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Abstract. We introduce FPBench, a standard benchmark format for
validation and optimization of numerical accuracy in floating-point com-
putations. FPBench is a first step toward addressing an increasing need in
our community for comparisons and combinations of tools from different
application domains. To this end, FPBench provides a basic floating-
point benchmark format and accuracy measures for comparing different
tools. The FPBench format and measures allow comparing and compos-
ing different floating-point tools. We describe the FPBench format and
measures and show that FPBench expresses benchmarks from recent
papers in the literature, by building an initial benchmark suite drawn
from these papers. We intend for FPBench to grow into a standard
benchmark suite for the members of the floating-point tools research
community.

1 Introduction

The increasingly urgent demand for reliable software has led to tremendous
advances in automatic program analysis and verification [4–6,8,18]. However,
these techniques have typically focused on integer programs, and do not apply to
the floating-point computations we depend on for safety-critical control in avion-
ics or medical devices, nor the analyses carried out by scientific and computer-
aided design applications. In these contexts, floating-point accuracy is criti-
cal since subtle rounding errors can lead to significant discrepancies between
floating-point results and the real results developers expect. Indeed, floating-
point arithmetic is notoriously unintuitive and its sensitivity to roundoff errors
makes such computations fiendishly difficult to debug. Traditionally, such errors
have been addressed by numerical methods experts who manually analyze and
rewrite floating-point code to ensure accuracy and stability. However, these man-
ual techniques are difficult to apply and typically do not lead to independently
checkable certificates guaranteeing program accuracy.

The research community has responded to these challenges by developing
a rich array of automated techniques that provide guaranteed bounds on the
accuracy of floating-point computations or attempt to automatically improve
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accuracy. For example, Fluctuat [12,13], used in many companies, performs sta-
tic analysis of C programs to prove a bound on the rounding errors introduced by
the use of floating-point numbers instead of reals. Fluctuat also helps users debug
floating-point errors by detecting the operations responsible for significant preci-
sion loss. Salsa [10] automatically improves the numerical accuracy of programs
by using an abstract interpretation to guide transformations that minimize the
errors arising during computations. Herbie [21] uses a heuristic search to improve
the numerical accuracy of an arithmetic expression by estimating and localizing
the roundoff errors of an expression using sampled points, applying a set of rules
in order to improve the accuracy of the expression and combining these improve-
ments for different input domains. Rosa [11] combines an exact SMT solver on
reals with sound affine arithmetic to verify accuracy post-conditions from asser-
tions about the accuracy of inputs. Rosa can guarantee that the desired precision
can be soundly obtained in a finite-precision implementation when propagation
error is included. Finally, FPTaylor [24] improves on interval arithmetic by using
Taylor series to narrow the computed error bounds.

As the number of tools dedicated to analyzing and improving numerical accu-
racy grows, it becomes increasingly difficult to make fair comparisons between
the techniques. This is because each tool is targeted to slightly different domains,
uses slightly different formats for expressing benchmarks, and reports results
using related but slightly different measures. Furthermore, without any stan-
dard set of floating-point benchmarks, it is difficult to identify opportunities for
composing complementary tools.

To address these challenges, the floating-point research community needs a
standard benchmark format and common set of measures that enables compar-
ison and cooperation between tools. This goal is motivated by the success of
standard benchmark suites like SPEC [17] and SPLASH-2 [25] in the compiler
community, the DIMACS [1] format in the SAT-solving community, and the
SMT-LIB [3] format in the SMT-solving community. The formats have enabled
fair comparisons between tools, crisp characterizations of the tradeoffs between
different approaches, and useful cooperation between tools with complementary
strengths.

In this article, we propose FPBench, a general floating-point format and
benchmark suite. FPBench describes a common format and a suite of accuracy
measurements; we envision floating-point tools taking in FPBench formatted
programs and using the FPBench accuracy measures to describe accuracy. This
allows users to combine tools that perform complementary tasks and compare
competing tools to choose the one best for their task. The common scientific
methodology FPBench enables is crucial for demonstrating the improvements of
each tool on the state of the art.

The main contributions of this article are the following:

(i) A uniform format for expressing floating-point benchmarks, FPCore.
(ii) A set of utilities for converting to and from FPCore programs, and working

with FPCore programs.
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(iii) A set of measures on which to evaluate various floating-point tools on
FPBench benchmarks.

(iv) An initial suite of benchmarks drawing from existing floating-point litera-
ture.

The remainder of this article is organized as follows. Section 2, describes the
FPBench formats. Section 3 describes the accuracy measures. Section 4 describes
the utilities FPBench provides to support creating and working with bench-
marks. Section 5 surveys our existing benchmark suite, highlighting represen-
tative case studies from recent tools in the literature. Finally, Sect. 6 discusses
future work and concludes.

2 Benchmark Format

FPBench provides a common input format for floating-point tools. This format
makes it possible to develop a collection of floating-point benchmarks common
to our research community, and also allows users to compose floating-point tools.
So, a common floating-point benchmark format must be easy to parse, have sim-
ple and clear semantics, support floating-point details, and be expressive enough
for many domains. To satisfy these requirements, FPBench provides the FPCore
format, a minimal expression-based language for floating-point computations.
A common floating-point benchmark format must also be easy to translate to
and from popular industrial languages like C, C++, Matlab, and Fortran. To
satisfy these requirements, FPBench also provides the extended FPImp format,
a basic imperative language for floating-point computations which can be auto-
matically compiled to FPCore.

2.1 FPCore

FPCore is an S-expression format featuring mathematical functions, if state-
ments, and while loops. All floating-point functions from C11’s math.h and all
Fortran 2003 intrinsics are supported operators, as well as standard arithmetic
operators like addition and comparison; likewise, all constants defined in C11’s
math.h are available as constants. Following IEEE754 and common C and For-
tran runtimes, FPCore does not prescribe the accuracy of built-in mathematical
functions. However, individual benchmarks can declare the accuracy they assume
for built-in operations which analyzers can take into account.

A FPCore benchmark specifies a set of inputs, a floating-point expression,
and optional meta-data flags such as a name, citations, preconditions on inputs,
and the floating-point precision (binary32, binary64, . . . ) used to evaluate that
benchmark. The full FPCore syntax is as follows:1

1 Not shown in the grammar: FPBench uses “;” to indicate that the remainder of a
line is a comment.
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Since the language is S-expression based, parentheses and braces are liter-
als. The semantics of these programs is ordinary function evaluation, with let
bindings evaluated simultaneously and while loops evaluated by simultaneously
updating the loop variables until the condition is true, and then evaluating the
return value:

H : x0
i ⇓ vi H[xi �→ vi]i : c ⇓ �

H[xi �→ vi]i : ei ⇓ x′
i H : (while c ([xi x′

i ei]i) y) ⇓ v

H : (while c ([xi x0
i ei]i) y) ⇓ v

H : x0
i ⇓ vi H[xi �→ vi]i : c ⇓ ⊥ H[xi �→ vi]i : y ⇓ v

H : (while c ([xi x0
i ei]i) y) ⇓ v

The optional properties are used to record additional information about each
benchmark. Benchmarks are currently annotated with a :name, a :description
of the benchmark and its inputs, the floating-point :type (either binary32 or
binary64), a precondition :pre, and a citation :cite. All FPBench tools ignore
unknown attributes, so they represent an easy way to record additional bench-
mark information. We recommend that properties specific to a single tool be
prefixed with the name of the tool.

2.2 FPImp

Where FPCore is the format consumed by tools, FPImp is a format for sim-
plifying the translation from imperative languages to FPCore. While FPCore is
a functional language with a minimal set of features for representing floating-
point computations, FPImp includes common imperative features like variable
assignments, multiple return values, and multi-way if statements. More com-
plex features, such as arrays, pointers, records, and recursive function calls, are
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left to future language extensions. In our experience, translating C, Fortran, and
Matlab to FPImp is relatively easy. FPImp has expressions similar to those in
FPCore, but without if, while, and let expressions; these are instead replaced
with statements. The FPImp syntax is as follows:

As in FPCore, each FPImp benchmark includes free parameters and prop-
erties; as an imperative language, it includes a list of program statements and
multiple return values instead of a single body expression. Assignments and
while loops behave in the usual way. Expressions in FPImp are evaluated simi-
larly to FPCore expressions. An if statement defines a many-way branch; any
else branch must be the last branch in its if. The output statement can return
several values and appears at the end of a function.

The FPImp to FPCore compiler translates FPImp functions to FPCore
benchmarks while retaining all properties and keeping the same set of free para-
meters. It inlines assignments, converts the imperative bodies of FPImp loops
to the simultaneous-assignment loops of FPCore, replaces many-way if state-
ments with nested if s, and generates multiple FPCore benchmarks for FPImp
programs with multiple outputs.

3 Accuracy Measurements

To compare floating-point tools, a common input format is not enough: a com-
mon measure of accuracy is also necessary. FPBench thus defines a collection
of accuracy measures to allow tools to rigorously describe the accuracy measure
they use. Given the diversity of accuracy measures in the literature, standardiz-
ing on a single accuracy measure would be difficult, and could harm the develop-
ment of some classes of tools. Instead, FPBench standardizes several measures
of accuracy; tools that measure accuracy should state which of the FPBench
accuracy measures they use to compare tools.

3.1 Measurement Axes

Floating-point accuracy is best analyzed along several axes: scaling vs non-
scaling error, forward vs. backward error, maximum vs. average error. Tools that
measure error may use sound vs. statistical techniques, and tools that transform
programs have several options for how to measure accuracy improvement.
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Scaling vs non-scaling error (ε). There are several ways to measure the error
of producing the inaccurate value x̂ instead of the true value x. Two common
mathematical notions are the absolute and relative error:

εabs(x, x′) = |x − x̂| and εrel(x, x′) =
∣
∣
∣
∣

x − x̂

x

∣
∣
∣
∣

Relative error scales with the quantity being measured, and thus makes sense
for measuring both large and small numbers, much like the floating-point format
itself. A notion of error more closely tied to the floating-point format is the Units
in the Last Place (ULPs)2 difference. Some tools instead use the logarithm of
the ULPs, which approximately describes the number of incorrect low-order bits
in x̂. These two measures are defined as:3

εulps(x, x′) = |F ∩ [min(x, x̂),max(x, x̂)]| and εbits(x, x′) = log2 εulps(x, x′)

The floating-point numbers are distributed roughly exponentially, so this mea-
sure of error scales in a similar manner to relative error; however, it is better-
behaved in the presence of denormal numbers and infinities.

Forward vs. backward error (ε). Forward error and backward error are two com-
mon measures for the error of a mathematical computation. For a true function f
and its approximation f̂ , forward error measures the difference between outputs
for a fixed input, while backward error measures the difference between inputs
for a fixed output. Formally,4

εfwd(f, f̂ , x) = ε(f(x), f̂(x))

εbwd(f, f̂ , x) = min
{

ε(x, x′) : x′ ∈ F
n ∧ f̂(x′) = f(x)

}

.

Backward error is important for evaluating the stability of an algorithm, and
in scientific applications where multiple sources of error (algorithmic error vs.
sensor error) must be compared. Existing tools typically measure forward error
because backward error can be tricky to compute for floating-point computa-
tions, where there may not be an input that produces the true output.

Average vs. maximum error (E). Describing the error of a floating-point com-
putation means summarizing its behavior across multiple inputs. Existing tools
use either maximum or average error for this task. Formally,5

Emax(f, f̂) = max
{

ε(f, f̂ , x) : x ∈ F
n
}

and Eavg(f, f̂) =
1
N

∑

x∈Fn

ε(f, f̂ , x).

2 Unfortunately, this term means different things in the mathematical and program-
ming communities. We use the definition common for programming tools [19,21,23].

3 We are using |S| to denote the number of elements in a set S.
4 Where n is the number of arguments.
5 Where N is the number of valid inputs, and n is the number of arguments.
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Worst-case error tends to be easier to measure soundly, while average error
tends to be easier to measure statistically.

Sound vs. statistical techniques. Running a floating-point program on all valid
inputs is intractable. Existing tools either soundly overapproximate the error
using static analysis or approximate the error using statistical sampling.

Most static techniques are based on interval or affine arithmetic to over-
approximate floating-point arithmetic, often using abstract interpretation.
Abstract interpretation may use either non-relational [20] or relational abstract
domains [2,7,14], and may use acceleration techniques (widenings [9]) to over-
approximate loops without unrolling them. While such techniques tend to pro-
vide loose over-approximations of the floating-point error of programs, they are
fast and provide sound error bounds. In some embedded applications, correctness
is critical and unsound techniques will not do.

In domains where correctness is not absolutely critical, sampling can provide
tight approximations of error. Many sampling techniques are used, including
naive random samples [21] and Markov-chain Monte Carlo [23]. These tech-
niques involve running a program multiple times, so tend to be slower than
static analysis.

Measuring improvement (ι). Tools that transform floating-point programs need
to compare the accuracy of two floating-point programs: the original and the
transformed. Several comparison measures are possible. Comparisons can use the
improvement in worst-case or average error between the original f̂ and improved
f̂ ′ implementation of the same mathematical function f :

ιimp = E(f, f̂) − E(f, f̂ ′)

However, one cannot usually improve the accuracy of a computation simultane-
ously on all inputs. It is thus often necessary to make a computation less accurate
on some points to make it more accurate overall. In this case, it may be use-
ful to report the largest unimprovement, which measures the cost of improving
accuracy:

ιwrs(f̂ , f̂ ′) = max
{

ε(f, f̂ ′, x) − ε(f, f̂ ′, x) : x ∈ F
n
}

Other measures, such as those describing the trade-off between accuracy and
speed, are also interesting, but are less commonly used in the literature and
thus not standardized in FPBench. Improvement tools could also estimate their
effect on numerical stability using automatic differentiation [15] or Lyapunov
exponents [22], but we do not know of any such tools.

3.2 Existing Tools

The error measures described can be applied to categorize the error measure-
ments used by existing tools. Table 1 compares Fluctuat [12], FPTaylor [24],
Herbie [21], Rosa [11], and Salsa [10].
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Table 1. A comparison of how five floating-point measure error across the axes iden-
tified in this section.

Fluctuat Absolute Forward Max Sound

FPTaylor Absolute Forward Max Sound

Herbie Bits Forward Average Statistical Improvement

Rosa Absolute Forward Max Sound

Salsa Absolute Forward Max Sound Improvement

STOKE ULPs Forward Max Statistical Improvement

Fluctuat, FPTaylor, and Rosa all verify error bounds on the accuracy of
floating-point computations. Given their need for soundness, it is natural that
they use sound error analyses and estimate maximum error. Their use of absolute
forward error derives from the difficulty of approximating the other forms of error
statically. Herbie and Salsa are tools for improving the accuracy of programs,
but differ dramatically in their approach. Salsa uses abstract interpretation to
bound maximum absolute error, producing a sound overapproximation of the
maximum error. Herbie, on the other hand, uses random sampling to achieve
a tight statistical approximation of bits error. The tight estimates enabled by
statistical techniques provide additional opportunities for Herbie to improve the
accuracy of an expression, but prevent it from providing sound error bounds.
Finally, STOKE uses stochastic search to optimize floating-point programs, and
must compare the accuracy of floating-point programs to avoid significantly com-
promising their accuracy. STOKE uses a Markov-chain Monte Carlo sampling
to statistically evaluate maximum ULPs error.

By exactly describing the way each tool measures accuracy, FPBench makes
it possible to compare and relate tools. Unsound tools such as Herbie or STOKE
can be composed with a sound verification tool to produce an accuracy guar-
antee, and this guarantee can be compared to the approximate error measure-
ments those tools made statistically. Since Fluctuat, FPTaylor, Rosa, and Salsa
all soundly measure maximum forward absolute error, they can be compared to
determine which technique is best.

4 Tools

FPBench features a collection of compilers and measurement tools that oper-
ates in its common format, FPCore. These tools can be a community resource,
increasing interoperability as well as code reuse. They also make it easier to
write new floating-point analysis and transformation tools by automating what
are currently common but tedious tasks.

FPImp to FPCore. The FPCore format faithfully preserves important program
constructs, such as variable binding and operation ordering, while abstracting
away details not relevant to floating-point semantics. However, it is syntactically
very different from some of the languages from which benchmarks might origi-
nate. To make translation to FPCore from source languages like C, Fortran, and
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Matlab easier, FPBench provides the FPImp format and a compiler from FPImp
to FPCore. FPImp is syntactically similar to imperative languages to make it
easy to translate benchmarks.

FPCore to C. Since C is a common implementation language for mathematical
computations, FPBench provides a FPCore to C compiler. The FPCore to C
compiler can be used to run FPCore benchmarks through the many available C
analysis tools.

Average error estimation. FPBench provides a tool to statistically approximate
average error using naive sampling. The statistical approach is necessary to pro-
duce accurate estimates of average error given the current state of the art. The
tool can use absolute, relative, ULPs, and bits error.

We plan to continue developing community tools around the FPBench for-
mats, especially tools for estimating the other measures of error described in
Sect. 3.

5 Benchmark Suite and Examples

The FPBench suite currently includes 44 benchmarks sourced from recent papers
on automatic floating-point verification and accuracy improvement. This section
first summarizes these benchmarks and then details how representative exam-
ples were translated to FPBench from the input formats of various tools in the
literature.

The current FPBench suite contains examples from a variety of domains,
including 28 from the Herbie test suite [21], 9 from the Salsa test suite [10], 7
from the Rosa test suite [11], and one example from the FPTaylor test suite [24].
These examples range from simple test programs for early tool development
up to large examples for evaluating more mature tools. The larger examples
are more challenging, including loops that with up to 13 variables mutated in
the loop body. As shown in Tables 2 and 3, these programs exercise the full
range of functionality available in FPBench, and span a variety application areas,
from control software to mathematical libraries. We intend to continue adding
benchmarks to the FPBench suite.

5.1 FPTaylor

FPTaylor [24] uses series expansions and interval arithmetic to compute sound
error bounds. The authors gave the following simple program as an example
input for their tool:
1 : Var iab l e s
2 : f l o a t 6 4 x in [ 1 . 0 0 1 , 2 . 0 ] ,
3 : f l o a t 6 4 y in [ 1 . 0 0 1 , 2 . 0 ] ;
4 : D e f i n i t i o n s
5 : t rnd64= x ∗ y ;
6 : Expres s ions
7 : r rnd64= ( t −1)/( t∗t −1);
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Table 2. Functions and language fea-
tures used in the FPBench benchmarks.
Benchmarks contain a variety of features,
and many benchmarks incorporate sev-
eral. Exponential functions include loga-
rithms, the exponential function, and the
power function.

Feature Benchmarks

Basic arithmetic 44

Exponentials 13

Trigonometric 10

Comparison 12

Loops 12

Conditionals 3

Table 3. Domains which the FPBench
benchmarks are drawn from. Most are
general mathematical operations, useful
in a variety of domains. The general
expressions are the smallest, and are
drawn from Numerical Methods for Sci-
entists and Engineers [16] and Rosa [11].

Domain Benchmarks

General expressions 31

Math algorithms 6

Embedded systems 4

Scientific computing 3

This program is representative of the code necessary to correct sensor data in
control software, where the output of the sensor is known to be between 1.001
and 2.0. We manually translated this program to FPCore, yielding:
(FPCore (x y )

: name”FPTaylor example”
: c i t e ( solovyev−et−al −2015)
: type binary64
: pre ( and ( and (< 1 .001 x ) (< x 2 . 0 ) ) ( and (< 1 .001 y ) (< y 2 . 0 ) ) )
( l e t ( [ t (∗ x y ) ] )

(/ (− t 1 . 0 ) (− (∗ t t ) 1 . 0 ) ) ) )

The benchmark takes inputs x and y and uses a let statement to represent the
intermediate variables from the FPTaylor example. FPCore faithfully preserves
important program constructs, such as variable binding and operation ordering,
making the translation a simple matter. The benchmark additionally specifies a
name and cites its source using a key to a standard file. Since the original
program uses 64-bit floating-point numbers, the type binary64 is specified in
the benchmark. The constraints on input variables are translated to a single
predicate under the :pre property.

5.2 Rosa

Rosa [11] soundly verifies error bounds of floating-point programs, including
looping control flow through recursive function calls. Several benchmarks in its
repository demonstrate this capability, including one that uses Newton’s method
on a series representation of the sine function. In Rosa’s input language the
original benchmark is represented as:



Toward a Standard Benchmark Format and Suite for Floating-Point Analysis 73

de f newton (x : Real , k : LoopCounter ) : Real = {
r e qu i r e (−1.0 < x && x < 1 . 0 )
i f ( k < 10) {

newton (x − ( x − ( x ∗∗3)/6 .0 + (x ∗∗5)/120 .0 + (x ∗∗7)/5040 .0) /
( 1 . 0 − ( x∗x )/2 . 0 + (x ∗∗4)/24 .0 + (x ∗∗6)/720 .0 ) , k++)

} e l s e {
x

}
} ensur ing ( r e s => −1.0 < r e s && re s < 1 . 0 )

The require clause denotes input preconditions, and the ensures clause
provides the error bound to be verified. We manually translated this program to
FPCore, yielding:
(FPCore ( x0 )

: name ‘ ‘ Rosa Example”
: c i t e ( darulova−kuncak −2014)
: pre ( and (< −1.0 x0 ) (< x0 1 . 0 ) )
: rosa−post ( and (< −1.0 RES) (< RES 1 . 0 ) )
( whi le (< i 10)

( [ i 0 (+ i 1 ) ]
[ x x0
( l e t ( [ f (+ (+ (− x (/ (pow x 3) 6) )

(/ (pow x 5) 120)) (/ (pow x 7) 5040 ) ) ]
[ d f (+ (+ (− 1 .0 (/ (∗ x x ) 2) )

(/ (pow x 4) 24)) (/ (pow x 6) 7 2 0 ) ) ] )
(− x (/ f df ) ) ) ] )

x ) )

Like the FPTaylor benchmark, this benchmark includes a name, citation for
its source, and precondition on inputs. For completeness, we’ve also included
the ensuring annotation, denoted :rosa-post, demonstrating the ability to
add tool specific annotations by prefixing with the tool name. Note how the
while construct from FPCore can be used to represent the tail-recursive loop
from the Rosa original benchmark.

5.3 Herbie

Herbie [21] heuristically improves the accuracy of straight-line floating-point
expressions. The authors demonstrate the improvements Herbie can produce
using the quadratic formula for computing the roots of a second degree poly-
nomial. It has uses from calculating trajectories to solving matrix equations. In
mathematical notation, the quadratic formula is given by:6

(−b) − √
b2 − 4ac

2a
Herbie produces the following more-accurate variant:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

4ac
−b+

√
b2−4ac

/2a if b < 0

(−b − √
b2 − 4ac

)
1
2a if 0 ≤ b ≤ 10127

− b
a + c

b if 10127 < b

6 We use the negative variant here, as in the Herbie paper; the positive variant is
analogous.
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In FPCore format, the original formula is represented as:
(FPCore ( a b c )

: name ‘ ‘NMSE p42 , p o s i t i v e ”
: c i t e (hamming−1987)
: pre ( and (>= ( sqr b) (∗ 4 (∗ a c ) ) ) (!= a 0) )
(/ (+ (− b) ( sq r t (− ( sqr b) (∗ 4 (∗ a c ) ) ) ) ) (∗ 2 a ) ) )

and the improved version is represented as:
(FPCore ( a b c )

: name ‘ ‘NMSE p42 , p o s i t i v e ”
: c i t e (hamming−1987)
: pre ( and (>= ( sqr b) (∗ 4 (∗ a c ) ) ) (!= a 0) )
( i f (< b 0)

(/ (/ (∗ 4 (∗ a c ) ) (+ (− b) ( sq r t (− ( sqr b) (∗ 4 (∗ a c ) ) ) ) ) )
(∗ 2 a ) )

( i f (< b 10 e127 )
(∗ (− (− b) (− ( sqr b) (∗ 4 (∗ a c ) ) ) ) (/ 1 (∗ 2 a ) ) )
(+ (− (/ b a ) ) (/ c b ) ) ) ) )

Like the Rosa and FPTaylor examples, this benchmark gives a name, cita-
tion, and precondition. This benchmark uses FPCore’s ability to write arbi-
trary boolean expressions as preconditions, restricting the value under the square
root to be non-negative and requiring the denominator be non-zero. Unlike the
FPTaylor and Rosa examples, this precondition arises from mathematical con-
siderations, not domain knowledge. The FPCore version of Herbie’s output fur-
thermore uses if constructs to evaluate different expressions for different inputs,
which improves accuracy. Herbie could add additional metadata to the output,
such as its internal estimate of accuracy or the number of expressions considered
during search, by using prefixed keys like :herbie-accuracy-estimate.

5.4 Salsa

Salsa [10] is a tool for soundly improving the worst-case accuracy of programs.
The authors evaluate Salsa on a suite of control and numerical algorithms, includ-
ing the widely used PID controller algorithm. This algorithm is used in aeronau-
tic and avionic systems for which correctness is critical. In C, the benchmark is
written as:
v o l a t i l e double p , i , t , d , dt , invdt , m, e , eold , r ;
i n t pid ( double m0, double kp , double ki , double kd , double c ){

t = 0 . 0 ;
invdt = 5 . 0 ;
dt = 0 . 2 ;
m = m0 ;
eo ld = 0 . 0 ;
i = 0 . 0 ;
whi le ( t < 100 .0 ) {

e = c − m;
p = kp ∗ e ;
i = i + k i ∗ dt ∗ e ;
d = kd ∗ invdt ∗ ( e − eo ld ) ;
r = p + i + d ;
m = m + 0.01 ∗ r ; /∗ computing measure : the p lant ∗/
eo ld = e ;
t = t + dt ;

}
re turn m;

}
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To ease the conversion of this code from C to FPCore, this program was first
manually translated to the following FPImp program:
(FPImp (m kp k i kd )
: name ‘ ‘PID ’ ’
: d e s c r i p t i o n ‘ ‘Keep a measure at i t s s e tpo i n t us ing a PID c o n t r o l l e r . ’ ’
: c i t e ( damouche−martel−chapoutot−nsv14 )
: type binary64
: pre ( and ( and (< −10.0 m) (< m 10 . 0 ) ) ( and (< −10.0 c ) (< c 1 0 . 0 ) ) )
[= t 0 . 0 ]
[= dt 0 . 2 ]
[= invdt (/ 1 dt ) ]
[= c 0 . 0 ]
[= eo ld 0 . 0 ]
[= i 0 . 0 ]
( whi le (< t 100 .0 )

[= e (− c m) ]
[= p (∗ kp e ) ]
[= i (+ i (∗ (∗ k i dt ) e ) ) ]
[= d (∗ (∗ kd invdt ) (− e eo ld ) ) ]
[= r (+ (+ p i ) d ) ]
[= m (+ m (∗ 0 .01 r ) ) ]
[= eo ld e ]
[= t (+ t dt ) ] )

( output m) )

The FPImp program was then automatically compiled, using the compiler
tool in FPBench, to the following FPCore benchmark:
(FPCore (m0 kp k i kd c )

: name ‘ ‘PID”
: d e s c r i p t i o n ”Keep a measure at i t s s e tpo i n t us ing a PID c o n t r o l l e r . ”
: c i t e ( damouche−martel−chapoutot−nsv14 )
: type binary64
: pre ( and ( and (< −10.0 m0) (< m0 10 . 0 ) ) ( and (< −10.0 c ) (< c 1 0 . 0 ) ) )
( whi le (< t 100 .0 )
( [ i 0 . 0 (+ i (∗ (∗ k i 0 . 2 ) (− c m) ) ) ]
[m m0
( l e t ( [ p (∗ kp (− c m) ) ]

[ d (∗ (∗ kd (/ 1 0 . 2 ) ) (− (− c m) eo ld ) ) ] )
(+ m (∗ 0 .01 (+ (+ p (+ i (∗ (∗ k i 0 . 2 ) (− c m) ) ) ) d ) ) ) ) ]

[ eo ld 0 .0 (− c m) ]
[ t 0 . 0 (+ t 0 . 2 ) ] )

m) )

Beyond the metadata used in the FPTaylor, Rosa, and Herbie examples,
this benchmark includes a :description tag to describe for readers what the
benchmark program computes. These descriptions contain information about
the distribution of inputs, the situation in which the benchmark is used, or any
other information which might be useful to tool writers. The FPBench suite
features descriptions for its most complex benchmarks.

6 Conclusion

The initial work on FPBench provides a foundation for evaluating and comparing
floating-point analysis and optimization tools. Already the FPBench format can
serve as a common language, allowing these tools to cooperatively analyze and
improve floating-point code.

Though FPBench supports the composition of the floating-point tools that
exist today, there is still much work to do to support the floating-point research
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community as it grows. FPBench must be sufficiently expressive for the broad
range of applications that represent the future of the community. In the near
term, we will add additional metrics for accuracy and performance to the set
of evaluators provided by the FPBench tooling and begin developing a stan-
dard set of benchmarks around the various measures. We will also expand the
set of languages with direct support for compilation to and from the FPBench
format. As more tools grow support for FPBench, we will provide automated
comparisons of different floating-point tools. Longer term, we intend to support
for mixed-precision benchmarks, fixed-point computations, and additional data
structures such as vectors, records, and matrices.

We hope that FPBench encourages the already strong sense of community
and collaboration around floating-point research. Toward that end, we encourage
any interested readers (and tool writers) to get involved with development of
FPBench by signing up for the mailing list and checking out the project website:
http://fpbench.org/.
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