actually becoming a software project management effort.

In this chapter, we first identify the current characteristics of large-scale defense

systems. Then, we list the current characteristics of large-scale defense projects.

The brief discussions related to each characteristic will reveal a heavy influence of

software in these types of projects. Therefore, we finalize the chapter by empha-

sizing the importance of software project management in defense project manage-

ment. This chapter is intended to help novice defense system project managers and

other practitioners in understanding the specific aspects of these systems and their

developments.

Let’s clarify two terms for readers unfamiliar with acquisition processes of

defense systems. There are two management offices in defense acquisitions. The

program management office is established on the government side. This office

manager, overseeing the defense system acquisition on behalf of the government,

is generally called “Program Manager”. On the contractor side, a project manage-

ment office is established to manage the development of the defense system. The

manager of this office is called “Project Manager”. These terms will be used

throughout the chapter.

Most references in this chapter originate from the USA for two reasons. First, the

US government agencies generate a significant amount of reports and critics related

to defense projects. Most of these reports are open to public and easily accessible. In

addition, the USA is the major producer and consumer of defense software in the

world and the leader in this aspect [10, 11]. As a result, most defense system

development-related methodologies, processes, techniques, tools, regulations, and

standards are first developed in this country. Many other countries adapt these

developments. For example, UK’s “Def Stan 07-8512 – Design Requirements for

Weapons and Associated Systems [12]” refers to US “MIL-STD 498 – Software

Development and Documentation [13]” for most software-related issues. Even

though the infamous standard MIL-STD-498 is not supported anymore, it has

wide use within defense community even in other countries [14].

4.2 Characteristics of Large-Scale Defense Systems

In this section, we identify the main characteristics of large-scale defense systems.

Note that these characteristics are not unique to defense systems. Some of the

civilian systems have a few of these characteristics. However, all or most of these

characteristics exist in many large-scale defense systems. When most of these

60 K.A. Demir

characteristics exist in a system, then the system development becomes a real

challenge. Table 4.1 lists the characteristics of large-scale defense systems.

4.2.1 Large-Scale Systems

By definition, large-scale defense projects are large in terms of scale. Managing

large-scale projects is difficult for civilian projects, and it is even more challenging

within defense context. This characteristic also leads to certain project character-

istics such as high cost, need for long schedules, and involvement of a high number

of stakeholders. The development of large-scale systems starts with adoption and

disciplined execution of systems engineering principles and processes [22]. Large-

scale projects require rigorous project management, good risk management, best

systems engineering practices, experienced managers, skilled practitioners, well-

crafted system architectures, a multi-aspect viewpoint, high skill in problem

solving, etc.

Today, defense systems are software intensive [4, 5, 25]. In 1974, the F-16A had

135,000 source lines of code (SLOC). In 2012, operational and support software

of F-35 consisted of 24 million SLOC [5]. The challenges of software development

have dominated the challenges of defense system developments. As the project

scale goes up, the rate of software project success falls dramatically [10, 16]. The

cancellation rate for military software with a size of 1000 function points (FPs) is

10% [10]. The cancellation rate is 33% when the size of the military software

reaches to 100,000 FPs [10]. Furthermore, productivity significantly lowers as the

scale increases in military software [10].

In his seminal paper [15], David Parnas argued why Strategic Defense Initiative

(SDI) system software will be untrustworthy. Most of the supporting arguments

revolve around software-related problems in a large-scale system development

effort. The scale is increasing in military systems [17]. Future defense needs,

such as information dominance, will require systems of systems that will turn

into “ultra-large-scale systems” primarily based on software [18]. The sheer scale

in these projects will have unprecedented effects on many aspects of system

development practices [18].

Table 4.1 Characteristics of

large-scale defense systems
Large-scale systems

Software-intensive systems

System of systems

Highly complex systems

High quality systems

Mission-critical systems

Safety-critical systems

Need for maintainability, supportability, and evolvability

Need for integration with legacy systems

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 61

4.2.2 Software-Intensive Systems

Most defense systems incorporate significant amounts of software [24, 25,

120]. Additionally, almost all large-scale defense systems are software-intensive

systems. Spruill states that “Now more than ever, software is the heart of our

weapons systems” [56]. Today, the success of a defense system depends on the

success of its system software [4, 5, 19, 57]. Mission-critical defense systems are

plagued with software-related problems [58]. A military general states that “The

B-52 lived and died on the quality of its sheet metal. Today, our aircraft will live

and die on the quality of software” [5]. There are even firearm conceptual designs

[59, 132] and patents [60, 61] that outline software modules for firearms.

There are programming languages designed for defense systems. For example,

Jovial has its own military standard (MIL-STD-1589C) [65] and used in a number

of programs [64], such as B-1B upgrade, and C-17 Globemaster III. Ada has

common use in defense systems [19, 57]. C, Cþþ has some use, and Java is getting

attention [19, 57, 66–68].

Later in the chapter, we devote a section discussing the software dominance in

large-scale defense systems.

4.2.3 System of Systems

According to Defense Acquisition Guidebook [35], a system of systems (SoS) is
defined as a set or arrangement of systems that results from independent systems
integrated into a larger system that delivers unique capabilities. SoS is becoming

an important means to increase military capabilities [36]. One of the trends in

software and systems engineering is increasingly complex systems of systems [38].

Defense systems are envisioned to have a long life cycle since development of

these systems is a long costly effort. For example, warships and fighters are

expected to be in service for at least 20–30 years. If the life cycle is short, then

the return on investment will be low. Thus, in most cases rather than replacing

systems, enhancing their capability with upgrades and integrations to other or

newer systems is preferred. Additionally, a defense system in service for some

time is rather a proven system and more importantly a delivered system. Except a

well-justified defense need, taking the risk and paying the cost of a new develop-

ment effort for replacement are not easy decisions. Most current defense systems

are expected to integrate with existing legacy systems [18]. They are also expected

to be extendable and modifiable, so that they allow integration with future systems,

hopefully with low cost. Therefore, most defense systems under development are

either a SoS or a part of a SoS. The current projects carry the burden of both past

and future project decisions. Thus, SoS-related issues are predominantly investi-

gated in the defense sector [37]. Maier [131] identifies five principal characteristics

of a SoS, as presented in Table 4.2.

62 K.A. Demir

Since the article [39] by Admiral Owens, “Network-Centric Warfare (NCW)”

[40–42] has become an important focus in defense community. In the last two

decades, NCW becomes the strategic goal of many countries. The idea behind

net-centric warfare is the networking of defense systems to accomplish more rapid

and dynamic military capabilities [40–42]. There is an increasing emphasis on

integration of systems to increase the warfare capability [43]. Furthermore, agile

composition of services and systems to meet rapidly changing needs of warfighters

will be a force multiplier in future wars. Emerging doctrines such as achieving full

spectrum dominance [44, 45] require a successful set of SoS capable of

effective NCW.

There are enterprise architecture frameworks (EAFs) [46–48] developed to

support SoS developments. While EAFs such as Zachman framework [49], the

Open Group’s TOGAF (The Open Group, TOGAF version 9.1) [50], and US

Federal Enterprise Architecture Framework (FEAF) [51] support the civilian

domain, there are specific EAFs dedicated to defense SoS development. These

frameworks include US DoD Architecture Framework (DODAF) [52], The British

Ministry of Defence Architecture Framework (MODAF) [53], and NATO Archi-

tecture Framework (NAF) [54]. Object Management Group (OMG) has an attempt

to unify these frameworks under a Unified Architecture Framework (UAF) [55].

The DODAF Version 2.0 views [52] are presented in Table 4.3.

4.2.4 Highly Complex Systems

Large-scale systems are inherently complex. Engineering complex systems requires

a set of disciplined processes and systems engineering tools [70]. Complexity in

defense projects is increasing [21]. The design of complex systems has considerable

challenges [71].

Many military applications are real-time systems [19] and real-time systems are

often complex systems [73]. Furthermore, weapon systems are safety-critical,

Table 4.2 Principal characteristics of a system of systems

Characteristic Discussion

Operational independence

of the elements

Each element of the system of systems is able to operate

independently and usefully

Managerial independence of

the elements

Each component system is acquired seperately and each system

continue its existence independent of the system of systems

Evolutionary development The development of system of systems is in evolution as

functions are added, removed, or modified

Emergent behavior The system of systems has behaviors that do not exist in any of

its components. These emergent behaviors are the reason for the

existence of the system of systems

Geographic distribution The elements of the system of systems are geographically

dispersed

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 63

mission-critical, embedded, reactive, and real-time systems [19]. These character-

istics increase the complexity of defense systems [58]. Today, in the development

of F-35 aircraft, the complexity is overwhelming. Software is the major source of

complexity, even projected to be the main reason if F-35 project fails [74]. Based on

Table 4.3 DODAF version 2.0 views

All Viewpoint (AV) Services Viewpoint (SvcV)

AV-1 Overview and summary information SvcV-1 Services context description

AV-2 Integrated dictionary SvcV-2 Services resource flow description

Capability Viewpoint (CV) SvcV-3a Systems-services matrix

CV-1 Vision SvcV-3b Services-services matrix

CV-2 Capability taxonomy SvcV-4 Services functionality description

CV-3 Capability phasing SvcV-5 Operational activity to services traceabil-

ity matrix

CV-4 Capability dependencies SvcV-6 Services resource flow matrix

CV-5 Capability to organizational

development mapping

SvcV-7 Services measures matrix

CV-6 Capability to operational activities

mapping

SvcV-8 Services evolution description

CV-7 Capability to services mapping SvcV-9 Services technology and skills forecast

Data and Information Viewpoint (DIV) SvcV-10a Services rules model

DIV-1 Conceptual data model SvcV-10b Services state transition description

DIV-2 Logical data model SvcV-10c Services event-trace description

DIV-3 Physical data model Standards Viewpoint (StdV)

Operational Viewpoint (OV) StdV-1 Standards profile

OV-1 High-level operational concept

graphic

StdV-2 Standards forecast

OV-2 Operational resource flow

description

Systems Viewpoint (SV)

OV-3 Operational resource flow matrix SV-1 Systems interface description

OV-4 Organizational relationships chart SV-2 Systems resource flow description

OV-5a Operational activity decomposition

tree

SV-3 Systems-systems matrix

OV-5b Operational activity model SV-4 Systems functionality description

OV-6a Operational rules model SV-5a Operational activity to systems function

traceability matrix

OV-6b State transition description SV-5b Operational activity to systems traceability

matrix

OV-6c Event-trace description SV-6 Systems resource flow matrix

Project Viewpoint (PV) SV-7 Systems measures matrix

PV-1 Project portfolio relationships SV-8 Systems evolution description

PV-2 Project timelines SV-9 Systems technology and skills forecast

PV-3 Project to capability mapping SV-10a Systems rules model

SV-10b Systems state transition description

SV-l0c Systems event-trace description

64 K.A. Demir

an analysis of 54 C3I and IT acquisition programs, Guernsey [72] believes that

inability to manage complexity was the root cause of all failures.

Defense software is generally more complex than civilian software [75]. This is

a consequence of requirements to provide greater functionality and higher reliabil-

ity than commercial systems [75]. In software, testing effort and defect density

significantly increase with complexity.

4.2.5 High-Quality Systems

Defense systems should be high quality. Only by achieving high quality, we will be

able to ensure that our defense systems are trustworthy, safe to use, and able to

complete the missions without failure. These systems should be operationally

feasible meaning that the system should perform as intended in an effective and

efficient manner for as long as necessary [76]. Achieving operationally feasible

systems requires adherence to design for reliability, maintainability, and usability

[76]. These qualities cannot be added as a component to the system. They are

engineered in from the start.

Defense software ranks near the top in terms of quality among various types of

software [11]. High quality costs. However, quality-related problems cost a lot

more. An analysis of 11 weapon system projects showed that quality-related

problems led to “billions in cost overruns, years-long delays, and decreased capa-

bilities for the warfighter” [77]. Quality problems with the Expeditionary Fighting

Vehicle program cost 4 years schedule overrun at a cost of $750 million

[77]. Weapon systems cannot be fielded with low quality. Therefore, quality-

related problems should be eliminated before delivery. Good systems engineering

processes should be employed in the prevention of quality problems [77].

As the functionality achieved by software in defense systems is increasing,

software quality is becoming more important for defense community [62]. Software

quality has become the main determining factor in defense system quality. While

there are many different quality attributes, a list of most commonly used quality

attributes is presented in Table 4.4.

4.2.6 Mission-Critical Systems

A mission-critical system is a type of system in which a failure may result in not

achieving a critical goal, significant loss in terms of money, or trust in the system

[19]. In the defense context, the failure of a mission-critical system may cause a

mission failure or a deficiency in the defense capability temporarily or permanently.

Most defense systems are mission-critical systems, and most mission-critical sys-

tems are safety-critical systems. Defense mission-critical systems are highly com-

plex and require millions of line of software code to support them [58]. Therefore,

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 65

software-related problems hinder defense system developments. Lack of manage-

ment attention, ill-defined system requirements, and inadequate testing are among

the top sources of problems associated with the development of mission-critical

systems [58]. Achieving the right level of trust in a defense system is also important

[78, 79]. For example, overreliance on a UAV system may result in the loss of the

vehicle due to harsh conditions, and under reliance may result in mission failure

[80]. Development of mission-critical defense systems requires a rigorous system

development process ending with a high-quality product.

4.2.7 Safety-Critical Systems

A safety-critical system may be defined as a system whose failure may cause injury
or death to human beings [57]. While certain defense systems such as weapon

systems are specifically developed to inflict damage on the enemy, they should be

safe for friendly forces. Developing safe systems is a challenge by itself, and

developing safe weapon systems having destructive power takes the challenge to

a higher level.

MIL-STD-882E requires a system safety approach for managing hazards as an

integral part of the systems engineering process [96]. Having a safety perspective

from the start; implementation of formal methods for safety assurance; good,

simple, and easy to understand design; attention to high quality in all phases of

development; and rigorous testing are among the techniques used in the develop-

ment of safety-critical systems [81]. Furthermore, fault tree analysis (FTA), hazard

and operability studies (HAZOP), and failure mode effects analysis (FMEA) are

specific techniques used in developing these systems [81]. The UK MoD Standard

DEF-STAN-00-56 [82] requires safety analysis on all defense systems. Managers

should be aware that developing safety-critical systems require expertise. However,

practitioners educated on the development of safety-critical systems are limited.

Project managers are advised to get training on strategies and techniques to develop

safe systems and have a safety perspective from the project start. An overview of

safety standards is listed in [83].

Table 4.4 A list of

commonly used quality

attributes

Reliability Usability Producibility

Performance Interoperability Adaptability

Fault tolerance Extensibility Dependability

Safety Modifiability Efficiency

Security Portability Effectiveness

Availability Reusability Evolvability

Testability Robustness Modularity

Maintainability Scalability Portability

Supportability Recoverability Affordability

Simplicity Survivability Resilience

66 K.A. Demir

4.2.8 Need for Maintainability, Supportability,
and Evolvability

The importance of life-cycle management of systems was recognized by defense

agencies a long time ago [108]. Large-scale defense systems generally have long

life cycles [109]. Maintainability and supportability of defense systems over a long

life cycle are important. DoD 5000.01 [95] states that “Acquisition programs shall

be managed through the application of a systems engineering approach that opti-

mizes total system performance and minimizes total ownership costs. A modular,

open-systems approach shall be employed, where feasible.” Having a “modular

open systems approach” is the key to supportability [109] and expected to improve

the acquisition process [128]. Using an open systems approach with open inter-

faces, the design process is focused on lowering the entire life-cycle costs of

weapon systems [109].

Most defense systems will evolve over time [110]. Therefore, it is quite likely

that at some point in the future, the system will be modified/extended and integrated

with other systems. A well-designed system architecture is essential for achieving

required system qualities and a successful system evolution [111].

4.2.9 Need for Integration with Legacy Systems

As the cost to replace a defense system increase, many governments prefer the new

defense systems (often system of systems) to be integrated with legacy systems to

increase the warfighting capability [112]. As a result, the project managers are faced

with the challenge of designing the new defense systems in a way that the system is

able to integrate with a number of existing systems, some of which are legacy

[18]. Even in defense systems that have no physical integration with a legacy

system, there may likely be some outdated protocols (such as communication,

data link, etc.) to be supported. Such requirements increase the complexity, and

sometimes the new defense system design has to carry the burden of old design

decisions. In addition, there is a high possibility that the documentation of legacy

systems is either poor or lost in time if ever produced [113]. Without adequate

information regarding the legacy system, integration problems may occur. Rigorous

testing will be required. Performance problems may occur, and these problems may

easily be attributed to the performance of the new system. Then the project

managers face the burden of proofing that their systems are not the source of the

problem. Another challenging issue may be the changes in the notions, terminol-

ogy, or data representation. The warfare terminology evolves over time, and

different meanings are attributed to old terminology. This evolution has to be

managed, and the developers have to be aware of such warfare terminology

evolution. Otherwise the integration with legacy systems will be more difficult

and prone to errors.

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 67

4.3 Characteristics of Large-Scale Defense Projects

While there are common aspects of large-scale defense system projects such as

scale, complexity, etc. with civilian projects of the same size, there are also unique

aspects of large-scale defense projects such as the defense context and the influ-

ences of defense acquisition policies. The civilian projects sharing common aspects

face similar challenges with defense projects. However, the defense context and the

influences of acquisition policies increase the complexity and challenges to a higher

level. Therefore, understanding these characteristics and their implications is cru-

cial in overcoming the challenges in these projects. Table 4.5 lists the characteris-

tics of large-scale defense projects.

4.3.1 Development Under Government Acquisition
Regulations

Defense acquisition processes are subject to heavy government regulations and

bureaucracy. The management of these acquisitions is inefficient, cumbersome, and

bureaucratic [9, 86]. Defense acquisitions need improvement [92].There are reform

attempts at the legislation level [84]; however many reform attempts have failed

[85]. The armed services strategy of “low cost, high innovation” is in fact far from

reality [85]. Jones [10] advises that military contracting should adopt some of the

modern contracting practices of the civilian contracting.

The US weapon system acquisition milestone decision process employs A, B,

and C milestones [9]. In each milestone, the program management office compiles

the necessary information for the milestone decision authority. Based on a survey

[86] of 24 weapon acquisition programs, on average, program management offices

spent over 2 years completing up to 49 information requirements for their most

recent milestone decision. The reason for this long period is the involvement of

a high number of stakeholders that participate in preparing and reviewing the

documentation [9]. This is understandable when the cost and role of these systems

Table 4.5 Characteristics of

large-scale defense projects
Development under government acquisition regulations

Involvement of many of stakeholders

Long schedules

High cost

High risk

Security orientation

Slow development and low productivity

Process orientation

Adherence to many standards

Verification and validation orientation

68 K.A. Demir

are considered. However, most managers think that these reviews add value to only

10% of the documentation [9].

Today, defense systems are software-intensive systems; however current sys-

tems engineering and acquisition practices and program managers still rely on

historical hardware engineering and acquisition legacy [87]. There is a need for

change in perspectives, processes, and capabilities to shift the emphasis from

hardware to software [5]. Program managers should be trained to improve software

skills [120].

Government policies on the limitations [93] of defense equipment suppliers and

various contractors bring extra challenges [88]. In addition, import and export of

defense systems are subject to both national and international laws, regulations, and

agreements.

In conclusion, dealing with government regulations is quite challenging [19].

4.3.2 Involvement of Many Stakeholders

Large-scale defense projects inherently involve a high number of stakeholders. The

main stakeholders include military personnel, armed forces, ministry of defenses,

government acquisition agencies, other government agencies, defense contractors,

and defense committees in congresses. While secondary stakeholders may not have

a direct effect on the projects, they may have a certain level of positive or negative

influence on the projects. Secondary stakeholders include intergovernmental orga-

nizations, for example, NATO, other defense contractors who did not get a piece

from the contract, political actors such as lobbyists or activists, public nonprofit

organizations, citizens, etc. Even some defense projects are developed in a multi-

national context [19]. For example, nine different countries participate in the F-35

Joint Strike Fighter (JSF) program. Naturally, as the number of stakeholders

increase, the possibility of having stakeholders with conflicting interests increases.

The military personnel and the armed forces would like to be equipped with the

latest technologies and get the most out of the defense system and the acquisition

program. These expectations drive up the costs. However, the government acqui-

sition agencies and defense and budget committees in the national congresses

would like to see that the costs are kept at a certain limit. The ministry of defenses

will be in between depending on the political climate. On the other side, using

political lobbyists or other mechanisms, other defense contractors will try to get a

piece from the contract and try to influence other stakeholders. Herndon [20] states

that management of large defense projects requires considerable bureaucratic

political skills.

From the government point of view, national priorities, defense needs, national

long-term strategic goals, national defense acquisition policies, national technology

and innovation level, long- and short-term national R&D goals, and international

relations favoring or limiting the defense acquisitions from certain countries are

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 69

among the concerns affecting the defense system acquisition decisions and

projects [21].

From the main defense contractor view, there are other challenges. In some

cases, the government may impose certain products or subcontractors on the main

defense contractor. This limits the options for the main contractors and gives a

certain leverage to the subcontractor. The main contractor may be challenged in

managing the subcontractor due to the imposed contract. In many cases, defense

projects are developed by a main contractor and many subcontractors. Certain

subtle challenges may arise unless the main contractor and all subcontractors do

not have the same motivation for the project. For example, while some contractors

may have a strategy to establish long-term relations with the government, some

other contractors may see the project as a one-time business opportunity. The

defense contractors who would like to have long-term relations with the govern-

ment agencies will be likely to pay more attention to quality. However, the

contractors who are in the project as a one-time deal will pay more attention to

profit maximization at the cost of quality. These motivational differences will affect

the defense system development process quality and lead to conflicts between

contractors. These challenges will be subtle and will occur in the background

leading to many not-so-obvious problems.

There are also government agencies that oversee the acquisition programs. The

US Government Accounting Office [129] conducts annual assessment of Depart-

ment of Defense’s (DoD) major defense acquisition programs.

As systems become large, they are developed by a composition of dozens of

companies bound by contracts at different levels [23]. These companies, forming a

complex organization, may be distributed over a geographic area. There are a

number of challenges [23] such as motivational differences, cultural differences,

contract management, performance variations, language barriers, trust issues, infor-

mation sharing, political and social connections, and geographical dispersions.

Consequently, program managers on the government side and project managers

on the contractor side should be aware of these challenges. There are no easy

solutions to most problems related to having many stakeholders on the project.

4.3.3 Long Schedules

A defense system usually takes 5–10 years to accomplish full delivery [24]. Devel-

opment of a large-scale defense system may take a decade or more [2]. Even

reaching a final decision on a military software contract may result in a delay of

6–18 months [10, 11]. Therefore, a defense project is already late from the start. In

defense projects, sometimes on-time delivery may be more important than achiev-

ing the projected cost. A defense system is developed in response to a defense need

to increase national defense capability. The delay in the delivery of a defense

system may result in deficiency in the national defense capability.

70 K.A. Demir

1969 was the year the Indian government decided to build a national light

combat aircraft (LCA), HAL Tejas, a light-weight, multirole fighter aircraft [32].

After a long R&D process, the first prototypes were completed in 2000s. In 2015,

Indian Air Force gets first indigenously built LCA Tejas. A fighter aircraft is one of

the most complex defense systems. This example shows that a successful project of

building a fighter may take over 40 years. Such projects require long-term strategic

planning and overcoming many difficulties along the way. Similarly, Joint Strike

Fighter (JSF) aircraft program was born in 1993. Even though the USA has quite an

experience in building fighters, JSF [33] development is still uncompleted.

Earned value management (EVM) is a performance-based management tool that

can be used determine and monitor cost and schedule performance [26–29] . EVM

is widely employed by DoD [119], and the use of EVM is required from managers

[30]. The benefit of using EVM is high in especially large-scale projects with long

schedules. Defense Acquisition University (DAU) [118], established in 1991, was

created as a result of critical necessity of providing defense workforce with a career

path and consistent training opportunity. Completion of related defense acquisition

courses and getting necessary certificates are among requirements for the DoD

personnel participating in defense acquisitions. EVM is one of the major topics

taught in DAU.

Average monthly requirements volatility for military software is about 2%

[34]. Theoretically, a 1-year-long military project has a change in one-quarter of

its requirements. Thus, as the project schedule lengthens, the amount of change in

the requirements is increasing adding significant challenges.

4.3.4 High Cost

Development of a large-scale defense system requires a significant amount of

effort. Therefore, these projects are inevitably costly. The portfolio of major

defense acquisition programs reached $1.4 trillion in the USA as of 2014 [6]. The

development and sustainment costs of the famous F-35 program are estimated to be

over $1 trillion over 50-year projected life [5]. Much of this cost can be attributed to

the complexity and size of the software development involved [5]. High-cost

defense projects are under close scrutiny of government agencies [6]. Program

and project managers are required to provide regular or on-demand performance

reports to governing bodies. Therefore, these projects are constantly under political

pressure. Consequently, keeping the costs under control and achieving a good cost

performance are among the priorities of project managers.

Defense systems include military equipment and components that are subject to

harsh environmental and battle conditions. Electronic components have two types

of packaging: commercial and military specification. Components adhering to

military specifications are expensive. Furthermore, some components in defense

systems require certifications. The size of the required specifications and

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 71

documentation is three times larger than it is in the civilian sector [10, 11]. All these

issues are among the factors increasing the costs.

The costs of defense projects are increasing [6], and the cost performance of

major defense projects is noticeably poor [6]. Table 4.6 lists the sources of high cost

in defense acquisition programs.

4.3.5 High Risk

There are many reports [3] highlighting the high risks in large-scale defense system

projects. Defense software projects have the highest cancellation rates [10]. Jones

[10, 16] report that as the project scale goes up, the success rate falls dramatically in

defense software projects. When the defense software system size is 1000 function

points, only 10% of the defense projects face cancellation. However, when the

defense software system size reaches 100,000 function points, the defense project

cancellation rate increases to 33%. Note that these numbers only report project

cancellations, meaning that the system could not be delivered in one-third of large-

scale defense software projects. In addition, most large-scale defense systems are

delivered with less functionality than what is initially planned and with quality

problems. A US Government Accounting Office (US GAO) report [7] on high-risk

government projects published in 2015 highlights that “Many DOD programs are

still falling short of cost, schedule, and performance expectations.” US Government

Accounting Office publishes this “high-risk list” report every 2 years since 1990.

Major weapon acquisitions found its place in the high-risk list in every report [3].

We conducted a survey study [127] on challenges of software projects and

identified that half of the IT and software development projects are challenged in

scope management. Not having a clear scope at the beginning of the project

increases the risks in a project. Furthermore, as the duration and the scale of the

project increase, the likelihood of scope changes increases. As a result, large-scale

defense system projects face the challenges resulting from scope change over a long

period of time due to many reasons.

Large-scale defense system projects are among the top in high-risk project lists.

Therefore, the defense software project managers should conduct rigorous risk

management from the project start as advised by experienced software program

managers [117].

Table 4.6 Sources of high

cost in defense acquisition

programs

Government acquisition policies

Military-grade equipment and components

Testing required for battle-ready systems

High volumes of documentation

Training a large number of military personnel

Certifications

Necessity for high quality

72 K.A. Demir

4.3.6 Security Orientation

Defense systems must be trustworthy and resilient to cyber attacks [62, 130] of all

kinds over the whole life cycle. As cyber threats increase, importance of trusted

defense systems is gaining significant attention in recent years [89, 121]. R&D and

development of defense systems are conducted in secure environments [90]. The

personnel working in the development of defense systems are required to have

necessary clearances [90]. They are subject to background checks. In many cases,

foreign nationals are not allowed to participate in defense projects. The developers

working on critical modules are required to be citizens [121]. Even in some cases,

only citizens born in the country are employed. In addition, the workplaces are

secure environments with only authorized personnel access. The buildings are

secured, and extra measures are taken against any type of intelligence gathering.

Some development environments are remote locations that are far away from

residences or general population. As a result, all these issues result in a limited

pool of system developers to be employed in defense projects. Therefore, project

managers are challenged in hiring of system developers with necessary skills.

Furthermore, acquisition of defense system components from trusted accredited

suppliers is essential in providing uncompromised weapons and information sys-

tems [91]. Developing secure systems has its own set of challenges

[19, 121]. Though it is quite costly, critical components should be evaluated

using common criteria [122] or other certifications.

4.3.7 Slow Development and Low Productivity

Even though defense software projects have high quality, they rank last in terms of

software productivity [11, 31]. The size of the required specifications and docu-

mentation is three times larger than it is in the civilian sector [10, 11]. Today, 90%

of functions in an F-35 aircraft are projected to be performed in software [5], and

the software challenges slow the system development [74].

In military projects, as the scale goes up, productivity lowers [10]. In defense

software development, average function points per staff month is 7.69 for 1000

function points (FPs), 2.48 for 10,000 FPs, and 0.88 for 100,000 FPs. As the scale

goes up, the probability of completing the project on time significantly decreases.

When the military project size is 1000 FPs, 65% of the projects are completed on

time; when the project size reaches to 100,000 FPs, only 30% of the projects

are completed on time [10]. Furthermore, based on the same statistics, 33% of

large-scale defense software projects face cancellation. One of the main reasons of

low productivity is that the amount of testing needed in large-scale defense projects

is high. Consequently, project managers and stakeholders of large-scale defense

projects should be aware that these projects should never be taken lightly during the

whole development cycle.

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 73

4.3.8 Process Orientation

The adaptation of waterfall and V models through a set of military standards

enforced contractors to adapt certain processes. Defense contracts include work

definitions, deliverables at specific times, and milestones such as preliminary

design reviews and critical design reviews with representatives from military and

government acquisition agencies. In most contracts, delivering a system engineer-

ing management plan (SEMP) [76] and test and evaluation master plan

(TEMP) [76] in the early phases of the development is a requirement. All these

contractual bindings form a framework for a development process. Furthermore,

the inherent nature of engineering large-scale defense systems requires a phased set

of disciplined processes [70]. Testing of defense systems can be quite challenging

[102]. There are unique problems such as the availability of testing sites, and testing

opportunities with actual fielded systems. Testing in this scale requires careful

planning and adaptation of certain processes.

Capability Maturity Model Integration (CMMI) [103–105] is a maturity-oriented

appraisal and a key enabler for acquiring increasingly complex systems [106]. CMMI

Version 1.2 has been adapted by many DoD and defense contractor organizations

[107]. While CMMI does not enforce a specific model, accomplishing the required

set of practices at different maturity levels aims at improving overall processes.

Awarding the contracts to contractors with CMMI level 3 was highly recommended

in the past [120]; however this requirement is being relaxed today.

4.3.9 Adherence to Many Standards

Standardization is important in military and defense. Standardization helps in

achieving a level of quality and interoperability in defense systems [94]. When

the customer is the government, the contractors are obliged to comply with many

standards, regulations, and policies [19]. Government contracts may dictate a long

list of standards (e.g., for system development [124–126], system safety [96], and

avionics [123]) some of which requiring rigorous systems engineering practices.

Consequently, requirements enforcing standards help us in achieving high-quality

systems [19]. However, adherence to standards drives up the cost. Additionally,

military standards are so demanding that the productivity in developing defense

systems software is lower than any other industry [31].

4.3.10 Verification and Validation Orientation

The government acquisition processes enforce the development of defense systems to

be verification and validation oriented. At milestones [9] and many phases in the

74 K.A. Demir

development, the program management office requires specifications, design review

reports, development models, simulation results, measurements and analysis reports,

certifications, test procedures, test results, etc. [76]. System development models such

as waterfall [97, 98] and V model [99] are verification- and validation-oriented

models commonly used in defense projects [57]. The US DoD captured the waterfall

approach in a software development standard, DOD-STD-2167A [101], later super-

seded by MIL-STD-498 [13]. German Ministry of Defense adapted the V model as a

standard for German Federal Armed Forces [100]. While all these documents or

reports contribute to the verification and validation of the system being developed,

they also increase the cost and pressure the schedule. Delays in the delivery of these

artifacts may be penalized and may lead to delays in various development activities.

4.4 The Dominance of Software and Software Project
Management in Large-Scale Defense Projects

Today, almost all large-scale defense systems are software-intensive systems. For

example, F-35 Lightning II aircraft, one of the solutions in the Joint Strike Fighter

program, consists of more than 8 million lines of code [4, 74]. In this aircraft, 90%

of the functionality is achieved via software. This clearly shows how software

dominated this defense system. The software development in this defense program

is one of the largest software development ever. When we consider that F-16A

Block 1 aircraft consists of only 135 thousand lines of code in 1974 [4], the

increasing use and influence of software in major defense systems become obvious.

Officials fear that the software challenges could cause the F-35 Lightning II aircraft

program fail [74]. Furthermore, reports indicate that the software challenges are

slowing the project [74]. Spruill [56] discusses how software became the heart of

weapon systems. Ferguson states that “Software is the hidden, invisible power in

weapon systems” [132].

Figure 4.1 shows the software code size in sample major defense systems. This

figure was developed before 2006. Note that F-35 aircraft software and the ground

software was estimated to include 14 million lines of source code at the time.

However, today the software in this program reached to 8 million lines of code for

aircraft software and 24 million lines of code for operational and support software.

The increasing use of software in defense systems brings an important challenge

from the software engineering discipline. Estimating the size of complex software

systems is challenging [64], and frequently the estimations are either optimistic or

underestimated. Incorrect estimations lead to cost overruns and schedule pressure

resulting in reduced delivered functionality and/or lower quality [69].

While the size of software is increasing in defense systems, what is more

interesting is the percentage of functionality achieved by software in defense

systems. Table 4.7 shows the increasing trend of software use in a sample defense

system, military aircrafts [63].

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 75

The productivity differences between civilian and defense projects are known

for a long time. The US Assistant Secretary of the Navy established the Software

Program Managers Network (SPMN) [114] in 1992. The goal of the initiative was

“to identify proven industry and government software best practices and convey

these practices to managers of large-scale Department of Defense (DoD) system

acquisition programs.” The initiative identified a set of best practices [115–

117]. These 16 critical software practices are listed in Table 4.8.

The defense community was not successful in the adoption of civilian best

practices. The defense community is quite conservative and therefore lags behind

in adopting new technologies when compared to civilian industry [10]. Investigating

the barriers of adoption and how to overcome these barriers are important research

topics. Another topic might be investigating whether these best practices will

produce similar results or not in the defense domain.

18

16

14

12

10

8

6

4

2

0

1960

Polaris A3

Aegis System

E
SL

O
C

 in
 M

il
li
on
s

Virginia SSN

Patriot
PAC-3

F-22

ACS

FCS

DDX

F-35 Aircraft
and Ground

SBIRS

1970 1980

Sea Systems Ground Systems AircraftMissiles/Space

1990 2000 2010 2020

Fig. 4.1 Software source code size in sample major defense systems (Source: CARD Data, SEI,

CSIS Analysis)

Table 4.7 System functionality requiring software

Defense system – military aircrafts Year % Functions performed by software

F-4 1960 8

A-7 1964 10

F-111 1970 20

F-15 1975 35

F-16 1982 45

B-2 1990 65

F-22 2000 80

F-35 Lightning II 2012 90

76 K.A. Demir

Capers Jones identified success and failure factors in military software [10]. Some

of the best practices commonly observed in the military software domain are:

• Good process assessments and analysis

• Excellent research programs for best practices

• High success rates in large-scale applications (larger than 100,000 function

points)

• Good research programs for reusability, computer-aided software engineering

(CASE), and Ada programming language

• Good configuration control

• Good requirements traceability

• Good quality control

• Use of cost estimation tools

There are also some practices and issues leading to failure or poor performance

in military software domain compared to civilian software. Some of them are:

• Slow adoption of functional metrics

• Inadequate productivity measurement technology

• Need for production of huge documentation

• Long schedules compared to all other types of software

• Low productivity compared to all other types of software

• High rates of challenges and mitigation in military contracts

• High growth of creeping user requirements

• Inadequate training and education of project managers and staff

Ferguson states, quoting an air force general, “The only thing you can do with an

F-22 that does not require software is take a picture of it” [132]. Basically, the

Table 4.8 Critical software

practices for military

software*

Adopt practices of continuous program risk management

Estimate costs and schedules based on empirical data

Use metrics to manage the program

Use earned value management and track earned value

Track defects against determined quality targets

Treat people as the most important resource

Adopt practices of full life cycle configuration management

Conduct requirements management rigorously

Use system-based software design

Guarantee data and database interoperability

Define and control all interfaces and related implementations

Design twice, but code once

Assess the risks and costs of reusable artifacts

Conduct requirements and design inspections rigorously

Adopt practices of continuous testing

Compile and smoke test the software system frequently

*Adopted from Refs. [10, 115, 116]

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 77

development of defense systems became a software system development effort.

Therefore, the defense project manager is in fact a software project manager. As a

result, defense project managers should be well-trained in software project

management.

4.5 Conclusion

In this study, we identify the characteristics of large-scale defense system projects.

Understanding these characteristics will help project managers in preparing them-

selves for achieving better project results. Furthermore, as for the defense software

researchers, identification of these characteristics forms a basis for further research.

Even though there are studies identifying the best practices and investigating

reasons of success and failure factors in these projects, the defense community

still lacks coherent theories, proven methodologies, and development models for

large-scale defense system developments. Identification of these characteristics,

systematic analysis of challenges related to these characteristics, and investigating

the ways to overcome these challenges will help the development of large-scale

defense system development process models. Furthermore, this study establishes

the heavy influence of software in defense systems as shown with many references

to a body of current literature. Today, major defense projects become large-scale

software development projects. As a result, the laws, theories, methodologies,

practices, advantages, and limitations of software development are taking over

defense projects. Therefore, defense project managers should be well-versed in

software development and software project management. In addition, software

engineering researchers should put more emphasis on large-scale defense projects,

since these projects are becoming the examples of most costly, challenging, and

risky software projects.

There are many system development process models such as waterfall model,

spiral model, V model, evolutionary model, agile development models, etc. How-

ever, the success rates of defense projects clearly call for better models. The

incremental commitment model [87] is an attempt for a process model that is

claimed to be effective in various system developments including defense system

developments. It is stated [87] that the milestones in the incremental commitment

model are compatible with the milestones specified in the Defense Acquisition

System [30]. However, the model has not been tested in actual defense projects.

As defense needs change and technology advances, defense systems will evolve

over time. Naturally, the characteristics of defense systems will change. For

example, in the past, the defense systems were not software intensive or system

of systems. Today, defense systems are software intensive, and they are subject to

the laws and challenges of current software engineering discipline. The character-

istics identified here are the characteristics of current defense systems. Therefore, as

defense systems evolve, researchers have to identify new or evolved characteristics.

78 K.A. Demir

Disclaimer and Acknowledgments The views and conclusions contained herein are those of the

author and should not be interpreted as necessarily representing the official policies or endorse-

ments, either expressed or implied, of any affiliated organization or government.

References

1. Stockholm International Peace Research Institute (SIPRI). Military Expenditure Database

(2015) http://www.sipri.org/research/armaments/milex/milex_database/milex_database.

Accessed 29 Sept 2015

2. Garrett RK, Anderson S, Baron NT, Moreland JD (2011) Managing the interstitials, a system

of systems framework suited for the ballistic missile defense system. Syst Eng 14(1):87–109

3. U.S. Government Accountability Office (2009) High risk series, Report No: GAO-09-271

4. Hagen C, Sorenson J, Hurt S, Wall D (2012) Software: the brains behind U.S. Defense

Systems, A.T. Kearney Inc. https://www.atkearney.com/documents/10192/247932/Soft

ware-The_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-

c198a8ff1026. Accessed 29 Sept 2015

5. Hagen C, Sorensen J (2013) Delivering military systems affordably, Defense AT&L

6. U.S. Government Accountability Office (2015) Report to congressional committees: defense

acquisitions – assessments of selected weapon programs, Report No: GAO-15-342SP http://

www.gao.gov/assets/670/668986.pdf. Accessed 29 Sept 2015

7. U.S. Government Accountability Office (2015) Report to Congressional Committees: high

risk series, Report No: GAO-15-290. http://www.gao.gov/assets/670/668415.pdf. Accessed

29 Sept 2015

8. U.S. Government Accountability Office (1999) Performance and accountability series: major

management challenges and program risks – department of defense, GAO/OCG-99-4. http://

www.gao.gov/assets/200/199558.pdf. Accessed 29 Sept 2015

9. United States Government Accountability Office, Report to Congressional Committees

(2015) Annual report: additional opportunities to reduce fragmentation, overlap, and dupli-

cation and achieve other financial benefits, Report No: GAO-15-404SP. http://gao.gov/assets/

670/669613.pdf. Accessed 29 Sept 2015

10. Jones C (2000) Software assessments, benchmarks, and best practices. Addison-Wesley

Longman Publishing Co., Inc

11. Jones C (2002) Defense software development in evolution, Crosstalk –J Def Softw Eng.

http://www.crosstalkonline.org/storage/issue-archives/2002/200211/200211-Jones.pdf.

Accessed 29 Sept 2015

12. MODUK – British Defense Standards, Def Stan 07–85 – Design Requirements for Weapons

and Associated Systems

13. U.S. MIL-STD 498 (1994) Software development and documentation

14. Overview of U.S. MIL-STD 498. https://en.wikipedia.org/wiki/MIL-STD-498. Accessed

29 Sept 2015

15. Parnas DL (1985) Software aspects of strategic defense systems. Commun ACM 28

(12):1326–1335. doi:10.1145/214956.214961

16. Humphrey WS (2005) Why big software projects fail: the 12 key questions. Crosstalk – J Def

Softw Eng. http://www.crosstalkonline.org/storage/issue-archives/2005/200503/200503-

Humphrey.pdf. Accessed 29 Sept 2015

17. Northrop L (2013) Does scale really matter? Ultra-large-scale systems seven years after the

study (keynote). In: Proceedings of 2013 35th international conference on software engineer-

ing (ICSE), 18–26 May 2013, San Francisco, CA, USA, pp 857–857. doi:10.1109/ICSE.

2013.6606633. http://resources.sei.cmu.edu/asset_files/Presentation/2013_017_101_68602.

pdf. Accessed 29 Sept 2015

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 79

http://www.sipri.org/research/armaments/milex/milex_database/milex_database
https://www.atkearney.com/documents/10192/247932/Software-The_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-c198a8ff1026
https://www.atkearney.com/documents/10192/247932/Software-The_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-c198a8ff1026
https://www.atkearney.com/documents/10192/247932/Software-The_Brains_Behind_US_Defense_Systems.pdf/69129873-eecc-4ddc-b798-c198a8ff1026
http://www.gao.gov/assets/670/668986.pdf
http://www.gao.gov/assets/670/668986.pdf
http://www.gao.gov/assets/670/668415.pdf
http://www.gao.gov/assets/200/199558.pdf
http://www.gao.gov/assets/200/199558.pdf
http://gao.gov/assets/670/669613.pdf
http://gao.gov/assets/670/669613.pdf
http://www.crosstalkonline.org/storage/issue-archives/2002/200211/200211-Jones.pdf
https://en.wikipedia.org/wiki/MIL-STD-498
http://dx.doi.org/10.1145/214956.214961
http://www.crosstalkonline.org/storage/issue-archives/2005/200503/200503-Humphrey.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200503/200503-Humphrey.pdf
http://dx.doi.org/10.1109/ICSE.2013.6606633
http://dx.doi.org/10.1109/ICSE.2013.6606633
http://resources.sei.cmu.edu/asset_files/Presentation/2013_017_101_68602.pdf
http://resources.sei.cmu.edu/asset_files/Presentation/2013_017_101_68602.pdf

18. Northrop L et al (2006) Ultra-large-scale systems: the software challenge of the future.

Carnegie-Mellon university, Software Engineering Institute (SEI), Pittsburgh. http://www.

sei.cmu.edu/library/assets/ULS_Book20062.pdf. Accessed 29 Sept 2015

19. Demir KA (2009) Challenges of weapon systems software development. Journal of Naval

Science and Engineering 5(3):104–116, http://www.softwaresuccess.org/papers/2009_

Demir_JNSE_Challenges_of_Weapon_Systems_SW_Dev.pdf. Accessed 19 Feb 2017

20. Herndon RL (1983) The Army’s National Training Center: a case study in management of a

large defense project. Army Military Personnel Center, Alexandria, VA. (M.S. Thesis) http://

www.dtic.mil/cgi-bin/GetTRDoc?AD¼ADA129072. Accessed 27 Sept 2015

21. Astan G (2015) Factors effecting technology acquisition decisions in national defense pro-

jects. J Def Res Manag 6(1):97–102. http://journal.dresmara.ro/issues/volume6_issue1/13_

astan.pdf. Accessed 27 Sept 2015

22. BKCASE Editorial Board (2015) The guide to the Systems Engineering Body of Knowledge

(SEBoK), v. 1.4. R.D. Adcock (EIC). Hoboken: The Trustees of the Stevens Institute of

Technology. BKCASE is managed and maintained by the Stevens Institute of Technology

Systems Engineering Research Center, the International Council on Systems Engineering,

and the Institute of Electrical and Electronics Engineers Computer Society. www.sebokwiki.

org. Accessed 29 Sept 2015

23. Bartholomew R, Collins R (2009) Evaluating an immersive virtual environment for organi-

zationally distributed software development. In: AIAA Infotech@ Aerospace Conference,

6–9 April, Seattle, Washington, USA

24. Goldin L, Matalon-Beck M, Lapid-Maoz J (2010) Reuse of requirements reduces time to

market. In: Proceedings of 2010 IEEE international conference on Software Science, Tech-

nology and Engineering (SWSTE), pp 55–60. 15–16 June 2010, Herzlia, Israel. doi:10.1109/

SwSTE.2010.17

25. Nelson M, Clark J, Spurlock MA (1999) Curing the software requirements and cost estimat-

ing blues, PM Magazine, November–December, pp 54–60

26. Fleming QW, Koppelman JM (2006) Earned Value Project Management, 3rd edn. Project

Management Institute, June 30, 2006

27. Fleming QW, Koppelman JM (1998) Earned value project management a powerful tool for

software projects. Crosstalk – J Def Softw Eng. http://www.crosstalkonline.org/storage/

issue-archives/1998/199807/199807-Fleming.pdf. Accessed 29 Sept 2015

28. Tomasetti R, Cohe S, Buchholz M (2005) Earned value management – moving toward

government-wide implementation. Acquisitions Directions Advisory

29. Project Management Institute (2013) A guide to the Project Management Body of Knowledge

(PMBOK Guide), 5th edn. http://www.pmi.org/PMBOK-Guide-and-Standards.aspx.

Accessed 29 Sept 2015

30. U.S. Department of Defense Instruction (DoDI) 5000.2 (2015) Operation of the defense

acquisition system. http://acqnotes.com/wp-content/uploads/2014/09/DoD-Instruction-5000.

02-Operations-of-the-Defense-Acquisition-System-7-Jan-2015.pdf. Accessed 29 Sept 2015

31. Jones C (1998) Project management tools and software failures and successes, Crosstalk – J

Def Softw Eng. http://www.crosstalkonline.org/storage/issue-archives/1998/199807/

199807-Jones.pdf. Accessed 27 Sept 2015

32. https://en.wikipedia.org/wiki/HAL_Tejas. Accessed 29 Sept 2015

33. https://en.wikipedia.org/wiki/Joint_Strike_Fighter_program. Accessed 29 Sept 2015

34. Jones C (2007) Estimating software costs, 2nd edn. McGraw-Hill

35. Defense Acquisition Guidebook (2013) https://acc.dau.mil/docs/dag_pdf/dag_complete.pdf.

Accessed 27 Sept 2015

36. Office of the Deputy Under Secretary of Defense for Acquisition and Technology (2008)

Systems and software engineering. systems engineering guide for systems of systems,

Version 1.0. ODUSD (A&T) SSE, Washington, DC. http://www.acq.osd.mil/se/docs/SE-

Guide-for-SoS.pdf. Accessed 27 Sept 2015

80 K.A. Demir

http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf
http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf
http://www.softwaresuccess.org/papers/2009_Demir_JNSE_Challenges_of_Weapon_Systems_SW_Dev.pdf
http://www.softwaresuccess.org/papers/2009_Demir_JNSE_Challenges_of_Weapon_Systems_SW_Dev.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA129072
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA129072
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA129072
http://journal.dresmara.ro/issues/volume6_issue1/13_astan.pdf
http://journal.dresmara.ro/issues/volume6_issue1/13_astan.pdf
http://www.sebokwiki.org/
http://www.sebokwiki.org/
http://dx.doi.org/10.1109/SwSTE.2010.17
http://dx.doi.org/10.1109/SwSTE.2010.17
http://www.crosstalkonline.org/storage/issue-archives/1998/199807/199807-Fleming.pdf
http://www.crosstalkonline.org/storage/issue-archives/1998/199807/199807-Fleming.pdf
http://www.pmi.org/PMBOK-Guide-and-Standards.aspx
http://acqnotes.com/wp-content/uploads/2014/09/DoD-Instruction-5000.02-Operations-of-the-Defense-Acquisition-System-7-Jan-2015.pdf
http://acqnotes.com/wp-content/uploads/2014/09/DoD-Instruction-5000.02-Operations-of-the-Defense-Acquisition-System-7-Jan-2015.pdf
http://www.crosstalkonline.org/storage/issue-archives/1998/199807/199807-Jones.pdf
http://www.crosstalkonline.org/storage/issue-archives/1998/199807/199807-Jones.pdf
https://en.wikipedia.org/wiki/HAL_Tejas
https://en.wikipedia.org/wiki/Joint_Strike_Fighter_program
https://acc.dau.mil/docs/dag_pdf/dag_complete.pdf
http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf
http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf

37. Schonenborg RAC, Bieler T, Matthyssen A, Fijneman M (2010) System of systems archi-

tecture in ESA’s concurrent design facility. Proc SECESA 2010:13–15

38. Boehm B (2006) Some future trends and implications for systems and software engineering

processes. Syst Eng 9(1):1–19. http://dx.doi.org/10.1002/sys.20044

39. Owens WA (1996) The emerging US system-of-systems (No. 63). National Defense Univer-

sity, Institute for National Strategic Studies, Washington, DC. http://www.dtic.mil/cgi-bin/

GetTRDoc?AD¼ADA394313. Accessed 27 Sept 2015

40. Alberts DS, Garstka JJ, Stein FP (2000) Network centric warfare: developing and leveraging

information superiority. Assistant Secretary Of Defense (C3I/Command Control Research

Program) Washington, DC

41. Alberts DS, Garstka JJ, Hayes RE, Signori DA (2001) Understanding information age

warfare. Assistant Secretary Of Defense (C3I/Command Control Research Program)

Washington, DC

42. Cebrowski AK, Garstka JJ (1998) Network-centric warfare: its origin and future. In: US

Naval Institute Proceedings, vol 124, no 1, pp 28–35. http://mattcegelske.com/wp-content/

uploads/2012/04/ncw_origin_future.pdf. Accessed 27 Sept 2015

43. Dahmann JS, Lane JA, Rebovich G (2008) Systems engineering for capabilities. Crosstalk – J

Def Softw Eng. http://www.crosstalkonline.org/storage/issue-archives/2008/200811/

200811-Dahmann.pdf. Accessed 27 Sept 2015

44. US Joint Vision 2010. http://www.dtic.mil/jv2010/jv2010.pdf. Accessed 28 Sept 2015

45. US Joint Vision 2020. http://www.dtic.mil/dtic/tr/fulltext/u2/a526044.pdf. Accessed 17 Feb

2017

46. Schekkerman J (2004) How to survive in the jungle of enterprise architecture frameworks:

creating or choosing an enterprise architecture framework. Trafford Publishing

47. Reichwein A, Paredis CJ (2011) Overview of architecture frameworks and modeling lan-

guages for model-based systems engineering. In: Proceedings of ASME 2011 international

design engineering technical conferences and computers and information in engineering

conference, pp 1341–1349

48. Urbaczewski L, Mrdalj S (2006) A comparison of enterprise architecture frameworks. Issues

Inf Syst 7(2):18–23

49. Zachman J (1987) A framework for information systems architecture. IBM Syst J 26

(3):276–292. doi:10.1147/sj.263.0276

50. The Open Group (2015) TOGAF version 9.1. https://www.opengroup.org/togaf/. Accessed

29 Sept 2015

51. U.S. Federal Enterprise Architecture Framework (FEAF) (2015). Federal Enterprise Archi-

tecture Framework Version 2. https://www.whitehouse.gov/omb/e-gov/fea. Accessed 29 Sept

2015

52. U.S. Department of Defense. The DoDAF Architecture Framework Version 2.02. http://

dodcio.defense.gov/Library/DoDArchitectureFramework.aspx. Accessed 29 Sept 2015

53. The British Ministry of Defence Architecture Framework (MODAF). https://www.gov.uk/

guidance/mod-architecture-framework. Accessed 4 July 2016

54. NATO Architecture Framework (NAF) Version 4.0. http://nafdocs.org/. Accessed 4 July

2016

55. Object Management Group (OMG) Unified Architecture Framework (UAF). http://blog.

nomagic.com/unified-architecture-framework-uaf-new-page-updm/. Accessed 29 Sept 2015

56. Spruill N (2002) Now more than ever, software is the heart of our weapons systems,

Crosstalk-The Journal of Defense Software Engineering 3. http://www.crosstalkonline.org/

storage/issue-archives/2002/200201/200201-Spruill.pdf. Accessed 4 July 2016

57. Demir KA (2005) Analysis of TLCharts for weapon systems software development. Masters’

Thesis, Naval Postgraduate School, Monterey, CA, USA, December 2005. http://calhoun.nps.

edu/bitstream/handle/10945/1825/05Dec_Demir.pdf?sequence=1. Accessed 19 Feb 2017

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 81

http://dx.doi.org/10.1002/sys.20044
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA394313
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA394313
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA394313
http://mattcegelske.com/wp-content/uploads/2012/04/ncw_origin_future.pdf
http://mattcegelske.com/wp-content/uploads/2012/04/ncw_origin_future.pdf
http://www.crosstalkonline.org/storage/issue-archives/2008/200811/200811-Dahmann.pdf
http://www.crosstalkonline.org/storage/issue-archives/2008/200811/200811-Dahmann.pdf
http://www.dtic.mil/jv2010/jv2010.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a526044.pdf
http://dx.doi.org/10.1147/sj.263.0276
https://www.opengroup.org/togaf/
https://www.whitehouse.gov/omb/e-gov/fea
http://dodcio.defense.gov/Library/DoDArchitectureFramework.aspx
http://dodcio.defense.gov/Library/DoDArchitectureFramework.aspx
https://www.gov.uk/guidance/mod-architecture-framework
https://www.gov.uk/guidance/mod-architecture-framework
http://nafdocs.org/
http://blog.nomagic.com/unified-architecture-framework-uaf-new-page-updm/
http://blog.nomagic.com/unified-architecture-framework-uaf-new-page-updm/
http://www.crosstalkonline.org/storage/issue-archives/2002/200201/200201-Spruill.pdf
http://www.crosstalkonline.org/storage/issue-archives/2002/200201/200201-Spruill.pdf
http://calhoun.nps.edu/bitstream/handle/10945/1825/05Dec_Demir.pdf?sequence=1
http://calhoun.nps.edu/bitstream/handle/10945/1825/05Dec_Demir.pdf?sequence=1

58. U.S. Government Accountability Office (1992) Mission-critical systems – defense attempting

to address major software challenges, GAO/IMTEC-93-13, December. http://www.gao.gov/

assets/220/217352.pdf. Accessed 4 July 2016

59. Portnoi M, Shen CC (2013) Secure zones: an attribute-based encryption advisory system for

safe firearms. In: Proceedings of 2013 IEEE conference on Communications and Network

Security (CNS), pp 397–398. 14–16 Oct. 2013. National Harbor, MD, USA doi:10.1109/

CNS.2013.6682746

60. Milde KF, Jr (2015) U.S. Patent No. 8,931,195. U.S. Patent and Trademark Office,

Washington, DC

61. Dietel B (2014) U.S. Patent No. 8,756,850. U.S. Patent and Trademark Office, Washington,

DC

62. Nielsen PD (2015) Software engineering and the persistent pursuit of software quality. J Def

Softw Eng:4–9. http://www.crosstalkonline.org/storage/issue-archives/2015/201505/

201505-Nielsen.pdf. Accessed 4 July 2016

63. USAF (1992) “Bold Strike” executive software course

64. Judas PA, Prokop LE (2011) A historical compilation of software metrics with applicability

to NASA’s Orion spacecraft flight software sizing. Innov Syst Softw Eng 7(3):161–170

65. MIL-STD-1589C. JOVIAL (J73). http://everyspec.com/MIL-STD/MIL-STD-1500-1599/

download.php?spec¼MIL-STD-1589C.014577.pdf. Accessed 29 Sept 2015

66. Henties T, Hunt JJ, Locke D, Nilsen K, Schoeberl M, Vitek J (2009) Java for safety-critical

applications. In: 2nd international workshop on the certification of safety-critical software

controlled systems (SafeCert 2009)

67. Nilsen K (2004). Using java for reusable embedded real-time component libraries. Crosstalk:

J Def Softw Eng:13–18. http://www.crosstalkonline.org/storage/issue-archives/2004/

200412/200412-Nilsen.pdf. Accessed 29 Sept 2015

68. Nilsen K (2007) Applying COTS Java benefits to mission-critical real-time software.

Crosstalk: J Def Softw Eng:19–24. http://www.crosstalkonline.org/storage/issue-archives/

2007/200706/200706-Nilsen.pdf. Accessed 29 Sept 2015

69. Jones C (2006) Social and technical reasons for software project failures. Crosstalk: J Def

Softw Eng:4–9. http://www.crosstalkonline.org/storage/issue-archives/2006/200606/

200606-Jones.pdf. Accessed 29 Sept 2015

70. Sommerer S, Guevara MD, Landis MA, Rizzuto JM, Sheppard JM, Grant CJ (2012) Systems-

of-systems engineering in air and missile defense. J Hopkins APL Tech Dig 31(1):5–20.

http://www.jhuapl.edu/techdigest/TD/td3101/31_01_Sommerer.pdf. Accessed 29 Sept 2015

71. Drusinsky D, Shing MT, Demir K (2005) Test-time, run-time, and simulation-time temporal

assertions in RSP. In: Proceedings of the 16th IEEE International workshop on rapid system

prototyping (RSP’05), 8–10 June 2005, Montreal, Canada, pp 105–110

72. Guernsey GG (2009) Integrated test and evaluation (T&E) management: The Information

Mission Assessment Tool (IMAT) prototype. PhD dissertation, Union Institute and Univer-

sity, USA

73. Gomaa H (2000) Designing concurrent, distributed, and real-time applications with UML.

Addison-Wesley, p 8

74. Shalal-Esa A (2012) Pentagon focused on resolving F-35 software issues. Online News from

Reuters, 30 March. www.reuters.com/article/2012/03/30/lockheed-fighter-

idUSL2E8EU8C420120330. Accessed 29 Sept 2015

75. Defense Science Board (2000) Report of the defense science board task force on defense

software, November, pp. 11.

76. Blanchard BJ, Fabrycky WJ (1998) Systems engineering and analysis, 3rd edn. Prentice Hall

International Series in Industrial & Systems Engineering. ISBN: 0131350471

77. United States Government Accountability Office (2008) Report to congressional committees:

increased focus on requirements and oversight needed to improve DOD’s acquisition envi-

ronment and weapon system quality, GAO-08-294. http://www.gao.gov/assets/280/271830.

pdf. Accessed 27 Sept 2015

82 K.A. Demir

http://www.gao.gov/assets/220/217352.pdf
http://www.gao.gov/assets/220/217352.pdf
http://dx.doi.org/10.1109/CNS.2013.6682746
http://dx.doi.org/10.1109/CNS.2013.6682746
http://www.crosstalkonline.org/storage/issue-archives/2015/201505/201505-Nielsen.pdf
http://www.crosstalkonline.org/storage/issue-archives/2015/201505/201505-Nielsen.pdf
http://everyspec.com/MIL-STD/MIL-STD-1500-1599/download.php?spec=MIL-STD-1589C.014577.pdf
http://everyspec.com/MIL-STD/MIL-STD-1500-1599/download.php?spec=MIL-STD-1589C.014577.pdf
http://everyspec.com/MIL-STD/MIL-STD-1500-1599/download.php?spec=MIL-STD-1589C.014577.pdf
http://www.crosstalkonline.org/storage/issue-archives/2004/200412/200412-Nilsen.pdf
http://www.crosstalkonline.org/storage/issue-archives/2004/200412/200412-Nilsen.pdf
http://www.crosstalkonline.org/storage/issue-archives/2007/200706/200706-Nilsen.pdf
http://www.crosstalkonline.org/storage/issue-archives/2007/200706/200706-Nilsen.pdf
http://www.crosstalkonline.org/storage/issue-archives/2006/200606/200606-Jones.pdf
http://www.crosstalkonline.org/storage/issue-archives/2006/200606/200606-Jones.pdf
http://www.jhuapl.edu/techdigest/TD/td3101/31_01_Sommerer.pdf
http://www.reuters.com/article/2012/03/30/lockheed-fighter-idUSL2E8EU8C420120330
http://www.reuters.com/article/2012/03/30/lockheed-fighter-idUSL2E8EU8C420120330
http://www.gao.gov/assets/280/271830.pdf
http://www.gao.gov/assets/280/271830.pdf

78. Lenfestey A, Cring E, Colombi J (2009) Architecting human operator trust in automation for

multiple unmanned aerial system (UAS) control. In: Proceedings of software engineering

research and practice 2009.121–127. Las Vegas, Nevada, USA. 13–16 July

79. Cring E, Lenfestey A (2009) Architecting human operator trust in automation for multiple

unmanned aerial system (UAS) control. Master’s thesis, Air Force Institute of Technology,

USA

80. Demir KA, Cicibas H, Arica N (2015) Unmanned aerial vehicle domain: areas of

research. Defence Science Journa 65(4):319–329. doi:10.14429/dsj.65.8631, http://

www.softwaresuccess.org/papers/2015_Demir_UAV_Research_Areas.pdf. Accessed 17

Feb 2017

81. Storey NR (1996) Safety critical computer systems. Addison-Wesley Longman Publishing

Co., Inc

82. UK Ministry of Defence Standard Def Stan 00–56 Safety management requirements for

defence systems

83. Lee SY, Wong WE, Gao R (2014) Software safety standards: evolution and lessons learned.

In: Proceedings of 2014 international conference on Trustworthy Systems and their Appli-

cations (TSA), pp 44–50. 9–10 June 2014, Taichung. doi:10.1109/TSA.2014.16

84. United States, Weapon systems acquisition reform act of 2009. http://www.govtrack.us/

congress/billtext.xpd?bill¼s111-454. Accessed 27 Sept 2015

85. Steinbock D (2014) The challenges for America’s defense innovation. The Information

Technology and Innovation Foundation (ITIF). http://www2.itif.org/2014-defense-rd.pdf.

Accessed 27 Sept 2015

86. United States Government Accountability Office (2015) Report to congressional committees:

acquisition reform – DOD should streamline its decision-making process for weapon systems

to reduce inefficiencies, Report No: GAO-15-192, http://www.gao.gov/assets/670/668629.

pdf. Accessed 29 Sept 2015

87. Boehm B, Lane JA (2007) Using the incremental commitment model to integrate system

acquisition, systems engineering, and software engineering. Crosstalk – J Def Softw Eng 19

(10):4–9

88. United States Government Accountability Office (2006) Managing the supplier base in the

21st century, Report No: GAO-06-533SP. http://www.gao.gov/assets/250/249592.pdf.

Accessed 29 Sept 2015

89. United States Under Secretary of Defense for Acquisition, Technology, and Logistics And

Assistant Secretary of Defense for Networks and Information Integration/DoD Chief Infor-

mation Officer (2009) Report on Trusted Defense Systems in response to the National

Defense Authorization Act for Fiscal Year 2009, December 22. http://www.acq.osd.mil/se/

docs/TrustedSystems-Exec_Summ-wAddendum-wTitlePgNoteinPDF.pdf. Accessed 29 Sept

2015

90. Demir KA (2016) Strategic human resource management of government defense R&D organi-

zations, CrossTalk J Def Softw Eng 29(2):24–30. www.crosstalkonline.org/storage/issue-

archives/2016/201603/201603-Demir.pdf. Accessed 19 Feb 2017

91. United States Department of Defense Instruction (2012) DoDI, 5200.44. Protection of

Mission Critical Functions to Achieve Trusted Systems and Networks (TSN). November

5. http://www.dtic.mil/whs/directives/corres/pdf/520044p.pdf. Accessed 27 Sept 2015

92. United States Government Accountability Office (2015) Defense acquisition process, military

service chiefs’ concerns reflect need to better define requirements before Programs Start Report

No: GAO-15-469, http://www.gao.gov/assets/670/668629.pdf. Accessed 29 Sept 2015

93. United States Government Accountability Office (2014) Defense Contracting: DOD’s Use of
Class Justifications for Sole-Source Contracts, 16, Report No: GAO-14-427R DOD Class

Justifications. http://www.gao.gov/assets/670/662579.pdf. Accessed 29 Sept 2015

94. U.S. Department of Defense Manual 4120.24 (2014) Defense Standardization Program (DSP)

Procedures. http://www.dtic.mil/whs/directives/corres/pdf/412024m.pdf. Accessed 29 Sept

2015

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 83

http://dx.doi.org/10.14429/dsj.65.8631
http://www.softwaresuccess.org/papers/2015_Demir_UAV_Research_Areas.pdf
http://www.softwaresuccess.org/papers/2015_Demir_UAV_Research_Areas.pdf
http://dx.doi.org/10.1109/TSA.2014.16
http://www.govtrack.us/congress/billtext.xpd?bill=s111-454
http://www.govtrack.us/congress/billtext.xpd?bill=s111-454
http://www.govtrack.us/congress/billtext.xpd?bill=s111-454
http://www2.itif.org/2014-defense-rd.pdf
http://www.gao.gov/assets/670/668629.pdf
http://www.gao.gov/assets/670/668629.pdf
http://www.gao.gov/assets/250/249592.pdf
http://www.acq.osd.mil/se/docs/TrustedSystems-Exec_Summ-wAddendum-wTitlePgNoteinPDF.pdf
http://www.acq.osd.mil/se/docs/TrustedSystems-Exec_Summ-wAddendum-wTitlePgNoteinPDF.pdf
http://dx.doi.org/www.crosstalkonline.org/storage/issue-archives/2016/201603/201603-Demir.pdf
http://dx.doi.org/www.crosstalkonline.org/storage/issue-archives/2016/201603/201603-Demir.pdf
http://www.dtic.mil/whs/directives/corres/pdf/520044p.pdf
http://www.gao.gov/assets/670/668629.pdf
http://www.gao.gov/assets/670/662579.pdf
http://www.dtic.mil/whs/directives/corres/pdf/412024m.pdf

95. U.S. Department of Defense Directive (DoDD) 5000.01 (2007) Operation of the Defense

Acquisition System. DoD Directive 5000.1: DoD. http://www.acqnotes.com/Attachments/

DoD%20Directive%205000.01.pdf. Accessed 20 Sept 2015

96. Department Of Defense Standard Practice, System Safety, MIL-STD-882E, May 11 (2012)

https://acc.dau.mil/adl/en-US/683694/file/75173/MIL-STD-882E%20Final%202012-05-11.

pdf. Accessed 20 Sept 2015

97. Royce W (1970) Managing the development of large software systems: concepts and

techniques. In: Proceedings of IEEEWESCOM. IEEE Computer Society Press, Los Alamitos

98. Petersen K, Wohlin C, Baca D (2009) The waterfall model in large-scale development. In:

Product-focused software process improvement. Springer, Berlin/Heidelberg, pp 386–400

99. Hirschberg M (2000) The V model, Crosstalk – J Def Softw Eng,. http://www.

crosstalkonline.org/storage/issue-archives/2000/200006/200006-Hirschberg.pdf. Accessed

29 Sept 2015

100. German Directive 250 (1992) Software development standard for the German Federal Armed

Forces, V-Model, Software Lifecycle Process Model

101. US Department of Defense Standard (1988) DOD-STD-2167A Defense Systems Software

Development

102. United States Government Accountability Office (2009) Defense acquisitions – charting a

course for improved missile defense testing, 25, Report No: GAO-09-403T. http://www.gao.

gov/new.items/d09403t.pdf. Accessed 29 Sept 2015

103. Software Engineering Institute (2010) CMMI® for Acquisition (CMMI-ACQ) Version 1.3,

Technical Report: CMU/SEI-2010-TR-032. http://repository.cmu.edu/cgi/viewcontent.cgi?

article¼1277&context¼sei. Accessed 29 Sept 2015

104. Software Engineering Institute, Carnegie Mellon University (2010) CMMI for Development

(CMMI-DEV) Version 1.3, 2010. Technical Report: CMU/SEI-2010-TR-033

105. Software Engineering Institute (2010) CMMI® for Services (CMMI-DEV), Version 1.3.

Technical Report: CMU/SEI-2010-TR-032, November 2010. http://repository.cmu.edu/cgi/

viewcontent.cgi?article¼1279&context¼sei. Accessed 29 Sept 2015

106. Barbour R (2006) CMMI DoD perspective. Presentation. http://resources.sei.cmu.edu/asset_

files/presentation/2006_017_001_22727.pdf. Accessed 29 Sept 2015

107. Phillips M, Shrum S (2010) Process improvement for all: what to expect from CMMI Version

1.3. Crosstalk – J Def Softw Eng, http://www.crosstalkonline.org/storage/issue-archives/

2010/201001/201001-Phillips.pdf. Accessed 27 Sept 2015

108. Lehman M (1980) Programs, life cycles, and laws of software evolution. Proc IEEE 68

(9):1060–1076. doi:10.1109/PROC.1980.11805

109. Larson AG, Banning CK, Leonard JF (2002) An open systems approach to supportability.

WALCOFF Technologies Inc., Fairfax. http://www.dtic.mil/cgi-bin/GetTRDoc?

AD¼ADA404574. Accessed 27 Sept 2015

110. Dahmann J, Baldwin K (2011) Implications of systems of systems on system design and

engineering. In: Proceedings of 2011 6th international conference on system of systems

engineering (SoSE), pp 131–136. 27–30 June. Albuquerque, NM, USA doi:10.1109/

SYSOSE.2011.5966586

111. Demir KA (2015) Multi-view software architecture design: case study of a mission-critical

defense system. Computer and Information Science 8(4):12–31. doi:10.5539/cis.v8n4p12,

http://www.ccsenet.org/journal/index.php/cis/article/view/51025/28835. Accessed 19 Feb 2017

112. Dahmann J, Rebovich G, Lowry R, Lane J, Baldwin K (2011) An implementers’ view of

systems engineering for systems of systems. In: Proceedings of 2011 IEEE international

systems conference (SysCon), pp 212–217. 4–7 April. Montreal, QC, Canada. doi:10.1109/

SYSCON.2011.5929039

113. Victor B (2013) Revisiting legacy systems and legacy modernization from the industrial

perspective. Masters’ Thesis, University of Utrecht, Utrecht, the Netherlands

114. Software Program Managers Network (SPMN). https://acc.dau.mil/CommunityBrowser.

aspx?id¼219279&lang¼en-US. Accessed 24 Feb 2017

84 K.A. Demir

http://www.acqnotes.com/Attachments/DoD%20Directive%205000.01.pdf
http://www.acqnotes.com/Attachments/DoD%20Directive%205000.01.pdf
https://acc.dau.mil/adl/en-US/683694/file/75173/MIL-STD-882E%20Final%202012-05-11.pdf
https://acc.dau.mil/adl/en-US/683694/file/75173/MIL-STD-882E%20Final%202012-05-11.pdf
http://www.crosstalkonline.org/storage/issue-archives/2000/200006/200006-Hirschberg.pdf
http://www.crosstalkonline.org/storage/issue-archives/2000/200006/200006-Hirschberg.pdf
http://www.gao.gov/new.items/d09403t.pdf
http://www.gao.gov/new.items/d09403t.pdf
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1277&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1277&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1277&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1277&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1279&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1279&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1279&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1279&context=sei
http://resources.sei.cmu.edu/asset_files/presentation/2006_017_001_22727.pdf
http://resources.sei.cmu.edu/asset_files/presentation/2006_017_001_22727.pdf
http://www.crosstalkonline.org/storage/issue-archives/2010/201001/201001-Phillips.pdf
http://www.crosstalkonline.org/storage/issue-archives/2010/201001/201001-Phillips.pdf
http://dx.doi.org/10.1109/PROC.1980.11805
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA404574
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA404574
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA404574
http://dx.doi.org/10.1109/SYSOSE.2011.5966586
http://dx.doi.org/10.1109/SYSOSE.2011.5966586
http://dx.doi.org/10.5539/cis.v8n4p12
http://www.ccsenet.org/journal/index.php/cis/article/view/51025/28835
http://dx.doi.org/10.1109/SYSCON.2011.5929039
http://dx.doi.org/10.1109/SYSCON.2011.5929039
https://acc.dau.mil/CommunityBrowser.aspx?id=219279&lang=en-US
https://acc.dau.mil/CommunityBrowser.aspx?id=219279&lang=en-US
https://acc.dau.mil/CommunityBrowser.aspx?id=219279&lang=en-US
https://acc.dau.mil/CommunityBrowser.aspx?id=219279&lang=en-US

115. Software Program Managers Network, 16 Critical Software Practices. https://acc.dau.mil/

CommunityBrowser.aspx?id¼191920. Accessed 24 Feb 2017

116. Evans M (2001) SPMN director identifies 16 critical software practices. CrossTalk – J Def

Softw Eng. http://www.crosstalkonline.org/storage/issue-archives/2001/200103/200103-

Evans.pdf. Accessed 29 Sept 2015

117. Software Acquisition Best Practices Initiative, Software Program Managers Network

(SPMN) (1998), The Program Manager’s Guide to Software Acquisition Best Practices

Version 2.31

118. Defense Acquisition University (DAU). http://www.dau.mil/default.aspx. Accessed 29 Sept

2015

119. Tomasetti R, Cohe S, Buchholz M (2005) Earned value management moving toward

Governmentwide implementation. Acquisition Directions. https://www.asigovernment.com/

documents/adv05-08.pdf. Accessed 27 Sept 2015

120. Report of the Defense Science Board Task Force on Defense Software (2000) Defense

Science Board, p 11. http://www.acq.osd.mil/dsb/reports/ADA385923.pdf. Accessed

27 Sept 2015

121. Report of the Defense Science Board Task Force on Mission Impact of Foreign Influence on

DoD Software (2007) Defense Science Board, pp 11. http://www.acq.osd.mil/dsb/reports/

ADA486949.pdf. Accessed 29 Sept 2015

122. Common Criteria. http://www.commoncriteriaportal.org. Accessed 29 Sept 2015

123. DO-178C (2011) Software considerations in airborne systems and equipment certification

124. ISO/IEC/IEEE 15288–2008. Systems and software engineering – system life cycle processes.

doi:10.1109/IEEESTD.2008.4475828, http://ieeexplore.ieee.org/servlet/opac?

punumber¼4475823. Accessed 29 Sept 2015

125. ISO/IEC/IEEE 15289–2011. Systems and software engineering – content of life-cycle infor-

mation products (documentation). doi:10.1109/IEEESTD.2011.6104079, http://ieeexplore.

ieee.org/xpl/mostRecentIssue.jsp?punumber¼6104077. Accessed 29 Sept 2015

126. ISO/IEC/IEEE 15289–2015. International standard systems and software engineering –

content of life-cycle information items (documentation). http://ieeexplore.ieee.org/xpl/

mostRecentIssue.jsp?punumber¼7270962. Accessed 29 Sept 2015

127. Demir KA (2009) A survey on challenges of software project management. In: Proceedings of

software engineering research and practice (SERP 2009), July 13–16, 2009, Las Vegas, Nevada,

USA, pp 579–585. http://www.softwaresuccess.org/papers/2009_Demir_SERP_Survey_On_

Challenges_of_SW_Project_Mgmt.pdf . Accessed 19 Feb 2017

128. Rendon RG (2007) Using a modular open systems approach in defense acquisitions: Impli-

cations for the contracting process. In: Proceedings of IEEE international conference on

system of systems engineering (SoSE’07). pp 1–6. 16–18 April. San Antonio, TX. doi:10.

1109/SYSOSE.2007.4304231

129. U.S. Government Accounting Office. http://gao.gov/index.html. Accessed 29 Sept 2015

130. Defense Science Board (2013) Resilient military systems and the advanced cyber threat.

http://www.acq.osd.mil/dsb/reports/ResilientMilitarySystems.CyberThreat.pdf. Accessed

29 Sept 2015

131. Maier MW (1996) Architecting principles for systems-of-systems. INCOSE Int Symp 6

(1):565–573

132. Ferguson J (2001) Crouching dragon, hidden software: software in DoD weapon systems.

IEEE Softw 18(4):105. doi: 10.1109/MS.2001.936227

4 Characteristics of Large-Scale Defense Projects and the Dominance of. . . 85

https://acc.dau.mil/CommunityBrowser.aspx?id=191920
https://acc.dau.mil/CommunityBrowser.aspx?id=191920
https://acc.dau.mil/CommunityBrowser.aspx?id=191920
http://www.crosstalkonline.org/storage/issue-archives/2001/200103/200103-Evans.pdf
http://www.crosstalkonline.org/storage/issue-archives/2001/200103/200103-Evans.pdf
http://www.dau.mil/default.aspx
https://www.asigovernment.com/documents/adv05-08.pdf
https://www.asigovernment.com/documents/adv05-08.pdf
http://www.acq.osd.mil/dsb/reports/ADA385923.pdf
http://www.acq.osd.mil/dsb/reports/ADA486949.pdf
http://www.acq.osd.mil/dsb/reports/ADA486949.pdf
http://www.commoncriteriaportal.org
http://dx.doi.org/10.1109/IEEESTD.2008.4475828
http://ieeexplore.ieee.org/servlet/opac?punumber=4475823
http://ieeexplore.ieee.org/servlet/opac?punumber=4475823
http://ieeexplore.ieee.org/servlet/opac?punumber=4475823
http://dx.doi.org/10.1109/IEEESTD.2011.6104079
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6104077
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6104077
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6104077
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7270962
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7270962
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7270962
http://dx.doi.org/http://www.softwaresuccess.org/papers/2009_Demir_SERP_Survey_On_Challenges_of_SW_Project_Mgmt.pdf
http://dx.doi.org/http://www.softwaresuccess.org/papers/2009_Demir_SERP_Survey_On_Challenges_of_SW_Project_Mgmt.pdf
http://dx.doi.org/10.1109/SYSOSE.2007.4304231
http://dx.doi.org/10.1109/SYSOSE.2007.4304231
http://gao.gov/index.html
http://www.acq.osd.mil/dsb/reports/ResilientMilitarySystems.CyberThreat.pdf
http://dx.doi.org/10.1109/MS.2001.936227

Chapter 5

Software Project Management as a Service
(SPMaaS): Perspectives and Benefits

Muthu Ramachandran and Vikrant Chaugule

5.1 Introduction

Cloud computing has evolved to address the availability of computing resources

which can be accessed from anywhere and anytime. In particular, computing

hardware and software often gets outdated, and hence, it is wise to outsource

computing resources and to manage their IT infrastructures outside of their com-

pany premises, which is more cost-effective than is the case at present. Applications

can be leased (like pas-as-you-go service) rather than being purchased, and com-

panies have increased their data centers due to demand (Amazon, Microsoft, and

IBM) [1]. Cloud computing is heavily based on “software as a service” concept and

needs high-speed web access. It provides services on demand utilizing resources

more effectively within the cloud environment. The cloud architecture, its layers,

and its composition of components and services need to be designed for scalability,

security, and re-configurability as they support services and its agreements (e.g.,

service level agreements). In this scenario, the resource management of cloud

computing is the key to achieving potential benefits.

Cloud computing, one of the greatest developments in the field of computing,

has the ability to transform and change the work of an IT industry. It has definitely

helped in making the way software can be offered more attractively and also

changing the way hardware is purchased and designed. It has led to a complete

M. Ramachandran (*)

School of Computing, Creative Technologies and Engineering, Leeds Beckett University,

Leeds LS6 3QS, UK

e-mail: M.Ramachandran@leedsbeckett.ac.uk

V. Chaugule

Department of Computer Science and Engineering, National Institute of Technology,

Surathkal, Karnataka 575025, India

e-mail: vikrant.chaugule@gmail.com

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_5

87

mailto:M.Ramachandran@leedsbeckett.ac.uk
mailto:vikrant.chaugule@gmail.com

change especially that developers coming up with new Internet services need not

require a large investment in hardware or the human resources to operate the

hardware. The developers need not waste costly resources and face losses in case

the product fails, and on the other hand, they do not need to worry about scalability

if the idea turns out to be successful and popular. This versatility about resources,

without paying a premium for vast scale, is phenomenal for the IT industry.

Cloud computing consists of both applications provided as services over the

Internet and the hardware and systems software which provide such services in the

data centers. The services themselves have long been referred to as software as a

service (SaaS) [2]. Together, the hardware and software at the datacenter comprises

the cloud. When this is made available in the form of a pay-as-you-go fashion, to

the people, it is called a public cloud, whereas utility computing is the service being

sold. If the cloud is owned privately by an organization only for storing their

information and is not made available to the public, it is called a private cloud.

Thus, the addition of SaaS and utility computing is called cloud computing. People

can be users or providers of utility computing, or users or providers of SaaS. We

would like to focus on SaaS project management with the help of improving the

way services are provided such that it is more convenient for users to use and

benefit from them.

Some of the benefits of using cloud computing are [3]:

• It leads to lowering of project costs. Since the model used for billing is pay as per

usage, maintenance is reduced since infrastructure required is not purchased.

• A massive infrastructure is provided by all the cloud service providers, and

therefore, managing large volumes of data has become a reality. The cloud can

be scaled dynamically, and sudden workload spikes can be handled very

efficiently.

• It is very flexible. With enterprises having to adapt and adjust very rapidly,

delivery speed becomes very critical. Hence, more emphasis is given on getting

applications to market very quickly.

With the emergence of cloud computing, the focus moves to the interface, that is,

interface between the service consumers and service providers. Some areas like

distributed services, risk assessment, procurement, and service negotiation will

demand expertise from enterprises, but most of them are only modestly equipped

to take care of them.

Cloud computing is based on web access; therefore, we need to design web

applications which are designed for security. Hence, it is essential to design cloud

applications as web service components based on well-proven software process,

design methods, and techniques such as component-based software engineering

(CBSE). Wand and Laszewski [4] define cloud computing as a set of network-

enabled services which provides scalable, guaranteed QoS (quality of service),

inexpensive computing platforms on demand, customizable (personalized), and

all of which can be accessed in a simple and pervasive way. An overview of the

different cloud computing paradigms is discussed and presented with definitions,

business models, and technologies by Wand and Laszewski [4] and by many others.

88 M. Ramachandran and V. Chaugule

Software components provide a good design rationale supporting various

requirements of application developments, design flexibility, system composition,

testability, reusability, and other design characteristics. Component-based designs

are customizable, and interfaces can be designed supporting SLA (service level

agreement). SLAs vary between service providers which need to be customized

without much effort. This can only be achieved using a component which has been

designed for flexible interface that links to a number of SLAs. Each SLAs and

business rules can be represented as a set of interfaces that can be mapped onto

knowledge-based database or a data server. This also allows the reuse of SLAs for

any individual service providers. Some of the important characteristics of the cloud

computing mentioned are:

• On-demand service

• Handling multi tenancy service requirements

• Resource grouping

• Efficient elasticity

• Measurable service delivery

Our earlier work described by Ramachandran [5] on component model for web

services and service-oriented architecture (SOA), grid computing, and various other

systems can become an integrated aspect of any cloud computing architectures and

application design. We also need to understand the basic differences among SOA

(service-oriented architecture), grid, and cloud computing. SOA is to offer services

which are based on open standard Internet services and virtualization technology

and have been running in a different environment, grid offers services from

multiple environments and virtualization, and cloud combines both. We also need

to identify a specific development process for capturing requirements, design and

implementation strategies, security, and testing cloud applications. Cloud comput-

ing paradigm has lots to offer, but at the same time, we need to consider building a

secured and resilient architecture and services that are reliable and trustworthy. In

this chapter, a generic component model and a web service component model have

been developed meeting the design demands for building cloud application archi-

tectures. In this research, we have also proposed architectural composition strate-

gies which can be customized for various cloud services.

This chapter presents our work on software development process model for

building cloud services as it is necessary to follow a systematic approach. The

organization is as follows. Section 5.2 gives a detailed explanation on the software

development process for Cloud computing, Sect. 5.3 talks about the service devel-

opment process, Sect. 5.4 compares classical and cloud-based project management

tools, Sect. 5.5 provides a critical evaluation of some existing project management

tools, Sect. 5.6 discusses the integrated software development process, and Sect. 5.7

gives a detailed explanation on the service-oriented architecture. Conclusions are

summarized in Sect. 5.8.

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 89

5.2 Software Development Process for Cloud Computing

In order to define a process model, it is useful to capture some of our thoughts on

understanding the very nature of cloud characteristics and its type of services that

aims to provide. Identifying characteristics of a service-oriented system is vital for

designers such that they can select, design, and evaluate those characteristics that

are applicable to their applications. Service-oriented computing (SoC) [6] involves

integration of several disciplines and subject areas, and therefore, some of the

characteristics will overlap. Some of the identified services and component char-

acteristics are:

• Reusable web services and some other core services

• Enterprise integration services

• Dynamic binding and reconfigurable at run-time

• Granularity

• Publish, subscribe, and discover

• Open world where components must be able to connect and plug to third party

software systems or components.

• Heterogeneity supporting cross-platform applications

• Reconfigurable

• Self-composable and self-recoverable

• Cloud infrastructure and resources management

• Autonomic framework

• Middleware

• QoS

This is illustrated in Fig. 5.1, which shows some of the above characteristics that

are the key to developing software components. In the modern software develop-

ment, characteristics such as open world where components can be customizable

and connectable to third party systems and their components and heterogeneity are

crucial to developing highly reusable web services that will apply across domains

and services.

The main reason for presenting such characteristics is to understand the basis for

service-oriented systems and hence providing good practice design guidelines. The

next section looks at the distinct features and differences between services and

components. Again these characteristics need to overlap as we are also interested in

applying component-based development for service-oriented systems. In particular

web services need to possess both services and component characteristics. After

looking at service-oriented computing and the characteristics of SaaS systems in

this section, we shall look at the service-oriented development process in detail in

the next section.

90 M. Ramachandran and V. Chaugule

5.3 Service Development Process

The identification of service requirements [6] needs a new RE process and model-

ling techniques as it is highly dependent on multilevel enterprises across corpora-

tion. Identifying and knowing all requirements for all expected and even

unexpected services is very hard. The idea in software as a service is to publish

automatically new services whereby service agents can then be able to request and

take advantage of required services for their customers. Figure 5.2 shows a devel-

opment process model for service-oriented computing where initial requirements

are captured based on enterprise-wide techniques and perhaps using domain anal-

ysis which should focus on a family of products and services. The second phase

(RE services) involves identifying a set of requirements of system services. This

process involves service modelling and service specification for which we can use

any well-known techniques such as use case design and a template for software as a

service (SaaS).

The third phase (categorizing services) involves classifying and distinguishing

services into various categories such as enterprise integration services (services

across corporations, departments, other business services); software services which

represents core functionality of software systems; business logic services which

represents business rules and its constraints; web services (a self-contained and

web-enabled entity which provides services across businesses and customizable at

SaaS
Systems

Open-
world

QoS

Autonomic
Frameworks

Web
Services

Composability

Extensibility

Dynamic
Binding

Publish/Subscribe

Multi-tenancy

Elastic
Resource

Management

Cloud
Infrastructure

Middleware
and IoT

Integration

Enterprise
Integration

Fig. 5.1 Characteristics of software as a service systems (SaaS)

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 91

run-time); IT core services which include resource management, help desk systems,

IT infrastructure, and procurement; and delivery services, B2B and B2C services,

data services, QoS services, middleware services, transaction management ser-

vices, process integration services, re-configurability services, and grid services

which include grid resource management and re-configurations. Service design

stage has been proposed with designing services using OMG standard design

notation known as SoaML which consists of a five-stage design:

• Design Service Interfaces: This offers services to other services through well-

designed interfaces (the value provided), it allows design for service reuse, and it

allows modelling of service specification.

Enterprise
Requirements

• Identify enterprise cloud service requirements
• Identify enterprise integration and architectural integrity requirements
• Identify continuous delivery, integration, security and QoS requirements

Service
Requirements
Engineering

• Identify Business Services
• Service Modelling
• Service Specification

• Enterprise Integration Services
• Software Services
• Business Logic Services
• Web Services
• IT Core Services
• IT Infrastructure Services
• IT procurement and delivery services
• B2B Services

• Design Service Interfaces
• Specify Service Choreography
• Design Service Participant Diagrams
• Design Service Contract Diagrams
• Design Services Architecture Diagrams

• Use secure cloud service development process which is engineered for service
reuse and QoS

• Use Agile Test Driven Approaches with cloud based STaaS (Softwar Testing
as a Service)

• Use Continuous Delivery and Integration Practices
• Conduct Performance Metrics and QoS Testing

Design with
SoaML

Categorize
Services

Development,
Test &
Delivery

Fig. 5.2 Service-oriented software development process

92 M. Ramachandran and V. Chaugule

• Specify service choreography which defines the interaction between the provider

and consumer in completing a service, and this can be modelled using UML

sequence diagrams.

• Design Service Participant Diagrams: The concept of a participant, in SoaML,

represents certain party or component that provides a transaction through its

interface to a consume service(s). Participants can be software components,

organizations, system, or individuals. The participant design should be designed

with SoaML participant diagrams which are similar to a UML component

service with provider and require interfaces designed through the concept of a

port. Service participant diagram allows for modeling primarily the participants

that play role(s) in services architectures. It also presents the services provided

and used by these participants.

• Design Service Contract Diagrams: As we have discussed, there are three

approaches to specify a service: the above two interface-based approaches –

simple interface and service interface – and, thirdly, through a service contract.

Service contract defines the agreement between parties about how a service is to

be provided and consumed. “Agreement” here refers to interfaces, choreography

and any terms and conditions. Interacting participants MUST agree to the

agreement in order for the service to be enacted. In SoaML, this is designed

using service contract diagrams.

• Design Services Architecture Diagrams: This stage of the design offers features

to express the complete list of services and their interactions. A service-oriented

architecture, abbreviated as SOA, shows the participant roles that provide and

consume services to fulfill certain purpose. In SoaML, this is represented as large

globe with all interacting services connected.

We discuss in detail, in the last section of this chapter, SoaML design for

SPMaaS. Based the above finding, we can propose a new paradigm for cloud

application engineering as shown in Fig. 5.3. This illustration provides a relevant

link to classical software engineering process.

As shown in Fig. 5.3, the requirements phase is linked to identifying cloud

requirements which should in particular identify service requirements and relevant

software security requirements so that cloud services are built with security rather

than adding security batches after release. The design phase is linked to designing

services for cloud environment and reuse as services are loosely coupled and have

high potential for reuse. The code/implementation phase is linked to service

development. Likewise testing and QA are related to cloud testing strategies and

quality engineering. The next section discusses classical software project manage-

ment activities and the need of cloud-based project management tools and high-

lights the advantages of cloud-based project management tools [11–17].

With increase in the use of service-oriented architecture, software projects and

systems can get very complex. With the aim of managing this complexity, a number

of SDLC models have been used:

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 93

• Waterfall model

• Spiral model

• Rapid prototyping

• Agile method

• Incremental

• Synchronize and stabilize

The above mentioned models have been in existence for many years, and each of

them has their own advantages. For instance, the waterfall model is simple to

understand, use, and manage. High amount of risk analysis is done with the spiral

model, and hence avoidance of risk is enhanced. The agile method allows regular

adaptation to changing circumstances, and even late changes in requirements are

welcomed. The incremental model provides benefits like easier testing and

debugging during smaller iterations and also lowers initial delivery cost. Though

these models have their own advantages, there are many issues which exist:

• Fulfilling compatibility criteria of numerous services from various vendors

• Sufficient bout of resources and accordingly manage them

• Lack of required coordination between client and provider to provide what was

required

• Managing responsiveness and streamline changes as requested

• Deviation from anticipated product

• Difficult to come back to initial stages in case they had not turned out as

expected

Understanding and keeping all of the above issues in mind, mainly relating to the

vendor-based SDLC, the cloud-based service would typically offer the following:

• Requirements Engineering as a cloud service (REaaS) menas it supports reuse of

requirements, traceability, and commonality and variability analysis for a

familay of related systems. At this pahse of any project management activities

Software Engineering Lifecycle

Cloud Application Engineering Lifecycle

Requirements
Engineering Design

Cloud
Requirements

Design
for Cloud
Services

Cloud
services

development

Cloud services
testing

Service
Quality

Assurance

Code Testing
Software
Quality

Assurance

Cloud services
deployment

Fig. 5.3 Software engineering vs. cloud application engineering lifecycle

94 M. Ramachandran and V. Chaugule

using REaaS can also support contractual regulations, project initiion, accep-

tance testing and planning.

• Product design based on the collected requirements and documented artifacts.

• Implementation through cloud service based on customer chosen environment.

• Un-optimized and deviation from the required product needs to be checked, and

hence testing is performed.

• Option of upgrading and updating the services to incorporate changing and

dynamic requirements of the client.

Similar work done previously in this area can be seen in paper [7] where authors

have focused on a cloud-based management of projects through the means of

software as a service and its various augmentable utilities. They have proposed a

model on the cloud which provides SDLC phases as coordinated services. In this

proposed model, services will be able to interact with one another and either

providers or consumers of data and behavior, instead of letting the client collect

all the data and put it altogether after gathering from numerous vendors. A tech-

nique and approach for the implementation of the model is also stated in detail. The

internal working of the model makes use of two services – IaaS and SaaS. SaaS

(software as a service) borrows services and resources from IaaS (Infrastructure as a

Service) providers and in turn leases those services to the users. This maximizes

resource utilization and also results in increasing customer satisfaction level (CSL).

The SaaS contains two vital layers, namely, platform layer and application layer.

While the platform layer would be responsible for the admission control depending

on how many projects are already admitted, scheduling process, etc., the applica-

tion layer is required to assemble the service from IaaS and integrate the resources

with it to perform the job which conventionally is done by a third party system. The

model proposed by them can be implemented not only for small term developer

level projects but also higher level project management for which the number of

resources to be utilized is a long-term and non-ephemeral function of usage and

maintenance.

5.4 Classical vs. Cloud-Based Software Project
Management

As management is said to both science and the art, so is project management. The

careful process of bringing together economics, software technology, and human

relations for a software project is not a simple task. A software project is an

extremely people-intensive exertion that traverses an exceptionally long period,

with crucial ramifications on the work and execution of a wide range of classes of

individuals.

A software project can be regarded as the assembling of tasks that create an

identifiable and valuable outcome. In its fundamental form, project management

[8–9] consists of planning, executing, and monitoring these activities (Fig. 5.4).

Notwithstanding, the high expenses and failure rates of software projects keep on

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 95

engaging analysts and specialists, and regardless of a few advances, the successful

administration of the project is still a challenging process. Dealing with the one of a

kind and complex procedures that constitutes a task includes the execution of

particular administration exercises. In programming improvement, as in most

different organizations, there has been an inclination toward institutionalizing

these exercises by method for formalized, nonexclusive project management meth-

odologies like PRINCE2 [8], which was created and championed by the UK

government. In spite of the fact that there is a worldwide origination of the project

management marvel, there is no brought together hypothesis of project manage-

ment or very much characterized measure of project success. It is beyond the

capabilities of project teams of large software projects to decide the technological,

environmental, and organizational states which might have an influence on the

outcome of the desired product. Another challenge faced is that the information

required to extrapolate most software problems depends upon the individual’s idea
for solving them. The sort of issues that software projects manage have a tendency

to be exceptional and hard to define, and arrangements have a tendency to advance

constantly as designers pick up a more prominent appreciation of what must be

settled. Adding to the many-sided quality of the issue and its answer is the quick

changing and very questionable environment, for instance, market turbulence and

changes in client prerequisites and project goals [10]. It is vital along these lines to

acknowledge that our suspicions and forecasts about future occasions will, by

nature, be indeterminate. While overseeing software projects, we should be to a

great degree careful of extrapolating past patterns or depending too vigorously on

past experience. The more noteworthy the instability inborn in a project, the more

the project needs to move from customary methodologies that depend on an altered

succession of exercises to methodologies that permit to reclassify the exercises – or

even the structure of the project arrangement – in mid course. Hence, as the

Fig. 5.4 Project management lifecycle

96 M. Ramachandran and V. Chaugule

uncertainty and complexity of a project increases, managers need take on roles

toward flexibility and learning rather than the traditional risk management.

Some of the important project management software features to be considered

are [20]:

1. Task Management: To simplify managing and achieving goals, they are broken

down into a set of tasks. Tasks are created and managed during the entire

process. Tasks such as creating tasks, managing subtasks from larger tasks, set

tasks to recur or repeat should be handled by the software.

2. Team Collaboration: This forms one of the most important features especially in

a distributed team environment. A virtual space needs to be created for discus-

sions among team members. It should allow creation and sharing of documents

as well as sending messages to one or more people.

3. Email Integration: Integration of the project management software with email

turns out to be very beneficial as well as powerful. It can be used for sending

updates, information about new tasks, and status reports to a predefined list of

members.

4. File Management: The online application can provide storage space to manage

the files and documents easily with or without the help of a third party. Features

like adding notes to files, uploading files, having a version control, and organiz-

ing files can also be provided.

5. Scheduling: This feature of the software deals with setting time lines and

creating milestones for completion of various tasks and also identifying depen-

dencies between resources. This might not be very important for a small team or

simple project.

6. Project Management: Project management is very crucial for larger organiza-

tions where templates need to be created, issues need to be managed, and

prioritization among projects is required [9].

7. Time Management: Project management software can help in providing a certain

degree of control in accepting submitted reports, timesheets, etc. This is valuable

to project teams handling many resources and running for longer duration

of time.

Software projects have many properties and attributes which make them

different from any other engineering project. For instance, the product is intan-

gible due to which we can say that a product is 90% complete even though there

are not any visible outcome. Due to such issue, it is very important to have proper

project management to ensure a quality product to the clients. The core activities

involved in software project management are project planning, project schedul-

ing, risk management, control, and managing people. An efficient software

project management focuses on people, problem, and the process. People must

be organized into teams and motivated to do quality work and should coordinate

well to achieve effective communication and results. The problem must be

communicated clearly from customer to developer which must then be

decomposed into goals and assigned to the respective teams. Finally, the process

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 97

should consist of a set of work tasks chosen which must be adapted to the people

and problem.

With all of the above in mind, we can see that the use of cloud computing

[18, 19] in software project management will prove to be immensely beneficial.

Cloud-based project management tools can be used to set priorities and align teams

to work faster and smarter across the organization. Business is moving faster,

becoming increasingly collaborative, and embracing more remote workers every

day. Hence, a system is needed which allows us to plan and adjust in real time. With

the help of the cloud, it is possible to have a central tool to manage the entire

software development process and track progress of the project and also monitor

whether the employees are working toward the goals of the project and company.

Another prime reason for shifting to cloud-based tools would be cost-effectiveness.

Some advantages of using a cloud-based tool are shown in Fig. 5.5.

As it can be seen, the major advantages of using cloud-based project manage-

ment tools include lower maintenance cost, and also it can be easily upgraded.

Maintenance of servers and systems is one area where organizations tend to spend a

lot of money. This cost can be drastically reduced with the use of the cloud. The

other advantage cloud provides is that it can be easily upgraded and no extra

hardware and systems need to be set up in case there is a need for scaling the

services. The next section gives a critical evaluation of some of the popularly used

cloud-based project management tools which have been compared using certain

criteria.

Easily Upgraded

Lower ownership
costs

Always Up
Disaster Assistance

Benefits of
Cloud

Productivity Anywhere

Off-site data storage

No IT maintenance
costs

Fig. 5.5 Advantages of using cloud-based PM tools

98 M. Ramachandran and V. Chaugule

5.5 Evaluation of Cloud-Based Software Project
Management Tools

In the manner in which programs can be written either in editors such as notepad

through Vi to eclipse, online project management tools range from shared to-do

lists to multimedia collaborative environments. In order for a portal to be consid-

ered as a software project management tool, it must have a few specific features.

Some of the criteria for evaluating the tools are bug tracker, to-do lists or some kind

of task management support, and a document repository which helps the stake-

holders to share and modify content and understand what work have been done so

far. Another important feature is conversational tools like emails, chat, wikis, blogs,

etc. which provide a mechanism for stakeholders to communicate and collaborate.

All the other components like calendar sharing, report generation, tagging mecha-

nism, and time tracking tools which may be provided are offshoots of the core

features, namely, task management, document repository, and conversational

tools [20].

There are many existing project management tools available online/in the cloud.

Some of the popular tools are listed with the features they offer and the different

industries they are used in:

1. Freshdesk [21]: It is the most recent in cloud-based support tech that comes with

everything needed to manage and track projects. They follow a simple goal of

making the process of brands talking to their customers and also making it easier

for customers to get in touch with their businesses. An array of features like issue

tracking, SLAmanagement, smart automations, SEO ready FAQ section, knowl-

edge base, and customizable self-service portals are provided by Freshdesk

which helps increase agent productivity and reduce burnout.

Used by: Real estate, professional service providers, healthcare, and insurance

2. Zoho Projects [22]: Zoho projects are the project management software from

Zoho. It provides features like project planning, assigning tasks, effective

communication, update reminders, and detailed reports on progress. Unlimited

users can be added to all plans with no extra cost.

Used by: Small and large teams across various industries

3. TouchBase [23]: TouchBase is totally a state-of-the-art, web-based project

management software. It offers an incorporated bundle with management,

asset tracking, purchasing, contract management, self-service portal, and knowl-

edge base at a reasonable cost point. TouchBase gives all that you need an

undeniable IT Help Desk and a beneficial Help Desk staff for your project

management team. TouchBase can be easily customized as per your industry

requirements.

Used by: Global corporations around the world

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 99

4. SpiraPlan [24]: SpiraPlan provides a complete agile project management system

in one package that manages your project’s requirements, releases, iterations,

tasks, and issues in one environment, fully synchronized. Designed specifically

to support agile methodologies such as Extreme Programming (XP),Kanban,

Scrum, DSDM, and Agile Unified Process (AUP), it allows teams to manage all

their information in one environment.

Used by: Project managers and IT professionals

5. Easy Redmine [25]: Easy Redmine is an open-source software for complex

project management with extensions for resources, finance, and customer man-

agement. In the cloud or on your own server, all comes with professional

implementation and support. Easy Redmine supports whole project lifecycle,

so you can start with an area where you feel the most urgent need. Afterward,

Easy Redmine can grow with you, thanks to the features which work as sepa-

rately installable extensions. Over 20,000 users worldwide

Used by: Software developers, education, healthcare, media, government

6. eXo [26]: eXo platform is an open-source social-collaboration software designed

for enterprises. It is full featured, based on standards, and extensible and has an

amazing design. eXo helps companies connect their employees, customers, and

developers through social, collaborative, and content-driven intranets, websites,

and dashboards.

Used by: Large enterprises, mid-size businesses, public administrators

7. Basecamp [27]: Web-based software that makes it simple to communicate and

collaborate on projects. It is used by millions of people, and 98% of its customers

recommend it, primarily for its simplicity. It supports multiple languages and

can be accessed on your mobile phone.

Used by: Freelancers, entrepreneurs, small businesses

8. Genius Project [28]: Genius inside offers its prime solution Genius Project since

2008 as cloud-based as well as on-premise solution for its project management

software. Apart from the typical project management features, some of its

noteworthy features include simulator which gives visual representation of the

what-if scenario’s in the project and phase and gate review support process for

new product development, and it also provides Agile and SCRUM support.

Genius Project is available in three deployment options: hosted on premise,

SaaS, or installed on IBM’s Lotus Notes. Extremely user friendly and custom-

izable user interface with built in social collaboration platform, Genius Project

fits the needs of every industry and provides benefits for everyone in the

organization: PMO, executive, project manager, and team member.

Used by: Project centric companies of all industries

9. Trello [29]: Trello lets you organize anything with anyone. It is a flexible project
management solution that fits into your workflow in a visual, collaboratively

100 M. Ramachandran and V. Chaugule

focused way. Trello replaces post-it notes in a digital whiteboard format that can

be used for anything from redesigning a website, to posting company updates

regularly for management, to complex projects with many participants.

Used by: Project management teams of any size

10. Kanzen [30]: Kanzen is a project management and collaboration tool that

focuses on but is not limited to Kanban method to improve business processes.

A unique set of features allows user to view their workload in three views – a

Kanban board, task list, personal task list, and a calendar. Intuitive interface

and the ease of use will allow you to concentrate on your tasks rather than

struggling with the software. Features include e-mail notifications, analytics,

access rights, and more.

Used by: Businesses, project management teams, and individuals

11. Salesforce [31–32]: Uses the world’s best CRM for small businesses in com-

bination with a top project management tool from our AppExchange to better

manage and gain visibility into all stages of your company’s projects. The

power of Salesforce plus a project management partner on our AppExchange

will allow your company to reach its peak efficiency and productivity.

Salesforce’s Sales, Service, and AppExchange applications help companies

connect with customers, partners, and employees in entirely new ways.

Used by: Companies of various industries and any team size

As seen in Table 5.1, the tools were compared and evaluated on the

abovementioned criteria. Upon the evaluation of these tools, we find that most of

the portals offer some kind of repository and ticketing mechanism and support for

communication tools. A role-based access control was another feature common in

many of the portals. Some major differences can be seen in the target markets of

these tools apart from the usual pricing and licensing differences. For instance,

BaseCamp [27] primarily targets small organizations that are staffed by nonpro-

grammers working on short- or medium-length projects. Though there are many

software developers using it, it still forms a minority of the users. This might be the

reason it offers a simple and easy-to-use file upload system rather than a version-

control system. Another trend observed is that companies are giving more emphasis

on agile methods which also have a big influence on the features offered by them.

This explains the shift from asynchronous communication like bulletin boards to

synchronous communication like chats.

After studying these tools, we understand the real importance of requirements

elicitation and the importance of a structured development process in the success of

a software project. This is one of the critical areas where we would like to target in

SPMaaS. In addition, other research issues include are whether the information

provided in the portal is sufficient enough to carry out the process or do the team

members need to depend on other means of communication like personal commu-

nication which might not be recorded in the portal. With such problems arising, we

feel that by addressing such issues, the next generation of tools can be designed to

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 101

T
a
b
le

5
.1

T
ab
le

co
m
p
ar
in
g
to
o
ls
b
as
ed

o
n
fe
at
u
re
s
p
ro
v
id
ed

F
ea
tu
re
s

T
o
o
ls

Z
o
h
o
P
ro
je
ct
s

T
o
u
ch
B
as
e

S
p
ir
aP
la
n

E
as
y
R
ed
m
in
e

eX
o
P
la
tf
o
rm

B
as
ec
am

p
T
re
ll
o

B
u
d
g
et

m
ai
n
te
n
an
ce

✓
✓

✓
✓

C
o
ll
ab
o
ra
ti
o
n

✓
✓

✓
✓

✓
✓

✓

P
ri
o
ri
ti
za
ti
o
n

✓
✓

E
m
ai
l
in
te
g
ra
ti
o
n

✓
✓

✓
✓

F
il
e
sh
ar
in
g

✓
✓

✓
✓

✓
✓

G
an
tt
ch
ar
ts

✓
✓

✓
✓

Is
su
e
m
an
ag
em

en
t

✓
✓

✓
✓

M
il
es
to
n
e
tr
ac
k
in
g

✓
✓

✓
✓

P
ro
je
ct

p
la
n
n
in
g

✓
✓

✓
✓

✓

R
eq
u
ir
em

en
ts
m
an
ag
em

en
t

✓
✓

✓
✓

S
ta
tu
s
tr
ac
k
in
g

✓
✓

✓

T
im

e
an
d
ex
p
en
se

tr
ac
k
in
g

✓
✓

102 M. Ramachandran and V. Chaugule

better satisfy the real users’ needs, and it is our aim to do this with the help of a

cloud-based service SPMaaS.

5.5.1 Integrated Software Engineering as a Service

After evaluating the existing tools, we have realized the need of integrating project

management in the software development cycle. The project management phase

will begin immediately once the project development has begun. This can be seen

clearly in Fig. 5.6.

Figure 5.6 clearly shows the overall proposed infrastructure of the proposed

project management as a cloud service and how it will sit in the cloud. It will begin

with software requirements as a (SRMaaS) service followed by software security

management (SSMaaS). After this, the development will begin (SDMaaS), and

project management will begin soon after (SPMaaS). The lifecycle will end with

software testing (STaaS) and ensuring quality of the product (QoSaaS). The next

section gives a detailed explanation on our proposed approach of SPMaaS and

highlights its core activities.

SRMaaS

SSMaS

SDaaS

SPMaaS

STaaS

Quality of Service
as a Service

(QoSaaS)

Fig. 5.6 Integrated

software engineering as a

service

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 103

5.6 Integrated Service Development Process and Software
Project Management for SPMaaS

Project management can help companies, managers, and project teams to consum-

mate client requirements, budget, manage time, and scope constraints. It is very

important for the companies to choose the right tools so that it can help them save

project cost and project time. Basically, there are two types of project management

software:

• On premise [33]: These software systems reside in the data center owned by the

company and runs on their own server. It is maintained by the IT employees of

that company: Microsoft

• Cloud based [34]: This uses cloud technology and is offered by service providers

as SaaS(software as a service). Many small- and medium-sized enterprises use

cloud-based project management tools across different industries.

Figures 5.7 and 5.8 show the core activities which will be offered as a cloud

service SPMaaS. It includes software project planning (SPPaaS), software cost

estimation (SPCEaaS), software team management with support to handle virtual

teams and multi-tenancy (STMaaS), and continuous delivery (CDaaS).

SPMaaS

Software Project
Planning as a

Service (SPPaaS)

Software Project
Cost Estimation as

a Service
(SPCEaaS)

Software Team
Management as a
Service (STMaaS)-
deals with virtual
teams and multi-

tenancy

Continous Delivery
as a Service

(CDaaS)

Fig. 5.7 Core activities of SPMaaS

104 M. Ramachandran and V. Chaugule

A detailed explanation of the features provided by SPMaaS is as follows:

• Requirements Management as a Service: Requirements management refers to

the process of documenting, tracing, analyzing, agreeing, and prioritizing on

requirements and then controlling change and then communicating it to the

appropriate stakeholders. Any capability to which a product or service should

conform is called a requirement. Poor requirements management is one of the

major causes of project failure, and hence, it is a very important phase. This can

help us exceed stakeholder expectations, improve performance, and meet the

expected project goals. Refer to Fig. 5.9.

• Design as a Service: Unified modeling languages (UML) are used to provide a

standardized way to visualize the design of a system. A set of diagrams can be

drawn to visualize the system such as activities, individual components of the

system, interaction among software components, external user interface, etc.

The types of diagrams include structure diagrams like class diagram, component

diagram, object diagram, and behavior diagrams like activity diagram, use-case

diagram, interaction diagram, etc. UML diagrams help in simplifying the soft-

ware development process and reducing development time.

• Risk Management as a Service: It refers to the identification, assessment, and

prioritization of risks. The objective of risk management is to assure that

uncertainty does not deflect the endeavor from the business goals. Risks need

to be identified as early as possible to avoid any obstacles in smooth develop-

ment process. Since there are infinite number of events that can have negative

effect on a project, no project can ever be risk-free. Good an efficient risk

management increases the likelihood of a successful project.

• People Management as a Service: People management aims at getting things

done from people through effective management to produce outstanding results.

It deals with understanding, managing, and delivering people’s expectations.

People management is one of the hardest aspect of a project management.

A good team manager needs to understand strengths and wekaness of the team

Software Project Management (Traditional)

Requirements
Management

Requirements
Management as

s Service
(RMaaS)

Design as a
Service (Unified

Modeling)

Software
 Project
Planning

Risk
Management

People
Management

Software Quality
Assurance

Management

Risk
Management as

a Service
(RiMaaS)

People
Management as

a Service
(PeMaaS)

QoS as a
Service
(QaaS)

Cloud Managed
Services Deployment

SPMaaS

Fig. 5.8 Software project management as a service (SPMaaS)

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 105

members and being able to be a motivator and should be willing to take the

leadership of the team work. However, if we have a good team processe in place,

it is then possible to achieve the common objectives of the team as well as the

project.

• Quality as a Service: Apart from delivering the product on time, the quality of

the product also plays an important role. There is a need of a process which

ensures that the developed software meets and complies with standardized

quality specifications. It needs to be an ongoing process within the lifecycle

that routinely checks the software and hence ensures the development of a high-

quality product.

With all of the above services provided as a cloud service, the process of project

management is simplified, and the project can be managed very effectively and

efficiently. The next section gives a detailed explanation of the architectural design

with service-oriented architecture and SoaML diagram.

5.7 Architectural Design of SPMaaS with SOA

The idea of a service has been defined by many people in numerous ways. While it

has been described as an encapsulated unit of functionalities, it has also been

considered as a logical manifestation of some physical resources grouped as a

process that an organization exposes to a network. A service has been defined as

an externally observable behavior of a software/hardware component in which the

internal working and processing details are well hidden and made available through

a set of well-defined interfaces [35]. A service in the context of web services can

also be viewed as an application or business logic that exposes its functional

capabilities to clients by running on a server. Refer to Fig. 5.10. One thing which

is common and is being tried to be explained in all of the definitions is that service

can be viewed as conceptual identity which supports certain actions in response to a

set of requests received. These requests can be in the form of messages or some

kinds of programs written to trigger the internal processing at the service providers’
end.

Software applications can be implemented using abstraction as the fundamental

design entity. Each service clearly encapsulates certain features while at the same

time hiding the underlying implementation details from the user/client. This con-

cept greatly benefits while building systems to implement higher level services. The

set of services which need to be provided are decided in the software development

Gather
Requirements

from stake
holders

-

Analyze
requirements
to overlook

for overlaps,
conflicts

Distinguish
wants from

needs

Baseline
needs before
commencing

solution

Fig. 5.9 Requirements management process

106 M. Ramachandran and V. Chaugule

phase. The complete system can then be built by having these services as the

fundamental design entities.

In this architectural style, an interaction model between parties is defined,

namely, service provider, service consumer, and service request. The provider

publishes the service description and provides implementation for a service. The

consumer can either use the URI for the service description directly or can find the

service description in a service registry and invoke and bind a service.

5.7.1 Types of Services Offered by SPMaaS

There can be many services provided by providers in software project management,

which depending on the complexity may require different levels of processing.

Services can be composed into three types: elementary services, collaborative

services, and composable services.

For instance, the features provided in software project management can be also

broadly classified into services for planning and scheduling, services for collabo-

ration, services for documentation, etc.

+

+
+

Publish (: Service Description.

+ bind (: Service
 Object)

+ Request
(: Service Object)

+ release (: Service
 Object)

Remove (: Service provider)

Discover (: Service Description)

Service Provider)
Remove

Service Registry

Service Provider Service Request

Publish Discover

0...* 0...*Bind

Fig. 5.10 Conceptual model of service-oriented paradigm

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 107

5.7.1.1 Elementary Services in SPMaaS

These refer to services which do not require complex processing and which are

independent in nature. There are no additional requirements or constraints that need

to be fulfilled in order to add these kinds of services. The client can add an

elementary service by making a simple request in any form, and the respective

service will be made available to the user. For example, services like software

testing (STaaS) can be invoked separately without any previous requirements.

5.7.1.2 Composable Services in SPMaaS

These are the services which are not readily available but can be provided by

invoking a set of services belonging to the same category of services. Consider a

scenario in which the client needs to add a new service. In order to provide the client

with this service, it might be possible that there must be some existing services the

client should already be using so that the new service can be provided with the help

of them. The new service which the client might want could need the support of

another service for its fulfillment or it might be an extension to some older service.

For example, if a client wish to add a calender shring feature, then, this should be

part of a Software Planning as a Service (SPPaaS).

5.7.1.3 Collaborative Services in SPMaaS

These services can neither be composed using the services at a service window nor

can be available readily. Basically, these are the services which can be provided

only if a set of conditions are followed. For example of a composite service

(consists of invoking a sequence of a number of other services), taking a hypothet-

ical situation, if you invoke a new software project cost estimation as a service

(SCEaaS) of the newly created instance of a SPMaaS project, then this service will

create autonomically new instance of software requirements engineering as a

service (SREaaS) and software security requirements engineering as a service

(SSREaaS) which in turn will also invoke software project planning as a service

(SPPaaS). Hence in this sequesnce of service invokation, one services is

interdependent on a set of other services and establishing service choreography.

5.7.2 Design of Cloud SPMaaS with SoaML

The SOA design for SPMaaS can be clearly explained with the help of the diagram

shown in Fig. 5.11. The diagram has been drawn using service-oriented architecture

modeling language (SoaML) which is an extension of UML 2.0 to support service

108 M. Ramachandran and V. Chaugule

concepts. SoaML provides a standard way to architect and model SOA solutions

using the unified modeling language (UML). A services architecture (SOA) is a

network of participant roles providing and consuming services to fulfill a purpose.

The services architecture defines the requirements for the types of participants and

services that fulfill those roles.

The diagram, in Fig. 5.11, shows various participants (rectangle boxes) such as

cloud software engineering team, project manager, testers, QoS teams, etc. Partic-

ipants can provide as well as use services (represented with oval shape). Some of

the services provided which can be seen in the diagram are creating a new project,

creating a project schedule and plan, and tracking project milestones and continu-

ous delivery and integration. The SoaML diagram also clearly shows which partic-

ipants can create a service, use a service, or invoke a service with the help of

messages. For example, we can see that a new project can only be created by

participant1, namely, cloud software engineer team and participant2, the cloud

project manager. Thus, with this diagram we can understand:

• The roles each participant plays in a service

• The message types that go between participants when a service is enacted

• Interfaces provided and used by each participant for the service

• Choreography of interactions between the participants while enacting the

services

Fig. 5.11 SOA design for SPMaaS with SoaML

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 109

5.7.2.1 Part I – SPMaaS Service Interface Model

Service interface diagram is one of the most important SoaML diagram types. The

idea of a service interface diagram is based on the core aspect being a service. A

service in this case can be defined as a value delivered to another through a well-

defined interface. In SoaML, a service can be specified using three approaches,

namely, simple interface, service interface, and a service contract. It can be seen in

Fig. 5.12 that a service interface SPMaaS: Project Cost Estimation Service is

created. A service interface involves communication and interaction between a

consumer and provider of services. In Fig. 5.12, it can be seen that the consumer is

Project Size which is provided with Cost Estimation Methods. There are also two

simple interfaces- Project Cost and Cost Estimation Methods which have beeen

provided. The service interface of the project cost estimation service specifies its

required needs through usage dependencies to the Project Size interface and the

receptions and operation it receives through the Cost Estimation Methods interface.

5.7.2.2 Part II – Specifying SPMaaS Choreography Using UML

Sequence Model

Service choreography defines the interaction between the provider and consumer in

completing a service. We can specify how the consumer interacts with the provider

<<use>>

SPMaaS Service Interface

<<Interface>>
Project Size

<<Interface>>
Cost Estimation Methods: COCOMO II

<<Service Interface>>
SP MaaS: Project Cost Estimation Service

- Consumer :
Project Size

-Provider : Cost
Estimation Methods:

COCOMO II

Fig. 5.12 SPMaaS service interface model

110 M. Ramachandran and V. Chaugule

of service with the help of sequence messages between the two lifelines. In

Fig. 5.13, it can be seen that the consumer begins by invoking the provider to

calculate the project cost. The provider in turn reacts by replying with the person

cost and effort in person month.

5.7.2.3 Part III – SPMaaS Service Participant Model

In SoaML, participant refers to a certain party or component that provides and/or

consumes a service. Participants can be software components, organizations, sys-

tems, or individuals. In Fig. 5.14, globally distributed teams/ virtual teams or client

has been taken as the participant. We can also see the services provided and used by

the participant. A square which represents the port can be seen providing the

interface for creating a new project and requiring the client requirements.

5.7.2.4 Part IV – SPMaaS Service Contract Design

A service contract specifies and defines the agreement between parties about how a

service is to be provided and consumed. Interfaces, choreographies, terms, and

conditions are used to define the agreement. The interacting participants must

compulsorily agree and adhere to these agreements in order for the service to be

enacted. Figure 5.15 shows the service contract for a new project contract service in

SPMaaS in which the consumer and provider need to agree to the project contract

agreement.

1: Calculate Project Cost (message project size)

1.1: Project Cost & Effort in Person Month

Provider : Cost Estimation Methods: COCOMO IIConsumer : Project Size

sd Specifying Choreography Using UML Sequence Diagram for SPMaaS: Project Cost Estimation

Fig. 5.13 SPMaaS choreography using UML sequence diagram

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 111

5.7.3 Results and Analysis of SPMaaS Design

The design for cloud services is challenging, and it is in its infancy for a proper and

systematic approach to engineering cloud service design and development as we

have shown in this chapter the importance of engineering cloud services with the

current state-of-the-art tools and standards such as SoaML which has been specif-

ically developed for cloud service engineering. Figure 5.16 shows how we have

measured a number of service components for each of the SoaML stages.

Service Participant Diagram1

<<Participant>>

<<Service>>

<<Request>>

SPMaaS: Globally Distributed and Virtual Teams and Project Clients

Clients Project Requirements

Create New Project

Project Status & Approval

Fig. 5.14 SPMaaS service participant model

SPMaas Project Contract

-Consumer :
Clients Project
Requirements

-Provider :
Create New

Project

Project Contract Agreement

<<ServiceContract>>

SPMaaS New Project Contract Service

Fig. 5.15 SPMaaS service contract design

112 M. Ramachandran and V. Chaugule

The graph shown in Fig. 5.16 shows a count of the service components for each

of the different five SoaML design categories like SPMaaS service interface model,

SPMaaS choreography, SPMaaS service participant model, SPMaaS service con-

tract, and SPMaaS SOA design. Three different service components have been

considered:

• Autonomic service components: These are the components that can work with

any dependency to complete a full service.

• Composite service components: These depend on other services to complete a

full service and cannot exist independently.

• Composable API services: These are the API services which can be created with
the support of existing APIs available and by integrating them with some new

features and providing them to the customers for easier and more specific use.

5.8 Conclusion

Cloud computing is emerging rapidly with increasing demand for service-oriented

computing and associated technologies. This is the right time to explore what works

better and what doesn’t work for cloud environment. Therefore, the proposed model

helps to understand how it should be developed to avoid classical issues related to

software development projects. We believe the proposed model will help us to

develop cloud applications systematically. Another major contribution of this

chapter is to use SoaML to design cloud-based software project management as a

service system (SPMaaS). SoaML provides a standard way to architect and model

SOA solutions using the unified modeling language (UML). A services architecture

(SOA) is a network of participant roles providing and consuming services to fulfill a

purpose. The services architecture defines the requirements for the types of partic-

ipants and services that fulfill those roles. This study discovered overall 70%

0
10
20
30
40
50
60
70
80

Number of
Autonomic Service
Components

No. of Composite
Service Components

No. of Composable
API Services

Fig. 5.16 Graph showing count of service components for different SoaML design categories

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 113

improvement of the cloud-based services by designing with SoaML by counting

number of service components during the design phase of this research.

References

1. Cloud: Amazon Elastic Compute (2011) Amazon web services. Retrieved 9 Nov 2011

2. Buxmann P, Thomas H, Sonja L (2008) Software as a service. Wirtschaftsinformatik 50

(6):500–503

3. Zhang QI, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research

challenges. J Int Serv Appl 1(1):7–18

4. Wang L, Laszewski VG (2008) Scientific cloud computing: early definition and experience.

http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf

5. Ramachandran M (2008) Software components: guidelines and applications. Nova Publishers,

New York

6. Bichier M, Lin K-J (2006) Service-oriented computing. Computer 39(3):99–101

7. Khan A et al (2012) Cloud service for comprehensive Project Management Software. Appli-

cation of Information and Communication Technologies (AICT), 2012 6th international

conference on IEEE

8. Bentley C (2010) Prince2: a practical handbook. Routledge

9. Thayer RH, Yourdon E. (1997) Software engineering project management. In: Software

engineering project management, pp 72–104

10. Helbig J (2007) Creating business value through flexible IT architecture, Special Issue on

Service-oriented Computing. IEEE Computer 40(11)

11. IaaS (2010) Cloud computing world forum. http://www.cloudwf.com/iaas.html

12. IThound Video whitepaper (2010) http://images.vnunet.com/video_WP/V4.htm. Accessed

Feb 2010

13. SaaS (2009) SaaS. http://www.saas.co.uk/

14. Science Group, 2020 Science Group: toward 2020 science, tech.report, Microsoft, 2006. http://

research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf

15. Vouk MA (2008) Cloud computing – issues, research and implementations. J Comput Inf

Technol, CIT 16

16. Wilson C, Josephson A (2007) Microsoft Office as a platform for softwareþ services. Archit J

13. www.architecturejournal.net

17. Zhang L-J, Zhou Q (2009) CCOA: cloud computing open architecture. In: IEEE international

conference on web services

18. Armbrust M, Fox A, Grifth R, Joseph AD, Katz R et al (2009) Above the clouds: a Berkeley

view of cloud computing. Technical report, University of California at Berkeley. URL http://

berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html

19. Foster IT, Zhao Y, Raicu I, Lu S. Cloud computing and grid computing 360-degree compared,

CoRR abs/0901.0131

20. Project Management Tools (2016) http://modeling-languages.com/survey-web-based-soft

ware-project-management-tools/. Accessed Sept 2016

21. Freshdesk (2016) https://freshdesk.com/. Accessed Sept 2016

22. Zoho projects (2016) https://www.zoho.com/projects/. Accessed Sept 2016

23. TouchBase (2016) http://www.productdossier.com/. Accessed Sept 2016

24. SpiraPlan (2016) https://www.inflectra.com/SpiraPlan/. Accessed Sept 2016

25. Easy Redmine (2016) https://www.easyredmine.com/. Accessed Sept 2016

26. eXo Platform (2016) https://www.exoplatform.com/. Accessed Sept 2016

27. BaseCamp (2016) https://basecamp.com/. Accessed Sept 2016

28. Genius Project (2016) http://www.geniusproject.com/. Accessed Sept 2016

29. Trello (2016) https://trello.com/. Accessed Sept 2016

114 M. Ramachandran and V. Chaugule

http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf
http://www.cloudwf.com/iaas.html
http://images.vnunet.com/video_WP/V4.htm
http://www.saas.co.uk/
http://research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf
http://research.microsoft.com/towards2020science/downloads/T2020S_Report.pdf
http://www.architecturejournal.net
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://modeling-languages.com/survey-web-based-software-project-management-tools/
http://modeling-languages.com/survey-web-based-software-project-management-tools/
https://freshdesk.com/
https://www.zoho.com/projects/
http://www.productdossier.com/
https://www.inflectra.com/SpiraPlan/
https://www.easyredmine.com/
https://www.exoplatform.com
https://basecamp.com
http://www.geniusproject.com
https://trello.com

30. Kanzen (2016) https://mykanzen.com/. Accessed Sept 2016

31. Salesforce (2016) http://www.salesforce.com/in/. Accessed Sept 2016

32. Cost Estimation Techniques (2016) http://www.computing.dcu.ie/~renaat/ca421/report.

html#2.6. Accessed Sept 2016

33. Turner JR (1993) The handbook of project-based management: improving the processes for

achieving strategic objectives. McGraw-Hill, London

34. Sotomayor B et al (2009) Virtual infrastructure management in private and hybrid clouds.

IEEE Internet Comput 13(5):14–22

35. Wan K-M et al (2006) Service-oriented architecture

5 Software Project Management as a Service (SPMaaS): Perspectives and Benefits 115

https://mykanzen.com
http://www.salesforce.com/in/
http://www.computing.dcu.ie/~renaat/ca421/report.html#2.6
http://www.computing.dcu.ie/~renaat/ca421/report.html#2.6

Part II

Approaches and Frameworks for Software
Development and Software Project

Management

Chapter 6

Component-Based Hybrid Reference
Architecture for Managing Adaptable
Embedded Software Development

Bo Xing

6.1 Introduction

Ambient Assisted Living (AAL) can be defined as one that “will assist elderly

individuals for better, healthier and safer life in the preferred living environment

and covers concepts, products and services that interlink and improve new tech-

nologies and the social environment” [4]. This concept provides a close vision of

the ambient intelligence (AmI) technologies where the emphasis is on independent

living of the disabled and the elderly, such as smart home [21], healthcare systems

[66], and assistive robotics [30, 75]. However, despite research that shows the

capability of technology to support a longer and higher-quality living for the elderly

and the disabled, there is still a wide array of challenges of making AAL a reality.

For example, the identification of the needs of elderly people [35] and of the

necessary technological support [22] is related to the AAL. Moreover, the authors

of [50] pointed out that a lack of software reference architectures (SRA) of AAL,

which could provide better ways to develop AAL systems, has also been identified

as main challenge.

In general, the SRA refers to a software architecture equipped with predefined

structures and respective elements and relations that facilitate providing the tem-

plates for concrete architectures in a particular domain or in a family of software

systems [16]. In this chapter, we propose a hybrid reference architecture for AAL,

named software architecture for AAL (SAfAAL for short), which is built on the

component-based architectural style [62]. Finally, we have prototyped the proposed

model and implemented a case study to demonstrate its effectiveness.

B. Xing (*)

Computational Intelligence, Robotics, and Cybernetics for Leveraging E-future (CIRCLE),

Institute of Intelligent System, Faculty of Engineering and the Built Environment, University

of Johannesburg, Johannesburg, Gauteng, South Africa

e-mail: bxing2009@gmail.com

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_6

119

mailto:bxing2009@gmail.com

The remainder of this chapter is organized as follows. Subsequent to the

introduction in this section, the background of elderly people, key applications,

and related technologies in the context of AAL are briefed in Sects. 6.2, 6.3, and

6.4, respectively. Then, the employed methodologies are presented in Sect. 6.5

which is followed by proposed framework detailed in Sect. 6.6. Next, Sect. 6.7

elaborates such framework in an ALL smart home environment to demonstrate the

feasibility of our proposed methodology. In addition, the trade-off strategy for

managing software adaptability is also discussed in Sect. 6.8. Finally, the

highlighted future research directions and concluding remarks provided in Sect.

6.9 close this chapter.

6.2 Elderly People in the Context of AAL

One of the most important characteristic of demography is ageing and shrinking

population. It is a global phenomenon, but it is observed that some countries are

worse than others. For example, the Federal Statistical Office shows that Germany

has one of the world’s most rapidly ageing and shrinking population [6]. In

addition, Japan’s government forecasts that over the next 50 years, Japan’s overall
population will shrink by a third compared with currently 127 m [5]. As a conse-

quence, the chief problem of labour market is that a fast-shrinking working popu-

lation will struggle to support a growing proportion of the old. In this context, AAL

has arisen as a philosophy that provides considerable support for the everyday life

of elderly people [15]. The main purpose of AAL is to enable the elderly to live an

independent life in their own homes and communities as long as they possibly can.

Research shows that innovative technologies might provide a solution for the

ageing population, such as sensor-based networks for activity monitoring, fall and

wandering detection, and various portable e-health applications. However, with

increasing size and complexity, researchers require a guideline to identify the

architectural patterns and principles to identify important quality attributes and to

understand and reason the crosscutting concerns.

6.3 Key Applications in the Context of AAL

In recent years, one of the most popular issue is ageing and decreasing population.

Under these circumstances, the most prominent study is focused on the assistive

technologies (ATs), such as smart sensors, data acquisition systems, ubiquitous data

connectivity, and big data analysis. In the following subsections, three key appli-

cations, i.e. smart homes, healthcare system, and assistive robotics, are introduced.

120 B. Xing

6.3.1 Smart Homes

The idea of smart home, which builds upon advances in sensors and actuators

enabling, is to achieve activity recognition and to provide assistive services to a

resident. In general, the smart home development-related research topics can be

classified into five categories, i.e. home entertainment, management platform [63],

home security [78], home care [68], and home network [10]. Moreover, several

ongoing and prolific research programmes include Georgia Tech’s “Aware Home”,

MIT’s “Place Lab”, Samsung’s “Smart Home Project”, European project

“ALADIN” and SMILEY, and Microsoft’s “MS Home”. For more details please

refer to other sources of literature [1].

6.3.2 Healthcare Systems

Global ageing and the associated impact on healthcare systems, a broad ecosystem

that encompass many aspects of our daily life such as financial system, network

system, and insurance systems, have been well documented. For example, in 2011,

McKinsey Centre provided a comprehensive report for US health system in terms

of the cost of US healthcare [12]. It examined healthcare expenditures in the United

States during the 2006–2009 period and found that in 2009, spending on healthcare

reached a record high $2.5 trillion, or 17.6 % of US GDP. To change this situation,

various efforts to address the anywhere-anytime accessible online healthcare or

medial systems have been proposed and evaluated. Central to many efforts has been

the use of the Internet of things (IoT) [19, 54], robotic technology [3, 13], mobile

phone or Tablets [74], wireless sensor networks [2], and social media tools [14, 71].

6.3.3 Ambient Assisted Living Robot

The main purpose of introducing AAL robot is to assist the disabled and elderly

people at home [25, 58, 75]. In general, they can be categorized into three catego-

ries: robots assisting with daily living activities (such as feeding and dressing),

robots assisting with instrumental activities of daily living (such as housekeeping

and preparing food), and robots assisting with enhanced activities of daily living

(such as communication and engaging in hobbies) [58]. Nowadays, a number of

assistive robots are being deployed. For example, “Care-O-bot” [30–32], a robot

developed by Fraunhofer IPA, is able to fetch and carry objects, communicate with

older people, and supply emergency support; “RIBA” [48, 59], a robot developed

by RIKEN-TRI Collaboration Center, can help patient transfer; “uBot5” [43],

another robot from the University of Massachusetts Amherst, is capable of achiev-

ing multiple postures for the purpose of assisting elderly in compensating for

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 121

impaired upper extremity function; “PerMMA” [18, 73, 77], a research outcome

from the Carnegie Mellon University and the University of Pittsburgh, can assist

persons with disabilities; “PaPeRo” [29, 60, 61], another case developed by NEC, is

used to communicate; “EMIEW” [36, 38, 39] developed by Hitachi, can interact

with human beings; and “Hospi-R” [24, 49], an autonomous delivery robot devel-

oped by Matsushita, can even perform complex service tasks.

6.4 Related Technologies of AAL

With increasing size and complexity of smart environment, small, inexpensive, and

low-powered consumption sensors play a key role in enabling innovative solutions.

Sensor applications in the AAL domain range from physiological monitoring to

screening applications. For example, [72] proposed an activity recognition system

within a smart home by using a shoe-mounted accelerometer. Other examples

include daily activity monitoring [37] (e.g. calorie intake and energy expenditure),

detection of situations of helplessness [68] (e.g. fall detection), and remotely

tracking vital signs [11] (e.g. heart rate). In addition, different types of sensor

platforms are also important, such as Arduino, Shimmer, and smartphones and

tablets [46]. These devices can be connected using wired (e.g. USB) or wireless

(e.g. Bluetooth) interfaces and through pervasive sensor networks make data

exchange. Moreover, cloud computing has become one of the most active areas

in information technology. For example, the authors of [27] proposed a cloud-based

integration model to accommodate dynamic loads and sharing of sensor resources

by different users and applications for lifestyle monitoring, Therefore, it is worth

highlighting that cloud computing is playing a major role in terms of achieving the

goals of AAL.

6.5 Research Methodologies

In order to develop our proposed hybrid framework, we have intensively used the

following two techniques, namely, component-based software engineering (CBSE)

and SRA. This section outlines their corresponding essentials.

6.5.1 Component-Based Software Engineering

Component-based software engineering (CBSE) [62] describes a methodology to

software systems design and development. The spirit of CBSE lies in that it

decomposes the whole system design into individual functional or logical compo-

nents which are higher-level abstractions and are defined by their interfaces. Since

122 B. Xing

all implementation details within components are hidden from each other, CBSE

can be regarded as a union of component-related operations, e.g. defining,

implementing, and integrating (or composing) independent (or loosely coupled)

components into systems. As software systems are getting bigger and more com-

plex, CBSE has become an important way of developing software. More depend-

able software systems which can be delivered faster and deployed quicker are in

great demand from the end users. The only way that one can address this issue is to

introduce software component concept for the purpose of reusing rather than

reimplementation.

6.5.2 Software Reference Architecture (SRA)

Generally speaking an SRA forms a conceptual frame which includes a set of

elements, forms, principles, and rationale design decisions. It is an effective and

powerful instrument to get an overview and deeper understanding of the software

system, to give orientation for aggregating knowledge of a specific domain and

reasoning their relationships, and, finally, to improve the modularity, the reusabil-

ity, and the extensibility for each architectural aspect. Nowadays, SRA for different

types of systems can be found, such as embedded systems [23], smart environment

[26], and big data [55]. Regarding AAL, some alternative system architectures

include Alhambra [20], Hydra [40], OASIS [51], openAAL [52], PERSONA [56],

and universAAL [70]. However, as pointed out in [50], all these platforms do not

address all quality attributes (e.g. reliability, security, maintainability, efficiency,

and safety) and important characteristics (e.g. presence of single point of failure and

safety pattern usage). That means the AAL platforms and related SRA are not

mature.

6.6 Proposed Framework: Component-Based Hybrid SRA

Nowadays, the producers of mass-manufactured embedded ALL devices often tend

to have varied views towards the integral software element, ranging from treating it

as a difficult but unavoidable necessary part of a finished product to believing it as a

crucial differentiator for market success. In many practical embedded product

domains (e.g. automobile, smartphone, and ALL), one is often likely to find an

interwoven supplier and subcontractor bonds existing on many levels. Bearing this

in mind, the proposed software architecture for AAL (i.e. SAfAAL) is thus the

combination of the following three application architecture, namely, mobile, rich

client, and Web. They will normally be structured as a multilayered application.

Therefore, a short description of the functionality of layered structure is also

provided in this section.

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 123

6.6.1 Three Key Architectures

This section discusses three basic types of architectures that form the proposed

hybrid architecture.

6.6.1.1 Mobile Application Architecture

In this type of architecture, locally cached data are often used to bolster offline or

disconnected operations, and a synchronization process is performed when

connected. Other types of services exposed by different applications may also be

used by this application. Mobile applications are often used in the following

context, e.g. handheld devices are often involved, display screen size is often an

important consideration, and offline or partially connected scenarios are included.

6.6.1.2 Rich Client Application Architecture

Applications of this type are normally developed as stand-alone applications with a

graphical user interface (GUI) that displays data via a range of controls. Rich client

applications can be designed for both disconnected and connected scenarios

(to cope with the need of occasionally accessing remote distributed data or

functionality).

6.6.1.3 Web Application Architecture

A Web application can be accessed by the end users via a Web browser or a

specialized user agent. The browser generates hypertext transfer protocol (HTTP)

requests for specific uniform resource locators (URLs) that map to resources on a

Web server which will render and return hypertext markup language (HTML) pages

to the users. The core of Web application architecture lies in that it bolster

connected scenarios and can support different browsers running on a wide range

of operating systems and platforms.

6.6.2 Layered Structure

In the previous section, we have introduced distinct application architectures. One

may notice that they all share one common structural settings, i.e. layers. So before

we jump into our discussion regarding the components, let us first talk about layers.

In general, layers represent the logical classifications of the functionality and the

components within an application. This section introduces its attributes in terms of

124 B. Xing

internal (layer to layer) and external (layer to other clients or applications) com-

munications. Typically, regardless of the type of applications (e.g. mobile and

Web), we can always decompose the design into logical classifications of a set of

software components. In practice, the introduction of layers makes it easier for us to

distinguish between different tasks acted by separate components, which in turn

helps to come up with a design that facilitates the reusability components and

adaptability of applications. As we can see from previously introduced application

architectures, each logical layer consists of a set of component types which are

designed to perform discrete types of tasks.

By separating an application into distinct layers that have different roles and

functionalities helps us to maximize the maintainability of the code, optimize the

way that the application works when deployed in different scenarios, and offers a

clear delineation between pinpoints where certain design decisions have to be made

and specific technologies needs to be brought into play. Therefore, any application

architecture, from the viewpoint of the highest and most abstract level, can be

regarded as a set of collaborating components being classified into layers.

• Perceiving layer: The user-oriented functionality is usually contained in this

layer for the purpose of managing user interaction with the system. Typically,

this layer consists of components (see section below for more details) which

serve as a common connection to the core action logic encapsulated in the acting

layer.

• Acting layer: This layer, where the relevant action logic is encapsulated in,

carries out the core functionality of the system. Different components are

contained in this layer in which some of them can exhibit service interfaces

that other callers may use.

• Inferring layer: This layer offers the means of approaching the data stored within

the borders of the system and the data generated by other networked systems,

say, different services.

• Service layer: From a high-level perspective, a hybrid software architecture can

be seen as consisting of multiple services, each exchanging information with the

others via transferring messages. Internally, each of these services is actually

made up of software components. This layer effectively provides an alternative

view that allows users to utilize various channels to access the application.

6.6.3 Building Block Components

Components offer a means of isolating specific groups of functionality within units

that one can distribute and install separately from other functionality. This section

covers some general details of creating components and discusses the types of

components commonly utilized in each previously introduced layer types which

can collectively form different application architectures.

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 125

6.6.3.1 Perceiving Layer Components

In general, the functionalities required for facilitating the interaction between users

and the application itself are implemented by the perceiving layer components. The

common used component types in this layer are as follows:

• GUI (i.e. graphical user interface) components: The specific user interface for

the system is integrated into GUI components. These visual elements can be

employed to convey message to users and accept users’ input in the reverse

order. In general, GUI components that represent the underlying data and logic

within a system in an appropriate way, and to translate user input information

and hand them to perception logic components where the principles of how the

underlying data and application state are affected by various inputs, are defined.

For the purpose of keeping a high level of adaptability, maintainability, and

reusability, encapsulating ad hoc logic specifically in the GUI components is not

recommended since such practice may hinder them from unit test.

• Perception logic (PL) components: Perception logic (PL) refers to the applica-

tion code that defines the logical behaviour and structure of the perception. It is

designed in a way that it is not dependent on any particular implementation of

GUI components. The main responsibility of PL components is to orchestrate the

users’ interactions with the system by following a set of predefined rules. The

existence of PL logic is independent of GUI components. In addition to this, PL

components also take charge of transforming data from acting layer (see sub-

section below) into a usable format for GUI components. For instance, data from

different sources may be aggregated and organized in such a way that they can

be displayed more easily.

6.6.3.2 Acting Layer Components

The core functionalities of the system and the relevant action logic rules are

normally implemented and encapsulated by acting layer components. The com-

monly used component types in this layer are as follows:

• Application appearance (AA) components: AA components generally offer a

simplified interface to other action logic components, often by integrating

multiple action operations into one operation so that action logic is easy to use

and thus reducing dependencies since the components involved in acting layer

and their inherent relationships do not necessarily need to be known by outside

callers.

• Action logic (AL) components: AL can be regarded as any activity logic that is

related to retrieving, processing, transforming, and managing application data,

complying action rules and policies, and maintaining data consistency and

validity. To maximize reuse or adaptation chances, AL components should not

126 B. Xing

contain any customized ad hoc logic elements. For the sake of convenience, we

further divide the AL components into the following two subcategories:

– Action flowchart (AF) components: Once the user inputs are collected in

perceiving layer and passed to the acting layer, the system can perform

certain actions based on these inputs. Most acting processes involve multi-

stage that should be executed in a reasonable order, though interactions with

each other are often allowed. AF components work as coordinators for many

complex, long-running, and multistep scenarios.

– Action capsule (AC) components: AC components encompass logic groups

and data sets which are necessary to represent real-world elements, e.g. move

forward or backward, within the target application domain. Particular data

values are stored within AC and can be exposed later via properties. AC also

serves as a container and manager of application data used by the systems.

6.6.3.3 Inferring Layer Components

The key aspect of inferring layer is to ensure the accuracy of the input data being

collected. Inevitability, the type of data collected will directly impact the usefulness

of the results, since the conclusions that can be drawn depend on how the data are

collected. In addition, the smart environment will consist of numerous diverse

sensor techniques that have their own data collection requirements. For example,

on the one hand, devices like moisture sensors are simply broadcasting a state and

generate only a few hundred bytes per day, while on the other hand, devices like

remotely monitored mobile robots require a more complex model to capture useful

data. In light of this statement, the data gathering requires some category descrip-

tion from the identification of data types to the frequency pattern of data published.

Therefore inferring layer components provide access to two sources of data sets:

First, data stored within the scope of system; second, data exposed by other

networked systems. The commonly used component types in this layer are as

follows:

• Data processing (DP) components: DP components abstract the logic required to

access and process the underlying data sets. Several integrated functionalities

can be found as below:

– Identification of data type: The first step in the data processing is to identify

the data types. The individuals in any particular population typically possess

many characteristics. From the statist point of view, a variable is any char-

acteristic whose value may change from one individual to another. The data

resulted from making observations either on a single variable or simulta-

neously on two or more variables. In general, there are two types of data sets:

categorical (or qualitative) and numerical (or quantitative), and the latter can

be further classified in two different types: discrete and continuous. Also, the

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 127

collected data may be classified into four levels of scales of measurement,

i.e. nominal scale, ordinal scale, interval scale, and ratio scale. Regarding the

execution of data type identification, the use of graphs, charts, and tables is

useful for understanding characteristics of the individual data attributes.

– Discovery of published data frequency pattern: Understanding the frequency

pattern of published data is another main focus of data processing. For

example, some data is dynamic, and others may need observation over

time, implying learning and discovery.

– Interpretation data: Despite the seeking of input data precision, data rele-

vance which according to management objectives is also a key subject.

However, on the one hand, different symbols (e.g. letters, numbers, pictures,

etc.) represent different facts, entities, or events. On the other hand, the data

may contain errors or may have been collected in an inconsistent manner.

Therefore, there is a pressing need for the development of data interpreting

process to get valuable information. One common category of data

interpreting tasks provides summarizations and statements about the data.

Generally speaking, summarization is a process by which data is reduced for

interpretation without sacrificing important information. In this category, data

visualization, such as charts and summary tables, is an important tool. A

second category focuses on the identification of important facts, relation-

ships, anomalies, or trends in the data. Discovering this information often

involves looking at the data in many ways using a rule-based analysis

method. In general, a rule generally represents a decision in the form of

“if. . .then. . .” proposition. The main goal of rule extraction is to discover

hidden knowledge and explain it understandably, to extract previously

unknown relations, and to ensure reasoning and defining capability. Among

others, artificial neural network is one of the most widely used techniques for

finding highly predictive rules. The third category of tasks involves the

development of mathematical models that encode relationships in the data.

In general, models can be built to predict continuous data values

(e.g. regression models) or categorical data (e.g. classification models). The

methods to generate these models include linear regression, logistic regres-

sion, neural networks, support vector machines, naı̈ve Bayes, and different

bio-inspired algorithm.

– Filtering data: In the data-filtering step, analysis is translated into the process
of assessing at specific criteria to make it amenable to answering the problem

outline at the beginning of the project, and hence this step should be carefully

planned and executed. There are many ways to filter the results of data

ranging from active filter, passive filter, to collaborative filter.

– Storage data: Finally, correct data is stored either in the local database or in

the cloud.

• Service agent (SA) components: When the functionality provided by an external

service must be introduced for an acting component to function, one might need

to implement code to manage the semantics of communicating with that

128 B. Xing

particular service. This motivates us to design SA components who can isolate

the issue of calling different services from the outside and can offer extra

services, e.g. offline support, caching, etc.

6.6.3.4 Service Layer Components

The purpose of introducing service layer components is to provide other clients and

applications with a way of access action logic in the application and take advantage

of the functionality of the application via passing messages to and from it over a

communication channel. In the proposed framework, we define two types of

components, i.e. service interface (SI) components and message components.

Their details are outlined as follows:

• Service interface (SI) components: Services reveal different SI to which all

inbound messages are sent. An agreement is composed of the meaning of the

set of messages forms which must be exchanged with a service so that the

service can fulfil a specific action. SI can be treated as an appearance that

exhibits the action logic implemented in the application to potential users.

• Message components: When transferring data via the service layer, data struc-

tures are normally wrapped by message structures that bolster various types of

operations. These message components are the message agreements for com-

munication between users and service providers.

6.6.3.5 Cross Layer Components

Cross layer components are designed to deal with the situation where many tasks

implemented by the code of an application are needed in more than one single layer.

Cross layer components carry out particular types of functionality that can be

utilized by components from any layer. Typically, cross layer components consist

of the following:

• Security components: These components are composed of those who can per-

form authentication-, authorization-, and validation-related tasks.

• Management components: This class includes components that can be opera-

tional tasks such as logging, configuration, tracking, and performance counters.

• Communication components: The components that can provide communication

with other services and applications fall within this group.

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 129

6.7 Embedded Software for AAL

To offer more insights regarding how our SAfAAL would look like for embedded

AAL devices, an example is elaborated in a smart home environment. In general,

smart home system consists of multitudes of sensors and embedded equipment

which generate large amounts of data. The abstract architecture is illustrated in

Fig. 6.1.

As we can see from Fig. 6.1, the SAfAAL comprises four main layers,

i.e. perceiving, acting, inferring, and service layer, plus one cross layer. In our

model, five layers are physically distributed which is beneficial in terms of system’s
elasticity, adaptability, scalability, and extensibility. In addition, due to the diver-

sity of AAL clients, the range of data observed from AAL can vary widely. Thus,

we choose cloud computing to provide a real-time assisted-living service. Under

this framework, adding or separating a new ALL client becomes no more difficult.

Meanwhile, external service provider can join or leave the system freely. A brief

overview of these layers and their corresponding responsibilities in the context of

AAL is given below.

6.7.1 Smart Environment

Our proposed architecture can serve large amount of AAL clients. The specific

settings of such smart environment are dependent on target user needs. Different

components can be used in this layer for addressing discrete scenarios, say a set of

clients including such as end user, a network of body sensors [28], and various other

intelligent objects that form a smart home environment [64]. New elements can still

be included without having to alter the architecture. Within such environment,

: Cross Layer

: Perceiving Layer

: Inferring Layer

: Acting Layer

: Service Layer

: Components

Fig. 6.1 System architecture of SAfAAL

130 B. Xing

different types of data can be perceived, observed, monitored, captured, and

transported to the designated destination. Distinct GUIs displayed on mobile

devices, smart objects, etc. carry out a real-time interaction with the end users.

Although the complete setup depends on involved devices and the chosen service

types, each part has a unique mapping component in perceiving layer. For instance,

the perceived raw blood pressure data will be transferred to inferring layer for

further processing. On the other hand, some flexible GUIs can also be used for

providing useful visualized feedback to users. According to the literature [8, 53],

the key configurations and infrastructure of the sensors that form a body sensor

network often make them easily implemented. Nevertheless, due to their inherent

characteristics such as low power life and wireless communication capability, the

computation ability is often moved from these sensors to other layers for further

treatment. When it is necessary, suitable communication protocols can be employed

for calling them or further forwarding them to a more secured cloud.

6.7.2 Resort Presentation

Resort presentation is context aware-related applications. It can be seen as a

software application running on various devices of the AAL client side. The

function of resort presentation may include reminding doctor appointment,

watching emergency, and recommending diet option. In other words, a set of

rules and the associated list of assistive actions are integrated for responding to

various observed conditions. Although the core principles hold for different types

of actions, the detailed service content might be different. For instance, the treat-

ment of the same sickness for a diabetes patient, for a food disorder patient, and for

an obesity patient can be quite different. Due to the fact of the large number of

action types, it is generally impracticable installing, deploying, and activating all

the action components in a single layer. Only those scenario-related components are

deployed first, while the others can be added in later. For a particular acting type,

the similarities between context and action logic, a set of possible actions can be

identified. As soon as a similar pattern is detected in the context, it is able to respond

robust. In general all sorts of assistive actions are performed as outputs of this layer.

6.7.3 Data Interpretation

Making sense of data involves a lot of feature selection and classification tasks, and

most of them are computationally expensive. This layer acts as one of the most

important functionalities of the proposed model. The storing, retrieving, and pro-

cess of context-related data are typically conducted within this layer. In practice,

the fusion algorithm needs to be properly tuned to extract features from a large set

of context for classification. Different DP components can be designed for

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 131

addressing common scenarios such as activity recognition, health monitoring, and

fall detection. When extra data storage and memory are required for performing

efficient classification, cloud service can be brought in for minimizing local servers’
burden. The commonly used pattern recognition and classification algorithms are

artificial neural networks, K-means clustering, Bayes classifiers, and decision trees

[9, 69].

6.7.4 Context Aggregator and Providers

In this layer, contextual information can be aggregated in a single context model. In

practice, a service provider can be a medical server which can calculate various

medical data, or it can also be a weather station for forecasting context-related

weather condition (e.g. temperature, humidity, etc.). Under these circumstances, a

well-accepted context model, i.e. ontology-based context model [47], can be used

to deal with ALL scenario. By using Web ontology language (OWL), the context

model can be established around four main entities:

• User ontology: For identifying the user involved in the environment and his/her

profile such as sex, age, diseases, health conditions, and social interactions

• Location ontology: For describing user’s current position
• Surround ontology: For determining the conditions of user’s surrounding envi-

ronments which may potentially influence the assistive action decision-making

• Equipment ontology: For covering all the details of the sensors and other smart

objects

The abovementioned abstraction is easily extendable and modifiable which in

turn makes our architecture more adaptable. The introduction of this model can

make the following two tasks easy: deriving new knowledge about the current

context and detecting the extant inconsistency in the context data. Furthermore, it is

also convertible to extensible markup language (XML), a flexible and platform-

independent tool that can be employed in various stages of information represen-

tation, in the implementation level.

6.7.5 Cross Layer

Due to the nature of this layer, some commonly used functionalities, say, service

management, key information access control, context-to-service mapping, complex

computational tasks, are usually executed within this layer. For example, a software

manager agent can be used to ensure the appropriate assistive services are delivered

correctly and timely. Such context manager can automatically reconfigure its

knowledge for adapting the system change. Meanwhile, security component is

also one of the commonly used components within cross layer. Different security

132 B. Xing

solutions (e.g. [67] in the context of healthcare) can be integrated into distinct

components to ensure the privacy of the services.

6.8 Trade-Off Strategy for Managing Adaptability

With adaptable software architecture, component modules can be added to a based

software structure, and later actions (e.g. removal, rearrangement, or replacement)

can be performed as required. Figure 6.2 illustrates a generalized adaptable soft-

ware architecture.

As shown in Fig. 6.2, the software base component is located in the centre.

Proceeding from the base are the components represented by circle with the letter

“C”. Different types of components are represented by various font types, and the

empty circle denotes places where new components may be attached in the future.

In order to keep the concept of an adaptable software architecture from exploding in

complexity, boundaries can be imposed on the architecture via defining three basic

architectural parameters, namely, component levels, component types, and compo-

nent connectives.

Basically, component levels refer to the serial connections of components. For

instance, three component levels are depicted in Fig. 6.2. The first level is com-

posed of components which are attached to the software-based structure; the second

level consists of components which are connected to the first-level components, and

the remaining level(s) follows the same fashion. In general, it is possible to have

any amount of component levels; however, possessing more component levels can

no doubt increase the complexity of the software architecture and thus decrease its

corresponding adaptability. Therefore, a trade-off strategy is often needed here for

improving the software’s usability.
As the second important architectural parameter, component types measure the

number of unique components added on a machine. Conceivably, a software which

Fig. 6.2 Adaptable

software architecture

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 133

has more component types may adapt to different utilization scenarios easily,

although at a cost of with increased structure complexity degree.

The final parameter considered in this work refers to the number of available

component connectives on the software base. These component connectives are

connection points designated for accepting a component. For adaptability, the

number of component connectives has the most immediate impact. If designed

properly, an adaptable software architecture will increase in reusability with each

additional or rearranged component. Hence, a machine with more component

connectives will enjoy a greater reusability. Ideally, adaptable software architecture

will include just enough component connectives to enable the necessary modifica-

tion in capacity without significantly reducing software’s reliability or increasing its
corresponding maintaining cost.

6.8.1 Optimal Component Positions

The maximum number of component connectives allowed for an adaptable soft-

ware architecture is a crucial design parameter. On one hand, it is a great advantage

to develop a software architecture that could hold many components. The underly-

ing reason is that the cost of adding components should be always less than starting

again with another software architecture design. While on the other hand, with more

components working together on a single software base, there is a high probability

of software defaults. The result is the software’s reliability becoming lower with

each additional component being added. This generates a trade-off problem

between the functionality advantages of additional components and usability losses

due to the decreased reliability. This argument implies there is an existing optimal

number of component connectives that can be included in a single adaptable

software architecture. If more capacity is required above that point, a second

software base should be introduced.

In order to decide the cost-optimal number of component connectives (Noptimal),

we have to identify when the ratio of software usability rate to cost no longer

increases with additional components. To proceed with the analysis, we introduce

the following equations:

uN ¼ Nð Þ ucomponent

� � ð6:1Þ

Equation 6.1 gives the software usability rate of an adaptable software architec-

ture (excluding software crashes), where ucomponent denotes the usability rate of a

component and uN is the software usability rate as a function of N:

Psoftware ¼ Pbaseð Þ Pcomponent

� �N ð6:2Þ

134 B. Xing

Equation 6.1 quantifies the effect of additional components on overall software

reliability, where N is the number of components, Pcomponent refers to the probability

of a component that is functional, and the probability of a software base that is able

to function is represented by Pbase.

If we combine Eqs. 6.1 and 6.2, Eq. 6.3 can be acquired. This is the usability rate

of the software adjusted for availability:

uN ¼ Nð Þ ucomponent

� �
Pbaseð Þ Pcomponent

� �N ð6:3Þ

In practice (i.e. when N>0 and Pcomponent <1), the usability rate function shown

in Eq. 6.3 has a single maximum, which means one can determine the number of

components (Nmax) that could offer the maximum usability rate. This can be done

via firstly, differentiating uN with respect to N and setting it equal to zero; secondly,

solving the equation to get Nmax. The derivative of Eq. 6.3 is shown in Eq. 6.4 as

follows:

duN

dN
¼ Nð Þ ucomponent

� �
Pbaseð Þ Pcomponent

� �Nh i0
¼ Nð Þ0 ucomponent

� �
Pbaseð Þ Pcomponent

� �N þ Nð Þ ucomponent

� �
Pbaseð Þ Pcomponent

� �Nh i0
¼ ucomponent

� �
Pbaseð Þ Pcomponent

� �N þ Nð Þ ucomponent

� �
Pbaseð Þ Pcomponent

� �N
lnPcomponent

h i
¼ ucomponent

� �
Pbaseð Þ Pcomponent

� �N
1þ Nð Þ lnPcomponent

� �
ð6:4Þ

After setting duN
dN

equal to zero and calculating for Nmax, we can obtain Eq. 6.5 as

follows:

Nmax ¼ � 1

lnPcomponent

ð6:5Þ

Equation 6.5 has an important implication since it shows the exact point when

additional components will no longer increase the usability rate of the software.

Nevertheless, this number (Nmax) is not necessarily equivalent to the cost-optimal

number of component connectives (Noptimal). In fact, for most cases, the cost-

optimal number will be lesser.

We then have to decide when the usability rate per component cost of an

adaptable software architecture is maximized for the purpose of determining the

cost-optimal number of components. After that point, a new software base should

be introduced. In order to proceed with this calculation, we need to introduce an

adaptable software architecture cost equation as shown in Eq. 6.6:

Csoftware ¼ Cbase þ Nð ÞCcomponent ð6:6Þ

where Cbase is the cost of software base, Ccomponent represents the cost of a

component, and Csoftware refers to the total cost of a software.

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 135

If uN is divided by Csoftware, we get the ratio of usability rate to the cost of an

adaptable software architecture with N components as shown in Eq. 6.7:

RN ¼ uN
Csoftware

¼ Nð Þ ucomponent

� �
Pbaseð Þ Pcomponent

� �N
Cbase þ Nð ÞCcomponent

ð6:7Þ

The optimum number of components (Noptimal) can occur when RN reaches its

maximum. Therefore, in the same manner as we calculate Nmax, we can get the

derivative of RN as shown in Eq. 6.8:

dRN

dN
¼ Nð Þ ucomponent

� �
Pbaseð Þ Pcomponent

� �N
Cbase þ Nð ÞCcomponent

" #0

¼

Nð Þ ucomponent

� �
Pbaseð Þ Pcomponent

� �Nh i0
Cbase þ Nð ÞCcomponent

� �
� Nð Þ ucomponent

� �
Pbaseð Þ Pcomponent

� �Nh i
Cbase þ Nð ÞCcomponent

� �0
Cbase þ Nð ÞCcomponent

� �2

¼

ucomponent

� �
Pbaseð Þ Pcomponent

� �N
1þ Nð Þ lnPcomponent

� �
Cbase Nð ÞCcomponent

� �
� Nð Þ ucomponent

� �
Pbaseð Þ Pcomponent

� �Nh i
Ccomponent

Cbase þ Nð ÞCcomponent

� �2
¼ ucomponent

� �
Pbaseð Þ Pcomponent

� �N
1þ Nð Þ lnPcomponent

� �
Cbase þ Nð ÞCcomponent

� �� Nð ÞCcomponent

� �
Cbase þ Nð ÞCmodule½ �2

¼ ucomponent

� �
Pbaseð Þ Pcomponent

� �N
Cbase þ Nð Þ lnPcomponent Cbase þ Nð ÞCcomponent

� �� �
Cbase þ Nð ÞCcomponent

� �2
ð6:8Þ

After setting Eq. 6.8 equal to zero, we get the following quadratic equation as

shown in Eq. 6.9:

Nð Þ2 lnPcomponentCcomponent þ Nð Þ lnPcomponentCbase þ Cbase ¼ 0 ð6:9Þ

Finally, we can calculate Noptimal by solving Eq. 6.10:

Noptimal ¼
� lnPcomponentCbase �

ffi
lnPcomponentCbase

� �2 � 4 lnPcomponentCcomponent

� �
Cbase

q
2 lnPcomponentCcomponent

6664
7775

¼ �Cbase �
ffi
Cbaseð Þ2 � 4

Ccomponent

lnPcomponent

	

Cbase

s

2Ccomponent

66664
77775 ð6:10Þ

where b�cmeans the floor of variable, i.e. rounding down to the nearest integer [65].

136 B. Xing

As we know, the Noptimal must be an integer and also subject to the constraint of

Noptimal �1. So in practice, we have to use the positive root of the solution of

Eq. 6.10 and truncate it to its nearest integer value.

6.9 Conclusion

During the last decade, AAL has gained in importance, since it can support elderly

persons with their daily activities in order to help them maintain healthy and safety

while living independently. However, most current models lack a consolidation

view on how to manage those large-scale software-intensive systems. As a conse-

quence, they are often limited to adaptability and interoperability. In this chapter,

we propose a hybrid reference architecture for AAL, named software architecture

for AAL (SAfAAL for short), which is built on the component-based architectural

style. The ambitious goal is to balance the requirements and constraints imposed by

the business, the ender users, and their surrounding environments. Typically, in

software projects, software architectures reflect the major functional blocks of a

software. They provide high-level abstractions that are helpful when software

designers need to analyse the structure of whole system, e.g. finding a suitable

balance between competing and potentially conflicting goals. Conventionally, these

tasks were performed manually, assisted in human-based prior knowledge, and can

be very time-consuming with the ever-increasing dimensionality of the software

product. Fortunately, since the recent emergence of search-based software engi-

neering (SBSE) [17, 33, 57], various tasks related to software architecture such as

architectural optimization, components sequence identification, and component

number determination can be formulated as complex search and optimization

problems, where numerous computational intelligence techniques, both conven-

tional (e.g. genetic algorithm [42], genetic programming [44], simulated annealing

[45], Hill climbing [7]) and innovative (e.g. [76]), can certainly give us a hand. A

number of studies have made several attempts in this regard [34, 41]; however,

there are still a lot open questions that exist, for example, the definition of a

representation of the problem, the fitness function, and the scalability of results

[33]. Therefore, an immediate future research work can be done towards this

direction.

References

1. Abowd GD, Mynatt ED (2004) Designing for the human experience in smart environments. In:

Cook DJ, Das SK (eds) Smart environments: technology, protocols, and applications. Wiley,

pp 153–174

2. Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: a survey. Comput Netw

54:2688–2710

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 137

3. Andrade AO, Pereira AA, Walter S, Almeida R, Loureiro R, Compagna D, Kyberd PJ (2014)

Bridging the gap between robotic technology and health care. Biomed Signal Process Control

10:65–78

4. Anonymous (2010) Ambient assisted living roadmap. European Ambient Assisted Living

Innovation Alliance. IOS Press, Amsterdam

5. Anonymous (2014) Japan’s demography: the incredible shrinking country. Economist

(8889):35

6. Anonymous (2015) German demography. Economist (8929):56

7. Barros MO, Farzat FA, Travassos GH (2015) Learning from optimization: a case study with

apache ant. Inf Softw Technol 57:1–8

8. Bellifemine F, Fortino G, Giannantonio R, Gravina R, Guerrieri A, Sgroi M (2011) SPINE: a

domain-specific framework for rapid prototyping of WBSN applications. Softw Pract Exp

41:237–265

9. Bishop CM (2006) Pattern recognition and machine learning. Springer Science+Business

Media, New York

10. Borja R, JRdl P, Álvarez A, Maestre JM (2013) Integration of service robots in the smart home

by means of UPnP: a surveillance robot case study. Robot Auton Syst 61:153–160

11. Botia JA, Villa A, Palma J (2012) Ambient assisted living system for in-home monitoring of

healthy independent elders. Expert Syst Appl 39:8136–8148

12. Bradford JW, Knott DG, Levine EH, Zemmel RW (2011) Accounting for the cost of

U.S. health care: pre-reform trends and the impact of the recession. McKinsey & Company

13. Broadbent E, Stafford R, MacDonald B (2009) Acceptance of healthcare robots for the older

population: review and future directions. Int J Soc Robot 1:319–330

14. Brodalski D, Brink H, Curtis J, Diaz S, Schindelar J, Shannon C, Wolfson C (2011) The health

communicator’s social media toolkit. Centers for Disease Control and Prevention (CDC),

CS215469-A

15. Chernbumroong S, Cang S, Atkins A, Yu H (2013) Elderly activities recognition and classi-

fication for applications in assisted living. Expert Syst Appl 40:1662–1674

16. Cloutier R, Muller G, Verma D, Nilchiani R, Hole E, Bone M (2009) The concept of reference

architectures. Syst Eng 13:14–27

17. Colanzi TE, Vergilio SR, Assunç~ao WKG, Pozo A (2013) Search based software engineering:

review and analysis of the field in Brazil. J Syst Softw 86:970–984

18. Cooper RA, Grindle GG, Vazquez JJ, Xu J, Wang H, Candiotti J, Chung C, Salatin B,

Houston E, Kelleher A, Cooper R, Teodorski E, Beach S (2012) Personal mobility and

manipulation appliance-design, development, and initial testing. Proc IEEE 100:2505–2511

19. Dı́az M, Juan G, Lucas O, Ryuga A (2012) Big data on the Internet of things: an example for

the E-health. In: Sixth international conference on Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS), IEEE, Palermo, 4–6 July, pp 898–900

20. Dimitrov T (2005) Design and implementation of a home automation service gateway based

on OSGi. University of Duisburg-Essen, Düsseldorf
21. Ding D, Cooper RA, Pasquina PF, Fici-Pasquina L (2011) Sensor technology for smart homes.

Maturitas 69:131–136

22. Doukas C, Metsis V, Becker E, Le Z, Makedon F, Maglogiannis I (2011) Digital cities of the

future: extending @home assistive technologies for the elderly and the disabled. Telematics

Inform 28:176–190

23. Eklund U, Askerdal Ö, Granholm J, Alminger A, Axelsson J (2005) Experience of introducing

reference architectures in the development of automotive electronic systems. SIGSOFT Softw

Eng Notes 30:1–6

24. Falconer J (2013) HOSPI-R drug delivery robot frees nurses to do more important work. http://

www.gizmag.com/panasonic-hospi-r-delivery-robot/29565/. Accessed on 30 July 2015

25. Feil-Seifer D, Matarić MJ (2005) Defining socially assistive robotics. In: Proceedings of the

2005 I.E. 9th international conference on rehabilitation robotics, Chicago, 28 June–1 July 2005

138 B. Xing

http://www.gizmag.com/panasonic-hospi-r-delivery-robot/29565/
http://www.gizmag.com/panasonic-hospi-r-delivery-robot/29565/

26. Fernández-Montes A, Ortega JA, Sánchez-Venzalá JI, González-Abril L (2014) Software

reference architecture for smart environments: perception. Comp Stand Interfaces 36:928–940

27. Flammini A, Sisinni E (2014) Wireless sensor networking in the internet of things and cloud

computing era. Prod Eng 87:672–679

28. Fortino G, Giannantonio R, Gravina R, Kuryloski P, Jafari R (2013) Enabling effective

programming and flexible management of efficient body sensor network applications. IEEE

Trans Hum-Mach Syst 43:115–133

29. Fujiwara N, Hagiwara Y, Choi Y (2012) Development of a learning support system with

PaPeRo. The 12th international conference on control, automation and systems, Jeju Island,

17–21 Oct, pp 1912–1915

30. Graf B, Hans M, Schraft RD (2004) Care-O-bot II: development of a next generation robotic

home assistant. Auton Robot 16:193–205

31. Graf B, Parlitz C, Hägele M (2009) Robotic home assistant Care-O-bot 3 product vision and

innovation platform. In: Jacko JA (ed) Human-computer interaction, part II, (HCII 2009),

LNCS 5611. Springer, Berlin, pp 312–320

32. Graf B (2014) Care-O-bot. Fraunhofer Institute for Manufacturing Engineering and Automa-

tion. http://www.care-o-bot.de/en/care-o-bot-3.html. Accessed 30 July 2015

33. Harman M, Mansouri SA, Zhang Y (2012) Search based software engineering: trends,

techniques and applications. ACM Comput Surv 45:1101–1164

34. Harman M, Lakhotia K, Singer J, White DR, Yoo S (2013) Cloud engineering is search based

software engineering too. J Syst Softw 86:2225–2241

35. Harrefors C, Axelsson K, Sävenstedt S (2010) Using assistive technology services at differing

levels of care: healthy older couples’ perceptions. J Adv Nurs 66:1523–1532

36. HITACHI (2014) Robotics: EMIEW 2. http://www.hitachi.com/rd/portal/research/robotics/

emiew2_01.html. Accessed 30 July 2015

37. Hong YJ, Kim IJ, Ahn SC, Kim HG (2010) Mobile health monitoring system based on activity

recognition using accelerometer. Simul Model Pract Theory 18:446–455

38. Hosoda Y, Egawa S, Tamamoto J, Yamamoto K, Nakamura R, Togami M (2006) Basic design

of human-symbiotic robot EMIEW. Proceedings of the 2006 IEEE/ RSJ international confer-

ence on intelligent robots and systems,9–15 Oct, Beijing, pp 5079–5084

39. Hosoda Y, Yamamoto K, Ichinose R, Egawa S, Tamamoto J (2010) Collision-avoidance

algorithm for human-symbiotic robot. International conference on control, automation and

systems 2010, 27–30 Oct, Gyeonggi-do, pp 557–561

40. Hydra Project (2011) Hydra open source middleware

41. Kempka J, McMinn P, Sudholt D (in press) Design and analysis of different alternating

variable searches for search-based software testing. Theor Comput Sci

42. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a

tutorial. Reliab Eng Syst Saf 91:992–1007

43. Kuindersma SR, Hannigan E, Ruiken D, Grupen RA (2009) Dexterous mobility with the uBot-

5 mobile manipulator international conference on advanced robotics (ICAR), pp 1–7

44. Langdon WB, Poli R, McPhee NF, Koza JR (2008) Genetic programming: an introduction and

tutorial, with a survey of techniques and applications. Stud Comput Intell (SCI) 115:927–1028

45. Matinnejad R, Nejati S, Briand L (2015) Search-based automated testing of continuous

controllers: framework, tool support, and case studies. Inf Softw Technol 57:9–15

46. McGrath MJ, Scanaill CN (2014) Sensor technologies: healthcare, wellness, and environmen-

tal applications. Apress Media, LLC, New York, ISBN 978-1-4302-6013-4

47. Mocholı́ J, Sala P, Fernández-Llatas C, Naranjo J (2010) Ontology for modeling interaction in

ambient assisted living environments. In: The 15th Mediterranean conference on medical and

biological engineering and computing, Springer, pp 655–658

48. Mukai T, Hirano S, Nakashima H, Kato Y, Sakaida Y, Guo S, Hosoe S (2010) Development of

a nursing-care assistant robot RIBA that can lift a human in Its arms. In: The 2010 IEEE/RSJ

international conference on intelligent robots and systems, 18–22 Oct 2010, Taipei

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 139

http://www.care-o-bot.de/en/care-o-bot-3.html
http://www.hitachi.com/rd/portal/research/robotics/emiew2_01.html
http://www.hitachi.com/rd/portal/research/robotics/emiew2_01.html

49. Murai R, Sakai T, Kawano H, Matsukawa Y (2012) A novel visible light communication

system for enhanced control of autonomous delivery robots in a hospital. IEEE/SICE interna-

tional symposium on System Integration (SII), 16–18 Dec, Kyushu University, Fukuoka, pp

510–516

50. Nakagawa EY, Antonino PO, Becker M, Maldonado JC, Storf H, Villela KB, Rombach D

(2013) Relevance and perspectives of AAL in Brazil. J Syst Softw 86:985–996

51. OASIS Project (2011) OASIS: quality of life for the elderly

52. OpenAAL (2011) OpenAAL. The open source middleware for ambient-assisted living

53. Otto C, Milenkovic A, Sanders C, Jovanov E (2006) System architecture of a wireless body

area sensor network for ubiquitous health monitoring. J Mob Multimed 1:307–326

54. Paschou M, Sakkopoulos E, Sourla E, Tsakalidis A (2013) Health internet of things: metrics

and methods for efficient data transfer. Simul Model Pract Theory 34:186–199

55. Pekka P, Pakkala D (In press) Reference architecture and classification of technologies,

products and services for big data systems. Big Data Res

56. PERSONA Project (2011) Perceptive Spaces promoting independent aging

57. Räihä O (2010) A survey on search-based software design. Comp Sci Rev 4:203–249

58. Rashidi P, Mihailidis A (2013) A survey on ambient-assisted living tools for older adults. IEEE

J Biomed Health Informa 17:579–590

59. RIKEN-TRI Collaboration Center RIBA. http://rtc.nagoya.riken.jp/RIBA/index-e.html.

Accessed on 30 July 2015

60. Sato M, Sugiyama A, Ohnaka Si (2006) Auditory system in a personal robot, PaPeRo. In: 2006

digest of technical papers international conference on consumer electronics (ICCE 06), 7–11

Jan 2006, pp 19–20

61. Sato M, Iwasawa T, Sugiyama A, Nishizawa T, Takano Y (2009) A single-chip speech

dialogue module and its evaluation on a personal robot, PaPeRo-mini. In: IEEE international

conference on acoustics, speech and signal processing (ICASSP), 19–24 Apr, Taipei, pp

3697–3700

62. Schmidt RF (2013) Software engineering: architecture-driven software development. Morgan

Kaufmann, Elsevier, Waltham, ISBN 978-0-12-407768-3

63. Shen VRL, Yang C-Y, Chen CH (2015) Smart home management system with hierarchical

behavior suggestion and recovery mechanism. Comp Stand Interfaces 41:98–111

64. Spivey D (2015) Home automation for Dummies. Wiley, Hoboken, ISBN 978–1–118-94926-

907030–5774

65. Stewart J (2012) Calculus. Brooks/Cole, Cengage Learning, Belmont. ISBN 978-0-538-

49781-7

66. Su C-J, Chiang C-Y (2014) Pervasive community care platform: ambient intelligence leverag-

ing sensor networks and mobile agents. Int J Syst Sci 45:778–797

67. Sun J, Zhu X, Zhang C, Fang Y (2012) Security and privacy for mobile health-care (m-Health)

systems. In: Das SK, Kant K, Zhang N (eds) Handbook on securing cyber-physical critical

infrastructure. Elsevier, Waltham, pp 677–704. ISBN 978-0-12-415815-3

68. Suryadevara NK, Mukhopadhyay SC, Wang R, Rayudu RK (2013) Forecasting the behavior of

an elderly using wireless sensors data in a smart home. Eng Appl Artif Intell 26:2641–2652

69. Theodoridis S, Koutroumbas K (2009) Pattern recognition. Academic (Elsevier)

70. UniversAAL Project (2011) The universAAL reference architecture

71. Vance K, Howe W, Dellavalle RP (2009) Social internet sites as a source of public health

information. Dermatol Clin 27:133–136

72. Vandewynckel J, Otis M, Bouchard B, Ménélas B-A-J, Bouzouane A (2013) Towards a real-

time error detection within a smart home by using activity recognition with a shoe-mounted

accelerometer. Procedia Comp Sci 19:516–523

73. Wang H, Grindle GG, Candiotti J, Chung C, Shino M, Houston E, Cooper RA (2012) The

personal mobility and manipulation appliance (PerMMA): a robotic wheelchair with advanced

mobility and manipulation. In: The 34th annual international conference of the IEEE EMBS,

San Diego, 28 Aug�1 Sept 2012

140 B. Xing

http://rtc.nagoya.riken.jp/RIBA/index-e.html

74. Wu Y-C, Chang C-S, Sawaguchi Y, Yu W-C, Chen M-J, Lin J-Y, Liu S-M, Han C-C, Huang

W-L, Su C-Y (2011) A mobile-phone-based health management system. In: Smigorski K

(ed) Health management – different approaches and solutions. InTech, Rijeka, ISBN

978–953–307-296-8

75. Wu Y-H, Wrobel J, Cristancho-Lacroix V, Kamali L, Chetouani M, Duhaut D, Pevedic BL,

Jost C, Dupourque V, Ghrissi M, Rigaud A-S (2013) Designing an assistive robot for older

adults: the ROBADOM project. IRBM 34:119–123

76. Xing B, Gao W-J (2014) Innovative computational intelligence: a rough guide to 134 clever

algorithms. Springer International Publishing Switzerland, Cham. ISBN 978-3-319-03403-4

77. Xu J, Grindle GG, Salatin B, Vazquez JJ, Wang H, Ding D, Cooper RA (2010) Enhanced

bimanual manipulation assistance with the personal mobility and manipulation appliance

(PerMMA). The 2010 IEEE/RSJ international conference on intelligent robots and systems,

18–22 Oct 2010, Taipei

78. Zhang J, Shan Y, Huang K (2015) ISEE smart home (ISH): smart video analysis for home

security. Neurocomputing 149:752–766

6 Component-Based Hybrid Reference Architecture for Managing Adaptable. . . 141

Chapter 7

3PR Framework for Software Project
Management: People, Process, Product,
and Risk

Kadir Alpaslan Demir

7.1 Introduction

There are various studies reporting the success and failure rates in software projects

[11, 13, 48]. Even with the lowest failure rates reported, software projects are

significantly failing when compared to projects in other fields. Slevin and his

colleagues [49] identified a number of project management issues in several

project-based industries. Among nine industries studied, only for the software

industry, poor performance is explicitly reported as an issue. The average software

project is likely to be 6–12 months behind schedule and 50–100% over budget

[50]. Ineffective software project management is one of the main reasons for

software project failures [51]. In addition, effective project management is an

important factor in achieving software project success [10, 51]. DeMarco and Lister

[26] state: “For overwhelming majority of the bankrupt projects we studied, there

was not a single technological issue to explain the failure.” Robertson and Robert-

son emphasize that, “in several decades of project experience, we have never seen a

project fail for technical reasons. It has always been human failures that have

caused otherwise good projects grind to a halt” [53]. Various other researchers

and practitioners emphasize the importance of software project management in the

success and failure of software projects [27, 54]. According to Boehm, poor

management may increase software costs more rapidly than any other factor

[55]. COCOMO, a method for software project cost and effort estimation developed

by Barry Boehm and his colleagues, does not include project management as a

factor [55]. Therefore, in COCOMO II, the estimation model incorporates some

K.A. Demir (*)

Department of Software Development, Turkish Naval Research Center Command,

Istanbul, Turkey

e-mail: kadiralpaslandemir@gmail.com

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_7

143

mailto:kadiralpaslandemir@gmail.com

project management-related factors such as PCON (personnel continuity) and

PMAT (process maturity) [56].

One would expect that our performance in software projects should have been

better with all the advancements in technical aspects of software engineering.

However, relying merely on technological advances to achieve better outcomes in

software projects may be misleading. Significant advances in software project

management are also required. Therefore, proposals and discussions for applicable

and viable theories, models, and practices in software project management are

important steps in achieving better project outcomes. Furthermore, we need better

project management software tools, since these tools are essential for effective

project management [52].

We achieved a certain level of success in various types of projects. Based on

the experience gained over the years, Project Management Institute (PMI)

developed the infamous standard “Project Management Body of Knowledge

(PMBOK Guide).” There are also many studies focusing on project management

especially identifying critical success factors and causes of failures in projects.

The current low success rates in software projects calls for more research

focusing on software project management. Cooke-Davies identified that differ-

ent types of projects require different project management practices [28]. As a

result, we need to continue searching for better theories, models, and different

approaches for software project management. The goal of this study to develop a

software project management framework. The framework is called 3PR (people,

process, product, risk) framework for software project management. It is devel-

oped as a result of an extensive literature review of project management and

software engineering literature. 3PR framework is validated with an interna-

tional survey of software practitioners. The framework is used to develop a

metric for software project management effectiveness [10]. The 3PR framework

is comprehensive, and it can be used as a basis for many other research studies on

software project management.

This chapter outlines the 3PR framework. First, an overview of project manage-

ment approaches, models, and frameworks is presented. Then, we describe the

framework and the survey study conducted to validate the framework before

finalizing the chapter.

7.2 Software Project Management Approaches, Models,
and Frameworks

In this section, we review the leading approaches, models, and frameworks for

software project management. First, let’s review a few project management models

and frameworks.

Currently, the established standard for project management is Project Manage-

ment Institute’s (PMI) “A Guide to the Project Management Body of Knowledge”

144 K.A. Demir

(PMBOKGuide). Hundreds of project management professionals contributed to the

development of PMBOK Guide over time. It embodies the cumulative project

management experience gained throughout the years. It is a general guide for

project management. Therefore, it can be used in projects from various industries. In

addition, the PMBOK Guide has extensions for software, construction, and gov-

ernment projects. The first edition [1] was published in 1996. The latest edition is

the fifth edition [5] published in 2013. PMBOK Guide identifies five project

management process groups [1–5] as follows:

• Initiating process group

• Planning process group

• Executing process group

• Monitoring and controlling process group

• Closing process group

According to the PMBOK, these are not the phases of a project, and they may be

repeated for each phase where appropriate. PMBOK also identifies and lists ten

project management knowledge areas [5]:

1. Project integration management

2. Project scope management

3. Project time management

4. Project cost management

5. Project quality management

6. Project human resource management

7. Project communications management

8. Project risk management

9. Project procurement management

10. Project stakeholder management

One notable change in the last edition is the addition of project stakeholder

management as a separate knowledge area. In the previous editions, it was a part of

project communications management. The importance of stakeholder management

is recognized by separating it as another knowledge area.

According to PMBOK Guide [5], there are organizational influences on the

management of a project. Organizational characteristics, factors, and assets create

these influences. Organizational cultures and styles, organizational communica-

tions, organizational structures, organizational process assets, and enterprise envi-

ronmental factors are among these organizational characteristics, factors, and

assets. PMBOK Guide also lists key interpersonal management skills for project

managers. These are leadership, team building, motivation, communication,

influencing, decision-making, political and cultural awareness, negotiation, trust

building, conflict management, and coaching.

Overall, PMBOK Guide identifies 47 project management processes. These

processes are categorized under five process groups and ten knowledge areas. The

guide has a process-oriented view on project management. Projects are managed as

a set of processes. While PMBOK Guide points out the importance of

7 3PR Framework for Software Project Management: People, Process, Product. . . 145

organizational influences and various management skills, interactions between

processes and management elements are not detailed in the guide.

Forsberg [47] developed an elegant model for project management. The model is

called “the wheel and axle model.” It is based on five essentials for every project:

• Organizational commitment

• Communication

• Teamwork

• Project cycle

• Management elements

In the wheel and axle model, organizational commitment, communication, and

teamwork support the whole project development cycle and key management

elements. The project development cycle has three aspects: business, budget, and

technical. These aspects should be kept in balance [47]. In the model, a project has

three periods and each period contains a number of phases. The defined periods in

the wheel and axle model are study period, implementation period, and operations

period. One of the five essentials is management elements. These management

elements are [47]:

• Project requirements

• Organizational options

• Project team

• Project planning

• Opportunities and risks

• Project control

• Project visibility

• Project status

• Corrective actions

• Project leadership

According to Forsberg, Mooz, and Cotterman [47], project leadership binds the

other nine management elements. These researchers place a special emphasis on

project leadership. This emphasis is right on target, since our research findings

indicate that project managers and project leaders at every level play a crucial role

in project success [10]. Furthermore, people management is essential in the model.

The interactions between project management processes and key management

elements are detailed in the wheel and axle model. In conclusion, Forsberg,

Mooz, and Cotterman have a different approach than the PMBOK Guide’s
process-oriented approach. They combine project management processes, project

development cycle, and management elements in their model. These researchers

provide a holistic view on project management. Their book on project management

is based on this wheel and axel model of project management [47].

We briefly discussed two different approaches to project management. These

approaches are applicable to projects from different industries. Now, let us focus on

the approaches and models for software project management.

146 K.A. Demir

Capability Maturity Models (CMMs) developed by Carnegie Mellon Software

Engineering Institute (SEI) had a significant impact on the software industry. Basi-

cally, CMMs establish organizational maturity levels for software development and

related areas. There are five organizational maturity levels: initial, managed, defined,

quantitatively managed, optimizing. CMMs identify required processes and activities

for each maturity level. The assumption is that mature organizations develop systems

better. Many organizations got CMM certifications. Furthermore, numerous organi-

zations adapted the processes detailed in CMMs. In the beginning of 1990s, first

CMMs were released. Later, in 2002, SEI published Capability Maturity Model

Integration (CMMI) Version 1.1 [7]. CMMI combines a number of earlier CMMs

under one model. The focus in CMMI is the organization rather than the project.

CMMI for Development Version 1.3 (CMMI-DEV, V1.3) [9] describes four

main process areas: process management, project management, engineering, and

support. These are further divided into basic and advanced process areas.

Process management process areas include the following five process areas:

• Organizational process definition (OPD)

• Organizational process focus (OPF)

• Organizational performance management (OPM)

• Organizational process performance (OPP)

• Organizational training (OT)

Organizational process definition, organizational process focus, and organiza-

tional training are among the basic process areas. Organizational performance

management and organizational process performance are advanced process areas.

Project management process areas include the following seven process areas:

• Integrated project management (IPM)

• Project monitoring and control (PMC)

• Project planning (PP)

• Quantitative project management (QPM)

• Requirements management (REQM)

• Risk management (RSKM)

• Supplier agreement and management (SAM)

Four of these areas are basic project management process areas. These are

project planning, project monitoring and control, requirements management, and

supplier agreement and management. Advanced project management process areas

are composed of integrated project management, quantitative project management,

and risk management. Engineering process areas includes the following five pro-

cess areas:

• Product integration (PI)

• Requirements development (RD)

• Technical solution (TS)

• Validation (VAL)

• Verification (VER)

7 3PR Framework for Software Project Management: People, Process, Product. . . 147

Support process areas include the following five process areas:

• Causal analysis and resolution (CAR)

• Configuration management (CM)

• Decision analysis and resolution (DAR)

• Measurement and analysis (MA)

• Process and product quality assurance (PPQA)

Process and product quality assurance, configuration management, and measure-

ment and analysis process areas are basic support process areas. Causal analysis and

resolution and decision analysis and resolution process areas are categorized under

advanced support process areas.

Note that project management process area has more process areas than others

have. Apparently, CMMI recognizes the importance of project management in

system and software developments. Furthermore, some of the process areas from

other main areas are also closely related to project management. For example,

measurement and analysis, decision analysis and resolution, and almost all process

areas in process management are related to project management.

SEI also developed a People Capability Maturity Model (P-CMM). The P-CMM

is a set of human capital management processes helping to improve the capability of

an organization’s workforce [65]. Since CMMI omits people management issues,

P-CMM compliments CMMI in this aspect. Like PMBOK Guide, CMMI has a

process-oriented approach to systems development and project management.

The “Program Manager’s Guide to Software Acquisition Best Practices Version
2.31” was prepared by the Software Program Managers Network (SPMN). The

network consisted of many experienced software program managers. The guide

identifies nine principal best practices [6] as follows:

• Formal risk management

• Agreement on interfaces

• Formal inspections

• Metrics-based scheduling and management

• Binary quality gates at the inch-pebble level

• Program-wide visibility of progress vs. plan

• Defect tracking against quality gates

• Configuration management

• People-aware management accountability

Also, the guide groups the best practices into seven proven management areas as

shown below:

• Risk management

• Planning

• Program visibility

• Program control

• Engineering practices and culture

• Process improvement

• Solicitation and contracting

148 K.A. Demir

Every management area contains a number of best practices. For example, risk

management has five best practices, planning has four practices, program visibility

has four practices, and so on. The “Program Manager’s Guide to Software Acqui-

sition Best Practices Version 2.31” encompasses many essentials of software

program management. Most of the practices overlap with PMBOK Guide and

CMMI. However, unlike PMBOK Guide or CMMI, this guide does not have a

structured approach for project management.

The Software Quality Institute’s Body of Knowledge for Software Project

Management (SQI BOK) lists 34 competencies. This list of essential competencies

is employed by the most successful software project managers. These competencies

are categorized into three parts, product, project, and people [46], as mentioned

below.

Product Development Techniques

1. Assessing processes

2. Awareness of process standards

3. Defining the product

4. Evaluating alternative processes

5. Managing requirements

6. Managing subcontractors

7. Performing the initial assessment

8. Selecting methods and tools

9. Tailoring processes

10. Tracking product quality

11. Understanding development activities

Project Management Skills

12. Building a work breakdown structure

13. Documenting plans

14. Estimating cost

15. Estimating effort

16. Managing risks

17. Monitoring development

18. Scheduling

19. Selecting metrics

20. Selecting project management tools

21. Tracking processes

22. Tracking project progress

People Management Skills

23. Appraising performance

24. Handling intellectual property

25. Holding effective meetings

26. Interaction and communication

27. Leadership

7 3PR Framework for Software Project Management: People, Process, Product. . . 149

28. Managing change

29. Negotiating successfully

30. Planning careers

31. Presenting effectively

32. Recruiting

33. Selecting a team

34. Teambuilding

SQI BOK has a competency-based approach for software project management.

It does a good job in capturing the required competencies. The project managers

and leaders at various levels should be competent in some or all of these compe-

tencies. As a result, leaders with these competencies are assumed to do well in

completing a project successfully.

Philips identifies three key perspectives for software project management: peo-

ple, business, and process [12]. He emphasizes that having these perspectives won’t
make a project successful, but it will help to go a long way to making success

possible. He promotes four basic principles that need to be applied with discipline

and perseverance viz.:

• Balance people, process, and product

• Promote visibility

• Organize by using configuration management tools properly

• Use standards judiciously

Philips highlights that all undertakings include the 3Ps: people, process, and

product [12]. In successful undertakings, these 3Ps are managed in harmony.

Wiegers [14] identifies five dimensions of a software project: staff, features,

quality, cost, and schedule. Throughout a software project, the listed five dimen-

sions have to be managed. Figure 7.1 shows these dimensions. These dimensions

are somewhat dependent on each other; the relations among them are nonlinear and

complex most of the time. The dimensions may be assigned roles on a project: a

driver, a constraint, or a degree of freedom [14]. The driver of a project is the key

objective. There may be multiple drivers. However, if all dimensions are assumed

to be drivers, there is no point in having different roles. A constraint is the limiting

factor for the project. The constraint has to be outside of the project manager’s
control. For example, a fixed cost price, where negotiation with the customer is not

an option, is the constraint. When the team size is fixed and the manager is not

allowed to hire new team members or detach team members from the project

organization, then the staff is the constraint. The rest of the dimensions that are

not drivers or constraints become the degrees of freedom. When the project

manager has control over adding or omitting features, then the feature dimension

is a degree of freedom.

Figure 7.1 presents the dimensions on a Kiviat diagram. Kiviat diagrams are

useful when multiple item evaluations are presented on a single diagram. A Kiviat

diagram is a polygon, which has the same number of sides as the number of

variables. Each axis represents a data category, and different scales and data

150 K.A. Demir

types can be used. However, in this case, the same scale is used. The dimensions are

categorized with respect to the flexibility the project manager has over the dimen-

sion. The flexibility of the dimension is plotted on an axis of the Kiviat diagram.

The scale on a dimension goes from zero flexibility to highest flexibility (0–10).

The closer the plot is to the center, the less flexibility there is for that dimension. So,

for a complete constraint such as having a fixed number of team members, the plot

on the staff axis would be the closest to the center. Understanding the driver, the

constraint, and the degrees of freedom in a project and plotting them on a Kiviat

diagram help us in critical decision-making as well as with prioritization.

According to Bach, all managers are faced with the 3Ps while developing

software [15]. These 3Ps are people, problem, and process. He questions whether

the 3Ps should be given equal weight and whether one should be given more focus

than others. Bach emphasizes that the people aspect of software development

should be given more focus. He criticizes CMM for focusing too much on process

rather than people at the time. One year later in 1995, the first version of the People

Capability Maturity Model (P-CMM) [16] was released based on the work by

Humphrey [17]. Later the work was called Personal Software Process [18, 19].

Kulpa reports an interesting graphic from a CMM introduction class [20]. The

graphic presents the foundations for an organization and consists of a three-legged

stool figure. In the graphic, the stool represents the organization. The legs of the

stool are people, process, and technology. Kulpa argues that a stable organization

needs these three legs. While most organizations try to improve their processes and

implement various technologies, they often neglect the people aspect. Kulpa argues

that after a CMMI-based process improvement effort, implementing People CMM

should complement this effort. Kulpa basically stresses the importance of people

management in an organization.

PMBOK Guide and CMMI are the results of extensive work. Both are supported

by well-established institutions. They are developed with the help of numerous

researchers and practitioners. Both PMBOK Guide and CMMI are process oriented

and they have a systematic structure. While they recognize the importance of

people management, they do not go into the details of people management in

the project environment. The Program Manager’s Guide to Software Acquisition

Best Practices Version 2.31 and the Software Quality Institute’s Body of Knowl-

edge for Software Project Management are quite comprehensive. They provide a

different approach to project management. One focuses on best practices, while the

Staff

FeaturesSchedule

Cost Quality

Fig. 7.1 Five dimensions

of a project

7 3PR Framework for Software Project Management: People, Process, Product. . . 151

other focuses on project management competencies. We also briefly discussed

some other work on project management models, approaches, and perspectives.

Most of these provide a general perspective to project management and focus on

some essential project management areas. These works are generally based on the

experiences of the respective researchers.

7.3 3PR (People, Process, Product, and Risk) Framework
for Software Project Management

The goal of 3PR (people, process, product, and risk) framework research was to

develop a simple project management framework customized for software project

management. This research was conducted as part of a bigger research project. The

goal of the bigger research project was to develop a software project management

effectiveness metric [10]. Such a metric development study required a valid soft-

ware project management framework. We investigated the project management

frameworks and models in the current literature. Some of these are already

discussed in the previous section. We concluded that the current frameworks and

models are insufficient for guiding the development of a comprehensive software

project management effectiveness metric. Some of the previous models and frame-

works are process oriented, and people management is somewhat overlooked.

Some provide a holistic view without adequate details. Some are arguably com-

plete. Most importantly, most of these studies need validation. As a result, we

developed the 3PR framework and validated it. This framework was successfully

used as a foundation for the development of a software project management

effectiveness metric [10].

The 3PR framework consists of four main areas in software project

management:

• People management

• Process management

• Product management

• Risk management

The first letters of main software project management areas are combined, and

the framework is named as 3PR. The framework is shown in Fig. 7.2. In the

following sections, we briefly discuss each software project management area.

7.3.1 People Management

The importance of people management in project development efforts is quite well

established [12, 15, 16, 19, 21–26]. The people management area is especially

152 K.A. Demir

important in software development projects, since the development is considerably

human intensive compared to other industries.

James Bach takes a radical position in what aspect needs more focus in software

development projects [15]. He strongly points out that “At conferences and in

journals, the extraordinary attention we give to software development processes

is misplaced. Far too much is written about processes and methods for developing

software; far too little about care and feeding of the minds that actually write the

Fig. 7.2 3PR framework for software project management

7 3PR Framework for Software Project Management: People, Process, Product. . . 153

software. Process is useful, but it is not central to successful software projects. The

central issue is the human processor – the hero who steps up and solves the

problems that lie between a need expressed and a need fulfilled.” He also empha-

sizes that “I argue that the only basis for success of any kind is the heroic efforts of a

dedicated team.” Even though his views might be seen as radical, this may be the

result of resentment due to lack of research and emphasis on people issues in

software development when compared to research on processes. Weinberg states,

“The three causes of failure are people, people, and people” [27]. Again, Thomsett

points out that “most projects fail because of people and project management

concerns rather than technical issues” [57]. Kulpa states that the one area that is

unaddressed by organizations is the people [20]. Philips takes a more central

approach [12]. He stresses the importance of having a balance between people,

process, and product. He argues that the road to success passes from harmonizing

these 3Ps.

Brooks pointed out the variations in programmer productivity as a problem

[21]. He references studies reporting an order of magnitude variations dated back

to 1968 [29]. DeMarco and Lister reported significant computer programmer

productivity variations ranging from one to tenfold [25]. Weinberg reported vari-

ations in programmer productivity and quality from 20 to 1 [27]. Considerable

variations exist in software development productivity. Measuring programmer

productivity is not trivial. It is hard to set up an experiment in which it is possible

to control every factor contributing to the productivity and to measure the produc-

tivity correctly.

In one of the most widely known cost estimation technique, COCOMO II, team

cohesion affects the effort estimation exponentially. The team cohesion scale factor

accounts for the difficulties in managing different stakeholders including users,

customers, developers, etc. [30].

Hughes and Cotterell [31] point out that people with practical experience in

software projects will clearly declare people management as an important aspect of

software project management.

The importance of people management in software development projects is

established. Therefore, people management area is essential in the 3PR framework.

The study conducted for the validation of the framework also shows that people

management has the highest importance in software project management.

7.3.2 Process Management

Without a defined process, gathering a bunch of practitioners and expecting them to

work in harmony for a common goal is very unlikely. Two things may happen:

either they naturally form a team through group dynamics and even set up a process

invisible to the outsider and then start working together to achieve the goal or they

will work toward their personal ambitions. In other cases, where there is a defined

process, practitioners are assigned to or voluntarily fill up the project roles. A

154 K.A. Demir

process is essential to the project. Whether the process is effective or not or the

process is well defined or vaguely exists, process management is one of the main

areas in project management.

IEEE’s “Standard Glossary of Software Engineering Terminology” [32] defines

the process as “a sequence of steps performed for a given purpose; for example the

software development process.” In the same standard, process management is

defined as “the direction, control, and coordination of work performed to develop

a product or a service. Example is quality assurance.”

Two of the most widely recognized works mainly focus on improving project

development and management processes. CMMI and earlier various CMMs are

based on improving the maturity of organizations by improving their processes

[8]. CMMI for development proposes specific and generic goals for each identified

process area. As previously mentioned, PMBOK Guide identifies five project

management processes groups: initiating, planning, executing, monitoring and

controlling, and closing. Both CMMI and PMBOK Guide have a process-oriented

approach to project management.

Endres and Rombach [33] present Humphrey’s law as “mature processes and

personal discipline enhance planning, increase productivity, and reduce errors.”

Many studies report that improved processes increase the likelihood of project

success. As a result, inclusion of the process management into to 3PR framework

is well-justified.

7.3.3 Product Management

According to PMBOK Guide, “a project is a temporary endeavor undertaken to

create a unique product, service, or result.” In the guide, the product is considered as

the outcome of the project, which may be a product, service, or result. This view is

also shared with Philips’s definition of product: “the product is the project’s final
outcome” [12]. Products include software, firmware, documentation, reusable arti-

facts, training, and even services such as maintenance. The most important char-

acteristic of the product is its quality. In every project, the stakeholders should come

to a common understanding of what the product’s quality should be. The earlier this
common understanding is reached, the better it is. According to Blum, there are two

views of quality: internal and external [34]. While internal quality is the developer’s
view of the software, external quality is the stakeholders’ view of the software.

Internal quality includes, but is not limited to, efficiency, testability, understand-

ability, and modifiability. External quality includes usability, correctness, reliabil-

ity, maintainability, integrity, etc. It is preferable to make these quality attributes as

measurable as possible; however, this is not an easy task in every project. For

example, a quality attribute such as usability may mean different things for the

developers and the users. Thus, it is essential to define what usable means as early

as possible in the project development. It is important to note that quality is not a

7 3PR Framework for Software Project Management: People, Process, Product. . . 155

feature that can be included later in the product. It should be integral to the whole

software development process.

7.3.4 Risk Management

As stated in PMBOK Guide, a project is undertaken to create a unique product,

service, or result. This uniqueness is inherent and creates a certain amount of

uncertainty in projects. This is also specifically addressed in Turner’s theory of

project management [35]. In this theory, the work in a project is non-routine and

therefore risky. This is one of the inherent aspects of projects. Every project

manager or project management team conducts risk management activities with

different levels of rigor. The level of rigor varies from dedicated formal risk

management procedures to ad hoc responses to risks.

Risk management has found its place in most well-established standards and

guidelines such as PMBOK Guide, CMMI, Program Manager’s Guide to Software

Acquisition Best Practices [6], Guide to the Software Engineering Body of Knowl-

edge (SWEBOK) 2004 Version [36], INCOSE’s (International Council on Systems

Engineering) Systems Engineering Handbook Version 3.1 [37], NASA Systems

Engineering Handbook [38], and the Military Standard for Software Development

and Documentation [39].

Boehm points out that in most software project disasters, the problems could

have been avoided or reduced if the high-risk elements had been identified and

resolved early on in the process [40]. Risk management has two primary steps: risk

assessment and risk control. Risk assessment involves risk identification, risk

analysis, and risk prioritization. Risk control involves risk management planning,

risk resolution, and risk monitoring. Capers Jones identifies 60 software risk factors

in his book [41]. This book is a good source of information for identification and

resolution of risks in software projects.

Since risk management is an inherent aspect of project management, software

project management framework includes risk management as a main area.

7.4 People Management

The people management main area includes seven project management areas. They

are communication, teamwork, leadership, organizational commitment, project

manager, stakeholder involvement, and staffing and hiring.

156 K.A. Demir

7.4.1 Communication

Communication can be generally described as “the exchange of ideas, opinions, and

information through written or spoken words, symbols, or actions” [58]. A suc-

cessful project requires constant and healthy communication between stakeholders.

The importance of communication in projects is well established in the literature.

Among all the project management areas listed in PMBOK Guide, communications

management has the largest impact on project results [42]. Grinter expresses that

good communication is vital to establish and maintain control over the software

development process [43]. In the first four editions of PMBOK Guide, project

communications management is listed as one of the project management knowl-

edge areas. One notable change in PMBOK Guide fifth edition is dividing the

project communications management into two separate project management

knowledge areas: project communications management and project stakeholder

management. Such change indicates that project communications management is

still evolving. We contribute to this evolution by developing a simple model for

project communications [66]. Note that 3PR framework has communication and

stakeholder involvement as separate project management areas.

7.4.2 Teamwork

Teamwork may be defined as “the concept of people working together towards a

common vision or a goal set as a team” [10]. Today, all medium- to large-scale

software projects are developed by a team of people [60]. Moe, Dingsøyr, and Dybå

state that the team is the basic work unit in innovative software organizations [59].

Achieving higher levels of teamwork is important for project success [10]. Further-

more, in one of our survey studies, we found out that one out of five software and

information technology development projects is challenged in achieving teamwork

[61]. Dingsøyr and Dybå argue that we need better models for team effectiveness in

software development projects [60]. Dingsøyr and his colleagues hypothesize that

team coordination, goal orientation, team cohesion, shared mental models, and

team learning strongly influence software team performance [62]. Good coordina-

tion among team members is crucial for project success [63].

7.4.3 Leadership

Leadership may be defined as the ability to lead other people toward a shared goal

or vision. Leaders inspire team members in a shared vision, and they successfully

communicate this vision to other team members. This is important since half of the

software or IT development projects are challenged in maintaining a well-defined

7 3PR Framework for Software Project Management: People, Process, Product. . . 157

project scope [61]. Goal-oriented leaders set clear goals and milestones. They

impact team performance and consequently project success [63]. Setting realistic

goals and expectations is also an essential factor in managing a successful software

project [64]. Our research shows that leadership effectiveness highly correlates with

software project success [10]. In fact, our study indicates that leadership is the most

important success factor in software projects [10]. In 3PR framework, leadership is

not attributed to one person. Effective leadership is expected at every level. Note

that in 3PR framework, the role of the project manager is considered a key role and

treated separately as a project management area.

7.4.4 Organizational Commitment

Organizational commitment is the employee’s psychological attachment to the

organization and organizational goals [44]. In the project management context

and in this framework, organizational commitment refers to the commitment to

project organization and project goals. There is an important difference on how

organizational commitment is viewed in this framework and other studies. In this

framework, organizational commitment refers to commitment shown by all stake-

holders including project team members. In most other studies, organizational

commitment refers to the employee’s commitment to organization.

7.4.5 Project Manager

The project manager position is a key role in project organizations. The project

manager is mainly responsible for planning, directing, controlling, structuring,

coordinating, and motivating in the project organization. In this study, project

manager is considered as a role and authority as well as incorporating the neces-

sary personal traits within the role. The role includes characteristics of both a good

manager and a good leader. Our study shows that project manager is crucial to

project success [10].

7.4.6 Stakeholder Involvement

Stakeholder involvement is the engagement and involvement of primary and

secondary stakeholders during the project. This involvement includes, but is not

limited to, planning, decision-making, development, testing, and implementation of

the project. For a successful project outcome, stakeholder involvement is essential.

After all, the project is undertaken to satisfy the needs of the stakeholders.

158 K.A. Demir

7.4.7 Staffing and Hiring

Staffing may be defined as “the practice of finding, evaluating, and establishing a

working relationship with future colleagues on a project and detaching them from

the project organization when they are no longer needed. Staffing involves finding

people, who may be hired or already working for the company (organization)”

[67]. In this definition, hiring is a part of staffing. However, in some organizations,

hiring means employing project team from outside the organization, and staffing

means employing project team members from the organization’s various depart-

ments. To avoid confusion due to various definitions of terms, both terms are used

in naming the area. In this framework, this area also includes the concept of placing

the right people in the right role or position.

7.5 Process Management

The process management main area includes four project management areas. They

are requirements management, project monitoring and control, project planning and

estimation, and scope management.

7.5.1 Requirements Management

A definition of requirements management is “the management of all requirements

received by or generated by the project, including both technical and non-technical

requirements as well as those requirements levied on the project by the organiza-

tion” [8]. In this framework, as the definition suggests, requirements management is

the management of requirements and not the requirements development process.

This is an important distinction. The requirements development process may be

designed based on a specific software development life cycle model such as

waterfall, spiral, agile, rapid prototyping, etc. The requirements management pro-

cess itself is often independent of the development model.

7.5.2 Project Monitoring and Control

Project monitoring and control are actually two closely related project management

areas combined into one area. Project monitoring is the process of keeping the

project, project-related factors, and project metrics under continuous observation.

Project control is the process of ensuring that project goes according to what is

planned in the project plans and other documentations. In addition, the project

7 3PR Framework for Software Project Management: People, Process, Product. . . 159

control process ensures that deviations from the plan are kept to a minimum and

under control.

7.5.3 Project Planning and Estimation

CMMI 1.2 [8] defines the project planning as follows: “Project planning includes

estimating the attributes of the work products and tasks, determining the resources

needed, negotiating commitments, producing a schedule, and identifying and ana-

lyzing project risks. Iterating through these activities may be necessary to establish

the project plan. The purpose of project planning is to establish and maintain plans

that define project activities” [8].

Even though estimation is included in the previous definition, estimation exists

in the title to make the term explicit and avoid any confusion. Project estimation

includes creating and establishing estimates of project cost, schedule, and necessary

resources using various methods, techniques, and tools.

7.5.4 Scope Management

In simple terms, scope management is the process of defining the scope of the

project and keeping track of any changes in the scope. It also includes processes to

limit the changes to the point that they are not disruptive to the success of the

project. According to our study [61], scope management is the most challenging

area in software and information technology projects.

7.6 Product Management

The product management main area includes two project management areas. They

are configuration management and quality engineering.

7.6.1 Configuration Management

CMMI 1.2 [8] defines configuration management as: “A discipline applying tech-

nical and administrative direction and surveillance to (1) identify and document the

functional and physical characteristics of a configuration item, (2) control changes

to those characteristics, (3) record and report change processing and implementa-

tion status, and (4) verify compliance with specified requirements.”

160 K.A. Demir

Sometimes the meanings of configuration management and scope management

are mixed among software practitioners. However, the CMMI’s definition of

configuration management clarifies and stresses that configuration management is

about managing the configuration items. These configuration items include inter-

mediate and final project artifacts and products. Even though configuration man-

agement is a process itself, the focus of this area is the product. Therefore,

configuration management is placed under the product main area to avoid confusion

due to definition overload.

7.6.2 Quality Engineering

Quality engineering is another area placed under the product main area. Note that

the term quality engineering is different from quality assurance. In many organi-

zations, quality assurance is used to refer to procedures related to testing of the

product. In others, it has a broader meaning. By using the term quality engineering,

the framework widens the area and includes all the procedures and processes

conducted to ensure products or services are designed and produced to meet or

exceed customer requirements. Quality engineering involves all activities and

commitment toward the development of a high-quality product to meet or increase

the stakeholders’ satisfaction.

7.7 Risk Management

There are two project management areas listed under the main area of risk man-

agement. They are risk assessment and risk control.

7.7.1 Risk Assessment

Risk assessment may be defined as “a process or a set of activities that involves

identification, analysis, and prioritization of project risks.” In some projects, risk

assessment is conducted with quantitative and qualitative formal procedures and

techniques, while in some others it is conducted as an ad hoc process. Whether it is

formal or not, the quality of the project risk assessment also depends on the skills

and experiences of the responsible project staff. According to Boehm, risk assess-

ment involves risk identification, risk analysis, and risk prioritization [40].

7 3PR Framework for Software Project Management: People, Process, Product. . . 161

7.7.2 Risk Control

Risk control may be defined as “the process of integrating findings from the risk

assessment with technical, financial, policy, and non-technical concerns of stake-

holders, to develop and select suitable risk control actions, and implementation of

these actions. Risk control actions include implementation of policies, standards,

procedures and physical changes” [45]. Risk control involves risk management

planning, risk resolution, and risk monitoring [40]. To conduct an effective risk

control, an effective risk assessment process has to be in place.

7.8 Validation of the 3PR Framework

We conducted an international survey study. Software project management and

development practitioners from many different countries are invited to participate

in this study. We used an online self-administered survey questionnaire to gather

research data. There were two main goals of the study: (1) to validate the 3PR

framework and to identify what is important in software project management and

(2) to identify the project management challenges in software projects.

Before the main study, we conducted a pilot study with limited participation.

The goal of the pilot study was to refine the survey questionnaire and identify the

possible problems in the experimental design. Pilot studies are essential in survey

studies. Especially if the research study is an exploratory study, testing the survey

study design helps to eliminate many errors in design prior to the main study. The

pilot study included an additional question that was left out later in the main study.

In this question, we asked the survey participants how to improve the survey. The

participants of the pilot study were randomly drawn from the pool of the sampling

population of the main study. The pilot survey participants were not used again in

the main study. The pilot study results led to improvements in the main study. The

results and some of the improvements are listed as follows:

• Forty-four survey invitations were sent out. This population was randomly

selected from the pool of the total sample population. There were 12 responses,

yielding a response rate of 27.7%. This rate is almost the same as the response

rate in the main study.

• One of the feedbacks indicated the necessity of a glossary section for the survey

to eliminate possible misunderstandings. Therefore, a glossary section was

added to the questionnaire.

• Two of the participants indicated the need for an explicit scale for a question in

the paper version of the survey. Even though an explicit scale was not provided

for this question, the participants were able to answer the question without

difficulty. Later, a scale was added with the question.

• Two of the participants specifically indicated that all areas regarding the soft-

ware project management were covered in the research.

162 K.A. Demir

• The questionnaire length was found to be reasonable.

• The participants found the questions understandable.

• The last question of the survey, inquiring about possible suggestions to improve

the survey, was deleted in the main study.

• The analysis of the responses to a question regarding how important each main

software project management area is as follows:

People management ¼ 39.16%

Product management ¼ 18.33%

Process management ¼ 25.00%

Risk management ¼ 17.50%

• The same ordering with similar ratings was found in the main study.

The responses to a question regarding how important each software project

management area were analyzed, and the ratings were ordered. The ordering of

the ratings was significantly similar to the one gathered from the full-scale study.

The pilot study results showed that the survey instrument and the data collection

procedures were found to be sufficient with the necessity of a few modifications and

improvements.

In the main study, the survey questionnaire was sent out to more than 400 soft-

ware development practitioners worldwide. We received 104 responses. The

response rate was around 26%. Out of 104 responses, only 78 of the responses

were acceptable. Some of the responses were eliminated due to lack of experience

in software development or not completing all the necessary questions in the

questionnaire.

The questionnaire had open- and closed-form questions. In some of the ques-

tions, we asked the survey participants to rate the importance of a specific project

management area. In these questions, the rating was based on a seven-point Likert

scale. The survey study was reported with all the details in [10].

In this study, we tried to reach a sample population that represents a wide range

of software development roles. We asked the survey participants not just their

current role in their last software project but all the roles they assumed during

their career, because the participant’s view on a particular concept is affected by the

experiences they had during their software development career. The data related to

survey participants is presented in Fig. 7.3. Note that the total number of responses

is higher than the number of participants. The data in Fig. 7.3 included all the roles

the survey participants assumed during their career. The data shows that most of the

participants have management experience as a project manager or a project team

leader. Furthermore, we had samples from a wide range of roles. The response

“other” covers software development roles titled with other names.

In the survey study, we asked the participants to rate the importance of software

project management areas. The response count for this question was 78 out of

104 respondents. Two more respondents filled out this question; however, they

were eliminated due to lack of experience and not providing adequate background

information. For each item in the question, the mean ratings were calculated. Then,

7 3PR Framework for Software Project Management: People, Process, Product. . . 163

they are ordered from the highest to lowest. Prior to the study, we identified

17 areas. Table 7.1 includes 15 of these areas. The two other areas were “technical

complexity” and “support activities (training, use of tools, etc.).” These two areas

ranked last in terms of importance in software project management. Therefore, they

are not included in the 3PR framework. One of the choices in the ratings was “no

opinion.” There were a significantly low number of “no opinion” responses. This

means that almost none of the respondents had difficulty in associating the identi-

fied areas with software project management. This is attributed to the careful design

of the questionnaire. In total, there were eight “no opinion” selections. These are,

respectively, one in communication, one in scope management, one in staffing and

hiring, two in quality engineering, and three in technical complexity.

There is a significant finding in the analysis of responses to these questions. The

survey participants rated six of the software project management areas related to the

people management area among the top seven of the ratings. This is also a

confirmation to what will be found later in response to another research question.

People management in software project management rated highest among the main

areas. Process management related areas are found to be among the second highest

ratings. The distinction between product- and risk-related areas is not as clear as

people and process management related areas. However, note that the ratings are

very close to each other between these project management areas. The importance

ratings are presented in Tables 7.1 and 7.2.

In another question, the participants were asked to rate the importance of four

main project management areas:

Fig. 7.3 Software development roles of the study participants

164 K.A. Demir

1. People (project manager, staffing and hiring, leadership, communication, team-

work, stakeholder involvement, organizational commitment)

2. Process (project planning and estimation, scope management, project monitor-

ing and control, support activities, requirements management)

3. Product (quality engineering, technical complexity, and configuration

management)

4. Risk (risk assessment, risk control)

We asked the survey participants to rate in such a way that the total rating of all

four areas should add up to 100%. Figure 7.4 presents the research data gathered in

response to this question. For each main area, we calculated the mean of the ratings.

The research data clearly shows that people management is the most important

area in software project management. Process management is the second. Further-

more, the importance of product management and risk management is close.

In this research study, the order of the survey questions is carefully chosen to

eliminate a possible bias due to the order of questions in the survey instrument. This

careful design in the survey instrument enabled us to validate some of the

responses. Note that the question related to the importance ratings of main areas

is placed after the question related to importance ratings of each project manage-

ment area. As mentioned earlier, the people management-related project manage-

ment areas consistently ranked higher in terms of importance among all areas.

Similar results are observed for process management related areas.

Based on the research results from the survey study, we concluded that the 3PR

(people, process, product, and risk) framework for software project management is

valid.

As stated earlier, one of the survey study goals was to identify the challenges

related to project management in software projects. We asked the survey partici-

pants to report the challenging areas in their last project. Table 7.3 presents the

Table 7.1 Importance

ratings of software project

management areas

Software project management area Means of ratings

Communication 5.69

Teamwork 5.41

Leadership 5.32

Requirements management 5.21

Organizational commitment 5.10

Project manager 5.09

Stakeholder involvement 5.05

Project monitoring and control 5.01

Project planning and estimation 4.99

Scope management 4.91

Risk control 4.86

Staffing and hiring 4.82

Configuration management 4.81

Risk assessment 4.72

Quality engineering 4.64

7 3PR Framework for Software Project Management: People, Process, Product. . . 165

survey results to this research question. There were also questions inquiring about

the characteristics of their last projects. The study results indicated that almost half

of the software projects are challenged in scope management and requirements

management. Technical complexity was a challenge in only one quarter of software

projects. Another notable result was that only 3% of the software projects were

smooth. The detailed research results including multivariate analyses of the chal-

lenging areas are reported in a research paper [61].

Table 7.2 Importance

ratings of software project

management areas –

categorized under main

project management areas

People management Means of ratings

Communication 5.69

Teamwork 5.41

Leadership 5.32

Organizational commitment 5.10

Project manager 5.09

Stakeholder involvement 5.05

Staffing and hiring 4.82

Process management Means of ratings

Requirements management 5.21

Project monitoring and control 5.01

Project planning and estimation 4.99

Scope management 4.91

Product management Means of ratings

Configuration management 4.81

Quality engineering 4.64

Risk management Means of ratings

Risk control 4.86

Risk assessment 4.72

Fig. 7.4 Importance of

main software project

management areas

166 K.A. Demir

7.9 Conclusion

A framework for software project management titled 3PR (people, process, prod-

uct, and risk) framework is presented in this chapter. The framework consists of

four main software project management areas: people management, process man-

agement, product management, and risk management. Fifteen project management

areas were identified and categorized under these main areas. People management

area includes communication, teamwork, leadership, organizational commitment,

project manager, stakeholder involvement, and staffing and hiring. Process man-

agement area consists of requirements management, project monitoring and con-

trol, project planning and estimation, and scope management. Product management

area includes configuration management and quality engineering. Risk manage-

ment area consists of risk assessment and risk control. These areas were identified

with an extensive literature review and interviews with project management pro-

fessionals. After the development of the framework, it was validated by a survey

study with the participation of software practitioners. The 3PR framework and the

survey study results are used in the development of a metric for software project

management effectiveness [10].

3PR framework has many similarities with existing project management

models and frameworks. Such similarity is natural since the current paradigm in

project management discipline has not changed in recent years. However, there

Table 7.3 Challenging project management areas in software projects

Project management area Response % Response count

Scope management 52.6% 41

Requirements management 51.3% 40

Project planning and estimation 41.0% 32

Communication 38.5% 30

Staffing and hiring 33.3% 26

Project monitoring and control 28.2% 22

Risk control 26.9% 21

Technical complexity 26.9% 21

Stakeholder involvement 25.6% 20

Leadership 25.6% 20

Configuration management 25.6% 20

Organizational commitment 24.4% 19

Quality engineering 23.1% 18

Teamwork 21.8% 17

Risk assessment 19.2% 15

Project manager 14.1% 11

Other 10.3% 8

Support activities (training, tools, etc.) 9.0% 7

The last project was smooth in every way 2.6% 2

7 3PR Framework for Software Project Management: People, Process, Product. . . 167

are two distinctive characteristics of 3PR framework. First, people management

area is considered quite important in 3PR framework. People management area

has the most number of subareas in the framework. Furthermore, project manager

has its own subarea in 3PR framework. This subarea is right on target since our

research showed that the skills project manager possess and the leadership shown

by project manager correlate high with software project success [10]. Choosing a

good project manager is a good start for a successful journey in the project

development. Second, risk management is considered a main project management

area. While the importance of risk management is quite established, many project

management models and frameworks are process oriented, and risk management

is considered a process. In 3PR framework, risk management is considered a main

project management area just like process management. Note that the “Program

Manager’s Guide to Software Acquisition Best Practices Version 2.31” starts with
formal risk management. In the guide, risk management is considered vital to

successful software acquisition. Our empirical research also showed the impor-

tance of risk management in software projects. Among all main project manage-

ment areas in 3PR framework, risk management correlates highest with project

success [10]. Furthermore, all main project management areas correlate high with

project success [10]. Such findings strengthen the validity of the 3PR framework.

As a result, 3PR framework is a valid alternative to existing frameworks in

software project management.

Disclaimer and Acknowledgements The views and conclusions contained herein are those of

the author and should not be interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of any affiliated organization or government. This

study was conducted as part of a doctoral research [10] on software project management.

References

1. Project Management Institute (PMI) (1996) A guide to the project management body of

knowledge

2. Project Management Institute (PMI) (2000) A guide to the project management body of

knowledge, 2000 edn

3. Project Management Institute (PMI) (2004) A guide to the project management body of

knowledge, 3rd edn

4. Project Management Institute (PMI) (2008) A guide to the project management body of

knowledge, 4th edn. ANSI/PMI 99–001-2008

5. Project Management Institute (PMI) (2013) A guide to the project management body of

knowledge, 5th edn. ISBN: 978–1–935589-67-9

6. Software Program Manager’s Network (SPMN) (1998) The program manager’s guide to

software acquisition best practices, version 2.31. Computers & Concepts Associates

7. CMMI Product Team, (2002) Capability maturity model integration, version 1.1, Software

Engineering Institute, Carnegie Mellon University, March 2002

8. CMMI Product Team (2006) Capability maturity model integration, version 1.2. Software

Engineering Institute, Carnegie Mellon University

9. CMMI Product Team (2010) CMMI for development, version 1.3. CMU/SEI-2010-TR-033.

Software Engineering Institute, Carnegie Mellon University

168 K.A. Demir

10. Demir KA (2008) Measurement of software project management effectiveness. Doctoral

Dissertation, Naval Postgraduate School, Monterey, California, USA

11. The Standish Group (2000) The standish group report: chaos

12. Philips D (2000) The software project manager’s handbook, principles that work at work.

IEEE Computer Society, Los Alamitos

13. El Emam K, Koru AG (2008) A replicated survey of IT software project failures. IEEE Softw

25(5):84–90

14. Wiegers KE (1996) Creating a software engineering culture. Dorset House Publishing,

New York

15. Bach J (1995) Enough about process: what we need are heroes, IEEE Software, March

16. Curtis B, Hefley W E, Miller SA (1995) People capability maturity model, version 1.0.

Software Engineering Institute, Carnegie Mellon University

17. Humphrey WS (1989) Managing the software process. Addison-Wesley, Reading

18. Humphrey WS (1996) Using a defined and measured personal software process. IEEE Softw

13(3):77–88

19. Humphrey WS (1997) Introduction to the personal software process. Addison-Wesley,

Reading

20. Kulpa M (2007) Why Should I use the People CMM? Crosstalk - J Def Softw Eng:19–22

21. Brooks FP Jr (1975) The mythical man-month: essays on software engineering. Addison-

Wesley, Reading

22. Bach J (1994) The immaturity of CMM. American Programmer, September

23. Curtis B, HefleyW E, Miller SA (2001) People capability maturity model, Version 2.0.

Software Engineering Institute, Carnegie Mellon University

24. Humphrey WS (1995) A discipline for software engineering. Addison-Wesley., Reading

25. DeMarco T, Lister T (1987) Peopleware: productive projects and teams. Dorset House

Publishing Company, New York

26. DeMarco T, Lister T (1999) Peopleware: productive projects and teams, 2nd edn. Dorset

House Publishing Company, New York

27. Weinberg G (1994) Quality software management: volume 3 congruent action. Dorset House

Publishing, New York

28. Cooke-Davies TJ (2004) Measurement of organizational maturity, Innovations – project

management research, Chapter 13

29. Sackman H, Erikson WJ, Grant EE (1968) Exploratory experimental studies comparing online

and offline programming performance. Commun ACM 11(1):3–11

30. Center for Software Engineering (CSE) at USC (1999) COCOMO II model definition manual.

University of Southern California (USC), Los Angeles, USA

31. Hughes B, Cotterell M (2002) Software project management, 3rd edn. McGraw-Hill Interna-

tional (UK) Ltd, Berkshire

32. IEEE (1990) Standards coordinating committee of the computer society of the IEEE. IEEE

Standard Glossary of Software Engineering Terminology. IEEE, New York

33. Endres A, Rombach D (2003) A handbook of software and systems engineering empirical

observations, laws and theories. Pearson Education, Essex, England

34. Blum B (1992) Software engineering, a holistic view. Oxford University Press, New York

35. Turner JR (2006) Towards a theory of project management: the nature of the project. Int J Proj

Manag 24:1–3. 93-95, 187-189

36. IEEE (2004) Guide to the software engineering body of knowledge (SWEBOK), 2004 Version

37. International Council on Systems Engineering (INCOSE) (2003) Guide to the systems engi-

neering body of knowledge

38. National Aeronautics and Space Administration (NASA) (2007) Systems engineering handbook

39. Department of Defense (DoD) (1995) MIL-STD-498 military standard software development

and documentation

40. Boehm BW (1991) Software risk management: principles and practices. IEEE Softw 8(1):32–41

41. Jones C (1994) Assessment and control of software risks. Prentice-Hall, Englewood Cliffs

42. Muller R (2003) Determinants for external communications of IT project managers. Int J Proj

Manag 21:345–354

7 3PR Framework for Software Project Management: People, Process, Product. . . 169

43. Grinter RE (1996) Understanding dependencies: a study of the coordination challenges in

software development. Doctoral dissertation, University of California, Irvine, USA

44. Brown BB (2003) Employees’ organizational commitment and their perception of supervisors’
relations-oriented and task-oriented leadership behaviors. Doctoral dissertation, Virginia

Polytechnic Institute and State University, Falls Church, Virginia, USA

45. LesRisk (2008) Definition of risk control. http://www.lesrisk.com/glossary.htm. Accessed

25 Sep 2016

46. Futrell RT, Shafer DF Safer LI (2002) Quality software project management. Prentice Hall

47. Forsberg K, Mooz H, Cotterman H (2005) Visualizing project management. Wiley, Hoboken

48. The Standish Group (1995) The standish group report: chaos, West Yarmouth, MA

49. Slevin DP, Cleland DI, Pinto JK (2002) The frontiers of project management research. Project

Management Institute, Pennsylvania

50. Yourdon E (2003) Death March, 2nd edn. Pearson Education, Inc. Publishing as Prentice Hall

Professional Technical Reference, Upper Saddle River

51. Jones C (2004) Software project management practices: failure versus success. Crosstalk - J

Def Softw Eng 17(10):5–9

52. Cicibas H, Unal O, Demir KA (2010) A comparison of project management software tools

(PMST). In: Proceedings of the Software Engineering Research and Practice (SERP 2010), pp

560–565, July 12–15, 2010, Las Vegas, Nevada, USA

53. Robertson S, Robertson J (2005) Requirements-led project management. Pearson Education,

Inc., Boston

54. Defense Science Board (DSB) (2000) Report of the defense science board task force on

defense software

55. Boehm BW (1981) Software engineering economics. Prentice-Hall, Upper Saddle River

56. Boehm BW, Madachy R, Steece B (2000) Software cost estimation with COCOMO II,

Prentice Hall PTR

57. Thomsett R (1995) Project pathology: a study of project failures. American Programmer, July,

8–16

58. Chowhan SS, Shekhwat N (2015) Business and management. Lulu Online Publishing

59. Moe NB, Dingsøyr T, Dybå T (2009) Overcoming barriers to self-management in software

teams. IEEE Softw 26(6):20–26

60. Dingsøyr T Dybå T (2012) Team effectiveness in software development. 5th international

workshop on Cooperative and Human Aspects of Software Engineering, (CHASE 2012)

61. Demir KA (2009) A survey on challenges of software project management. Proc. Software

Engineering Research and Practice (SERP 2009), pp 579–585, Las Vegas, NV, USA,

13–16 July 2009

62. Dingsoyr T, Faegri TE, Dyba T, Haugset B, Lindsjorn Y (2016) Team performance in software

development: research results versus agile principles. IEEE Softw 33(4):106–110. doi:10.

1109/MS.2016.100

63. Hoegl M, Gemuenden HG (2001) Teamwork quality and the success of innovative projects: a

theoretical concept and empirical evidence. Organ Sci 12:435–449. Jul-Aug 2001

64. Reel JS (1999) Critical success factors in software projects. IEEE Softw 16(3):18–23

65. Curtis B, Hefley B, Miller S (2009) People capability maturity model (P-CMM) version 2.0,

Second Edition, Software Engineering Institute, Carnegie Mellon University, July 2009,

CMU/SEI-2009-TR-003

66. Demir KA (2010) A simple framework for project communications. Proc. Software Engineer-

ing Research and Practice (SERP 2010), pp. 452–458, Las Vegas, NV, USA, 12–15 July 2010

67. Talloo TJ (2007) Business organization and management. Tata McGraw-Hill Education, May

1, 2007

170 K.A. Demir

http://www.lesrisk.com/glossary.htm
http://dx.doi.org/10.1109/MS.2016.100
http://dx.doi.org/10.1109/MS.2016.100

Chapter 8

CrowdSWD: A Novel Framework
for Crowdsourcing Software Development
Inspired by the Concept of Biological
Metaphor

Tarek A. Ali, Eman S. Nasr, and Mervat H. Gheith

8.1 Introduction

From distributed computing (DC) point of view (see Fig. 8.1), the symmetric

multiprocessing architecture means multiple processors sharing the same memory.

The parallel cluster architecture means multiple machines; each may consist of

several CPUs and memory. The grid computing architecture goes further by

connecting both architectures, symmetric and cluster machines, from different

computing sites. It aims to reach common goals by using collections of machine

resources from multiple locations [1]. The cloud computing architecture integrates

and aggregates a lot of independent machines and software to virtualize and

provision them by utilizing virtualization techniques. It aims to reach coherence

and economies by using large groups of remote servers [2]. This computing

architecture has enabled us to combine and harness intelligence, knowledge, and

life experiences of people to do tasks or produce information that is hard for

individual users or computers to achieve alone [3].

Mainly, there are two types of computing elements (CEs), which can be used in

DC; they are either machine-based computing element (MBCE) or human-based

computing element (HBCE). MBCE is a standard CE and component of stream

processing systems, e.g., in [4]. It executes a set of operations in a fully automated

manner on its input stream. It is an unprecedented power to transmit information

over large distances, to store and manipulate data for a long time, and to quickly

perform well-defined formal computations. HBCE is a human ability for

T.A. Ali (*) • M.H. Gheith

Department of Computer Science, Institute of Statistical Studies and Research, Cairo

University, Giza, Egypt

e-mail: tarekmmmmt@pg.cu.edu.eg; mgheith@cu.edu.eg

E.S. Nasr

Independent Researcher, Cairo, Egypt

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_8

171

mailto:tarekmmmmt@pg.cu.edu.eg
mailto:mgheith@cu.edu.eg

computation to solve problems that are trivial for humans but complex for

machines. It depends on competencies, knowledge, and skills with networks of

social relationships and understanding of social context [5]. However, hybrid-

computing element (hybrid-CE) comprises both MBCE and HBCE in a hybrid

class. The expression “hybrid-CE” has been inspired from the biological systems

(see Fig. 8.2). Such systems have the ability to manage themselves according to an

administrator’s goals. Moreover, this hybridity can be deployed and utilized as a

collective on demand based on a different quality, cost, time, and incentive models.

That means the hybridity supports human task where the HBCE do the originative

work and the MBCE does the management. Such as stream processing systems in

[4], hybrid-CE consumes data items and control flow signals through input ports,

implements an application-specific requirement, and emits the processed data items

through an output port. Hence, the data and information are exchanged by passing

messages between the ports using the available communication links. Here, the

ports might be an MBCE or HBCE. Moreover, it might be a computing node in the

computing architecture. Hence, hybrid-CE is ubiquitous and can, for instance, be of

biological, technical, or social nature [6, 7]. There are several frameworks that can

then be used for mapping hybrid-CEs to formal definitions in most of the IS

textbook literature [8, 9]. For example, hybrid-CE may be implemented through

social machines [10] or through the API of a remote crowdsourcing platform, e.g.,

Amazon’s Mechanical Turk, CrowdFlower, TopCoder, or others.

Starting from the several conceptual and empirical studies about tasks manage-

ment, Fig. 8.3 integrates some of them by showing the representation of the visual

field, which greatly simplifies the development and management complexity of

crowdsourcing software. For example, socially intelligent computing (SIC) extends

traditional management processes as shown in Fig. 8.3a. It aims to understand the

ways in which systems of human intelligence across the globe and social platforms

can work together as efficiently as a giant machine [3, 11]. It supports self-*

properties such as self-organizing, self-maintenance, self-control, self-evaluating,

self-awareness, or even self-management [12]. Self-* might lead to what we call *-

Software

Computing Elements (CE)

Machine-Based (MB)

Hardware

One site

Symmetric Multiprocessing

Multiple sites

Parallel Cluster

Grid Computing

Cloud Computing

Crowd Computing

Human-Based (HB)

interconnect networks

Fig. 8.1 Distributed computing and computing architectures

172 T.A. Ali et al.

family properties such as maintainability, flexibility, testability, usability, portabil-

ity, reusability, and interoperability, which are used in the quantitative evaluation of

software quality [13]. That is going to happen with the crowdsourcing software

development and management also. No matter how good crowd members are at

anything, the development or management is not finished until they interact with

others because different versions of system development life cycle (SDLC) pre-

scribe different numbers of phases or building blocks and different degrees of

interaction between them [14]. For example, as shown in Fig. 8.3b, there are

three versions of SDLC: solid arrows mean the forward-only version; solid and

dashed arrows mean a version allowing backtracking; and solid, dashed, and dotted

double arrows mean a clique, crowd, or even social network users (SNUs) version.

Because the transition between any two activities is allowed, bearing this in mind,

we drive a social machine [15] based on both SIC and SDLC. This machine

supports real-time collaborative software development, allowing multiple users to

work on the same collection of files or project with each other. A good scenario runs

as shown in Fig. 8.3c. Adam wants to develop and manage his own software module

using a social machine, a typical test development procedure might run as follows:

1. Adam asks Bob to write some tests.

2. Bob writes a test for the first method.

3. Bob runs the test and it passes.

4. Bob then creates tests for the rest of the methods.

5. Bob finds that many of the tests fail.

6. Bob messages Adam to say he has completed the tests, and many of them fail.

At this point, Adam merges in Bob’s changes, to be able to modify the main code to

pass the tests. That means Adam initiates the business model at a high level, and

then the development and management processes are distributed among different

computing elements, whatever human-based or machine-based computing ele-

ments. Therefore, the research question is how to empower social machines and

other related works? Alternatively, how to empower Adam as a crowdsourcer. A

crowdsourcer is any entity (company or individual) that has the means to carry out a

certain initiative. Crowdsourcer is derived from the word “crowdsourcing.”

Crowdsourcing is defined to be a business practice that outsources an activity to

Fig. 8.2 A beehive as an

example of complex

biological systems

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 173

the crowd. The crowd is a community whose characteristics will be determined by

the requirements of the crowdsourced initiative [16].

Reframing the problem, there are indicatives of three core sets of problems we

face – those concerned with creating tasks for HBCE, making these tasks clear and

simple, and structuring or managing these tasks developing for the crowd. To

address this, we found six different aspects or building blocks of biological meta-

phor, e.g., honeycomb, including social, experience, motivation, limitation, man-

agement, development activity, and task blocks. Each block was evaluated, and an

initial solution was selected based on the beehive collaboration model, which

contains essential features of the user-user or bee-bee and user-task or bee-wax

interactions.

The rest of this chapter is structured as follows. Related work is discussed in

Sect. 8.2. High-level and low-level designs of a special purpose framework are

presented in Sects. 8.3 and 8.4, respectively. This framework works as an instance

of system development life cycle, which can be used to solve crowdsourcing

software problems. Section 8.5 presents the design of 34 heterogeneous computing

elements that can be used in crowdsourcing software development. An experimen-

tal study is discussed in Sect. 8.6. The results from the experiment and recommen-

dations are given in Sect. 8.7 before we conclude in Sect. 8.8.

8.2 Related Work

SIC is a new emerging field that refers to the recent efforts of crowd computing

(CC) to understand the ways in which systems of human intelligence across the

globe and social networks can work together as efficiently as a giant machine. This

Fig. 8.3 Different modes of crowdsourcing software development and management

174 T.A. Ali et al.

machine aims to share ideas or to solve a problem that cannot be easily done only by

human intelligence tasks without technological platforms or vice versa [17–

21]. These systems result in new behaviors that occur as a result of the complex

interaction between humans and computers and will prove useful as intermediaries

between the crowd and technological forms used by crowds [22–25]. Typically,

these systems are based on social platforms through specific components, such as a

graph API [26], authentication [27], social plugin [28], and open graph protocol

[29]. Hence, the core of those systems is sets of hybrid-CEs.

Mainly, there are four categories of hybrid-CE over SIC or unified collective

intelligence. Each of which relies on a machine (M) and human (H). The following

examples demonstrate the four categories in developing complex applications.

They figure out how machine guides human and vice versa:

1. HH: A human-based genetic algorithm [30] which uses both HBCE in terms of

selection and types of human-based innovation. Thus, all HBCEs of a typical

genetic algorithm are outsourced to humans, e.g., integrating crowds with a

genetic algorithm to study creativity. Collaborative filtering in social search

applications [31] accepts contributions from the crowd and attempts to use

human evaluation to select the fittest contributions that get to the top of the list.

2. HM: Such as the gamification [32, 33] which is the application of typical

elements of game playing. In computerized tests, M generates a problem and

search for HBCE, e.g., CAPTCHA [34] tells human users from computer pro-

grams by presenting a problem that is supposedly easy for a human and difficult

for a computer. This refers to human swarming or social swarming [35] in a real-

time closed-loop systems, working around groups of networked users melded

after biological swarms, and enabling human participants to behave as unified

collective intelligence [35].

3. MH: Mainly, this category is based on human-computer interaction (HCI) that

enables the actor to create an abstract drawing only by selecting his/her favorite

images. Therefore, human only performs the selection, which is easier for

humans, and software performs the innovative role.

4. MM: Such as domain knowledge-based and automatic workflow

generation [36].

There are a number of approaches, frameworks, methods, models, SDLC, and

software project management for DC, which could be adapted or further developed

to investigate hybrid-CE. For example:

• Barowy et al. [37] claimed that “AUTOMAN” is the first fully automatic

“crowdprogramming” SDLC. It integrates HBCE into MBCE (standard pro-

gramming language) as ordinary function calls, which can be intermixed freely

with traditional functions. It focuses on the programming logic and specifies a

confidence level for the overall computation and a budget.

• Dwarakanath et al. [38] developed “CrowdBuild” SDLC that the implementa-

tion of the code can be done using crowdsourcing. Here, SDLC consists of four

steps, which are designed based on a hierarchical component architecture

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 175

(HCA): specification of contracts for components of the HCA, implementation

of the contract by the crowd, and then the automated verification and integration

are done.

• Automatic personalized interface generation, that is, a feasible and scalable

solution to perceptual and cognitive ability challenges [39]. Amsterdamer

et al. [40] developed a natural language framework to crowd mining interface.

This interface combines searching knowledge bases for general data with mining

the crowd for individual and unrecorded data. It interacts with the end user

during the development process to resolve uncertainties and complete

missing data.

• Bernstein et al. [41] discussed the find-fix-verify crowd programming frame-

work, which splits tasks into a series of generation and reviews stages. Those

stages are achieved from components and algorithm development to project

concept formations.

• Wenjun et al. [42] presented another interesting creativity in development

processes that is called “AppStori.” It is essentially an online IOS application

market where developers can directly deliver their products with creative design

to smartphone users. These developers are motivated to contribute innovative

design and attract more user downloads by the micro-payment mechanism of the

App Store. Within less than 4 years, it becomes a huge mobile application

ecosystem with over 150,000 active developers and over 700,000 IOS applica-

tions. It is also the largest online software distribution channel for IOS

applications.

• TopCoder model [43] analyzes the overall development process including activ-

ities performed at each step and deliverables produced during the process.

Mainly, it follows a two-step approach. First, it examines the competition rules

used in software crowdsourcing and their implications to activities that will be

performed, and quality of software will be produced. Then, it identifies the

people involved, the time they are involved, and the kind of activities involved

including evaluation. TopCoder and AppStori processes identified the min-max
nature among participants as an important design element in software
crowdsourcing for software quality and creativity. Although in a min-max
game, one party tries to maximize the finding of bugs in a set of artifacts, and
the other parties try to minimize the potential bugs in the same artifact; software
crowdsourcing can still be a collaborative and win-win process for all parties.
By using this approach, many aspects of software development can be
crowdsourced with the crowd who can contribute their creativity to each aspect.

• Kulkarni et al. [44] explored “Turkomatic” that uses a general-purpose divide-

and-conquer algorithm to solve arbitrary natural language requests posed by end

users. It has a new interface to microwork platforms that use crowd workers to

help in planning workflows for complex tasks. The interface includes a novel

real-time visual workflow editor that enables crowdsourcer to observe and edit

workflows while the tasks are being completed.

176 T.A. Ali et al.

The verification of work and the division of labor among members of the crowd can

be handled automatically (MBCE) by Turkomatic, which substantially simplifies

the process of using human computation systems (HBCE). These characteristics

enable a novel means of interaction with crowds of online workers to support

successful execution of complex work.

• Some researchers [36] proposed a language called “CrowdWON.” It is able to

represent the workflow of most well-known existing applications, extend previ-

ous modeling frameworks, and assist in the future generation of crowdsourcing

platforms. CrowdWON is a new graphical framework used to describe and

monitor crowd processes. It allows for the formal definition of adaptive

workflows, which depend on the skills of the crowd workers and/or process

deadlines. Moreover, it allows expressing constraints on workers based on

previous individual contributions.

• Franklin et al. [45] claimed that some SQL queries cannot be answered by

MBCE only. Processing such queries requires HBCE for providing information

that is missing from the database, for performing computationally difficult

functions, and for matching, ranking, or aggregating results based on fuzzy

criteria. Therefore, they explained the presented initial solutions through a

simple SQL schema and query extensions that enable the integration of HBCE

and MBCE. They designed a new HBCE, e.g., crowdsourced query operators

and plan generation techniques that combine both crowdsourced (HBCE) and

traditional query operators (MBCE). They described methods for automatically

generating effective user interfaces (hybrid-CE) for crowdsourced tasks. They

presented a general architecture of “CrowdDB” that works as an application

issues requests using “CrowdSQL” or a moderate extension of standard SQL.

• Ahmad et al. [46] presented a social computing stack “Jabberwocky” that

consists of three components, viz.:

(1) Dormouse, a human and machine resource management system. It is

designed to enable cross platform programming languages for social computa-

tion. It trades both machines and people as first-class citizens. It is based on

allowing the natural parallelization and control flows for a broad range of data-

intensive applications. And finally and importantly, it includes notions of real

identity, heterogeneity, and social structure.

(2) ManReduce, a parallel programming framework for human and machine

computation.

(3) Dog, a high-level programming language on top of ManReduce.

• Minder et al. [47] presented a “Crowdlang.” It is a concept of an executable,

model-based programming language and a general purpose framework for

accomplishing more sophisticated problems through managing dependencies

between CEs. Their approach is inspired by coordination theory and an analysis

of emergent collective intelligence.

There are many researchers who developed a self-conscious design process. They

formulated a process theory of software design practice. This theory explains how

collocated software development teams in organizations create complex software

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 177

systems. It posits that an independent agent (design team) creates a software system

by alternating between three activities: organizing their perceptions about the

context, mutually refining their understandings of the context and design space,

and manifesting their understanding of the design space in a technological artifact

[14]. It is based on creating a formal model of the mental pictures through the set

theory and then solves problems using a divide-and-conquer strategy. The

bootstrapping social machines [15] are used in the creation of crowdsourcing

software. It is based on crowdsourcing projects such as TopCoder. Moreover,

several frameworks that are aiming to support such new collaboration models are

being developed (such as socially enhanced computing [48, 49]). These new

frameworks are intended to support greater task complexity, more intelligent task

division for a complex organizational system, and managerial structures for virtual

teams. For example:

• Ham et al. [50] weave visual analysis of social relationships into software

development, leading to the notion of relationship-aware software [51]. Blending

computational (MBCE) and social elements (HBCE) into software appears as a

promising framework for unifying both computational and social processes.

• Some researches [10] aim to investigate efforts related to this topic and build a

preliminary classification scheme to structure the science of social machines.

These researches can collaborate to the process of providing a more common

and coherent conceptual basis for understanding social machines as a paradigm.

For example, they characterized the “social machines” paradigm as a result of

the convergence of three different visions: (1) social software, (2) people as

computational units, and (3) software as social entities.

Through crowdsourcing software developments and social machine, there are some

honeycomb frameworks, which could be used in crowdsourcing software develop-

ments such as social software building blocks and user experience building blocks.

Social software building blocks that are used to develop more interactive and

innovative applications allowed users to interact with each other and have a primary

role as producers of content [52]. User experience building block is used to help

people understand the need to define user priorities by asking many questions such

as is the application useful to the individual user and the specific task? And is the

application desirable for the individual user and the specific task?

Finally, there are many researchers [53] who targeted the goal of the future

crowd workplace in which we would want our children to participate. Hence, they

framed the major challenges that stand in the way of this goal. Their framework

integrates the challenges posed by managing shared resources (such as assigning

workers to appropriate tasks), managing producer-consumer relationships (such as

decomposing tasks and assembling them into a workflow), and crowd-specific

factors (such as motivation, rewards, and quality assurance). Many of its CEs

combine insights from organizational behavior and DC.

178 T.A. Ali et al.

8.3 CrowdSWD: High-Level Design

The crowdsourcing software is a broad term that describes large-scale distributed

systems that comprise of many heterogeneous computing elements, each of which

may have its own individual characteristics, objectives, and actions. Our society

increasingly depends on such systems, in which collections of heterogeneous

computing elements are tightly entangled with human and social structures to

plan collective intelligence. The premise of the research is that existing frameworks

for crowdsourcing software development are not powerful enough to cover large

classes of aspects-relevant problems. Reframing the problem, there are indicatives

of three core sets of problems we face – those concerned with creating tasks for

HBCE, making these tasks clear and simple, and structuring or managing these

tasks developing for the crowd. To address this, we found six different aspects or

building blocks of biological metaphor, e.g., honeycomb, including social, experi-

ence, motivation, limitation, management, development activity, and task blocks.

Each block was evaluated, and an initial solution was selected based on the beehive

collaboration model, which contains essential features of the user-user or bee-bee

and user-task or bee-wax interactions. To address this, we explored one instance of

SDLC, which can be used to solve those problems. It follows a three-layered

approach. It comprises building blocks, self-organization, and hybrid-CE layer.

Employing an analogy from biology where the operator relating the crowd and the

parameter to be social phenomena is assumed to belong to semi-algebraic sets (see

Fig. 8.4). Building block layer plays as contextual information for handling the

diversity of changes in and conditions of crowd’s surrounding environment. Con-

sequently, self-organization layer is used to acquire, analyze, model, manage, and

then adapt this contextual information for the crowd. Finally, hybrid-CE layer is

used to cope with different scenarios and options and introduces an extra level of

skill, as crowd’s needs at runtime decisions, depending on varying context

conditions.

Theoretically, CrowdSWD aims to empower the crowds who do not necessarily

have time or experience in software development, to create a small part of

crowdsourcer’s software, and to address crowdsourcer’s needs. It is an interdisci-

plinary field of ubiquitous computing, tangible and embodied interaction, and

online communities. It emerges as an approach to empower the crowds,

transforming their role from a passive audience to active creators of their techno-

logical habitat. CrowdSWD is an open-source version control and collaboration

framework for crowdsourcing software development and management. It works as

crowd-centered design (CCD) method [3] and adaptation engine (AE). CCD is an

iterative step-by-step process for developing a CE with the participation of the

SNUs [54]. It defines variations, which determine and generate the best hybrid-CE

by using workers’ profiles in an independent manner. An independent variation of

workers’ profiles could be the evaluation of different building blocks by using

forced agreement or guessing in a parallelized manner and then to automatically

generate the best hybrid-CE based on the results of this evaluation.

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 179

Technically, CrowdSWD allows SNUs to develop, change, adapt, and improve

software from its public repositories. SNUs can follow each other, rate each other’s
work, receive updates about specific projects, and communicate publicly or pri-

vately. The next sections present a high-level design for a special purpose frame-

work “CrowdSWD,” which can be used to solve crowdsourcing software problems,

following a three-layered approach.

8.3.1 Building Block Layer: Context-Based Design

Building blocks appeal to our notion of problem decomposition and the assembly of

solutions from sub-solutions. From SDLC point of view, SDLC is a set of building

blocks. These blocks provide an organization with hybrid-CEs needed for opera-

tions and management [9, 55, 56]. In the crowdsourcing software development,

most blocks are open, i.e., they interact with their crowd via interfaces. For

example, the Rational Unified Process (RUP) [57] is an iterative software develop

ment process framework. RUP is based on a set of building blocks or content

elements, describing what is to be produced, the necessary skills required, and the

step-by-step explanation describing how specific development goals are to be

Self-organization layer

Building-blocks layer

A context-based design

Crowd layer

Intermediate
Result storage

Hybrid-CE

Adaptation engine

Human-Based Computing Elements

Machine-Based Computing Elements

Fig. 8.4 A proposed framework for crowdsourcing software

180 T.A. Ali et al.

https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Software_development_process

achieved. Today, one of the reasons behind the limited use of planned collective

intelligence is the lack of MBCE for doing so and the little understanding of

dependencies among different building blocks in problem-solving. These blocks

needed to efficiently formulate and solve crowdsourcing software problems.

Employing an analogy from biology, we call these building blocks the “genes” of

collective intelligence systems, the conditions under which each gene is useful, and

the possibilities for combining and recombining these genes to harness crowds

effectively. As shown in Fig. 8.4, we have six outer blocks. Each presents one

aspect of the crowdsourcing software. Each aspect has six facets. Each facet can be

represented via MBCE or HBCE. Each HBCE goes to the inner block, the seventh

block, or the center block.

8.3.2 Self-Organization Layer: Adaptation Engine (AE)

SIC is aiming to support self-* properties such as self-organizing, self-maintenance,

self-control, self-evaluating, self-awareness, or even self-management [12]. Self-*

might lead to what we call *-family properties such as maintainability, flexibility,

testability, usability, portability, reusability, and interoperability, which are used in

the quantitative evaluation of software quality [13]. It is important to mention, that

especially generated hybrid-CE by an AE can use a rule-based engine and a huge set

of MBCEs such as statistical models e.g., predicting the best hybrid-CE in an

iterative collaboration by predicting a dependency, associations, combination,

decision, and generation rules on the number of iterations. For example, during

each iteration in the development process toward a solution, all the development

points are updated using neighboring values in the mesh network. Therefore,

hybrid-CE over rule-based engine means that AE requires the selection of a set of

previous building blocks (e.g., web contents, exercises, a color, a path to follow,

etc.), as well as the selection of these blocks, can be made with a set of rules. These

rules can be usually divided from a logical perspective into smaller parts of hybrid-

CEs that can be repeated in other composed rules in the application, as well as in

other external applications. In an analogy between the atomic rules and the blocks

in a honeycomb model: there is no need to code several times the same atomic rules,

which implies the simplification for the creation of larger rules, reusability, inter-

operability, or easier maintainability at the low level of hybridity. Moreover, these

rules perform adaptation by changing themselves during the time to accommodate

resource variability. At the same time, AE has to choose one or more specific

resources in a specific moment (e.g., a complete web page to present to a user). The

selection process might depend on many different facets such as the user prefer-

ences and other resources.

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 181

8.3.3 Hybrid-CE Layer: Engineering Crowdsourced
Stream CEs

A similar design of hybrid-CE is a CAPTCHA (completely automated public

Turing test to tell computers and humans apart) [34]. It blends computational

MBCE and HBCE into software module as shown in Fig. 8.5. It was found that

the quality of the extracted information from images via human as HBCE is better

than extracted information via optical character recognition (OCR) as MBCE.

In order to better understand what a hybrid-CE is, we follow a crowdsourced

stream processing system [4] and a distributed stream computing platform [58]. A

system can be examined from two main perspectives: (1) a behavioral or teleolog-

ical aspect, where the system’s behavior and goals are examined and (2) A struc-

tural aspect, where the system’s structure, architecture, and operations are assessed.
These aspects are supported by notions that include environment, goal, function,

CE, and relationships between them, as illustrated by the system model of Fig. 8.6.

Collaboration environment is anything that supports the hybrid-CE’s boundaries. It
influences the hybrid-CE as well as the hybrid-CE influences it. The collaborative

environment represents a context-based virtual rendering of a user environment.

A crowdsourced stream CE is a hybrid-CE that incorporates crowdsourced tasks

(HBCE) in the distributed computing architecture. This can be seen as enabling

HBCE to be applied on a sample of large-scale computing at high speed, or

equivalently, enabling stream computing to employ human intelligence. Engineer-

ing a hybrid-CE requires the combination of HBCE and MBCE. From a general

distributed computing perspective, this means taking into account inherited as well

as emerging aspects from both these CEs.

Fig. 8.5 A CAPTCHA

as a typical example

of hybrid-CE

MBCE

Example of MBCE
• Computation
• Filtering

• Binary classification
• N-ary classification
• Data generation
• Data access
• Validation
• Verification

• Task generation
• Task assignment
• Task aggregation
• Dependency checking

Goal Function

HBCE

Collaboration environment

Has structure

Has behavior

HBCE: Human-Based Computing Elements MBCE: Machine-Based Computing Elements

1 N

1 N

Example of HBCE
Hybrid-CE

Fig. 8.6 Simplified meta-model of hybrid-CE

182 T.A. Ali et al.

8.4 CrowdSWD: Low-Level Design

SNUs such as Bob and Adam use important terms such as fork, pull request, and

merge. A fork is simply a repository that has been copied from one SNU’s account
to another SNU’s account. Forks allow a SNU to develop and make modifications

without affecting the original code. If the SNU would like to share the development

and modifications, she/he can send a pull request to the owner of the original

repository. If after reviewing the modifications, the original owner would like to

pull the modifications into the repository, she/he can accept the modifications and

merge them with the original repository. The aim of CrowdSWD is so intuitive to

be used as version control and collaboration tool, nonprogrammers or even children

will begin to use CrowdSWD to work on document-based and sketching projects.

To achieve that aim, the next sections present a low-level design (see Fig. 8.7) for

each layer as follows.

8.4.1 A Context-Based Design

As shown in Fig. 8.8, we have six outer blocks. Each presents one aspect of the

crowdsourcing software. Each aspect has six facets. Each facet can be represented

Fig. 8.7 CrowdSWD: low-level design

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 183

via an MBCE or an HBCE. Each HBCE goes to the inner block, the seventh, or the

center block. Now and return to Adam and his social machine, for example. Adam

wants to know whether Bob is online. It is really easy; it is an existence facet, s

small six of social block or social aspect or S capital; it is an MBCE of knowing

who is online, such as any social platform, whether Facebook or others. Adam asks

Bob to write some tests for a module. This means that Bob has a verification, t6, and

validation, t5, skills during task completion. These skills are task block, task aspect,

capital T, and the inner or center block. Relating to the other blocks as follows:

• Social block (S) is based on representing the six facets of SNU, including their

social ties, interests, capabilities, activity history, and topical affinities. In [59],

they defined, designed, and implemented a comprehensive model able to cater

for all the aspects relevant for the applications involving social networks, human

computation, and gaming activities representation. In addition to SNU identity

that it is a way of uniquely identifying a member of the crowd:

• Presence (s1) is an MBCE of knowing who is online.

• Relationships (s2) are an MBCE of describing how two members in the devel-

opment phase are related such as Flickr people who can be contacted and friends

of the family.

• Conversations (s3) are an MBCE of messaging to other members through the

system.

• Groups (s4) are an MBCE of forming communities of specific work.

Useful
(e1)

Experience
(E)

Usable
(e6)

Desirable
(e5)

Findable
(e4)

Accessible
(e3)

Credible
(e2)

Evaluation
(g1)

Plan
(g6)

Management
(G)

Configure
(g2)

Solution
(g3)

Sharing
(s1)

Reputation
(s2)

Groups
(s3)

Conversation
(s4)

Time
(11)

Resource
(16)

Test
(c3)

Build
(c4)

Deploy
(c2)

Req.
(c1)

Analyze
(c6)

Access
(t1)

Verify
(t6)

Create
(t2)

Motivation
(M)

SDLC
(C)

Design
(c5)

Limit
(L)

Deploy
(12)

Users
(e3)

Access
(14)

Skill
(15)

Social
(S)

Relationships
(s5)

Existence
(s6)

Context
(g5)

Req.
(g4)

Interpersonal
(Task)
(m6)

Interpersonal
(platform)

(m1) Personal
(Initiator)

(m2)

Contextual
(Task)
(m5) Contextual

(platform)
(m4)

Personal
(platform)

(m3)

TASK

Validate
(t5)

Interpret
(t4)

Analyze
(t3)

(T)

HBCE: Human-Based Computing Elements MBCE: Machine-Based Computing Elements

Fig. 8.8 A context-based design

184 T.A. Ali et al.

• Reputation (s5) is an MBCE of knowing the status of another member of the

system such as who’s a good member? Who can be trusted?

• Sharing (s6) is an MBCE of sharing things that are meaningful to participants

like photos or business model. Due to time and space constraints, we will present

the other six blocks shortly.

• Experiences block (E) is used for activity awareness and analyzing the socio-

technical complexity of integrating user experience activities into open-source

projects. There are many researchers who discussed differences with dynamics

in the open user experiences status related to in the community, decision making,

and ways of sharing design information [60]. For example, the useful (e1) facet

remains vital and yet the interface-centered methods and perspectives of human-

computer interaction.

• Motivation block (M) or designing for motivation can be used for the

empowering experience of crowds free of any authority. For example,

gamification approaches [32] often reduces the complexity of a well-designed

and balanced game to its simplest components, e.g., badges, levels, points, and

leaderboards play an important role in the interpersonal platform facet (m1).

• Management block (G) is a set of logical properties that are related to manage-

ment. For example, when you manage many similar SQL Server environments,

you can configure (g5) facet in one instance of SQL Server, copy the state of the

facet to a file, and then import that file into another instance of SQL Server as a

policy.

• SDLC block (C) has a complex activity that requires a diverse set of stakeholders

to communicate and coordinate in order to achieve a successful outcome. For

example, a platform titled FeatureIT [61] has the goal of supporting the collab-

oration between stakeholders throughout the entire SDLC (C1:6). FeatureIT was

the result of unifying the theoretical foundations of the multidisciplinary field of

computer-supported cooperative work (CSCW) with the paradigm and associ-

ated technologies of Web 2.0.

• Task block (T) is based on a broad-based empirical study of 1,000 workers on

CrowdFlower [62] is based on representing the six facets related to certain

aspects of crowd behavior; the task affinity of workers is effort exerted by

workers to solve tasks that require human intervention. These facets play a

vital role in efficient task design. For example, interpretation and analysis

tasks, e.g., t4 and t5, rely on the wisdom of the crowd to use their interpretation

skills during task completion (e.g., choosing the most suitable category for each

business rules or categorizing reviews as either positive or negative).

Finally, we can say CCD method and C block should be centered around the

meaningful T that people are done in, which requires an explicit representation of

worker and task profiles in the S, M, E, L, and G models. Hence, the top manage-

ment model for managing crowdsourcing software building blocks is that:

X ¼ x1U x2U x3U x4U x5U x6U x7
��time

where X ¼ C; T; S;M;E; L;Gf g ð8:1Þ

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 185

8.4.1.1 A Design Solution

Based on CCD and a human-centric activity [63], usability and HCI approaches

have tried to augment human task on two separate planes: first deals with machine

interpretation of task and the latter explore interactions. However, CCD method has

recently utilized human cognition and memory to generate diverse HBCE streams

on specific building blocks, which are mostly easy for humans to solve but remain

challenging for MBCE, e.g., algorithms. In this section, we present a descriptive

model toward the automatically generating personalized hybrid-CE by

implementing a simple solution (see Fig. 8.9), focusing on semantic decomposition

[62] which is based on MBCE and HBCE specifications, and then mapping these

CEs to usability and HCI model.

8.4.1.2 Semantic Decomposition Model: Main Class, Criteria,

and Constructors

One key element of the hybrid-CE class, as Fig. 8.10 shows, is a specific specifi-

cation for a specific MBCE and HBCE to be designed, developed, or modified.

These are the specifications for what MBCE or HBCE is going to be used:

Context

Social
(S)

Experience
(E)

Management
(G)

Motivation
(M)

SDLC
(C)

Limit
(L)

TASK
(T)

Usability

Self-organization layer

Automatically generating personalized user interfaces

HCI: Human-Computer Interaction

HBCE: Human-Based Computing Elements MBCE: Machine-Based Computing Elements

HCI

Semantic decomposition based on MBCE and HBCE specifications

Classification

Mapping

Hybrid-CE

Fig. 8.9 Potential design solution for the hybrid-CE

186 T.A. Ali et al.

• From hybrid-CE, we can represent all the MBCE and HBCE embedded in the

various activities identified in the development phase.

• From the MBCE specifications, all of the specifications can be appropriately

distributed into six aspect categories of IT technologies that link to the three

classic IT architectures (data, applications, and technical architecture).

• From the HBCE specifications, all of the specification can be appropriately

distributed into one aspect that has six facets (verification, validation, interpre-

tation, analysis, content creation, and content access) [62], which play a vital

role in understanding the behavior of workers and their skill and then the HBCE

design. For example, a process may require very different actions depending on

whether a participant is new or existing with a task achievement history.

• From hybrid-CEs, we can build software specifications, which have all the

HBCE required in the various processes identified in the task.

Table 8.1 describes different types of decision unit between CEs that we

consider as important criteria, each of which justifies MBCE or HBCE. We

consider these criteria as first-class designing elements since CEs are constrained

by various types of simplicity, cost, benefit, and quality models. For example,

emergency or disaster conditions, e.g., hazards, search and rescue (SAR) is the

search for and provision of aid to people who are in distress or imminent danger. In

this condition, the signals, which come from the crowd, are very useful. Therefore,

an HBCE might be designed to minimize the accuracy of analytics work in order to

meet the response time to quickly react to that condition. In addition, it could be

designed to utilize inexpensive HBCE to minimize the cost and maximize the

accuracy but accept an increasing response time as a trade-off. Therefore, treating

Hybrid-CE

MBCEA HBCE

ID
Technology Needed
Requirements

ID
Description
Requirements

ID
Incentives
Requirements

Architecture
Business
Transition
Stakeholder

Drill-Down

Application
Data
Network

verification
interpretation
Creation
Access

Activity (A)
Machine-based- Computing Element
Human-Based- Computing Element

Definition

HBCE: Human-Based Computing Elements MBCE: Machine-Based Computing Elements

Fig. 8.10 Hybrid-CE class

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 187

these characteristics as first-class designing elements will allow the initiator to

explicitly specify, control, and enforce fixable constraints.

In order to assist the development of complex work, we developed a number of

high-level design CEs and the relationships between them that help establish

interactions among CEs which led to hybrid-CE. Some of the benefits of using

the high-level design rather than the low-level design are that it is easier to use and

requires less setup. Moreover, the high-level design is self-initializing. Table 8.2

which shows constructs for hybrid-CE have a set of MBCEs that can be called upon

the needs; constructs for a relationship have a set of (usage) patterns that can be

used to establish the relationship. Constructs for cost, quality, and benefits and

constructs for high-level programming interface can focus on the logic of the

hybrid-CE, instead of dealing with implementation-specific details of hybrid-CE

and complex algorithms for establishing relationships among CEs.

8.4.1.3 Task Collaborator Model

The role of the collaboration model is to translate the hybrid-CE structure as

described in previous sections, which drives its actions. In a collaboration model,

the MBCE’s plan should always be governed by the HBCE, regardless of which CE
is performing an activity at any given phase. At its core, the collaboration model is

implemented as a state machine (see Fig. 8.11) commanding the SDLC throughout

the collaboration and triggering the appropriate social behaviors.

As described in the previous steps, once an activity (Y) is requested as a

crowdsourcing, the MBCE is engaged to perform the hierarchical Ys jointly with

an HBCE. When an MBCE executes a hierarchical Y, the role of another MBCE is

to push the Ys onto a stack and perform each of the actions based on the

Table 8.1 Different criteria for the decision process for choosing CE type that can be justified in

the decision process in terms of simplicity, cost, benefit, and quality

Criterion type Description

Simplicity This traditional type of decision indicates how simple a CE is to another. In

principle, simplicity can be measured in terms of structure, unstructured, facts,

rules parameters, and domain concepts

Decomposition This well-known criterion of a CE indicates that a CE can be decomposed to

MBCE and HBCE

Guidance A CE guides another CE if the last requires the previous for providing a certain

parameter for one of its works

Flow of

control

A CE depends on another CE if the outcome of the last decides whether

previous should be executed or not

Flexibility This criterion is used to describe how a CE can be decomposed to the similar

task but different cost, benefit, and quality at runtime

188 T.A. Ali et al.

Table 8.2 High-level design for relationships in HCE

Construct Description

Simplicity (HBCE, MBCE,

criteria)

True if HBCE is simple to design than MBCE w.r.t. criteria

Flow of data (CE, D, M,

HBCE or MBCE)

A CE producing data D which is needed by HBCE or MBCE.

The message Ml is the location associated with a CE (e.g., center

DB) where the data will be stored and shared

Flow of control (CE1, CE2,

criteria, conx)

A CE1 depends on another CE2 if the outcome of last decides

w.r.t. criteria whether previous should be executed or not in a

given context conx

Guidance (CE1, CE21, conx) Declares that CE1 should be guided by a CE2 in a given context

conx

Decomposition (CE, HBCE,

MBCE)

Creates a use case of HBCE and MBCE for a given CE

Flexibility (CE, [Func],

NFPs, CE’)
A CE’ is a new form of CE to satisfy given simplicity/cost/

quality/benefit models

Hybrid-CE-Next

Stack Empty?

N

N

N

N

N

N
Y

Y

Y

Y

Y

Y

Desired Reached?

Complex Task?

Structure?

MBCE?

Execute

Wait

Stop
Pop:Task/Role

Push: Task/Role

Decompose

Desired Reached?

Investigation

Investigation Ask For Do

Hybrid-CEHBCE: Human-Based Computing Elements

MBCE: Machine-Based Computing Elements

Ask For Help

Fig. 8.11 A schematic view of the task collaborator model. Note that the “wait” state can be

terminated by both explicit and implicit turn taking on the HBCE

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 189

preconditions of the HBCE. The model’s states are defined, in flexible order of a

typical collaboration, as follows:

• Hybrid-CE-Next: The initial state of the system in which the MBCE evaluates

the current state and acts upon this evaluation.

• Ask for do: If an MBCE is capable of achieving the next Y of the development

phase, it will offer to take its turn, else next Y the next activity will be executed.

• Ask for help: An MBCE will ask for help from the HBCE, or it will decompose

the Y into its constituents, an MBCE and an HBCE, and recursively pushes them

to the stack.

• Wait: Waiting for a support from the other CE.

• Execute: If the MBCE is executing the current Y, this happens in this state; if the

HBCE is executing a step, the MBCE waits in this state.

• Investigation: Establishing common ground by looking through facts or evi-

dence and come up with a decision.

Moreover, the role of this collaboration model gives us a general view about the

interactions between MBCEs and HBCEs. MBCEs interact with HBCEs receiving

state information and reinforcement feedback and executing actions. The state

information may depend on each other. That is, the next state may depend on

current state and on the executed action. Moreover, this interaction is thus more

difficult but also more natural, simulating the interaction with an actual outside

world. We present the low level of basic collaboration, which we believe will

provide additional support to design hybrid-CE.

8.4.2 A Self-* Property and a *-Family Property

A resource for SIC is anything that can be selected by the MBCE. Each resource is

represented as MBCES,E,M,L,G,C. For example, let H be a space (honeycomb) that

represents all the possible MBCES,E,M,L,G,C which can be selected for the adaptation

hybrid-CE in a moment (e.g., all the possibilities of web pages that can be

generated). Each H can be modeled as the union of different aspects which can

be adapted (e.g., a web page can be the union of its content, presentation, possible

user interactions, and links to web pages). These adaptation blocks can have other

different facets (e.g., the links can be external or internal, or the presentation can be

divided into color, font, etc.) and so on in a meshing relationship, forming H. This

mesh is a graphical representation of all the adaptation blocks which influence the

development process. There might be some facets of the H that cannot be further

divided into other facets. These indivisible final facets support specific HBCE. For

example, let ti be one of these HBCEs; then ti can be of the following different types

of HBCE:

1. Numerical: It might be an integer, float, etc. A specific example can be a range of

specific values for a specific item (e.g., tax slices are 10%, 15%, etc.).

190 T.A. Ali et al.

2. String: It might be some adaptive text to show to each worker as social feedback.

3. Categorical: It might be a set of business classes which can be selected.

Therefore, each H is represented as the combination of all its facets for supporting

ti. The different hybrid-CEs for the same H must be disjunctive, so adaptation rules

must not include anything of another one (dependency rules). But there can be one

type of dependency among one hybrid-CE and other hybrid-CEs (e.g., it is neces-

sary to know the required skill to show to the workers before generating hybrid-

CE). This dependency will also be traversed horizontally or vertically to the specific

hybrid-CE of each H until the leaf nodes denoted by hybrid-CEi. Therefore, the

hybrid-CEi can depend on others for supporting its generation. Hence, hybrid-CEi

can be generated through a workflow. There is a set of associated rules, e.g., for

determining the next hybrid-CE (e.g., web page content to show to the worker);

there can be a rule for filtering hybrid-CE that was already visited by this worker.

This filtration is based on if the worker is known or unknown. For example, let be Ri

a rule of our engine related to a hybrid-CEi. A rule can be defined such that as a

processing block that receives (e.g., from a file) the information with the possible

and available options (H) to select for that support HBCEt:1–6 (in general a subset of

all the possibilities for ti). Moreover, hybrid-CEi+1 can be given in different formats

which also depend on the facet of a block, for example, as candidate options,

expressing that are different to a set of MBCEs, in a specific time. The rules of

the model can be combined to form new composed rules with the following types of

combination rules (Fig. 8.12).

The AE generates rules that are used to generate hybrid-CE, regardless of which

CE is performing an activity at any given phase. Then, the hybrid-CE is used as a

state machine [5] commanding the SDLC throughout the collaboration and

Fig. 8.12 Sequence (a), parallel (b), union (c), and conditional or decision (d) rule combinations

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 191

triggering the appropriate social behaviors. Hence, the hybrid-CE as an automati-

cally generating personalized user interfaces is based on the following model:

If Hybrid-CE ¼ HBCEU MBCE
�� time,where :

HBCE ¼ T, and MBCE ¼ SU EU MU LU GU C
And, AE ¼ For i ¼ 1 to 6

For j ¼ 1 to 6

For k ¼ 1 to 6

U HBCEi, j,k \MBCEi, j,k Constraintsj j time-1� �

And,U is preferences and utility functions
And Constraints such as :

Space-of -hybrid-CE ¼ HU MBCEt:1�6

Dependency-hybrid-CEi ¼ f Space-of -hybrid-CE j Time-1ð Þ
Workflow-hybrid-CEiþ1 ¼ hybrid-CEi MBCEi, tið Þ

Then,
Hybrid-CE ¼ AE-Generate

�
HBCE \MBCE Max Uð Þj j

Min Constraintsð Þ �� time
�

ð8:2Þ

8.4.3 Hybrid-CE: A Technical Meta-model

In this section, we engineer a hybrid-CE model in more detail, and we position

hybrid-CE within a broader taxonomy of detailed meta-model. Taking into account

the characteristics of different CEs and the design principles presented above, in

this section and the following one, we describe a technical meta-model for its

design based on [4]. This meta-model allows specifying the elements of a hybrid-

CE and communication flows among them, in a standardized way that allows to

easily create various kinds of hybrid-CEs and to modify them when required as

shown in Fig. 8.13. This figure follows the traditional application-level description

of software systems, with focus on crowdsourcing software. Each CE can be

computer driven or human driven (resp. MBCE or MBCE). It performs dedicated

tasks, and it may depend on other CEs in terms of data requirements. The CEs are

connected through data flow connections. The data flow connections tie input ports

and output ports. Data items are emitted from their source (technological node)

through a (usually single) output port, and they are used by the target through

(possibly multiple) input ports. Communication between CEs is done through

generic ports (e.g., input, configuration, and output ports channels). The input

ports are used to realize data from different building blocks (aspect and facets as

in the next chapter). The configuration ports provide a way to configure a CE or to

set default values or derive values for some of its parameters. The output port is

used to send the output data of the CE. Each port can have multiple parameters, and

the data types of those parameters can be set using either built-in types (primitive

data types) or domain-specific types.

A single output port is all that is needed for most applications to send output

data. However, in addition to the one-to-one communication between two CEs, it is

192 T.A. Ali et al.

possible that output data has to be distributed from one source to many target CEs in

parallel. To this end, the complexity of determining the destination CEs for each

output item can be managed by one of the following communication models:

1. Point-to-point communications are the simplest case and have a single CE such

as MBCE or HBCE. Essentially, both source and target CEs in a point-to-point

communication model comprise one port each (i.e., source with the output port

and target with the input port).

2. The distribution communication model supports cases where the output data of

single CE (e.g., data source CE) has to be realized by multiple CEs. In such

cases, multiple CEs are subscribed to the same post using the distributed

communication model, possibly filtering data according to certain criteria

or keys.

3. Broadcasted communication model is used when multiple CEs need to process

the same data items at the same time. It duplicates data items to all consumers

that are subscribed to a port.

A composition model represents a specific topology used to connect various CEs

in order to solve a specific problem. Hybrid-CE can be composed using mainly the

three composition modeled such as:

1. A serial composition that represents two or more CEs connected in a serial way,

according to which the target CE always depends on the source CE in terms of

data or parameters.

2. A parallel composition that represents the case where the connected CEs work in

parallel and are independent of each other in terms of data or parameters.

3. The hybrid composition represents a mix of serial and parallel types and often a

more complex composition of CEs.

Fig. 8.13 The detailed meta-model of a hybrid-CE, depicting computing elements, connections,

and communication flow between CEs and composition types

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 193

8.5 Hybrid-CE Design: Applications Example

To evaluate our CrowdSWD, we designed 34 hybrid-CEs or heterogeneous com-

puting elements that can be used in crowdsourcing software. For simplicity pur-

poses, we followed the usability approaches for naming them as given below:

HC ¼ Honeycomb model, Hi ¼ Hybrid-CEi, Des ¼ Description, MB ¼ MBCE,
HB ¼ HBCE, and BB ¼ Building-blocks

• HC: Paper prototyping (H1).

Des: It is an approach that supports the entire development process with

crowd-centered activities, in order to create applications which are

easy to use and added value to the intended SNUs, e.g., getting started.

MB: Show some sort of standards for the way an interface is going to look and

feel. Present a consistent picture with a guideline to the SNUs and

doesn’t commit some of the most elementary mistakes. Invite other

SNUs into the discussions.

HB: Raise awareness about business topics in the rest of the development

SNUs by engaging them.

BB: Planning, TUCUSUM.

• HC: Discussion board (H2).

Des: Collect information about the purpose of the system and its overall

context of use, e.g., SNUs meeting.

MB: Bring together all available SNUs relevant to the development in order to

create a common vision. Collect and agree on detailed information about

the context of use.

HB: Identify the key issues that are needed to explore. Provide all participants

with a copy of a list of the issues to be discussed at the meeting such as

why is the system being developed? What are the overall objectives?

How will it be judged as a success? What are the technical and

environmental constraints? Are there any initial design concepts? Is

there an existing or competitor system?

BB: TUCUE.

• HC: A detailed checklist (H3).
Des: Collect and agree detailed information about who are the intended SNUs,

e.g., analyzes context of use such as what are their tasks? Why will they

use the system? What are their experience and expertise?

MB: Collect the information to arrange about SNUs who have knowledge

about the intended context and then invite them.

HB: Fill in each item on the context checklist.

BB: TUCUE.

194 T.A. Ali et al.

• HC: To do the task (H4).
Des: Means of managing individual usability activities as well as the overall

role played by usability input within a software engineering program.

MB: A task manager is appointed for each task, an appropriate activity is

selected, and a schedule is specified. Enables priorities to be assessed and

facilitates the efficient allocation of resources.

HB: For each selected aspect or facet of the system, discuss what sort of

targets could be set and the work that needs to be done to achieve those

targets.

BB: TUCUG.

• HC: Use case (H5).
Des: A general set of actions you will do with each case on the context of use

analysis. Standardized user satisfaction questionnaire is recommended. It

identifies the strengths and weaknesses of competing products or

services before starting work on prototypes, e.g., competitor

analysis [64].

MB: Search the web using at least ten different search engines with this set of

keywords. Make a list of the top ten sites from the results of the different

search engines.

HB: Set of terms is most probably too vague. Ask domain experts.

BB: TUCUMUGUE.

• HC: A list of choices (H6).
Des: Generating a list of choices, open-ended questions, or a “walk-through”

of the survey with a small number of typical respondents based on

aspects of the context of use and what aspects pose problems or raise

uncertainties, e.g., by placing hit counters on a web site and by setting the

patterns of work. It is a means of finding out how the task is likely to be

used by a specific set of SNUs and who these users are likely to be, e.g.,

user survey for design.

MB: Sampling theory is complex, for example, counting of frequencies of

response to options or coding and tabulating the data should be as

automatic as possible and then sending a warning. These are done by

presenting results through giving the headline and then the detailed

analysis of how SNUs got there and finish with a conclusion based on

the data.

HB: Interpret or ask others what they understand by each question as they go

through the survey or by forming own opinions or biases as you work

with the data.

BB: Requirement through TUCUEU SUL.

• HC: Indicative table of contents (H7).
Des: Discovering facts and opinions held by potential SNUs of the system

being designed, e.g., interviews.

MB: In order of preference, record the informant’s responses.

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 195

HB: Address directly the informant’s individual concerns, e.g., askable

prompt. Check with the intended SNUs that this is useful for them.

BB: TUCUMUSUL.

• HC: Task diagrams (H8).
Des: Gathering field data from users, e.g., contextual inquiry [65].

MB: Watching users do their work and interacting with colleagues, which

doesn’t steal much time from the SNUs. Recording and organizing tasks.

Automatic renumbering of tasks and plans after each edit.

HB: Connect with the person ordering the contextual inquiry. This is done by

watching and occasionally interrupting, and then building the story

together with him.

BB: TUCUG.

• HC: Pilot observation (H9).
Des: It means a session that involves informal activities with the general

public.

MB: Viewing SNUs as they work in a field study and taking notes on the

activity that takes place, e.g., user observation and field studies [66].

HB: Gain cooperation of contacts with the observation technique that you

intend to carry out. Establish the times, places, and SNUs who will be

observed.

BB: TUCUGUMUS.

• HC: A template format (H10).
Des: A detailed checklist that provides a basis for designing. Collecting similar

information about SNUs and what are their tasks? What are the technical

and environmental constraints? For example, analyze the context of use.

MB: Collecting similar information about the users and what are their tasks?

What are the technical and environmental constraints? Invite members

who have experience in the business.

HB: A description of the context of use derived from the completed checklist.

BB: TUCUEUS.

• HC: Focus group sessions, card sort, affinity diagramming, and prototyping

activities (H11).
Des: An informal assembly of users whose opinions are requested about a

specific topic, e.g., focus groups [67]. A focus group is an informal

assembly of users whose opinions are requested about a specific topic.

The goal is to elicit perceptions, feelings, attitudes, and ideas of

participants about the topic. Focus groups are not generally appropriate

for evaluation. SNUs come together and express diverse views on the

topic: useful not only to find the range of views but also for the

196 T.A. Ali et al.

participants to learn from each other and to generate a sense of social

cohesion.

MB: Preparing a script or list of issues which need to be tackled. Selecting all

the participants from the same category or neighborhood. Inviting to

each focus group session with an explanation. Generating hypotheses.

HB: Express the unique points of view. Participate in the context of use

analysis or brainstorming.

BB: TUCUEUSUL.

• HC: A whiteboard (H12).
Des: Generate group creativity, e.g., brainstorming. A group of SNUs come

together and focus on a problem or proposal.

MB: Recount and arrange the clusters of ideas that have been formed and then

invite the participants to take turns to present one and only one idea at

a time.

HB: SNUs write down their ideas on their own Post-its at any time.

BB: TUCUEUM.

• HC: A list problems (H13).
Des: Obtain baseline measures of development, e.g., evaluate existing system.

MB: Collecting most important tasks and SNUs to be tested (based on the

context of use study). Generate a paper prototype for testing.

HB: Categorized by importance, e.g., use Post-it notes to sort the problems.

BB: TUCUE.

• HC: Tasks board (H14).
Des: Discovering the latent structure in an unsorted list of statements or ideas,

e.g., card sorting/affinity diagramming [68]. Sort large amounts of data

into a logical group.

MB: Collecting a large amount of data based on the context. Identify and

group SNUs’ functions as part of design.
HB: Sort these data into categories.

BB: TUCUEUS.

• HC: An activities outline (H15).
Des: How SNUs carry out their tasks in a specified context, e.g., scenarios of

use (use cases) [69], such as users’ activities, goals, and motivations for

using the system being designed, and the tasks they will perform.

MB: Identify intended SNUs, their tasks, experiences, and the general context.

HB: Specify how users carry out their tasks in a specified context.

BB: TUCUEUMUL.

• HC: Layered diagram (H16).
Des: It means a check for consistency. Analyzes what a SNU is required to do

in terms of actions and/or cognitive processes to achieve a task, e.g., task

analysis [70].

MB: Draw the subtasks as a layered diagram ensuring that it is complete.

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 197

HB: Break tasks down into subtasks in terms of objectives, e.g., task

decomposition.

BB: TUCUEUG.

• HC: Tasks objectives (H17).
Des: A workshop attended by SNUs who identify system requirements that

can be tested later in the development process, e.g., requirements

meeting [71].

MB: Indent SNU and tasks in the context of use analysis.

HB: Provides functional and nonfunctional criteria that can be tested.

BB: TUCUEUS.

• HC: Drag and drop design items (H18).
Des: Design guidelines [72] for user task design, summarize good practice,

and provide useful high- and low-level guidance on the design of task.

MB: Collect guidelines for creating well-designed functionally.

HB: Drag and drop design items.

BB: Design – TUCUEUL.

• HC: Activity on a Post-it note (H19).
Des: Paper prototypes [73] or other mock-ups are used to clarify requirements

to be very rapidly simulated and tested.

MB: Collect the domain concepts.

HB: Design and sketch out possible concepts in a brainstorming environment.

Carry out a realistic task, e.g., based on the context of use scenarios.

BB: TUCUE.

• HC: A list of identified problems (H20).
Des: It is a heuristic evaluation [74] in a form of development inspection

where development specialists judge.

MB: Generate mock tasks and record SNU’s observations.
HB: Feedback (recommendations for design improvements) on the

problematic aspects to designers.

BB: TUCUEUL.

• HC: Basic prototypes (H21).
Des: Parallel design [75] is a method where alternative designs, often task

designs, are created by SNUs at the same time independently.

MB: Collect SNUs to be available concurrently in order to carry out designwork

in parallel. Collect a requirements document, criteria, and boundaries

which are needed to make sure that the design SNUs are given the same

information so that design work starts from the same starting point.

HB: Discuss with other different aspects of the designs.

BB: TUCUEUL.

198 T.A. Ali et al.

• HC: Lists and charts with time and resource constraints (H22).
Des: A storyboard [76] is a low-fidelity prototype consisting of a series of

tasks and sketches. Provides an overview of the system. Demonstrates

the functionality of the storyboard elements. Demonstrates the

navigation scheme.

MB: Generate the context of use and scenarios.

HB: Select the best storyboard elements.

• HC: Storyboards prototypes (H23).
Des: Prototype to identify development problems, where the SNU is probed to

explain their expectations and problems, e.g., evaluate the prototype.

MB: Generate the most important tasks and SNUs to be tested. Plan sessions

allowing time for giving instructions and running the test.

HB: Select the best storyboard elements.

BB: TUCUEUM.

• HC: Simulation (H24).
Des: System’s responses in real time. The Wizard technique enables

unimplemented technology to be evaluated by using a human to

simulate the response of a system.

MB: Gather information about the nature of the interaction.

HB: User’s input.
BB: TUCUL.

• HC: Design patterns (H25).
Des: The SNUs conceptualize the task in terms of interface design patterns or

pattern-based design [77] during requirements elicitation itself.

MB: Generate design pattern examples.

HB: Express business concepts in terms of design patterns.

BB: TUCUEUM.

• HC: Visualizing (H26).
Des: Visualize a part of business mode. Style guides are used to provide the

consistency between tasks.

MB: Generating a well-designed, visually, and functionally consistent

business model.

HB: Comments in terms of understandability.

BB: Implementation through TUCUE.

• HC: HyperCard and ToolBook (H27).
Des: Visualize a part of the system. Rapid prototyping or interactive

prototypes [78] are developed which can be quickly replaced or

changed in line with design feedback.

MB: Generate different proposed concepts, and prepare realistic tasks.

HB: Provide feedback on it.

BB: TUCUEUMUL.

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 199

• HC: Task scenarios (H28).
Des: User-based evaluation of a working system, where the primary objective

is to identify development problems, e.g., diagnostic evaluation

[79]. Input data and write instructions for the user (tell the user what to

achieve, not how to do it).

MB: Collect the most important users, tasks, and environment that are used.

Generate instructions for the SNUs (tell the user what to achieve, not

how to do it).

HB: Interpretation of the contents of each task scenarios and their reason for

making choices.

BB: Testing through TUCUE.

• HC: Performance testing (H29).
Des: Performance testing [80] is a rigorous evaluation of a working system

under realistic conditions to compare measures such as success rate, task

time, and user satisfaction with requirements.

MB: Ensure that the SNUs, tasks, and environment used for the test are

representative of the intended context of use. Invite developers to

observe the task scenario.

HB: Explain the interpretation of the contents of each task scenario and the

reason for making choices.

BB: TUCUSUL.

• HC: General-purpose screening (H30).
Des: The usual method of assessment is to use a standardized opinion

questionnaire to avoid criticisms of subjectivity, e.g., subjective

assessment (testing and post-release) [81].

MB: Collect some background data about the context of use, e.g., computer

experience, job level, and the frequency of use of the software being

evaluated.

HB: Fill out a questionnaire.

BB: TUCUL.

• HC: Survey from the start (H31).
Des: SNUs are asked to identify specific incidents which they experienced

personally and which had an important effect on the final outcome, e.g.,

critical incident technique analysis [82].

MB: Collect a sufficient quantity of data in which you should be able to

categorize the incidents and produce a relative importance weighting

for each. Content analysis in order to summarize the experiences of many

users or many experiences of the same user.

HB: Describing the positive and negative critical incidents.

BB: TUCUL.

200 T.A. Ali et al.

• HC: Questionnaires (H32).
Des: Evaluate the pleasure of the product [83]. The general idea then is that a

more holistic approach on the relationship between the user and the

machine will give added value to SNU’s pleasure with the product.

MB: Collect data about time on task, the number of errors, and subjective

opinion.

HB: Evaluate usability of the product.

BB: TUCUMUS.

• HC: Casebook (H33).
Des: It must be understood that all measurement involves sampling, e.g., post-

release testing and measurement.

MB: Collect large samples until the product is released.

HB: Vote on which may become an incentive to increase general SDLC.

BB: Post-release through TUCUEUMUS.

• HC: Spreadsheet (H34).
Des: Is a very useful tool for keeping raw survey results with some kind of

reward. User surveys for design are a means of finding out how the task is

likely to be used by a specific set of users, and who these users are likely

to be.

MB: Collect a large number of SNUs; usage profiles from user surveys can be

relied upon and analyzed statistically, and this gives moderately hard

objective data.

HB: Post must be relevant to the issues that are important to the design team

such as the major decision points or areas of uncertainty.

BB: TUCUE.

8.6 Experimental Study

To validate CrowdSWD, we initiated an experimental study of a software devel-

opment application to build a payroll system.We chose to develop a business model

helping the crowd to generate multiple business rules. The system will allow a

member of the crowd (crowdsourcers) to sign up for an account, post an abstract

model, and ask the other member (providers) to decompose this model into slices

(shape and concepts). The abstract model was a number of images and symbols.

This is followed by a precise technical illustration of business issues, which are

required for management. This was the first phase (posting the crowdsourcer

requirements) and so on to the next phases of SDLC. In each development phase,

CrowdSWD used five hybrid-CEs (artifacts) to address design problems (see

Fig. 8.14). The crowds were employees who have different skills, experiences,

and other facets of the previous building blocks. After registration process (case 1)

or login process (case 2), adaptation engine (AE) creates worker profile (in case 1).

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 201

Then, this profile is matched with the seven building blocks by AE (in case 1, 2).

Based on the result, AE generates hyper-CE as an interface for the worker. This

hybrid-CE contains the task and some facilities (MBCE) for achieving those tasks.

It also contains a simple request or human intelligence tasks (HITs) such as “Please

sketch and type the concept as they are in the original sketch!”. Each action is taken,

stored, and shown to other workers. At the same time, AE updates the knowledge

base and worker profile. Based on worker profile, AE collects and agrees on

detailed information about the intended workers and what are their HBCE?

8.7 Experimental Results and Discussion

Based on the results of the experiment, all types of hybrid-CEs were executed; the

work was very simple (e.g., the child can share). Over time, the participation rate

increases and goes up. The success criteria are evaluated (fulfilling the triple con-

straints mean that the project is perceived as successful) and checked through an

expert. The experiment generated interesting results. Of the 140 CE posted, only

120 were successfully completed. The overall complexity of developing the system

through our model is well comparable with that of traditional development [5]. The

results of the experiment are encouraging, and there are multiple tracks for the further

crowd work. Now the great part is that after some time, AE can see which one is more

successful. AE learned something. AE never stops doing this through your whole

SDLC, forever. The customized findings and recommendations based on the

Fig. 8.14 Hybrid-CE model for crowdsourcing software (payroll software)

202 T.A. Ali et al.

experiment, organizational constraints, and goals were 14 hybrid-CEs (see Table 8.3)

which might be suitable recommendations for generalized crowdsourcing SDLC.

8.8 Conclusion

This chapter explored one instance of SDLC called CrowdSWD. It included a range

of activities, entities, processes, and contexts including (1) initiation of the stan-

dards development effort, (2) the stages of the development of this standard, and

(3) the interested parties and their interaction. The goals and objectives of this

chapter developed a holistic understanding of CrowdSWD through (1) design and

Table 8.3 Recommendations for your general SDLC

AE

Building blocks

Hybrid-CE

Development

phaseMBCE HBCE

Generating

and update

Task allocation Technical

infeasibility

– AE decision

Alternative designs Create Parallel

design [76]

Design

DesignL

Alternative options Selects options Evaluate Test, design,

req.,

TUCUMUS

Relevant contextual

information

Awareness Expert

evaluation

Post-release

TUCUSUL

Problems and situation Awareness Patterns Design

TUCUEUL

Present data Sort them into

logical groups

Affinity

diagramming

Req.

TUCUMUS

Whiteboard See what ideas

have been

generated

Brainstorming Req.

TUCULUS

Unsort list and stick the

labels on index cards

Discovering Card sorting Req.

TUCUMUS

Gathering field data Ask others Contextual

inquiry

Req. analysis

TUCUMUSUL

Visualizing ontology Concept design Prototype Design TUCU

SUM

Success rate Realistic

conditions

Testing Test TUCUL

Test the system concept No human fac-

tors expertise

Scenarios Design

TUCUSUM

Simulation Interaction Storyboarding Design, impl.

TUCULUM

Observes the user’s actions
and simulates the system’s
responses

Unaware and

training

Wizard Design, imp.

TUCUSUM

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 203

manage the context within CrowdSWD occurred and discover the important aspects

that enable or constrained its design and management, (2) unify the preliminary

conceptual model of hybrid-CE to reflect CrowdSWD, and (3) explore other

information technology standards development efforts. The methodology was

reasoning and learning about characteristics of participants. The output was mech-

anisms for task routing and problem-solving that harness participant’s expertise.

Basic components were (1) modeling crowdsourcing software and human tasks that

empower a crowd socially to solve complex problems that require effective man-

agement among participants with relevant abilities and limitations, (2) modeling

supportive environments for crowdsourcing software, and (3) modeling adaptive

engine that learns relevant characteristics of participants based on observations of

their behavior and learned models. The single experimental study, reported in this

chapter, provides richness of data that can lead to mainly answer two questions:

(1) What are the aspects, building blocks, entities, processes, and mechanisms that

influence, enable, or constrain CrowdSWD? and (2) What are the different hybrid-

CEs that reflect CrowdSWD?

References

1. Shi Z, He H, Luo J, Lin F, Zhang H (2006) Agent-based grid computing. Appl Math Model 30

(7):629–640

2. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree

compared. In: Grid computing environments workshop, GCE ’08. IEEE, Piscataway, pp 1–10

3. Ali T, Nasr ES, Gheith M (2014) Socially intelligent computing—a survey of an emerging

field for empowering crowd. In: Proceedings of the 9th international conference on INFOr-

matics and Systems (INFOS). IEEE, Piscataway

4. Imran M, Lykourentzou I, Naudet Y, Castillo C (2014) Engineering crowdsourced stream

processing systems. arXiv preprint arXiv

5. Ali T, Gheith M, Nasr ES (2016) CrowdCE: a collaboration model for crowdsourcing software

with computing elements. Int J Recent Innov Trends Comput Commun (IJRITCC) 4

(2):204–213

6. Ackoff RL (1971) Towards a system of systems concepts. Manag Sci 17(11):661–671

7. Von Bertalanffy L (1972) The history and status of general systems theory. Acad Manag J 15

(4):407–426

8. Geiger D (2015) Personalized task recommendation in crowdsourcing systems. Springer,

Cham

9. Geiger D, Rosemann M, Fielt E, Schader M (2012) Crowdsourcing information systems-

definition, typology, and design. In: Proceedings of the 33rd international conference on

information systems. Orlando

10. Burégio V, Meira S, Rosa N (2013) Social machines: a unified paradigm to describe social

web-oriented systems. In: Proceedings of the 22nd international conference on world wide web

companion. p 886–889

11. Scekic O, Truong H-L, Dus S (2013) Incentives and rewarding in social computing. Commun

ACM 56(6):72–82

12. Salehie M, Tahvildari L (2009) Self-adaptive software: landscape and research challenges.

ACM Trans Auton Adapt Syst (TAAS) 4(2):1–42

204 T.A. Ali et al.

13. Boehm BW, Brown JR, Lipow M (1976) Quantitative evaluation of software quality. In: The

2nd international conference on software engineering. IEEE Computer Society Press,

Washington, DC

14. Ralph P (2015) The sensemaking-coevolution-implementation theory of software design. Sci

Comput Program 101:21–41

15. Murray-Rust D, Robertson D (2015) “Bootstrapping the Next Generation of Social Machines.”

Crowdsourcing: crowdsourcing. Springer, Berlin

16. Estellés-Arolas E, González-Ladrón-de-Guevara F (2012) Towards an integrated

crowdsourcing definition. J Inf Sci 38(2):189–200

17. Wang F-Y, Zeng D, Carley KM, Mao W (2007) Social computing: from social informatics to

social intelligence. IEEE Intell Syst 22(2):79–83

18. King I, Jiexing L, Kam CT (2009) A brief survey of computational approaches in social

computing. In: Proceedings of the international joint conference on neural networks. Atlanta. p

1625–1632

19. Shaw A (2012) Using chatbots to teach socially intelligent computing principles in introduc-

tory computer science courses. In: Proceedings of the 9th international conference on infor-

mation technology. Las Vegas. p 850–851

20. Wang F-Y, Zhang D, Sycara K (2013) Guest editorial: special section on social and economic

computing. IEEE Trans Serv Comput 6(2):150–151

21. Horvath L, Rudas IJ, Bit JF, Hancke G (2005) Intelligent computing for the management of

changes in industrial engineering modeling processes. In: Proceedings of the IEEE 3rd

international conference on computational cybernetics. IEEE, Piscataway, pp 249–254

22. Demirbas M, Bayir MA, Akcora CG, Yilmaz YS (2010) Crowd-sourced sensing and collab-

oration using twitter. In Proceedings of the IEEE international symposium on a world of

wireless mobile and multimedia networks. Montrreal, pp 1–9

23. Vukovic M (2009) Crowdsourcing for enterprises. In: Proceedings of the world conference on

services – I. Los Angeles, pp686–692

24. Gomes C, Schneider D, Moraes K, de Souza J (2012) Crowdsourcing for music: survey and

taxonomy. In: Proceedings of the IEEE International conference on Systems, Man, and

Cybernetics (SMC). Seoul, pp 832–839

25. Gonnokami K, Morishima A, Kitagawa H (2013) Condition-task-store: a declarative abstrac-

tion for microtask-based complex crowdsourcing. In: Proceedings of the 1st VLDB workshop

on databases and crowdsourcing, pp 20–25

26. Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I (2010) Pregel: a system for large-scale

graph processing. In: Proceedings of the ACM SIGMOD international conference on man-

agement of data

27. Breslin J, Decker S (2007) The future of social networks on the internet: the need for

semantics. Internet Comput 11(6):86–90

28. Datta A, Buchegger S, Vu LH, Strufe T, Rzadca K (2010) Decentralized online social

networks. In: Handbook of social network technologies and applications. Springer, New York

29. Han B, Pan H, Anil Kumar VS, Marathe MV (2012) Mobile data offloading through oppor-

tunistic communications and social participation. Mob Comput 11(5):821–834

30. Cheng CD, Kosorukoff A (2004) Interactive one-max problem allows to compare the perfor-

mance of interactive and human-based genetic algorithms. In: Genetic and evolutionary

computation conference. Springer, Berlin/Heidelberg

31. Liu F, Lee HJ (2010) Use of social network information to enhance collaborative filtering

performance. Expert Syst Appl 37(7):4772–4778

32. Deterding S (2012) Gamification: designing for motivation. Interactions 9(14):14–17

33. Deterding S, Sicart M, Nacke L, O’Hara K, Dixon D (2011) Gamification. Using game-design

elements in non-gaming contexts. CHI’11 extended abstracts on human factors in computing

systems

34. von Ahn L, Blum M, Hopper NJ, Langford J (2003) CAPTCHA: using hard ai problems for

security. Adv Cryptol EUROCRYPT 2656:294–311

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 205

35. Louis B. Rosenberg (2015) Human swarms, a real-time paradigm for collective intelligence.

Collective Intelligence

36. Sanchez-Charles D, Muntes-Mulero V (2015) CrowdWON: a modelling language for crowd

processes based on workflow nets. AAAI

37. Barowy DW, Curtsinger C, Berger ED, McGregor A (2012) Automan: a platform for inte-

grating human-based and digital computation. In: Proceedings of the ACM international

conference on object oriented programming systems languages and applications, vol 47.

ACM, New York, pp 639–654

38. Dwarakanath A, Chintala U, Shrikanth NC, Virdi G, Kass A, Chandran A, Sengupta S, Paul S

(2015) CrowdBuild: a methodology for enterprise software development using crowdsourcing.

In: Proceedings of the second international workshop on crowdsourcing in software engineer-

ing. IEEE Press, Piscataway, pp 8–14

39. Gajosa KZ, Welda DS, Wobbrock JO (2010) Automatically generating personalized user

interfaces with supple. Artif Intell 174(12):910–950

40. Amsterdamer Y, Kukliansky A, Milo T (1968) NL2CM: a natural language interface to crowd

mining. In: Proceedings of the ACM SIGMOD International Conference on Management of

Data, 2015

41. Bernstein MS, Little G, Miller RC, Hartmann B, Ackerman MS, Karger DR, Crowell D,

Panovich K (2015) Soylent: a word processor with a crowd inside. Commun ACM 58

(8):85–94

42. Wu W, Tsai W-T, Li W (2013) Creative software crowdsourcing: from components and

algorithm development to project concept formations. Int J Creat Comput 1(1):57–91

43. https://www.topcoder.com

44. Kulkarni AP, Can M, Hartmann B (2011) Turkomatic: automatic recursive task and workflow

design for mechanical turk. Human factors in computing systems, pp 2053–2058

45. Franklin MJ, Kossmann D, Kraska T, Ramesh S, Xin R (2011) Crowddb: answering queries

with crowdsourcing. In: Proceedings of the 2011 ACM SIGMOD International Conference on

Management of data. ACM, New York, pp 61–72

46. Ahmad S, Battle A, Malkani Z, Kamvar S (2011) The jabberwocky programming environment

for structured social computing. In: Proceedings of the 24th annual ACM symposium on User

interface software and technology. ACM, New York

47. Minder P, Bernstein A (2012) Crowdlang: a programming language for the systematic

exploration of human computation systems. In: Social informatics, pp 124–137

48. Dustdar S, Schall D, Skopik F, Juszczyk L, Psaier H (2011) Socially enhanced services

computing: modern models and algorithms for distributed systems. Springer Science &

Business Media, Wien

49. Dustdar S, Truong H-L (2012) Virtualizing software and humans for elastic processes in

multiple clouds–a service management perspective. Int J Next Gener Comput (IJNGC)

3:109–126

50. van Ham F, Schulz H-J, Dimicco JM (2009) Honeycomb: visual analysis of large scale social

networks. Human-Computer Interaction–INTERACT, pp 429–442

51. Burégio VA, Meira SL, Rosa NS, Garcia VC (2013) Moving towards “Relationship-Aware”

applications and services: a social machine-oriented approach. In: Proceedings of 17th IEEE

International on Enterprise Distributed Object Computing Conference Workshops

52. Pereira R, Baranauskas MCC, da Silva SRP (2010) Social software building blocks: revisiting

the honeycomb framework. In: International Conference on Information Society (i-Society)

53. Kittur A, Nickerson JV, Bernstein MS, Gerber EM, Shaw A, Zimmerman J, Lease M, Horton

JJ (2013) The future of crowd work. In: Proceedings of the conference on computer supported

cooperative work, New York. ACM, New York, pp 1301–1318

54. Malone TW, Laubacher R, Dellarocas C (2009) Harnessing crowds: mapping the genome of

collective intelligence. Boston University, Boston

55. Falkenberg ED, Hesse W, Lindgreen P, Nilsson BE, Han Oei JL, Rolland C (1998) A

framework of information systems. The FRISCO Report (Web edition)

206 T.A. Ali et al.

https://www.topcoder.com

56. Alter S (2010) Bridging the chasm between sociotechnical and technical views of systems. In:

Proceedings of the 31st international conference on information systems. St. Louis

57. Rhodes DL (2012) The Systems Development Life Cycle (SDLC) as a standard: beyond the

documentation. US Census Bureau, Washington, DC, pp 194–2012

58. Neumeyer L, Robbins B, Nair A, Kesari A (2010) S4: distributed stream computing platform.

In: Proceeding of IEEE international conference on data mining workshops, pp 170–177

59. Bozzon A, Fraternali P, Galli L, Karam R (2014) Modeling crowdsourcing scenarios in

socially-enabled human computation applications. J Data Semant 3(3):169–188

60. Bach PM, Carroll JM (2010) Characterizing the dynamics of open user experience design: the

cases of firefox and OpenOffice. org. J Assoc Inf Syst 11(12):902–925

61. Siller GG (2013) FeatureIT: a platform for collaborative software development

62. Gadiraju U, Kawase R, Dietze S (2014) A taxonomy of microtasks on the web. In: Proceedings

of the 25th ACM conference on hypertext and social media. ACM, New York

63. Mao K, Capra L, Harman M, Jia Y (2015) A survey of the use of crowdsourcing in software

engineering. RN 15(1)

64. Sierzchula W, Bakker S, Maat K, van Wee B (2012) The competitive environment of electric

vehicles: an analysis of prototype and production models. Environ Innov Soc Transit 2:49–65

65. Druin A (1999) Cooperative inquiry: developing new technologies for children with children.

In: Proceedings of the SIGCHI conference on human factors in computing systems

66. Malinen S (2015) Understanding user participation in online communities: a systematic

literature review of empirical studies. Comput Hum Behav 46:228–238

67. Carolan M, Holman J, Ferrari M (2015) Experiences of diabetes self-management: a focus

group study among Australians with type 2 diabetes. J Clin Nurs 7–8(24):1011–1102

68. Widjaja W, Sawamura M (2015) DADS system: distributed approach to digital affinity

diagram collaboration. In: Proceedings of the 18th ACM conference companion on computer

supported cooperative work & social computing

69. Adams B, Kavanagh R, Hassan AE, German DM (2016) An empirical study of integration

activities in distributions of open source software. Empir Softw Eng 21(3):960–1001

70. Prommann M, Zhang T (2015) Applying hierarchical task analysis method to discovery layer

evaluation. Inf Technol Libr (Online) 44(1)

71. Mylopoulos J, Chung L, Liao S, Wang H (2001) Exploring alternatives during requirements

analysis. IEEE Softw 18(1):92–96

72. Maguire M (2001) Methods to support human-centred design. Int J Hum Comput Stud 55

(4):587–634

73. Beyer H, Holtzblatt K (1999) Contextual design. Interactions 6(1):32–42

74. Manning MD, Harriott CE, Hayes ST, Adams JA, Seiffert AE (2015) Heuristic evaluation of

swarm metrics’ effectiveness. In: Proceedings of the tenth annual ACM/IEEE international

conference on human-robot interaction extended abstracts

75. Xu A, Rao H, Dow SP, Bailey BP (2015) A classroom study of using crowd feedback in the

iterative design process. In: Proceedings of the 18th ACM conference on computer supported

cooperative work & social computing

76. Newman MW, Landay JA (2000) Sitemaps, storyboards, and specifications: a sketch of web

site design practice. In: Proceedings of the 3rd conference on designing interactive systems:

processes, practices, methods, and techniques

77. Thanh-Diane N, Jean V, Ahmed S (2016) Generative patterns for designing multiple user

interfaces. 3rd IEEE/ACM International Conference on Mobile Software Engineering and

Systems MobileSoft

78. Fitton D et al (2005) Rapid prototyping and user-centered design of interactive display-based

systems. IEEE Pervasive Comput 4(4):58–66

79. Bengtsson C (2015) End-to-end set-up of crowdsourced evaluation of utterance clusters in big

data. Uppsala University, Ed.: Master’s Thesis in Computational Linguistics

80. Yuen M-C, King I, Leung K-S (2015) Taskrec: a task recommendation framework in

crowdsourcing systems. Neural Process Lett 41(2):223–238

8 CrowdSWD: A Novel Framework for Crowdsourcing Software Development. . . 207

81. Raza A Capretz LF (2015) Contributors preference in open source software usability: an

empirical study. arXiv preprint arXiv:1507.06882

82. Marsden J (2013) Stigmergic self-organization and the improvisation of Ushahidi. Cogn Syst

Res 21:52–64

83. Schneider H, Frison K, Wagner J, Butz A (2016) CrowdUX: a case for using widespread and

lightweight tools in the quest for UX. In: Proceedings of the 2016 ACM conference on

designing interactive system

208 T.A. Ali et al.

Chapter 9

An Approach to Migrate and Manage
Software: Cloud-Based Requirements
Management

Areeg Samir

9.1 Introduction

Software industry is considering cloud computing to increase its working compe-

tency through using cloud’s main promised characteristics such as on-demand

service, rapid elasticity, anywhere and anytime data access, and resource pooling.

Gartner [1] defines cloud computing as “a style of computing where massively

scalable IT-enabled capabilities are delivered ‘as a service’ to external customers

using Internet technologies.” There are many approaches to cloud services deploy-

ment, viz., Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS). Cloud computing promises to reduce IT services

costs, better management efforts, and clear maintenance responsibilities to allow

enterprises to focus more on production and innovation. It increases business agility

and scalability through permitting enterprises to satisfactorily meet the needs of the

rapidly changing environments. Cloud significant features support an increasing

number of enterprises which view it as a key of business transformation that attract

customer engagement, establish new partnerships, and drive competitive benefits.

Nowadays, customers can use cloud applications, platforms, infrastructure tools,

and all kind of services to migrate and manage their applications. However,

migration and management of applications to cloud computing must be done in a

strategic and methodical way. Before moving to cloud, enterprises must take some

steps to determine whether their applications can or will benefit from the migration

to cloud. For example, enterprises must check and assess their applications to

determine whether they are suitable for the migration process. They need to take

into account of the required migration processes and management of the key

application requirements including costs of migration, application redesign,

A. Samir, PhD student (*)

Faculty of Computer Science, Libera Universit�a di Bolzano, Bolzano, Italy
e-mail: aelgazazz@unibz.it

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_9

209

mailto:aelgazazz@unibz.it

refactor, performance, lock-in risk, availability, security, privacy, policies, business

value, technology issues, and much more.

There are some well-known cloud providers such as IBM, Google, Amazon,

Oracle, Rackspace, and Microsoft. Thus, understanding essential requirements,

knowing the benefits, understanding the drawbacks, and determining clear guide-

lines for cloud migration and management are needed tasks.

The rest of this chapter is structured as follows: Section 9.2 identifies the

concepts and benefits associated with cloud computing. Section 9.3 depicts

the motivations and considerations of cloud migration and management.

Section 9.4 presents the challenges and research questions relating to both migra-

tion and management of cloud. Section 9.5 explores related work. After that,

Sect. 9.6 presents the proposed approach that consists of two steps which are:

(1) Specifying the high priority requirements of cloud migration and management.

(2) Enhancing organizations knowledge to migrate their applications to the cloud

based on a well-planned and well-understood strategy. To achieve step 2, CMMI is

modified by adding a new element in such a process. Finally, Sect. 9.7 concludes

the whole work and presents the future work.

9.2 Cloud Computing Concepts and Features

Cloud computing is a technology that allows users to access a large pool of

virtualized resources that can be dynamically leased and released through the

Internet in an on-demand fashion. Microsoft defines cloud computing as the ability

to rent and deliver a pool of resources such as applications, platforms, servers, and

disk space. IBM clarifies cloud computing as a solution in which all resources from

software to hardware and network are provided rapidly to customers on demand.

Rackspace specifies cloud computing as a broad range of deliverable services [2].

The emergence of cloud computing has made a tremendous impact on business

enterprises. For example, cloud allows applications to scale up or down to meet the

growing requirements of service loads. It rapidly allocates and de-allocates

resources on demand. Moreover, providers do not need to invest in the infrastruc-

ture; they simply rent resources from cloud according to their requirements and pay

for the usage. Cloud computing outsources service infrastructure to reduce business

risks and to shrink maintenance expenses. It guarantees to provide high-quality

services for customers. However, cloud computing still has significant challenges

that need to be handled and understood by business communities to allow them

adopt cloud and manage and migrate their applications. Some of these challenges

are:

• Migrating systems and applications to cloud

• Choosing a strategic charging model

• Specifying service level agreements

210 A. Samir

http://blogs.technet.com/b/itinsights/archive/2010/12/07/how-microsoft-defines-cloud-computing.aspx

• Considering costing models

• Identifying security type

There are many other challenges related to cloud migration and management; Sect.

9.4 provides more explanation on these.

9.3 Motivations and Considerations

Cloud computing environment improves application performance through increas-

ing the provided resources to match current demands. This could happen by

allowing the providers to monitor their usage, dynamically scale resources up or

down, and pay based on what they used. Consequently, cloud providers can save the

financial and operational costs of applications through migrating their applications

to cloud and manage them by using a set of provided cloud tools.

Application migration is the process of redeploying an application on a new

platform and infrastructure. The application can be migrated from an existing

datacenter to public, private or hybrid cloud in order to avoid building, maintaining

and managing infrastructure. In addition, migration can be adopted to provide

capacity for steady workloads and to benefit from a pay-per-use expense model.

Moreover, applications can be migrated from cloud to cloud or from cloud to

datacenter depending on the business requirements such as reduced cost, obtaining

new features, seeking to improve application overall performance, gathering a wide

and a broad access, simplifying accessibility of application and services, and

improving application quality from availability, flexibility, customizability, and

reusability to security and privacy [3–5]. Furthermore, organizations are not only

being able to transfer their applications to cloud but also they can migrate data or

other business elements as well. As a result, migration to cloud is done to achieve

the following:

• Business requirements: to consolidate services efficiently, save management and

development cost, scale applications dynamically, attract more customers, do

rapid upgrades, and specify high-ranked applications to be moved to cloud at

reduced cost

• Security requirements: to protect data from disaster, store backups,

virtualization, policy examination, service level agreements, compliance poli-

cies, access control and auditability

• Technology requirements: to specify cloud services (e.g., SaaS, PaaS, IaaS),

estimate required storage, determine and optimize performance, ensure business

availability, and use variety of software and storage

9 An Approach to Migrate and Manage Software: Cloud-Based Requirements. . . 211

9.4 Challenges and Research Questions

Many organizations are trying to migrate their applications to a cloud infrastructure

to increase resources, save cost, enhance performance, optimize applications, do

better application management, rapidly process massive amounts of data, new

technology and many more privileges provided by cloud. However, migrating

applications to cloud pose some challenges and questions that are required to be

tackled. From conducting literature review on current approaches [6–11], the

following represents the research questions accompanied with applications migra-

tion and management:

• What are the main factors that business community should consider before

moving to cloud?

• What are the criteria that business community must take into consideration to

choose suitable cloud service?

• Regarding business and technical priority, how do business communities iden-

tify and rank applications and services that are best suited for moving to a cloud?

• What are the applications that are best suited for cloud deployment models?

• Which parts of the application will be migrated and which ones will locally

reside on premises?

• What are the risks that may occur before and after migration?

• Is there any requirement for application modifications to migrate to cloud, and if

there are, what are they?

• How will the applications benefit from migration?

• Which payment methods are best suited the migrated application?

• How will business community assess the tradeoff between costs and perfor-

mance of the applications on local machines and on cloud environment?

• What kind of facilities do cloud providers offer, and which one will achieve the

optimal process for the migration of application?

• How much effort is required to migrate applications to cloud?

• How do business communities secure their most important services once they

are transferred to cloud?

• What are the security mechanisms that cloud providers support to secure,

recover, retrieve, manage, and control businesses data?

• Can businesses reuse their existing resource management and configuration

tools?

• How can businesses manage their contracts for network, software, and

hardware?

• How can businesses allocate and de-allocate their resources on the cloud?

• Where do the applications get stored to?

• How can cloud customers get rid of provider lock-in?

• How can the dependencies of applications be specified before migration?

• Does a cloud provider support seamless integration with the communicated

applications?

• Is there compatibility between organization, cloud’s hardware and software?

212 A. Samir

• Does a cloud provider support simple customization and configuration tools?

• Does a cloud provider service level agreement include and document concerns

about risk, security, privacy, policy, and performance?

• Does a provider offer application availability online and offline 24/7?

• Does a provider support multiple virtual machine images?

• Does a cloud provider allow seamless interface and wide access to the migrated

application either from desktop computers, mobiles, or tablets?

Consequently, there are some concerns and obstacles that need to be considered

before migrating applications to the cloud, e.g.:

• Provider lock-in: standards and technology should be considered before moving

to a specific provider. Once the application is being hosted on the provider’s site,
it is hard to switch to another provider because the services, tools, and legislative

may differ completely.

• Integration: it ensures seamless communications among integrated applications.

• Security: security plan should be wisely considered before moving customers’
data to cloud such as the type of provided security, access control, authentica-

tion, recovery plan, knowing laws, regulation, data location and service level

agreements, etc.

• Availability: it ensures that application, customer support, and technical aid are

available 24/7. It addresses the mean time to repair, and the mean time between

failures.

• Performance: the ability to know about server performance, determine type of

hardware, identify compatibility, check services performance before and after

migrating to cloud, define service level agreement, and know network band-

width, number of users, buffer capacity, and the location where data will be

stored.

• Payment plan: it specifies the type of payment method to avoid wasting

resources.

• Portability: the ability of application to run on different platforms without facing

compatibility challenges.

• Budget: it estimates the cost of migrating applications or data to cloud in order to

check if the migration is worth it or not.

As depicted in this section, understanding and mitigating all of the previous

questions and challenges will permit business communities to successfully migrate

and manage their applications on cloud environment successfully without any

failures.

9.5 Related Work

Cloud migration refers to the process of transferring an application as a whole or

partially to cloud. However, after analyzing current works [12–23], the literature

studies show that current organizations don’t have a clear systematic approach or an

9 An Approach to Migrate and Manage Software: Cloud-Based Requirements. . . 213

assessment plan which allows them to efficiently migrate and manage their appli-

cations, data, or services in cloud. In addition, current studies partially addressed

the previous mentioned goals and challenges as shown in Sect. 9.4. Furthermore,

current literature did not mention the high priority requirements of cloud migration

and management. The following paragraphs explore recent approaches that targeted

applications migration and management from various challenges and questions

perspectives.

Lee and Kim [12] presented approaches for providing a high cloud services

scalability. The authors presented two effective scalability assuring schemes which

are service replication and migration. They proposed a set of steps to ensure service

scalability management. However, only scalability have been considered in the

application migration, and the rest of service qualities such as availability, perfor-

mance, and security haven’t been included. Armbrust et al. [13] only specified that

elasticity is the significant feature in cloud as it transfers resources cost and

management responsibility to provider. Falatah and Batarfi [14] introduced some

considerations that solved scalability. Chieu et al. [15] presented a case study on the

scalability and performance of web applications in a cloud. They introduced a

scaling algorithm for automated provisioning of virtual resources.

Babar and Chauhan [16] studied the Hackystat framework to identify the steps to

be considered before migrating applications to the cloud environment. The authors

identified four key requirements for cloud migration and analyzed those require-

ments to gain an understanding of the changes that need to be made.

Palanisamy [17] specified ten key risks that should be considered in cloud; some

of these risks are reducing governance, specifying data location, handling data

ownership, and decreased monitoring. Sommerville et al. [18] demonstrated the

potential benefits and risks associated with the migration of an IT system. They only

focused on the cost, maintenance, and support. In addition, the authors mentioned

the risks and benefits that organization might face during the migration to cloud.

Thomas et al. [19] determined the fundamental risks that may occur from sharing

infrastructure between mutual users through virtualization within a third-party,

cloud service, and they proposed two ways to mitigate these risks. Ward et al.

[20] discussed the impact of migration on cost and risks, and they provided an

automated framework for seamless migration to cloud.

Akoramurthy and Priyaradhikadevi [21] analyzed both the migration path, the

user’s perspective, and the current tools of migration through proposing architec-

ture that includes migration plan, recovery and consistency, transformation, and

development. Edmonds et al. [22] proposed an open framework to relocate cloud

services for cloud service developers and operators. Frey et al. [23] presented a

simulation-based genetic algorithm that enhances cloud deployment options for

supporting software cloud migration.

214 A. Samir

9.6 The Proposed Approach

Organizations need to assess their current applications before migrating them to

cloud. The software migration processes must be applied correctly to get a better

result in the form of a higher-quality software, more customer recruitment, satis-

faction, and trust leading to more future revenues.

As depicted on the literature review, some researches provided framework,

steps, or approaches to simplify migration; others conducted analysis as a guide

process for migration. As a result, the high priority requirements of migration and

management will be specified to aid the organizations to assess their current

situation before migrating to cloud. In addition, CMMI will be modified to improve

organizations knowledge to migrate their applications based on a well-planned and

an understood strategy.

9.6.1 Migration and Management Requirements

This section provides high priority requirements of cloud migration and manage-

ment which the vendor and provider should consider before transferring their

applications and/or data to cloud services. The following requirements are proposed

according to the literature study that has been conducted on 72 studies.

9.6.1.1 Security Requirements

Security is considered one of the most important and critical concerns for cloud

computing migration and management. There are many requirements to achieve a

high securable migration and management. These requirements are authentication

(data, devices, users), authorization, access control, security auditing, code

reviewing, malware detection, access log information, managing accounts, privacy,

policy, allocate, de-allocate, encryption, harden of defensive methods, governance,

threat management, service level agreement, security provisions, network security,

data security, customization, configuration, application integration, etc.

9.6.1.2 Quality Requirements

Quality requirements play an important role in ensuring application and data:

availability, scalability, reliability, fault tolerance, interoperability, adaptability,

usability, reusability, flexibility, customizability, configurability, upgradability,

agility, elasticity, cost-efficiency, mean time to repair, and mean time between

failure and performance.

9 An Approach to Migrate and Manage Software: Cloud-Based Requirements. . . 215

9.6.1.3 Operational and Technical Requirements

The following requirements are considered as the most crucial operational and

technical aspects of migration and management: performance, low cost, deploy-

ment cost, centralized reporting, monitoring, virtualization management, customi-

zation, configuration, quality assurance and control, data and business processes,

design requirements, availability, maintenance, interoperability, upgrades, capacity

planning, data and application management, usage monitoring, billing methods and

flexibility, service level agreement management, provisioning, load balancing,

auditing tools reporting, testing, capacity planning, storage and processing control,

seamless bug fixes and upgrades, patch management and process management,

disaster recovery, backup, kind of management and monitoring tool, simple inter-

face design, multitenancy, seamless integration, technical support, Cloudonomics,

third party engagement, provider lock-in flexibility and transferability, scalability

and redundancy capabilities, refactoring, etc.

9.6.1.4 Technology and Implementation Requirements

Before migrating applications, data, or services to cloud, there are technological

aspects that should be specified. For example, application technology compatibility,

interoperability, type and capacity of storage, kind of management and monitoring

tools, suitable type of cloud services, specify the most proper cloud deployment,

dedicated servers or virtual machine environment, test plan, performance, specify

the priority of application, data, and services that are needed to be migrated to cloud

first and which ones will reside locally on-premises, seamless integration, software

and hardware optimization, fame of provider, software licensing, service level

agreement, application portability, scalability, cost, and pricing model.

9.6.2 Enhancement Process

In the software industry, Capability Maturity Model Integration (CMMI) which is a

process reference model is often used for guiding organizations to achieve software

development. It refers to key process areas (KPAs) which identifies a cluster of

related activities that, when performed collectively, achieve a set of goals. Each

KPA has goals (Gs) which must be achieved, and each G contains several practices

(Ps) for achieving the goal. A process area is satisfied when organization processes

cover all the goals and practices for that process area. For example, Fig. 9.1 depicts

a specific goal and its related specific practices for the Project Planning process area

[24]. Thus, referring to the following figure, if the organization covers G1 and its

P1.i of the project plan process area, then the project planning area is being

achieved by organization.

216 A. Samir

The CMMI process areas can be grouped into four categories. Figure 9.2 depicts

the interactions and links between them regardless of their defined level. The

CMMI four categories are:

• Process management category

• Project management category

• Engineering category

• Support category

Each category contains a set of key process areas with their goals and practices.

CMMI has five levels as shown in Fig. 9.3. Each process area is fallen into a specific

CMMI level.

For example, CMMI level 2 contains the following key process areas [25]:

• Requirements management

• Project planning

• Project monitoring and control

• Supplier Agreement Management

G 1 Establish Estimates
P 1.1 Estimate the Scope of the Project
P 1.2 Establish Work Product and Task Attributes
P 1.3 Define Project Life Cycle

Fig. 9.1. Project Planning

process area goal and

practices

Engineering

Support CMMI
Process Areas

Requirements Management (REQM)

Configuration Management (CM)

Project Monitoring and Control (PMC)

Organizational Process Definition
(OPD)

Organizational Process Focus (OPF)

Organizational Process Performance (OPP)

Organizational Training (OT)

Organizational Innovation and Deployment
(OID)

Project Planning (PP)

Quantitative Project Management
(QPM)

Supplier Agreement Management
(SAM)

Risk Management (RSKM)

Project Management

Process Management

Casual Analysis and Resolution
(CAR)

Decision Analysis and Resolution
(DAR)

Measurement and Analysis (MA)

Process and Product Quality
Assurance (PPQA)

Requirements Development (RD)

Product Integration (PI)

Validation (Val)

Technical Solution (TS)

Verification (Ver)

Fig. 9.2. CMMI process areas

9 An Approach to Migrate and Manage Software: Cloud-Based Requirements. . . 217

• Measurement and analysis

• Process and product quality assurance

• Configuration management

The KPAs can be considered as the most vital requirement for achieving a

maturity level. Thus, to achieve a level 2 maturity, the KPAs for that level must

be satisfied. The migration and management of applications to cloud requires an

additional task to assess current applications, data, or services of organization

before transferring them on cloud environment. This additional task is performing

cloud migration and management assessment (CMMA) at the managed level
(CMMI level2). CMMAwill help to check and evaluate the on-premise applications

readiness and applicability for cloud infrastructure. In addition, it will aid in

determining many requirements and answering multiple questions for the applica-

tions, services, and data being transferred on a cloud.

To assess applications, service, and data before moving to cloud, the enhance-

ment process of cloud migration and management (CMMA) will be added to

CMMI level 2 as a process area for the following reasons:

• All organization goals are achieved, requirements are managed, and all pro-

cesses are planned, performed, measured, and controlled.

• Projects are performed and managed according to their documented plans

because of the existence of retained practices.

• Requirements, processes, applications, and services are managed.

• Commitments are established and revised among relevant stakeholders, and

products are reviewed and controlled with stakeholders.

• Costs are optimized and processes are improved.

Figure 9.4 illustrates and explains the main functionality of the modified CMMI

level 2 process areas after adding the CMMA to the current 6 KPAs of CMMI level

2. Furthermore, Table 9.1 demonstrates the goals and practices of CMMA process

area.

As depicted in Table 9.1, each goal represents a set of practices (requirements)

that should be checked to satisfy the goal. Achieving the four goals of CMMA

Initial

Managed

Defined

Quantitatively Managed

Optimizing

Process poorly controlled and unpredictable

Project process is reactive and characterized

Organization process is proactive and characterized

Organization process is proactive and characterized

Process Improvement

1

2

3

4

5

Fig. 9.3. CMMI levels

218 A. Samir

allows CMMA process area to be fulfilled by organizations. The following explains

each practice of the CMMA process areas:

Assess Security

• Control access.

– Specify the type of authentication and authorization.

– Create access log file.

– Manage users’ accounts.

• Check defensive methods.

– Specify defensive methods against attacks.

– Create backups.

– Duplicate data and distribute them.

– Identify a recovery method.

– Monitor and manage threats.

– Use malware detection.

• Ensure seamless customization and configuration.

– Provide tools to support customization and configuration.

– Support flexible and simple user interface.

– Support multitenant.

Fig. 9.4 Modified CMMI level 2

9 An Approach to Migrate and Manage Software: Cloud-Based Requirements. . . 219

• Ensure application integration.

– Allow on-premises applications to easily communicate with cloud

applications.

– Manage relationship dependency among applications.

• Document service level agreement.

– Document the type of security services and the required standard which is

provided by the service provider.

Table 9.1 CMMA process area goals and practices

Cloud migration and management assessment (CMMA) goals and practices

Assess security Control access

Check defensive methods

Ensure seamless customization and

configuration

Ensure application integration

Document service level agreement

Specify security auditing

Ensure policy and privacy

Ensure quality Ensure availability

Document service level agreement

Estimate performance

Improve cost

Assess modification and maintainability

Manage multitenancy

Control scalability and elasticity

Manage operational and technical

requirements

Assess operation and management concerns

Document service level agreement

Assess operational costs

Ensure flexibility of operations

Identify recovery plan

Specify hardware and software requirements

Guarantee technical support

Encourage simplicity and flexibility

Specify test plan

Technology and implementation

requirements

Specify application requirements

Specify application, data, service priority

Identify optimization plan

Document service level agreement

Specify cloud appropriateness

Specify software license

Specify cost

Choose payment method

220 A. Samir

• Specify security auditing.

– Check whether an application meet both the legal expectations of specified

data protection and the organization’s standards of achieving financial

success against different security threats.

• Ensure policy and privacy.

– Use encryption to protect data.

– Specify strong authentication.

– Identify legality and regulatory issues.

– Robust separation between data.

– Secure data in transit.

Ensure Quality

• Ensure availability:

– Know mean time between failures.

– Specify mean time to repair.

– Ensure availability of application services.

– Ensure the existence of technical support 24/7.

• Document service level agreement:

– Document the availability of services (e.g., guarantees that the service will

be available 99.99% during work days, 99.9% for nights/weekends).

• Estimate performance:

– Ensure agility of applications.

– Seamless customization and configuration that doesn’t have a negative

effect on performance.

• Improve cost:

– Cloud’s high-quality services shrink the spending on associated hardware,
software, or licensing fees.

• Assess modification and maintainability:

– Support reusability within applications.

– Ensure that upgrades are not violating existing releases.

– Allow application to run on different environments.

– Allow the application to adapt to changes in requirements.

– Adopt a good fault tolerance technique.

• Manage multitenancy:

– Support multitenant in cloud applications.

– Manage customers’ accounts and separate their data efficiently.

9 An Approach to Migrate and Manage Software: Cloud-Based Requirements. . . 221

• Control scalability and elasticity:

– Support auto-scaling capacity.

– Estimate cost per unit.

– Adapt to workload changes.

Manage Operational and Technical Requirements

• Assess operation and management concerns.

– Improve hardware and software performance.

– Provide a suitable payment method for cloud services.

– Support centralized reporting, virtualization process, and management.

– Monitor hardware and software usage.

– Allow refactoring, customization, and configuration.

• Document service level agreement.

– Document the capability of provided services such as capacity, speed,

performance, network, bandwidth, size, etc.

• Assess operational costs.

– Estimate economics and financial requirements.

– Specify a suitable payment method.

• Ensure flexibility of operations.

– Support multitenancy.

• Identify recovery plan.

– Support bug fixes and upgrades.

– Ensure disaster recovery, backup. and data restoring.

• Specify hardware and software requirements.

– Support scalability and redundancy capabilities.

• Guarantee technical support.

– Availability of services.

• Encourage simplicity and flexibility.

– Ensure seamless provider transferability.

– Provide seamless integration between communicated applications.

– Simple interface design.

• Specify test plan.

– Estimate application performance before and after migration.

– Ensure that load testing has been performed well, and all applications and

operations are running without any errors in the new environment.

222 A. Samir

Technology and Implementation Requirements

• Specify application requirements.

– Ensure compatibility, interoperability, integration, type, and capacity of

hardware and software.

– Specify suitable management and monitoring tools.

– Identify location of the data (e.g., consistent with local legislation).

• Specify application, data, and service priority.

– Specify which application, data, or service will reside on-premise and

which one will be migrated to cloud.

– Rank the infrastructures, platforms, and services which are planned to be

moved to cloud.

• Identify optimization plan.

– Check whether the application and hardware that are intended to be

migrated have been fully optimized for cloud.

– Explore the sensibility of optimizing current hardware infrastructure

before moving to cloud.

• Document service level agreement.

– Allow application and data portability.

– Document all implementation and technology requirements.

• Specify cloud appropriateness.

– Which cloud type (private, public, or hybrid) is best suited for organiza-

tions’ needs. If the application has a sensitive data, then a private cloud is

the best choice.

– Specify whether dedicated servers or virtual machine environment are

addressing organization requirements.

– Know the reputation of provider.

• Specify software license.

– Specify a licensing model.

– Ensure that software license is compatible with cloud.

– Ensure that software licenses have no restrictions on the maintained

backup copies.

• Specify cost.

– Estimate the cost of the used hardware and software.

• Choose payment method.

– Specify a suitable pricing model.

Tables 9.2, 9.3, 9.4 and 9.5 concisely explain each practice of CMMA.

9 An Approach to Migrate and Manage Software: Cloud-Based Requirements. . . 223

9.7 Conclusions and Future Work

Cloud computing is on-demand access to a shared pool of computing resources. It
helps consumers to reduce costs, decrease management responsibilities, and

increase business agility.

This chapter discusses cloud migration and management of current approaches,

benefits, concepts, and challenges. In addition, the high priority requirements for

migrating and managing applications into cloud are provided and categorized into

four major requirements. CMMI has been chosen to aid providers, and vendors

assess the maturity of their organizations and applications to be migrated to cloud

infrastructure. CMMI level 2 has been selected as organization goals, requirements,

and processes are achieved, planned, managed, measured, and controlled. The

process of enhancing CMMI level 2 is occurred through identifying four steps.

Table 9.2 CMMA practices

CMMA

goals CMMA practices Explanation

Ensure

quality

Ensure availability Support application availability

Document service level

agreement

Guarantee the availability of application and document it

within the contract

Estimate performance Ensure a seamless application performance

Improve cost Provide high-cloud quality services to reduce hardware

and software cost

Assess modification and

maintainability

Ensure that the application enhances maintainability and

simply adapts to requirement changes

Manage multitenancy Manage and separate users data

Control scalability and

elasticity

Manage application to scale up or down based on different

needs

Table 9.3 CMMA practices

CMMA

goals CMMA practices Explanation

Assess

security

Control access Control and restrict users access

Check defensive methods Specify preservative methods against attacks and

threats

Ensure seamless customization

and configuration

Support simple and multitenant customization

and configuration tool

Ensure application integration Allow simple integration among on-premise

applications and cloud

Document service level

agreement

A contract that includes the type of provided

services by providers

Specify security auditing Ensure that the application achieves the organi-

zation expected standards of protection

Ensure policy and privacy Specify policy and privacy standard for the

application

224 A. Samir

Table 9.4 CMMA practices

CMMA goals CMMA practices Explanation

Manage operational

and technical

requirements

Assess operation and

management

concerns

Evaluate hardware and software performance,

manage refactoring, provide a suitable pay-

ment method and manage virtual machine

images

Document service

level agreement

A contract should include and explicitly

mention services capability

Assess operational

costs

Specify financial and economics different

requirements

Ensure flexibility of

operations

Handle different user requirements and pro-

vide a clear customization and configuration

methods to fit each user

Identify recovery

plan

Specify a recovery plan and do backups to

save users data

Specify hardware and

software

requirements

Support hardware scalability and make mul-

tiple copies of data to be protected

Guarantee technical

support

Provide technical support 24/7, live chat, data

backup and expert people to support users.

Describe approach to provide technical sup-

port to enable Agency migrate to cloud ser-

vices including provisioning capabilities,

accounting capabilities and billing capabilities

Encourage simplicity

and flexibility

Provide simple and flexible interface for soft-

wares to be easily integrated

Specify test plan Test application before and after the migration

to check whether it achieves the expected

requirements

Table 9.5 CMMA practices

CMMA goals CMMA practices Explanation

Technology and

implementation

requirements

Specify application

requirements

Achieve compatible, interoperable, integrated

application and identify the location of data

backup

Specify application,

data, service priority

Specify and rank the priority of existing appli-

cations, services or data to be migrated to cloud

Identify optimiza-

tion plan

Specify optimization steps for software before

migrating to cloud

Document service

level agreement

A contract that documents technology

requirements which is provided by provider

Specify cloud

appropriateness

Specify the necessity of migration to cloud

Specify software

license

Assess the compatibility of software license

before migrating to cloud

Specify cost Estimate the total cost of the needed cloud

hardware and software before migrating

Choose payment

method

Specify a pricing model based on the required

performance

9 An Approach to Migrate and Manage Software: Cloud-Based Requirements. . . 225

First, the challenges of cloud migration and management are identified. Second, the

research questions of cloud migration and management are elicited from the existed

literature studies. Third, the most important requirements are grouped with a newly

added key process area under the name of Cloud Migration and Management

Assessment (CMMA). Fourth, the goals and practices for CMMA process area

are proposed and identified.

To conclude, the aim of this chapter is to aid providers and vendors migrating

and managing their applications without facing future failures. The proposed

approach allows providers and vendors to achieve a complete migration process

with less migration cost and with high quality. This work can be extended through

modeling relationships and dependencies between goals and practices. Evaluat-

ing the proposed approach to depict its effectiveness in managing and migrating

applications to cloud.

References

1. Cearley DW (2010) Cloud computing: key initiative overview. Gartner Report linkedin.com/

pulse/20141117105234-958990-25-definitions-of-cloud-computing

2. CliQr (2015) CliQr application migration and management. Gartner report. http://cdn2.

hubspot.net/hub/194983/file-2528709477-pdf/docs/Application-Migration-and-Management-

1214-WEB.pdf

3. Cisco (2010) Planning the migration of enterprise applications to the cloud. Cisco Report

https://www.cisco.com/en/US/services/ps2961/ps10364/ps10370/ps11104/Migration_of_

Enterprise_Apps_to_Cloud_White_Paper.pdf

4. Cloud Standards Customer Council (2013) Migrating applications to public cloud services:

roadmap for success. Cloud-Council Report. http://www.cloud-council.org/deliverables/

CSCC-Migrating-Applications-to-Public-Cloud-Services-Roadmap-for-Success.pdf

5. Vashishtha H et al. (2012) Migrating a legacy web-based document-analysis application to

Hadoop and HBase: an experience report.Migrating legacy applications: challenges in service
oriented architecture and cloud computing environments. IGI Global. 226–247

6. Brijesh D (2010) Assess enterprise applications for cloud migration. IBM Report. http://www.

ibm.com/developerworks/cloud/library/cl-assessport/

7. Scott B (2014) Your guide for moving applications to cloud. EMC2 Report https://infocus.

emc.com/scott-bils/your-guide-for-moving-applications-to-cloud/

8. Caroline D (2015) The cloud migration checklist: what to consider. Computer weekly report

http://www.computerweekly.com/blog/Ahead-in-the-Clouds/The-cloud-migration-checklist-

What-to-consider

9. Paliwal S (2014) Performance challenges in cloud computing.

10. Shrikant DB (2013) Cloud migration benefits and its challenges issue. Int J Comput Eng

1(8):40–45

11. Zia A, Khan MN (2012) Identifying key challenges in performance issues in cloud computing.

Int J Mod Educ Comput Sci 4(10):59

12. Lee JY, Kim SD (2010) Software approaches to assuring high scalability in cloud computing.

Proc 7th IEEE Int Conf, Shanghai China, 2010

13. Fox A et al. (2009) Above the clouds: a Berkeley view of cloud computing. Dept. Electrical

Eng. and Computer Sciences, University of California, Berkeley, Rep. UCB/EECS. 28(13)

14. Falatah M, Batarfi OA (2014) Cloud scalability considerations. Int J Comp Sci Eng Surv

5(4):37

226 A. Samir

http://linkedin.com/pulse/20141117105234-958990-25-definitions-of-cloud-computing
http://linkedin.com/pulse/20141117105234-958990-25-definitions-of-cloud-computing
http://cdn2.hubspot.net/hub/194983/file-2528709477-pdf/docs/Application-Migration-and-Management-1214-WEB.pdf
http://cdn2.hubspot.net/hub/194983/file-2528709477-pdf/docs/Application-Migration-and-Management-1214-WEB.pdf
http://cdn2.hubspot.net/hub/194983/file-2528709477-pdf/docs/Application-Migration-and-Management-1214-WEB.pdf
https://www.cisco.com/en/US/services/ps2961/ps10364/ps10370/ps11104/Migration_of_Enterprise_Apps_to_Cloud_White_Paper.pdf
https://www.cisco.com/en/US/services/ps2961/ps10364/ps10370/ps11104/Migration_of_Enterprise_Apps_to_Cloud_White_Paper.pdf
http://www.cloud-council.org/deliverables/CSCC-Migrating-Applications-to-Public-Cloud-Services-Roadmap-for-Success.pdf
http://www.cloud-council.org/deliverables/CSCC-Migrating-Applications-to-Public-Cloud-Services-Roadmap-for-Success.pdf
http://www.ibm.com/developerworks/cloud/library/cl-assessport/
http://www.ibm.com/developerworks/cloud/library/cl-assessport/
https://infocus.emc.com/scott-bils/your-guide-for-moving-applications-to-cloud/
https://infocus.emc.com/scott-bils/your-guide-for-moving-applications-to-cloud/
http://www.computerweekly.com/blog/Ahead-in-the-Clouds/The-cloud-migration-checklist-What-to-consider
http://www.computerweekly.com/blog/Ahead-in-the-Clouds/The-cloud-migration-checklist-What-to-consider

15. Chieu TC et al (2011) Scalability and performance of web applications in a compute cloud.

Proc 8th IEEE Int Conf, Beijing China, 2011

16. Babar MA, Chauhan MA (2011) A tale of migration to cloud computing for sharing experi-

ences and observations. Proc 2nd ACM Int Workshop on SECLOUD. 2011

17. Balaji P (2012) Top 10 risks in the cloud. Coalfire report https://www.coalfire.com/medialib/

assets/PDFs/Perspectives/Coalfire-Top-10-Risks-in-the-Cloud.pdf

18. Sommerville I et al (2010) Cloud migration: a case study of migrating an enterprise IT system

to IaaS. Proc 3rd IEEE Int Conf, Miami USA. 2010

19. Ristenpart T et al (2009) Hey, you, get off of my cloud: exploring information leakage in third-

party compute clouds. Proc 16th ACM Int Conf, Chicago USA 2009

20. Ward C et al (2010) Workload migration into clouds challenges, experiences, opportunities.

Proc 3rd IEEE Int Conf, Miami USA. 2010

21. Akoramurthy B, Priyaradhikadevi T (2015) A quantitative study on migration path from

legacy system to contemporary systems. Int J Res Comp Appl Robot 3(3):9

22. Edmonds A et al (2013) FluidCloud: an open framework for relocation of cloud services. Proc

5th USENIX workshop on hot topics in cloud computing. 2013

23. Frey S et al (2013) Search-based genetic optimization for deployment and reconfiguration of

software in the cloud. Proc 13th IEEE Int Conf, Piscataway USA. 2013

24. CMMI. Key process areas http://www.tutorialspoint.com/cmmi/cmmi-process-areas.htm,

Accessed 6 July 2016

25. Software Engineering Institute. http://sei.cmu.edu/cmmi/. Accessed 6 July 2016

9 An Approach to Migrate and Manage Software: Cloud-Based Requirements. . . 227

https://www.coalfire.com/medialib/assets/PDFs/Perspectives/Coalfire-Top-10-Risks-in-the-Cloud.pdf
https://www.coalfire.com/medialib/assets/PDFs/Perspectives/Coalfire-Top-10-Risks-in-the-Cloud.pdf
http://www.tutorialspoint.com/cmmi/cmmi-process-areas.htm
http://sei.cmu.edu/cmmi/

Chapter 10

A Novel Approach to Modelling Distributed
Systems: Using Large-Scale Multi-agent
Systems

Bogdan Okreša Đurić

10.1 Why It Is Important to Consider Organisation

Recent developments introduced by the modern technologically advanced era have

led to increased use of virtual (software) agents as opposed to using real-life agents,

i.e. people in various scenarios. People have always been attracted to the idea of

organisation. Groups of people were formed ever since Homo sapiens, and our

ancestors, discovered benefits of socialisation, either in a planned manner or

motivated by a common need of some kind, e.g. shelter, defence and hunger.

Such organisations consisted of anything from only a couple of individuals

(e.g. ancestors of the modernHomo sapiens in search of fulfilment of the mentioned

needs) to as many as needed for a great army of the twentieth century.

Organisation applicable to the mentioned examples can be perceived as having

one main function – overcoming various limitations of individual agents [48, 62,

63]. These limitations have several aspects, e.g. temporal (one agent has temporally

limited availability), functional (some actions demand simultaneous effort, and an

individual agent may not be capable of offering such a functionality), etc. Speaking

of organisation amongst agents in a multi-agent system (MAS) implies a MAS

comprising intelligent agents that can interact with each other and the environment,

reason, act and react upon their perceived environment, communicate with each

other, observe changes in the system, etc. It has been a prevalent thought in

MAS-related studies that such agents can successfully serve as models of real-life

situations and real-life people. Likewise, it is considered that human organisations,

and principles of human organisation, can be successfully modelled using interac-

tive intelligent agents. Although modelling agents conforming to their real-life

B. Okreša Đurić (*)

Artificial Intelligence Laboratory, Faculty of Organization and Informatics, University of

Zagreb, Pavlinska 2, 42000 Varazdin, Croatia

e-mail: dokresa@foi.hr

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_10

229

mailto:dokresa@foi.hr

counterparts can be a tough goal to achieve, it is rewarding in the long run, since

various experiments can be conducted within lower budget capacity, shorter time

periods and with greatly increased reproducibility.

Organisation is not the only way to structurally model a system of agents.

Another popular way of structured interaction and functioning of a MAS is

swarm intelligence. While organisation model is derived directly from the well-

known and researched concept of human organisation, swarm implies close ties to

swarms of insects or similar forms of life. Each of these approaches to building

MAS (or even large-scale MAS (LSMAS)) presents their researchers with different

features of the resulting system and is thus more suitable for a specific application.

Organisational modelling on one hand is about defined structure in the system

followed by structured communication protocols in terms of hierarchy or possible

ways of communication flows. Furthermore, organisational ideas can be known by

individual agents directly, or they can be imposed on the given system, with agents

being aware of the enforced elements of organisation, or the included agents can be

ignorant of the system’s organisational constraints, etc. Swarm [18, 41], on the

other hand, is all about self-organisation and emerging organisation. Imagine a

swarm of bees [8], a school of fish [40] or a colony of ants – there is no specific

entity that would govern their behaviour, rather they act as part of a group which

benefits from their individual behaviour. Structure therefore emerges from the

group, based on performance of individual agents. The main difference, when

observing organisation, is in the way organisation elements are formed – starting

at the level of an individual agent (bottom-up), or from the level of the whole given

system (top-down).

Each of these approaches is beneficial to specific scenarios, depending on many

variables, including the type of environment of the modelled agents, the type of

agents and their abilities, the main goal of the system, etc. Therefore, an extremely

biased approach may not be the best way to model a system [13, 43]. Furthermore, it

is rather easy imagining an example where both approaches intertwine,

e.g. interaction of the swarm creates a certain organisation-like structure which is

propagated further and strengthened until the swarm, probably provoked by another

need of theirs, in a non-unison way, decides that organisational dynamics is in

order, and the structure changes, if only for a small amount.

Backed by a notable development of computer power in the past few decades,

rising popularity of agent-based structures and agent-aided distributed computing

can be attributed to the rising complexity of software problems and, for example,

the use of computing for conducting research on a global scale. From a different

perspective, agent-based distributed computing is very beneficial to, and benefits

from, the rising number of individual computer-imbued things a person can possess.

For smart cars, smart bicycles, smart phones, smart cups, smart homes and smart

cities, the potential for connecting all the existing pieces of software that are

capable of connecting to, for example, the Internet is obvious. It may be seen as

most advantageous to observe these pieces of software residing in many household

things as agents, and the Internet, or a local network comprising these agents, as a

MAS. Furthermore, it is argued that the efficiency of such systems is raised using

230 B. Okreša Đurić

structured organisation, imposed upon the system, since it benefits more from the

existent number of agents, their possibilities, and their focus on achieving a joint

goal [22, 25, 29].

The mentioned scenario forms a basis for the Internet of Things (IoT), or, in an

even more general case and of larger scale, the Internet of Everything (IoE). While

IoT is clearly concerned with things and objects that are able to interact and

cooperate with each other to reach their common goals [48], thus creating a rather

clear possibility of being abstracted as MAS, IoE covers a much wider domain

comprising people, processes, data and things working together to make appropri-

ate and beneficial connections, more so than ever before [48].

Examples of IoE or IoT paradigms are applicable to various domains. Recent

studies at the Artificial Intelligence Laboratory of Faculty of Organisation and

Informatics at the University of Zagreb (AI Lab @ FOI) studied smart cities and

agents in a massively multiplayer online role-playing game (MMORPG). When

thinking in terms of smart cities or MMORPGs as application domains of LSMAS,

it is favourable to think about organisation of included agents. Furthermore, it is

advantageous to import various features of a human organisation into a system of

agents.

Smart planning is a crucial element in planning and realisation of a project.

There are several modelling methods, the most popular of which may be the UML

notation, but only few are designed especially for MAS, let alone LSMAS.

Organisational modelling of an LSMAS may be considered as planning a system

of agents.

An organisational metamodel for modelling of LSMAS is being developed at the

aforementioned AI Lab. The general idea and goal of this research is to develop an

extensive model that would encompass several different organisational models and

structures (e.g. horizontal vs. vertical organisation). Such a model will utilise a

clear visual representation of the modelled concepts and will make it easier to plan

an LSMAS, since it will incorporate elements of various perspectives of

organisational modelling, e.g. organisational culture, strategy or organisational

change. Furthermore, it will be possible, when the model is finished, for the user

to generate a programming code skeleton, based on the built model.

The approach just described will make it possible for the user to build a model

where most of the elements of the future system are specified. This step of creating

an LSMAS is of great significance, wherefore the approach that favours change and

alteration is most welcome, and this metamodel will offer one such approach.

Visual design of a model will surely make it easier for the user to review the

built model and to incorporate changes identified when evaluating the model built.

Usefulness of code-generating part of the metamodel is obvious with respect to

definitions built in the model. Since the code-generating process is automated and

based on the built model, the outcome is bound to be represented by the said model

built by the user. The metamodel is envisioned as a rather abstract view of the

system though. Therefore, the generated computer code will represent only basics,

and the programmer is expected to fill in all the needed detail.

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 231

The role of an organisational (meta)model is therefore obvious in planning and

development stages of a distributed computing software project that relies on agents

and their interaction.

The rest of the chapter is represented as follows. The rest of this section contains

further details about MAS, emphasising roles of IoE and MMORPG and how they

are related to LSMAS. Some basic organisational elements observable, and bene-

ficial to, IoE and MMORPG will be noted as well. A brief overview of organisation

of MAS and, more specifically, LSMAS will be given in Sect. 10.2. Section 10.3

covers two distinct use cases for the proposed organisational metamodel, repercus-

sions of which, along with feedback, are discussed in Sect. 10.4. Brief overview and

guidelines for further research are covered in Sect. 10.5.

10.1.1 About the Internet of Everything and Massively
Multiplayer Online Games

It was mentioned earlier that, in their most basic form, an agent is a software entity

surrounded by an environment. An interactive intelligent agent can perceive this

environment of theirs and act upon it [45]. Such an agent can be considered a virtual

representation of a human in a group or a system.

Although multi-agent systems represent an area where a lot of research has been

done already, their larger counterpart, LSMAS, has had some research done only

recently. Probably the most well-known concepts where LSMAS may be applied

are the application areas of IoT [4, 55] and IoE. Even though IoT and IoE are used

almost synonymously, there is a slight difference between the two, as nicely put by

Cisco [36]:

In terms of phases or eras, Cisco believes that many organizations are currently experienc-
ing the Internet of Things (IoT), the networked connection of physical objects. As things add
capabilities like context awareness, increased processing power, and energy independence,
and as more people and new types of information are connected, IoT becomes an Internet of
Everything – a network of networks where billions or even trillions of connections create
unprecedented opportunities as well as new risks.

IoE seems to be the inevitable future of distributed computing and the core idea

of distributed systems. Furthermore, some indications of a novel concept of the

Internet of Agents appeared recently, e.g. [61]. A notable IoE area of application is

smart cities [51–53, 57]. When thinking about a city filled with agent-controlled

elements (e.g. cars, traffic lights, parking lots, buildings and homes, etc.), it may do

well to think about organisation features amongst all the included agents. As

opposed to swarming agents and emerging organisation traits based on behaviour

of agents, agents in a city would be demanded from and per se inclined to fulfil a

given task in an optimal amount of time, using the least resources and in the safest

way possible. Such a task undertaken by every of thousands of agents would greatly

benefit from features mirrored from human organisations, such as communication

232 B. Okreša Đurić

protocols, rules of conduct, and similar. IoE, abstracted by LSMAS in a way similar

to the one described may be applied to other domains, e.g. smart power grids, smart

health, smart transport, smart buildings, etc., where some of the elements may be

considered as sub-elements of, for example, smart cities.

IoE is a rapidly developing area that can be abstracted by LSMAS. Another

example of great interest is domain of massively multiplayer online games

(MMOGs). An MMOG is a computer game meant for a great number of players

simultaneously playing the game online, often engaged in interaction with each

other. MMORPG is a special kind of an MMOG that allows players to take control

of their avatar (in-game character of the player) and interact with usually vast

virtual worlds where many automated (nonplayer) characters and other players’
characters reside [49]. Such games represent proper LSMAS environments: there

are numerous agents (some controlled by players, most acting independently) with

many opportunities to interact (e.g. trading, combat, training, pillaging, coopera-

tion, communication, delegation, etc.) and a big world to explore (sometimes

consisting only of towns, areas and cities, but some expand to planets and solar

systems). In order to succeed, players often have to cooperate, i.e. join in smaller or

larger groups, where they have to exercise real-life-like interaction with others,

including choosing a leader, following orders or planning an attack. Such worlds

are obviously very interesting grounds for training and experimenting with agents

in an LSMAS.

10.2 Overview of Models for Organising Agents and State
of the Art

As mentioned by several studies, only some of which are [10, 25, 29, 31] imposing

organisation features on an LSMAS may bring more benefit to the system, than

using the agent-centred paradigm. Therefore, it is interesting to talk about

organising systems of agents. As mentioned earlier, copying elements of human

organisations and applying them to artificial agents is the prevalent method of

developing organisational features for systems of agents.

In this section an overview of organisational aspects meant for systems of agents

is followed by a modern view of organisational modelling, needed for modern

systems of large scale, as proposed in recent studies on LSMAS and the IoE.

10.2.1 Existing Models for Organisation of MAS

Organisational models and frameworks for organisational modelling of MAS have

usually concentrated on structural features of an organisation. Organisational struc-

ture, as a primary feature being modelled, is often accompanied by concepts used

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 233

for modelling functional aspects of an organisation and concepts which aid in

modelling agent interaction within a MAS. Other organisational features, such as

norms or the environment in which agents are situated, are rather scarce in the MAS

organisational models and frameworks developed to date.

This section covers an overview of some of the more popular means of model-

ling organisation of MAS, as shown in Table 10.1, along with their most significant

dimensions (features) as described by Coutinho et al. in [14].

Models mentioned in Table 10.1 are further described by their authors in their

respective papers. Some basic pieces of information about concepts used by each of

the stated models are laid out further in this chapter. Such an overview is an

introduction to perspectives of LSMAS organisational modelling.

AGR The agent/group/role model, or AGR model in short, was developed by

Ferber et al. [22] and is also known as Aalaadin model. The three basic concepts

included are meant for modelling individual agents, groups of agents and agent

roles. The concept of agent within AGR conforms to features of agents mentioned

earlier – it denotes individuals capable of interacting and communicating that can

range within both extremes of reactivity and intelligence. The main trait of these

agents, as the model is not concerned with their internal architecture, is that an

agent plays roles and belongs to groups. A group consists of many agents that share

a common interest or a characteristic. Thus, a group can be used for creating

organisational segments and functional or structural parts of an organisation.

TÆMS As a framework developed by Decker, presented in [16], originally

intended for modelling of complex computational tasks, Task Analysis, Environ-
ment Modelling, and Simulation framework can be used with MAS as well. The

most prominent feature of TÆMS related to MAS is layered description of envi-

ronments (not exclusively of the same meaning as environment in MAS). Closely

connected to concepts describing environment are concepts for statements about

tasks and task groups. Three layers described in [16] (objective, subjective and

generative) are defined as levels of environmental and task characteristics model. It

is interesting to note that TÆMS models an agent as a locus of belief and action.

Table 10.1 Models and frameworks for organising MAS and their respective dimensions,

according to the containing concepts, as described in [14]

Organisational model Dimensions

AGR Structure, interaction, agents

TÆMS Functions, processes, environment

MOISE+ Structure, functions, norms

ISLANDER Structure, norms, interaction

OperA Structure, functions, norms, interaction

AUML Structure, functions, interaction, environment

NOSHAPE MAS Structure, dynamics, agents

MACODO Structure, dynamics, agents

234 B. Okreša Đurić

MOISE+ Building on Model of Organisation for multI-agent SystEms (MOISE)

and Aalaadin, both organisation-centred models, MOISE+ comprises concepts for

structural, functional and deontic specification of organisation in a MAS. Although

direct modelling of agents is not possible, MOISE+ depends on modelling roles,

relations amongst them and groups. [30] Roles represent constraints individual

agents must follow when playing a specific role. Possible roles an agent can play

depend on the roles the given agent is playing already. Upon accepting to play a

role, the given individual agent is added to a group playing that specific role.

Another point of interest in MOISE+ is functional specification, wherein goals

are structured in plans and grouped in missions. It should be mentioned that

notation for sequential, parallel, and choice-based plans is present.

ISLANDER Seemingly situated slightly off of the centerpoint of MAS modelling,

ISLANDER is a language for textual specification of electronic institutions

[20]. Main parts of the language are used for specifying performative structure,

scenes that make up the said structure and normative rules. Scenes serve as meeting

points for agents communicating according to well-defined protocols. Roles again

represent specific constraints over individual agents, along with specifying their

possible actions (e.g. communication protocol). Normative rules set up agent

actions that have consequences of some gravity.

OperA This framework developed by Dignum presented in [17] is primarily

focused on describing system at a conceptual level. Therefore, the developed

concepts are mainly used to define structure and global behaviour of the model,

including, for example, organisational characteristics, while individual agents that

populate the said model are modelled separately and independently of their internal

design. Such a feature is achieved using three components: organisational model,

social model and interaction model. The organisational model encompasses con-

cepts of roles and interactions, the social model populates the defined organisational

structure with agents playing roles, and the interaction model is built using inter-

action between agents.

AUML During the year 2001, an effort was made, described by Van Dyke Parunak

and Odell in [19], in order to enrich Unified Modelling Language (UML) with

concepts useful for agent-based systems (i.e. MAS). Concepts that were identified

as most useful are swimlanes, class diagram, sequence diagram and activity graph.

Swimlanes were proposed as representation of groups of roles, along with role

instantiation. Class diagrams were used to define roles and their relationships,

similar to swimlanes enhanced by cardinality constraints. Sequence diagrams

were used to describe possible interaction amongst various agent roles. In the

end, interaction of groups and group-level dependencies, where these groups can

be modelled as agents, was shown using an activity graph.

NOSHAPEMAS The main purpose of this novel organisational model is to be the

most general one of those mentioned here. NOSHAPE recognises three levels of

abstraction: universe, world and organisation. Using concepts of holarchy and

hierarchy, Abbas [1, 2] thinks of agents as individuals or groups depending on

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 235

the perspective: bottom-up perspective sees a group, while top-down perspective is

concerned with agents as individuals. Therefore, levels of abstraction consist of

several individuals of lower level abstractions (e.g. a universe comprises an infinite

number of worlds). Each of these agents is situated in an environment and can

interact with each other. Naturally, the concept of roles is existent as well. An

interesting observation is static roles, such as Global Supervisor and Local Super-

visors – roles that are concerned with organisational structure or organisational

behaviour.

MACODO This organisational model used for describing dynamic organisations

is a part of an integrated approach called Middleware Architecture for Context-
driven Dynamic agent Organisations (MACODO) [58, 59]. The main feature of

this model is that agents are modelled separated from their life cycle, thus making it

easier to understand, and model, how changes in the system, or changes in the

environment, affect dynamic organisations, i.e. agents. Agents are uniquely iden-

tified within the system and have their capabilities grouped into sets called roles.

This brief overview of some of the better-known organisational models or

framework indicates that said models, as shown in Table 10.1, usually comprise

concepts describing organisational structure of a system of agents (e.g. groups of

agents), interaction of agents (e.g. communication protocols), normative restric-

tions (e.g. norms in context of constraints over agents and their capabilities or rules

of conduct), functional features of an organisation (e.g. capabilities of agents), etc.

All the mentioned models, except the most recent one, NOSHAPE MAS, are

concerned with MAS in general, without mentioning LSMAS in particular. Only

NOSHAPE MAS mentions several levels of abstraction and thus potential for a

large-scale organisation.

10.2.2 Recent Advancements in LSMAS Organisational
Models

As was mentioned earlier in this chapter, multi-agent systems of large scale have

been recently shown as applied to the Internet of Things, or the Internet of

Everything. One such example is coming from the medical area, specifically

distributed worldwide healthcare applications, as described by Bui and Zorzi in

[11]. The mentioned authors strive to create a communication framework for agents

included in the system. This permits argument about communication methods of

agents within LSMAS and requirements of that particular element of organisation.

When speaking of distributed systems consisting of autonomous agents, Scheutz

noted in his 2010 research [50] that MAS did not have enough flexibility at the time,

nor were they supportive enough, for sophisticated large-scale intelligence appli-

cations. The solution the mentioned author proposed was in synergy of MAS and

system of single agents.

236 B. Okreša Đurić

A rather long time ago in context of LSMAS, in 2002, McCauley and Franklin

described an LSMAS used in US navy personnel distribution [35]. The described

system looked after the needs of US navy entities taking care of, for example, their

needs, state of the system, scheduled personnel changes, etc. Three main classes of

agents existed: sailor agents, command agents and navy agents. Most of the

communication and interaction took place between sailor and command agents

(they negotiate available positions, sailor interests, etc.), while the navy agent acts

as an overseer.

On the other side, and published more recently, research was done by Schatten

that takes into account the interdisciplinary potential of LSMAS research [46]. The

mentioned author uses complex analytical method (cro. kompleksna analitička

metoda, KAM) to conduct self-organisation in MAS. In general, KAM is used to

analyse organisations and propose organisational model that is new and optimised.

Using KAM, and adapting it to MAS, is enhanced using the fractal principle

(e.g. every agent is considered an organisational unit, but a group of agents that

collaborate and have a common goal are considered an organisational unit as well).

Such an approach is rather similar to ideas of holons and holarchy [3].

Another proposal intended to create an easier way to work with agents in

LSMAS is described by Boulaire et al. in [9]. The mentioned authors propose an

approach of dynamic agent composition that is intended to break agents into atomic

units (i.e. parts) that together form a complete agent, and the whole system, and are

combined at runtime. The three entities that form an agent are an asset, behaviours

and data. This novel approach to building agent-based models (ABMs) aims to

extend ABMs with underlying networked structure, thus allowing users to develop

new elements of a system and add them to an existing system, without the need to

access or modify previously written code.

Further research done by Schatten as elaborated in [47] is even more pertinent to

large scale of MAS, and foundations are set for an ontology comprising concepts of

organisational modelling applicable to the domain of LSMAS. This approach, of

creating an initial ontology for modelling complex systems, is deemed necessary by

the mentioned author, since it would allow for definition of formal semantics of the

modelled systems. Furthermore, some conceptual foundations are laid for an

LSMAS framework.

This research done by Schatten [47] provides several perspectives of

organisational modelling that are recognised as crucial in future development of

LSMAS, i.e. organisational models of LSMAS. Some of the concepts of such an

ontology of organisational design methods are detailed in the chapter as well. The

said perspectives are defined by Schatten [47] as follows:

• Organisational structure defines the decision and information flows of an

organisation.

• Organisational culture defines important intangible aspects of an organisation

including knowledge, norms, reward systems, language and similar.

• Strategy defines the long-term objectives of an organisation, action plans for

their realisation as well as tools on how to measure success.

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 237

• Processes define the activities and procedures of an organisation.

• Individual agents define the most important asset of any organisation – the

individuals actually performing the work.

• Organisational dynamics define organisational changes including reorganisation

of any of the above-mentioned components.

• Context and interorganisational aspects define organisational behaviour towards

its environment including strategic alliances, joint ventures, mergers, splits,

spinouts and similar.

Some of the most recent studies [5–7, 15, 21, 24, 26–28, 32, 34, 36, 42, 44, 54,

56, 60] provide further incentive to think of research on systems of agents, espe-

cially those of large scale, as important.

A clear direction of thought is recognisable in some of the models mentioned in

Sect. 10.2, as the following can be observed:

• Many of the mentioned models think of MAS and LSMAS on a number of levels

of abstraction (since LSMAS may comprise thousands of individual agents, it

may seem like a natural way of viewing such systems).

• Somewhat of a leitmotif is use of roles for introducing constraints or a set of

features for individual agents.

• Grouping agents by roles is used often.

• It is curious that only the most recent studies think of dynamically changing

systems.

10.3 The Metamodel and Examples

The organisational metamodel that is used in the following examples is being

developed [37, 49] based on recent studies mostly presented in this chapter. The

finished metamodel will be based on an ontology being developed by the author of

this chapter [38, 39]. An overview of the metamodel at this very early stage of

development is given in this section, followed by two examples of its use.

The following examples shall be used to demonstrate the early working version

of the organisational metamodel for LSMAS being developed. The main idea of

this metamodel is to adhere to the seven perspectives of organisational modelling of

LSMAS mentioned by Schatten in [47] that are described informally in Sect. 10.2.2

of this chapter. Therefore, the individual agents are regarded as organisational units.

Furthermore, an organisational unit can comprise infinite number of organisational

units. What is even more interesting, such a relation will be used for even more

organisational entities of the system being modelled, e.g. goals, tasks, etc. The

metamodel in its final version is expected to include, amongst others, concepts

related to organisational change and, the most complex element, organisational

culture.

At the moment, the metamodel can be used for modelling the following concepts

of an LSMAS: organisational unit, role, goal/objective, process, knowledge artefact

238 B. Okreša Đurić

(KnArt) and several properties of these concepts, e.g. inclusion, possible roles of an

organisational unit, command flow, etc. These organisational concepts have been

identified upon analysis of an ontology containing selected organisational concepts

used in organisational modelling of LSMAS [38, 39]. The ontology is a work-in-

progress as well and is being built based on standard practices of organisational

modelling of human organisations, but is clearly directed towards LSMAS. The aim

of the finished metamodel is to comprise LSMAS organisational concepts identified

based on the mentioned ontology and on the related research, all of which shall be

in accordance with the modern features of LSMAS organisational modelling

[47]. Distinction of the proposed metamodel, when compared with existent

LSMAS organisational models, will be visible through elements such as included

concepts for modelling interorganisational dynamics, and a “zoomable” approach,

where many of the included concepts will be observable on various levels of

abstraction, to name a few.

An organisational unit (see Fig. 10.1a) is the basic element which represents an

individual agent. Alternately, an organisational unit can represent a type of agent

(see difference between approaches in Sects. 10.3.1 and 10.3.2). Every

organisational unit can access an individual knowledge artefact (Fig. 10.1b), and

it can play any number of roles. Furthermore, an organisational unit can be a part of

another organisational unit (Fig. 10.1d), thus creating a group, or it can answer to

another organisational unit (Fig. 10.1c). Organisational units are not supposed to be

detailed any further, since the emphasis of the model is on organisational and not

individual modelling.

Roles are modelled with the idea of constraints in mind. Every role (Fig. 10.2a)

has some dedicated actions which become available to an agent that plays

it. Furthermore, roles have basic properties similar to those of organisational

units: hierarchical command flow (Fig. 10.2d), grouping relation and access to

organisational knowledge artefacts (Fig. 10.2b). As opposed to an organisational

unit, a role can combine its available actions in a process that can be used to achieve

a certain goal (Fig. 10.2f). Every role can have a specific goal (Fig. 10.2c) that can

hierarchically consist of subgoals. Finally, a role can have a generic relationship

with another role (Fig. 10.2e). Such a property allows for the developer to specify

the connection they need. A role is thus somewhat of a central concept in modelling

a system. Certainly, the approach depends on the will of the developer and purpose

of the model.

A knowledge artefact contains a piece of knowledge of the system. Modelled as

abstract representations of knowledge, knowledge artefacts are designed to be

detailed by the developer once the system development starts after the modelling

phase. Knowledge artefacts (KnArts) are divided into Individual and

Organisational KnArts. Individual KnArts (Fig. 10.1b) contain knowledge of

importance to individual agents. Organisational KnArts (Fig. 10.2b), on the other

hand, represent pieces of knowledge pertaining to the organisational aspects of the

system and are, by default, accessible to roles only.

Goals, i.e. objectives, are modelled to contain specific basic information about

the given goal and what is needed for the goal to be fulfilled. Therefore, every goal

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 239

can have its respective measurement and reward values (Fig. 10.3). These are

written in the way most apt for the development process of the system. Every

goal may be a part of another goal concept, thus creating a hierarchy and subgoals.

A process concept is abstracted as a concept that can be enacted by a role and

that has a certain goal concept for its outcome. Therefore, the outcome can be

achieved using the designated process. A process can be used to achieve a certain

subgoal as well, thus being useful in fulfilling complex goal concepts. Ideally, a

process available to a specific role consists of actions available to that

particular role.

Fig. 10.1 Visual

representation of the

organisational unit concept

Fig. 10.2 Visual representation of the role concept

240 B. Okreša Đurić

Properties included in the metamodel will not be detailed here, as their basic

information was provided above, when other concepts were described in more

detail.

10.3.1 A Simple Example of the RecipeWorld

The RecipeWorld was developed by Fontana and Terna as an “agent-based model

that simulates the emergence of networks out of a decentralized autonomous

interaction” [23]. This model is built using three basic elements: recipes, orders

and agents. Recipes contain a custom number of steps that have to be taken if an

objective is to be achieved. Orders are specific objectives that have to be fulfilled.

Every order has some technical information and auxiliary data. Finally, agents are

solving given problems, by completing steps defined by a recipe. Technical details

(e.g. recipe structure) can be found in [23]. As noted by the mentioned authors, one

of the goals of this agent-based model is to generate network based on activity of

agents, instead of making agents generate a network a priori.

Typical application example of the described model is that of production.

Several factories have to produce all the generated orders, thus creating a social

network that can be analysed for specific insight into the production process.

Additional constraints are introduced into the system (e.g. a specific factory can

only work on a specific element of a recipe). Each factory of this system and each

order to be produced are represented as agents. As the system run, production

started, and the orders move around the system to factories that can produce the

needed recipe part, and thus a network is generated.

In this example, individual structure or functioning of an agent is not of great

concern, i.e. an agent will be modelled almost as a black box, giving the system

Fig. 10.3 Details of a goal concept are described using predicate logic statements

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 241

designer freedom to develop the agent in any way they want. Each agent will be

given certain constraints though. First of all, roles will be used to determine if an

agent is a factory, or an order. This way, a role will contain a set of constraints, and

the agent playing the given role will have to act accordingly. Furthermore, knowl-

edge of a recipe of the order will be modelled as a knowledge artefact. This way, the

abstract concept of a knowledge artefact can be realised by the system developer in

a way they desire (e.g. a rule language like RIF or SWRL). In order to utilise and

simplify communication of agents involved in the system, a knowledge artefact

specifying ontology of communication concepts will be accessible to all the roles of

the system. Every role in the system will be related to a couple of needed functions

or processes as well. This way, the whole process of organisational design will be

moved to a more abstract layer, as opposed to working with individual agents. What

is more, this type of declaration allows for computer code generation of the basic

elements of the modelled system. The described process is detailed as follows.

One version of a situation modelled as described is shown in Fig. 10.4. Individ-

ual agents are represented using orange rectangles. An individual agent can play

any of the connected roles represented as blue squares. Furthermore, as described

above, every agent has individual knowledge of their recipe parts, or services they

provide, based on the designated role they will be performing. This formulation

presumes that individual agents performing different roles will be basically differ-

ent. Every role has several actions that are clearly named and will most likely be

translated into code. As mentioned above, both roles have access to a kind of a

knowledge repository, a knowledge artefact of organisational concern, which stores

the domain ontology. Each role has its respective main goal (i.e. objective) which is

decomposed further. Subgoals are not defined as goals of the given role, but are

achieved by processes available to a specific role. Two separate processes are

available to the factory role, and their result should be fulfilling the goals they are

connected to.

Model presented in Fig. 10.4 may yield programming code as follows. It is worth

noting that the metamodel is a work-in-progress, and code generation is one of the

features not yet implemented. Therefore, only a possible suggestion based on the

model is shown. The programming code shown in the box below is based on Python

and Smart Python multi-Agent Development Environment (SPADE), where agents

are instances of an agent class and their behaviours are instances of behaviour

classes covering various types of behaviours.

class AgentOrder(spade.Agent.Agent):

class SearchForFactories(): [. . .]

class CheckFactoryAvailability(): [. . .]

class WaitForFactoryAnswer(): [. . .]

class StartProduction(): [. . .]

class FinishProduction(): [. . .]

def initialise ():

242 B. Okreša Đurić

class AgentFactory(spade.Agent.Agent): [. . .]

class AnswerQuery(): [. . .]

class Produce(): [. . .]

def initialise (): [. . .]

Further details from the model, e.g. knowledge, measurement and rewards of

goals, are not shown in this example code, as they may be realised using various

tools, most useful of which may be combination of Resource Description Frame-

work (RDF) and Web Ontology Language (OWL), combined together into an

ontology, since they are well adapted to the task of modelling knowledge.

10.3.2 A More Complex Example from an MMORPG

The second example that will be given in this chapter is devised to show how

adaptable the proposed organisational metamodel is to the scale of the modelled

system. The main difference between this example and the previous one is in scale,

Fig. 10.4 Sample representation of the RecipeWorld by the organisational metamodel of this

chapter

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 243

e.g. in the number of possible roles within the system, in the number of active

individual agents, in the number and diversity of tasks and goals and in the possible

combinations of all the included elements of the system.

MMORPGs, and MMOGs as a more general concept, are a good application

domain for LSMAS as they can engage hundreds, thousands and even millions of

players. Many popular examples prove this (e.g. League of Legends, Hearthstone,

Dota 2, World of Warcraft, etc.), and such games are still gaining popularity,

presently having millions of regular active players [49]. Furthermore, MMOGs

are interesting to research [33], since they are interesting to players that are eager to

explore and interact with a virtual world, simultaneously motivating them to

communicate and cooperate or fight with other players or elements of the environ-

ment. Group elements (including organisational features and social skills) are

usually essential in games of MMORPG genre, since it is often impossible for a

player’s avatar (in-game character controlled by a human player) to survive or be

successful in the given virtual world on their own.

The following example is based on an MMORPG scenario developed for the

purposes of the Large-Scale Multi-Agent Modelling of Massively On-Line Role-

Playing Games (ModelMMORPG) research project of the Artificial Intelligence

Laboratory (AI Lab) of Faculty of Organisation and Informatics at the University of

Zagreb. The scenario was based around a developed quest named The Quest for the

Dragon Egg. In order to accomplish this quest, a player had to retrieve a Dragon

Egg item from one of the three dragon dens located throughout the virtual Mana

World, but the exact location of the egg was a secret, as was the precise time when

the egg was going to spawn (with the interval being about 24 h). Upon finding the

Dragon Egg item, after having fended off about a dozen Dragon monsters guarding

it, a joint effort was necessary to transport the Dragon Egg item to the safe place. At

least three player avatars (player characters) had to be present in each other’s line of
sight at any one moment while the Dragon Egg item was being transported, or the

quest would fail. That was not the end though. In order to receive the main prize of

the quest and to actually solve it, the egg had to be hatched using another special

item, a hatching potion. This potion had to be made using several specific ingredi-

ents, making it another group effort. Only upon bringing the hatching potion and the

Dragon Egg item, within a specified period of time, to a specific nonplayer

character (NPC), a friendly Dragon monster could be spawned, and the quest

finished. This devised quest is a clear representation of how important cooperation

is in MMOGs, especially MMORPGs. It is important to note that only leaders of a

group of players (called a party) could initiate the quest. Once the quest was

initiated, only members of the initiating party could participate in the quest, and

gain benefits of the solved quest. The key element in analysing the mentioned quest,

and modelling it, is the fact that inclusion of many individual agents does not

change the amount of set constraints in form of a role or any other concept.

An avatar is an individual agent in the scope of this example, so it shall be

represented as an organisational unit. Since one of the key elements in the quest is a

group of players, another organisational unit shall represent a party. Notice slightly

different way of modelling, when compared to the previous example, since the

244 B. Okreša Đurić

emphasis will be on roles. Indeed, it is more interesting and useful to develop roles

for the scenario described in this example. Furthermore, Fig. 10.5 shows only a part

of the whole system, i.e. the part that describes elements, and their relationship,

which are the closest to a player’s avatar.
Individual agents are able to play several specific roles, e.g. gatherer, fighter,

support, herbalist, transporter, scout, DragonEggQuester, etc.

Every role has specific processes it can use in order to achieve specific goals. The

main objective of the quest is designed as an objective of the DragonEggQuester

role and has a specified reward obtainable if finished. As such, the objective is

divided into several lower-level specific quests. An individual agent is expected to

use a role, and processes found therein, that is most suitable for reaching the

identified specific goal.

State of the world, and of individual agents, is defined using knowledge arte-

facts. Specifics about various concepts found within the game are detailed in a

connected ontology.

In addition to visual elements, some concepts have attributes that can receive

specific values. Goals have such attributes denoting means of measurement if a goal

Fig. 10.5 Sample representation of the described quest for the Dragon Egg with modelled

organisational units, roles, knowledge artefacts, goals and processes

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 245

is satisfied and rewards for completing the given goal. The goal named

BrewHatchingPotion shown in Fig. 10.5 has partially defined means of measuring

if this particular goal is completed. The measurement is only partially defined in

Fig. 10.6, since it does specify the necessary ingredients, but not the amount of

these ingredients. Notice that both measurement and reward are given using a

predicate logic expression. Therefore, reward predicate will be added to the main

ontology upon finishing the goal, and measurement is based on already existing

data. Depending on design decisions of the system developers, measurement can be

based on data available from the world, an individual agent or a combination of

both, expressed in the desired way.

10.4 Discussion

This section provides a brief discussion on the modelled examples, covering

arguments backing up the presented metamodel, along with guidelines suggesting

further development of the metamodel.

The examples described above show what the modelling process’ result may

look like, and the amount of information it may include. Laying out plans of the

resulting system is certainly a worthwhile step when one is planning a new system

and development thereof.

Working with distributed systems of large scale can create a state of potential

unreliability, if the system being developed is not documented well enough. The

work-in-progress metamodel that was shown in specific examples here is aiming to

reduce the probability of such situations. Designed especially for modelling

LSMAS, comprising concepts that may be used for that specific purpose, the

metamodel offers system designers an easy and efficient way to lay down plans

Fig. 10.6 Goal attributes and their values, where measurement and reward are motivated by the

earlier mentioned seven perspectives of LSMAS organisational modelling

246 B. Okreša Đurić

of their systems-to-be and analyse the assembled-to-be model. Furthermore, it is

possible to observe specific features that may inhibit usefulness, or success of the

system being developed, and act accordingly.

From another perspective, metamodel showcased here can be used to facilitate

easier or faster creation of a MAS specialised in distributed software project

managements. The idea of an intelligent decision support and assisting system to

be used by software project managers was laid out by Connor and Jenkins in [12].

Whichever of the above cases may be the prevalent one, managing distributed

systems’ development may prove to be easier and more efficient using the proposed

metamodel, since not only does it provide an efficient overview of the modelled

system, but it also makes generating basic computer code based on the defined

model possible.

10.4.1 Evaluating the Proposed Approach to Modelling
LSMAS

The proposed metamodel builds on recent studies of LSMAS organisational model-

ling and includes several concepts that are not found in the models mentioned in

Sect. 10.2 of this chapter. Novel as it is, since it is based on an ontology comprising

concepts of organisational modelling of LSMAS and it follows the recent trends in

LSMAS development, it does have room for improvement.

Each of the modelled examples gives an insight about the metamodel from a

specific perspective. The first example (Sect. 10.3.1) is about a simple system that

requires no complex structures; therefore, it shows how the metamodel can be

applied to small-scale systems. Short analysis of this example yields the following

conclusions.

The model is expressive enough to represent the described system in as much

detail as is needed for clear description of the given system. Since the metamodel

being developed allows for various levels of abstractness, the model of example one

could have been even more simple.

The two modelled organisational unit concepts could have been merged into

one, but the metamodel is not yet expressive enough to distinguish between logical

AND and logical OR connections – it would be advisable to model the individual

agent using only one organisational unit that has access to either of the Individual

KnArts and can play only one of the two modelled roles at any given time.

It is clear from the built model that the system comprises agents playing two

different roles, with no constraints on communication possibilities. Each of the

individual agents have access to some individual knowledge, and every role knows

the same set of organisational knowledge. The goal hierarchy is clear and easy to

understand, though the process concept is lacking insofar as it is not known what

actions of a role are included in the modelled specific process. Individual processes

may as well be represented using another model using the metamodel being

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 247

developed. Such an approach would further emphasise applicability of this

metamodel to various levels of abstraction.

The second example, on the other hand, shows what a rather more complex

system looks like being modelled using the proposed metamodel. Although a rather

complex situation (that is a part of a larger world), it is easily and clearly modelled.

Short analysis of this example yields the following conclusions.

An individual agent, modelled using an organisational unit concept, is defined

using a slightly different approach from the one in example one. Only two types of

individual agents are planned – agent commanded by a player and agent playing the

role of a nonplayer character (NPC). Player avatars, as individual agents controlled

by a player, can be grouped into a party (a group of player avatars). Furthermore,

every individual avatar has some basic stats and their own inventory, as is shown

using individual knowledge artefacts.

Diversity of roles is obvious, and their inclusion structure is clearly defined. The

property denoting one role as a part of another role can be understood as an

inheritance property; thus, actions defined for roles on higher level (e.g. Gatherer,

Maker, Warrior, etc.) are inherited by roles on lower levels (e.g. Herbalist,

PotionsMaster, SupportWarrior, etc.). It is therefore concluded that an

organisational unit that can access a higher level role can also access a lower

level role.

The main goal of the questing role is decomposed on several subgoals. As is

visible from the model, the main goal structure is not completely linear, i.e. subgoal

QDE01 is decomposed on three different goals with possible subgoals

(e.g. QDE0101, QDE0102, QDE0103).

The model further shows that some of the subgoals can only be finished by a

specific role (e.g. QED0102 named BrewHatchingPotion can only be finished by

role named PotionsMaster). Naturally, every role has further constraints on when it

can be played by a certain individual agent, but those constraints are not described

in this particular model, nor at this stage of the metamodel development.

Reusability of concepts, as a feature of the proposed metamodel, is shown using

various concepts of the model, yet it is most visible in joining roles to organisational

knowledge artefacts. Two organisational knowledge artefacts, one representing the

domain ontology and the other ontology comprising communication concepts, are

modelled only once and are used by many different properties. Furthermore, roles

do not have to be modelled more than once, but can be used by several different

organisational units and by various properties.

The metamodel, as work-in-progress, can be evaluated as follows. The model is

lacking in constraints of playing roles – it would seem that any individual agent

may play any role at any given time. Although such a presumption may be true in

the modelled part of the bigger system, it may be necessary to add constraint

possibilities, e.g. implementing logic AND and OR expressions. This type of

connection that would denote partial or complete inclusion of the concepts of

property range may be useful in properties denoting hierarchical inclusion of

concepts.

248 B. Okreša Đurić

The two examples show how applicable the metamodel can be in situations of

different size containing various elements. Even though the metamodel can be used

for modelling the simple example, it is expressive enough to model the more

complex example as well. The obvious problem in modelling the examples of

this chapter is cluttered view and chaotic placement of numerous elements of the

model. This is largely due to the very early stage of development of the model, since

one of the features offered by the finished model is capability of modelling various

levels of abstraction in different layers of the model, thus removing the visible

clutter.

Since the metamodel is a work-in-progress, some planned features have not yet

been implemented; wherefore, it does not completely comply with the modern

trends of LSMAS modelling, i.e. perspectives of LSMAS modelling, as noted

earlier, in Sect. 10.2.2. A notable feature missing is modelling of interorganisational

dynamics, i.e. concepts for modelling the mentioned aspect of organisation. An

introduction towards modelling organisations as individual agents is shown in

example two, where there exists an organisational unit representing a group of

individual agents. Interaction between such organisational units that represent

groups may be modelled in the same layer, or level of abstraction, as the one

shown in example two or in another one, represented by a new model.

The model, in its current state, partially or completely satisfies the following

perspectives of LSMAS modelling mentioned in Sect. 10.2.2: organisational struc-

ture (since it supports modelling of decision and information flows), organisational

culture (knowledge is modelled on individual or organisational level, norms are

implemented using role concepts, and language is supported as a knowledge

artefact, while goals do provide rewards upon being successfully completed),

strategy (it is possible to model goals or objectives and their subgoals, i.e. how

they relate to other goals and how goal success is measured), processes (every role

can have defined activities it can perform, and those activities can be combined into

a process that has a specific goal) and individual agents (it is possible to model

individual agents insofar as to designate they exist, what knowledge they possess

and what roles an individual can play). As mentioned earlier, organisational

dynamics and context and interorganisational aspects have not been defined yet,

although the first elements of these two perspectives are visible.

10.5 Conclusions

This chapter is about modelling LSMAS that conform to various elements of

organisational design. A relevant set of perspectives of organisational architecture

that is proposed to be used for modelling modern LSMAS was presented in a study

by Schatten [47]. The work-in-progress metamodel presented in this chapter is

based on the said set of perspectives and aims to provide a relevant upgrade of some

recent studies of LSMAS organisational modelling.

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 249

The model in this chapter is presented as a suitable tool for planning and

modelling LSMAS, in their many application domains, ranging from MMOGs to

smart cities, smart transport and smart infrastructure, to distributed systems in

general. Since planning and modelling phases have a great impact on the rest of

the life cycle of a system, it is argued to be interesting to use a tool that allows one to

create a model of the system being built and generate basis of the said system upon

the defined model, which is a feature the metamodel presented in this chapter is

intended to provide.

Outlined by the overview given in Sect. 10.2.1, the proposed metamodel should

be expressive enough, yet simple to use, to provide the user with concepts that can

model a simple example, as well as a more complex one. One of the main features

of the proposed metamodel is recursive definitions of organisational units, goals

and roles, as represented formally by Schatten [47]. Such an approach was shown in

the second example (Sect. 10.3.2) where an organisational unit represents both an

individual agent and a group of agents. Further examples are used for modelling

goals and roles in Sect. 10.3.2 as well.

The author argues that using the proposed metamodel (once finished) may be

beneficial for planning and modelling phases of development of distributed sys-

tems, as it allows the system developers to model the system in enough detail to

represent functionality of the system in a way that is not overly complex and that is

easy to read and comprehend. Therefore, although currently in development, and

lacking in features, the proposed metamodel is argued to be a useful addition to

recent research on LSMAS organisational modelling.

Future work concerning the proposed metamodel is clearly designated by the

features lacking when compared to the perspectives of LSMAS organisational

architecture used as the starting idea behind this metamodel. Further research into

the existing models is needed, in form of a more thorough overview or analysis of

those most recent, so as to compare the metamodel being developed (once finished)

to those analysed. Based on the ontology pertaining selected organisational con-

cepts for organisation of LSMAS, concepts included in the metamodel at this stage

have to be analysed as well, in order to determine if some of the included concepts

are redundant, or simply not needed, and there are concepts that have to be added.

Furthermore, additional specific scenarios from an LSMAS application domain will

be identified and the developed metamodel tested on them, so as to identify weak

elements of the metamodel, and needed improvements.

Acknowledgements This work has been supported in full by the Croatian Science Foundation

under the project number 8537.

References

1. Abbas HA (2014) Exploiting the overlapping of higher order. Int J Agent Technol Syst

6:32–57. doi:10.4018/ijats.2014070102

250 B. Okreša Đurić

http://dx.doi.org/10.4018/ijats.2014070102

2. Abbas HA (2015) Realizing the NOSHAPE MAS organizational model. Int J Agent Technol

Syst 7:75–104. doi:10.4018/IJATS.2015040103

3. Abbas HA, Shaheen SI, Amin MH (2015) Organization of multi-agent systems: an overview.

Int J Intell Inf Syst 4:46–57. doi:10.11648/j.ijiis.20150403.11

4. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw

54:2787–2805. doi:10.1016/j.comnet.2010.05.010

5. Bădică A, Bădică C, Ganzha M, Ivanović M, Paprzycki M (2016) Experiments with multiple

BDI agents with dynamic learning capabilities. In: Bajo J, Escalona JM, Giroux S, Hoffa-

Dąbrowska P, Julián V, Novais P, Sánchez-Pi N, Unland R, Azambuja-Silveira R (eds)

Highlights Pract. Appl. scalable multi-agent Syst. PAAMS Collect. Int. Work. PAAMS

2016, Sevilla, Spain, June 1–3, 2016. Proc. Springer International Publishing, Cham, pp

274–286

6. Barriuso AL, de La Prieta F, Murciego ÁL, Hernández D, Herrero JR (2016) An intelligent

agent-based journalism platform. In: Bajo J, Escalona JM, Giroux S, Hoffa-Dąbrowska P,

Julián V, Novais P, Sánchez-Pi N, Unland R, Azambuja-Silveira R (eds) Highlights Pract.

Appl. scalable multi-agent Syst. PAAMS Collect. Int. Work. PAAMS 2016, Sevilla, Spain,

June 1–3, 2016. Proc. Springer International Publishing, Cham, pp 322–332

7. Bergenti F, Iotti E, Poggi A (2016) Core features of an agent-oriented domain-specific

language for JADE agents. In: de la Prieta F, Escalona JM, Corchuelo R, Mathieu P, Vale Z,

Campbell TA, Rossi S, Adam E, Jiménez-López DM, Navarro ME, Moreno NM (eds) Trends

Pract. Appl. scalable multi-agent Syst. PAAMS Collect. Springer International Publishing,

Cham, pp 213–224

8. Boomsma JJ, Franks NR (2006) Social insects: from selfish genes to self organisation and

beyond. Trends Ecol Evol 21:303–308. doi:10.1016/j.tree.2006.04.001

9. Boulaire F, Utting M, Drogemuller R (2015) Dynamic agent composition for large-scale

agent-based models. Complex Adapt Syst Model 3:1–23. doi:10.1186/s40294-015-0007-2

10. Van Den Broek EL, Jonker CM, Sharpanskykh A, Treur J, others (2006) Formal modeling and

analysis of organizations. In: Boissier O, Padget J, Dignum V, Lindemann G, Matson E,

Ossowski S, Sichman JS, Vázquez-Salceda J (eds) Coord. Organ. Institutions, Norms Multi-

Agent Syst. Springer Berlin Heidelberg, pp 18–34

11. Bui N, Zorzi M (2011) Health care applications: a solution based on the internet of things. In:

Proc. 4th Int. Symp. Appl. Sci. Biomed. Commun. Technol. – ISABEL’11. ACM Press,

New York, pp 1–5

12. Connor RO, Jenkins J Using agents for distributed software project management. Management

13. Corkill DD, Lander SE (1998) Diversity in agent organizations. Object Mag 8:41–47

14. Coutinho LR, Sichman JS, Boissier O (2009) Modelling dimensions for agent organizations.

In: Dignum V (ed) Handb. Res. Multi-Agent Syst. IGI Global, pp 18–50

15. Čyras K (2016) Argumentation-based reasoning with preferences. Bajo J, Escalona JM,

Giroux S, Hoffa-Dąbrowska P, Julián V, Novais P, Sánchez-Pi N, Unland R, Azambuja-

Silveira R Highlights Pract. Appl. scalable multi-agent Syst. PAAMS Collect. Int. Work.

PAAMS 2016, Sevilla, Spain, June 1–3, 2016. Proc. Springer International Publishing, Cham,

199–210

16. Decker KS (1996) TÆMS: a framework for environment centered analysis & design of

coordination mechanisms. In: Found. Distrib. Artif. Intell. Wiley, pp 429–448

17. Dignum V (2004) A model for organizational interaction: based on agents, founded in logic.

Utrecht University

18. Van Dyke Parunak H, Brueckner S (2001) Entropy and self-organization in multi-agent

systems. In: Proc. Int. Conf. Auton. Agents. Montreal, Canada, pp 124–130

19. Van Dyke Parunak H, Odell J (2001) Representing social structures in UML. In: Proc. fifth Int.

Conf. Auton. agents – AGENTS’01. ACM Press, New York, pp 100–101

20. Esteva M, Padget J, Sierra C (2002) In: Meyer J-JC, Tambe M (eds) Formalizing a language

for institutions and norms. Springer, Berlin, pp 348–366

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 251

http://dx.doi.org/10.4018/IJATS.2015040103
http://dx.doi.org/10.11648/j.ijiis.20150403.11
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.tree.2006.04.001
http://dx.doi.org/10.1186/s40294-015-0007-2

21. Fabretti A, Gärling T, Herzel S, Holmen M (2016) An agent-based model to study the impact

of convex incentives on financial markets. In: Trends Pract. Appl. Scalable Multi-Agent Syst.

PAAMS Collect. pp 3–13

22. Ferber J, Gutknecht O, Michel F (2004) From agents to organisations: an organizational view

of multi-agent systems. Agent-Oriented Softw Eng IV:214–230. doi:10.1007/978-3-540-

24620-6_15

23. Fontana M, Terna P (2015) From agent-based models to network analysis (and return): the

policy-making perspective. Work Pap Ser 7:

24. Garcia-Rodriguez S, Sleiman HA, Nguyen V-Q-A (2016) A multi-agent system architecture

for microgrid management. In: de la Prieta F, Escalona JM, Corchuelo R, Mathieu P, Vale Z,

Campbell TA, Rossi S, Adam E, Jiménez-López DM, Navarro ME, Moreno NM (eds) Trends

Pract. Appl. scalable multi-agent Syst. PAAMS Collect. Springer International Publishing,

Cham, pp 55–67

25. Gasser L (2001) Perspectives on organizations in multi-agent systems. In: Luck M, Mařı́k V,

Štěpánková O, Trappl R (eds) Multi-agent Syst. Appl. Springer, Berlin, pp 1–16

26. Gliwa B, Koźlak J, Zygmunt A, Demazeau Y (2016) Combining agent-based and social

network analysis approaches to recognition of role influence in social media. Demazeau Y,

Ito T, Bajo J, Escalona JM Adv. Pract. Appl. Scalable Multi-agent Syst. PAAMS Collect. 14th

Int. Conf. PAAMS 2016, Sevilla, Spain, June 1–3, 2016, Proc. Springer International Publish-

ing, Cham, 109–120

27. Hadfi R, Ito T (2016) Holonic multiagent simulation of complex adaptive systems. In: Bajo J,

Escalona JM, Giroux S, Hoffa-Dąbrowska P, Julián V, Novais P, Sánchez-Pi N, Unland R,

Azambuja-Silveira R Highlights Pract. Appl. scalable multi-agent Syst. PAAMS Collect. Int.

Work. PAAMS 2016, Sevilla, Spain, June 1–3, 2016. Proc. Springer International Publishing,

Cham, 137–147

28. Hernández D, Villarrubia G, Barriuso AL, Lozano Á, Revuelta J, De Paz JF (2016) Multi agent

application for chronic patients: monitoring and detection of remote anomalous situations.

Bajo J, Escalona JM, Giroux S, Hoffa-Dąbrowska P, Julián V, Novais P, Sánchez-Pi N,

Unland R, Azambuja-Silveira R Highlights Pract. Appl. Scalable Multi-Agent Syst. PAAMS

Collect. Int. Work. PAAMS 2016, Sevilla, Spain, June 1–3, 2016. Proc. Springer International

Publishing, Cham, 27–36

29. Horling B, Lesser V (2005) A survey of multi-agent organizational paradigms. Knowl Eng Rev

19:281. doi:10.1017/S0269888905000317

30. Hübner JF, Sichman JS, Boissier O (2002) A model for the structural, functional, and deontic

specification of organizations in multiagent systems. In: Bittencourt G, Ramalho GL (eds)

Adv. Artif. Intell. Springer, Berlin, pp 118–128

31. Hübner JF, Vercouter L, Boissier O (2009) Instrumenting multi-agent organisations with

artifacts to support reputation processes. In: Hübner JF, Matson E, Boissier O, Dignum V

(eds) Coord. Organ. Institutions Norms Agent Syst. IV. Springer, Berlin, pp 96–110

32. Kir H, Erdo�gan N (2016) Agent-based semantic business process management methodology.

Demazeau Y, Ito T, Bajo J, Escalona JM Adv. Pract. Appl. Scalable Multi-agent Syst. PAAMS

Collect. 14th Int. Conf. PAAMS 2016, Sevilla, Spain, June 1–3, 2016, Proc. Springer Inter-

national Publishing, Cham, 145–156

33. Lofgren ET, Fefferman NH (2007) The untapped potential of virtual game worlds to shed light

on real world epidemics. Lancet Infect Dis 7:625–629. doi:10.1016/S1473-3099(07)70212-8

34. Losilla J, Olivares T, Fernández-Caballero A (2016) Multi-agent-based framework for pre-

vention of violence against women: scenarios in Google Maps. In: de la Prieta F, Escalona JM,

Corchuelo R, Mathieu P, Vale Z, Campbell TA, Rossi S, Adam E, Jiménez-López DM,

Navarro ME, Moreno NM (eds) Trends Pract. Appl. scalable multi-agent Syst. PAAMS

Collect. Springer International Publishing, Cham, pp 277–285

35. McCauley L, Franklin S (2002) A large-scale multi-agent system for navy personnel distribu-

tion. Connect Sci 14:371–385. doi:10.1080/0954009021000068934

252 B. Okreša Đurić

http://dx.doi.org/10.1007/978-3-540-24620-6_15
http://dx.doi.org/10.1007/978-3-540-24620-6_15
http://dx.doi.org/10.1017/S0269888905000317
http://dx.doi.org/10.1016/S1473-3099(07)70212-8
http://dx.doi.org/10.1080/0954009021000068934

36. Mihaylov M, Razo-Zapata I, Rădulescu R, Jurado S, Avellana N, Nowé A (2016) Smart grid

demonstration platform for renewable energy exchange. Demazeau Y, Ito T, Bajo J, Escalona

JM Adv. Pract. Appl. Scalable Multi-agent Syst. PAAMS Collect. 14th Int. Conf. PAAMS

2016, Sevilla, Spain, June 1–3, 2016, Proc. Springer International Publishing, Cham, 277–280

37. Okreša Đurić B (2016) Organizational metamodel for large-scale multi-agent systems. de la

Prieta F, Escalona MJ, Corchuelo R, Mathieu P, Vale Z, Campbell AT, Rossi S, Adam E,

Jiménez-López MD, Navarro EM, Moreno MN Adv. Intell. Syst. Comput Springer Interna-

tional Publishing, Seville, 387–390

38. Okreša Đurić B, Konecki M (2015) Modeling MMORPG players’ behaviour. In: Hunjak T,

Kirinić V, Konecki M (eds) Cent. Eur. Conf. Inf. Intell. Syst. 2015. Faculty of Organization

and Informatics, Varaždin, HR, pp 177–184

39. Okreša Đurić B, Schatten M (2016) Defining ontology combining concepts of massive multi-

player online role playing games and organization of large-scale multi-agent systems. 39th Int.

Conv. Inf. Commun. Technol. Electron. Microelectron.

40. Parrish JK, Viscido SV, Grünbaum D (2002) Self-organized fish schools: an examination of

emergent properties. Biol Bull 202:296–305. doi:10.1016/j.foodchem.2006.01.008

41. Picard G, Hübner JF, Boissier O, Gleizes M-P (2009) Reorganisation and self-organisation in

multi-agent systems. In: Int. Work. Organ. Model. Paris, pp 66–80

42. Pico-Valencia P, Holgado-Terriza JA (2016) ADELE: a middleware for supporting the

evolution of multi-agents systems based on a metaprogramming approach. In: de la Prieta F,

Escalona JM, Corchuelo R, Mathieu P, Vale Z, Campbell TA, Rossi S, Adam E, Jiménez-

López DM, Navarro ME, Moreno NM (eds) Trends Pract. Appl. Scalable Multi-Agent Syst.

PAAMS Collect. Springer International Publishing, Cham, pp 297–310

43. Posey RB, Haire M (1961) Modern organization theory. Adm Sci Q 5:609–611. doi:10.2307/

2390625

44. Román JA, Rodrı́guez S, de la Prieta F (2016) Improving the distribution of services in MAS.

Bajo J, Escalona JM, Giroux S, Hoffa-Dąbrowska P, Julián V, Novais P, Sánchez-Pi N,

Unland R, Azambuja-Silveira R (eds) Highlights Pract. Appl. scalable multi-agent Syst.

PAAMS Collect. Int. Work. PAAMS 2016, Sevilla, Spain, June 1–3, 2016. Proc. Springer

International Publishing, Cham, 37–46

45. Russell SJ, Norvig P (2010) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall,

Englewood Cliffs

46. Schatten M (2012) Complex analytical method for self-organizing multiagent systems. In:

Cent. Eur. Conf. Inf. Intell. Syst. 2012. Faculty of Organization and Informatics, Varaždin, pp
63–70

47. Schatten M (2014) Organizational architectures for large-scale multi-agent systems’ develop-
ment: an initial ontology. Adv Intell Syst Comput 290:261–268. doi:10.1007/978-3-319-

07593-8_31

48. Schatten M, Ševa J, Tomičić I (2016) A roadmap for scalable agent organizations in the

Internet of Everything. J Syst Softw 115:31–41. doi:10.1016/j.jss.2016.01.022

49. Schatten M, Tomicic I, Okreša Đurić B (2015) Multi-agent modeling methods for massivley

multi-player on-line role-playing games. In: Biljanović P (ed) 38th Int. Conv. Inf. Commun.

Technol. Electron. Microelectron. IEEE, Opatija, HR, pp 1256–1261

50. Scheutz M (2010) A multi-agent system infrastructure for large-scale autonomous distributed

real-time intelligence gathering systems. Proc. ISCA

51. Tomičić I (2016) Agent-based framework for modelling and simulation of resource manage-

ment in smart self-sustainable human settlements. University of Zagreb

52. Tomičić I, Schatten M (2015) Towards an agent based framework for modelling smart self-

sustainable systems. Interdiscip Descr Complex Syst 13:50–63. doi:10.7906/indecs.13.1.7

53. Tomičić I, Schatten M (2016) Agent-based framework for modeling and simulation of

resources in self-sustainable human settlements: a case study on water management in an

eco-village community in Croatia. Int J Sustain DevWorld Ecol 1–10. doi: 10.1080/13504509.

2016.1153527

10 A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-. . . 253

http://dx.doi.org/10.1016/j.foodchem.2006.01.008
http://dx.doi.org/10.2307/2390625
http://dx.doi.org/10.2307/2390625
http://dx.doi.org/10.1007/978-3-319-07593-8_31
http://dx.doi.org/10.1007/978-3-319-07593-8_31
http://dx.doi.org/10.1016/j.jss.2016.01.022
http://dx.doi.org/10.7906/indecs.13.1.7
http://dx.doi.org/10.1080/13504509.2016.1153527
http://dx.doi.org/10.1080/13504509.2016.1153527

54. Tsarev A, Skobelev P (2016) Multi-agent supply scheduling system prototype for energy

production and distribution. Demazeau Y, Ito T, Bajo J, Escalona JM Adv. Pract. Appl.

scalable multi-agent Syst. PAAMS Collect. 14th Int. Conf. PAAMS 2016, Sevilla, Spain,

June 1–3, 2016, Proc. Springer International Publishing, Cham, 290–293

55. Vermesan O, Friess P, Guillemin P, Gusmeroli S, Sundmaeker H, Bassi A, Jubert IS,

Mazura M, Harrison M, Eisenhauer M, Doody P, Peter F, Patrick G, Sergio G, Harald,

Sundmaeker Alessandro B, Ignacio Soler J, Margaretha M, Mark H, Markus E, Pat D (2009)

Internet of things strategic research roadmap. In: Vermesan O, Friess P, Guillemin P,

Gusmeroli S, Sundmaeker H, Bassi A, Jubert IS (eds) Internet Things Strateg. Res. Roadmap.

pp 9–52

56. Villavicencio C, Schiaffino S, Diaz-Pace JA, Monteserin A, Demazeau Y, Adam C (2016) A

MAS approach for group recommendation based on negotiation techniques. In: Demazeau Y,

Ito T, Bajo J, Escalona JM (eds) Adv. Pract. Appl. Scalable Multi-agent Syst. PAAMS Collect.

14th Int. Conf. PAAMS 2016, Sevilla, Spain, June 1–3, 2016, Proc. Springer International

Publishing, Cham, pp 219–231

57. Vlacheas P, Giaffreda R, Stavroulaki V, Kelaidonis D, Foteinos V, Poulios G, Demestichas P,

Somov A, Biswas A, Moessner K (2013) Enabling smart cities through a cognitive manage-

ment framework for the internet of things. IEEE Commun Mag 51:102–111. doi:10.1109/

MCOM.2013.6525602

58. Weyns D, Haesevoets R, Helleboogh A (2010) The MACODO organization model for

context-driven dynamic agent organizations. ACM Trans Auton Adapt Syst 5:1–29. doi:10.

1145/1867713.1867717

59. Weyns D, Haesevoets R, Helleboogh A, Holvoet T, Joosen W (2010) The MACODO

middleware for context-driven dynamic agent organizations. ACM Trans Auton Adapt Syst

5:1–28. doi:10.1145/1671948.1671951

60. Wikarek J, Sitek P (2016) A multi-level and multi-agent approach to modeling and solving

supply chain problems. In: Bajo J, Escalona JM, Giroux S, Hoffa-Dąbrowska P, Julián V,

Novais P, Sánchez-Pi N, Unland R, Azambuja-Silveira R (eds) Highlights Pract. Appl.

Scalable Multi-Agent Syst. PAAMS Collect. Int. Work. PAAMS 2016, Sevilla, Spain, June

1–3, 2016. Proc. Springer International Publishing, Cham, pp 49–60

61. Yu H, Shen Z, Leung C (2013) From internet of things to internet of agents. In: 2013 I.E. Int.

Conf. Green Comput. Commun. IEEE Internet Things IEEE Cyber, Phys. Soc. Comput. IEEE,

pp 1054–1057

62. Žugaj M, Schatten M (2005) Arhitektura suvremenih organizacija. Tonimir i Fakultet

organizacije i informatike, Varaždinske
63. Žugaj M, Šehanović J, Cingula M (2004) Organizacija, 2nd edn. TIVA Tiskara Varaždin,

Varaždin

254 B. Okreša Đurić

http://dx.doi.org/10.1109/MCOM.2013.6525602
http://dx.doi.org/10.1109/MCOM.2013.6525602
http://dx.doi.org/10.1145/1867713.1867717
http://dx.doi.org/10.1145/1867713.1867717
http://dx.doi.org/10.1145/1671948.1671951

Part III

Advances in Software Project Management
and Distributed Software Development

Chapter 11

Optimizing Software Error Proneness
Prediction Using Bird Mating Algorithm

Amrit Pal, Harsh Jain, and Manish Kumar

11.1 Introduction

Software engineering is the process of designing, developing, and maintaining a

software product. It deals with complete life cycle of software production, begin-

ning with requirement collection to the last phase of maintenance [1]. Apart from

developing the software, it is important to estimate its size and cost. Also it is

necessary to take an account of errors and defects that might influence the func-

tionality. Errors and defects can be referred to a piece of code in software which

adversely affects functional and nonfunctional requirements. Testing is the phase

which is responsible for finding out errors and defects and removing them.

With the advancement in computer science and software engineering, the com-

plexity of software is increasing day by day. Due to the increased complexity, a

number of errors are also increasing in development process [2]. Having planned a

software in an organized way also does not allow the engineers to escape the errors.

However, occurrence of errors can also be considered as necessary for software

development, because they provide a check for quality of the software.

Prediction of software proneness to contain errors is one of the crucial issues that

need to be taken care of. It helps a lot to save cost and time in the development of

software. However, finding an appropriate method and model for predicting soft-

ware error proneness has been the main goal of engineers nowadays. One of the

useful models is machine learning that can be used for predicting error proneness.

There are several methods available in machine learning like artificial neural

network, support vector machine, k-means clustering, etc. that can be employed

for prediction purpose. For the purpose of predicting software error proneness in

A. Pal • H. Jain (*) • M. Kumar

Department of Information Technology, Indian Institute of Information Technology,

Allahabad, India

e-mail: jharsh38@gmail.com

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_11

257

mailto:jharsh38@gmail.com

this work, artificial neural network is used. It is a multilayer feed-forward network

which contains neurons and connections, and each connection is associated with a

weight. These weights are adjusted in the learning process of neural network. When

artificial neural network is trained using conventional algorithm like

backpropagation algorithm, it suffers from some serious problems, e.g., local

minima and overfitting of data. To solve these problems, optimization algorithms

may be used, e.g., genetic algorithm, bird mating optimizer algorithm, etc. In the

process of predicting software error proneness, two evolutionary algorithms genetic

algorithm and bird mating optimizer algorithm are used to train neural network.

Promise repository provides five datasets – cm1, jm1, kc1, kc2, and pc1 [3]. These

datasets contain data of software which is attributed by different software metrics and

predict whether the software is error prone. It is a two-class classification problem,

where classes are true or false. Artificial neural network is employed to classify the

data into two classes. Before training of neural network, genetic algorithm is used to

select the features of importance, i.e., those variables which are more valuable in

comparison to others. Feature extraction helps reduce the complexity of the network

and better results. Once the features have been selected, the hybrid algorithms are

implemented. First genetic algorithm is employed to optimize the weights of artificial

multilayer feed-forward neural network. Another algorithm is bird mating optimizer

which is also used to optimize the weights of neural network. The results of above

two methods are analyzed to reach to a particular model of prediction.

11.1.1 Error, Fault, and Failure

In software testing, inconsistency within software can be termed as error, fault, bug,

failure, or defect. These terms apparently sound synonymous but they are not

[4]. They are dissimilar and have entirely different meanings. The relationship

between these terms is clearly depicted in Fig. 11.1 and as described below:

• Error: can be best expressed as “to err is human.” Errors are mistakes that are

made by humans in source code of the modules of a software.

• Fault: is basically a reward for an error. It comes when an error is made in the

program. Fault represents an incorrect step or flow of the program.

• Bug: is a proof that represents a fault has occurred in the program. It represents

the unintended behavior of the module.

• Failure: occurs when the fault executes. It represents the inability of a module or

program that it cannot perform its desired function.

• Defect: represents a software cannot fulfill its functional requirements. It is the

result of a failure which has occurred in response to an error.

The following example shows how a mistake in source code can lead to incorrect

results. A module in C language is written, which is a part of software that

calculates and returns the product of two numbers which are passed to it.

258 A. Pal et al.

int multiply (int a, int b)

{

int prod;

prod = a/b;

return prod;

}

Main() function calls this module using the function call multiply(6,3). The
module multiply(int, int) returns two as output, which is not the desired answer.

The correct output should be 18 according to the product rule. This module gives

incorrect result in response to an error where division is performed instead of

multiplication. This instance represents a fault in the program, and a failure occurs

when this module executes. The software is said to be defective because it does not

perform its intended function.

The above given example is the simplest module that can ever have an error. But

these days software products are more complex and so are their modules. They

might contain a lot of errors and faults. Identifying and removing errors from a

module is a very rigorous and exhaustive task, but prediction about the possibility

of a module to contain errors is even more challenging. Because once the error and

its type are known, it is comparatively easy to debug a module than make prediction

about it when there is no information about the error. Prediction about the error

proneness is made using the past data of some of the important software metrics

which help decide whether the modules might contain errors or not. Properties of a

module which help in the prediction process include:

1. Lines of code

2. Halstead metrics

3. Cyclomatic complexity

4. Design complexity

5. Essential complexity

Fig. 11.1 Error, fault, and

defect

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 259

Thus, it can be very helpful in the development and maintenance of software if

the error proneness of a module can be detected at early stages of the development

process.

This chapter comprises of five more sections. Section 11.2 describes the past

work which is related to software error proneness prediction, artificial neural

network, and optimization algorithms. Section 11.3 comprises of the prediction

model and its three components: variable subset selection, GANN, and BMANN.

Section 11.4 describes the dataset used for experimentation purpose and the com-

plete setup of experiment. Section 11.5 shows the analysis of the performance of

prediction model, and the final section focuses on conclusion and future work.

11.2 Related Work

11.2.1 Artificial Neural Network

There have been several researches carried out which are related to training of

neural network. To train multilayer feed-forward network, an error

backpropagation method can be used [5]. A technique was proposed to increase

rate of convergence of artificial neural network in [6]. It highlighted the facts that

method of steepest descent is slow and various reasons behind it. To overcome the

problem, the paper proposed four heuristics suggesting that every weight of net-

work should be given its own learning rate and that these rates should be allowed to

vary over time.

Artificial neural network is a computation model which is inspired by the

nervous system and its working inside human body [7]. Neural network is a set of

connected input/output units where each connection between the units has a weight

associated to it as shown in Fig. 11.2. Backpropagation algorithm is applied over

multilayer feed-forward network. Multilayer feed-forward network consists of

three layers, namely, input layer, hidden layer, and output layer. It consists of one

input layer, one or more hidden layers, and an output layer. Each layer has several

neurons/processing units, which processes the data and produces the output.

The processing unit in each layer accepts inputs from the neurons of the previous

layer; inputs to the neurons of input layer are fed by the user and process them. The

processing unit applies activation function over the weighted input and produces

output [8] (Fig. 11.3).

Here x1, x2, . . ., xn are input values and w1, w2, . . ., wn are corresponding weight

values. These inputs and weights are multiplied correspondingly, and their sum is

found using Eq. 11.1.

netj ¼ x1w1 þ x2w2 þ � � � þ xnwn ð11:1Þ

260 A. Pal et al.

θj represents threshold which is applied to the processing unit. This unit applies

activation function over net input netj and threshold θj to produce output oj. Some of

the activation functions are:

• Step function

• Linear function

• Log-sigmoid function

• Tan-sigmoid function

Fig. 11.2 Artificial neural network

inputs
weights

Net input
Activation
function

transfer
function

threshold

activation

netj

xi....n
Oj

θj

jΣ

Fig. 11.3 Perceptron model (Adopted from Ref. [8])

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 261

Neural networks are highly advantageous to solving such problems which

include noisy data because they can easily predict the class for the instance which

they are not trained for. They are applicable on real world data which is related to

different fields, e.g., industrial data, hospital data, historical data and financial

transactions, etc.

One of the most popular methods to train the neural network is backpropagation

which was introduced in [5]. Backpropagation algorithm works in two phases:

learning phase and classification phase. During learning phase, training dataset is

fed into the network through input layer neurons. Input from input layer is directly

passed as the output of input layer and is presented as the input to first hidden layer.

All the hidden layers process their inputs using activation function and the weights

associated to them. Output of last hidden layer becomes input for the output layer.

Output layer neurons process the input provided to them and produces the output.

Calculated output is compared against the actual output and error is calculated. In

learning process this error is minimized by updating the weights with the consid-

eration of a factor called learning rate. Finally when the network is trained, it goes

through the testing phase and performs classification over testing data. In the

training dataset, the classes of data are already known, so this algorithm is a

supervised learning algorithm. Supervised learning consists of dataset where class

labels are known prior to the classification.

Neural network can be employed to solve many software engineering problems.

Neural network can be applied to various fields, e.g., autonomous vehicle control,

software effort estimation, software defect prediction, etc. Neural network is seen

as a highly nonlinear function. So training problem can be thought of as a general

function optimization problem, where weights and biases are to be adjusted. In that

case Levenberg-Marquardt algorithm [15] can be applied. It is a simple and robust

algorithm which is used for approximating a function. It is used to approach second-

order training speed without computing Hessian matrix. There are various issues

that neural network suffers from, e.g., local minima problem and overfitting of data.

An approach that improves backpropagation algorithm with the help of adaptive

gain is shown in [9]. The paper states that most of the gradient-based algorithms use

negative gradient of error for optimization of weights as a direction. This paper

presents the method to improve the efficiency of training algorithm by adaptively

modifying the search direction. The activation function of this algorithm uses the

value of gain parameter which adaptively modifies the search direction. Compar-

ative results have been shown on popular classification problems, Wisconsin breast

cancer classification problem and Iris classification problem. Results show that the

training efficiency of backpropagation algorithm gets increased by using proposed

method.

There are various other ways to train the neural network such as genetic

algorithm [10]. The paper proposed a method to combine the two approaches,

genetic algorithm and artificial neural network. It states that genetic algorithm

might help determine the structure of neural network, i.e., hidden layers and output

layer and weights of the neural network. It deals with finding the weights only and

does not go into the detail of restructuring the neural network. The paper presented

262 A. Pal et al.

a method where genetic algorithm is employed to determine the weights of the

network. The results of this approach are compared with the results that are

obtained when the neural network is trained by backpropagation algorithm. The

comparison shows that neural network along with genetic algorithm produces better

results.

11.2.2 Software Error Proneness Prediction

A method for software defect prediction has been proposed in [11] which used

classification tree on two datasets of NASA. Classification trees are very effective

to identify risky components. Basically, classification trees depend on metrics to

classify the data. For example, metrics which can be used to classify the data are

line of code, cyclomatic complexity, number of operators and operands, volume,

length, etc. It is an iterative process where the process is repeated at every node to

make decisions. This method proves to be efficient in the area of software defect

prediction, and results show the precision of 79.3%.

A high-performance neural network for software defect prediction was proposed

in [12]. It used a hybrid concept of support vector machine and artificial neural

network to predict the software defects on datasets provided by Promise repository.

The proposed methodology overcomes the issue of overfitting and also maximizes

the margin of classification. Proposed model is applied on three datasets which are

provided by NASA. Results of the proposed model have been compared with the

results of several other machine learning algorithms, e.g., KNN, RBF, C4.5, NB2,

and RIPPER.

Another technology was presented in [13] in which radial basis function has

been used to train neural network for software error proneness prediction. Results

are interpreted by using receiver operating characteristics analysis which uses the

values of area under the curve, sensitivity, and a cutoff threshold. The proposed

method is applied on the project and issue tracking system which is provided by

verification and validation program of NASA. Defects are classified into five levels

of severity from level 1 as most severe defect to level 5 as least severe defect. The

results show that the method works more efficient for level 1 defects than for level

5 defects.

Software defect prediction model with the help of fuzzy system was presented in

[14]. It introduces a bell-shaped function in hidden layer of the network which is

based on fuzzy logic. The neural network is trained with two hidden layers; first

hidden layer employs tan-sigmoid function, whereas second hidden layer employs

bell-shaped function. Fuzzy logic is advantageous in the sense that it works on

vagueness as a human brain works. So it can deal with vague concepts in order to

make decisions. It presents comparative results of error proneness prediction on

datasets provided by NASA in Promise repository. It compares the results of

proposed method with the results of other algorithms like backpropagation algo-

rithm, logistic regression and random tree, etc.

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 263

Another famous algorithm to train the neural network known as Levenberg-

Marquardt (LM) algorithm was used to predict the software error proneness in

[15]. The study of this paper suggests that neural network based on LM algorithm

provides better accuracy which is up to 88.09% as compared to other neural

network algorithm such as neural network based on linear function, neural network

based on polynomial function, and neural network based on quadratic function.

11.2.3 Optimization Algorithms

In the area of predicting software error proneness using neural network, many

research papers have been presented that focused on optimization of neural network

using various algorithms such as genetic algorithm, artificial bee colony algorithm,

particle swarm optimization, etc. A technique to optimize the process is proposed in

[16], which uses a hybrid approach of genetic algorithm and bagging technique to

predict the software defects. The method uses genetic algorithm for optimizing the

parameters of network and bagging technique to solve the problem of class imbal-

ance. They applied the proposed methodology on several datasets of NASA Prom-

ise repository and obtained efficient results. Results show that the method has

obtained a higher accuracy, so it concludes that the proposed methodology

improves the performance of neural network.

A cost-sensitive strategy to predict software error proneness is proposed in [17]

which suggests consideration of cost issues while developing the model. Earlier

methods do not consider the issue of cost which occurs in case of misclassifying the

defect-prone software modules. This paper considers three cost-sensitive boosting

algorithms which were used to boost the neural network. The first algorithm is

based on threshold, where threshold for classification is moved toward non-defect-

prone software modules, in order to predict the defect-prone software modules

correctly. The other two algorithms are based on weight-update rule. The data

samples which are related to misclassified defect-prone software modules are given

boosted weights in order to improve the cost of the procedure. The performances of

the proposed algorithms are compared on the data of NASA repository, and

normalized expected cost of misclassification is calculated. The results show that

the method of threshold works more effectively than other two methods.

Another cost-sensitive technique is presented in [18] which employs a hybrid

approach of artificial bee colony algorithm and neural network. In this approach

neural network has been trained by artificial bee colony algorithm to obtain optimal

weights. Artificial bee colony optimization intends to optimize the parameters of

false-positive rate and false negative rate which are multiplied by coefficients of

parametric cost. This approach is applied to the datasets of NASA which are

available in Promise repository. The results of the proposed methodology are

calculated in the following terms: normalized expected cost of misclassification,

probability of false alarm, accuracy, probability of detection, and area under the

curve.

264 A. Pal et al.

There is a latest optimization algorithm “bird mating optimizer” which is

proposed by Askarzadeh and Rezazadeh [19] to find the optimal weights of neural

network. The bird mating algorithm is used to optimize the training of artificial

neural network. They apply the model to some popular classification problems like

iris flower, Pima Indian diabetes, and Wisconsin breast cancer. So based on the

above survey, bird mating optimizer algorithm with neural network can be used to

model the software defect prediction system.

11.3 Prediction Model

Software error proneness prediction model is built with the help of artificial neural

network. Neural network is implemented using two hybrid methods: neural network

using genetic algorithm and neural network using bird mating optimizer algorithm.

Once both the methods are applied, their performances are analyzed. The overall

proposed model can be broken down into a series of different tasks as shown in

Fig. 11.4 and presented below:

1. Selection of useful variables with the help of genetic algorithm and mutual

information.

2. GANN – Artificial neural network is trained by genetic algorithm. Predicting

software error proneness using a hybrid approach of genetic algorithm and

neural network learning.

3. BMANN – Artificial neural network is trained by bird mating algorithm.

Predicting software error proneness using a hybrid approach of bird mating

optimizer and neural network learning.

11.3.1 Variable Subset Selection

Variable subset selection can also be known as feature selection and attribute

selection. It is a preprocessing task, where complexity of data is decreased by

reducing the number of features or attributes [20]. The dataset, which is given for a

particular task, contains a number of attributes, out of which certain attributes are

relevant, i.e., either they are of no use or they provide redundant information. It is

suggested that if those irrelevant attributes are removed before beginning the actual

process, it might reduce the complexity of process and increase the performance of

model.

Hanchuan Peng et al. proposed an algorithm which can be used for feature

selection in [21]. The algorithm is based on the principle of minimum redundancy

and maximum relevance between the attributes and target class. The relevance and

redundancy can be computed with the help of mutual information, distance score,

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 265

correlation, or similarity scores. The overall objective of the method is to maximize

the relevance between the features and target class, and reducing the redundancy

between the features [20, 21].

The relevance between the set of feature and the target class can be calculated as

follows:

D S; cð Þ ¼ 1

sj j
X

f i2s
I f i; cð Þ ð11:2Þ

where S is the set of features, c represents the class vector, fi represents the

individual feature, and I stand for mutual information.

The redundancy between the features of a set can be calculated as follows:

R Sð Þ ¼ 1

sj j2
X

f i , f j2s
I f i; f j

� �
ð11:3Þ

where fi and fj are the features of set S.
The mRMR criterion can be computed by the following formula:

mRMR ¼ max D S; cð Þ � R Sð Þð Þ ð11:4Þ

The mRMR criterion defines the suitability and optimality of the subset which is

selected. This criterion can be optimized by selecting different subset of variables.

Genetic Algorithm is used to select
features based on the principle of

maximum relevance minimum
redundancy

5 features

21 features

Bird Mating
optimizer

Bird Mating Optimizeris used
to train the neural network

Genetic Algorithm

Genetic Algorithm is used to
train the neural network

Artificial
Neural
Network

Artificial
Neural
Network

Analysis

Mutual
Information

Feature
Selector

Fig. 11.4 Prediction model

266 A. Pal et al.

This task has been achieved with the help of genetic algorithm in the proposed

model of this work.

The dataset provided by NASA contains 21 variables on which software error

proneness depends. But it is not relevant to use all the 21-variable attributed dataset

as it would lead to a complicated computation and produce improper results. There

are certain attributes which are important and relevant to classify the software into

respective categories, whereas remaining attributes do not contribute much to the

model of error proneness prediction.

In this approach, mutual information is calculated in four different ways: Hx,

mutual information of each feature; Hy, mutual information of output feature;

MIxy, mutual information between one input feature and output feature; and

MIxx, mutual information between each pair of input features. These four sets of

mutual information are used to select those features that have maximum relevance

with output feature. Mutual information between two random variables x and y is

calculated using probability density functions of variables p(x) and p(y) and joint

probability density function p(x,y) using Eq. 11.5.

I x; yð Þ ¼
ZZ

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ dxdy ð11:5Þ

Genetic algorithm is used to optimize the solution. Initial population consists of

a large number of chromosomes, i.e., 200 times the number of features to be

selected. For example, if five variables are to be selected, then initial population

consists of 1000 chromosomes. Each chromosome consists of random integer

numbers within the range of indices of features. Hx, Hy, MIxy, and MIxx are

calculated using the above given formula. The fitness function of genetic algorithm

is based on the principle of maximum relevancy and minimum redundancy, i.e., a

feature should be highly relevant to target class and there should be minimum

redundancy between the features [21]. Fitness value of each chromosome is calcu-

lated using the given formula in Eq. 11.6.

S ¼ mean MIxy� c∗mean MIxy ð11:6Þ

where, mean_MIxy denotes mean relevance of the chromosome, i.e., mean value of

mutual information, MIxy, between input feature and target class, and mean_MIxx

denotes the mean redundancy of the chromosome, i.e., mean value of mutual

information, MIxx, between input features. It is a maximization function as the

function has to be maximized by genetic algorithm to find relevant features. The

higher the value of fitness function, the better is the quality of chromosome. Each

individual chromosome is ranked based on its fitness value. Now crossover is

performed between two parent individuals. Two indices of chromosomes, pai and

mae, are selected randomly using asymmetric distribution [22]. Crossover is

performed using the pseudocode of module crossover_feature_selection().

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 267

crossover_feature_selection()

for i = 1 to req_features

if r > 0

offspring(i) = pai(i)

else

offspring(i) = mae(i)

where r is random number between 0 and 1. After performing crossover for every

individual, the fitness value of each offspring is calculated. A parent chromosome is

replaced by its offspring if its fitness value is less than the fitness value of offspring

and a new population is generated. This process is iterated until a maximum number

of generations are produced or an optimal solution is achieved.

11.3.2 GANN: Genetic Algorithm-Based Neural Network

Genetic algorithm is inspired by the process of natural evolution [23]. It is an

adaptive heuristic search algorithm that is inspired by and based on the idea of

natural selection and genetics. Genetic algorithm provides a general solution and is

applicable to any search space. It is applied in the areas of which very little is

known. The only information needed is that which of the solutions will be good to

solve the problem. It uses the principle of evolution and search for an optimal

solution out of several given solutions to a problem. Genetic algorithm is mainly

used to solve optimization problem. It is used to simulate the process of natural

evolution which is based on the principle of “survival of fittest.”

In genetic algorithm, following terminology is used:

• Individual: It represent a possible solution to the given problem.

• Population: It is the collection of all individuals.

• Search space: It refers to the space which contains all the possible solutions.

• Chromosome: It represents a set of properties of each individual

• Selection: Selection of an individual according to a predefined criterion.

• Fitness function: It is a function which describes fitness of each individual.

• Crossover: A process where two individual exchange their chromosomes.

• Mutation: A process to randomly modify individual.

Genetic algorithm works upon a population of individual where each individual

represents a possible solution to the given problem [24]. Each individual has a set of

properties which are referred to as chromosomes. These individuals are encoded

using several encodings, e.g., binary encoding, real-number encoding, etc. Genetic

algorithm heads toward an optimal solution in the search space where the optimal-

ity of each solution is defined by the fitness function. Fitness function is a criterion

that defines the extent to which the solution is fit for the problem.

268 A. Pal et al.

It is an iterative process as shown in Fig. 11.5, which is started by initializing a

random population of individuals and in each iteration a population is called a

generation. In each iteration, fitness function is applied over each individual to

calculate the fitness. Once the fitness of every individual is obtained, some indi-

viduals are selected that best suit the solution of the problem. Individuals can be

selected via different mechanisms such as rank selection method, roulette wheel

selection, etc. After selecting the individuals, two genetic operators, crossover and

mutation, are applied over the individuals. Crossover is performed between two

parent individuals to create offspring. Mutation is performed to randomly modify

individuals by altering the genes. Once the genetic operators are applied, new

generation is formed with the individuals that passes the fitness criterion. There

are certain termination conditions, and, if they are satisfied, the process stops;

otherwise, the process iterates to produce next generations. Termination conditions

for genetic algorithm are:

• If a solution that optimally suits the problem is found

• If predefined number of generations are evolved

• Manual inspection

• Combination of all or any of the above

In the context of GANN model, genetic algorithm is used to train the neural

network. It is used to find the network weights which would predict the best results

and obtain a reasonable accuracy [25]. Neural network trained with gradient

descent method has a tendency to converge at those weights which are not actually

the best suitable weights for the network, whereas genetic algorithm due to its

searching patterns searches the best suited weights for the neural network. To train

the neural network by genetic algorithm, a weight set represents an individual

which has been encoded as real numbers. The weight set contains all the weights

and biases of network which are to be optimized. The fitness value of each

individual can be calculated by the error obtained between actual output and desired

output of the neural network using Eq. 11.7.

fit ið Þ ¼ 1

mse ið Þ ð11:7Þ

where fit(i) represents the fitness value of individual i and mse(i) represents the

mean square error which is obtained by applying the weights of individual i to
artificial neural network. Initially a population of individuals is generated using

random numbers that lie within a specific range. Now genetic algorithm is

implemented in three core steps: selection, mating, and next generation. Selection

process selects an individual based on some criterion as defined by the algorithm

[26]. There are several criteria to select an individual, e.g., roulette wheel selection,

rank selection and tournament selection, etc. Here roulette wheel selection is used

to select the variables. Roulette wheel selection is dependent on the probability each

individual gets based on its fitness value. The probability pk of each individual k is
calculated by Eq. 11.8.

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 269

pk ¼
fit kð ÞPm
i¼1 fit ið Þ

ð11:8Þ

where fit(k) is the fitness value of individual k. Now each individual is given a range

according to its probability. A random number is used for the selection of an

individual. If the random number lies within the range of a particular individual,

then that individual is selected; otherwise not. Once two parent individuals i and
j are selected, they are ready for mating purpose. Mating defines two processes

crossover and mutation. Crossover between the parents is done using the

pseudocode of module crossover_genetic_algorithm().

crossover_genetic_algorithm(individual(i), individual(j))

offspring(1) = individual(i) * (1 - rand) + individual(j) * rand

offspring(2) = individual(j) * (1 - rand) + individual(i) * rand

where rand is a random number between 0 and 1.

Mutation is done to introduce random modifications to offspring i. Mutation can

be done using pseudocode of module mutation_genetic_algorithm().

Fig. 11.5 Flow chart of

genetic algorithm

270 A. Pal et al.

mutation_genetic_algorithm(offspring(i))

if r and1< mcf

offspring(i) = offspring(i) + offspring(i) * (u – l) * fg

where l and u are lower bound and upper bound that define the range of individuals,
rand1 is a random number between 0 and 1, mcf is mutation control factor, and fg
can be calculated by Eq. 11.9.

fg ¼ rand2∗ 1� g

Gmax

� �
ð11:9Þ

where rand2 is a random number between 0 and 1, g represents the current

generation, and Gmax represents maximum number of generations. Having cross-

over and mutation applied successfully, a new population of individuals is obtained.

The individuals in new population may replace parent individuals if they are better

than parents. Their fitness value can be calculated using fitness formula described

by Eq. 11.7. The higher the fitness value, the better the individual is. When a new

generation is achieved, the entire process can be repeated until the termination

criteria are not satisfied. Termination criteria can be one of the reasons as stated

before. The entire process is described the pseudocode of module gann().

gann()

Initial Parameters

Initialize various parameters such as, population size (n),

initial population (pop), number of generations (Gmax), mutation

control factor (mcf), lower and upper bound of random numbers of a

candidate solution (l and u respectively)

Do

for i=1 to n

Calculate fit (i) using Eq. 7

end

for i = 1 to n

Calculate pk using Eq. 8

end

for i = 1 to n

Apply roulette wheel selection to select two parents j

and k using probabilities pj and pk

crossover_genetic_algorithm(individual(j), indivi-

dual(k)) using module 3.2.1

end

(continued)

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 271

for i = 1 to n

Select a random number, r

If r < mcf

Mutation_genetic_algorithm(offspring(i)) using

module 3.2.2

end

Replace older generation by new generation based on the fitness

value of individuals

Until termination condition is satisfied

11.3.3 BMANN: Bird Mating Algorithm-Based Neural
Network

BMO algorithm is inspired by the evolution process of birds and tries to simulate

the process to optimize the solution. BMO has been proved efficient because it

exploits distinct moving patterns to search in search space [19]. Mating process in

birds is very similar to an optimization problem. In mating process, birds try to

breed with another bird that has best quality genes, because birds with best quality

genes live longer. During mating season, several features of birds such as singing,

dancing, beak, tail, wing, etc. are considered. To produce a brood of higher quality,

different strategies are employed by birds. There are four strategies which are

employed by birds: monogamy, polygyny, polyandry, and promiscuity. These are:

• Monogamous bird: It refers to a male bird that mates with only one female bird.

• Polygynous bird: It refers to a male bird that mates with several female birds.

• Polyandrous bird: It refers to a female bird that mates with several male birds.

• Promiscuous bird: It is a mating strategy with unstable relationship, and the male

bird will never see his brood and female bird.

Now the above four strategies can be simulated to solve an optimization prob-

lem. BMO algorithm is an iterative process which is shown in Fig. 11.6 and

generates a population of individuals in each iteration where each population is

called a society and each individual is referred to as a bird. There are four types of

individuals (birds) in the society – monogamous, polygynous, polyandrous, and

promiscuous – which are used to find an optimal solution. In this algorithm

X denotes a set of birds where X¼ a[b[c[d and a, b, c, d represents a set of

monogamous birds, polygynous birds, polyandrous birds, and promiscuous birds,

respectively. The gene vector of each bird is represented as x(X)¼ (x(X,1), x
(X,2),. . ., x(X,n)). For reducing the complexity, let us assume that only brood is

produced when mating happens between the birds. This iterative process continues

to breed among the society until maximum number of generations is produced.

272 A. Pal et al.

In this algorithm, it is proposed that the birds can change their types in different

iterations according to their fitness value. The birds which have highest fitness

value are chosen as polyandrous birds. The birds which have worst fitness value are

selected and removed from the new generation and replaced by new birds. These

new birds are referred to as promiscuous birds. Now the birds that have second best

fitness value are chosen as monogamous birds, whereas remaining birds are con-

sidered in the category of polyandrous birds. Monogamous birds have fitness value

better than polyandrous birds. The percentage of four types of birds is determined

manually.

In the context of BMANN model, bird mating algorithm is used to train the

neural network. Each bird represents a weight set, which consists of weights of the

connections of neural network. The weight set is encoded using real numbers. A

society of different weight sets (birds) is created which consists of four types of

birds: monogamous, polygynous, polyandrous, and promiscuous. These birds are

specified using the value of fitness function. Fitness function for this approach is

defined by Eq. 11.7. The birds with worst fitness value are disposed, and new birds

Start

Initialize the Society and calculate
quality of each bird

Sort the birds according to fitness
value

Remove worst birds and generate
promiscuous ones

Specify interesting elite partners for each
category of bird and produce the brood

Perform replacement stage

Is Termination
criterion met?

Yes

End

No

Fig. 11.6 Flow chart of

bird mating algorithm

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 273

are generated that are known as promiscuous birds. The birds with highest fitness

value are categorized as polyandrous birds, the birds with second highest fitness

value are referred to as monogamous, and the remaining birds are categorized as

polygynous birds. In society of birds, monogamous and polygynous birds form the

larger part of the society, whereas polyandrous and promiscuous birds form the

smaller part of the society. Once the types of birds are specified, interesting elite

partners for each kind of bird are specified.

Roulette wheel selection is used to obtain the interesting elite female birds for

monogamous birds and interesting elite female birds for promiscuous birds. The

better the value of fitness function, the higher is the probability of bird being

selected for mating. Out of m birds, the selection probability of kth bird is given

by Eq. 11.10.

pk ¼
fit kð ÞPm
i¼1 fit ið Þ

ð11:10Þ

where fit(k) is the fitness value of the bird k. Each bird is assigned a particular range
based on the calculated selection probability. To select an interesting elite female

bird, a random number is generated. Now the bird, whose range contains the

random number, is selected as elite female bird for monogamous bird or promis-

cuous bird as the case may be.

Annealing function is used to obtain interesting elite female birds for polygy-

nous birds and interesting elite male birds for polyandrous birds. Annealing func-

tion calculates the probability for polygynous and polyandrous birds to mate with

their respective partners. The probability is calculated using Eq. 11.11.

Pr ¼ exp
�Δf
T

� �
ð11:11Þ

where Pr defines the probability, Δf defines the absolute difference between the

fitness value of bird under consideration and the corresponding partner, and T is the

parameter to adjust the probability. Now a random number is generated; if that

number is less than Pr, then the corresponding partner is selected; otherwise not.

After the process of specifying the elite birds, mating is performed and fitness value

is calculated.

Monogamous birds and promiscuous birds produce the brood in similar manner

using pseudocode of module monogamous_promiscuous().

monogamous_promiscuous(x(a), x(ef))

if rand1 < mut_ctr_fac

x(brood) = x(a) + wt � rand2 � (x(ef) – x(a))

else

x(brood) = x(a) + mutw � ((rand3 - rand4) � (ub – lb))

274 A. Pal et al.

where rand1, rand2, rand3, and rand4 are random numbers, wt denotes weight that
varies with time, mutw is the weight for mutation, and ub and lb are upper and lower
bounds on values of birds. x(a) represents the bird for mating and x(ef) represents its
elite female partner.

Polygynous birds and polyandrous birds produce the brood in similar manner

using pseudocode of module polygynous_polyandrous().

polygynous_polyandrous(x(b), x(eb))

if rand1 < mut_ctr_fac

x(brood) = x(b) + wt� (n
i=1 randi � (x(eb) – x(a))) / n

else

x(brood) = x(b) + mutw � ((rand2 – rand3) � (ub – lb))

where n is the number of birds required in mating for a polygynous or a

polyandrous bird.

In the process of optimization, a defined percentage of birds with worst fitness

value are discarded, and new birds, promiscuous birds, are generated using

pseudocode of module new_promiscuous(). x(b) represents the bird for mating

and x(eb) is a set of elite partner birds.

new_promiscuous()

x(d) = l + zgen � (u - l)

zgen+1 = 4 � zgen � (1 - zgen)

where z is a variable whose initial value is generated randomly. This process

continues until a maximum number of societies (generations) have been generated

or an optimal set of weights has been obtained. The entire process is described the

pseudocode of module bmann().

bmann()

Initialization

Initialize various parameters such as society size (n),

proportion of different birds, number of generations (max_gen),

mutation control factor (mut_ctr_fac) and other controlling

parameters

Do

for i=1 to n

Calculate fit(i) of each bird i, using Eq. 7

(continued)

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 275

end

Sort(birds) in decreasing order of fit(i)

Categorize different types of birds as a, b, c, d as

monogamous, polygynous, polyandrous and promiscuous birds

respectively

Discard birds(d), i.e., worst birds of the society and

generate new set of birds, new_birds(d), using new_promisc-

uous() module3.3.3

for i=1 to d

calculate fit(new_birds)

end

for i to a

Applyroulettewheelselectiontoselectaninteresting

elite female bird, bird(ef) using Eq. 10.

monogamous_promiscuous(bird(i), bird(ef)) using

module 3.3.1

end

for i to b

Apply annealing function to select a set of interesting

elite female birds, bird_set, using Eq.11.

polygynous_polyandrous(bird(i), bird_set) using

module 3.3.2

end

for i to c

Apply annealing function to select a set of interesting

elite male birds, bird_set, using Eq. 11.

polygynous_polyandrous(bird(i), bird_set) using

module 3.3.2

end

for i to d

Applyroulettewheelselectiontoselectaninteresting

elite female bird, bird(ef) using Eq. 10.

monogamous_promiscuous(bird(i), bird(ef)) using

module 3.3.1

end

Replace older society by new society based on their fitness value

Update different parameters accordingly

Until termination condition is satisfied

276 A. Pal et al.

11.4 Experimental Setup

The entire process of the proposed prediction model is simulated in MATLAB.

Complete process starts with extracting features from the datasets. Two models for

predictions GANN and BMANN have been used and implemented. Overall process

is implemented in three major steps:

1. Selecting relevant features with the help of genetic algorithm

2. Implementing GANN, genetic algorithm to train artificial neural network

3. Implementing BMANN, bird mating optimizer algorithm to train artificial

neural network

11.4.1 Dataset

Promise Software Engineering Repository provides five different datasets for the

purpose of software defect prediction model. These datasets are created by NASA

MDP (metrics data program) and are made available publicly [3]. These datasets

contain the data of software which are written in different programming languages

such as C and C++. The five datasets are as follows:

• CM1: It is the dataset which contains data of the functions written in C. It has

498 instances attributed by 21 metrics, out of which 449 instances represent

“false” class and 49 instances represent “true” class.

• JM1: It is the dataset which contains data of the functions written in C. It has

10,885 instances attributed by 21 metrics, out of which 2106 instances represent

“false” class and 8779 instances represent “true” class.

• KC1: It is the dataset which contains data of the functions written in C++. It has

2109 instances attributed by 21 metrics, out of which 326 instances represent

“yes” class and 1783 instances represent “no” class.

• KC2: It is the dataset which contains data of the functions written in C++. It has

522 instances attributed by 21 metrics, out of which 105 instances represent

“yes” class and 415 instances represent “no” class.

• PC1: It is the dataset which contains data of the functions written in C. It has

1109 instances attributed by 21 metrics, out of which 77 instances represent

“false” class and 1032 instances represent “true” class.

The dataset contains 21 attributes which are categorized as 5 different lines of

code, 3 McCabe metrics, 4 base Halstead metrics, 8 derived Halstead metrics,

1 branch count, and 1 class label as shown in Fig. 11.7.

The datasets which contain McCabe and Halstead metrics only are able to

predict the error proneness of the software system because of the arguments

presented by McCabe and Halstead. McCabe argued that the codes which have

complex pathways are more error prone, i.e., codes with complex structure have

more tendency to contain errors. Halstead argued that the code which is not

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 277

properly readable or hard to read has more tendency to contain errors. So based on

these two arguments, McCabe and Halstead metrics are able to provide the infor-

mation about whether the software might contain errors or not.

Each dataset is divided into two parts – training dataset (70%) and testing dataset

(30%). The training dataset is used to build the model. The feature selection module

is applied over training dataset, which gives five relevant attributes as result. The

data of these attributes are extracted from training dataset and are fed into GANN

module and BMANN module to perform training. The testing dataset along with

optimal weights is applied to both the modules, and accuracy is measured once the

optimal weights of neural network are obtained. Receiver operating characteristic

curve is plotted to analyze the performance of both the models.

11.4.2 Genetic Algorithm-Based Feature Selection

Genetic algorithm-based feature selection employs the calculation of mutual infor-

mation between different attributes internally. This process accepts

feature_number, i.e., number of features to be selected. Several other parameters

which are required for the algorithm are as follows:

Fig. 11.7 Dataset and its

attributes

278 A. Pal et al.

• Feature_number ¼ 5

• Individual_size ¼ feature_number

• Population_size ¼ 200 * feature_number

• Elite ¼ 1

• Max_gen ¼ 80

• Calculation of Hx, Hy, MIxy, and MIxx

After successful completion of the process, it gives a set of numbers which

represent the extracted features. In context of this work, five features are selected.

Data belonging to these features can be fed into neural network which has five

neurons in its input layer. The output layer of neural network contains only one

neuron which is used for prediction.

11.4.3 GANN: Genetic Algorithm-Based Neural Network

An artificial neural network is constructed in MATLAB which contains three

layers, input layer with five neurons, hidden layer with ten neurons, and an output

layer with only one neuron. Log-sigmoid (logsig) is used at both layers as the

transfer function for calculating the output of each neuron. The connections

between the neurons bear some weight value, and threshold is applied to neurons.

There are 71 values of weights and threshold which are to be optimized using

genetic algorithm. To set up the genetic algorithm, several parameters are required:

• Individual_size ¼ 71

• Population_size ¼ 100

• Weights are searched in a range of [�5, 5]: l ¼ �5, u ¼ 5

• mcf ¼ 0.001

• max_gen ¼ 50

After successful completion of this process, the optimal set of weights and

thresholds is achieved. But being a stochastic process, the algorithm does not

produce an accurate solution every time it executes. So, the algorithm is run

100 times to generate 100 optimal solutions. A best solution out of 100 solutions

is selected as the weight set of the neural network.

11.4.4 BMANN: Bird Mating Algorithm-Based Neural
Network

Similar to the above process, an artificial neural network is constructed with three

layers where the input layer contains five neurons, the hidden layer contains ten

neurons, and the output layer contains only one neuron. Logsig is applied to the

neurons. This algorithm contains a society of birds, where each bird consists of a

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 279

vector of 71 values, where each value corresponds to a weight or bias of the

network. To set up the bird mating optimizer algorithm, several parameters are

required:

• Bird_size ¼ 71

• Society_size ¼ 100

• Monogamous birds ¼ 50% of society

• Polygynous birds ¼ 35% of society

• Polyandrous birds ¼ 10% of society

• Promiscuous birds ¼ 5% of society

• Weights are searched in a range of [�5, 5]: l¼�5, u¼5

• T, wt, and mutw are linearly decreasing functions with initial values: T¼ [300,

50], wt¼ [2.5, 0.5], and mutw¼ [0.1, 0.0001]

• mut_ctr_fac ¼ 0.9

• max_gen ¼ 50

After successful completion of this process, an optimal set of weights and biases

is achieved, which can be applied to neural network for prediction. The entire

process can be run over 100 times to improve the accuracy.

11.5 Analysis of GANN and BMANN

Once GANN and BMANN models are implemented and their results are obtained,

receiver operating characteristic (ROC) curve is plotted for each dataset to analyze

the performance of both models. But before implementing GANN and BMANN,

there was a preprocessing task of selecting relevant features from the given set of

features. The model selects five attributes from each dataset. Table 11.1 shows the

attributes that are selected from different datasets.

11.5.1 ROC Curves

11.5.1.1 CM1

ROC curve for dataset “CM1” is shown in Fig. 11.8, which shows the performance

of both the models. Curves clearly show that the performance of BMANN is better

than GANN. In ROC curve analysis, GANN shows greater false-positive rate than

BMANN which is not suitable to be accepted.

280 A. Pal et al.

11.5.1.2 JM1

ROC curve for dataset “JM1” is shown in Fig. 11.9, which shows the performance

of both the models. Curves of this dataset do not show a significant advantage of

BMANN over GANN, but according to actual values BMANN performs better than

GANN. In ROC curve analysis, BMANN reaches to a higher true positive rate than

GANN, which is desirable.

11.5.1.3 KC1

ROC curve for dataset “KC1” is shown in Fig. 11.10, which shows the performance

of both the models. Curves clearly show that the performance of BMANN is better

Table 11.1 Relevant feature for each dataset

Dataset Attribute1 Attribute2 Attribute3 Attribute4 Attribute5

CM1 iv(g) l e locode locodeandcomment

JM1 iv(g) l e t locodeandcomment

KC1 ev(g) l e t locodeandcomment

KC2 ev(g) l e t locodeandcomment

PC1 ev(g) l e t locodeandcomment

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
0 0.1 0.2 0.3 0.4 0.5

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

0.6 0.7 0.8 0.9 1

GA
BMO

Fig. 11.8 ROC for dataset “CM1”

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 281

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.04

0.02

0
0 0.1 0.2 0.3 0.4 0.5

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

0.6 0.7 0.8 0.9

GA
BMO

Fig. 11.9 ROC for dataset “JM1”

0.06

0.08

0.1

0.12

0.14

0.04

0.02

0
0 0.1 0.2 0.3 0.4 0.5

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

0.6 0.7 0.8 0.9

GA
BMO

Fig. 11.10 ROC for dataset “KC1”

282 A. Pal et al.

than GANN. In ROC curve analysis, BMANN shows desirable results, i.e., it

reaches to a higher true positive rate than GANN.

11.5.1.4 KC2

ROC curve for dataset “KC2” is shown in Fig. 11.11, which shows the performance

of both the models. Curves clearly show that the performance of BMANN is much

better than GANN. In ROC curve analysis, GANN shows greater false-positive rate

than BMANN, but on the other hand it reaches higher true positive rate too.

11.5.1.5 PC1

ROC curve for dataset “PC1” is shown in Fig. 11.12, which shows the performance

of both the models. Curves of this dataset do not show a significant advantage of

BMANN over GANN, but according to actual values BMANN performs better than

GANN. In ROC curve analysis, GANN shows greater true positive rate than

BMANN, but its false-positive rate is also higher than BMANN, which makes it

less significant than BMANN.

0.06

0.08

0.1

0.12

0.14

0.04

0.02

0
0 0.1 0.2 0.3 0.4 0.5

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

0.6 0.7 0.8 0.9

GA
BMO

Fig. 11.11 ROC for dataset “KC2”

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 283

11.5.2 Accuracy

Accuracy of both models (GANN and BMANN) for every dataset is analyzed using

ROC. Table 11.2 shows the accuracy (%) of GANN and BMANN for every dataset.

Comparison of their accuracy can be analyzed through the bar graph, which is

shown in Fig. 11.13.

The comparison clearly shows that the accuracy of BMANN is better than

GANN for each dataset. Bird mating optimizer algorithm produces better results

as compared to genetic algorithm in the process of software error proneness

prediction.

11.6 Conclusion and Future Work

This work attempts to emphasize the error proneness of software. Based on the

value of different software matrices and past experience, it can be predicted

whether the software is error prone or not. The prediction might help a lot of

engineers to reduce the overhead of testing and produce high-quality software

products. A lot of work has been done in this area, but this article attempts to

improvise the performance of prediction using the hybrid approach of artificial

neural network and bird mating optimizer algorithm. The results which are

0.03

0.08

0.04

0.05

0.06

0.07

0.02

0.01

0
0 0.1 0.2 0.3 0.4 0.5

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

0.6 0.7 0.8 0.9

GA
BMO

Fig. 11.12 ROC for dataset “PC1”

284 A. Pal et al.

produced from five different datasets, provided by NASA Promise repository, show

that bird mating optimizer is efficient with respect to genetic algorithm when

applied to the training process of artificial neural network. BMANN gives more

accurate results than GANN. BMANN works efficiently than GANN. It might be

because BMO in BMANN has more exhaustive and more rigorous searching

patterns than GA.

11.6.1 Future Work

GANN and BMANN both train the neural network for prediction of software error

proneness. This work can be extended to improve the parameters of BMANN. The

parameters that are required in BMANN are decided using error and trial method,

Table 11.2 Accuracy of

GANN and BMANN
Dataset GANN (%) BMANN (%)

CM1 87.24 93.95

JM1 76.72 80.88

KC1 82.27 86.23

KC2 75.64 80.76

PC1 88.34 91.96

100

90

80

70

60

50

40

30

20

10

0

GANN
BMNN

CM1 JM1 KC1
Dataset

KC2 PC1

A
cc

ur
ac

y(
%

)

Fig. 11.13 Accuracy comparison of GANN and BMANN

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 285

but these parameters can be set using a definite method. The performance of

BMANN can be further improved by optimizing the model parameters. Before

applying BMANN to the dataset, the dataset can be preprocessed to produce more

effective results. The emphasis can be given to improve the accuracy of GANN and

BMANN in the future.

References

1. Ghezzi C, Jazayeri M, Mandrioli D (2002) Fundamentals of software engineering. Prentice

Hall PTR, Upper Saddle River

2. Sandhu PS, Goel R, Brar AS, Kaur J, Anand S (2010) A model for early prediction of faults in

software systems. In: Computer and Automation Engineering (ICCAE), 2010 The 2nd Inter-

national Conference on, vol 4. IEEE, pp 281–285

3. NASA (2005) PROMISE DATASETS PAGE. Retrieved November 4, 2016, from http://

promise.site.uottawa.ca/SERepository/datasets-page.html

4. Board I (1993) IEEE standard classification for software anomalies. IEEE Std, 1044

5. Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error

propagation (No. ICS-8506). CALIFORNIA UNIV SAN DIEGO LA JOLLA INST FOR

COGNITIVE SCIENCE

6. Jacobs RA (1988) Increased rates of convergence through learning rate adaptation. Neural

Netw 1(4):295–307

7. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier

8. Convolutional neural networks for visual recognition. Retrieved November 4, 2016, from

http://cs231n.github.io/neural-networks-1/

9. Nawi NM, Ghazali R, Salleh MNM (1995) An approach to improve back-propagation algo-

rithm by using adaptive gain. Off J Biomed Fuzzy Syst Assoc 125

10. Perez S (2008) Apply genetic algorithm to the learning phase of a neural network

11. Porter AA, Selby RW (1990) Empirically guided software development using metric-based

classification trees. IEEE Softw 7(2):46–54

12. Askari MM, Bardsiri VK (2014) Software defect prediction using a high performance neural

network. Int J Soft Eng Appl 8(12):177–188

13. Jindal R, Malhotra R, Jain A (2014) Software defect prediction using neural networks. In:

Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Direc-

tions), 2014 3rd International Conference on. IEEE, pp 1–6

14. Gayathri M, Sudha A (2014) Software defect prediction system using multilayer perceptron

neural network with data mining. Int J Recent Technol Eng 3:54–59

15. Singh M, Salaria DS (2013) Software defect prediction tool based on neural network. Int J

Comput Appl 70(22):22–28

16. Wahono RS, Herman NS, Ahmad S (2014) Neural network parameter optimization based on

genetic algorithm for software defect prediction. Adv Sci Lett 20(10–11):1951–1955

17. Zheng J (2010) Cost-sensitive boosting neural networks for software defect prediction. Expert

Syst Appl 37(6):4537–4543

18. Arar ÖF, Ayan K (2015) Software defect prediction using cost-sensitive neural network. Appl

Soft Comput 33:263–277

19. Askarzadeh A, Rezazadeh A (2013) Artificial neural network training using a new efficient

optimization algorithm. Appl Soft Comput 13(2):1206–1213

20. Liu H, Motoda H (2012) Feature selection for knowledge discovery and data mining, vol 454.

Springer, New York

286 A. Pal et al.

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://cs231n.github.io/neural-networks-1/

21. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of

max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell

27(8):1226–1238

22. Ludwig O, Nunes U (2010) Novel maximum-margin training algorithms for supervised neural

networks. IEEE Trans Neural Netw 21(6):972–984

23. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

24. Obitko M (1998) Main page – introduction to genetic algorithms – tutorial with interactive

java applets. Retrieved November 4, 2016, from http://www.obitko.com/tutorials/genetic-

algorithms/

25. Leung FHF, Lam HK, Ling SH, Tam PKS (2003) Tuning of the structure and parameters of a

neural network using an improved genetic algorithm. IEEE Trans Neural Netw 14(1):79–88

26. Jiang J (2013) BP neural network algorithm optimized by genetic algorithm and its simulation.

Int J Comput Sci 10:1

11 Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm 287

http://www.obitko.com/tutorials/genetic-algorithms/
http://www.obitko.com/tutorials/genetic-algorithms/

Chapter 12

Improved Agile: A Customized Scrum
Process for Project Management in Defense
and Security

Luigi Benedicenti, Paolo Ciancarini, Franco Cotugno, Angelo Messina,
Alberto Sillitti, and Giancarlo Succi

12.1 Introduction and Motivation

Developing software has become an increasingly more complex endeavor, espe-

cially in well-established domains with rich semantics and multiple, often

conflicting needs coming from multiple customers. In the armed forces domain,

these factors have traditionally been addressed via rigid development processes.

Such processes seemed to conform well to the highly hierarchical structure believed

to be integral part of a military organization. But today this is no longer the case.

Asymmetric opponents, multiple conflicting needs, and the imperative for a

high-quality, flexible, and agile response have changed military doctrine pro-

foundly. Although the effect of multiple, rapidly changing requirements coming

from different actors had been identified for a relatively long time – Clausewitz was

arguably the first to systematize the study of this effect and called it “friction” [1] –

only recently has it come to bear on the creation of complex support tools like

command and control systems or logistic management systems.

L. Benedicenti

University of Regina, Regina, Canada

e-mail: luigi.benedicenti@uregina.ca

P. Ciancarini

University of Bologna, Bologna, Italy

e-mail: paolo.ciancarini@unibo.it

F. Cotugno

Italian Army General Staff, Rome, Italy

e-mail: franco.cotugno@esercito.difesa.it

A. Messina • A. Sillitti (*) • G. Succi

Innopolis University, Innopolis, Russian Federation

e-mail: a.messina@innopolis.ru; a.sillitti@innopolis.ru; g.succi@innopolis.ru

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_12

289

mailto:luigi.benedicenti@uregina.ca
mailto:paolo.ciancarini@unibo.it
mailto:franco.cotugno@esercito.difesa.it
mailto:a.messina@innopolis.ru
mailto:a.sillitti@innopolis.ru
mailto:g.succi@innopolis.ru

In addition to these considerations, new restraints in the defense budgets have

effected a deep cultural change in the armed forces. For example, the US Depart-

ment of Defense has changed its procurement policies to allow for common off-the-

shelf equipment to be sourced instead of specialized equipment. Software produc-

tion, however, is changing less rapidly, due in part to the absence of reliable

methods to deal with complexity and rapid change in an already well-structured

environment.

On the other hand, software cost per executable line of code (ELOC) or function

point has decreased significantly in the commercial world in the last decade due to

effectiveness of the latest generation of programming languages and the availability

of open-source computer-aided software engineering (CASE) tools. Moreover, the

adoption of agile development methods appears to have contributed to increased

software development effectiveness and efficiency in those contexts.

At the General Staff of the Italian Army, these factors have led to the internal-

ization of its software development, which requires contractors to work with a mix

of civilian and military development teams. In turn, this has led to the creation of a

new software development process, based on agile principles, and more specifically

on scrum, called iAgile (for improved Agile).

Project management is an integral part of this process, because even in an agile

context, it is still necessary to respond to the needs of the armed forces, chief among

which are security and customer satisfaction. Drawing on the principles of agile

development and intersecting them with the Italian Army procedures resulted in the

incorporation of the following aspects in the management strategy:

• Frequent releases.

• Change management.

• Effective cooperation in a complex environment between requirement owners

(goal owners), acquisition owners (gold owners), and contractors, who are

numerous in the defense sector and do not traditionally interact easily with one

another.

• Focus on small and empowered teams, to be able to react fast to evolving

customer needs and emergency situations

The infrastructure of the iAgile process consists of four main “pillars”: agile

training, innovative CASE tools, structured user community governance, and

custom agile development doctrine. Refer to Fig. 12.1. All these pillars are part

of the management strategy that enables iAgile to be effective.

Agile training is fundamental for change management, as it builds the knowl-

edge needed to operate within the iAgile framework. But it is not enough, because

change requires both motivation and reinforcement to be actualized. Motivation is

provided through standard organizational means at the beginning, but after the first

sprint, it is fueled by the visible progress demonstrated by the functionality of the

partial product. Reinforcement is provided via the structured user community

governance that enables feedback to be immediate and in bringing users close to

the development greatly increases user satisfaction and consequently the team’s
level of confidence.

290 L. Benedicenti et al.

The innovative CASE tools pillar is needed because without supporting tools

tailored for iAgile, the software development would proceed at a slower pace due to

lack of automation and a progress monitoring system. In particular, it was essential

to develop a suite of noninvasive monitoring tools that measure the software

artifacts being created without requiring developer intervention, which would

slow down developers. The monitoring tools could then generate progress reports

that concretely demonstrate the effectiveness of the development, acting as a

reinforcement mechanism and, when needed, providing data for causal analysis

and problem resolution.

The structured user community governance is needed to empower selected

experts to act as delegated product owners with the same decision power as their

department heads. Achieving this step required the full support of the top-level

authorities in the Army. This generated the required level of autonomy in devel-

opment teams so that development could proceed without the constant bottleneck of

top-down authorizations. It was possible to realize this structure because the unit of

development in our case is a single user story, which can be altered very rapidly and

thus is perceived to have little impact on the project; yet, the freedom to develop a

large number of user stories concurrently results in a marked productivity increase.

Last but not least, a doctrine had to be developed to ensure that any replica of the

process throughout the military environment be coherent with the iAgile process

methodology.

Naturally, it is important to build a management team suitable for such process.

As the development effort grew, we found it necessary to create more teams and

link the teams together using a variant of the “Scrum of Scrums” method. The

development began with a single seven-people team and ended up with seven teams

similarly construed. This led us to the lengthening of our cycles to 5 weeks from an

initial duration of 3 weeks, to accommodate the interaction among the groups. It

also called for the redefinition of the roles of product owner and scrum master. The

product owner role had the added responsibility to keep track of the stakeholders.

This “wayfinding” role was not explicit in our process initially, but given the

number of stakeholders involved in the project, it was a necessity. The scrum

Fig. 12.1 Infrastructure Supporting Agile Software Development

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 291

master role was redefined in terms of hierarchical authority. This was needed to

make it possible for the scrum master to have the authority to resolve the issues

brought forth by team members. Additionally, the scrum master also actively

elicited feedback from all team members, rather than waiting for feedback pas-

sively. As scrum masters gained authority, it also became necessary to assign them

the responsibility to keep the feedback loop running. To help enact the Scrum of

Scrums, we then created the role of global product owner. This role became

responsible for the synchronization of each individual scrum. Finally, as the skill

sets grew, it became necessary to create a new role that reflects the awareness of the

skill sets and their location in the teams to plan for skills allocation in the next

sprint. We called it the scrum coach.

These management structures and role changes deviate from the scrum method

and differentiate iAgile from standard scrum, justifying also its continued success

since its very first project.

To test this project management strategy, we developed an entire command and

control system for the Italian Army. This development was the first application of

iAgile, and as a result it is fair to say that iAgile evolved concurrently with the

development of our first case study. In this chapter, we will show how this

development project evolved and the lessons we learned by running this project.

The results will show that iAgile has been able to achieve high levels of produc-

tivity, quality, and customer satisfaction, but this has come at the cost of a profound

cultural change in the development teams.

This chapter is organized as follows: The next section contains the state of the art

on agile management. The next three sections provide a description of the method

we developed together with the tools and the anticipated benefits of adopting our

method. Section 12.6 presents a case study for the application of our method to

build a command and control system. Section 12.7 contains the conclusions and

future work.

12.2 State of the Art

12.2.1 Agile Project Management

Conventional project management is a storied discipline. Its roots can be traced

back to the early 1900s through the contribution of pioneers such as Henry Gantt

and Henri Fayol. Modern project management began in the late 1960s, and today

there are numerous certifications for project managers, perhaps the most important

of which are supported by the International Project Management Association and

the Project Management Institute. In the late 1980s, the manufacturing industry

began to change project management practices to include ways to increase effi-

ciency and reduce semiworked product stock through the practice of just-in-time

292 L. Benedicenti et al.

manufacturing which, in turn, led to innovative project management methods like

kanban [2] and lean [3].

The principles and practices of project management, usually, rely on the relative

predictability of the scope of the project and on a set of preset requirements. Often,

requirements are somehow formalized, and if there is a business agreement among

partners, requirements are usually included in it. However, this method creates

gaps. These gaps are of three kinds: The first kind is the gap between desired

outcomes and actual outcomes. This originates from our inability to act precisely on

a rapidly changing external environment, and it is compounded from the lack of

perfect information on this environment. The second kind of gap is the gap between

plans and actions in organizations. This originates from the inherent difficulty of

defining a course of action for every single possible situation that might occur,

which generates inability to achieve the planned outcome. The third kind of gap is

the gap between actions and outcomes. This originates from the inability to foresee

how actions will generate outcomes given a changing environment [1].

To close these gaps, a new type of project management is needed: one that is

more flexible and is able to be proactive toward rapid requirement changes. This

kind of project management is inspired by the Agile Manifesto, which was origi-

nally conceived for software production, but is now more widespread in its appli-

cability [4]. Thus, the first books on agile project management (e.g., [5]) try to

summarize some of the concepts in agile management, but because there is not

much experience in the field, the suggestions and analyses emphasize the differ-

ences between conventional and agile project management, which carries the

danger of overlooking important lessons from the traditional project management

discipline. For example, the role of upper management in agile projects is to

manage “the linkages between strategy and tactical project execution,” while the

traditional role is to approve projects and commit resources [5]. In reality, a more

integrated approach in which both roles are adopted is better suited to a rapidly

changing environment.

Most of the progress in agile project management was the result of experiential

learning. For example, Jeff Sutherland et al. [6] documented the use of distributed

scrum: a version of agile project management and a tool to increase productivity

and team effectiveness.

In 2008, grounded theory proposed to investigate agile project management,

which signals the continued interest in characterizing agile project management

from actual practice [7]. In particular, areas of investigations involve the role of the

project manager in an agile project, the process and problems of transitioning into

an agile framework, and management of offshored or outsourced agile projects.

More recently, a systematic literature review on agile project management has

been developed in 2014 by Chagas et al. [8], which contains information on

34 primary studies to create an ontology of terms and principles in the context of

maturity models, to facilitate the transition between the two methods and conse-

quent mentalities.

A better definition of agile project management has also been developed in

[9]. According to this definition, agile project management deals with the

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 293

complexity and uncertainty of a software project, which creates unplanned change.

To do that, agile project managers rely on some principles directly related to the

ones expressed in the Agile Manifesto. Some of the practices in agile development

methods, for example, team autonomy and continuous learning, are naturally

extended to agile project management as well.

These principles have been expanded to more elaborate methods such as the

Crowder and Friess agile project management [10]. Still, these ideas need addi-

tional validation and tailoring to specific situations. This is why case studies are of

fundamental importance to understand how the principles formulated in a document

can be instilled into an actual project and what lessons can be learned from the

project’s outcomes.

Currently, agile project management is entering the mainstream. For example,

de Kort just published a book [11] on development and operations (DevOps) on the

Microsoft stack that contains guidelines on how to use Microsoft tools in an agile

context. This is but one of the many publications devoted to improving the

experience of mainstream developers wishing to adopt a fully agile approach.

Yet, there are still some issues emerging from agile project management prac-

tices. One of them appears to be particularly important: communications. This issue

occurs in all kinds of project management, not only the agile kind, but given that

some of the standard tools for communication like project documentation are

somewhat reduced in an agile approach, communication becomes especially rele-

vant in an agile project. At the time of writing, there is no general solution for

balancing communication and productivity, and this issue remains the subject of

active research.

12.2.2 Project Management in Defense Domains

The most used project management methodology in the military environment is

Projects in Controlled Environments, version 2 (PRINCE2® [13]), and its deriva-

tives, e.g., North Atlantic Treaty Organization (NATO) [12]. This type of manage-

ment activity requires heavily trained professionals and a massive quantity of

formal documentation both in the planning and execution phases. For rapidly

changing scenarios and volatile requirements, these articulated and time-

consuming methods may be difficult to apply. PRINCE2® is a project management

process-based approach method. Eight basic processes intended to be applied by a

project manager in managing a project are modeled. The modeling is made in terms

of steps in a logical sequence. PRINCE2® is adaptable to various types of projects

in a different range of complexity. In the manual (Managing Successful Projects

with PRINCE2®, 2009), a number of “components” are listed as guidance for a

project manager in applying the process model. PRINCE2®, differently from other

methodologies based on the availability of information about proven practices,

provides a more prescriptive set of steps to be followed by project managers and

teams. A possible advantage of PRINCE2® comes from the fact that it is

294 L. Benedicenti et al.

prescriptive in a large measure, and it may induce a degree of standardization in

medium to large organizations. Tailoring of the methodology to specific projects is

possible provided that the same basic steps are kept and the same terminology is

used. Relevant benefits in corporate program management can be observed espe-

cially in the areas of staff training and project performance tracking. The possible

constraints to creativity are a disadvantage especially in the area of software

development where the human factors are becoming more and more relevant to

the design solutions.

12.3 The iAgile Development Process

iAgile is a software development process based on distributed scrum [6]. Just like

scrum, iAgile is an iterative development process in which a product owner, a

scrum master, a manager, and a development team collaborate to deliver concrete

functionality in a sequence of short development cycles (the sprints). However, the

unique challenge of working within an armed forces context and having to include

civilian consultants no longer as isolated subcontractors but as integral part of the

development team led us to some changes that differentiate iAgile from scrum

substantially. Furthermore, iAgile’s domain is mission-critical software for the

defense environment, which adds specific nonfunctional requirements like security

and graceful system degradation. These requirements too contribute to further

differentiate iAgile from standard scrum processes adopted in the enterprise.

In fact, iAgile has a number of formalized procedures that are assigned to

personnel in various iAgile roles. Many of these roles are derived from the scrum

method, but often there is a significant reshaping of the responsibilities associated

with the roles. The basic principles of iAgile can be summarized as follows:

1. Development teams are the most relevant assets in the production process, but

their activity has to be accompanied by a set of objective, real-time, noninvasive

measures of effectiveness and performance agreed upon by team members and

fully understandable by the customer. The set of measures must cover the most

relevant aspects of the product as indicated by the user/stakeholder priorities

(safety, security, quality, etc.). The first users of the measures are the team

members themselves. The measures are collected and displayed in a software

development virtual control room. Reports are automatically generated and sent

to all the relevant community members.

2. The traditional role of product owner (PO) is shared by the global product owner

board instead of being covered by a single individual. The GPO always includes

a customer stakeholder representative, the most relevant application domain

experts, and the teams POs. The team POs are responsible for team synchroni-

zation and feedback, which is an important feature to ensure the teams are

always aligned in their production objectives and schedules.

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 295

3. The scrum master (SM) role in iAgile has been reinforced and has acquired a

program management task. The SM has no decision power over the team

member (in fact, scrum masters are themselves team members), but the reports

the SM produces are the only means to assess the development status and the

team performance. Every report is shared with the team members before

reaching the GPOs and the stakeholders.

4. The skills of the technical team members are accurately scrutinized during the

preliminary team building activities. The capability of working in parallel with

subject matter experts not necessarily having a software engineering background

is a key factor for selection of the teammembers. The developers are supposed to

apply extended “pair programming” with asymmetric roles where the second

programmer in the pair can be a security or quality expert. The technical growth

of the team members is implemented throughout the whole production process

and obtained by the insertion of “knowledge acquisition user stories” in the

product backlog. Asymmetric pair programming in particular is not commonly

used in scrum.

5. A new role was added to the process: scrum coach. This role is responsible for

keeping track of the skills matrix in the development team and informing the

asymmetric pair programming process. In standard scrum development, the

team has no skill differentiation. In our environment, however, there are a

variety of skills that coalesce. They come from the unique mix of consultants

and armed forces personnel needed to be able to tackle the complexity of user

requirements and the context within which the armed forces operate today. Not

keeping track of the team’s skill set would be dangerous because it could result

in the misunderstanding of the tacit assumptions that often are an integral part of

user stories.

6. A network of all relevant stakeholders (decision makers, top users, and applica-

tion domain experts) is established at the project start and managed by the GPO

as a professional social network. The network is used to share all the project-

relevant information and is consulted when preparing all major project

decisions.

7. All the scrum-derived “rituals” (stand-up meetings, sprint planning, reviews, and

deliveries) are documented in electronic form or taped.

8. The reconciliation of the roles played in iAgile and the roles played as members

of the armed forces needs to be addressed strongly and decisively through

change management practices. These include, for example, a top-level commit-

ment, in our case coming directly from the Army Chief of Staff; a clear sense of

urgency, which in the Army is easier to instill; and a clear identification of the

final outcome, which generates the motivation to achieve such outcome and also

provides a clear, measurable target whose achievement can be detected and

measured unequivocally [14]. This last point merits some further elaboration.

Often, project managers define the final outcome in terms of percentage of

implementation of the product’s requirements and deviation from the planned

budget. In our case, however, the outcome is defined in terms of costs, customer

satisfaction, and quality. These project objectives are independent of the method

296 L. Benedicenti et al.

and tools used to manage the project and can be defined unequivocally while

allowing uncertainty about requirements and the development process, which is

the staple of agile development methods.

The principles articulated above contribute to create a very different process from

the standard enterprise scrum. This creates a number of challenges, the most

relevant of which are training and user community governance. Training is crucial

for team members so that they can become productive team members immediately.

Because iAgile is new and evolving, training evolves as well. It was thus natural to

involve academia not only in the design of the process but also in the development

of appropriate training programs for the various roles.

User community governance is a challenge because the concept itself, at the

beginning, was nebulous for the armed forces. The challenge arises because of the

large number of implicit assumptions when describing user stories in a highly

specialized environment. Normally, this would not be a problem because the

development team is familiar with that environment. However, it turns out that

the assumptions are rarely checked for consistency; and when consultants are added

to the environment, it becomes apparent that leaving these assumptions in the

implicit state does not lead to successful projects. The following sections briefly

describe how we approached both challenges.

12.3.1 Training

This is probably one of the areas containing the most significant differences when

compared to traditional agile. iAgile is continuously changing to incorporate the

awareness of potential vulnerabilities concerning mission-critical applications. Up-

to-date knowledge on software engineering at the theoretical level is required to

fully understand the true nature of the software product and the development of the

production techniques. Depending on the specific role in the process, more focused

training is needed, emphasizing realistic exercises and role playing.

All the components of the development teams (technical, management, and

specific domain expertise) have to be familiar with the key concepts of software

engineering and its evolution to fully understand the nature of the software product

and be aware of the differences between the software development process and any

other industrial product. This awareness has to be shared in the teams, and for this

reason a common theoretical introductory part is included in every iAgile training

course. A specific practical part depending on the role to be covered in the

production process follows the first segment. Software engineers are trained on

specific iAgile techniques such as requirement gathering and understanding and the

sprint execution, whereas process managers are trained on noninvasive program

management techniques.

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 297

12.3.2 User Community Governance

One of the key features of iAgile is the full involvement of the user community in

the software development process. The area of mission-critical software in the

Defense & Security area is characterized by substantial complexity of the user

requirements often specified through a synthetic “mission need” document where

most of the real needs are implicit or embedded. The user/stakeholder has relevant

domain-specific expertise, which is very difficult to elicit but is pivotal for the

correct implementation of the application. As reported in the case study, it is quite

normal when the user begins to fully understand his or her own requirement only

after several product deliveries. Besides the direct involvement of selected user

experts in the development teams, in this environment, the realization of a network

where a broader community of users/stakeholders can be reached is vital for the

success of the iAgile project.

12.4 iAgile Support Tools

In iAgile, a number of noninvasive tools are used to monitor the rapid production

cycles and report in real time on all necessary effectiveness indicators. Typical

measures are code complexity (McCabe, Halstead, etc.), number of produced lines/

programmer/day, number of bugs and fixes (code defect rate), number of user

stories elaborated, user story quality estimation, US tracking, etc. Most of the

measures are taken in real time and shared with the development teams using a

simple presentation software product (software development control room).

Similar to all agile approaches, iAgile is based on the values of the Agile

Manifesto and in particular on “Individuals and interactions over processes and

tools” [15]. However, this does not mean that tools are not important in iAgile (or in

any other agile approach); it means that tools should not create artificial constraints

to how people work and collaborate, as they are only a support to perform activities

in a more efficient way. In particular, tools should be easy to use and flexible

enough to adapt to the preferred way of working adopted by the development team.

Therefore, the tools originally developed to support traditional, plan-based devel-

opment approaches can be hardly adapted to support the agile ones. There are a

number of software vendors that propose their tools that have been designed to

support traditional approaches with new versions and/or extensions to include also

the agile approaches. However, such one-size-fits-all approach to support any

development methodology adopted inside a company may create several problems

to agile teams, in particular:

1. Too many functionalities: supporting a number of different development

approaches forces tool vendors to include many features that can make the

tools difficult to use and require a relevant amount of training. In particular,

agile approaches usually require a limited amount of functionalities compared to

298 L. Benedicenti et al.

a traditional, plan-based approach; therefore, developers are easily lost in such

environments and demand simpler tools that focus on their needs.

2. Difficulty to configure: due to the support of a wide range of processes, such tools
require a complex customization activity before the tools can be actually used.

Moreover, such configuration needs to be synchronized among all the installa-

tions that are usually local.

3. Heavy tools: the amount of functionalities offered is also connected to the

systems requirements for the machines running such tools that may interfere

with the development activities slowing down the developers’ machines.

4. Use of old paradigms: most of such tools are based on old-style client-server

architectures, require specific operating systems, and are not available through

browsers or on mobile devices. This is a direct consequence of the evolution of

the tools designed to support traditional, plan-based approaches that have been

designed a long time ago, and vendors find their adaptation to the new paradigms

difficult to implement.

Such limitations affect agile teams in a negative way, reducing their effective-

ness in particular in the early stages of the introduction of an agile approach in a

company. This is an important step: the team members need to develop in a very

different way compared to the past, and the results of such early adoptions are often

under strict scrutiny by the management. Such results may affect deeply how agile

is perceived in the organization and whether the new methodology will be widely

adopted in the company or dismissed as ineffective.

Even with all these limitations, this one-size-fits-all approach is considered the

safest one in many organizations that are used to traditional development

approaches for several reasons:

1. Well-known tools: the agile support has been added to tools already used in the

organization providing at the beginning a certain level of confidence to both the

management and the developers. However, in many cases, developers realize the

limitations of such tools quite soon, dramatically reducing their use since they do

not fit perfectly the process they want to adopt.

2. Well-known vendors: many providers of agile specific solutions are quite new to

the market, and many large companies have never acquired software from them

before. This is particularly critical when vendors are start-ups and small and

medium enterprises (SMEs) that could disappear from the market at any time

creating relevant problems to the users of their technologies. For this reasons,

many companies prefer to adopt tools from large and well-known players with

whom they have long-term relationships and they think they can trust. This is a

relevant risk that is taken into consideration by many companies, especially the

large ones. However, the increased use of open data formats can mitigate it and

reduce the real risk of adopting tools from such start-ups and SMEs.

3. Tools homogeneity: introducing new tools in a company (especially in the large

ones) requires a relevant amount of effort (e.g., installation of server and client

components, system administration, training, etc.). For this reason, the tools used

by the different team are often standardized, and the organizations prefer to

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 299

adopt for agile development the tools that are already well known. However, this

may affect the agile teams as discussed before.

4. Integration with already existing systems: many project management and devel-

opment support tools are deeply integrated with the information systems of a

company, especially in the large ones. This integration provides several advan-

tages in the day-to-day operations but creates a huge resistance to change.

Moreover, in many cases, the processes are adapted to the existing infrastructure

and not vice versa. This creates a number of problems for the flexibility of an

organization and prevents them to experiment new approaches even if they can

provide relevant benefits. Such deep integrations are not implemented anymore

in modern architectures since the flexibility of the processes has acquired more

relevance.

5. Communication with the management: monitoring the status of a project is of

paramount importance for the management. This activity is often performed

through standard reporting systems that are deeply integrated with the informa-

tion systems of the company. Agile is completely different from this point of

view, and standard reporting approaches are usually difficult to implement and

are hardly adaptable to such approaches. Therefore, agile teams are often

perceived as black boxes where it is difficult to expose the status of a project

to other parts of the organization. For this reason, specific tools that fit the agile

environment but are able to communicate with the management outside the team

are needed to guarantee the success of agile approaches in many organizations.

12.4.1 Evolution of Tools

iAgile is designed to bring agile approaches inside mission-critical projects that are

traditionally implemented through plan-based methodologies. Usually, such pro-

jects are carried out inside organizations with a quite rigid structure that consider

agile approaches difficult to be implemented in their context. In this kind of context,

regular agile development techniques cannot be adopted for several reasons,

including the lack of specific tools designed to support the agile development in

conjunction with the overall organization structure. Mission-critical projects often

have strict requirements about providing elements that are needed by certification

authorities. Even if certification standards do not prescribe the usage of a specific

development approach, almost only the plan-based ones have been used in such

contexts, and only in such areas support tools are available. However, the market

needs (e.g., reduction of costs, improvement of customer satisfaction, volatility of

requirements, etc.) are pushing companies to experiment and adopt novel develop-

ment approaches. Therefore, the development of specific tools able to support the

agile development considering the certification aspects is needed.

For a successful implementation of the iAgile methodology (and for many other

agile methods), many support tools are required to speed up activities, share

information easily, and assess continuously the status of a project [16]. However,

300 L. Benedicenti et al.

according to the values and the principles of the Agile Manifesto, the development

team has to focus on delivering working software removing whatever is not

valuable for the customer [17, 18]. Moreover, the same set of values and principles

state that the development team should periodically reflect on how to become more

effective and tune their behavior accordingly. This implies that a deep analysis of

the effectiveness of the development team is performed analyzing different aspects

of the work such as the effort spent and the quality of the source code, as such

aspects are connected with the principles of the Agile Manifesto.

The implementation of a monitoring activity that inspects continuously the effort

spent and the quality of the source code has been implemented in very different

ways in the past following the guidelines identified by the personal software process

(PSP) and the team software process (TSP) in conjunction with the requirements of

the levels of the Capability Maturity Model (CMM). However, such approaches

have several limitations including:

• They have been developed in an era when all development approaches were plan

based (mainly waterfall, V-shape, and iterative).

• The data collection and analysis was only partially automated requiring a large

amount of context switching between the productive activities and the monitor-

ing ones. Such switches are known to create a number of problems interfering

with the productive activities.

Therefore, the monitoring activities need to be implemented in a completely new

way to be effective for an agile development team.

12.4.2 Noninvasive Measurement Tools

Noninvasive measurement techniques are the only approaches able to satisfy both

the continuous monitoring needs and the strong focus on valuable activities for the

customers. For this reason, a noninvasive measurement infrastructure is needed to

support effectively the iAgile development process.

In particular, during the early phases of the definition of the iAgile methodology,

several research prototypes have been adapted and tested in the team to verify the

suitability and effectiveness of the approaches. Such prototypes were able to collect

both process and product metrics. Process and product metrics are discussed below:

• Process metrics: such metrics describe characteristics of the development pro-

cess investigating the amount of effort spent in specific activities and the role of

each team member inside the development, where the knowledge is kept and

how it is shared among the team members; how defects are collected, managed,

and fixed; etc. Basically, process metrics provide an analysis (at different levels

of detail) of the behavior of the team as a whole, of the behavior of each team

member, and of the collaboration among team members [19–23]. Such analyses

are useful to perform several activities including:

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 301

– Providing a high-level overview of the status of the project: data collected

from each team member and from repositories (e.g., issue tracking systems,

version control systems, etc.) can be integrated to provide a big picture of the

overall status of the project and the development team identifying where the

effort of the team is spent, how much of it is dedicated to the development of

new features and how much to the maintenance of the already existing ones,

etc. Moreover, this kind of analysis can provide information about how fast is

the team in implementing user stories, the level of completion of the project,

the level of volatility of the requirements, etc.

– Providing feedback to each team member about its contribution: a data

collection and analysis program is effective only if the people involved get

benefits from it. In particular, the implemented program is designed to

provide detailed reports about the activities performed by each team member

describing the activities performed at a fine-grain level to help them to

improve their work habits and improve their overall effectiveness.

– Accessing the level of collaboration inside the team: the data collected is able
to highlight how much collaboration is performed inside the team looking at

the artifacts that are shared and are modified. This allows an indirect assess-

ment of how people collaborate and how the knowledge about specific parts

of the source code is shared across the team identifying areas that need

improvements. In particular, it is possible to identify areas that are not

covered enough, and there is a need of ad hoc training activities and/or

knowledge sharing among team members.

Process metrics are extracted by different tools that are intended to collect different

kinds of data. In particular, there are different kinds of process data that can be

collected. We can classify them as metrics collectable online and metrics

collectable off-line:

– Online metrics collection: the data collection system required the installa-

tion of plug-ins for the development environment to be able to monitor

constantly the opened files and how much time each developer spent in each

file, class, and method of the system under development. Moreover, another

tool working in background was able to trace all the active applications and

keep track of the time spent in each one. This tool was useful to trace the

applications used other than the development environment. Such data need

to be collected during the development since they are not collected by any

other system. Therefore, a continuous data collection is important to avoid

missing data.

– Off-line metrics collection: the data collected in this case are collected in an

indirect way from a number of different kinds of artifacts such as bug

reports and source code commits. In particular, data about time required

to close issues and the related fix, who deal with them, etc. Such data can be

collected at any time since it is stored as a side effect of storing other

information (e.g., bug reports), and it can be collected periodically without

losing quality.

302 L. Benedicenti et al.

• Product metrics: such metrics describe characteristics of the source code inves-

tigating a number of quality aspects such as its maintainability, its architecture,

its complexity, etc. Basically, product metrics provide an analysis (at different

levels of detail) of the structure of the source code and its evolution over time

highlighting areas that are crucial for the overall system and the ones that need to

be improved [24–27]. Such analyses are useful to perform several activities

including:

– Assess the quality of the system: data are collected at different levels of

granularity providing information about different quality aspects at different

levels (e.g., method, class, file, package, etc.). This kind of information can be

compared to the levels that are accepted by the literature and by the specific

requirements of the system developed. This allows the identification of areas

of the source code that are likely to generate problems in the future and

prevent them. Moreover, such analysis can be used to train newcomers to

become confident to the different parts of the code and help them in becoming

productive as soon as possible.

– Provide an overview of the evolution of the system: the data collection can be
performed at different stages of the development. Ideally, it can be performed

every day to provide a continuous analysis of the evolution of the system and

detect early possible problems that may arise. The analysis of the evolution of

the system helps in the identification of architectural problems and helps in

the definition of possible solutions.

Product metrics are extracted by different tools that are intended to collect different

kinds of data. In any case, all the data are collected off-line connecting to the

version control systems that store the source code. In many cases, the extraction

of the data is performed through a static analysis of the source code. It is a good

practice to store code that actually compiles and link properly to have all the data

extracted since some tools require at least code able to compile correctly.

However, many tools are able to extract data even from code that does not

compile.

Besides the data collection, another important aspect is the integration of the

collected information and the generation of visualizations that the different stake-

holders find useful [28]. Different development teams and different companies have

very different needs that require an extremely flexible reporting approach that may

include the visualization through a web page, the generation of a custom report, the

generation of a periodic email, etc. The flexibility of the reporting is important to

allow the team to respond quickly to internal ever changing needs and to the

inquiries coming from the management that prefers the traditional way of reporting

about the status of a software project.

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 303

12.5 iAgile Benefits

12.5.1 Costs

Not all the cost reduction factors have been fully analyzed since many of them are

related to human and social factors such as the growing capability of the production

teams to deal with the specific product complexity. Relevant savings have been

identified due to the implementation of a more effective production structure

(resources and time) and a better understanding of the user needs/requirements [29].

12.5.2 Customer Satisfaction

The improved agile methodology described in this chapter is heavily based on a

strong involvement of the user in the production cycle. The involvement is not

limited to the initial phase where the user needs are defined and the user stories

negotiated, but is continuously applied through the life cycle. Experts from the user

communities are trained on the basic feature of iAgile and fully included in the

production teams. During the sprint reviews, the “customer” top-level representa-

tive who is asked to accept the product delivery may receive the final presentation

briefing by a component of his own community who is acting as team product

owner.

12.5.3 Quality

The quality benefits introduced by iAgile are subtler to characterize than initially

expected. In most agile methods, there is an initial assumption that quality will be

higher because new code will be developed only when needed, immediately

integrated, and eventually known by the majority of the development team. This

assumption is not necessarily valid in iAgile, and in fact we argue that when

multiple teams work on different code bases, the beneficial effects of such practices

like pair programming and continuous integration are reduced because the physical

separation of the teams creates a knowledge separation as well, whereas the code is

inherently connected and often linked by unforeseen side effects that creep beyond

the separation by protocols.

Thus, the error rate in our development is not expected to be lower than the one

we measured in previous developments. However, we expect a marked improve-

ment in the quality as perceived by the customer, because of the following funda-

mental reasons:

304 L. Benedicenti et al.

• The customer is able to witness development as it happens and is able to

influence the development of his or her requirements in a direct and productive

manner.

• The code base being developed using iAgile is smaller than the corresponding

code base developed using a traditional method because only the requirements

needed by the customer survive in the code base. Thus, the scope of the code

base is more precise and responsive to the user needs.

• The faster feedback mechanism allows the user to signal errors early on in the

development of a functionality, which increases the probability of passing

verification and validation earlier than with other development methods.

12.6 Applying iAgile: A Case Study

To put the method described above to the test, we have decided to apply our method

to a real defense project, thus creating a case study. This case study contains our

experience in creating a command and control system for the 4th Logistic Division

of the Italian Army’s General Staff. This project was the first agile pilot the Army

approved and was instrumental to investigate development cost reductions. Addi-

tionally, the constantly changing conditions in the theater of operations demanded

an approach that could deal with rapid changes in user requirements, often man-

dated by previously unknown operational conditions. This experience has been

continuing for about two and a half years, and although a first operational release

has been issued, it is still being improved and expanded as the users gain more

confidence and understanding of the possibilities of this means of software

development.

12.6.1 Introduction to LC2EVO

In 2014, the Italian Army General Staff Logistic Department started the develop-

ment of the Land Command and Control Evolution (LC2EVO) system. This

evolutionary military command and control (C2) software system was based on

the “Mission Thread”-based approach adopted by NATO.

This effort was generated by the urgent need to support the evolution of the land

component of C2 achieving high “customer” satisfaction in a situation of extreme

volatility of the user requirement. At the same time, it was necessary to substan-

tially reduce the budget necessary for this software development and maintenance.

The Army software developers started the development using a commercial

agile software development methodology available at the time: scrum. This meth-

odology was, and still is, very successful in commercial environments, where it is

often indicated as the method of choice for the majority of the Android- and Linux-

based software application producers.

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 305

When we initially started, we had only one experimental scrum team building

LC2EVO,, and we adopted production cycles of 3 weeks. The major key actors with

programmers were subject matter experts, security specialists, a scrum master, and

a product owner. The team components were taken from industry and military and

were located at the army staff main facility. The production was extremely suc-

cessful, and even the very first sprint, which was supposed to be only a start-up trial

one, actually delivered the planned product.

Subsequently, though, the increasing product complexity and the growth of

stakeholders’ expectations made it necessary to create an ad hoc methodology. It

had become very clear that the commercial scrum methodology was not capable of

handling the peculiarity of a high-reliability software production with such an

articulated and extended user community as the one in charge of the land C2

operational requirement.

A community of interests stemming from the Army but including experts from

the universities and the defense industry conceived a customized agile software

development process, iAgile, and applied it to the LC2EVO production. This

methodology is currently shared with an even broader community including

defense industries, universities, and the software engineers taking part in the

Defense & Security Software Engineers Association (DSSEA).

The structure of the LC2EVO software is characterized by core services and

functional area services (FAS). The core services are web based, and the FAS are

derived by the Mission Threads defined in the International Security Assistance

Force’s Concept of Operations (ISAF CONOPs) and currently adopted by NATO.

Core services and the individual FAS software components can be separately

changed to accommodate the particular mission need defined by the military user.

At the same time, all the FAS can share the data and the artifacts developed

individually maximizing code reuse.

The first practical test for LC2EVO was in a NATO exercise at the Coalition

Warrior Interoperability eXploration (CWIX 20151), with very positive results,

particularly in the area of software security.

In LC2EVO, the core service software segment provides integrated management

of all operationally relevant events using a common cartography layer. Interoper-

ability with all the necessary NATO-listed software packages is guaranteed. Col-

laborative generation of all the documents necessary for the command post activity

is obtained largely by making use of common off-the-shelf (COTS) product.

Garrison (static situation) infrastructural data flow for common daily homeland-

based operations is fully integrated. Both the georeferenced military cartography

and the web-based commercial ones are developed and integrate all the available

information (weather, traffic, etc.).

The FAS are under continuous development and change for every release. The

principal ones are as follows:

1www.act.nato.int/cwix

306 L. Benedicenti et al.

http://www.act.nato.int/cwix

• Battle Space Management: designed to provide the C2 support for homeland

security operations, as an embedded capability of tracking friendly secure

mobile units using multiple types of cartography. Voice and messaging capa-

bility are implemented as well as an integrated NATO JOCWatch feature.

The LC2EVO infrastructure FAS have been realized with large reuse of the

code and functions realized before. The core capability of FAS is to provide an

extensive and detailed set of functionalities needed to manage the army real

estate.

• Joint Intelligence, Surveillance, and Reconnaissance (ISR): provides manage-

ment and analysis functions for the intelligence preparation of the battlefield.

• Joint Fire and Targeting: supports all the coordination and planning activities

related to the fire power support including all available effectors.

• Military Engineer and Countering of Improvised Explosive Device (IED):

initially designed to support the collection and management of data about

unexploded ordnance (UnExO) from WW2 found on the national territory, this

was soon expanded to provide support to the counter-IED operations (attack the

net and force protection).

This LC2EVO software segment has more than 1000 registered users from more

than 600 military facilities in the homeland and abroad. Reuse is going to happen as

the realization of the strategic tool Infologistica FAS, to be used to give to top-level

military commander the real-time situation of all army materials, is completed.

12.6.2 Implementing iAgile

Although the consolidation of all procedures, tools, and methodological peculiar-

ities is still ongoing, some elements have been clearly identified. Some of these

elements will be now briefly discussed.

Although the project was initially started using a custom version of scrum, a

number of relevant deviations from this methodology were almost immediately

applied. One of the most significant ones concerns the user story collection process.

It appeared that a simple set of interviews with selected users was not giving to the

software engineers the expected quantity of information to decide which software

functionalities were more relevant to the users. At the time, the identified issues

were as follows: the very relevant expertise of users in their domains, the limitation

of the natural language, the link with standard operating procedures, the incomplete

understanding of the user of his own requirements, and of course the complexity of

the command and control domain.

The high level of expertise in the user, although desirable from the point of view

of requirement correctness, has two major shortcomings: (1) the user gives most of

the domain knowledge for granted and omits many of the detailed descriptions

(e.g., the user says “operation” to indicate the event occurring after the planning,

but the specific kind of operation may vary from a convoy movement to an airborne

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 307

deployment of a special unit) and (2) the user knowledge is sub-domain specific and

mostly experience based, which makes every user different from all the others in the

same domain (e.g., a user with relevant experience in out-of-area operations will

give more emphasis to the solution of the problems he or she encountered in the last

mission, which may be outdated or too “theater specific”).

The use of natural language is a point of strength in the agile methodology, but

for the description of the user needs in complex domains, it may result in poor or

meaningless user stories or in complicated epics with many links to external

doctrinal documents which are difficult to understand for the software engineers.

One of the methods implemented to correct the above situation was the definition of

an iAgile empirical method for the product backlog definition. This method has not

been completely formalized yet, but most of its steps emerged during the setup of

the LC2EVO production structure and correlated procedures. The first component

of the empirical methods is the user story quality evaluation [30]. The second

component is the evaluation of the user characteristics: position in the organization

(pure user-user/stakeholder-stakeholder). The empirical method works as follows,

where a typical multiuser-structured domain is assumed where multiple story tellers

contribute to the same product backlog (PB):

Given Stn the story teller n,

WStn the weight factor due to the hierarchical position in the

User Organization

(a top hierarchical position generates higher priority for

the specific User Story),

IStn the communication effectiveness of the Story Teller based

on its capability to transfer the story teller knowledge to the

team (measured in software tasks generated from the specific user

story),

UsV User Story Value.

For a specific user story an empirical value can be estimated

as:

UsVk = WStn * IStn

For non-functional requirements (Nfr), a weight factor is then

generated by the technical members to recognize the priority of

each user story:

Nfrk {statement}k, where 0.1< Nfrk < 1 (1 corresponding to

obligation to execute Nfr associated tasks)

The initial product backlog PB resulting by the first round of

interviews is then assembled to generate a list of N scrum-like

statements, and will be a weighted list:

PBin= [UsV1 {statement}1. . . Nfrk {statement}k. . .. UsVk {statement}k,

UsVN {statement}N]

308 L. Benedicenti et al.

This initial ranking will be used to generate the first prioritized PB, which shall

be negotiated between the development team and the users/stakeholders’ project
board. This negotiation will take into account the initial values, but quite often the

priority will be changed. To trace the evolution of the user stories due to nonlinear

elaboration of the stories, a user story risk factor is generated (Srk) associated to the

de-ranking of the story. So the first workable PB takes the following form:

PB1 = [UsV1 {statement, Sr1}1. . . Nfrk {statement}k. . .UsVk {statement,

Srk}k,. . . UsVN {statement SrN }N]

At every production cycle (Sprint) the list is re-elaborated and

the risk re-assessed.

12.6.3 Results and Discussion

On all accounts, the implementation of LC2EVO using iAgile was a success. This

was ascertained both quantitatively and qualitatively; and although for compari-

son’s sake the quantitative data are the most usable, sometimes the decision to

continue with a method or practice is based preponderantly on qualitative decisions.

12.6.3.1 Costs

The foremost parameter that characterizes the need to adopt iAgile in the Italian

Army is cost. The development of a command and control system in defense

domains is evaluated at around US$ 85 per ELOC [31]. This figure is based on

systems developed in third-generation languages, using conventional plan-based

development processes. In the Italian Armed Forces, this figure is accepted, and in

fact some of the previous projects turned out to be even more expensive. In

particular, the Italian Air Force’s command and control telecommunication system

(CATRIN) cost US$ 65 per ELOC in 1992, which is about US$ 111 per ELOC

when adjusted for inflation. A more recent project, the Italian Automated Informa-

tion System for Command & Control, was completed in 2012 and cost a similar

amount: US$ 100 per ELOC. In contrast, the development cost for LC2EVO was

US$ 10 per ELOC.

It should be noted that LC2EVO was implemented in a modern language,

whereas previous systems had been implemented in an imperative structured

language, which should account for part of the lower development costs. However,

we also have some additional hypotheses.

One of the reasons for this cost reduction may be attributed to the more effective

production structure adopted by iAgile. Traditionally, a large number of activities

in the production of a software system are not coding activities. For example,

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 309

conflict resolution, resource allocation, documentation production, customer inter-

action, and demonstrations often become so much part of the development process

to take up to 40% of the total personnel time. For LC2EVO, this number is less than

10%. This means that more of the project cost is directly tied to the value perceived

by the customer, thus making it possible to reduce activities that may seem

important at first blush but reveal themselves to be less relevant in postmortem

analyses.

Another reason for the cost difference may be due to the increased interaction

with the user, which creates a bond through which user needs are better understood

by the team and indeed by the user himself or herself, as the evolution of the product

and its continuous testing by the user establishes a virtuous feedback circle. This

translates in a very high percentage of requirements implemented eliciting cus-

tomer approval: approximately 90% for LC2EVO, as compared to about 40% for

conventional development methods [31].

Finally, it is possible that the short development cycles created a risk-limiting

effect: requirement errors are caught early and corrected when they still have little

impact on the project, because no requirement chaining has occurred yet, and thus

the amount of rework needed to rewrite the requirement is limited to that require-

ment only instead of all the subsequent dependent requirements (Fig. 12.2). In fact,

the amount of software produced in LC2EVO while a software requirement dis-

crepancy exists is about one-fourth the amount of legacy methods. It is important to

note that this particular effect is not a prerogative of iAgile, but is present in all agile

and many iterative methods.

12.6.3.2 Customer Satisfaction/Quality

As hypothesized, the quality in terms of defect density or error rate did not differ

significantly from that of the previous systems. What changed nearly radically was

the acceptance and satisfaction by the customer. This change is to be expected when

adopting a user-centric view and an iterative development model, as is the case in

agile software development. We do not believe that iAgile differs from other agile

methods in this respect.

However, the results prove that iAgile has in fact been able to extend the results

of common agile methods to a domain where these methods were not used before.

LC2EVO is a mission-critical software product with strong security constraints, and

to our knowledge agile methods are not adopted for this kind of software. We

believe that iAgile was successful in developing a successful mission-critical

command and control product because of two different validations. Firstly, the

requirements were validated with the user on a constant basis, resulting in a

burndown chart that is similar to that of many successful agile product develop-

ments (Fig. 12.3).

Secondly, as previously mentioned, LC2EVO has been tested in the field by

means of inter-force simulations (CWIX 2015 NATO exercise) and has behaved

310 L. Benedicenti et al.

exactly as specified both in terms of functional requirements and of nonfunctional

requirements, reliability in particular.

12.6.3.3 Learning Curve

Because it was the first time, we applied LC2EVO iAgile to a software development

project, we expected to see some sort of learning curve. Figure 12.4 shows what we

found while monitoring one of the seven development groups. The two control lines

come from literature. It appears that there is a learning curve as it is possible to

discern an overall climbing trend in the curve, but it is also apparent that software

development in LC2EVO occurred at different speeds, displaying some efficiency

peaks of over six ELOCs per developer per hour. This is definitely something worth

checking in the future as it might be a function of the difference requirement

complexity between sprints, but it could also be a dynamic specifically linked to

iAgile.

12.7 Conclusions

This chapter describes iAgile, a software development and project management

method that employs agile principles to make it possible to build highly secure,

mission-critical software at lower costs and with higher customer satisfaction. This

method is a unique combination of agile principles, innovative tools, structured user

community, and a custom agile development doctrine that provides a change

management path to adopt the process in a traditionally conservative environment

while maximizing returns for the users and the engagement for developers.

iAgile is based on a proven enterprise development method, scrum; but the

requirements of working in a mission-critical, highly specialized environment with

a combination of consultants and army personnel required substantial

t1 t3t2 t4

Line 1

Line 2

Agile Risk
Gap

Legacy Methods
RiskGap

D
ev

el
op

m
en

t

Time

Fig. 12.2 Risk gap

between iAgile and

traditional methods

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 311

changes. These include the introduction of a noninvasive measurement system to

create an objective representation of the project and its progress, the specialization

of the product owner into a product owner board and team product owners, the

enhancement of the scrum master role, a screening method for the composition of

each team, the creation of a social network of stakeholders to provide more varied

opinions in complex decisions, the recording of scrum rituals, the adoption of

change management practices to facilitate the introduction of iAgile in an armed

forces context, specialized training, and the creation of a governance structure

based on the user community.

The differences between scrum and iAgile necessitated the creation of a unique

support infrastructure. The first pillar of this support infrastructure is the specialized

training developed in collaboration with academia. The second pillar is the creation

Fig. 12.3 Burndown chart for LC2EVO

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ELOC/Develp./hour

Waterfall
average

SCRUM
average

SPRINT#

Fig. 12.4 Learning curve in LC2EVO development

312 L. Benedicenti et al.

of a series of innovative CASE tools, an effort which is still ongoing, and so far has

produced a noninvasive measurement system and a requirement prioritization

system. The third pillar is the support for a structured user community governance

model, which generated a social network of professionals for reviewing the system

and its progress from different points of view such as security, quality, etc. The

fourth pillar is a custom agile development doctrine that enables the transferability

of iAgile to other armed forces domains and/or groups.

To test iAgile we have adopted it to build LC2EVO, a command and control

system for the Italian Army that is able to work in an inter-force context and is fully

integrated with NATO communication protocols.

The results show that iAgile has worked as expected in this case, with an overall

cost reduction of up to ten times compared with previous efforts in the same

domain. However, these results have been demonstrated in one project only, albeit

a 2.5-year-long one. Future work will be needed to extend the generality of these

results. In particular, it will be necessary to implement iAgile in a completely

different project from LC2EVO, to ensure the transferability of the methodology

regardless of the team involved. Therefore, it is expected that in the Italian Army,

future versions of LC2EVO will continue to be developed with iAgile and that the

method will be adopted by more departments to respond to the needs of modern

operations in the armed forces.

References

1. Bungay S (2011) The art of action. Nicholas Brealy Publishing, Boston

2. Waldner J (1992) Principles of computer-integrated manufacturing. Wiley, Chichester. ISBN

0–471-93450-X

3. Bicheno J, Holweg M (2009) The lean toolbox. PICSIE, Buckingham. ISBN 978–0–9541244-

5-8

4. Agile Manifesto (2001) at http://www.agilemanifesto.org. Retrieved 10 July 2016

5. Chin G (2004) Agile project management. AMACOM, New York

6. Sutherland J, Viktorov A, Blount J, Puntikov N (2007) Distributed scrum: Agile project

management with outsourced development teams. In: Proceedings of the 40th Annual Hawaii

International Conference on System Sciences (HICSS ’07). IEEE Computer Society,

Washington, DC, USA, p 274a-. DOI¼http://dx.doi.org/10.1109/HICSS.2007.180

7. Hoda R, Noble J, Marshall S (2008) Agile Project Management. In: Proceedings of the

New Zealand Computer Science Research Student Conference, Christchurch, New Zealand

8. Chagas LF, de Carvalho DD, Lima AM, Reis CAL (2014) Systematic literature review on the

characteristics of agile project management in the context of maturity models. In: Mitasiunas

A et al SPICE 2014, CCIS 477, Springer, Cham, pp 177–189

9. Dyba T, Dingsøyr T, Brede MN (2014) Agile project management. In: Ruhe G, Wohlin C (eds)

Software project management in a changing world. Springer, Berlin. doi:10.1007/978-3-642-

55035-5_11

10. Crowder JA, Friess S (2015) Agile project management: managing for success. Springer,

Cham. doi:10.1007/978-3-319-09018-4

11. de Kort W (2016) DevOps on the Microsoft Stack. Apress. doi:10.1007/978-1-4842-1446-6_5

12. AXELOS (2009) Managing successful projects with PRINCE2

12 Improved Agile: A Customized Scrum Process for Project Management in. . . 313

http://www.agilemanifesto.org
http://dx.doi.org/10.1109/HICSS.2007.180
http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://dx.doi.org/10.1007/978-3-642-55035-5_11
http://dx.doi.org/10.1007/978-3-319-09018-4
http://dx.doi.org/10.1007/978-1-4842-1446-6_5

13. Tuley F (2015) The PRINCE2® Foundation PDF training manual. Management Plaza,

Tremelo

14. Kotter J, Rathgeber H (2013) Our Iceberg is melting: changing and succeeding under any

conditions, Pan MacMillan. ISBN 1447257464

15. Benedicenti L, Ciancarini P, Cotugno F, Messina A, Pedrycz W, Sillitti A, Succi G (2016)

Applying scrum to the army – a case study. In: 38th International Conference on Software

Engineering (ICSE 2016), Austin, 14–22 May 2016

16. Sillitti A, Janes A, Succi G, Vernazza T (2003) Collecting, integrating and analyzing software

metrics and personal software process data. In: EUROMICRO 2003, Belek-Antalya, Turkey,

1–6 September 2003

17. Moser R, Pedrycz W, Sillitti A, Succi G (2008) A model to identify refactoring effort during

maintenance by mining source code repositories. In: 9th International Conference on Product

Focused Software Process Improvement (PROFES 2008), Frascati (Rome), Italy, 23–25 June

2008

18. Sillitti A, Succi G, Vlasenko J (2012) Understanding the impact of pair programming on

developers attention: a case study on a large industrial experimentation. In: 34th International

Conference on Software Engineering (ICSE 2012), Zurich, 2–9 June 2012

19. Astromskis S, Janes A, Sillitti A, Succi G (2014) Continuous CMMI assessment using

non-invasive measurement and process mining. Int J Softw Eng Knowl Eng World Sci 24

(9):1255–1272

20. Coman I, Sillitti A (2007) An empirical exploratory study on inferring developers’ activities
from low-level data. In: 19th international conference on Software Engineering and Knowl-

edge Engineering (SEKE 2007), Boston, 9–11 July 2007

21. Di Bella E, Fronza I, Phaphoom N, Sillitti A, Succi G, Vlasenko J (2013) Pair programming

and software defects – a large, industrial case study. Trans Softw Eng IEEE 39(7):930–953

22. Fronza I, Sillitti A, Succi G (2009) An interpretation of the results of the analysis of pair

programming during novices integration in a team. In: 3rd International Symposium on

Empirical Software Engineering and Measurement (ESEM 2009), Lake Buena Vista, 15–-

16 October 2009

23. Sillitti A, Succi G, Vlasenko J (2011) Toward a better understanding of tool usage. In: 33th

international conference on Software Engineering (ICSE 2011), Honolulu, 21–28 May 2011

24. Scotto M, Sillitti A, Succi G, Vernazza T (2004) A relational approach to software metrics. In:

19th ACM Symposium on Applied Computing (SAC 2004), Nicosia, Cyprus, 14–17 March

2004

25. Scotto M, Sillitti A, Succi G, Vernazza T (2006) A non-invasive approach to product metrics

collection. J Syst Arch 52(11):668–675

26. Moser R, Sillitti A, Abrahamsson P, Succi G (2006) Does refactoring improve reusability? In:

9th International Conference on Software Reuse (ICSR-9), Turin, 11–15 June 2006

27. Moser R, Abrahamsson P, Pedrycz W, Sillitti A, Succi G (2007) A case study on the impact of

refactoring on quality and productivity in an agile team. In: 2nd IFIP Central and East

European Conference on Software Engineering Techniques (CEE-SET 2007), Poznań, Poland,

10–12 October 2007

28. Janes A, Sillitti A, Succi G (2013) Effective dashboard design. Cutter IT J Cutter Consortium

26(1):17–24

29. Messina A, Fiore F (2016) The Italian Army C2 Evolution from the current SIACCON2 Land

Command & Control system to the LC2EVO using “agile” software development methodol-

ogy, 2016 International Conference on Military Communications and Information Systems

(ICMCIS), Bruxelles, 23–24 May 2016. doi:10.1109/ICMCIS.2016.7496585

30. Messina A, Marsura R, Gazzerro S, Rizzo S (2015) Capturing user needs for agile software

development. In: Proceedings of 4th international conference in Software Engineering for

Defence Applications, Rome, pp 307–319, doi:10.1007/978-3-319-27896-4_26

31. Reifer D (2004) Industry software cost, quality and productivity benchmarks. Reifer

Consultants

314 L. Benedicenti et al.

http://dx.doi.org/10.1109/ICMCIS.2016.7496585
http://dx.doi.org/10.1007/978-3-319-27896-4_26

Chapter 13

Ontology Annotation for Software
Engineering Project Management
in Multisite Distributed Software
Development Environments

Pornpit Wongthongtham, Udsanee Pakdeetrakulwong,

and Syed Hassan Marzooq

13.1 Introduction

A long-standing problem in multisite software development environments concerns

the ways to tackle the disadvantages associated with remote communication and the

coordination of software engineering projects. Each organisation has its own

conventions and understandings of software engineering, and the actions of remote

project members are often based on their understanding of the semantics of the

multisite software development (who talks to whom, who does what, who knows

about what), the content (which bugs affect which code, how the code structure fits

together, why a code was implemented in a particular way) and the interactions

(who said what, who did what). Within such a complex dynamic environment,

shared understanding of software development is difficult to achieve. Different

teams might not be aware of the tasks being carried out by others, potentially

leading to problems such as an overlapping of work being carried out by two groups

or work not being performed accurately due to a misinterpretation of the task.

Wrong tasks may be carried out due to ignorance about whom to contact in order to

obtain the proper details. If everyone who is working on a certain project is located

in the same area, then situational awareness is relatively straightforward; however,

for distributed international development, the overheads in communications

incurred when meeting to discuss problems, raise issues, make decisions and find

answers are very high. Consequently, these problems cause developmental delays

and software problems since outstanding issues are not resolved and issues cannot

be discussed immediately or in time, over a distributed team environment. There

are many more issues in multisite software development, and no single project can

P. Wongthongtham (*) • U. Pakdeetrakulwong • S.H. Marzooq

Curtin University, GPO Box U1987, Perth, WA 6845, Australia

e-mail: p.wongthongtham@curtin.edu.au

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_13

315

mailto:p.wongthongtham@curtin.edu.au

address them all, nor should it try to; otherwise the work will be shallow. Hence,

communication and coordination issues are focused on in this research.

To help address this need for communication and coordination among different

sites, software engineering ontology (SE ontology) has been developed. In field

trials, this has been found to be effective in clarifying misunderstandings regarding

concepts, relationships and project information [1]. The SE ontology defines com-

mon shareable software engineering knowledge and typically provides software

engineering concepts: what the concepts are, how they are related and why they are

related. When this generic ontology is specialised to a particular project and

populated with instances which reflect the project information, it provides this

common understanding of project information to all the distributed members of a

development team in a multisite development environment.

In this chapter, the SE ontology is deployed in multisite software development

environment. The development of SE ontology annotation is presented in this

chapter in order to facilitate remote communication in multisite software develop-

ment environments. SE ontology annotation (SEOAnno) is the process of assigning

software engineering domain concepts to the development process of software

products. It aims to clarify any ambiguity in remote communication. In other

words, the SE ontology provides domain knowledge via the annotation process.

The main artefact, which is centrally located and critical in multisite software

development, is the source code. Hence, in this stage, the SEOAnno focuses on

annotating the source code. Java source code annotation is chosen for a proof-of-

concept development. Once the source codes have been annotated, they can then be

used for communication among remote team members, among software agents and

between members and software agents.

The use of the SE ontology-based approach is illustrated through a case study

and validated in multisite software development. A use case is set in bug resolution

for software maintenance and evolution. It involves the process of identifying,

understanding, fixing a bug and taking additional steps in order to avoid the

recurrence of similar bugs in the future. These most complex yet common activities

associated with multisite software development demand an awareness of highly

diverse kinds of software artefacts and stakeholders (e.g. component developer,

deployment engineer, QA analyst, project/product manager, clients, etc.) distrib-

uted throughout different sites of the same project.

This chapter is organised as follows. Background knowledge including choice of

research approaches is given in the next section. Literatures and existing relevant

research are reviewed in Sect. 13.3. System architecture is presented in Sect. 13.4

followed by SEOAnno components in Sect. 13.5. Results are discussed in Sect.

13.6. The use of the SE ontology-based approach is illustrated and evaluated

through a case study in Sect. 13.7. The chapter is concluded, with a discussion on

future work, in Sect. 13.8.

316 P. Wongthongtham et al.

13.2 Background

In this section, background knowledge pertaining to multisite software develop-

ment and SE ontology is presented.

13.2.1 Multisite Software Development

Due to the emergence of the Internet and the globalisation of software development,

there has been a growing trend towards multisite distributed software development.

Software engineers working on the same project do not necessarily have to be

co-located. They can be distributed across cities, regions or countries. For example,

the requirement specification and design are done in Australia, the development is

done in China and India, and the testing is done in Russia. There are several terms

used for this approach: global software development (GSD), distributed software

development (DSD) or multisite software development (MSSD). Ågerfalk et al. [2]
discussed the reasons why organisations consider adopting distributed development

of software systems and application models which include utilising a larger labour

pool, accessing a broader skill base, minimising production costs and reducing

development duration as a result of around-the-clock work schedules. Conchúir

et al. [3] also mentioned other advantages such as market proximity, local knowl-

edge and accessibility and adaptability to various local opportunities. However, this

type of long-distance collaborative work is not without problems. It can cause

challenges such as communication difficulties, coordination barriers, language

and cultural differences [4]. This may result in some tasks not being carried out

properly due to the difficulty of communication and coordination among team

members located in different geographical areas and may lead to software project

delay and budget overrun. Several efforts are being made to try to overcome these

issues.

Thissen et al. [5] proposed communication tools and collaboration processes that

were used to facilitate team communication and interaction in multisite software

development environments. Biehl et al. [6] proposed a collaboration supporting

framework named IMPROMPTU. It enabled remote members to discuss software

development tasks through shared displays. Salinger et al. [7] developed an eclipse

plug-in to support collaborative programming activities between distributed parties.

13.2.2 Software Engineering Ontology

Since the emergence of the Semantic Web, ontologies have been widely used to

provide semantics and support the retrieval information based on the intended

meaning rather than simply matching the search terms [8]. Ontologies have now

13 Ontology Annotation for Software Engineering Project Management in. . . 317

been applied in various fields including software engineering throughout the dif-

ferent phrases of the software development life cycle. Ontologies can provide a

shared conceptualization of fundamental software engineering knowledge in the

form of concepts, relationships and constraints. In addition, ontologies also have a

great potential for analysis and design of complex object-oriented software systems

by using them to create an object model for object-oriented software

engineering [9].

In multisite software development environments, ontologies have played an

important role in supporting collaborative work. There are several tools, tech-

niques, models and best practices that utilise ontologies to facilitate collaboration,

communication, project knowledge management and software engineering process

activities. The resulting benefits, including effective communication among remote

teams, knowledge sharing and effectiveness of information management, have been

encouraging [10].

The SE ontology represents knowledge by structuring concepts, their relation-

ships and their constraints; that is, it is an abstract level of representation. Project

data over a period of time will be populated as instances in the deployment stage.

More specifically, the SE ontology captures the generic software engineering

concepts as well as the specific software engineering project information/data/

agreements. The SE ontology contains a vocabulary of basic software engineering

terms and a precise specification of what those terms mean. The SE ontology is

populated with specific instances for a particular project for the corresponding

software engineering concepts. These instances contain the actual project data

being queried in the knowledge-based applications. Thus, the SE ontology includes

the set of actual project data (i.e. instances of the concepts) and assertions that the

instances are related to each other according to the specific relations between the

concepts. This project will make use of the built SE ontology as well as refine the

SE ontology.

The software engineering ontology comprises two sub-ontologies: the generic

ontology and the application specific ontology [1, 11]. The generic ontology

contains concepts and relationships annotating the whole set of software engineer-

ing concepts which are captured as domain knowledge. Application-specific ontol-

ogy defines some concepts and relationships of software engineering for the

particular software development project captured as subdomain knowledge. In

addition, in each project, project information including project data, project under-

standing and project agreement that is specifically for a particular project need are

defined as instance knowledge. Remote software teams can access software engi-

neering knowledge shared in the ontology and query the semantic linked project

information to facilitate common understanding and consistent communication.

318 P. Wongthongtham et al.

13.3 Literature Review

13.3.1 Software Engineering Body of Knowledge vs Software
Engineering Ontology

In relation to open knowledge on software engineering, there are two resources

available, namely, (1) Software Engineering Body of Knowledge (SWEBOK) and

(2) software engineering ontology (SE ontology). The SWEBOK [12] is a glossary

of terms. It does not define the concepts or the relationships between the terms. In

comparison, the SE ontology is organised by concepts, not words. This is in order to

recognise and avoid potential logical ambiguities. It defines the concepts and

interlinking relationships between each concept and the organisation of the whole

body of knowledge, rather than a definition of each discrete term. The SE ontology

is a big step forward. Nevertheless, both the SE ontology and the SWEBOK will

provide benefits for a team of people working together, particularly if a person

wants to find particular terms and has a good querying facility with which to do so.

13.3.2 Global Software Development

There are several works on global software development. Previous studies [13–15]

have shown attempts to facilitate remote communications during software devel-

opment. However, the communications are insufficient and ineffective due to a lack

of consistent semantics across remote groups and a lack of shared knowledge and

understandings. IBM created a social networking site called Beehive to help

employees to share ideas, voice opinions and discover appropriately skilled people

for a project – all of which are vital to working in distributed enterprises [16]. How-

ever, Beehive uses an informal and lightweight means of sharing knowledge.

Hence, semantic-rich communications cannot be supported.

13.3.3 Technology-Supported Multisite Software
Development

A multi-agent system has been used extensively to support collaborative software

systems in multisite distributed software development environment. Various appli-

cations utilised multi-agent technology together with ontology to support software

development activities. Col_Req was the multi-agent-based collaborative require-

ment tool that supported software engineers during the requirement engineering

phase for collaborative acquisition, navigation and documentation activities

[17]. Paydar and Kahani [18] proposed a multi-agent framework for automated

testing of web-based applications. The framework was designed to facilitate the

13 Ontology Annotation for Software Engineering Project Management in. . . 319

automated execution of different types of tests and different information sources.

Portillo-Rodriguez et al. [19] deployed agents and applied sociotechnical congru-

ence measurement techniques to assist in resolving issues in a global software

development. Lee and Wang [20] introduced an ontology-based computational

intelligent multi-agent for Capability Maturity Model Integration (CMMI) assess-

ment. It provided a summary of evaluation reports for the CMMI assessment.

Nunes et al. [21] addressed the integration of a multi-agent system and software

product lines (SPL) to support mass production of customised software. MADIS

was introduced by [22] to support the distributed design process by managing

information, integrating resources dispersed over a computer network and facili-

tating collaboration processes.

Recommendation system for software engineering (RSSE) has become an active

research area. RSSE has been introduced to assist software developers to deal with

huge amounts of information [23]. It can provide recommendations for develop-

ment information (e.g. code, artefacts, quality measurement, tools, etc.) and col-

laborative information (e.g. people, awareness, status, priorities, etc.). Several

works have focused on recommending experts/people. Ponzanelli [24] developed

(i) a mechanism to collect data, (ii) a recommendation engine to analyse data and

generate recommendations and (iii) a user interface to deliver recommendations.

Xin [25] proposed a recommendation system to assist developers for bug resolu-

tion. Codebook [26] was a social network web service that linked developers and

their work artefacts and maintained connections with other software team members.

Conscius [27] was a recommender system that located a source code expert on a

given software project by using communication history, source code, documenta-

tion and SCM change history.

Steinmacher et al. [28] proposed a system that can assist newcomers to discover

the expert with the skill that matched selected particular issue in order to mentor the

technical and social aspects of a particular task. Ensemble was an application that

helped software team members to communicate in the current works by

recommending other people when the developer updates any related artefacts

such as source code or work items [29]. Other works focused on supporting

developers while they were coding or debugging program. Fishtail was a plug-in

tool for the Eclipse IDE which automatically recommended source code examples

from the web to developers that were relevant to their current tasks [30].

Cordeiro et al. [31] proposed a context-based recommendation to support

problem-solving in software development. They developed a client/server tool to

integrate recommendation of question/answering web resources in the developer’s
work environment to provide automatic assistance when the exception errors

occurred. DebugAdvisor [32] was proposed as a search tool for debugging which

supported fat query, a query with all contextual information of the bug issue.

Developers could do a bug report search from multiple software repositories with

a single query. The system returns a bug description ranked list that matches the

query and then uses it to retrieve recommendations for the related artefacts such as

source code and functions from the generated relationship graph. Most RSSEs use

traditional knowledge representation and syntactic matching approaches which can

320 P. Wongthongtham et al.

cause the problem of ambiguity in keyword-based queries. The new generation of

recommendation systems can benefit from the Semantic Web and ontologies to

tackle the problem. Ontologies can be used for describing semantics of software

engineering domain knowledge and project development information including

software artefacts. Borges et al. [33] have studied along the same lines by utilising

ontologies to support distributed software development enabling knowledge access

and knowledge sharing among remote team members.

StakeSource [34] is a web-based tool that automates the StakeNet [35] approach

for stakeholder analysis. It uses Web 2.0 technologies such as crowdsourcing and

social networks to identify and prioritise stakeholders. Liu et al. [36] propose an

automated approach for SOA design patterns by using an ontology knowledge base

to provide a formal description of SOA design patterns. The system obtains user

requirements in the form of questions and answers in order to avoid its complexity

in natural language form. The recommendation is generated based on the user

answers to the proposed questions and the sorting choice of property value in the

constraint program.

Although there is substantial literature on multi-agent systems and ontology-

based multi-agent systems for software engineering and the RSSE, however, the

existing approaches focus on defining the context of the system, locating and

retrieving the information, reasoning the knowledge and facilitating agents’ com-

munication and interoperability. We concentrate on assigning domain knowledge to

the development process of software products aiming to clarify any ambiguity in

remote communication. We link domain knowledge to software artefacts (i.e. code)

in which it can then be used for project communication and coordination.

13.4 System Architecture

The conceptual architecture of the SEOAnno system as shown in Fig. 13.1 consists

of three components – multisite development environment, SEOAnno and semantic

repository – to store the semantically annotated structured data. Each of these

components is discussed as follows.

13.4.1 Multisite Development Environment

A multisite development environment represents the integrated development envi-

ronment (IDE) being deployed by a company (could be a software house or

in-house IT department of an organisation) that supports the distributed multisite

software development processes [37] and implements software configuration man-

agement (SCM) [38] to maintain the source codes (also known as configuration

items in SCM). SCM is assumed to have version control to manage the code being

accessed and maintain distributed code from multiple teams.

13 Ontology Annotation for Software Engineering Project Management in. . . 321

13.4.2 Software Engineering Ontology Annotation
(SEOAnno)

SEOAnno which is the core of the SEOAnno platform annotates the source code

using metadata that is semantically rich to enable to interlink source codes with

other relevant information. The other relevant information includes the identifica-

tion of the key concepts being used in the source code and also referred to in the

communication threads, mapping them with the international or de facto industry

terminologies to establish a semantic relationship between different concepts.

Essentially, SEOAnno has three functions to perform:

Identifying Key Concepts

• Identification of key concepts that are being used in the source code, source

code-related documents or other software engineering artefacts that facilitates

the software development activities

• Identification of key concepts that are being used or referred to in the commu-

nication thread

• Identification and selection of different vocabularies or metadata standards that

can be used to further enrich the annotation of key concepts to provide a wider

contextualization of the concept

Annotation of Key Concepts

• Semantically annotate the key concepts using software engineering ontologies to

associate explicit semantic to the concepts that are defined and mentioned in the

software artefacts.

• Enrich the annotation by describing the concepts using other popular ontologies

and controlled vocabularies.

Development Infrastructure

Operational Infrastructure

Interlinking entities

(Java) S
ource code P

arser

Abstract
Syntax

Tree (AST)

TBox

ABox

SE Ontology

SEOAnno
Knowledge Base

SEOAnno

Multi-site Software Development Environment

Semantic Annotation

Fig. 13.1 Conceptual architecture of the SEOAnno system

322 P. Wongthongtham et al.

Interlinking Entities

• Interlink entities with similar entities defined in other datasets to provide an

extended view of the entities represented by the concepts.

• Apply a range of semantic similarity constructs to connect related items [39].

13.4.3 Semantic Repository

A semantic repository represents the knowledge base which persists and updates the

semantically rich annotated structured data. The information in the knowledge base

can be classified into Tbox and Abox [40] to split different types of knowledge

statements stored in the repository. Ontologies, which formalised the

conceptualised knowledge of a particular domain, provide explicit semantics

which are generally split concepts and their relationships from the instances and

their attributes. Here, the Tbox represents terminological data that defines classes,

properties (attributes), relationships (object properties) and axioms, whereas Abox

represents assertion data that enumerates the individual instances of the concepts

and defines them with factual statements. In this chapter and in general, the Tbox

represents the schema and structural and intentional component of domain knowl-

edge, and their separate treatment enables the application to support different

services such as concept-based search, entailment to retrieve implied knowledge

and consistency checking to avoid conflicting knowledge. The Abox represents the

ontology instantiation where instance data is marked up with ontologies to help

applications retrieve instance-related information to discover the attributes and

class membership and relationship of different entities. We consider the SE ontol-

ogy and other ontologies which are reused and included in the Tbox, and all the data

that is annotated in these ontologies is considered as part of the Abox. Using the

semantic repository, the application (clients) will be able to perform a full test

search, query expansion, disambiguation of entities and retrieval of entity semantic

descriptions.

13.5 SEOAnno Components

Most of the problems that are being faced within multisite software development

projects such as the automatic retrieval of the software artefacts specific to a given

context or identification of interlinked artefacts are addressable by making infor-

mation machine understandable and processable. Based on the conceptual archi-

tecture presented, a framework is implemented to represent the knowledge that is in

a machine-understandable structure and also interlinkable with other information

sources. Figure 13.2 shows the different components and processes involved in the

implementation of the SEOAnno solution to semantically annotate information

related to software development for knowledge synthesisation, assimilation and

13 Ontology Annotation for Software Engineering Project Management in. . . 323

dissemination. The SEOAnno solution is consists of source code parser, semantic

annotation, interlinking and enrichment and semantic repository for knowledge

management.

13.5.1 Source Code Parser

The main artefact that has the central and critical position in a multisite software

development business or in software development in general is the source code.

Source codes not only implement the business functionality but also embody the

business logic intertwined in the programmed code. Parsing source code, aside from

other nonstructured information sources such as documents, is essential to identify

the different elements of the source code which follow the given programming

language syntax. Theoretically speaking, there are two parsing stages, namely, the

creation of a concrete syntax tree (CST) and of an abstract syntax tree (AST). The

CST which takes the form of an ordered and rooted tree and represents the syntactic

structure of a string according to some formal grammar is often considered too

detailed for practical use; therefore, for source code, parsing the AST is considered.

Parsers convert a CST into an abstract AST. The underlying (programming lan-

guage) grammar constructs the tree to identify different elements of the source

code. The different elements identified by the AST, which include classes, methods,

fields, constructor, interface and in-line documentation, are then annotated based on

their type. QDox which is an open source parser for Java source files is used to

construct the AST, and its API enables the SEOAnno to identify the different types

of elements in a given Java project. A Java project file is generally a folder

containing different project-related artefacts including source file, packages,

third-party APIs and configuration files. In this research, we focused on the source

files and the documentation to annotate project artefacts and domain and business

logic-related information.

Fig. 13.2 SEOAnno solution components and information flow

324 P. Wongthongtham et al.

13.5.2 Semantic Annotation

The identified issues faced by the multisite software development including the

identification of software artefacts that are being discussed or interlinking with

other relevant artefacts are addressed by describing them with SE ontology.

Semantic annotation process assigns the metadata to the source code elements

and other software engineering artefacts to make them machine processable and

understandable. The process of semantic annotation initiates after the parser (source

code parser) parses the source code to identify different constructs of the code.

Upon their identification, semantic annotation annotates the elements with the

appropriate concept defined in the SE ontology. While SE ontology is a compre-

hensive software engineering ontology and covers all the aspect of software engi-

neering, the semantic annotation process also considers other relevant domain

ontologies and controlled vocabularies to enrich their semantic description. The

use of different relevant (even overlapping) ontologies helps in finding semantic

similarities with other similar entities described in other semantic repositories

(triple stores). The semantic annotation component makes use of Jena Semantic

Web framework (now part of the Apache Software Foundation) to model the RDF

(Resource Description Framework) graph and adds semantic descriptions using the

SE ontology components. The source code elements extracted from the AST

(constructed by QDox) are given to the Jena API to construct the RDF statements

(in the form of <subject> <predicate> <object> or <subject> <predicate>
“literal value”) to semantically describe resources (here, resources mean the ele-

ments of the source code such as class, method, parameter, return type, etc.).

13.5.3 Interlinking and Enrichment

The adoption of domain ontologies and controlled vocabularies brings a reusability

factor [41] of the knowledge to the fore which is one of the core contributions of

ontology use. Considering that ontology reuse and interlinking with other relevant

entities encourage information interoperability, therefore, where possible, reused

ontologies can be adopted and used in the community to produce network effects.

This was also highlighted in [42] that “ontologies exhibit positive network effects,

such that their perceived utility increases with the number of people who commit to

them which comes with wider usage”. Considering the best practices proposed in

the literature and using the Ontology Usage Analysis Framework (OUSAF) [41]

which empirically analyses the use of ontologies and ranks them based on their

usage, we reuse the ontologies, wherever possible. Within the interlinking and

enrichment process, different vocabularies such as Friend of a Friend (FOAF)

[43], Dublin Core (DC) [44], Simple Knowledge Organization System (SKOS)

[45] and Semantically Interlinked Online Communities (SIOC) [46] are used to

enrich the semantic description of resources annotated by the semantic annotation

13 Ontology Annotation for Software Engineering Project Management in. . . 325

component. In addition to ontology and vocabulary reuse, interlinking includes the

semantic relationship between similar entities stored in other datasets.

13.5.4 SEOAnno Semantic Repository

The ultimate objective of SEOAnno is to semantically describe the software

engineering and software development-related information for automatic knowl-

edge acquisition and management. The aforementioned components retrieve the

artefacts related to the software development project, parse the source codes,

identify the source code elements and annotate the elements with the concepts

and relationship defined in SE ontology and other ontologies. The components and

processes construct the RDF graph that is stored in the semantic repository for

persistence. For storage, the Virtuoso (open source edition) triple store is used to

store the RDF triples, ontologies and schemas and expose them using a SPARQL

endpoint. SPARQL endpoint enables other applications and users to access the

knowledge base by posing SPARQL queries.

13.6 Results and Discussion

This section presents the output and discusses the test results.

13.6.1 SEOAnno Results

SEOAnno is capable of annotating any Java source code. It produces instances of

the software engineering concepts captured in the SE ontology. Example of a Java

source code annotation is illustrated in Fig. 13.3. In annotation process, SEOAnno

creates instances of those concepts captured in the SE ontology. For example,

Bicycle is an instance of class Class in the SE ontology; gear is an instance of

class Field in the SE ontology; setCadence is an instance of class Method in the SE

ontology; and so on. Likewise, there are others that can be annotated and created as

instances of concepts. SEOAnno is the glue that binds SE ontology to the source

code via metadata. In other words, SEOAnno attaches semantic metadata to the

source code pointing to SE ontology concepts and properties.

Ontologies are structured as a graph, not only just a hierarchy tree, so that each

concept (as instances and classes) has relationships between them through a hier-

archy relationship, object properties and data-type properties. For example, rela-

tionship hasMethod relates the SE ontology class Class with the class Method, and

relationship hasField relates the SE ontology class Class with the class Field as

shown in Fig. 13.3. Class relationship also inherits its relationship to instance level;

326 P. Wongthongtham et al.

hence, relationship hasField relates instance Bicycle (instance of class Class) with

instances cadence, gear, and speed (instances of class Field). Likewise, relationship

hasMethod relates instance Bicycle (instance of class Class) with instance

setCadence (instance of class Method). Hence, as shown in Fig. 13.3, class Bicycle

has seven relationships, i.e. relationship hasConstructor (Bicycle), three relation-

ships of hasField (cadence, gear and speed), two relationships of hasMethod

(getCadence and setCadence) and hasAccessModifier (public) relationship.

We annotate The HelloWorldSwing source code1 which is simple and relatively

short (Table 13.1). The output of the annotation in RDF format and in graph format

for depiction is shown in Appendix A and Appendix B, respectively, and also in the

SEOAnno website2. Another source code is Bicycle.java3 which has complex and

lengthy concepts embedded in the code. The output of the annotation in RDF format

and in graph format for depiction is shown in Appendix C and Appendix D,

respectively, and also in the SEOAnno website2. The full annotation output of

both HelloWorldSwing and Bicycle code is available in the SEOAnno website2.

public class Bicycle {

private int cadence;
private int gear;
private int speed;

public Bicycle(int startCadence, int startSpeed, int startGear) {
gear = startGear;
cadence = startCadence;
speed = startSpeed;

}

public int getCadence() {
return cadence;

}

public void setCadence(int newValue) {
cadence = newValue;

}
}

CLASS

METHOD

MODIFIER

FIELD

CONSTRUCTOR

RETURN TYPE

ASI

n

hasAccessModifier

hasConstructor

hasMethod

hasField
DATA TYPE

PARAMETER

Fig. 13.3 A Java source code being annotated with concepts and their relationships captured in

the SE ontology

1http://docs.oracle.com/javase/tutorial/uiswing/examples/start/HelloWorldSwingProject/src/start/

HelloWorldSwing.java (visited Sept 2, 2016)
2http://seontology.wix.com/seoanno
3https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html (visited Sept 2, 2016)

13 Ontology Annotation for Software Engineering Project Management in. . . 327

http://docs.oracle.com/javase/tutorial/uiswing/examples/start/HelloWorldSwingProject/src/start/HelloWorldSwing.java
http://docs.oracle.com/javase/tutorial/uiswing/examples/start/HelloWorldSwingProject/src/start/HelloWorldSwing.java
http://seontology.wix.com/seoanno
https://docs.oracle.com/javase/tutorial/java/javaOO/classes.html

13.6.2 Discussion

We implement a prototype of the SEOAnno platform and test it on the two

recognised Java programs distinguished by the size of the source code. The simple

and short Java code of HelloWorldSwing makes it easy to check the competence.

The complex and rather long Java code of Bicycle is used to demonstrate its

scalability. The SEOAnno covers 10 Java constructs, 34 relationships and

20 instance data in HelloWorldSwing Java code, while it covers 25 Java constructs,

168 relationships and 102 instance data in Bicycle Java code. In the next section, we

present the use of the SE ontology-based approach in multisite environment.

13.7 Case Study

We illustrate our SE ontology-based approach through a case study in a multisite

software development environment in which the scenario is depicted in Table 13.2.

A multinational software company was running a multisite software develop-

ment project (a vehicle registration) at four sites: Perth, Shanghai, Dublin and

Table 13.1 Sample of annotation output

Source code Annotation output

HelloWorldSwing.java Method name: createAndShowGUI

. . .

private static void createAndShowGUI() { Method return type: void

void is primitive type

createAndShowGUIMethod is

STATIC

. . .

createAndShowGUI modifier: static

createAndShowGUI modifier:

private

Bycicle.java Method name: Bicycle

. . .

public Bicycle(int startCadence, int startSpeed, int

startGear) {

Bicycle modifier: public

Parameter name: startCadence

Parameter type: int

gear ¼ startGear; Parameter (is array?): false

cadence ¼ startCadence; Parameter name: startSpeed

speed ¼ startSpeed;} Parameter type: int

. . . Parameter (is array?): false

Parameter name: startGear

Parameter type: int

Parameter (is array?): false

328 P. Wongthongtham et al.

Bangalore. After releasing V1.1 Build 20150725, a bug was found by

Richard@Perth. Richard immediately filed the bug in the project’s issue tracking

system. Given its high severity, Richard on the next day filed another urgent request

in the issue tracking system, hoping to increase its priority ranking so that it could

draw greater attention from developers. The bug report was soon opened on the

same day by Vishay@Bangalore. He came up with a quick fix and added a

comment at the end of the report, giving the report the status of “re-evaluation

pending”. One week later, Arleno@Shanghai filed a duplicate bug which was soon

recognised as a repeated report 2 days later. Arleno then realised that the solution

Table 13.2 A case study scenario

Date Actor Site Action

25-Jul-15 Release of V1.1 Build 20150725

3-Aug-15 Richard @Perth Found a bug

Filed the bug (# 873) with high severity

4-Aug-15 Richard @Perth Filed another urgent request (# 880)

4-Aug-15 Vishay @Bangalore Bug report opened

Quick fixed and added a comment at the end of

thccccce report

Put report into the status of re-evaluation pending

11-Aug-15 Arleno @Shanghai Filed a duplicate bug (# 904)

13-Aug-15 Arleno @Shanghai Recognised as bug # 904 is a repeated report of bug #

880

Realised that the solution (being a temporary

workaround) was not good enough

15-Aug-15 Arleno @Shanghai Discussed the issue with his team members and super-

visor, who added comments to report # 880 and

directed their concerns back to the Bangalore Lab

17-Aug-15 Larry @Bangalore Provided another bug fix solution

22-Aug-15 Michael @Dublin Pointed out that Larry’s fix might incur deadlocks in

another related component and suggested reverting to

the first fix

23-Aug-15 Larry @Bangalore Fixed the bug based on Michael’s instruction

24-Aug-15 Michael @Dublin Checked the fix, marked the bug report status as

“resolved” and closed the bug

24-Aug-15 Lisa @Shanghai Suggested that the latest fix resulted in a connection

time out

25-Aug-15 Larry @Bangalore Asked for the effected component Lisa mentioned

25-Aug-15 Michael @Dublin Fixed the bug and explained his fix

29-Aug-15 Richard @Perth The bug was finally determined as resolved

@Perth The bug has led to a discussion in all four sites about the

architecture of the effected component library@Bangalore

@Shanghai

@Dublin

13 Ontology Annotation for Software Engineering Project Management in. . . 329

(being a temporary workaround) was not good enough. He discussed the issue with

his team members and supervisor, who added comments to report and directed their

concerns back to the Bangalore Lab. Based on Arleno’s detailed information,

Larry@Bangalore soon provided another bug fix solution. This fix is then picked

up by Michael@Dublin, a technical lead who used to work with the component in

the software package. Michael pointed out that Larry’s fix might produce deadlocks

in another related component and suggested reverting to the first fix. The next day,

Larry soon fixed the bug based on Michael’s instruction. Michael checked the fix

and marked the bug report status as “resolved” and closes the bug. The same day,

Lisa@Shanghai stated that the latest fix resulted in a component connection time

out. Later on, Larry asked her to explain on effected component. At this point,

Michael stepped in, fixed the bug and explained his fix. Few days later, the bug was

finally determined as “resolved” by Richard. The bug had led to a discussion in all

four sites about the architecture of the component library.

In the above example, the bug was not a very complicated one and required only

a straightforward solution. However, it took 26 days to fix this single bug and

delayed the final product release. Many of the issues arising from the lack of

common semantics discussed above have resulted in a similar lengthy process.

First, the information relating to a bug was located in multiple social interactions,

i.e. three discussions on the same topic (the bug) that have not been correlated with

each other. This is also the reason that the same bug has been reported twice.

Second, the bug was firstly found and solved by someone at some site without

expertise in this specific area, which led to two iterations of invalid fixes before the

expert, Michael, stepped in and finalised it. The failure to appropriately match

expertise (people and sites) with problems in a multisite environment unnecessarily

delayed the bug fix. Lastly, the lack of adequate knowledge sharing also played a

role in delaying the fixing of the bug. Larry was unsure of what the affected

component was, and there was no active knowledge support to explain what it

does and how it might have affected the other component.

We then use this scenario as a case study to validate the framework. Distributed

team worked on this multisite project having developers in Shanghai, Perth, Dublin

and Bangalore. In order to demonstrate and validate the application of SEOAnno,

the case study was based on a vehicle registration solution that was being developed

by a distributed team working on this comprising of developers in Shanghai, Perth,

Dublin and Bangalore. Figure 13.4 shows the class diagram of a vehicle registration

application covering the main components of any normal Java-based project.

Vehicle registration is the main call which invokes either Car or MotorBike
classes depending on what the user selects. Both these concrete classes implement

Information interface and extend the Vehicle super class which provides general-

ised features of any type of vehicle. The project is developed in a multisite

environment, and the location of each developer is depicted in Fig. 13.4,

i.e. Vishay is working at the Bangalore site, Richard at the Perth site, Arleno at

the Shanghai site and Alex at the Dublin site.

The SEOAnno solution is capable of semantically annotating the software

development environment which includes project details and the project team

330 P. Wongthongtham et al.

including project management and development team, software configuration man-

agement and software engineering artefacts. For implementation and evaluation,

vehicle registration project (as shown in Fig. 13.4) is used to semantically describe

this project as well as the project communication. The following aspects of the

project are represented and described using the SE ontology together with FOAF,

DC and vCard ontologies/vocabularies as part of SEOAnno platform:

• Project description (project name, description, code and project management

team)

• Project development team (developer name, location, time zone, role and list of

source code on which she/he worked)

• Software artefacts (class, super class, interface, method, field, constructor)

• Software bugs database (bug/issue name, type and description)

• Communication focusing on bug and issues

The SEOAnno captures the above-mentioned aspects and builds a knowledge

base to represent project- and communication-related information that is structur-

ally described and semantically annotated. OpenLink Virtuoso (open source edi-

tion) is used by the SEOAnno to store in RDF graphs and the information related to

the above-mentioned projects. Virtuoso’s SPARQL endpoint is used to query the

knowledge base and extract information. Different scenarios sufficiently represent

the issues faced in multisite distributed software development environments

discussed in this work. We demonstrate the issues through use case scenarios and

address them by querying the knowledge base which provides the required and

insight information.

Car
Class

VehicleRegistration
Main Class

Information
Interface

Vehicle
Super class

MotorBike
Classuses

uses

extend

implement

extend

implement

Vishay
Bangalore

Richard
Perth

Arleno
Shanghai

Alex
Dublin

Alex
Dublin

Fig. 13.4 Vehicle registration class diagram in multisite software development environment

13 Ontology Annotation for Software Engineering Project Management in. . . 331

13.7.1 Retrieve the Bugs Reported for a Class (Single Bug)

Before a bug is filed, a team member or a software agent could attempt to locate

related problems from the issue tracking systems based on their associated class or

component defined in the SE ontology and its instances. In this way, software

problems are all related, and duplicated reports could be avoided, which will

dramatically reduce confusion and unnecessary information overload. The dupli-

cation can be detected automatically by reasoning the result set.

Below is shown SPARQL querying to find any bug(s) related to class Car. In

Fig. 13.5, the knowledge base is accessed to retrieve the bug(s) reported for a given

software artefact. In this scenario, the query retrieves all the bugs found and

reported that are related to the class Car. Figure 13.6 displays the record found in

triple store (database) against the query previously mentioned. It found that the bug

with id BugX001 has a major severity level, with a status “Open”, and the key of the

resource who has been assigned (or worked on) this bug.

The information demonstrates the ability of the system to provide all the

information which a developer or any member of the software development team

needs to know about the previously reported bug. This information will help to

prevent reporting the same bugs multiple times, to retrieve information about

previous bugs and to know who has fixed the bug. The availability of such

information is essential for any multisite software development project.

13.7.2 List All the Bugs Reported for a Class (Multiple Bugs)

This scenario is similar to the above scenario although here we demonstrate the

presence of multiple bugs for a given class, i.e. the main class. Figure 13.7 shows

the SPARQL query used to retrieve the required information from the knowledge

base. Figure 13.8 depicts the results of the query mentioned above. In this scenario,

we can see that there are two (multiple) bugs reported for the main class. As

mentioned in the above scenario, such information is important for multisite

software development and helps to effectively resolve any issues related to a bug

or communication.

13.7.3 Search for a Specific Type of Bug

In a large enterprise software development project, it is very important to know the

different types of bugs that are being reported either by the software testing team or

by end user. This helps to get to the root cause because it is also possible that the

bugs are not related to the application itself but to the underlying infrastructure or

network that is being used to run the application. Figure 13.9 shows a SPARQL

332 P. Wongthongtham et al.

Fig. 13.5 SPARQL query

to display the reported bugs

related to class Car

name pro desc

Car http://www.w3.org/1999/02/22-

rdf-syntax-ns#type

http://www.seontology.org/activese

o/seo/v1#BUG

Car http://xmlns.com/foaf/0.1/name Car

Car http://www.seontology.org/acti

veseo/seo/v1#associatedTo

http://www.seontology.org/activese

o/seoanno/data/Car

Car http://www.seontology.org/acti

veseo/seo/v1#bugID

BugX001

Car http://www.seontology.org/acti

veseo/seo/v1#bugDescription

This bug is related to the calcula-

tion of interest for Car insurance

Car http://www.seontology.org/acti

veseo/seo/v1#hasBugSeverity

http://www.seontology.org/activese

o/seo/v1#Major

Car http://www.seontology.org/acti

veseo/seo/v1#hasBugStatus

http://www.seontology.org/activese

o/seo/v1#Open

Car http://www.seontology.org/acti

veseo/seo/v1#hasFixing

http://www.seontology.org/activese

o/seoanno/data/BugFixerResource

Car http://www.seontology.org/acti

veseo/seo/v1#hasBugType

http://www.seontology.org/activese

o/seoanno/bug/type/LogicError

Fig. 13.6 Result of SPARQL query shown above

13 Ontology Annotation for Software Engineering Project Management in. . . 333

Fig. 13.7 SPARQL query

to display the reported bugs

related to main (program)

class

name pro desc
MainClass http://www.seontology.

org/activeseo/seo/v1#ha
sBugType

http://www.seontology.org/active
seo/seoanno/bug/type/Standards

MainClass http://www.seontology.
org/activeseo/seo/v1#ha
sFixing

http://www.seontology.org/active
seo/seoanno/data/BugFixerResou
rceForBugX003

MainClass http://www.seontology.
org/activeseo/seo/v1#bu
gDescription

"This bug is related to the incor-
rect requirements. The imple-
mented requirement is quite dif-
ferent from the one written in
SRS. For any requirement
change, approved CR is re-
quired."

MainClass http://www.seontology.
org/activeseo/seo/v1#ha
sBugStatus

http://www.seontology.org/active
seo/seo/v1#Open

MainClass http://www.seontology.
org/activeseo/seo/v1#ha
sBugStatus

http://www.seontology.org/active
seo/seo/v1#Cancelled

MainClass http://www.seontology.
org/activeseo/seo/v1#as
sociatedTo

http://www.seontology.org/active
seo/seoanno/data/MainClass

MainClass http://www.seontology.
org/activeseo/seo/v1#ha
sBugType

http://www.seontology.org/active
seo/seoanno/bug/type/IncorrectR
equirements

MainClass http://www.seontology.
org/activeseo/seo/v1#bu
gDescription

"This bug is related to the wrong
computation of the interest. From
computational point of view class
calculated correct numbers but
referring to policy document it
seems to be not updated to new
interest rates. On certain test data
(using long digit number) it also
through exception"

Fig. 13.8 Result of SPARQL query shown above

334 P. Wongthongtham et al.

query which retrieves all the reported bugs of type “LogicalError”. Query also

accesses the bugs database to provide the textual description of a bug to help the

user understand the nature of the bug that is useful for certain access items.

Figure 13.10 displays the instances of LogicalErrors in the database. It found

that there are two classes in the project that have been reported to have logical error,

and their severity and status have been also retrieved. The availability of such

MainClass http://www.seontology.
org/activeseo/seo/v1#bu
gID

"BugX003"

MainClass http://www.w3.org/199
9/02/22-rdf-syntax-
ns#type

http://www.seontology.org/active
seo/seo/v1#BUG

MainClass http://www.seontology.
org/activeseo/seo/v1#bu
gID

"BugX004"

MainClass http://www.seontology.
org/activeseo/seo/v1#ha
sFixing

http://www.seontology.org/active
seo/seoanno/data/BugFixerResou
rceForBugX004

MainClass http://www.seontology.
org/activeseo/seo/v1#ha
sBugSeverity

http://www.seontology.org/active
seo/seo/v1#Major

MainClass http://xmlns.com/foaf/0.
1/name

"MainClass"

Fig. 13.8 (continued)

Fig. 13.9 SPARQL query

to display bugs of a

specific type

13 Ontology Annotation for Software Engineering Project Management in. . . 335

information helps in understanding the overall quality of the project and planning

further development accordingly. This will help to prevent the occurrence of

similar bugs in software and to communicate with software developers working

in distributed locations. A real-time bug statistic report can be developed and made

available to stakeholders as a means of preventing such issues and improving

overall project quality

13.7.4 Display the Components of a Given Software Artefact,
i.e. Class

After a bug is filed, a team member or a software agent could look at links of related

classes or components to see the possible impact of the fix on the class. Class

relationships are all annotated in the SE ontology, so if a software agent is used, it

would warn about the possible impact of the fix on the related software component

based on the relationships captured in the SE ontology. Furthermore, by querying

bug history (who added and updated it) and information about the component

(e.g. subcomponents, relationships with other components), the relevant people

check can be done before making any changes.

A full record of mappings between previously reported bugs and people/site that

resolved those bugs can be kept to determine the mapping similarity score. In this

way, it is able to recommend the persons who are most likely able to solve the bug

problem. For example, when a bug was reported, it could have been brought to the

attention of an expert instead of going through a circle involving a number of

people who do not possess sufficient expertise to fix the bug. Moreover, it could

embed the expert’s details to the bug report so that before anyone attempted to fix it

(since, due to company policy, only authorised developers can change certain parts

of the code, so the expert might not be able to fix the bug himself), the expert could

be directly consulted first.

Figure 13.11 shows a SPARQL query that displays all the attributes of a (Java)

class. In this query, we retrieve the details which include author of class, version

detail, access specifiers, number of methods it has, field members, constructors and

other properties such as whether the class implements an interface and/or extends

the superclass. It also tells whether any bug has been reported for this class.

Figure 13.12 shows the attributes and properties of Car class. Query result

displays the author, i.e. Vishay who developed the class; the present version of

class; access specifiers of class, i.e. public; the two methods this class has,

i.e. getInformation and getMakeYear; and bugs reported for this class. As men-

tioned in the above scenarios, the availability of such insight is important to support

activities associated with software development.

336 P. Wongthongtham et al.

13.7.5 Retrieve and Display Available Information of a Class

Since the information is stored in a structured format that is semantically describ-

able, it can be easily interlinked with other relevant information to provide a real-

time intelligent dashboard, a unified and consolidated snapshot of the project and

name ProxySever Car
bType http://www.seontology.org/acti

veseo/seoanno/bug/type/Logic
Error

http://www.seontology.org/ac
tiveseo/seoanno/bug/type/Log
icError

bType-
Name

LogicError LogicError

bTypeDesc Missing or inadequate or irrel-
evant or ambiguous functional-
ity in source code

Missing or inadequate or ir-
relevant or ambiguous func-
tionality in source code

bClass http://www.seontology.org/adti
veseo/seoanno/car

http://www.seontology.org/ad
tiveseo/seoanno/car

bDesc This bug is related to the calcu-
lation of interest for car insur-
ance

This bug is related to the cal-
culation of interest for car in-
surance

bSev http://www.seontology.org/acti
veseo/seoanno/seo/v1#Major

http://www.seontology.org/ac
tiveseo/seoanno/seo/v1#Major

bStatus http://www.seontology.org/acti
veseo/seoanno/seo/v1#Open

http://www.seontology.org/ac
tiveseo/seoanno/seo/v1#Open

Fig. 13.10 Result of SPARQL query shown above

Fig. 13.11 SPARQL query to display all the attributes of a software artefact (Class properties)

13 Ontology Annotation for Software Engineering Project Management in. . . 337

tailored information. Figure 13.13 shows a SPARQL query to retrieve all the

available or context-specific information of a given class. The query result displays

class detail, developer detail and bug(s) detail location in which the code is

developed.

Figure 13.14 displays context-relevant information of Car class. The query result

displays the class name, access specifiers, version, location, time zone, customised

document type used in documentation, interface and super class details, bugs-

related information and the developers who work on the class as well as on bugs.

The availability of a rich set of information is essential for the development of a

smart dashboard to provide the erudite insight about any multisite software devel-

opment project. The above-mentioned five scenarios demonstrate the effectiveness

and validity of the SEOAnno system which is considered as an essential component

in providing an effective and efficient platform for distributed software

development.

13.8 Conclusion and Future Work

The SEOAnno framework has been presented through the use of semantic repre-

sentation of software artefacts and project source code. The framework facilitates

remote communication and coordination in multisite software development

cls http://www.seontology.org/adti
veseo/seoanno/data/Car

http://www.seontology.org/a
dtiveseo/seoanno/data/Car

cName Car Car
cAuthor Vishay Vishay
cVersion 1.2 1.2
cAccessSpec http://www.seontology.org/acti

veseo/seoanno/seo/v1#Public
http://www.seontology.org/a
ctiveseo/seoanno/seo/v1#Pub
lic

cMethod http://www.seontology.org/acti
veseo/seoanno/data/getInforma
tion

http://www.seontology.org/a
ctiveseo/seoanno/data/getMa
keYear

cConst
cImplInter-
face

http://www.seontology.org/acti
veseo/seoanno/data/Vehicle

http://www.seontology.org/a
ctiveseo/seoanno/data/Vehicle

cHasParent
cHasBug http://www.seontology.org/acti

veseo/seoanno/data/BugIn_Car
http://www.seontology.org/a
ctiveseo/seoanno/data/BugIn
_Car

Fig. 13.12 Result of SPARQL query shown above

338 P. Wongthongtham et al.

environments. Source code was chosen in the annotation process due to its main

artefact that is centrally located and critical in multisite software development. In

future work, other artefacts such as diagrams can also be annotated given that SE

ontology is used to provide domain knowledge. A proof-of-concept prototype

implementation has been done in Java source code annotation. Types of source

code other than Java can be included in future work. Experimental study of software

engineers’ productivity can be further investigated and is marked as future work. To

measure the efficiency of SEOAnno platform, parameters include overall project

completion time and decrease in issues, and issue resolution time can be considered.

The metrics to measure project completion time include project size in man-days,

line of code, software artefacts in number of documentations’ pages, number of use

cases and test cases and estimated and actual completion time in man-days.

Effective communication reduces the time required to resolve issues reported by

a remote team or users. The metrics demonstrate the efficiency in terms of project

size in man-days, number of issues reported, average issue resolution time in hours

(time between issue reporting and issue resolution), number of issues assigned to

remote developers and number of issues closed without further escalation. The

practical value and usability of the platform can also be evaluated for multisite

software engineering. Surveys and focus groups can be used to determine any issues

with the platform in order to probe in-depth issues. The platform can then be refined

and shaped into a commercial grade system.

Fig. 13.13 SPARQL query

to display the resource who

has worked on resolving

reported issues

13 Ontology Annotation for Software Engineering Project Management in. . . 339

name pro desc
Car http://www.w3.org/1999/02/22-

rdf-syntax-ns#type
http://www.seontology.org/activeseo
/seo/v1#CLASS

Car http://www.w3.org/1999/02/22-
rdf-syntax-ns#type

http://purl.org/dc/dcmitype/Software

Car http://www.seontology.org/activeseo/
seo/v1#hasAccessModifier

http://www.seontology.org/activeseo
/seo/v1#Public

Car http://www.seontology.org/activeseo/
seo/v1#hasMethod

http://www.seontology.org/activeseo
/seoanno/data/getInformation

Car http://www.seontology.org/activeseo/
seo/v1#hasMethod

http://www.seontology.org/activeseo
/seoanno/data/getMakeYear

Car http://xmlns.com/foaf/0.1/name Car
Car http://www.seontology.org/activeseo/

seo/v1#inLineComment
This class is the class representing
the registration process for Cars.
This class extends Information class
and implements Vehicle interface.

Car http://www.seontology.org/activeseo/
seo/v1#author

Vishay

Car http://www.seontology.org/activeseo/
seo/v1#version

1.2

Car http://www.seontology.org/activeseo/
seo/v1#location

Bangalore, India

Car http://www.seontology.org/activeseo/
seo/v1#timezone

GMT+5.30

Car http://www.seontology.org/activeseo/
seo/v1#doctags

@role developer

Car http://www.seontology.org/activeseo/
seo/v1#implementsInterface

http://www.seontology.org/activeseo
/seoanno/data/Vehicle

Car http://www.seontology.org/activeseo/
seo/v1#hasBug

http://www.seontology.org/activeseo
/seoanno/data/BugIn_Car

Car http://www.w3.org/1999/02/22-
rdf-syntax-ns#type

http://www.seontology.org/activeseo
/seo/v1#BUGFIXER

Fig. 13.14 Result of SPARQL query shown above

340 P. Wongthongtham et al.

References

1. Wongthongtham P et al (2008) Development of a software engineering ontology for multi-site

software development. IEEE Trans Knowl Data Eng 21:1205–1217

2. Ågerfalk PJ et al (2005) A framework for considering opportunities and threats in distributed

software development. In: Proceedings of the International workshop on distributed software

development. Austrian Computer Society, Paris, 29 Aug 2005

3. Conchúir EÓ et al (2009) Global software development: where are the benefits? Commun

ACM 52(8):127–131

4. Islam S, Joarder MMA, Houmb SH (2009) Goal and risk factors in offshore outsourced

software development from vendor’s viewpoint. Global Software Engineering, 2009. ICGSE
2009. Fourth IEEE International Conference on. Limerick, Ireland

5. Thissen MR et al (2007) Communication tools for distributed software development teams,

Proceedings of the 2007 ACM SIGMIS CPR conference on Computer personnel research: The

global information technology workforce. ACM, St. Louis, pp 28–35

6. Biehl JT et al (2008) Impromptu: a new interaction framework for supporting collaboration in

multiple display environments and its field evaluation for co-located software development,

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,

Florence, pp 939–948

7. Salinger S et al (2010) Saros: an eclipse plug-in for distributed party programming, Pro-

ceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software

Engineering. ACM, Cape Town, pp 48–55

8. Dillon TS, Chang E, Wongthongtham P (2008) Ontology-based software engineering- soft-

ware engineering 2.0. In: Software Engineering, 2008. ASWEC 2008. 19th Australian Con-

ference on. Perth, Australia

Car http://www.seontology.org/activeseo/
seo/v1#hasDeveloper

http://www.seontology.org/activeseo
/seoanno/data/VRDev01Vishay

Car http://www.seontology.org/activeseo/
seo/v1#fixedDate

10Jan2014

Car http://www.seontology.org/activeseo/
seo/v1#fixedBy

Vishay

Car http://www.seontology.org/activeseo/
seo/v1#fixedBy

Developer-Name

Car http://www.seontology.org/activeseo/
seo/v1#fixDescription

These are the comments of resource
hwo fixed it

Car http://www.w3.org/1999/02/22-
rdf-syntax-ns#type

http://www.seontology.org/activeseo
/seo/v1#BugType

Car http://www.seontology.org/activeseo/
seo/v1#bugTypeName

Logic Error

Car http://www.seontology.org/activeseo/
seo/v1#bugTypeDesc

Missing or Inadequate or irrelevant
or ambiguous functionality in source
code

Fig. 13.14 (continued)

13 Ontology Annotation for Software Engineering Project Management in. . . 341

9. Blanco-Fernández Y et al (2008) A flexible semantic inference methodology to reason about

user preferences in knowledge-based recommender systems. Knowl-Based Syst 21

(4):305–320

10. Borges A et al (2013) Ontologies supporting the distributed software development: a system-

atic mapping study, Proceedings of the 17th international conference on evaluation and

assessment in software engineering. ACM, Porto de Galinhas, pp 153–164

11. Wongthongtham P et al (2006) Ontology-based multi-site software development methodology

and tools. J Syst Archit 52(11):640–653

12. Bourque P (2003) SWEBOK guide call for reviewers. 29 May 2003. Available from: http://

serl.cs.colorado.edu/~serl/seworld/database/3552.html

13. Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software

development. IEEE Softw 18(2):22–29

14. Herbsleb JD et al (2001) An empirical study of global software development: distance and

speed. In: 23rd International Conference on Software Engineering (ICSE’01). Toronto,

Canada

15. Herbsleb JD, Moitra D (2001) Global software development. IEEE Softw 18:16–20

16. Boulton C (2008) IBM’s social beehive and discovery search. eWeek.com

17. Giri K (2011) Role of ontology in semantic web. DESIDOC J Libr Inf Technol 31(2):116–120

18. Paydar S, Kahani M (2011) An agent-based framework for automated testing of web-based

systems. J Softw Eng Appl 4:86–94

19. Portillo-Rodrı́guez J et al (2014) Using agents to manage socio-technical congruence in a

global software engineering project. Inf Sci 264(0):230–259

20. Lee C-S, Wang M-H (2009) Ontology-based computational intelligent multi-agent and its

application to CMMI assessment. Appl Intell 30(3):203–219

21. Nunes I et al (2011) On the development of multi-agent systems product lines: a domain

engineering process, in agent-oriented software engineering X. Springer, Berlin/Heidelberg,

pp 125–139

22. Chira C (2007) A multi-agent approach to distributed computing. Comput Intell:43–45

23. Robillard M, Walker R, Zimmermann T (2010) Recommendation systems for software

engineering. Softw IEEE 27(4):80–86

24. Ponzanelli L (2014) Holistic recommender systems for software engineering, Companion

Proceedings of the 36th international conference on software engineering. ACM, Hyderabad,

pp 686–689

25. Xin X et al (2013) Accurate developer recommendation for bug resolution. In: Reverse

Engineering (WCRE), 2013 20th Working conference on. Koblenz, Germany

26. Begel A, Yit Phang K, Zimmermann T (2010) Codebook: discovering and exploiting relation-

ships in software repositories. In: Software Engineering, 2010 ACM/IEEE 32nd international

conference on. Cape Town, South Africa

27. Moraes A et al (2010) Recommending experts using communication history, Proceedings of

the 2nd international workshop on recommendation systems for software engineering. ACM,

Cape Town, pp 41–45

28. Steinmacher I, Wiese IS, Gerosa MA (2012) Recommending mentors to software project

newcomers. In: Recommendation Systems for Software Engineering (RSSE), 2012 third

international workshop on. Zurich, Switzerland

29. Xiang PF et al (2008) Ensemble: a recommendation tool for promoting communication in

software teams, Proceedings of the 2008 international workshop on recommendation systems

for software engineering. ACM, Atlanta, pp 1–1

30. Sawadsky N, Murphy GC (2011) Fishtail: from task context to source code examples, Pro-

ceedings of the 1st workshop on developing tools as plug-ins. ACM, Waikiki, pp 48–51

31. Cordeiro J, Antunes B, Gomes P (2012) Context-based recommendation to support problem

solving in software development. In: Recommendation Systems for Software Engineering

(RSSE), 2012 third international workshop on. Zurich, Switzerland

342 P. Wongthongtham et al.

http://serl.cs.colorado.edu/~serl/seworld/database/3552.html
http://serl.cs.colorado.edu/~serl/seworld/database/3552.html

32. Ashok B et al (2009) DebugAdvisor: a recommender system for debugging, Proceedings of the

the 7th joint meeting of the European software engineering conference and the ACM

SIGSOFT symposium on the foundations of software engineering. ACM, Amsterdam, pp

373–382

33. Borges A et al (2013) Ontologies supporting the distributed software development: a system-

atic mapping study. In: Proceedings of the 17th International Conference on Evaluation and

Assessment in Software Engineering. ACM, Porto de Galinhas, Brazil

34. Lim SL et al (2013) Using web 2.0 for stakeholder analysis: stakesource and its application in

ten industrial projects. In: Maalej W, Thurimella AK (eds) Managing requirements knowledge.

Springer, Berlin, pp 221–242

35. Lim SL, Quercia D, Finkelstein A (2010) StakeNet: using social networks to analyse the

stakeholders of large-scale software projects, Proceedings of the 32nd ACM/IEEE interna-

tional conference on software engineering, 1st edn. ACM, Cape Town, pp 295–304

36. Liu L. et al. (2014) An ontology-based advisement approach for SOA design patterns. In: The

8th international conference on knowledge management in organizations. Springer, Dordrecht

37. Ovaska P, Rossi M, Marttiin P (2003) Architecture as a coordination tool in multi-site software

development. Softw Process: Improv Pract 8(4):233–247

38. Hass G (2003) Configuration management principles and practice. Addison-Wesley Longman

Publishing Co

39. Gracia J, Mena E (2008) Web-based measure of semantic relatedness, Web Information

Systems Engineering-WISE 2008. Springer, Berlin/Heidelberg, pp 136–150

40. Parsia B, Sirin E 2004 Pellet: an owl dl reasoner. In: Third international semantic web

conference

41. Ashraf J, Hussain OK, Hussain FK (2012) A framework for measuring ontology usage on the

web. Comput J 56:1083–1101

42. Hepp M (2007) Possible ontologies: how reality constrains the development of relevant

ontologies. Internet Comput 11(1):90–96

43. Brickley D, Miller L (2010) FOAF vocabulary specification 0.98. In: Namespace document.

RDF and Semantic Web developer community. http://www.loeyeol.com/siteagent/xmlns.com/

foaf/spec/20100809.html

44. Weibel S et al (1998) Dublin core metadata for resource discovery. Internet Engineering Task

Force. Network Working Group, pp 1–8

45. Miles A, Bechhofer S (2009) SKOS simple knowledge organization system reference. Tech-

nical report, W3C

46. Breslin JG et al (2005) Towards semantically-interlinked online communities, The semantic

web: research and applications. Springer, Berlin/Heidelberg, pp 500–514

13 Ontology Annotation for Software Engineering Project Management in. . . 343

http://www.loeyeol.com/siteagent/xmlns.com/foaf/spec/20100809.html
http://www.loeyeol.com/siteagent/xmlns.com/foaf/spec/20100809.html

Chapter 14

Investigating the Scope for Agile Project
Management to Be Adopted by Higher
Education Institutions

Simon P Philbin

14.1 Introduction

14.1.1 Background on Agile Project Management

The practice of agile project management [1] has been proliferating over recent

years [2], and this includes application to different sectors [3] thereby extending

beyond the initial technology arena. Indeed agile continues to be an emerging trend

in management that is making a positive impact to projects in many organisations.

A key feature of the agile management approach is the focus on meeting the

underlying business needs [4] of the organisation along with the people dimension

of projects being emphasised, for instance, through joint decision-making in pro-

jects as well as joint working where possible with partners, suppliers and customer

representatives. In this regard, the agile approach seeks to be implicitly more

inclusive when compared to more conventional forms of process-driven project

management methodologies.

Originally developed in the IT (information technology) sector, agile project

management was initially seen as an alternative to the so-called waterfall method-

ology of project management, where IT design projects are delivered via a highly

ordered linear sequence that is analogous to the action of a waterfall. Conversely,

agile-related methodologies, such as Scrum [5], extreme programming [6] and

DSDM (dynamic systems development method) [7], are more akin to lean man-

agement and Six Sigma practices [8]. Moreover, excessive levels of project plan-

ning are avoided, and project activities are undertaken in an iterative manner.

Therefore, agile management can be viewed as a flexible approach that seeks to

S.P. Philbin (*)

Enterprise Division, Imperial College London, South Kensington, London SW7 2PG, UK

e-mail: s.philbin@imperial.ac.uk

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_14

345

mailto:s.philbin@imperial.ac.uk

reduce the level of early-stage planning as well as minimizing the amount of

documentation that is in place for a project.

14.1.2 Agile Applications

Agile has been adopted across a number of high-tech industrial applications [9], and

this extends to governmental applications [10]. However, there are different types

of organisations that also undertake projects, such as charitable organisations and

academic institutions. The question therefore arises: How can agile project man-

agement techniques be adopted by higher education institutions? Moreover, should

academic institutions be considering new management practices and leveraging the

latest and emerging management trends from industry? Indeed some initial studies

have looked into the potential application of agile techniques at academic institu-

tions [11], where a simplified agile approach was evaluated for suitability for small

teams working both in academia and in industry.

Other work has looked into the use of agile approaches to support idea gener-

ation and related creative processes at universities [12]. There has also been work

reported on how agile techniques can potentially support the processes and opera-

tions in research and development (R&D) laboratories [13]. Conversely, the appli-

cability of complementary methodologies, such as BPM (business process

management), has been investigated for higher education institution (HEI) appli-

cations, with such application being found to largely rest on the university having a

supportive set of organisational values and strategic intent as well as the necessary

leadership and people skills to support an effective introduction of BPM [14].

Consequently, these studies would appear to indicate there is an emerging

interest in applying new project management methodologies in higher education

institutions, organisations that can often be very traditional in their approach to

managing work-based activities. Moreover, when implementing new management

approaches in such organisations, it will be important to consider the organisational

landscape and the underlying culture, specifically whether a culture that supports

changed working practices exists.

14.1.3 Projects at Higher Education Institutions

Universities are often large and complex organisations where there can be a

significant number of management challenges as well as various types of projects

delivered [15]. Challenges can include the availability of funding, competition for

staff and students as well as the need to deliver various types of projects. Indeed

projects are a constant feature of research activities carried out by universities, and

most research initiatives are delivered according to a certain project approach,

i.e. to meet schedule, budget and scope or specification requirements.

346 S.P. Philbin

Education and teaching at universities can also be viewed through a ‘project
lens’, such as a project to develop and deliver a new Master’s degree programme or

implementation of new technology to improve the quality of educational delivery.

In this regard, implementation of new technology to improve educational delivery

has been found to be hampered in many cases with only a minority of the projects

from the study resulting in improved student learning outcomes [16].

Moreover, there is a need to ensure adequate quality levels are achieved for new

educational platforms and in particular online programmes if they are to be viewed

as legitimate and valuable [17]. Adopting improved management techniques, such

as agile management, provides scope to support such goals and contribute to quality

assurance for educational programmes especially where risk can be higher through

the use of new technologies.

The exchange of knowledge by universities with partner organisations, such as

through technology transfer and the commercialization of IP (intellectual property)

with industrial companies [18], can be viewed as project-based activities. This is

because the commercialization of foreground IP that has been generated, for

instance, from a scientific research study, needs to be undertaken in a timely manner

so that commercial value can be secured while appropriate partners remain moti-

vated to take the research to market. Hence, there is a need to adhere to a required

schedule in addition to the financial aspects of the commercialization as well as

achieving the required specification in terms of the suitability of any contractual

documentation needed to underpin the transaction. Managing research projects that

are funded by industry can also involve two-way knowledge exchange that is

dependent on social, commercial and process-driven factors [19], where adoption

of project management techniques can make a positive impact to the performance

of such projects.

Therefore, higher education institutions present an emerging opportunity for

agile project management techniques to be applied in order to improve the effi-

ciency and effectiveness of operations. There is a need for projects to be delivered,

and this need extends to a growing interest in the application of new techniques and

methodologies that have been successfully applied in industry. Hence, the applica-

tion of agile management techniques at higher education institutions is a valid line

of enquiry.

Consequently, the objectives of this chapter are to provide a review of agile

project management and to explore in conceptual terms how certain agile tech-

niques can be adopted at higher education institutions. This will be undertaken via a

literature review of agile project management followed by discussion of three

illustrative examples of the application of agile techniques at higher education

institutions.

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 347

14.1.4 Chapter Organisation

This chapter is organised as follows. After the introduction section, there is a

section that provides a summary and supporting information on agile project

management. This is followed by a section on identifying the scope for agile project

management at higher education institutions. The next section is focused on

detailing three illustrative cases that describe how agile techniques can potentially

be adopted by higher education institutions. Each case study includes an initial

assessment of the system requirements for implementation of the agile technique

including consideration of the appropriate ICT infrastructure. This section is

followed by discussion and conclusions and finally the future work.

14.2 Agile Project Management

14.2.1 Manifesto for Agile Software Development

A key development for the agile project management movement was the publica-

tion of theManifesto for Agile Software Development [20]. This document includes

a number of statements that essentially capture the essence of the agile approach,

and while it is focused on software development, the messages can also be applied

to other applications and industries. The agile manifesto [21] is as follows:

We are uncovering better ways of developing software by doing it and helping others do
it. Through this work we have come to value:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

The manifesto is accompanied by 12 guiding principles [21], which are provided

in Table 14.1 along with an interpretation by the author of the meaning of each

principle.

The manifesto and the accompanying principles provide a useful summary of the

agile management approach, and it can be observed that there are a number of

themes that emerge. There is a clear emphasis on the people dimension of projects,

working collaboratively together as opposed to rigidly sticking to predefined rules

and procedures. There is joint working that involves team members setting the

direction of the project and also joint working where possible with customers or

clients as well as suppliers. Agile is therefore an inclusive approach, where issues

and challenges are effectively shared across the team and all team members are able

to contribute to the achievement of the project’s goals.

348 S.P. Philbin

Table 14.1 Twelve agile management principles and corresponding interpretations

No. Agile management principle Interpretation

1 Our highest priority is to satisfy the cus-
tomer through early and continuous deliv-
ery of valuable software

The preeminence of customer require-

ments that should be delivered as early as

possible with workable solutions that cre-

ate value for the customer

2 Welcome changing requirements, even late
in development. Agile processes harness
change for the customer’s competitive
advantage

The ability to cope with changes, issues

and risks encountered throughout the pro-

ject lifecycle and to accommodate such

changes for the ultimate benefit of the

customers

3 Deliver working software frequently, from a
couple of weeks to a couple of months, with
a preference to the shorter timescale

Providing early delivery of working project

outputs that have partial functionality with

full functionality only provided later in the

project. Essentially it is better to have a

working solution than no solution at all

4 Business people and developers must work
together daily throughout the project

The need for commercial- and business-

oriented people to work side by side with

technical-oriented people, thereby

avoiding a stovepipe mentality arising

5 Build projects around motivated individ-
uals. Give them the environment and sup-
port they need, and trust them to get the job
done. The most efficient and effective
method of conveying information to and
within a development team is face-to-face
conversation

The overall importance of the people

dimension of projects and the need to sup-

port the people working on projects

through providing a trusting and open

environment that encourages joint working

and sharing of information across the pro-

ject. Also emphasizing direct face-to-face

communication when compared to other

forms such as electronic communication

6 Working software is the primary measure of
progress

Further highlighting that a working solu-

tion for a project is better than no solution

at all. This underscores that a partial com-

pletion of project specification can be

acceptable

7 Agile processes promote sustainable
development

The importance of projects being under-

taken in a manner that will survive into the

future and will not result in negative

impacts on the project environment (either

locally or more widely)

8 The sponsors, developers, and users should
be able to maintain a constant pace
indefinitely

Those involved in the project need to work

according to a consistent approach that can

be maintained and does not result in burn-

out of anyone involved through excessive

levels of project contributions

9 Continuous attention to technical excel-
lence and good design enhances agility

In order to achieve high levels of excel-

lence and flexibility, there is always a need

to maintain a focus on technical quality for

any kind of project

10 Simplicity – the art of maximizing the
amount of work not done – is essential

Projects can be completed without exces-

sive levels of operating procedures and

(continued)

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 349

The ability to adapt and an inherent flexibility are also key features, changing the

course of the project to adapt to emerging challenges or changes in the external

environment. The ability for project workers from different disciplines and back-

grounds to work together is an important feature as well as the overall benefits from

adopting a trusting and open environment through sharing knowledge across pro-

jects. Clearly, these attributes would be sensible to adopt for projects delivered in

all kinds of organisations.

14.2.2 Agile Methodologies

There are a number of different versions of agile management, and the Scrum

methodology [22] is used widely in industry. A key feature of the Scrum approach

is the articulation of project work in terms of product features and the so-called

product backlog, which can be viewed as a prioritized list of all the features to be

delivered by the project (see Fig. 14.1). As depicted in this diagram and through

reference to the product backlog, it is possible to develop the highest-priority

features for a project first thereby leaving only low-priority features to the end of

the project.

Consequently, where resources or time is no longer available as the project

approaches the scheduled completion date, the project work that has not been

completed will by definition be lower priority when compared to the completed

work and corresponding features. A further aspect of the scheme in the diagram is

the work cycle, where each feature is delivered via a time-boxed iteration (say over

a week or month), and each iteration for a technology-based project would involve

exploration (or design) followed by development (or engineering) and then deploy-

ment (or implementation). This iterative process is repeated for each feature

according to the aforementioned prioritization process.

Table 14.1 (continued)

No. Agile management principle Interpretation

documentation, although there should be

enough to provide adequate structure and

support the planning and delivery process

11 The best architectures, requirements, and
designs emerge from self-organizing teams

Agile methods rely on teams of people

jointly taking ownership of project success

and not relying solely on the coordination

provided by a project manager

12 At regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behavior accordingly

The importance of looking back and

reflecting on achievements as well as dif-

ficulties encountered to support lessons

learnt and continuous improvement across

the project

350 S.P. Philbin

Central to the agile approach is the clear focus on delivery of the project

according to a fixed schedule and within the financial budget, but when needed,

there can be ‘flexing’ or controlled modifications of the project scope. This is an

implication of the sequential delivery of the higher-priority features during earlier

stages in the schedule, and in cases where there is no more time remaining, only

lower-priority features are not delivered. This approach does not mean quality

standards are compromised, but it does mean that projects can be delivered with

some working level of functionality but still within the schedule and budgetary

envelopes available.

This approach fundamentally sets the agile approach apart from the traditional

view of project management [23], where the so-called iron triangle of requirements

have to be delivered, i.e. according to fixed schedule, financial budget and project

specification. However, as many studies and reports have identified, such an

approach often results in project failures and problems with delivery, for example,

as reported for IT projects by the Standish Group [24]. Furthermore, construction

projects continue to be delivered with time delays and cost overruns, and agile has

recently been found to be a promising strategy to help cope with engineering

complexity and improve the performance of such projects [25].

Agile techniques can also involve sprints over shorter timeframes, where each

sprint has an interim target that must be met within a fixed ‘time box’ [26]. Breaking
down projects into such sprints and corresponding ‘time boxes’ represents another
approach to ensure projects are delivered within the required schedule. Although

agile is an overall approach to projects, it is characterized by a wide selection of

techniques that when employed collectively support the achievement of agile

working according to the previously defined principles. A number of these tech-

niques associated with agile project management will be explored further in the

illustrative case studies that are discussed in this chapter.

Exploration

Development

Deployment
Feature # 1

Product
backlog

Feature
1

Feature
2

Feature
3

Feature
n

Exploration

Development

Deployment
Feature # 2

Exploration

Development

Deployment
Feature # 3

Exploration

Development

Deployment
Feature # n

Work
iteration
& review

Work
iteration
& review

Work
iteration
& review

Work
iteration
& review

Fig. 14.1 Development cycle for agile project

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 351

14.3 Identifying the Scope for Agile Management at HEIs

14.3.1 Organisational Landscape for HEIs

Higher education institutions (HEIs) are complex organisations, often large in size

spanning academic departments and various support services along with a wide

array of stakeholders to serve. Universities need to remain relevant if they are to

continue to attract high-quality students and staff. They need to respond to emerg-

ing needs and trends, such as globalization [27], improving student engagement

[28] or the current strong interest in entrepreneurial activities and related educa-

tional provision [29]. Universities are also actively adopting more commercial

practices, such as business planning methodologies to support the development of

strategic academic programmes [30].

Moreover, universities can be powerful engines to support economic develop-

ment through the knowledge that is created as well as through producing educated

and trained individuals that are able to work in knowledge-based jobs in industry

and in wider society. Universities are able to generate research and technology

outcomes that can be adopted by industrial companies to enable improved products,

services and manufacturing processes thereby helping to improve industrial

competitiveness.

Universities also face a number of challenges, such as pressure on budgets,

increasing levels of competition for funding and attracting the best students and

staff – increasingly on an international level. Plus, there is a need to respond to the

opportunities offered through pursuing collaborative partnerships with industrial

organisations [31] as well as adopting ICT (information and communications

technology) to improve the teaching experience. In regard to the primary organi-

zational strategy of most universities, it can be articulated according to three core

capabilities that are education, research and knowledge exchange and as depicted in

Fig. 14.2.

14.3.2 Supporting the HEI Strategic Agenda

Adoption of new management systems at HEIs will therefore need to be able to

make a positive impact on a university’s ability to pursue a successful strategic

trajectory that generates value across all three core capabilities [32]. Consequently,

it is useful to explore where there is scope for agile project management to result in

improvements in these three areas, and a useful framework to adopt is the so-called

four E’s, i.e. assessing performance in regard to improvements in efficiency,

effectiveness, economy and ethical considerations [33]. Therefore, Table 14.2 pro-

vides the results of this assessment, which highlights that there is significant scope

for agile practices to make a positive impact to the performance of universities

across the education, research and knowledge-exchange domains.

352 S.P. Philbin

Table 14.2 Scope for application of agile to academic institution core capabilities

Performance Education Research Knowledge exchange

Efficiency Maximising the value

and quality of knowl-

edge and skills trans-

ferred to students

through optimal delivery

of teaching and tuition

services

According to a given

level of funding, gener-

ating the optimal level of

knowledge from

research activities that

are delivered

Translation of research

outcomes to enable the

optimal level of value

creation in terms of

industrial, societal or

knowledge impact

Effectiveness Generating improved

skills and knowledge of

the students through

ensuring scholarship is

fit for purpose and regu-

larly updated

Achieving knowledge

goals from research

conducted in regard to

the required deliver-

ables, milestones and

quality levels

Two-way exchange of

knowledge with part-

ners and stakeholders

undertaken according to

defined plans and

against specified key

performance indicators

Economy Delivery of teaching and

scholarly work

according to a mini-

mized cost base while

still at appropriate qual-

ity levels

Research projects deliv-

ered according to

required performance

and quality levels, while

costs are minimized as

appropriate

Ensuring the transaction

and follow-on costs for

research translation

activities with appropri-

ate partners are

minimized

Ethics Adopting a transparent

and honest approach to

teaching work that is

applied consistently to

student cohorts along

with fairness and

integrity

Research conducted

according to probity,

integrity and ethical

dimensions while

avoiding any conflicts of

interest that could con-

ceivably arise

A consistent approach

used to the exchange of

knowledge with part-

ners that is based on

integrity, probity and

diligence of application

Education

Knowledge
exchangeResearch

Scholarship, teaching
activities and learning
delivered at undergraduate
and postgraduate levels

Generating social,
economic and industrial
value through
exchanging knowledge
with partners and
stakeholders

Creating knowledge
through systematic
investigation according
to existing disciplines
and in multidisciplinary
areas

Fig. 14.2 Higher education institution core capabilities

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 353

14.4 Evaluation of Agile Techniques Through Illustrative
Cases

The previous assessment exercise has highlighted the scope for agile practices to be

potentially applied at universities, and it is useful to examine specific instantiations

in order to provide context as well as an improved understanding of the outcomes of

such an application. Therefore, three illustrative cases are provided in this chapter

that highlight how agile techniques can be applied across education, research and

knowledge-exchange provision at higher education institutions.

The case studies have been developed through drawing on the author’s experi-
ence in research and technology projects at universities. Supporting material from

the literature has been considered for each case, and through a process of reflective

inquiry [34], the key findings from the cases have been synthesized. Each case also

includes identification of the proposed system requirements for the corresponding

agile application.

14.4.1 Case 1: Development of Online Master’s Degree
Programme

The development of a new online Master’s degree programme can be a challenging

initiative [35] for universities and the staff involved as there is a significant amount

of planning required across a range of underlying areas, including consideration of

blended learning options [36]. This includes making a supporting case to secure the

necessary approvals within the university, ensuring the programme is intellectually

demanding and designing the programme so that it provides an appropriate balance

between theoretical and practical aspects where appropriate as well as making sure

that the degree will be appealing to the targeted student cohorts. There is also a need

to ensure the learning materials, teaching notes and scholarly content are prepared

in a timely manner and for the appropriate ICT infrastructure to be available to

enable delivery of the online programme.

Development of all this material in a timely fashion represents a significant

challenge that would potentially benefit from the adoption of the agile Scrum

approach and in particular the sprint planning technique [37]. Basically, a sprint

is a fixed period of time where specified work has to be completed in preparation for

review and acceptance of the project work. Each sprint period begins with a

planning meeting, where the development team needs to agree on what can be

realistically achieved in the given timeframe and the relevant product owner will

need to make a final decision on the review criteria that need to be met in order for

the work to be approved and accepted.

The sprint planning approach can be undertaken through assembling a task

tracking table, and in terms of project delivery, a sprint burndown chart is used to

track development of the project in real time according to achievement of the

354 S.P. Philbin

required tasks [38]. Consequently, Table 14.3 provides a task tracking table, and

Fig. 14.3 represents a corresponding sprint burndown chart for the illustrative

development of an online Master’s degree programme.

The task tracking table captures key information and can be updated throughout

the term of the project, including information on the task description, status (either

open, closed or in work), task owner, projected days for the task and remaining days

for the task. The table is maintained throughout the project and can be used to

readily track tasks and the remaining time to the completion of the project.

In regard to progress of the project, it can be seen from the table that there is one

closed task, four in work tasks and three open tasks. Furthermore, the sprint

burndown chart plots a linear trend line of tasks remaining (for this case, there is

a total of 120 project working days over a 12-week project duration) and also the

actual tasks remaining, which are recorded in real time. In the example, the sprint

burndown chart is at the end of week 6, and it can be observed that the actual tasks

remaining amount to 65 days’ worth of work, which is a summation of the

remaining days for tasks 01 through 08. In this example 55 days of work has

been completed on the project.

Using this agile approach would ensure there is a clear and transparent view on

the progress of the education project to develop a new online Master’s degree

programme, thereby making sure all the task owners (namely, the course director,

Table 14.3 Task tracking table for online Master’s degree programme development project

Task

Task description

Task

status Task owner

Projected

days

Remaining

days

01 Development of programme

specification

Closed Course direc-

tor (professor)

5 0

02 Programme proposal and busi-

ness plan

In

work

Course dep-

uty director

(lecturer)

15 5

03 External assessor’s report
commissioned and delivered

Open Course direc-

tor (professor)

10 10

04 Preparation of degree regulations In

work

Departmental

administrator

10 5

05 Degree programme structure with

details of compulsory and elec-

tive modules

In

work

Course dep-

uty director

(lecturer)

25 5

06 Preparation of outline teaching

materials prepared

In

work

Course direc-

tor (professor)

35 20

07 Information and communications

technology (ICT) infrastructure

development

Open Departmental

administrator

10 10

08 University approvals, i.e. at

department, faculty and senate

levels

Open Course direc-

tor (professor)

10 10

Note on project task status:

Open: task not started

In work: task started but not completed

Closed: task completed

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 355

deputy director and departmental administrator) are updated on progress. The

impact of issues and risks can be readily observed and managed through the

tracking process, and use of a sprint burndown chart would allow any significant

variations to the trend line to be observed so that corrective action can be under-

taken rapidly to maintain the performance of the project and meet the required

schedule.

In terms of ICT design and implementation, it is possible to synthesize the

system requirements (SR1/1–6) [39] for this application of agile project manage-

ment to the development of an online Master’s programme, which are summarized

as follows:

• SR1/1: The work-based information system will allow input by users of the

initial task-related data (qualitative and quantitative) according to the predefined

data fields in the task tracking table.

• SR1/2: The work-based information system will allow subsequent input by users

of the remaining days’ data field for each given task. Such input is likely to be on
a periodic basis, e.g. every week.

• SR1/3: The work-based information system will automatically generate a graph-

ical output based on a sprint burndown chart according to the sum of tasks (trend

line of tasks remaining and actual tasks remaining) versus the sprint timeline.

• SR1/4: The work-based information system will allow users to assess the

variation between the trend line of tasks remaining and the actual tasks

remaining on a periodic basis, e.g. every week.

• SR1/5: Users will be able to engage with the work-based information system via

traditional hardware interfaces (keyboard and mouse) in addition to mobile

devices, thereby increasing functionality. App-based implementation is also

recommended.

120
114

106
95

75
73

65

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13

Trendline of tasks
remaining (days)

Actual tasks
remaining (days)

Sprint timeline (weeks)

Su
m

 o
f t

as
ks

 (d
ay

s)

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 14.3 Sprint burndown chart for online Master’s degree programme development project

356 S.P. Philbin

• SR1/6: The work-based information system to be available via cloud-based

applications with scope for integration with other ICT project management

applications.

This set of initial system requirements highlights the data and user aspects,

interfaces as well as hardware configurations. Further refinement of these require-

ments is suggested through use of a more formalized requirements capture process

with targeted users. Nevertheless it is useful to establish these system requirements

so that practitioners contemplating adopting agile techniques can have an improved

appreciation of the areas to be considered when designing and implementing the

agile management systems.

14.4.2 Case 2: Multidisciplinary Medical Research Project

Medical research projects generally require contributions from different academic

disciplines and are by nature multidisciplinary, for example, the development of a

drug compound involving testing of an NCE (new chemical entity) [40] along with

pharmacological and biochemical research that is required before the eventual

testing is carried out. Open communication across multidisciplinary teams is a

key factor that determines the success of collaborative research projects [41], and

remote working of researchers can also be a feature.

This could, for instance, be associated with participation in international collab-

orative projects such as Horizon 2020 consortium projects funded by the European

Commission, for example, involving health systems and policy research [42] or

construction management and building materials research [43]. Indeed, the ability

of the principal investigator and project researchers to work together in a collabo-

rative fashion will likely have a significant impact on the performance of such a

research project. Therefore, adopting agile processes and systems that support

optimized communications as part of collaborative working will ensure data and

information are shared in an open and efficient manner.

Agile project management is geared towards supporting transparent communi-

cations across the project, and a technique that can be adopted is the so-called

Kanban board [44], which is a visual representation of project status that is placed

on the wall so that members of the project team can become rapidly appraised of the

status of the project and issues that need to be addressed.

Where team members are working remotely, this concept can be delivered

through a digital information radiator, which provides real-time data and informa-

tion on the status of the project, such as the product backlog, identified tasks as well

as complete and incomplete assignments [45]. Consequently, Fig. 14.4 provides an

illustrative representation of a digital information radiator for a multidisciplinary

medical research project undertaken by a university.

The example provided includes illustrative update information that would be

entered into an appropriate ICT system in real time and be accessible by project

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 357

team members wherever they are located, i.e. remotely. In the example, there are

four products being worked on during development stage 2 (month 4), which are

biochemical validation, toxicology testing, formulation studies and clinical effi-

cacy. The toxicology testing product has been completed and is closed, whereas the

other products remain in work with further activities to be carried out. The infor-

mation radiator allows the requirements and deliverables to be easily interpreted

along with the progress and next steps recorded in real time for each of the products.

In the example, it can therefore be observed that from the ‘in work’ products, the
biochemical validation product is nearly complete, although the formulation studies

and clinical efficacy products still have a significant amount of project work

remaining in order to be completed. Adoption of this agile methodology would

therefore enhance knowledge availability across the medical research project and

for use by the participants (namely, the principal investigator, researchers and

postgraduate students), thereby supporting an open and trust-based environment

that is a key feature to the success of multidisciplinary research collaborations.

In terms of ICT design and implementation, it is possible to synthesize the

system requirements (SR2/1–6) for this application of agile project management

to the multidisciplinary medical research project, which are summarized as follows:

• SR2/1: The work-based information system will allow input by users of the

product backlog-related data (qualitative and quantitative) according to the

predefined data fields in the digital information radiator.

• SR2/2: The work-based information system will allow subsequent input by users

according to the updated data fields for each product backlog, namely, progress,

status (open/closed/in work) and next steps. Such data input is likely to be in real

time or when the situation on the project has changed.

Product
backlog

Clinical
efficacy

Toxicology
assessment

Formulation
studies

Biochem
validation

Requirements

Biochemical
synthesis to be
optimised and
spectral analysis

Pre-clinical testing &
computational model
for structure-activity

Initial validation of
synthetic pathway
with NMR spectral
analysis

Outline design of
computational
model of drug and
proteins

Deliverables

Synthesis has been
completed but
spectral analysis not
resolved

Progress

Model design
completed for
structure-activity
relationship

Focus on
resolving the
spectral
analysis

Application of
model with pre-
clinical data

In work

Closed

Next
steps

Open/
Closed/
In work

Development Stage # 2 (Month # 4)

Characterisation of
chemical, physical
and mechanical
properties

Solution behaviour
ascertained for
different conditions

Initial planning
undertaken but
further analysis
required

Further
development
required

In work

Randomised
controlled trials
(RCTs) to be
commissioned

Efficacy
demonstrated and
adverse events
reported

Systematic review
and meta-analysis
carried out

Application for
ethics review to
be submitted

In work

NMR = Nuclear magnetic resonance (spectroscopy)

Fig. 14.4 Representation of digital information radiator for medical research project

358 S.P. Philbin

• SR2/3: The work-based information system will provide a readily accessible

visual overview of the key data and information for the product backlog thereby

supporting real-time project communications.

• SR2/4: The work-based information system will allow different users from

across the project to input data and where appropriate support joint working

with client and partner-based users. Configuration control and version control

will also need to be implemented.

• SR2/5: Users will be able to engage with the work-based information system via

traditional hardware interfaces (keyboard and mouse) in addition to mobile

devices, thereby increasing functionality. App-based implementation is also

recommended.

• SR2/6: The work-based information system will be available via cloud-based

applications with scope for integration with other ICT project management

applications.

As before, this set of initial system requirements highlights the data and user

aspects, interfaces as well as hardware configurations. Further refinement of these

requirements is also suggested.

14.4.3 Case 3: Negotiation of Industry-Funded Research
Agreement

Universities are able to undertake a range of knowledge-exchange activities with

industrial companies, including licensing of intellectual property (IP) [46] and

working on industry-funded research projects [47]. These projects are required to

generate research and technology outputs that can be transferred to industry to help

improve industrial products and services or support the development of new

manufacturing processes.

Both universities and companies are able to secure benefits from working

together including those associated with knowledge, resources and economic

aspects. However, the negotiation of industry-funded research agreements can

sometimes be a particularly lengthy process due to the university and the company

often having different commercial perspectives, such as those regarding the allo-

cation of IPR (intellectual property rights). Indeed, adopting process methodologies

can support the development and management of university-industry research

collaborations, and it is useful to consider whether agile techniques can be applied

to the negotiation of industry-funded research agreements.

Timeboxing is an agile technique [48] that involves breaking up tasks into

smaller parts that can be closely managed to ensure the project schedule is met.

The small parts are managed according to fixed periods of time with each period

corresponding to a sprint or iteration. In a software project, a typical sprint could be

30 days in length, but this duration may be shorter for more intensive projects.

Timeboxing is a technique focused on ensuring project schedules are kept under

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 359

control with the project features delivered according to the specification. Conse-

quently, Fig. 14.5 provides an illustration of the timeboxing technique employed in

support of the negotiation of an industry-funded research agreement.

In the example, negotiation of the research agreement is considered in regard to

three main increments, which are as follows: agree commercial principles, develop

outline agreement and conclude full agreement. Each of the increments is further

subdivided into three main tasks and corresponding time boxes that are to be

completed according to the fixed end dates. In the case provided, each time box

could be say 4 working days long meaning that each increment would be 12 working

days long, and the overall negotiation project would therefore be 36 days long.

The tasks that are allocated to each increment would be ascertained through an

initial meeting of the project team involving the principal investigator (academic),

university contracts manager as well as the technical and legal representatives from

the company. The project team would establish the overall commercial framework

from the outset and then jointly work towards achievement of the tasks within the

required time. There would of course be commercial sensitivities between the two

organisations associated with contractual negotiation, but nevertheless fostering an

open communication channel through initial face-to-face meetings (backed up by

regular video teleconferences) is more likely to result in any major contractual

issues being tackled in a productive and positive manner.

Furthermore, managing the negotiation process for the research agreement

would require the key tasks to be carried out according to the fixed schedule, and

Project: Industry funded research agreement

Increment # 1 Increment # 2 Increment # 3

Agree commercial
principles

Develop outline
agreement

Conclude full
agreement

Schedule fixed Schedule fixed Schedule fixed

Task #
1.1

Task #
1.2

Task #
1.3

Timebox 1 Timebox 2 Timebox 3

Schedule
fixed

Schedule
fixed

Schedule
fixed

Task # 1.1: Commercial
requirements derived
Task # 1.2: Framework for
commercial exploitation
Task # 1.3: Agreement on
field of use provision for
IPR

Time (Schedule)

Task #
2.1

Task #
2.2

Task #
2.3

Timebox 1 Timebox 2 Timebox 3

Schedule
fixed

Schedule
fixed

Schedule
fixed

Task # 2.1: Development of
agreement structure
Task # 2.2: Boilerplate
clauses drafted
Task # 2.3: Development of
initial scope of tailored
clauses

Task #
3.1

Task #
3.2

Task #
3.3

Timebox 1 Timebox 2 Timebox 3

Schedule
fixed

Schedule
fixed

Schedule
fixed

Task # 3.1: Scope of work
and technical details
concluded
Task # 3.2: Financial
discussions concluded
Task # 3.3: Outstanding
commercial points agreed

IPR = Intellectual property rights

Fig. 14.5 Use of timeboxing for industry-funded research agreement project

360 S.P. Philbin

as long as the ‘must haves’ are completed for each time box, the project should

remain on schedule. ‘Must haves’ are the requirements that basically must be

delivered for the project to be successful, as opposed to ‘should haves’, ‘could
haves’ and ‘won’t haves’, which can be developed for a project using the MoSCoW

technique [49]. This is an approach to help prioritize tasks and features for a project

and would be applied to help define the tasks and time boxes for the industry-funded

research agreement project.

In terms of ICT design and implementation, it is possible to synthesize the

system requirements (SR3/1–6) for this application of agile project management

to the negotiation of an industry-funded research agreement, which are summarized

as follows:

• SR3/1: The work-based information system will allow input by users of the

project schedule data (qualitative and quantitative) including increments, time

boxes and tasks aligned to the schedule and according to the project plan.

• SR3/2: The work-based information system will allow subsequent input by users

of the status of the time boxes and tasks, including percentage completion data at

given points in the schedule.

• SR3/3: The work-based information system will allow users to be able to rapidly

determine via a visual interface the status of the project in terms of task

completion according to the overall schedule.

• SR3/4: The work-based information system will also allow appropriate flexing

or controlled modification of the tasks so as to support delivery of the project

according to the fixed schedule but only where such flexing does not diminish

the quality of the project outputs.

• SR3/5: Users will be able to engage with the work-based information system via

traditional hardware interfaces (keyboard and mouse) in addition to mobile

devices, thereby increasing functionality. App-based implementation is also

recommended.

• SR3/6: The work-based information system will be available via cloud-based

applications with scope for integration with other ICT project management

applications.

As before, this set of initial system requirements highlights the data and user

aspects, interfaces as well as hardware configurations. Further refinement of these

requirements is also suggested.

14.5 Discussion and Conclusions

The implementation of agile project management is gathering pace across many

organisations including both industrial companies and governmental agencies.

Indeed many different types of organisations are increasingly dependent on projects

to be delivered in order for operational and strategic performance to be maintained,

and this includes academic institutions. Universities also face a number of

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 361

challenges and opportunities, not least through responding to the availability of new

technologies as well as adapting emerging management approaches and methodol-

ogies to the not-for-profit (NFP) environment. Therefore, the question arises: Can

agile project management be adopted at higher education institutions? The simple

answer is yes, and this chapter has explored how this can be achieved.

Universities often rely on projects to support delivery of outputs in terms of

research, education and knowledge-exchange activities. Indeed, there is much

scope for agile to make a positive impact at universities in regard to performance

improvements across efficiency, effectiveness, economic and ethical consider-

ations. It is recognized that universities are places where creativity needs to be

promoted and new ideas nurtured, not necessarily a place where new management

practices are readily adopted. But nevertheless the opportunity to adopt agile can be

viewed in the context of the general trend by universities to implement management

frameworks while maintaining necessary freedoms across research and education

provision [50] as well as recognising the need for greater levels of accountability

[51] in the work that is delivered by universities to meet wider societal needs.

Agile management promotes a number of overriding themes, such as the impor-

tance of people working together and avoiding excessive use of standard operating

procedures and unnecessarily long documentation. The ability, where and when

possible, to work jointly with the customer is important as well as delivery of a

working solution as opposed to holding out for the perfect solution. Originally

developed in the IT sector as an alternative to the waterfall methodology, agile

project management is accompanied by a raft of techniques that can be deployed to

support the achievement of the agile way of working. Such techniques and related

methodologies include Scrum and sprint planning, task tracking and sprint

burndown charts, Kanban boards and digital information radiators, incremental

management and time boxes and MoSCoW.

These techniques have been applied to three illustrative case studies through

drawing on the author’s experience in the higher education sector. The cases have

included the development of an online Master’s degree programme, a

multidisciplinary medical research project and the negotiation of an industry-

funded research agreement. The cases have also allowed corresponding sets of

system requirements to be developed for each case instantiation. These system

requirements include definition of the data entry fields (both quantitative and

qualitative), baseline and update data fields, tabular and graphical interfaces, visual

interfaces as well as hardware and software configurations, including remote

working/app-based implementations. These requirements can be further refined

through more detailed integrated system design work, and this can be supported

by further requirements capture to ensure user needs are fully documented.

Although the research reported in this chapter is conceptual in nature, the

illustrative cases have highlighted a number of findings and insights. Core to the

agile approach is the importance of communication across projects, which can even

represent a new mindset of working on projects [52]. The multidisciplinary medical

research project benefits from transparent communication via the use of a digital

information radiator that is accessible by collaborative team members working

362 S.P. Philbin

remotely. The development of the online degree programme benefits from rapid

communication of the task status through the sprint burndown chart and the

remaining work to be completed thereby supporting development of the programme

by the faculty members and administration staff. Similarly, negotiation of the

industry research agreement benefits from transparent communication between

the university and the company. This allows achievement of the required tasks

according to the specified time boxes thereby enabling negotiation of the research

agreement to be completed in the required timeframe.

Communication is a two-way process; indeed there needs to be a transmitter and

a receiver, and both parties need to be responsive to open communications. Adop-

tion of agile management practices at higher education institutions has the capacity

to support those who work at universities as well as partners and funders to exercise

and participate in more open forms of communication. Ultimately this enables

knowledge sharing and trust-based working, which can impact enormously on the

performance of higher education institutions.

It is recognized that a supporting culture will be needed to facilitate adoption of

agile practices and an ability of the organization to embrace change management

initiatives. The role of senior management will be important in this regard in order

to drive through new working practices and ensure appropriate buy-in and adoption

of agile techniques and related systems by staff members. The challenges for such

implementations should not be underestimated, and any agile implementation

should therefore be adapted to the local organizational context as appropriate.

System implementations will need to be based on a robust understanding of the

user requirements for agile working (for instance, enabling joint working by

suppliers and clients as well as remote working), and where possible any agile-

based systems will need to be integrated with other existing systems in use by the

organization, such as an ERP (enterprise resource planning) system. Moreover, it is

recognized that there are still be many instances where traditional management and

close adherence to standard operating procedures (SOPs) may still be required

(such as the need to accommodate government legislation on employment rela-

tions), but equally the research reported in this chapter has highlighted that there is

significant scope for the adoption of agile working at higher education institutions.

14.6 Future Work

Future work is suggested to enable a more detailed examination of the implemen-

tation of agile project management at universities to build on these findings. This

could involve comparative studies of agile adoption alongside other management

frameworks to highlight the benefits of the more flexible and adaptable agile

approach.

Other studies may involve implementation of agile management at universities

followed by the use of a survey instrument to support quantitative analysis of the

findings and further development of the agile research agenda. As mentioned

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 363

previously, more detailed work to capture user requirements and inform system

design studies for implementation of agile management on ICT infrastructure is

also recommended.

References

1. Highsmith J (2009) Agile project management: creating innovative products. Pearson Educa-

tion, Upper Saddle River

2. Serrador P, Pinto JK (2015) Does agile work? – a quantitative analysis of agile project success.

Int J Proj Manag 33(5):1040–1051

3. Denning S (2013) Why agile can be a game changer for managing continuous innovation in

many industries. Strateg Leadersh 41(2):5–11

4. Moran A (2015) Agile project management. In: Managing agile. Strategy, Implementation,

Organisation and People. Springer, Zurich, Switzerland, pp 71–101

5. Pries KH, Quigley JM (2010). Scrum project management. CRC Press, Taylor and Francis

Group, Boca Raton, FL

6. Beck K (2000) Extreme programming explained: embrace change. Addison-Wesley Profes-

sional, Reading

7. Stapleton J (1997) DSDM, dynamic systems development method: the method in practice.

Cambridge University Press, Cambridge

8. Salah S, Rahim A, Carretero JA (2010) The integration of Six Sigma and lean management. Int

J Lean Six Sigma 1(3):249–274

9. Conforto EC, Amaral DC (2016) Agile project management and stage-gate model – a hybrid

framework for technology-based companies. J Eng Technol Manag 40:1–14

10. Wernham B (2012) Agile project management for government. Maitland and Strong, London

11. Nicholls GM, Lewis NA, Eschenbach T (2015) Determining when simplified agile project

management is right for small teams. Eng Manag J 27(1):3–10

12. Twidale MB, & Nichols DM (2013) Agile methods for agile Universities. In: Re-imagining the

Creative University for the 21st century. Sense Publishers, Rotterdam, pp 27–48

13. Pereira IM, de Senna Carneiro TG, Pereira RR (2013) Developing innovative software in

Brazilian public universities: tailoring agile processes to the reality of research and develop-

ment laboratories. In: Proceedings of the 4th Annual Conference on Software Engineering and

Applications (SEA 2013), Thailand, Bangkok, Global Science and Technology Forum (GSTF)

14. Mattila M, Mattila A (2014) Business process management in the context of a higher education

institution. In: Proceedings in EIIC-The 3rd Electronic International Interdisciplinary confer-

ence, EDIS – Publishing Institution of the University of Zilina, vol. 3, issue 1

15. Riol H, Thuillier D (2015) Project management for academic research projects: balancing

structure and flexibility. Int J Proj Organ Manag 7(3):251–269

16. Alexander S (1999) An evaluation of innovative projects involving communication and

information technology in higher education. High Educ Res Dev 18(2):173–183

17. Davis JF, Sauber MH, Edwards EA (2011) Managing quality in online education: a conceptual

model for program development and improvement. Int J Manag Educ 5(1):93–108

18. Powers JB (2003) Commercializing academic research: resource effects on performance of

university technology transfer. J High Educ 74(1):26–50

19. Philbin S (2008) Process model for university-industry research collaboration. Eur J Innov

Manag 11(4):488–521

20. Fowler M, Highsmith J (2001) The agile manifesto. Softw Dev 9(8):28–35

21. Agile Alliance (2001) Manifesto for agile software development, http://agilemanifesto.org/.

Accessed 30 Nov 2016

364 S.P. Philbin

http://agilemanifesto.org/

22. Rubin KS (2012) Essential scrum: a practical guide to the most popular agile process.

Addison-Wesley, Upper Saddle River

23. Highsmith J, Cockburn A (2001) Agile software development: the business of innovation.

Computer 34(9):120–127

24. Standish Group (1995 and 2009) The CHAOS report. http://www.standishgroup.com/.

Accessed 30 Nov 2016

25. Sohi AJ, Hertogh M, Bosch-Rekveldt M, Blom R (2016) Does lean & agile project manage-

ment help coping with project complexity? Procedia-Soc Behav Sci 226:252–259

26. Han J, Ma Y (2015) Software project planning using agile. In: Progress in systems engineering.

Springer International Publishing Switzerland, pp 333–338

27. Deem R (2001) Globalisation, new managerialism, academic capitalism and entrepreneurial-

ism in Universities: is the local dimension still important? Comp Educ 37(1):7–20

28. Nelson KJ, Clarke JA, Stoodley ID, Creagh TA (2014) Establishing a framework for

transforming student engagement, success and retention in higher education institutions

[Final Report]. Office for Learning and Teaching, Sydney

29. Russell R, Atchison M, Brooks R (2008) Business plan competitions in tertiary institutions:

encouraging entrepreneurship education. J High Educ Policy Manag 30(2):123–138

30. Philbin SP, Mallo CA (2016) Business planning methodology to support the development of

strategic academic programmes. J Res Admin 47(1):23–39

31. Harman G (2005) Australian social scientists and transition to a more commercial university

environment. High Educ Res Dev 24(1):79–94

32. Philbin SP (2015) Exploring the application of agile management practices to higher education

institutions. In: Proceedings of the International Annual Conference of the American Society

for Engineering Management (ASEM), Indianapolis, USA

33. Norman-Major K (2011) Balancing the four Es; or can we achieve equity for social equity in

public administration? J Publ Aff Educ 17:233–252

34. Sch€on D (1983) The reflective practitioner: how professionals think in action. Basic Books

Inc., New York

35. Waugh M, DeMaria M, Trovinger D (2011) Starting an online MS degree program in

instructional technology: lessons learned. Q Rev Dist Educ 12(1):63

36. Singh H (2003) Building effective blended learning programs. Educ Technol-Saddle Brook

Then Englewood Cliffs NJ 43(6):51–54

37. Paasivaara M, Durasiewicz S, Lassenius C (2008) Distributed agile development: using Scrum

in a large project. In 2008 IEEE International Conference on Global Software Engineering

Bangalore, India. IEEE, pp 87–95

38. Patanakul P, Henry J, Leach JA, Martinelli RJ, Milosevic DZ (2016) Agile project execution.

In: Project management toolbox: tools and techniques for the practicing project manager, 2nd

edn. Wiley, Hoboken, pp 301–322

39. Loucopoulos P, Karakostas V (1995) System requirements engineering. McGraw-Hill Inc.,

London

40. Shah RR (2002) Drug-induced prolongation of the QT interval: regulatory dilemmas and

implications for approval and labelling of a new chemical entity. Fundam Clin Pharmacol 16

(2):147–156

41. George S, Thomas J (2015) Managing research in large collaborative teams. In: Designs,

methods and practices for research of project management. Gower Publishing Limited, Surrey,

pp 301–314

42. Walshe K, McKee M, McCarthy M, Groenewegen P, Hansen J, Figueras J, Ricciardi W (2013)

Health systems and policy research in Europe: Horizon 2020. Lancet 382(9893):668–669

43. Pacheco-Torgal F (2014) Eco-efficient construction and building materials research under the

EU Framework Programme Horizon 2020. Constr Build Mater 51:151–162

44. Corona E, Pani FE (2012) An investigation of approaches to set up a Kanban board, and of tools

to manage it. In: Proceedings of the 11th International Conference on Telecommunications and

14 Investigating the Scope for Agile Project Management to Be Adopted by. . . 365

http://www.standishgroup.com/

Informatics (TELEINFO’12) and the 11th International Conference on Signal Processing

(SIP’12), Saint Malo, France, pp 7–9

45. Hannola L, Friman J, Niemimuukko J (2013) Application of agile methods in the innovation

process. Int J Bus Innov Res 7(1):84–98

46. Thursby JG, Kemp S (2002) Growth and productive efficiency of university intellectual

property licensing. Res Policy 31(1):109–124

47. Philbin SP (2012) Resource-based view of university-industry research collaboration. In

2012 Proceedings of PICMET’12: Technology Management for Emerging Technologies,

Vancouver, Canada. IEEE, pp 400–411

48. Muller G (2009) System and context modeling – the role of time-boxing and multi-view

iteration. Syst Res Forum 3(02):139–152. World Scientific Publishing Company

49. Waters K (2009) Prioritization using Moscow. Agile Planning, 12 January 2009

50. Nickson A (2014) A qualitative case study exploring the nature of New Managerialism in UK

Higher Education and its impact on individual academics’ experience of doing research. J Res

Admin 45(1):47

51. Patterson G (2001) The applicability of institutional goals to the university organisation. J

High Educ Policy Manag 23(2):159–169

52. Sauer C, Reich BH (2009) Rethinking IT project management: evidence of a new mindset and

its implications. Int J Proj Manag 27(2):182–193

366 S.P. Philbin

Chapter 15

Software Project Management for Combined
Software and Data Engineering

Seyyed M. Shah, James Welch, Jim Davies, and Jeremy Gibbons

15.1 Introduction

Software engineering is an established discipline for the systematic creation of

large and complex software systems. Relatively more recent are attempts to sys-

tematise the creation and management of large data sets, in data engineering. A key

feature of these disciplines is managing engineering processes using several stages

that form a development life cycle. This leads to a methodical process for devel-

opment and separation of work into modular elements. A challenge when using this

approach is integrating software engineering life cycles with the wider context of

the software, for example, business processes, user requirements or indeed other

codependent development life cycles. This chapter is on combining software

engineering with data engineering to enable better project management, foster

reuse and harness best practice from two seeming disparate domains.

The presented methodology is created from experiences on the ALIGNED

project, a large, interdisciplinary research project that applies state-of-the-art soft-

ware and data engineering techniques for the development of real-world systems.

Several use cases have been identified that are challenging due to a lack of

coherence between the software and data engineering, from collection and man-

agement of anthropological research to cataloguing and exploration of jurispru-

dence data and machine interpretation of large encyclopaedic data sets.

In the project, several state-of-the-art tools are under development from both

domains such as Booster [1], the Model Catalogue [2], RDFUnit [3], Repair

Framework and Notification (RFN), Ontology Repair and Enrichment (ORE),

Dacura [4], the PoolParty Confluence/JIRA Data Extractor (CJDE) [5] and External

S.M. Shah (*) • J. Welch • J. Davies • J. Gibbons

Software Engineering Group, Department of Computer Science,

University of Oxford, Oxford, UK

e-mail: seyyed.shah@cs.ox.ac.uk

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3_15

367

mailto:seyyed.shah@cs.ox.ac.uk

Link Validation (ELV) and the Unified Governance Plugins (UGP) [6]. The meth-

odology described in this paper is used as an initial framework to support the

combination, development and application of these systems, to address the project

goals. These tools would not ordinarily or easily be use or developed in unison, due

to the differing approaches of software and data engineering.

The importance of the presented methodology is clear: by approaching software

and data engineering life cycles coherently, efficient reuse of artefacts and applying

established best practice from both domains become possible. This chapter dis-

cusses the issues of integrating the two fundamentally differing approaches to

building systems. The data engineering approach broadly involves building tools

that act on a wide range of data, while the approach taken in software engineering is

to restrict and enforce the acceptable data, making these two approaches difficult to

combine in practice.

There are several further reasons that make a combined methodology impracti-

cal. Each of the life cycles can have multiple stages, which can vary across life

cycles. Creating a single methodology that encompasses all of these stages is

problematic because there are many possible ordering and interleaving of process

steps and there are a range of possible software and data engineering life cycles that

a project may use. Furthermore, software engineering life cycles tend to take a

prescriptive approach to software development, whereas data engineering life

cycles tend to be descriptive. The two approaches also diverge on handling unex-

pected data, as data engineering tools tend to filter from a large range of inputs,

which leads to failure-tolerant systems, while the fail-fast or fail-safe approaches of

software engineering mean systems are expected to halt on unexpected data or deal

with specific classes of error. These differences mean that dependencies between

the two approaches can lead to duplication of effort, complexity in the project

planning and incompatible systems due to the differing development philosophies.

Instead of a single monolithic methodology, this chapter presents a combined

meta-methodology, which consists of a lightweight, descriptive method for com-

bining and pairing of software and data engineering life cycles. The methodology

consists of a matrix of synchronisation points that are defined on a project-by-

project basis and informed by the opportunities and requirements for reuse between

two loosely coupled life cycles.

This chapter is structured as follows: Sect. 15.2 presents an introduction to

established software engineering and data engineering project life cycles.

Section 15.3 contains a discussion on the major issues with a combined methodol-

ogy. In Sect. 15.4, the methodology is presented in essential form, which consists of

a flexible generic mechanism to track synchronisation between separate project life

cycles. The tools and use cases of the ALIGNED project are analysed post hoc

using the methodology, to form the initial evaluation of the methodology in Sect.

15.5. In Sect. 15.6, a discussion of related work is presented. The chapter concludes

with plans to further apply, develop and evaluate the methods described.

368 S.M. Shah et al.

15.2 Software and Data Engineering Project Life Cycles

There are several software engineering methodologies that could be considered for

the alignment between software and data engineering. The subset presented here is

not intended to be complete; instead an overview of some prominent and notable

methodologies is presented.

In the waterfall model [7], the development process is seen as a series of

downwards flowing, strictly linear steps towards an end software product. The

ordering and kinds of steps can vary, but typically include “analysis”, “design”,

“implementation”, “validation” and “maintenance”, as depicted in Fig. 15.1. The

process mimics the traditional process for large-scale physical engineering projects.

This methodology was first presented as an example of how not to develop

software; it is notable for observing the effects of an ordered set of distinct steps

for software development. Later adaptations addressed the rigidity by allowing

earlier steps to be revisited. Several derivative methods have since been developed

including the incremental waterfall, evolutionary model, spiral model and struc-

tured systems analysis and design method [8].

Rapid application development (RAD) [9] and prototyping promote the role of

early prototyping to inform and shape further development iterations. Rapid appli-

cation development was proposed in response to the cumbersome, inflexible

waterfall-like techniques, but is no longer used as a stand-alone methodology.

Agile methodologies include techniques such as test-driven development, extreme

programming, feature-driven development and scrum. These so-called lightweight

methods focus on delivering useful software frequently, closely working with users,

simplicity and adaptability to change. The principles are further set out in the Agile

Fig. 15.1 Typical software

engineering project life

cycle stages

15 Software Project Management for Combined Software and Data Engineering 369

Manifesto [10]. Essentially, the agile methods are designed to be reactive to the

needs of the users, rather than relying on rigid one-off steps or specific languages or

processes. Agile tends to afford greater trust to developers and teams to define their

own processes, architectures and the selection of appropriate languages and tools.

Model-driven software development [11] revolves around the creation of high-

quality, detailed models at each stage of the development process. The method

relies upon the availability of sophisticated tools that use models to derive software

artefacts, by a process of transformation. For example, the transformations can be

used to translate designs into software implementations and models into test cases.

Model-driven development aims to bring a greater level of formality to each stage

of development, which can mean new tools and languages must be developed. The

methodology is closely related to the techniques found in formal methods, gener-

ative programming and computer-aided software engineering. Like agile develop-

ment, it does not enforce a specific set of steps, tools or languages, but instead

provide a general framework within which software can be developed.

The linked open data life cycle consists of seven stages for data engineering and

is described in detail by Auer et al. [12]. Essentially, the eight stages shown in

Fig. 15.2 relate to the capture and management of data to ensure the data is

consistent with the linked data principles. The process can begin at any stage and

stages may be omitted, so the Extract phase can be used to take information

represented in unstructured form or conforming to other structured or semi-

structured formalisms and map it to the RDF data model. Once there is enough

data for the intended purpose of the data, tools are required for efficient Store and
Query of the data in triple form. The next phase is Author to manually create,

modify and extend the structured data. As there can be many publications and

Fig. 15.2 Linked open data

life cycle adapted (Adapted

from Ref. [12])

370 S.M. Shah et al.

sources of information about the subjects in the store, Links between data sets must

be appropriately established. Since linked data relies on triples as the basic unit of

data, information can be captured without the need for a high-level schema, Enrich
and Classify is necessary to capture high-level structures, in order that data can be

analysed and reusable queries can be performed. Importantly, the Quality of the

data must be analysed and used for Evolve and Repair. Finally, once data has passed
these phases, it should be made available for end users to Search, Browse and
Explore, and the process can continue to refine and improve the data set.

15.3 Challenges for Projects Combining Software
and Data Engineering

This chapter focuses on the alignment between software and data engineering life

cycles for managing projects. This section sets out the key differences in the

approaches as challenges for a combined methodology that is useful in practice.

Methodologies for software and data engineering are created for the separation

of work into distinct stages during development and are sometimes referred to as

life cycles, processes or methods. Each self-contained stage organises work into

separate subtasks to be carried out in order to produce an end result. The stages of a

methodology are usually followed linearly, and each stage results in one or more

artefacts that inform subsequent stages; both are typically performed iteratively,

such that the results of each iteration may be used and provide requirements for the

next. Both engineering life cycles have similar goals: the management, manipula-

tion and interpretation of data systems for eventual consumption by the end user;

however, this task is approached from two divergent doctrines. Unsurprisingly, data

engineering is data oriented—the data is the principal concern; in software engi-

neering, it is the software programs that manipulate data that are the fundamental

product. The software engineering life cycle results in a multi-author software

artefact; in data engineering the result is a multi-origin data artefact.

While the software and data engineering life cycles produce different kinds of

artefacts, there are several potential advantages of having an integrated methodol-

ogy. Firstly, there is a scope for overlap in processes in each methodology. Software

engineering techniques are employed to create software for data engineering

(or applications that consume or manipulate the data artefacts), and data engineer-

ing processes often affect the software engineering life cycle. However, the two

processes often run separately and in parallel to each other with few synchronisa-

tion points. Furthermore, artefacts produced in data engineering processes should

ideally be reused in software engineering and vice versa, with reuse being a

fundamental principle in both software and data engineering. This can in turn

lead to software that more closely reflects the domain, and software more tailored

to the data, at lower effort.

15 Software Project Management for Combined Software and Data Engineering 371

In metamodelling, data is stratified across so-called metalevels with each level

used to define the primitives of the lower levels. So, instance or user data exists at

level M0, which is defined in terms of the system models at level M1, which records

the software and schemas to which instance data must conform. There are further

metalevels, notably M2 for defining metamodels, where tools for software engi-

neering processes are defined. Considering the metalevels, software and data

engineering processes tend to be concerned with levels M1 and M0, but with

differing approaches. Metalevels are a conceptual construct that simplify the

definition and comprehension of complex software, by allowing separation of

concerns. Existing software and data engineering data, programs and development

tools can be expressed in terms of these metalevels, as shown in Fig. 15.3. Tools

developed at the M2 level can be used and reused by developers at the M1 level

where each new problem has common aspects that are dealt with elegantly by the

M2 tools.

The approach of software engineering is to create software at the M1 level based

on models that are fixed at development time and rarely change. The data that is

accepted by the software is limited, and the software usually has well-defined

functionality, which can involve quite complex data-dependent manipulation.

This amounts to what is known as the “closed world” assumption [13]; although

Fig. 15.3 Metalevel hierarchy in model-driven engineering

372 S.M. Shah et al.

it is possible to develop software without this constraint, this assumption is typical

for commercial software. Tools engineered this way rely on high-quality data, and

the premise is that the system should only act on fixed models and metamodels.

This means that software will fail once data is encountered that does not conform to

the expected model. Software engineering life cycles tend to be prescriptive with a

set of procedures that must be followed in order, so a system developed using a

methodology cannot be implemented until a design is in place.

Data engineering processes tend to use data-independent software tools that

consume M1 level schemas, ontologies and vocabularies, to manipulate instance

data in a generic way, at the M0 level. Tools to define and manipulate the schemas,

ontologies and vocabularies are essential to data engineering. These tools tend to be

less restrictive on the data accepted as input. Higher complexity in data processing

and the ability to handle unexpected or low-quality data may require higher

computational and engineering overhead; however, this usually results in tools

that can be reused for unrelated data sets. The tools tend to be tolerant of

low-quality data, in the sense that any unexpected data is ignored without

interrupting processing. The methodology for data engineering tends to be descrip-

tive—used more as a set of guidelines than a rigorous process, so, for example,

classification and enrichment can be carried out without interlinking and fusing.

The contrasting approaches of software and data engineering are shown in

Fig. 15.4.

This dissimilarity between the two processes means that combining the two into

a single monolithic methodology is problematic. A choice would need to be made, a

priori, about prescriptive versus descriptive, fail-fast versus failure tolerant, the

selection of a specific data engineering and software engineering “flavour”, the

ordering and interleaving of process steps and so on. This would ultimately result in

a methodology that favours the perspective of either software or data engineering

and may even result in a worst-of-both-worlds scenario. The methodology

Fig. 15.4 Software and data engineering: approaches to software and data set development

15 Software Project Management for Combined Software and Data Engineering 373

presented here will not set out universal commandments, with multiple combined

points of failure or a prescribed, redefined set of steps derived from either method.

Instead, the aim is to try to integrate the best of both.

The methodology is based on the processes used in the ALIGNED project,

where data engineering and software engineering are combined in practice. This

means the methodology reflects on the observed practices and experiences of the

ALIGNED consortium. This also means that the methodology may, initially at

least, be specific to the tools and use cases of the ALIGNED project. Many

techniques are used for data engineering and software engineering; rather than

selecting and combining a single one of each, a more generic approach is suggested.

We propose the concept of an agile meta-methodology. This gives the software
and data engineering practitioners a lightweight, basic method for combining their

own methods and processes. This should, by design, be adaptable and reusable

depending on the software engineering and data engineering context. The method-

ology provides practitioners with a system that is largely controlled by the meth-

odology users and works practically on a project-by-project basis.

15.4 Methodology for Combined Software and Data
Engineering

This section outlines the proposed meta-methodology for combined software and

data engineering in ALIGNED. It is important to note that the present methodology

is in under development and is expected to evolve and develop as the project goes

on, based on the needs of the consortium and the project findings. Several areas of

the method may be extended, based on observations of practice.

As a lightweight methodology, the technique requires some initial setup and

maintenance by the software and data engineering processes. The main setup task

for combined software and data engineering is to determine the synchronisation

points between the software engineering and data engineering. A synchronisation

point is at any pair of points in the two life cycles where specific artefacts and

processes should be shared between software and data engineering processes. Once

the synchronisation points are determined, they can be used during the project to

resynchronise as development to the artefacts occurs.

In order to visualise and understand the synchronisation points between data

engineering and software engineering, a table can be created that combines the two

life cycles. The table allows the developers in both life cycles to determine where in

each of the two life cycles synchronisation should happen. As shown in Table 15.2,

the table columns are the software engineering life cycle stages, and the rows are

the data engineering life cycle stages. The software engineering or data engineering

life cycle stages can be used for rows or columns, as desired. Importantly, the exact

stages of the software engineering or data engineering used may change depending

on the data engineering or software engineering methodology used in the particular

374 S.M. Shah et al.

project. The table cells represent intersections between the software and data

engineering life cycles, where artefacts can be reused between life cycles, and are

represented in Table 15.2 as tools that facilitate this reuse.

Before the software engineering and data engineering methodologies can be

combined, terminology and equivalence between the terms must be agreed upon

within a project. A standard equivalence between the generic concepts in data,

model-driven software and program language engineering is shown in Table 15.1.

Depending upon the scope of the project, the equivalence may not be as direct as

those shown. So, for example, a particular upper ontology may be used as a model

in software engineering, which may be represented at program runtime in practice,

for a particular project. The abstraction level at which each artefact is expected to

be used when shared between data engineering and software engineering processes

should be documented as part of the process.

Table 15.2 shows an example of the incomplete synchronisation table for the

ALIGNED project. The acronyms used here are expanded in more detail in

Table 15.3. It uses the data engineering life cycle stages defined in the LOD2

project [12] and the software engineering life cycle stages used in the ALIGNED

project. In this table, the synchronisation points indicate where data engineering

tools are expected to interoperate with the software engineering processes and vice

versa. Each entry in the table indicates a point that requires collaborative effort

between software and data engineering processes.

Table 15.1 Comparison of terminologies in software and data engineering

Data engineering Software engineering Programming Metalevel

Schema, ontology language Meta metamodel Grammar notation M3

Upper ontology Metamodel Language grammar M2

Domain ontology, schema Model Program definition M1

Triple, data set Instance, object Program runtime M0

Table 15.2 An in-progress table of the synchronisation points on the ALIGNED project

Software engineering

Data engineering Analysis Design Implementation Validation Maintenance

Manual revision/

author

UGP UGP Dacura

Interlink/fuse

Classify/enrich ORE Model

Cat.

Quality analysis Dacura ORE Dacura

Evolve/repair ORE Dacura RFN

Search/browse/

explore

Model

cat.

Booster

Extract Dacura CJDE

Store/query Booster

15 Software Project Management for Combined Software and Data Engineering 375

T
a
b
le

1
5
.3

A
to
o
l-
o
ri
en
te
d
sy
n
ch
ro
n
is
at
io
n
ta
b
le

fo
r
th
e
A
L
IG

N
E
D

p
ro
je
ct

S
o
ft
w
ar
e
en
g
in
ee
ri
n
g

D
at
a
en
g
in
ee
ri
n
g

(1
)
A
n
al
y
si
s

(2
)
D
es
ig
n

(3
)
Im

p
le
m
en
ta
ti
o
n

(4
)
V
al
id
at
io
n

(5
)
M
ai
n
te
n
an
ce

(A
)
M
an
u
al

re
v
is
io
n
/a
u
th
o
r

U
G
P

U
G
P

D
ac
u
ra

(B
)
In
te
rl
in
k
/f
u
se

(C
)
C
la
ss
if
y
/e
n
ri
ch

O
R
E
(e
n
ri
ch
)

M
o
d
el

ca
ta
lo
g
u
e

O
R
E
(e
n
ri
ch
)

(D
)
Q
u
al
it
y
an
al
y
si
s

D
ac
u
ra

D
ac
u
ra

R
D
F
U
n
it

O
R
E

D
ac
u
ra

O
R
E
(v
al
id
at
io
n
)

R
D
F
U
n
it

R
F
N

E
L
V

(E
)
E
v
o
lv
e/
re
p
ai
r

O
R
E
(r
ep
ai
r)

D
ac
u
ra

R
F
N

R
F
N

O
R
E

E
L
V

(F
)
S
ea
rc
h
/b
ro
w
se
/e
x
p
lo
re

M
o
d
el

ca
ta
lo
g
u
e

B
o
o
st
er

(G
)
E
x
tr
ac
t

D
ac
u
ra

C
JD

E

(H
)
S
to
re
/q
u
er
y

B
o
o
st
er

376 S.M. Shah et al.

For example, the Model Catalogue tool as presented in [1] appears as a synchro-

nisation between the design phase of the software engineering life cycle and the

classify/enrich phase of the data engineering life cycle. In the context of the

ALIGNED project, this means the Model Catalogue can produce an artefact

(a model) that can be consumed by the data engineering “classify” phase, as a

schema. In this case, the Model Catalogue can also consume schemas from the data

engineering life cycle and use them as models in the software engineering life

cycle. The identification of synchronisation points is very much dependent on the

project and tools involved and must be done with agreement between software and

data engineering processes.

The filled-in table can then be used during the project to trigger discussion and

collaboration between software and data engineers. In the Model Catalogue exam-

ple, this means if a new model has been created as a result using of the Model

Catalogue, the model may need to be passed to the data engineering process. The

exact formats and mechanism of the interchange must be decided on a case-by-case

basis and requires close collaboration between the Model Catalogue developers and

the schema producers to agree the format and processes for the exchange. The

exchanged artefacts can include specific items such as schemas or less formal

documentary artefacts such as a list of requirements.

The initial creation of the table involves at least the software and data engineer-

ing practitioners, to decide where the synchronisation points exist. There may be

multiple tools at each synchronisation point, and each may have more than one

mechanism to align the software and data engineering processes. However, the

practitioners must at least decide the metalevel of the exchange and the model(s) at

the (m + 1) metalevel (from Fig. 15.3) that will be used to parse and manipulate the

data. The frequency of synchronisation must also be determined; for example, a

fixed schema may be exchanged once during development, so that the conforming

data can be passed between running tools automatically and continuously via APIs

at runtime. The data and systems’ users can also be involved in the creation of the

table, to identify where the requirements for the project will be met. Also data

managers, curators and software users may be able to identify from the table where

software and data engineering tools interact. An overview of the process is shown in

Fig. 15.5.

Both life cycles are expected to run in parallel, and the aim of a combined

methodology is twofold: to reduce effort and to produce artefacts that reflect best

practice in both software and data engineering. However, the artefacts exchanged at

any given synchronisation point may be critical to further development, which may

lead to overlap in work done, bottlenecks and problematic dependencies. As

engineering life cycle stages produce artefacts, there is potential for waste of effort,

as artefacts may be replaced with input from an external life cycle. In part, this is

mitigated by knowing which artefacts are expected and when in the life cycle, as per

the table. Iteration with a high frequency can also help: synchronisation need not be

final. For example, the schema need not be finalised in the data engineering process

before matching software is developed—an intermediate version can be produced

15 Software Project Management for Combined Software and Data Engineering 377

so that both sides can continue working and an updated schema can be produced

during the next iteration of the project life cycle.

15.5 ALIGNED Project: A Case Study for Combined
Software and Data Engineering

In this section, we demonstrate how the ALIGNED project has been managed using

the proposed methodology. The ALIGNED project can be seen as a concrete

instantiation of the proposed meta-methodology. In this project, there are 28 tools

with synchronisation points identified. Without the table, these points may have

been overlooked or identified late. Each one of the points now has a strategy for

carrying out the synchronisation. The tools and software components in the devel-

opment of ALIGNED are described in the synchronisation table, below.

Table 15.3 outlines the tool-oriented view of the synchronisation between

software and data engineering life cycles for ALIGNED. Each entry of the table

represents a synchronisation point within the project. Note that there may be several

synchronisation points per table, where multiple tools exploit reuse and best

practice between domains. Also not all cells contain any synchronisation points,

which reflect the scope and focus of the project. The following summary describes

the high-level features of the synchronisation taking place between life cycles at

each point and the development bridges between software and data engineering:

15.5.1 Manual Revision/Author (A)

• Unified Governance Plugins (UGP) (A1, A2): This tool makes use of the RDF

data extracted from a software engineering support tool for bug tracking. It is

Fig. 15.5 Life cycle stages for integrated software and data engineering

378 S.M. Shah et al.

used to assist requirements gathering in the software engineering life cycle by

managing documents and issues (e.g. duplicate detection or suggestions) and

affects the design decisions of the system.

• Dacura (A5): In the Semantic Web maintenance phase, tools can help to identify

software bugs that are caused or triggered by data-quality issues and produce

notifications for authors to correct these data errors.

15.5.2 Classify/Enrich (C)

• ORE (C1): Tools for ontology validation, enrichment and repair that can provide

ontology violations, suggest new ontology axioms or suggest semi-automatic

fixes for the benefit of software engineers.

• Model Catalogue (C2): In the design phase of a software engineering life cycle,

tools are used to create models, by applying domain expertise and reusing

existing models. Models may be used as the basis for software. These schemas

can be transferred from the software engineering domain to the data engineering

domain as ontologies. The ontologies from the data engineering life cycle can

also be transferred to the software engineering life cycle for use as the basis for

creating software.

• ORE (C3): Based on the ontology analysis by ORE, changes are made to the

ontology that software engineering tools can use to improve the underlying

model.

15.5.3 Quality Analysis (D)

• Dacura (D1): In data engineering this tool can be used to produce data-quality

tolerance requirements to constrain the data that is harvested, and these can be

used as the basis for requirement in software engineering.

• RDFUnit (D1): The data engineering tools can be used to identify and analyse

quality issues in the data. The results can give software engineers an insight of

the underlying data set and provide feedback to tackle any quality issues.

• ORE (D1): The tool can provide ontology violations, suggest new ontology

axioms (enrich) or suggest semi-automatic fixes for resolving violations. This

can inform the requirement phase of software engineering, with information

about data-quality issues.

• ORE (D2): Based on the ontology analysis carried out by the tool, design of the

ontology can be improved.

• Dacura (D2): This defines statistical data-quality measures which must be met

by the data. The tool supports the software engineering design phase by

suggesting User Interface refinements to eliminate errors.

15 Software Project Management for Combined Software and Data Engineering 379

• Dacura (D5): This can help to identify software bugs that have been caused by

data-quality errors and produce notifications for authors to correct these data

errors and make software engineering systems more robust.

• RDFUnit (D5): In the maintenance phase, this tool can be used to identify

constraint violations. Based on the analysis and design implementation, the

violation results can be fed to a quality repair tool or human editors to fix the

violations.

• Repair Framework and Notification (RFN) (E5): This tool checks data sets

against specific data constraints (e.g. expressed as SHACL or ShEx documents)

and provides semi-automatic repair strategies if violations are encountered. The

tool is used in both implementation and maintenance phase because the defined

data constraints influence the implementation of algorithms in the software

engineering phase. Also as taxonomies are changed (additions, removals, merg-

ing with other sources), the data need to be checked for consistency with the new

constraints.

• External Link Validation (ELV) (D5): This tool dereferences links from

PoolParty taxonomies to “external” resources on the Web and provides statistics

on invalid (broken) links. The synchronisation point is used on a regular basis for

maintaining taxonomies created with PoolParty and informs the software engi-

neering phase.

15.5.4 Evolve/Repair (E)

• ORE (E1): The tool can provide ontology violations, suggest new ontology

axioms (enrich) or suggest semi-automatic fixes (for resolving violations). The

analyses of the ORE findings drive the design and improvement of the underly-

ing model in the software engineering life cycle.

• Dacura (E2): This tool can define statistical data-quality measures which must be

met to support software engineering and suggest UI refinements to eliminate

errors.

• ORE (E2): Based on the ontology analysis, this tool drives the design and

improvement of the ontology, and this knowledge is transferred to model

modifications in the software engineering phase.

• Repair Framework and Notification (RFN) (E4): The synchronisation point is

used in both implementation and maintenance phase because the defined data

constraints influence the implementation of algorithms, and, as taxonomies are

changed (additions, removals, merging with other sources), the constraints need

to be satisfied.

• Repair Framework and Notification (RFN) (E5): The tool is used in both

implementation and maintenance phase because the defined data constraints

influence the implementation of algorithms, and, as taxonomies are changed

(additions, removals, merging with other sources), the constraints need to be

satisfied. External Link Validation (ELV): This dereferences links from

380 S.M. Shah et al.

PoolParty taxonomies to “external” resources on the Web and provides statistics

on invalid (broken) links. The tool is used on a regular basis to suggest mainte-

nance tasks in PoolParty.

15.5.5 Search/Browse/Explore (F)

• The Model Catalogue (F1): In the analysis phase of a model-driven software

engineering, this tool is used to explore and gather metadata related to the system

under construction. In the search browse and phase of the data engineering life

cycle, this translates to searching and browsing the ontologies of data set.

• Booster (F5): In the maintenance phase of the software engineering life cycle,

Booster can be used to create tools to extract data from a data store. The data

may be used directly by users or by other tools via an API. In the data

engineering context, Booster-generated tools may be used to provide a well-

defined API and search data and gather data into the data store.

15.5.6 Extract (G)

• Dacura (G1): This can be used to produce data-quality tolerance requirements to

constrain the data that is harvested and informs the software engineering analysis

phase by defining what data is to be harvested.

• Confluence/JIRA Data Extractor (CJDE) (G1): This tool connects to software

engineering management tool (Confluence/JIRA) installations (using the REST

APIs) and extracts relevant requirement information and tickets (e.g. bugs,

improvements) and creates RDF data. The RDF data is used to inform the data

engineering life cycle.

• Confluence/JIRA Data Extractor (CJDE) (G3): This tool extracts relevant

requirement information and tickets and creates RDF. This synchronisation is

used on a regular basis in requirement design phase to understand the changes

needed to the PoolParty tool.

15.5.7 Store/Query (H)

• Booster (H3): In the implementation phase of the software engineering life

cycle, Booster-generated systems provide, create, read, update and delete func-

tionality for data in a data store, as well as implement any user-specified actions,

which can be accessed as triples via an API.

15 Software Project Management for Combined Software and Data Engineering 381

15.6 Related Work

Data-intensive systems require careful alignment between data engineering and

software engineering life cycles to ensure the quality and integrity of the data. Data

stored in such systems typically persists longer than, and may be more valuable

than, the software itself, and so it is key that software development is sympathetic to

the aims of “big data”: scalability to large volumes of data; distributed, large-scale

research across multiple disciplines; and complex algorithms and analysis. These

are normally described in the literature as the four V’s of big data: velocity, variety,
volume and veracity [14].

In existing development methodologies, software and data engineering are

considered as separate concerns [15]. Integrating these introduces a number of

new challenges: software engineering aims of software quality, agility and devel-

opment productivity may conflict with data engineering aims of data quality, data

usability, and researcher productivity. Further challenges include federation of

separate data sources, dynamic and automated schema evolution, multisource

data harvesting, continuous data curation and revision, data reuse and the move

towards unstructured/loosely structured data.

Auer et al. [12] identify challenges within the domain of life cycles for linked

data projects. These include extraction, authoring, natural-language queries, auto-

matic management of resources for linking and linked data visualisation. Typically

seen as concerns for data life cycles, they all have a major impact upon software

development: the authors mention component integration, the management of

provenance information, abstraction to hide complexity and artefact generation

from vocabularies or semantic representations.

Mattmann et al. [16] use their experience of data-intensive software systems

across a range of scientific disciplines to identify seven key challenges which may

be summarised as:

• Data volume: Scalability issues that apply not just to the hardware of the system,

but may affect the tractability and usability of the data.

• Data dissemination: Distributed systems bring challenges of interoperability and

can lead to complex system architectures.

• Data curation: Supporting workflows and tools for improving the quality of

data, in a way that allows subsequent inspection or analysis.

• Use of open source: Complex technologies will depend upon reliable, reusable

components supporting generic functionality.

• Search: Making the data collected available in a usable fashion to users, includ-

ing access to related metadata.

• Data processing and analysis: Boiling down to workflows, tasks, workflow

management systems and resource management components.

• Information modelling: The authors state that “the metadata should be consid-

ered as significant as the data”.

382 S.M. Shah et al.

The authors split these challenges into further subcategories and point out the

many interdependencies between these problems. Zaveri et al. [17] take a broader

view, highlighting inadequate tool support for linked data-quality engineering

processes. Where tool support does exist, these tools are aimed at knowledge

engineers rather than domain experts or software engineers.

Anderson [18] agrees with this issue, describing a more wide-ranging lack of

support for developers of data-intensive systems. He also identifies “the necessity

of a multidisciplinary team that provides expertise on a diverse set of skills and

topics” as a nontechnical issue that can be addressed by projects dealing with large,

distributed data sets. A technical equivalent to this issue is to understand notions of

iteration with respect to the data modelling—he argues that domain knowledge is

required in order to understand data collection and curation. Subsequently, he also

argues for technical knowledge in order to match frameworks with requirements,

emphasising the need for a multidisciplinary team.

Some solutions to these challenges have been identified—most notably in the

area of model-driven software engineering, domain-specific languages and gener-

ative programming. These approaches, in combination with linked data languages

and schemas, enable self-describing data structures with rich semantics included

within the data itself. Aspects of program logic previously encapsulated in software

are now embedded in data models, meaning that the alignment between data and

software engineering becomes even more important. But these approaches can lead

to further problems. Qiu et al. [19] identify two issues: firstly, there is an interaction

between domain experts and application developers, and, secondly, that change to

schema code may not always impact application code in a straightforward manner.

15.7 Conclusion

The proposed methodology has been put into practice and observed for utility:

however, it can be seen as a hypothesis that will be refined in future iterations. One

extension will record and generalise the tasks required at each synchronisation

point. These observations may be condensed into software and data engineering

experience “pearls” [20], for later reuse. As the project progresses, new and

previously unidentified synchronisation points may be added to the table. Similarly,

overlapping synchronisation points may be merged, where there is duplication of

effort. Synchronisation points may also be moved or removed, depending on

changes or errors discovered in the requirements of either software or data engi-

neering project management.

Meanwhile, the methodology is to be refined by monitoring how the methodol-

ogy is used within the consortium, by way of surveys and workshops. Some

analysis is needed on the correspondence between the use cases and the tools

developed on the project. Further analysis may be necessary for user-oriented

perspectives of the methodology on the effect of the synchronisation points on

the development efforts of consortium partners.

15 Software Project Management for Combined Software and Data Engineering 383

This chapter has presented a methodology for combining software and data

engineering project life cycles. The hurdles to a combined methodology have

been discussed and include the differences in prescriptive and descriptive philoso-

phies and the changing needs from project to project. An agile meta-methodology
for combined project management has been proposed as a solution to the identified

issues. The benefits of the methodology are clear: reuse of artefacts between

domains and application of best practice from both domains transparent project

management when multiple life cycles are involved. The application of the meth-

odology in the interdisciplinary ALIGNED project has been presented as an initial

case study.

References

1. Davies J, Gibbons J, Welch J, Crichton E (2014) Model-driven engineering of information

systems: 10 years and 1000 versions. Sci Comput Program 2014:88–104

2. Davies J, Gibbons J, Milward A, Milward D, Shah S, Solanki M, Welch J (2015) Domain

specific modelling for clinical research. In: Proceedings of the workshop on domain-specific

modeling. ACM, New York

3. Dimou A, Kontokostas D, Freudenberg M, Verborgh R, Lehmann J, Mannens E, Hellmann S,

de Walle RV (2015) Assessing and refining mappings to rdf to improve dataset quality. In:

Proceedings of the 14th international semantic web conference

4. Feeney KC, O’Sullivan D, Tai W, Brennan R (2014) Improving curated web-data quality with

structured harvesting and assessment. Int J Semant Web Inf Syst 2014:35–62

5. Schandl T, Blumauer, A (2010) PoolParty: SKOS thesaurus management utilizing linked data.

In: The semantic web: research and applications: 7th extended semantic web conference,

ESWC 2010, Heraklion, May 30–June 3, 2010, Proceedings, Part II, Springer, Berlin

6. Kontokostas D, Mader C, Dirschl C, Eck K, Leuthold M, Lehmann J, Hellmann S (2016)

Semantically enhanced quality assurance in the JURION business use case. In: The semantic

web. Latest advances and new domains: 13th international conference, ESWC 2016,

Heraklion, Proceedings, Springer, May 29–June 2 2016

7. Royce WW (1970) Managing the development of large software systems. In: Proceedings of

IEEE WESCON. Los Angeles

8. Larman C, Basili VR (2003) Iterative and incremental development: a brief history. Computer

2003:47–56

9. Martin J (1991) Rapid application development. Macmillan Publishing Co., Indianapolis

10. Fowler M, Highsmith J (2001) The agile manifesto. Software Dev 9(8):28–35

11. Selic B (2003) The pragmatics of model-driven development. In: IEEE Softw. Sept 2003, pp

19–25

12. Auer S, Bühmann L, Dirschl C, Erling O, Hausenblas M, Isele R, Lehmann J, Martin M,

Mendes PN, van Nuffelen B, Stadler C, Tramp S, Williams H (2012) Managing the life-cycle

of linked data with the LOD2 stack. In: The semantic web – ISWC 2012: 11th International

Semantic Web Conference, Boston, 11–15 Nov2012, Proceedings, Part II, Springer, Berlin/

Heidelberg

13. Reiter R (1978) On closed world data bases. Springer US, Boston

14. Hitzler P, Janowicz K (2013) Linked data, big data, and the 4th paradigm. Semantic Web

2013:233–235

15. Cleve A, Mens T, Hainaut J-L (2010) Data- intensive system evolution. Computer

2010:110–112

384 S.M. Shah et al.

16. Mattmann CA, Crichton DJ, Hart AF, Goodale C, Hughes JS, Kelly S, Cinquini L, Painter TH,

Lazio J, Waliser D et al (2011) Architecting data-intensive software systems. Springer,

New York

17. Zaveri A, Rula A, Maurino A, Pietrobon R, Lehmann J, Auer S (2015) Quality assessment for

linked data: a survey. Semant Web 2015:63–93

18. Anderson, KM 2015 Embrace the challenges: software engineering in a big data world. In:

Proceedings of the First International Workshop on BIG Data Software Engineering, IEEE

Press, Piscataway

19. Qiu D, Li B, Su Z (2013) An empirical analysis of the co-evolution of schema and code in

database applications. In: Proceedings of the 2013 9th joint meeting on foundations of software

engineering. ACM, New York

20. Bentley J (1986) Programming pearls. ACM, New York

15 Software Project Management for Combined Software and Data Engineering 385

Index

Symbol/special character
*-family properties, 172, 181

A
ABox, 323

Accuracy, 25, 26, 30–33, 35

Adaptation Engine, 179, 181, 201

Adoptability factor, 16

Agent, 232

dynamic agent composition, 237

human, 232

interactive intelligent agent, 232

Agile, 289–294, 297–301, 304–306, 308, 310,

311, 313, 374, 384

Agile development, 78

Agile management, 345, 347, 348, 350, 363

Agile manifesto, 293, 294, 298, 301, 369

Agile method, 94

Agile project management, 345–348, 351, 352,

356, 358, 361–363

Agile Software Development, 348–350

Agile training, 290

Algorithm, 6, 12

Algorithmic, 32–34, 39

Alhambra, 123

Amazon, 210

Ambient Assisted Living (AAL), 119–123,

130, 131, 137

Ambient intelligence (AmI), 119

Analogy, 32, 33, 39

Analysis, 26, 30, 32, 33, 38–39

Application Architecture, 124

Artefacts, 316, 320–326, 331, 332, 337, 339,

368, 370, 371, 374, 375, 377, 384

Artificial Intelligence Laboratory, 231, 244

Assistive technologies (ATs), 120

Asymmetric, 296

Autonomy, 291, 294

B
Benefits, 25–27, 29

Block, 181, 184, 185, 191

Bottom-up, 230

Building block, 180–181

Business process management, 346

C
Capability Maturity Model (CMM), 74, 147,

148, 151

Capability Maturity Model Integration

(CMMI), 74, 215–219, 224

CAPTCHA, 175, 182

Change, 290, 292–296, 300, 305, 306, 310, 311

Change management, 290, 296, 311, 312

CK metrics, 12, 15–17, 20

Cloud computing, 87–89, 113, 209–211,

215, 224

Cloud customers, 48–51

Cloud deployment, 212, 216

Cloud migration, 211, 213–215, 218, 224

Cloud provider, 212, 213

Cloud services, 89, 93, 112

Cloud vendors, 48–51

CMMI level 2, 218, 224

Collaboration, 178, 179, 181, 183, 185, 188,

190, 191

Collaboration environment, 182

© Springer International Publishing AG 2017

Z. Mahmood (ed.), Software Project Management for Distributed Computing,
Computer Communications and Networks, DOI 10.1007/978-3-319-54325-3

387

Common Software Measurement International

Consortium (COSMIC), 46–48

Mapping Phase, 47–48, 55–56

Measurement Phase, 48, 55–56

Measurement Strategy Phase, 46, 53–55

Complex analytical method, 237

Component-based, 122–129

Component-based software engineering

(CBSE), 88, 122

Composable Services, 108

Computer-aided software engineering (CASE),

290, 291, 313

Configuration Management, 148, 160–161,

165, 166

Construction projects, 351

Constructive Cost Model (COCOMO), 32–37,

143, 154

Cost, 25–27, 29–34, 36–39

Cost Management, 145

Crowd work, 202

Crowd-Centered Design (CCD), 179, 185, 186

Crowdsourcing, 172, 174, 175, 178–180, 183,

185, 188, 192, 202–204

Crowdsourcing software, 178, 179

CrowdSWD, 179–182

Cyber attacks, 73

D
Data Engineering, 367–375, 377, 378, 381,

383, 384

Datacenter, 211

Decomposition, 180, 186, 198

Defense Projects, 72

Defense systems, 59–67, 69–75, 78

DEF-STAN-00-56, 66

Descriptive Statistics, 12

Design inspections, 77

Design Reusability, 10

Developers, 370, 372, 374, 377, 383

Development, 25–29, 32–36, 38, 39, 367–372,

374, 377, 378, 382, 383

Development team, 349, 354

Digital information radiators, 362

Distributed applications, 48–56

Distributed Computing (DC), 171, 178, 182

Distributed software, 25, 26, 32, 34, 38, 39

Distributed systems, 179, 236

Doctrine, 289–291, 311, 313

Domain experts, 383

Drivers, 25, 26, 30, 33–39

Duplication of effort, 368, 383

Dynamic systems development method, 345

E
Earned Value Management, 71

Eclipse, 99

Effort, 25–27, 30–36, 39

Email Integration, 97, 102

Enterprise Architectures, 68–75, 156–166, 215,

369–371

Environment, 232

Estimation, 25, 26, 30–35, 39

Executable line of code (ELOC), 290, 309, 311

eXo Platform, 100, 102

Extreme Programming, 345, 369

F
Factors, 26, 27, 32–35, 37–39

Feature Driven Development, 369

Flexing, 351, 361

Framework, 3

Function points, 61, 72, 73, 77

Function Point Analysis (FPA), 45

Functional size measurement (FSM), 44–45

Functional User Requirements (FURs), 46, 50

G
Global Product Owner, 292, 295

Global Software Development (GSD), 26–29,

32–35, 38, 39, 319

Goal, 238, 239

Graphical user interface, 124, 126

H
Hackystat framework, 214

HC, 194–201

Healthcare System, 121

Highly Complex Systems, 61, 63–65

Home entertainment, 121

Horizontal reuse, 4

Human-based computing element (HBCE),

171, 175, 178, 181, 182, 184, 186–190,

193, 202, 203

Human Resource Management, 145

Hybrid-CE, 172, 175, 179, 181, 182, 186–188,

190–193, 202, 204

Hypothesis, 383

I
IaaS, 48–56

iAgile, 290–292, 295–313

ICT infrastructure, 348, 354, 364

388 Index

Impact, 26–28, 31, 35, 38, 39

Implementation Requirements, 216, 220,

223, 225

Incremental, 369

Incremental management, 362

Infrastructure, 209–212, 214, 218, 223, 224

Integrated Software Engineering, 103

Intellectual property, 347, 359

Interlinking, 324–326

Internet of Agents, 232

Internet of Everything, 232
Internet of Things (IoT), 121, 232
Interoperability, 215, 216, 223

Issue Management, 102

Italian Army, 290, 292, 305, 309, 313

Iteration, 350, 359

J
Java, 15, 17, 316, 324, 326–328, 330, 336, 339

K
Kanban board, 357

Key process areas (KPA), 216

Kiviat diagram, 150

Knowledge Artefact, 238, 239

Knowledge base, 321, 323, 326, 331, 332

L
Large-scale defense systems, 59, 61, 62

Large-scale MAS (LSMAS), 237

Layered Structure, 124–125

Legacy system, 67

Life-cycle management, 67

Lifecycles, 62, 67, 73, 77, 368, 371, 374,

382, 384

Linked Open Data, 370

M
Machine-based computing element (MBCE),

171, 175, 178, 181, 182, 184, 186–190,

192, 202, 203

Management, 28, 30, 36, 38, 39

Massively multiplayer online games, 233

Massively multiplayer online role-playing

game (MMORPG), 244

Non Player Character, 248

Measures, 295, 298

Meta-methodology, 368, 374, 384
Metamodel, 238

Methodology, 367–371, 373, 374, 377, 378,

383, 384

Methods, 25, 26, 33, 35, 39

Middleware, 90

Military Software, 77

MIL-STD 498, 60

MIL-STD-882E, 66

Mission-Critical Systems, 61, 65–66

Mobile, 124

Modeling, 9–11

Monitoring, 291, 300, 301, 311

Monitoring tools, 291

MoSCoW, 361, 362

Multi-agent system (MAS), 233

Multi-site software development, 315–318,

321, 323, 325, 328, 331, 332, 338

Multi-tenancy, 104

N
NATO, 63, 69, 294, 305–307, 310, 313

Network-Centric Warfare, 63

Non-invasive, 301–303

Norms, 234

O
Object Management Group, 63

Objective. See Goal
Ontology

Ontology annotation, 316

SE Ontology, 316–319, 323, 325, 326, 328,

331, 332, 336, 339

SEOAnno, 316, 321–324, 326–328, 330,

331, 338

Software Engineering Ontology, 316–319,

322–323

OpenAAL, 123

Optimization, 10, 16–17

Organisation

ontology, 237

organisation features, 233

organisation traits, 232

organisational modelling, 233

Organisational model

AGR, 234

AUML, 235

ISLANDER, 235

MACODO, 236

MOISE+, 235

NOSHAPE MAS, 235

OperA, 235

TÆMS, 234

Organisational Unit, 238

Organisation for the Advancement of

Structured Information Standards

(OASIS), 123

Index 389

P
Pair programming, 296, 304

Parser, 324, 325

Pearls, 383

People Management, 149, 152–154, 163,

166, 167

People Management as a Service, 105

People, process, and product, 150, 154

Performance, 213, 216, 221

Performance Management, 147

PERSONA, 123

Platform as a Service (PaaS), 48–56,

209, 211

PMBOK Guide, 144–146, 148, 149, 151,

155–157

Portability, 213

PRINCE2, 96, 294

Privacy, 210, 213, 215

Problem Solving, 5

Process, 238, 240, 289–291, 293–302,

306, 307, 309–311, 368–370,

373, 375, 377

Process Management, 152, 154–155, 163,

166, 167

Process maturity, 144

Process Performance, 147

Procurement Management, 145

Product, 25, 29, 33, 35, 36, 38, 39

Product backlog, 350, 357–359

Product Management, 152, 155–156, 163,

166, 167

Product Owners, 291, 295, 304, 306, 312

Project life cycle, 13, 378

Project management, 75–78, 96, 97, 100,

144–156, 165–167, 292–294, 300, 311

Project Planning, 102

Prototyping, 369

Q
QDox, 324, 325

Quality, 27, 30, 38

Quality as a Service, 106

Quality Assurance, 148

Quality Management, 145

Quality of Service, 88

Quality Requirements, 215

R
Rackspace, 210

Rapid Application Development, 369

Rapid Prototyping, 94

Recipe world, 241

order, 241

recipe, 241

Reference Architecture, 123

Remote communication, 315, 316, 319,

321, 338

Requirements, 28, 30, 31, 36, 38, 39

Requirements Management, 102, 105, 106

Research and development, 346

Resource Description Framework (RDF),

325–327, 331

Reusability Estimation, 11, 14–18

Risk, 26, 31, 38, 39, 210, 213

Risk Management, 105, 145, 147, 148, 152,

156, 163, 166, 167

Role, 238, 239

S
SAfAAL, 119, 123, 130, 137

Safety-Critical Systems, 61, 66

Salesforce, 101
Scalability, 209

Scope Management, 145, 160, 165, 166

Scrum, 291–293, 295, 296, 306, 312, 345, 369

Scrum Coach, 292

Scrum Master, 291, 292, 296, 306

Search-based software engineering

(SBSE), 137

Security, 210–215, 220, 221, 224

Self-* properties, 172, 181

Self-organization, 181

Semantic decomposition, 186–188

Semantics

Semantic Annotation, 324, 325

Semantic Repository, 321, 323, 324, 326

Semantic Web, 317, 321, 325

Service level agreement (SLA), 50, 53, 89,

99, 210

Service-Oriented Architecture (SOA), 49,

51–56, 89, 106–113

Service-oriented architecture modeling

language (SoaML), 92, 93, 106,

108–113

Service-Oriented Computing, 90

SLIM, 32–35

Small and Medium Enterprises (SME), 7

Smart buildings, 233

Smart health, 233

Smart Homes, 121

Smart power grids, 233

Smart transport, 233

Social computing, 177

390 Index

Socially intelligent computing (SIC), 172, 174,

175, 181, 190

Social network users (SNUs), 173, 179, 183,

184, 194–201

Software, 25–39

Software as a Service (SaaS), 48–56, 88, 90,

91, 95, 100, 104

Software components, 89

Software cost estimation, 104

Software engineering, 10, 88, 93, 367–384

Software Engineering Body of Knowledge, 156

Software Intensive Systems, 61, 62

Software Project Management, 95–107

Software Project Management as a Service

(SPMaaS), 93, 103–113

Software reference architectures (SRA), 119,

120, 122–129

Software requirements, 103

Software testing, 103, 108

SPARQL, 326, 331–340

Spiral Model, 94

Sprint, 351, 354–356, 359, 362, 363

Sprint burndown charts, 362

Stakeholder Management, 145

Strategic Defense Initiative, 61

Strategy, 25, 28, 29

Stream, 171, 182

Structure, 28, 36

Swarm, 230

Synchronisation, 368, 374–378, 383

Synchronisation points, 374, 375, 377,

378, 383

System, 35, 37, 39

System development life cycle (SDLC), 93–95,

173, 175, 179, 180, 185, 188, 191,

201–203

System of systems (SoS), 62, 63
System requirements, 348, 354, 356, 358,

361, 362

T
Task tracking, 354–356, 362

TBox, 323

Team Collaboration, 97
Techniques, 26, 30, 32, 39

Test Driven Development, 369

The Quest for the Dragon Egg, 244

Time, 25–33, 35–39

Time Management, 97, 145

Time-box, 351, 360, 361

TOGAF, 63

Tools, 35, 37, 289–291, 294, 297–300, 302,

303, 307, 311, 313, 367, 368, 370,

372–375, 377–379, 381–383

TopCoder, 172, 176, 178

Top-down, 230

Training, 290, 295, 297–299, 302, 312

Triple, 325, 326, 332

U
Unified Architecture Framework, 63

Unified Modeling Language, 109, 113

User community governance, 290, 291,

297, 313

User story, 291, 308, 309

Utility Computing, 88

V
V model, 75, 78

Vertical reuse, 4

Virtuoso, 326, 331

Vocabularies, 322, 325, 331

W
Waterfall methodology, 345, 362

Waterfall model, 78, 94, 369

Web 2.0, 321

WMC, 12, 15, 18, 20

work cycle, 350

Work Schedule, 8, 14, 15, 19

Z
Zachman framework, 63

Index 391

	Preface
	Overview
	Objectives
	Organization
	Target Audiences

	Acknowledgements
	Other Springer Books by Zaigham Mahmood
	Data Science and Big Data Computing: Frameworks and Methodologies
	Connectivity Frameworks for Smart Devices: The Internet of Things from a Distributed Computing Perspective
	Cloud Computing: Challenges, Limitations and RandD Solutions
	Continued Rise of the Cloud: Advances and Trends in Cloud Computing
	Cloud Computing: Methods and Practical Approaches
	Software Engineering Frameworks for the Cloud Computing Paradigm
	Cloud Computing for Enterprise Architectures
	Requirements Engineering for Service and Cloud Computing
	User Centric E-Government: Challenges and Opportunities

	Contents
	Contributors
	About the Editor
	Part I: Characteristics and Estimation of Software Projects for Distributed Computing
	Chapter 1: Modeling of Reusability Estimation in Software Design with External Constraints
	1.1 Introduction
	1.2 Related Work
	1.3 Problem Formulation
	1.4 Proposed Modeling
	1.5 Research Methodologies
	1.6 Design Principle
	1.6.1 Design of Reusability Estimation
	1.6.2 Design of Optimization in Reusability Estimation

	1.7 Results and Discussion
	1.7.1 Numerical Outcome of Reusability Estimation Model
	1.7.2 Numerical Outcome of Optimized Model
	1.7.3 Key Process Information
	1.7.4 Threat to Validity

	1.8 Conclusion
	References

	Chapter 2: Estimation of Costs and Time for the Development of Distributed Software
	2.1 Introduction
	2.2 Globally Distributed Environment (GSD)
	2.2.1 Challenges
	2.2.2 Benefits
	2.2.2.1 Cost Savings
	2.2.2.2 Reduced Time

	2.3 Software Effort Estimation Process
	2.3.1 Estimation Process
	2.3.2 Estimation Accuracy
	2.3.2.1 Mean Absolute Error (MAE)
	2.3.2.2 Mean Magnitude of Relative Error (MMRE)

	2.4 Software Cost/Time Estimation Techniques for GSD
	2.4.1 Expert Judgment
	2.4.2 Estimation by Analogy
	2.4.3 Algorithmic Models
	2.4.3.1 Constructive Cost Model
	2.4.3.2 Slim

	2.5 Cost and Time Drivers
	2.5.1 Product Factors
	2.5.2 Platform Factors
	2.5.3 Personnel Factors
	2.5.4 Project Factors

	2.6 Risk Analysis
	2.7 Conclusion
	References

	Chapter 3: Using COSMIC for the Functional Size Measurement of Distributed Applications in Cloud Environments
	3.1 Introduction
	3.2 Software Size and COSMIC Measurement
	3.2.1 FSM Methods
	3.2.2 The COSMIC Method
	3.2.2.1 Measurement Strategy Phase
	3.2.2.2 Mapping Phase
	3.2.2.3 Measurement Phase

	3.3 Measuring Distributed Applications in Cloud Environments with COSMIC
	3.3.1 Measuring the Interaction Between Cloud Customers and Cloud Vendor Components
	3.3.2 Measuring the Interaction Between SOA Services in the Cloud Environments
	3.3.2.1 Measurement Strategy Phase
	3.3.2.2 Mapping and Measurement Phase

	3.4 Conclusions and Future Research Directions
	References

	Chapter 4: Characteristics of Large-Scale Defense Projects and the Dominance of Software and Software Project Management
	4.1 Introduction
	4.2 Characteristics of Large-Scale Defense Systems
	4.2.1 Large-Scale Systems
	4.2.2 Software-Intensive Systems
	4.2.3 System of Systems
	4.2.4 Highly Complex Systems
	4.2.5 High-Quality Systems
	4.2.6 Mission-Critical Systems
	4.2.7 Safety-Critical Systems
	4.2.8 Need for Maintainability, Supportability, and Evolvability
	4.2.9 Need for Integration with Legacy Systems

	4.3 Characteristics of Large-Scale Defense Projects
	4.3.1 Development Under Government Acquisition Regulations
	4.3.2 Involvement of ManyStakeholders
	4.3.3 Long Schedules
	4.3.4 High Cost
	4.3.5 High Risk
	4.3.6 Security Orientation
	4.3.7 Slow Development and Low Productivity
	4.3.8 Process Orientation
	4.3.9 Adherence to Many Standards
	4.3.10 Verification and Validation Orientation

	4.4 The Dominance of Software and Software Project Management in Large-Scale Defense Projects
	4.5 Conclusion
	References

	Chapter 5: Software Project Management as a Service (SPMaaS): Perspectives and Benefits
	5.1 Introduction
	5.2 Software Development Process for Cloud Computing
	5.3 Service Development Process
	5.4 Classical vs. Cloud-Based Software Project Management
	5.5 Evaluation of Cloud-Based Software Project Management Tools
	5.5.1 Integrated Software Engineering as a Service

	5.6 Integrated Service Development Process and Software Project Management for SPMaaS
	5.7 Architectural Design of SPMaaS with SOA
	5.7.1 Types of Services Offered by SPMaaS
	5.7.1.1 Elementary Services in SPMaaS
	5.7.1.2 Composable Services in SPMaaS
	5.7.1.3 Collaborative Services in SPMaaS

	5.7.2 Design of Cloud SPMaaS with SoaML
	5.7.2.1 Part I - SPMaaS Service Interface Model
	5.7.2.2 Part II - Specifying SPMaaS Choreography Using UML Sequence Model
	5.7.2.3 Part III - SPMaaS Service Participant Model
	5.7.2.4 Part IV - SPMaaS Service Contract Design

	5.7.3 Results and Analysis of SPMaaS Design

	5.8 Conclusion
	References

	Part II: Approaches and Frameworks for Software Development and Software Project Management
	Chapter 6: Component-Based Hybrid Reference Architecture for Managing Adaptable Embedded Software Development
	6.1 Introduction
	6.2 Elderly People in the Context of AAL
	6.3 Key Applications in the Context of AAL
	6.3.1 Smart Homes
	6.3.2 Healthcare Systems
	6.3.3 Ambient Assisted Living Robot

	6.4 Related Technologies of AAL
	6.5 Research Methodologies
	6.5.1 Component-Based Software Engineering
	6.5.2 Software Reference Architecture (SRA)

	6.6 Proposed Framework: Component-Based Hybrid SRA
	6.6.1 Three Key Architectures
	6.6.1.1 Mobile Application Architecture
	6.6.1.2 Rich Client Application Architecture
	6.6.1.3 Web Application Architecture

	6.6.2 Layered Structure
	6.6.3 Building Block Components
	6.6.3.1 Perceiving Layer Components
	6.6.3.2 Acting Layer Components
	6.6.3.3 Inferring Layer Components
	6.6.3.4 Service Layer Components
	6.6.3.5 Cross Layer Components

	6.7 Embedded Software for AAL
	6.7.1 Smart Environment
	6.7.2 Resort Presentation
	6.7.3 Data Interpretation
	6.7.4 Context Aggregator and Providers
	6.7.5 Cross Layer

	6.8 Trade-Off Strategy for Managing Adaptability
	6.8.1 Optimal Component Positions

	6.9 Conclusion
	References

	Chapter 7: 3PR Framework for Software Project Management: People, Process, Product, and Risk
	7.1 Introduction
	7.2 Software Project Management Approaches, Models, and Frameworks
	7.3 3PR (People, Process, Product, and Risk) Framework for Software Project Management
	7.3.1 People Management
	7.3.2 Process Management
	7.3.3 Product Management
	7.3.4 Risk Management

	7.4 People Management
	7.4.1 Communication
	7.4.2 Teamwork
	7.4.3 Leadership
	7.4.4 Organizational Commitment
	7.4.5 Project Manager
	7.4.6 Stakeholder Involvement
	7.4.7 Staffing and Hiring

	7.5 Process Management
	7.5.1 Requirements Management
	7.5.2 Project Monitoring and Control
	7.5.3 Project Planning and Estimation
	7.5.4 Scope Management

	7.6 Product Management
	7.6.1 Configuration Management
	7.6.2 Quality Engineering

	7.7 Risk Management
	7.7.1 Risk Assessment
	7.7.2 Risk Control

	7.8 Validation of the 3PR Framework
	7.9 Conclusion
	References

	Chapter 8: CrowdSWD: A Novel Framework for Crowdsourcing Software Development Inspired by the Concept of Biological Metaphor
	8.1 Introduction
	8.2 Related Work
	8.3 CrowdSWD: High-Level Design
	8.3.1 Building Block Layer: Context-Based Design
	8.3.2 Self-Organization Layer: Adaptation Engine (AE)
	8.3.3 Hybrid-CE Layer: Engineering Crowdsourced Stream CEs

	8.4 CrowdSWD: Low-Level Design
	8.4.1 A Context-Based Design
	8.4.1.1 A Design Solution
	8.4.1.2 Semantic Decomposition Model: Main Class, Criteria, and Constructors
	8.4.1.3 Task Collaborator Model

	8.4.2 A Self-* Property and a *-Family Property
	8.4.3 Hybrid-CE: A Technical Meta-model

	8.5 Hybrid-CE Design: Applications Example
	8.6 Experimental Study
	8.7 Experimental Results and Discussion
	8.8 Conclusion
	References

	Chapter 9: An Approach to Migrate and Manage Software: Cloud-Based Requirements Management
	9.1 Introduction
	9.2 Cloud Computing Concepts and Features
	9.3 Motivations and Considerations
	9.4 Challenges and Research Questions
	9.5 Related Work
	9.6 The Proposed Approach
	9.6.1 Migration and Management Requirements
	9.6.1.1 Security Requirements
	9.6.1.2 Quality Requirements
	9.6.1.3 Operational and Technical Requirements
	9.6.1.4 Technology and Implementation Requirements

	9.6.2 Enhancement Process

	9.7 Conclusions and Future Work
	References

	Chapter 10: A Novel Approach to Modelling Distributed Systems: Using Large-Scale Multi-agent Systems
	10.1 Why It Is Important to Consider Organisation
	10.1.1 About the Internet of Everything and Massively Multiplayer Online Games

	10.2 Overview of Models for Organising Agents and State of the Art
	10.2.1 Existing Models for Organisation of MAS
	10.2.2 Recent Advancements in LSMAS Organisational Models

	10.3 The Metamodel and Examples
	10.3.1 A Simple Example of the RecipeWorld
	10.3.2 A More Complex Example from an MMORPG

	10.4 Discussion
	10.4.1 Evaluating the Proposed Approach to Modelling LSMAS

	10.5 Conclusions
	References

	Part III: Advances in Software Project Management and Distributed Software Development
	Chapter 11: Optimizing Software Error Proneness Prediction Using Bird Mating Algorithm
	11.1 Introduction
	11.1.1 Error, Fault, and Failure

	11.2 Related Work
	11.2.1 Artificial Neural Network
	11.2.2 Software Error Proneness Prediction
	11.2.3 Optimization Algorithms

	11.3 Prediction Model
	11.3.1 Variable Subset Selection
	11.3.2 GANN: Genetic Algorithm-Based Neural Network
	11.3.3 BMANN: Bird Mating Algorithm-Based Neural Network

	11.4 Experimental Setup
	11.4.1 Dataset
	11.4.2 Genetic Algorithm-Based Feature Selection
	11.4.3 GANN: Genetic Algorithm-Based Neural Network
	11.4.4 BMANN: Bird Mating Algorithm-Based Neural Network

	11.5 Analysis of GANN and BMANN
	11.5.1 ROC Curves
	11.5.1.1 CM1
	11.5.1.2 JM1
	11.5.1.3 KC1
	11.5.1.4 KC2
	11.5.1.5 PC1

	11.5.2 Accuracy

	11.6 Conclusion and Future Work
	11.6.1 Future Work

	References

	Chapter 12: Improved Agile: A Customized Scrum Process for Project Management in Defense and Security
	12.1 Introduction and Motivation
	12.2 State of the Art
	12.2.1 Agile Project Management
	12.2.2 Project Management in Defense Domains

	12.3 The iAgile Development Process
	12.3.1 Training
	12.3.2 User Community Governance

	12.4 iAgile Support Tools
	12.4.1 Evolution of Tools
	12.4.2 Noninvasive Measurement Tools

	12.5 iAgile Benefits
	12.5.1 Costs
	12.5.2 Customer Satisfaction
	12.5.3 Quality

	12.6 Applying iAgile: A Case Study
	12.6.1 Introduction to LC2EVO
	12.6.2 Implementing iAgile
	12.6.3 Results and Discussion
	12.6.3.1 Costs
	12.6.3.2 Customer Satisfaction/Quality
	12.6.3.3 Learning Curve

	12.7 Conclusions
	References

	Chapter 13: Ontology Annotation for Software Engineering Project Management in Multisite Distributed Software Development Environments
	13.1 Introduction
	13.2 Background
	13.2.1 Multisite Software Development
	13.2.2 Software Engineering Ontology

	13.3 Literature Review
	13.3.1 Software Engineering Body of Knowledge vs Software Engineering Ontology
	13.3.2 Global Software Development
	13.3.3 Technology-Supported Multisite Software Development

	13.4 System Architecture
	13.4.1 Multisite Development Environment
	13.4.2 Software Engineering Ontology Annotation (SEOAnno)
	13.4.3 Semantic Repository

	13.5 SEOAnno Components
	13.5.1 Source Code Parser
	13.5.2 Semantic Annotation
	13.5.3 Interlinking and Enrichment
	13.5.4 SEOAnno Semantic Repository

	13.6 Results and Discussion
	13.6.1 SEOAnno Results
	13.6.2 Discussion

	13.7 Case Study
	13.7.1 Retrieve the Bugs Reported for a Class (Single Bug)
	13.7.2 List All the Bugs Reported for a Class (Multiple Bugs)
	13.7.3 Search for a Specific Type of Bug
	13.7.4 Display the Components of a Given Software Artefact, i.e. Class
	13.7.5 Retrieve and Display Available Information of a Class

	13.8 Conclusion and Future Work
	References

	Chapter 14: Investigating the Scope for Agile Project Management to Be Adopted by Higher Education Institutions
	14.1 Introduction
	14.1.1 Background on Agile Project Management
	14.1.2 Agile Applications
	14.1.3 Projects at Higher Education Institutions
	14.1.4 Chapter Organisation

	14.2 Agile Project Management
	14.2.1 Manifesto for Agile Software Development
	14.2.2 Agile Methodologies

	14.3 Identifying the Scope for Agile Management at HEIs
	14.3.1 Organisational Landscape for HEIs
	14.3.2 Supporting the HEI Strategic Agenda

	14.4 Evaluation of Agile Techniques Through Illustrative Cases
	14.4.1 Case 1: Development of Online Master´s Degree Programme
	14.4.2 Case 2: Multidisciplinary Medical Research Project
	14.4.3 Case 3: Negotiation of Industry-Funded Research Agreement

	14.5 Discussion and Conclusions
	14.6 Future Work
	References

	Chapter 15: Software Project Management for Combined Software and Data Engineering
	15.1 Introduction
	15.2 Software and Data Engineering Project Life Cycles
	15.3 Challenges for Projects Combining Software and Data Engineering
	15.4 Methodology for Combined Software and Data Engineering
	15.5 ALIGNED Project: A Case Study for Combined Software and Data Engineering
	15.5.1 Manual Revision/Author (A)
	15.5.2 Classify/Enrich (C)
	15.5.3 Quality Analysis (D)
	15.5.4 Evolve/Repair (E)
	15.5.5 Search/Browse/Explore (F)
	15.5.6 Extract (G)
	15.5.7 Store/Query (H)

	15.6 Related Work
	15.7 Conclusion
	References

	Index

