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Abstract. This paper demonstrates a symbolic tool that generates
C code for nonlinear model predictive controllers. The optimality condi-
tions are derived in a quick tutorial on optimal control. A model based
workflow using MapleSim for modeling and simulation, and Maple for
analysis and code generation is then explained. In this paper, we assume
to have a control model of a nonlinear plant in MapleSim. The first
step of the workflow is to get the equations of the control model from
MapleSim. These equations are usually in the form of differential alge-
braic equations. After converting the equations to ordinary differential
equations, the C code for the model predictive controller is generated
using a tool created in Maple. The resulting C code can be used to
simulate the control algorithm and program the hardware controller.
The proposed tool for automatic code generation for model predictive
controllers is open and can be employed by users to create their own
customized code generation tool.
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1 Introduction

A systematic workflow for model based automatic code generation for Model
Predictive Control (MPC) is introduced in this paper (Fig. 1). MPC started as
the alternative advanced control method to PID controllers in chemical process
industries. With the progress of MPC algorithms and the computational power
of hardware controllers, other industries such as the robotics, automotive and
aerospace industries are looking into MPC controllers. The majority of current
MPC controllers use linear models because in that case, the controller needs
to solve a Quadratic Programming (QP), which is a convex optimization prob-
lem that can be solved efficiently. However, linear models are not adequate for
highly nonlinear systems. MPC controller synthesis based on physical model-
ing is the approach that can be employed to overcome the inefficiency of linear
models. Working with physical models is on the other hand not easy. Control
engineers need high-level modeling tools to save time, improve reliability and
prevent human error getting into the controller code.

MapleSim [1], as an advanced high-level tool for physical modeling and sim-
ulation, and Maple [2], as an advanced symbolic analysis and synthesis tool, are
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natural building blocks of the proposed workflow for automatic code generation
for MPC. The workflow, depicted in Fig. 1, consists of the following steps:

– Modeling: A physical model of the system is built by connecting components
in MapleSim. MapleSim contains more than 550 built-in components from
many different domains. Users can also create their own custom components.

– Extracting the equations: The dynamic equations of this model are then
extracted into Maple. In general, automatically generated dynamic equations
of a physical model are in the form of differential algebraic equations (DAE).

– Converting DAEs to ODEs: Most MPC algorithms assume that the equa-
tions are given in the form of ordinary differential equations (ODE). Maple is
employed in the workflow to convert DAEs to ODEs. The conversion can be
exact or an approximation in order to simplify the resulting ODEs. Currently,
this step is not systematic and it may be different for each system.

– Generating Code: The MPC algorithm for the given the ODE equations can be
generated using Maple’s symbolic computation engine. The resulting Maple
code can be converted to C code automatically using the CodeGeneration
package.

– Simulating the Closed Loop System: The generated C code can be embedded
in a MapleSim model as an External C Block. The closed loop system with
the original DAE equations can then be simulated in MapleSim.

Fig. 1. Model-based automatic code Generation for MPC
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An MPC controller consists of two main parts: problem formulation and the
solver. Both of these parts can be generated in Maple and then translated to
C code. In the Sect. 2, we will explain the approach we have followed to design an
MPC controller. Mathematical details of the approach are described in Sect. 3.
As an example, a system with electrical, mechanical and hydraulic components
is considered in Sect. 4. The importance of this example is that it demonstrates
automatic generation of dynamic equations, MPC problem formulation and an
MPC solver. Corresponding MapleSim models and Maple worksheets will be
provided to interested readers upon request.

2 Model Predictive Control

Consider a driver on a road. For a safe trip, the driver needs to look forward
(prediction), follow the road and avoid any collision (constraints). On top of
that, the driver might want to spend as little time and fuel as possible to reach
the destination (optimization).

MPC can be employed to drive a self-driving car. The MPC controller mini-
mizes a cost function at each time instant. Some of the optimization constraints
that should be respected are listed below:

– Vehicle’s dynamic behavior
– Limited power
– No skidding
– Following the road
– Avoiding collision

MPC is in fact a control method that computes the control input of the
system by solving an Optimal Control Problem (OCP) in real time. The aim
of the OCP is to optimize the trajectory of the system with respect to a cost
function that is defined based on economic or performance measures. An MPC
controller uses a model of the system to predict its behavior within a finite
horizon. The following steps describe what an MPC controller performs in real
time:

1. Measure/estimate the current state.
2. Solve the OCP to compute a sequence of control inputs.
3. Apply the first step in the control input sequence to the system.
4. Go to step 1.

MPC controllers were originally developed to control chemical processes [3].
PID controllers have been common in process control for a long time. However,
there are a few issues with using PID controllers:

– Highly nonlinear systems: PID controllers do not perform well for highly non-
linear systems.
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– Multiple coupled loops: To control a multi-input multi-output (MIMO) sys-
tem, many PID controllers in different loops are required and it is hard to
compensate the coupling effect.

– Tuning: Tuning PID controllers is not an easy task especially when there are
limits on the control input.

MPC controllers have the following features:

– MPC can minimize a cost function defined based on economic or performance
properties of the system.

– MPC can handle constraints on inputs and states.
– MPC can be designed for MIMO nonlinear systems.
– Tuning an MPC controller is more intuitive compared to a set of PID con-

trollers.
– MPC is a systematic, model based approach.
– There are tools for generating code for MPC controllers automatically.

2.1 Applications

MPC was first employed to control chemical processes in 1970s. In a survey
of industrial applications of MPC, reference [3] mentions thousands of applica-
tions in refining, petrochemicals, chemicals, pulp and paper, polymer and food
processing industries. Chemical processes are usually very slow and expensive.
Therefore, there is plenty of time and computational power available to the con-
troller. The largest size for plants reported in [3] is 603 inputs and 283 outputs.
The majority of the MPC controllers in process control use linear models for
the plant. The main reason is that the OCP in an MPC controller for a linear
system with constraints can be formulated as a Quadratic Programming (QP)
problem. Even large QP problems can be solved efficiently.

For nonlinear systems, the OCP is a nonlinear optimization problem, which
are hard to solve in general. In [4], it is stated that, in process control, the use
of linear MPC decreases with increasing process nonlinearity. In recent years,
computational power of microprocessors has increased and new algorithms have
been proposed for implementing MPC controllers. The result has been very fast
implementations of MPC and the increasing interest in robotics, automotive and
aerospace industries to use MPC controllers.

3 Mathematical Description

Consider the following nonlinear system:

ẋ(t) =f(x(t), u(t))
x(t0) =x◦
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where:

– x(t) is the state vector
– u(t) is the input vector

The objective of the MPC controller is to solve the following OCP:

minimize
u

J(x0, t0) = φ(x(tf )) +
∫ tf

t0

L(x(τ), u(τ))dτ

subject to ẋ(t) = f(x(t), u(t))
x(t0) = x◦
gi(x(t), u(t)) = 0, for i = 1, . . . , ng

hi(x(t), u(t)) ≤ 0, for i = 1, . . . , nh

This OCP is in general a nonconvex optimization problem and it is hard to
solve. A particular interior-point algorithm, the barrier method [5], is employed
here to convert the inequality constraints to equality constraints [6]:

minimize
u,σ

φ(x(tf )) +
∫ tf

t0

(
L(x(τ), u(τ)) − rTσ(τ)

)
dτ

subject to ẋ(t) = f(x(t), u(t))
x(t0) = x◦
gi(x(t), u(t)) = 0, for i = 1, . . . , ng

hi(x(t), u(t)) + σi(t)2 = 0, for i = 1, . . . , nh

where σ(t) ∈ R
nh is a vector slack variable and the entries of r ∈ R

nh are
small positive numbers. The vector r is chosen by the user. To put more penalty
on the solution when it gets close to hi(x(t), u(t)) = 0, the user should increase
the corresponding entry of r.

If the problem is discretized into N steps from t0 to tf , we have:

minimize
u,σ

φd(xN ) +
N−1∑
k=0

(
L(xk, uk) − rTσk

)

subject to xk+1 = fd(xk, uk)
x0 = x◦
gi(xk, uk) = 0, for i = 1, . . . , ng

hi(xk, uk) + σ2
ik = 0, for i = 1, . . . , nh

where Δτ = tf−t0
N and:

φd(xN ) =
φ(x(tf ), tf )

Δτ

fd(xk, uk) = xk + f(xk, uk)Δτ
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By putting all the equality constraints into a vector G, we have:

minimize
u,σ

φd(xN ) +
N−1∑
k=0

(
L(xk, uk) − rTσk

)

subject to xk+1 = fd(xk, uk)
x0 = x◦
G(xk, uk, σk) = 0

where:

G(xk, uk, σk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(xk, uk)
...

gng
(xk, uk)

h1(xk, uk) + σ2
1k

...
hnh

(xk, uk) + σ2
nhk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

To solve an optimization problem with equality constraints, we can use
Lagrange multipliers. The Lagrangian is defined as:

L(x, u, σ, λ, μ) = φd(xN , N) + (x◦ − x0)Tλ0

+
N−1∑
k=0

(
L(xk, uk) − rTσk

+ (fd(xk, uk) − xk+1)Tλk+1

+G(xk, uk, σk)Tμk

)

Necessary conditions for a point to be an extremum is the following partial
derivatives to be zero:

∂L
∂xk

= 0

∂L
∂λk

= 0 for k = 0, . . . , N

∂L
∂σk

= 0

∂L
∂uk

= 0

∂L
∂μk

= 0 for k = 0, . . . , N − 1
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The Lagrangian L can be rewritten as:

L(x, u, σ, λ, μ) =φd(xN ) + xT
◦ λ0 − xT

NλN

+
N−1∑
k=0

(H(xk, uk, σk, λk+1, μk) − xT
k λk

)

where the Hamiltonian is defined as:

H(xk, uk, σk, λk+1, μk) =L(xk, uk) − rTσk

+ fd(xk, uk)Tλk+1 + G(xk, uk, σk)Tμk

Now, the optimality conditions can be summarized as in the following table.
These conditions are known as Pontryagin’s Maximum Principle.

Partial derivatives Optimality conditions
∂L

∂λk+1
= 0 x�

k+1 = fd(x�
k, u�

k)

∂L
∂λ0

= 0 x�
0 = x◦

∂L
∂xk

= 0 λ�
k = Hx(x�

k, u�
k, σ�

k, λ�
k+1, μ

�
k)

∂L
∂xN

= 0 λ�
N = ∂

∂xN
φd(x�

N )
∂L
∂uk

= 0 Hu(x�
k, u�

k, σ�
k, λ�

k+1, μ
�
k) = 0

∂L
∂σk

= 0 Hσ(x�
k, u�

k, σ�
k, λ�

k+1, μ
�
k) = 0

∂L
∂μk

= 0 G(x�
k, u�

k, σ�
k) = 0

For k = 0, . . . , N − 1 where � denotes the optimal solution and Hu = ∂H
∂uk

and Hσ = ∂H
∂σk

. In the next section, we introduce an algorithm to find a solution
of the optimality conditions.

3.1 Continuation GMRES Method

Following [7], optimality conditions can be written as the equation F (xn, U) = 0
where

F (xn, U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hu(x0, u0, σ0, λ1, μ0)
Hσ(x0, u0, σ0, λ1, μ0)

G(x0, u0, σ0)
...

Hu(xN−1, uN−1, σN−1, λN , μN−1)
Hσ(xN−1, uN−1, σN−1, λN , μN−1)

G(xN−1, uN−1, σN−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and:
U = [uT

0 , . . . , uT
N−1, σ

T
0 , . . . , σT

N−1, μ
T
0 , . . . , μT

N−1]
T
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Dynamics equations of the states and costates (Lagrange multipliers corre-
sponding to state equations) are given as:

xk+1 = fd(xk, uk)
x0 = xn

λk = Hx(xk, uk, σk, λk+1, μk)

λN =
∂

∂xN
φd(xN )

Using the Continuation method, instead of solving F (x,U) = 0, we find U
such that:

Ḟ (x,U) = AsF (x,U)

where As is a matrix with negative eigenvalues. Now, we have:

Fxẋ + FU U̇ = AsF (x,U)

To compute U̇ using the following equation, which is linear in U̇ , we use the
generalized minimum residual (GMRES ) algorithm.

FU U̇ = AsF (x,U) − Fxf(x, u)

To compute U at any given time, we need to have an initial value for U and
then use the above U̇ to update it.

4 Example

In this section, we will apply the proposed workflow for MPC controller design
to an Electro Hydraulic Servo System (EHSS). The EHSS system, depicted
in Fig. 2, consists of mechanical system with two arms. The pressure inside a
hydraulic cylinder creates the force to move the arms up and down. The model
of this system is built in MapleSim by connecting components from Multibody
and Hydraulics libraries (Fig. 3). The implementation of the EHSS model in
MapleSim, generating code for the MPC controller in Maple and simulating the
MPC controller in MapleSim are available upon request.

In a Maple worksheet, equations of motion of the EHSS system are extracted
from the MapleSim model. For this example, the extracted equations represent
an implicit ODE. In order to convert the equations into an explicit ODE, we
will assume that the input of the system (the input pressure to the hydraulic
circuit) and the derivative variables (state variables) are given. Then, we need
to create a procedure to compute the derivatives of the state variables. In this
particular case, the implicit ODE contains piecewise expressions that lead to a
fairly complicated piecewise explicit ODE. To simplify the resulting ODE, a few
of the expressions are approximated with rational polynomial functions.

Once the explicit ODE is computed, the MPC algorithm can be generated in
Maple. One of the advantages of a symbolic computation engine such as Maple
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Fig. 2. EHSS system

Fig. 3. EHSS MapleSim model

is that it can work on procedures as opposed to numbers. For example, by apply-
ing the codegen:-optimize command in Maple to a procedure, you can create a
new procedure that computes the same result as the original procedure but it
performs fewer operations. This optimization is done by recognizing common
subexpressions that appear in the equations several times and computing them
as intermediate variables. The intermediate variables are then only used, not
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recomputed, in the rest of the equations. In the MPC workflow, a procedure is
generated that computes the optimality conditions. To that end, partial deriva-
tives of the Hamiltonian with respect to states, inputs, Lagrange multipliers and
slack variables are needed. Also, depending on the solver, we might need the
derivatives of the optimality conditions. Depending of the dynamic equations of
the system, the symbolic representation of the optimality conditions and their
derivatives might become very long expressions. To avoid working with com-
plicated expressions, we create Maple procedures that compute the optimality
conditions. The partial derivatives of a procedure with respect to its input argu-
ments can be computed using the codegen:-JACOBIAN command. The result is
returned as a procedure that computes the corresponding derivative. The main
advantage of using Maple in the workflow is that the procedures and their deriv-
atives are computed automatically based on the original ODE equation. Users
of numerical tools have to write several procedures by hand to implement an
MPC controller. Manually writing procedures takes time and is always prone
to human errors. With Maple, the workflow is automatic and the result is an
optimized procedure. The MPC algorithm can also be translated into C code
using the CodeGeneration package in Maple.

The generated C code for the MPC controller can then be embedded into the
MapleSim model of the EHSS as an External C Block to simulate the closed loop
system. Figure 4 shows the result of the closed simulation of the EHSS system
with the MPC controller. The value of θ (Fig. 2) is shown in solid red and its
desired value is shown in dashed green. Although, in the design of the MPC
controller, we assumed that the setpoint was constant, the MPC controller has
acceptable tracking performance.

Fig. 4. Closed loop simulation
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5 Summary

In this paper, we reviewed a workflow for implementing MPC controllers.
MapleSim, a high-level modeling tool, and Maple, a high-level and symbolic
computation engine, were employed to create an automatic workflow from a
high-level model of the system to the C code of the MPC controller. The MPC
problem formulation and solver were generated in Maple and then converted to
C code. The main advantage of using a symbolic tool in the workflow is that the
required procedures and their corresponding derivatives are computed and opti-
mized automatically. This workflow saves time and it is less sensitive to human
errors.
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