
Falsification of Dynamical Systems –
An Industrial Perspective

Thomas Heinz(B)

Robert-Bosch GmbH, Corporate Research,
Robert-Bosch-Campus 1, 71272 Renningen, Germany

thomas.heinz@de.bosch.com

Abstract. Whenever formal verification of dynamical system models
is not applicable, e.g., due to the presence of black-box components,
simulation-based verification and falsification methods are promising
approaches to gain confidence in a system satisfying its specification.
With the introduction of robust semantics it is not only possible to
answer this question in the Boolean sense but to quantify its truth. We
illustrate a number of applications that are interesting from an indus-
trial perspective, and point out how robustness could become even more
versatile in the engineering process.

Keywords: Falsification · Conformance · Testing · Robust semantics ·
Simulation-based verification · Automotive control systems

1 Introduction

Models of dynamical systems play a crucial role in the development of auto-
motive control systems. Here, we focus on models describing the closed-loop
interaction between physical processes and controllers. Such models exist at
various levels of abstraction, e.g., in order to design a controller, a simpli-
fied physical model is used whereas for validation purposes the controller is
tested against a detailed physical model. Controller models on the other hand
range from abstract continuous-time models to fixed-step implementation mod-
els involving precise digital hardware behavior. There exist a variety of different
modeling tools specialized in different physics domains based on different for-
malisms such as PDEs (partial differential equations), ODEs (ordinary differen-
tial equations), DAEs (differential algebraic equations), and hybrid or switched
versions thereof. The situation is similar for controller models. Modeling tools
such as Matlab/Simulink or Modelica can express both physics and high-level
continuous- or discrete-time controllers in a single model. During refinement of
the controller implementation however, different tools must be used that reflect
real-time scheduling [9], and hardware behavior as well. Co-simulation is required

T. Heinz Invited talk. Thanks to my colleagues Jens Oehlerking, Matthias Woehrle,
and Christoph Gladisch for valuable discussions and feedback.

c© Springer International Publishing AG 2017
S. Bogomolov et al. (Eds.): NSV 2016, LNCS 10152, pp. 78–84, 2017.
DOI: 10.1007/978-3-319-54292-8 7



Falsification of Dynamical Systems – An Industrial Perspective 79

to perform closed-loop simulations of such implementation models and physi-
cal processes, i.e., the entire system model is represented by different modeling
tools and the simulation becomes a distributed process which is typically coor-
dinated by a single tool. Alternatively, tool-specific models are converted into
tool-independent models such as FMUs (Functional Mock-up Units) [3]. Given
the current state of the art, it is not possible to formally verify functional proper-
ties of such models. This is partially due to the lack of formal semantics of some
modeling tools and the presence of black-box components in form of libraries. For
physical processes which do not admit an appropriate characterization by closed-
form ODE/DAE models, such as combustion, the model may involve functions
described by large tables of data. In these cases, even if we describe the model
in a mathematically unambiguous way, e.g., as a hybrid automaton, formal ver-
ification such as reachability analysis is often not practically possible with state
of the art methods.

A promising approach to address these complexities is simulation-based veri-
fication resp. falsification built on top of robust semantics for temporal property
specification logics [7,8]. So far research has mostly focused on variants of lin-
ear temporal logic (LTL), in particular metric temporal logic (MTL) and signal
temporal logic (STL). The basic idea is to generalize the Boolean semantics of
a temporal logic by a metric. In the Boolean semantics, a signal (trace) either
satisfies a specification or not. In a robust semantics, a signal is mapped to a real
number indicating some measure of distance to the satisfaction “border”. A value
in R

+
0 indicates that the signal satisfies the specification, a value in R

− shows
that it does not. Such a quantification of truth enables the use of optimization
methods to guide the exploration of a model and to find initial conditions, para-
meters, and possible input signals falsifying the property. If the model indeed
satisfies the property – which is in general undecidable – the exploration tries to
minimize the degree of satisfaction. Under certain assumptions, e.g., the model
being Lipschitz continuous, simulation-based verification is possible, i.e., a finite
number of simulation runs may suffice to show a temporal property [6]. In the
following, these approaches are summarized by the term property conformance
checking.

During model refinement from abstract to implementation models, it is
important to preserve desired properties. Property conformance checking is a
way to increase confidence in this preservation. Besides satisfying particular
properties, it is often desirable that the behavior of a refined system is close to
that of the original system, e.g., when the physics model is replaced by a more
complex one or when disturbances are introduced. Another example is compar-
ing a continuous-time model with a discrete-time version with delays charac-
terizing timing properties of the distributed execution of the controller such as
computation, communication, and scheduling delays. It has been observed that
equivalence notions from discrete systems such as bisimilarity are too strong to
adequately capture similarity of closed-loop control models. Instead, quantify-
ing the distance of pairs of corresponding signals from both models provides a
useful indication of model similarity. Deshmukh et al. [5] introduce an effective



80 T. Heinz

method to compute the distance of signals under the Skorokhod metric which
considers retimed versions s(r(t)) of a signal s(t) with r being a monotonically
increasing retiming function. The idea is to capture both distortions in space
and time where time distortions can be more general than constant time shifts.
Subsequently, this approach is called model conformance checking.

2 Industrially Relevant Applications

Automatic testing is important in industrial practice to have high confidence
that the product meets its requirements when formal methods are not applicable.
Tests capturing property or model conformance on the level of “virtual” models
are already useful as indicated above. Testing the real system is inevitable even
if the entire chain of model refinements would be formally verified. This is expen-
sive compared to simulations and thus benefits from careful selection of relevant
test cases, i.e., those which either falsify the property, or operate the system at
the satisfiability limit. In the context of vehicle dynamics, such test cases can be
executed from driving robots which control steering, acceleration, and braking
[11]. In the realm of automated driving, a test case may be as complex as finding
a particular challenging road configuration with potential obstacles, and defining
the behavior of dynamic objects other than the automated vehicle itself.

Clearly, it is desirable to have models which admit formal verification in
practice. A formal model could be used to describe the behavior for a subset of
outputs, e.g., a Büchi automaton capturing discrete behavior. Alternatively, it
may be a simplified dynamics model such as a system of ODEs or a linear hybrid
automaton, which presumably overapproximates the behavior in a subset of the
original state space, hence enabling reachability analysis [2,10] and theorem
proving [12]. Model conformance checking can provide best effort indication that
a formal model is indeed an abstraction of the original system.

Property conformance checking as described above computes a single robust-
ness value for a particular signal, and thus quantifies the satisfaction of the
property by that signal. Online monitoring is a form of property conformance
checking where a robustness signal is computed, i.e., a function mapping each sig-
nal prefix to its robustness value [4]. A robustness signal provides valuable feed-
back for developers in understanding how the satisfaction of a property evolves
in time. Moreover, if the monitor can be computed in real-time, its output could
be used to modify the system behavior, e.g., in case a system is approaching its
satisfiability limit, it could activate some fallback behavior before the property
is actually violated.

A black-box model contains inputs, outputs, parameters and states. In prac-
tice, it is often not possible to know all states as they might be hidden in libraries
that are part of the model. For autonomous models, i.e., ones without input,
property or model conformance checking explores a given parameter space. If
inputs are present, the exploration problem becomes more involved. A simple
approach is to select inputs from a predefined family of input functions. The
disadvantage is that the relation of input to state space is unknown. Consider



Falsification of Dynamical Systems – An Industrial Perspective 81

the simple property �(x ≥ 2 ⇒ ♦[0,1]y ≤ 3) where x is a state, and y an output.
If the goal is to select an interesting input, it would have to be such that x ≥ 2
holds eventually. Selecting inputs from a predefined set works only if the set is
carefully chosen with knowledge about the model that must be obtained by other
means. Another approach would be to simply set x0 ≥ 2 initially but this is not
possible when the test is performed on a real system as we can obviously not
simply set real physical states in this way. Hence, for this practically relevant
class of specifications, test generation involves control synthesis. There are
numerous publications about this subject such as [13] which constructs a reced-
ing horizon controller from an STL specification. However, it is not clear how to
deal with hidden states. Moreover, constraints on inputs must be respected to
avoid damaging the real system under test.

Scenario-based verification is an important first step in mastering the
safety challenge for automated driving. Instead of testing many individual scenar-
ios, formal specification languages may provide an effective way of producing fam-
ilies of non-deterministic driving scenarios and expectations from the automated
vehicle therein. STL – while being amenable to efficient online monitoring – might
not be convenient or expressive enough because it is not possible to refer to pre-
vious signal values at a given point in time. Introducing the so-called freeze oper-
ator [4] solves this problem but at the cost of online monitoring becoming more
expensive.

3 One Robustness Does Not Fit All

Property conformance checking as described in Sect. 1 is key to various industri-
ally relevant applications sketched above. The notion of robustness generalizes
the classical Boolean semantics by quantifying the satisfaction of a temporal
property. Initially, space robustness [8] was proposed to measure the satisfac-
tion degree of a signal with respect to a formula. The robustness value indicates
how much the entire signal can be shifted in space and still satisfy the for-
mula. Most publications dealing with robust semantics of temporal logics are
based on space robustness. As a generalization, space-time robustness [7] was
introduced where time robustness describes how much a signal may be shifted
in time and still satisfy the formula. Besides various semantics, an STL exten-
sion was proposed which augments the logic by two operators (averaged-until
and averaged-released) [1]. The metric associated with these operators allows to
express for example expeditiousness, persistence (as long as possible), and soft
deadlines (earlier is better).

In practice, the properties of a model can often be written in the form
�

∧
1≤i≤n(φi ⇒ ψi) where φi refers to inputs and states and ψi refers to inputs

and outputs. A single notion of robustness is not sufficient to represent the prop-
erty adequately. For a test/simulation to be relevant, it is required that some φi

is satisfied since otherwise the formula holds trivially. While it is possible that
the precondition benefits from robust semantics, it may as well be sufficient to



82 T. Heinz

Fig. 1. Robustness for acceleration pedal reaction

evaluate the precondition under the Boolean semantics. For different postcondi-
tions though, different robustness metrics might be desirable. Let

φ1 ≡ φ2 ≡ input step

ψ1 ≡ �[0,10]x ≤ 1.2
ψ2 ≡ ψ2,1 ∧ ψ2,2

ψ2,1 ≡ �[0,13] input unchanged

ψ2,2 ≡ ♦[0,3]�[0,10]0.98 ≤ x ≤ 1.02

where φ1 ⇒ ψ1 is an overshoot and φ2 ⇒ ψ2 is a settling time requirement. It is
natural to evaluate ψ1 under the space robustness semantics (less overshoot is
better), ψ2,1 under the Boolean semantics (input should not change), and ψ2,2

under the time robustness semantics (earlier settling is better). The robustness of
the entire requirement can be computed by suitable monitors for the subformulas
from which a single robustness value can be calculated. This is possible whenever
the formula can be structurally decomposed into parts such that each part can
be assigned any of the standard robustness metrics. However, faster/earlier is
not always better, neither is slower/later. Consider a simplified requirement for
an accelerator pedal.

φ ≡ pedal pushed

ψ ≡ ♦[0,0.5]a ≥ 1

Figure 1 illustrates a robustness definition which favors neither fast nor slow reac-
tion time but defines the optimal reaction time to be at 0.25 s with robustness
1. Recall that a non-negative value indicates satisfaction, and a negative value
indicates violation of the property. Deviations from the optimal reaction time



Falsification of Dynamical Systems – An Industrial Perspective 83

are penalized symmetrically, i.e., 0 ≤ r(0.25+Δ) = r(0.25−Δ) ≤ 1, Δ ∈ [0, 0.25]
where r(t) denotes the robustness of reaction time t. Reaction times greater than
0.5 s violate the property and its negative robustness grows quadratically with
increasing reaction time. Such a robustness is not conveniently expressible as
time robustness in the sense mentioned above. It would be possible to approx-
imate this notion arbitrarily by dividing the interval [0, 0.5] into subintervals
each associated with time robustness, and then compute the overall robustness
from the robustness values associated with each time interval. However, such a
specification is neither convenient nor precise.

The notion of robust semantics for temporal logics is very powerful.
MTL/STL offer great flexibility in specifying non-trivial properties. A similar
degree of freedom for specifying metrics would be of great value. Ideally, a devel-
oper would be able to define both the property and a suitable metric. The metric
differentiates between good and bad signals among all those which satisfy the
specification in the Boolean sense. This allows an intuitive understanding of
the robustness signal and enables meaningful computation involving different
robustness values. Besides assisting engineers in assessing the quality of their
models, metric diversity may be useful in steering the optimization process into
different regions of the state space.

4 Conclusion

Property and model conformance checking are versatile approaches to assess cor-
rectness of industrial models that cannot be handled by current state of the art
formal methods due black-box components and other complexities. By quanti-
fying the degree to which a property is satisfied based on recently introduced
robust semantics of linear temporal logics, it is possible to effectively explore
models and discover property violating behavior, or behavior which is close to
the satisfaction “border”. In practice however, one particular robust semantics
cannot adequately capture all desired quantifications of truth. Thus, we encour-
age to develop a generalized robust semantics which enables user-defined metrics,
thus leveraging flexible and intuitive composition of multiple properties.

References

1. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3 21

2. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems (2015)

3. Bastian, J., Clauß, C., Wolf, S., Schneider, P.: Master for co-simulation using FMI.
In: 8th International Modelica Conference, Dresden. Citeseer (2011)

4. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 55–70. Springer, Cham (2015). doi:10.1007/
978-3-319-23820-3 4

http://dx.doi.org/10.1007/978-3-319-21668-3_21
http://dx.doi.org/10.1007/978-3-319-23820-3_4
http://dx.doi.org/10.1007/978-3-319-23820-3_4


84 T. Heinz

5. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
Skorokhod metric. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9207, pp. 234–250. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3 14

6. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71493-4 16

7. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15297-9 9

8. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009)

9. Frehse, G., Hamann, A., Quinton, S., Woehrle, M.: Formal analysis of timing effects
on closed-loop properties of control software. In: 2014 IEEE on Real-Time Systems
Symposium (RTSS), pp. 53–62. IEEE (2014)

10. Immler, F.: Verified reachability analysis of continuous systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 37–51. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46681-0 3

11. Mikesell, D.R.: Portable automated driver for universal road vehicle dynamics test-
ing. Ph.D. thesis, The Ohio State University (2008)

12. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

13. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Model predictive control with signal temporal logic specifications. In:
2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 81–87.
IEEE (2014)

http://dx.doi.org/10.1007/978-3-319-21668-3_14
http://dx.doi.org/10.1007/978-3-540-71493-4_16
http://dx.doi.org/10.1007/978-3-642-15297-9_9
http://dx.doi.org/10.1007/978-3-662-46681-0_3

	Falsification of Dynamical Systems -- An Industrial Perspective
	1 Introduction
	2 Industrially Relevant Applications
	3 One Robustness Does Not Fit All
	4 Conclusion
	References


