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Abstract. The polyhedral analysis is widely used for the static analysis
of programs, thanks to its expressiveness but it is also time consuming. To
deal with that, a sub-polyhedral analysis has been developed which offers
a good tread off between expressiveness and sufficiency. This analysis is
based on a set of directions which is defined statically at the beginning
of the analysis. More the cardinality of Δ is big, more the precision of
the result is high. Even if the set Δ is big, the sub-polyhedral analy-
sis can be done in a linear time. The bottleneck is that to construct
the resulting polyhedron with a large number of constraints (one con-
straints per direction) is time consuming. In this article, we present a
minimization method that allows to deal with that, using the max plus
pruning method. We demonstrate the efficiency of our method on some
benchmarks. The first results are very encouraging.

1 Introduction

In the abstract interpretation [2,3], the key component is represented by the
abstract domain. A lot of them have been developed to deal with the multiple
challenges of the program analysis. The most expressiveness one is the poly-
hedra abstract domain [4], but its analysis is time consuming. To deal with
that, a lot of effort have been done by the researchers in the field and that to
find a good trade-off between expressiveness and efficiency. A lot of domains
have been developed, known as the sub-polyhedra or weakly relational abstract
domains [6,8,9,11,12]. The authors in [10] present an abstract domain based
on support functions, noted P

�
Δ. This domain proposes a good balance between

expressiveness and computational time. The lattice of P�
Δ is closed to the lattice

of the template abstract domain [9], but its result is more accurate than the one
obtained using the template analysis. Because the precision of the polyhedral
analysis is preserved using the P

�
Δ analysis and that based on the choice of a

finite set of direction Δ. The larger the cardinality of Δ, the higher the precision
of the result.

The execution time of the P
�
Δ analysis is linear in the cardinality of Δ. So,

we can get a precise post fixed point using a large number of random directions.
The problem is that taking a large number of directions means that the obtained
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polyhedron contains the same number of constraints. So, the minimisation of this
polyhedron is very time consuming. Because the minimization method, firstly,
deletes the redundant constraints then computes the intersection of the other
constraints. In this article, we present a new version of the polyhedral minimiza-
tion method, called the k-minimization. This methods is based on the max plus
pruning method [5].

2 Background

2.1 The Sub-polyhedral Abstract Domain Based Support Functions

The sub-polyhedral abstract domain presented in [10] is based on support func-
tion [7]. This domain is an abstraction of convex polyhedra over R

n, where n

is the space dimension. We denote by P
�
Δ the abstract domain using support

functions. The lattice definition is closed to the lattice of the Template abstract
domain [9]. P�

Δ is parametrize by a finite set of directions Δ = {d1, . . . , dl}. The
directions in Δ are uniformly distributed on the unit sphere, noted Bn. The
definition of P�

Δ is given as follow:
Let Δ ⊆ Bn be the set of directions. We define P

�
Δ as the set of all functions

from Δ to R∞, i.e. P�
Δ = Δ → R∞. We denote ⊥Δ (resp. �Δ) the function such

that ∀d ∈ Δ, ⊥Δ(d) = −∞ (resp. �Δ(d) = +∞).
For each Ω ∈ P

�
Δ, we write Ω(d) the value of Ω in direction d ∈ Δ. Intuitively,

Ω is a support function with finite domain.
The abstraction and concretization functions of P�

Δ are defined as follows:
Let Δ ⊆ Bn be the set of directions.
We define the concretization function γΔ : P�

Δ → P by:

∀Ω ∈ P
�
Δ, γΔ(Ω) =

⋂

d∈Δ

{x ∈ R
n, < x, d >≤ Ω(d)} .

where, < x, d > is the scalar product of x by the direction d.
The abstraction function αΔ : P → P

�
Δ is defined by:

∀P ∈ P, αΔ(P) =

⎧
⎨

⎩

⊥ if P = ∅
� if P = R

n

λd. δP(d) otherwise
.

where, δP(d) is the support function of the polyhedron P in the direction d, and
P represents the polyhedra abstract domain.

Note that, the concretization of an abstract element of P�
Δ is a polyhedron

defined by the intersection of half-spaces, where each one is characterized by its
normal vector d ∈ Δ and the coefficient Ω(d). The abstraction function on the
other side is the restriction of the support function of the polyhedra on the set
of directions Δ. The order structure of P�

Δ is defined using properties of support
functions [7]. The static analysis of a program consists in computing the least
fixed point of a monotone map. To do so, the most used method is the Kleene
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Algorithm. By combining the Kleene algorithm and the P
�
Δ abstract domain,

the obtained algorithm has a polynomial complexity in the number of iterations
and linear in the number of directions in Δ. In addition, its result is as accurate
as possible: at each iterate, we have that Ωi = αΔ(Pi), such that Ωi (resp. Pi)
is the result of the ith Kleene iteration using the P

�
Δ (respectively the polyhedra

abstract domain). So Ω∞ = αΔ(P∞), with Ω∞ is the fixed point obtained in the
P

�
Δ analysis and P∞ is the one obtained using polyhedra domain. That why the

P
�
Δ analysis is more precise than the Template analysis [9]. In other terms, the

P
�
Δ analysis is done with the precision of the polyhedra domain and the over-

approximation is done only, at the end, in the concretization function. When
with Template domain, all the analysis is done in a less expressive domain.

2.2 The Max Plus Pruning Method

In [5], the authors present a method to reduce the curse of dimensionality in
solving an optimal control problem. In this method, the value function is over-
approximated using a set of Max-Plus basis functions. The general formulation
for the pruning problem appearing in max-plus basis methods is the following:
Let F = {1, 2, . . . ,m} be a set of integer, and let g(x) : Rn �→ R be a function
defined as follow:

g(x) = supi∈F gi(x)

where ∀i ∈ [1,m], gi(x) is a basis function. Let B = {g1, . . . , gm} be the set of
these m basis functions. Note that, when solving an optimal control problem the
cardinality of B can be very large. The idea is to approximate g(x) by keeping
only 0 ≤ k ≤ m basis functions from the set B. For that, the authors in [5] need
to compute the set S ⊂ F with cardinality k and then approximate the function
g by:

g(x) 
 supi∈Sgi(x)

The obtained set S should minimize the approximation error. This is known as
a pruning problem. To solve it, a set of witness points W is used to measure the
approximation error, such that: W = {x1, . . . , xm} ⊂ R

n, where n is the space
dimension. This set is constructed using a random points in the space. After-
wards, ∀xi ∈ W,∀gj ∈ B the importance metric is computed, which represents
the distance between g(xi) and gj(xi). This is denoted by cij , such that:

cij = g(xi) − gj(xi)

The obtained results represents the cost matrix C ∈ R
m × R

m (dessiner la
matrix). For a better comprehension, let us take the example of Fig. 1. In this
example, we want to approximate the smooth convex function g (the red graph)
using the basis functions g0, g1, g2 (the green lines). The point x0 is one wit-
ness point. It is used to compute the distance between the function g and all
basis functions. The distance between g(x0) and g0(x0) is represented by the
red dashed line. In this example, if we want to keep only two of the three basis
function. The couple (g0,g2) is the best choice.



Reduce the Complexity of the Polyhedron Minimization 99

Fig. 1. In this figure, we represent the function g (red graph) and some basis functions
(green lines). The dashed red line is the distance between g and g0 using the point x0.
(Color figure online)

Afterwards, the cost matrix C is used to compute the set |S| = k. And that
by applying one of the two methods:

– the K-median problem [1]: to minimize the sum of the lost, such that:

min
S⊂I

m∑

i=1

min
j∈S

cij

– the K-center problem: to maximize the lost, such that:

min
S⊂I

max
i∈[1,m]

min
j∈S

cij

The obtained set S is used to approximate the function g as follow:

g(x) 
 supi∈Sgi(x)

with gi ∈ B.

3 The k-Minimization Method

In this section, we develop our main contribution which is a novel approach
to reduce the complexity of the polyhedron construction and that by reducing
the number of constraints, this method is called the K-minimization, which is
inspired from the Max-Plus pruning method [5].

Let Pm be a polyhedron represented by the intersection of m ∈ N half-spaces
i.e. Pm =

⋂m
i=1 Hi where Hi = {x ∈ R

n : 〈x, ai〉 ≤ bi} with ai ∈ R
n and

bi ∈ R. For an m very large, the computation of Pm is time consuming. To
improve this computation, we over-approximate Pm by keeping only k < m of
their half-spaces, let Pk =

⋂k
i=1 Hi be the resulted polyhedron, such that:
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Fig. 2. (The left part) The intersection of the red dashed half spaces defines the poly-
hedron P. The red directions in bottom represent the normal vectors of the lines those
support these half-spaces. (The right part) the polyhedron P′ is an over-approximation
of P, that by deleting the dashed blue half-space (Color figure online)

– Pk ⊇ Pm.
– Pk is the best approximation of Pm using k half-spaces. Note that, the def-

inition of the best approximation strongly depend on the definition of the
Hausdorff distance between two polyhedra.

For a better comprehension, let me explain the motivation using the example
of Fig. 2. In this figure, the left polyhedron P is defined using the intersection
of seven half-spaces. Each half space, is represented by one direction (given in
red in the bottom of the left figure). We want to over-approximate P by taking
only 6 half-spaces from the 7 one. The resulted polyhedron P′ is given in the
right figure. Where, the half-space to delete is the blue dashed one. Noted that,
P ⊆ P′, with P′ is the best approximation of P using only 6 half-spaces from the
initial one. This approximation is known as the pruning problem, to be able to
solve its automatically, we propose a method called the K-minimization method.

The K-minimization method is based essentially on three steps:

1 The computation of the witness points.
2 The computation of the cost matrix.
3 The application of the K-median algorithm.

Let us detailed these steps:

The witness points computation: Let w ⊆ R
n be a set of points, where each

point of w belongs to one face of Pm. So, the cardinality of w is equal to m,
i.e. |w| = m. In the following, each half-space Hi will be characterized by its
corresponding point xi in the set w, these points are called witness points. Note
that, the computation of these points is known as a convex optimization problem
and to solve it, we may solve m LP problems. For all i ∈ {1, . . . , m}:
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– Solve the following LP problem using the interior point algorithm:

min〈x, ai〉 − bi

s.t. : ∀j ∈ {1, . . . , m} \ {i}, 〈x, aj〉 ≤ bj

– Add the obtained point to w the witness point set.

The cost matrix computation. Let C ∈ Rm×m be a square matrix. We have that
∀i, j ∈ [1,m] Cij represents the euclidean distance between xi the ith point in
the set w and proj(xi, Lj) the orthogonal projection of xi on the plane Lj . This
distance is obtained as follows:

Cij = ‖xi − proj(xi, Lj)‖
= |〈xi,aj〉−bj |

‖aj‖ .

So, each line i of the matrix C contains distances between xi and all the lines
that support the faces of Pm. The matrix C is called the cost matrix.

The application of the k-median algorithm. To tackle the fact that we want to
choose k half-spaces from the m ones and that by minimizing the approximation
error, we propose the use of the k-median algorithmi [1]. The k-median problem
is one of the most studied clustering problem, such that for n points given in a
metric space the aim is to identify the k < n ones that minimize the sum of the
distance to their nearest points.

In our problem, we want to define the k witness points such that the sum
of the distance between these k points and their projections is minimized. For
that, we use the cost matrix C to formalize the k-median problem as follows:

min
S⊂F,|S|=k

m∑

i=1

min
j∈S

Cij .

with F = {1, 2, . . . ,m} the set of the witness point indices in w.
Several algorithms are known to solve this problem, and that returns the

set S of indices of the witness points in w that minimize the sum of distance.
We know that each witness point in w represents one half-space that is used to
define Pm. So, the resulted polyhedron Pk is defined as follows:

Pk =
⋂

i∈S

Hi.

Thus, we have that Pm ⊆ Pk.
To summarize, the k-minimization algorithm is given in Algorithm 1.
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Algorithm 1. The K-minimization algorithm
Require: Pm, k ∈ N

w = witnessPoint(Pn)
for i = 0 to m − 1 do

for j = 0 to m − 1 do
C[i][j]= Distance(w[i], proj(w[i], L[j]))

end for
end for
S = KmedianAlgo(C, k)
return Pk

In Algorithm 1, the set of witness points, noted w, is computed using the
function witnessPoint. This function uses m LP solver. Then, the euclidean
distance is computed between all the points of w and their orthogonal projection
on L, where L are the set of planes that support the faces of the polyhedron
Pm. These distances are computed using the function Distance and the results
are putted in the matrix C. Afterwards, the k-median algorithm is applied using
the matrix C.

In the case of the P
�
Δ analysis, let Ω be the obtained fixed point. Then

γΔ(Ω) =
⋂

d∈Δ{x ∈ R
n, < x, d >≤ Ω(d)} . This is the concretisation of Ω

in the polyhedra abstract domain. Note that, the cardinality of Δ the set of
directions can be very large, So the concretisation of Ω can be time consuming.
That why, the K-minimization method is applied at the end of the P

�
Δ analysis

to over-approximate the result of γΔ(Ω). The concretisation of Ω is very useful,
it allows us to compare our result with the one obtained using the polyhedral
analysis. It, also, can be used as the input of another analysis. Recall that the
P

�
Δ analysis uses a polyhedron as initial input set. The preliminary results are

given in the next section.

4 Benchmarks

We implemented the k-minimization algorithm on the top level of the Parma
Polyhedra Library (PPL: http://bugseng.com/products/ppl/). We apply it on
some programs, which represent digital filters. The obtained results are given in
Fig. 3.

At the end of the P
�
Δ analysis, we concretise the result in the polyhedra

abstract domain. In the table of Fig. 3, we compare the results obtained using
the combination of the k-minimization and the P

�
Δ analysis [10], with the one

obtained using only the P
�
Δ analysis. Note that, in the first result we apply the

k-minimization method before the application of the concretisation function.
Where in the second one, we apply the concretisation function directly on the
result of the P

�
Δ analysis, and that using all the directions in Δ. The first results

are very encouraging, with our method the analysis terminates in some minutes.
Where with the standard minimization function the analysis did not terminates,

http://bugseng.com/products/ppl/
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Program The P
�
Δ analysis + the K-minimization The P

�
Δ analysis

Name |V | |Δ| t(s) K t(s)

lead leg controller 5 350 1m53.811s 116 TO
lp iir 9600 2 6 372 3m0.165s 124 TO
lp iir 9600 4 10 500 6m21.984s 166 TO
lp iir 9600 4 elliptic 10 500 6m20.659s 166 TO
lp iir 9600 6 elliptic 14 692 21m56.076s 230 TO
bs iir 9600 12000 10 chebyshev 22 1268 TO 422 TO

Fig. 3. The execution time obtained using the k-minimization method and the standard
polyhedral minimization

and that after 10 h of executions. Even, with our method, the analysis of the
last program did not terminate in a reasonable execution time. The lack of the
k-minimization algorithm is the computation of the witness points which is time
consuming, because we apply one LP solver per constraints. The improvement
of this point is the subject of our ongoing work.

5 Conclusion

In the P
�
Δ analysis, The execution time is linear in the cardinality of Δ. So to

improve the precision of the analysis, we can take Δ with a large cardinality. The
result of this analysis can be concretised in the polyhedra abstract domain, where
the number of the constraints of the obtained polyhedron is equal to the cardinal-
ity of Δ. So, if we take Δ very large, the computation of the resulted polyhedron
can be time consuming. For that, we present in this paper a method called k-
minimization. This method can be applied before the concretisation method to
reduce its complexity. The k-minimization method is inspired from the Max-
Plus Pruning method. This method over-approximate the obtained polyhedron
by keeping only k from their half-spaces, where k is chosen statically smaller then
the cardinality of Δ. The obtained over-approximation is the one that minimise
the loss of precision.
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