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Abstract. In this paper, we present a model based on copositive pro-
gramming and semidefinite relaxations of it to prove properties on
discrete-time piecewise affine systems. We consider invariant i.e. prop-
erties represented by a set and formulated as all reachable values are
included in the set. Also, we restrict the analysis to sublevel sets of
quadratic forms i.e. ellipsoids. In this case, to check the property is
equivalent to solve a quadratic maximization problem under the con-
straint that the decision variable belongs to the reachable values set.
This maximization problem is relaxed using an abstraction of reachable
values set by a union of truncated ellipsoids.

1 Introduction

The formal verification aims to prove automatically some properties on dynam-
ical systems. In our paper, we are interested in proving invariant i.e. a property
valid for all reachable values without regarding the step when we reach the value.
In our point-of-view, a property can be represented by a set C. Checking the
property can be reduced to check whether the set of the reachable values is fully
contained in C. The paper proposes a static analysis framework to solve the ver-
ification problem. In other words, we develop a technique to check the property
without any system simulation. In this paper, we handle properties representable
as a sublevel of a quadratic function i.e. an ellipsoid. The verification problem
in this case is equivalent to solving an optimization problem where the decision
variable is constrained to belong to the reachable values set. One may think that
to solve the problem, it suffices to represent precisely the reachable values set
to check the property. Nevertheless, classically, in static analysis, the reachable
values set is approached iteratively using Kleene iterations scheme. Since the
computation is slow, Kleene iterations are coupled with acceleration techniques
that degrades the representation of the reachable values set. Thus the verifica-
tion of property may fail because of the loss of precision. In this paper, we use
a direct method based on semidefinite programming to represent the reachable

The author has been supported by the CIMI (Centre International de Mathématiques
et d’Informatique) Excellence program ANR-11-LABX-0040-CIMI within the pro-
gram ANR-11-IDEX-0002-02 during a postdoctoral fellowship.

c© Springer International Publishing AG 2017
S. Bogomolov et al. (Eds.): NSV 2016, LNCS 10152, pp. 15–30, 2017.
DOI: 10.1007/978-3-319-54292-8 2



16 A. Adjé

values set and check the property in the same time. The main idea is to use a
minimizing abstraction based on union of truncated ellipsoids.

Related Works. This method is an adaptation of [2]. Indeed in [2], we propose
the synthesis of a minimizing polynomial sublevel abstraction based on sums-
of-squares. Here, we allow non-polynomial abstraction but we restrict ourselves
to semidefinite programming to have a better scalability. The method proposed
here is also an extension of [1] since in [1], the only property handled is the
boundedness.

The techniques presented in this paper uses piecewise quadratic Lyapunov
conditions [9,12]. However, in [9,12], the authors are interested in proving stabil-
ity of piecewise affine systems. As classical quadratic Lyapunov functions, piece-
wise quadratic Lyapunov functions provide sublevel invariant sets to the system.
We use this latter interpretation for a verification purpose. In this paper, we are
interesting in synthezing disjunctive invariants. This form of invariants appears
for tropical polyhedra domain [3] where the author generates disjunctions of
zones as invariants. The latter invariants did not encode quadratic relations
between variables. The synthesis of quadratic invariants for switched systems is
studied in [4]. But, the invariants generation is not guided by property or is not
relied on optimization problems.

Organisation of the Paper. The paper is organised as follows. In Sect. 2, we
present the context that is the systems and the properties that we consider in
the paper. Then in Sect. 3, we give detail about the mathematical model using
semidefinite programming to solve optimization problems. In Sect. 4, we conclude
and propose some future works.

2 Proving Properties on Constrained Piecewise Affine
Discrete-Time Dynamical Systems

2.1 Some Recalls About Polyhedra

In this paper, we will denote by Mn×m the set of matrices with n rows and m
columns. For n ∈ N, [n] will denote the set of integers {1, . . . , n}.

In our work, we suppose that a (convex) polyhedron can contain both strict
and weak inequalities.

Definition 1 (Polyhedra of Rd). A polyhedron of Rd is a set of the form:

{
x ∈ R

d |Psx � bs, Pwx ≤ bw}
where Ps ∈ Mns×d, Pw ∈ Mnw×d, bs ∈ R

ns and bw ∈ R
nw . We insist on the

notation: y � z means that for all coordinates l, yl < zl and y ≤ z means that
for all coordinates l, yl ≤ zl.

Lemma 1 (Polyhedra closure). The topological closure of a nonempty or a
nontrivial (not Rd) polyhedron consists in keeping weak inequalities and replacing
strict inequalities by weak inequalities.
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The direct application of Motzkin’s transposition theorem [13] yields to the
next proposition.

Proposition 1 (Test of the emptyness of a polyhedra). Let X be a poly-
hedra. Suppose that X =

{
x ∈ R

d |Psx � bs, Pwx ≤ bw} . Then X �= ∅ if and
only if: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 01×d

bs −Ps

)ᵀ
ps +

(
bw −Pw

)ᵀ
p = 0

ns+1∑

k=1

ps
k = 1, ps ≥ 0, p ≥ 0

has no solution.

Definition 2 (Indices of meeting polyhedra). We consider L finite families
of polyhedra (Si)i∈[L]. For all i ∈ [L], Si = {Xi

1, . . . , X
i
Ni

}. We define:

Com(S1, S2, . . . , SL) = {(i1, i2, . . . , iL) ∈
L∏

i=1

[Ni] |
L⋂

j=1

Xj
ij

�= ∅}.

Corollary 1. Let (Si)i∈[L] be L finite families of polyhedra. Suppose that for all
i ∈ [L], Si has N i elements. Then Com(S1, S2, . . . , SL) can be computed using∏L

i=1 N i linear systems.

Definition 3 (Polyhedric partition). A polyhedric partition is a family of
polyhedra of Rd, {X1, . . . , XN} such that:

∀ i, j ∈ [N ], s. t. i �= j, Xi ∩ Xj = ∅ and
⋃

i∈[N ]

Xi = R
d .

If a polyhedric partition S contains N elements, we will say that S is a polyhedric
partition of size N .

We will denote by f|X the restriction of a function f : X 
→ R
m on the set X.

Definition 4 (Piecewise affine maps). A map f : Rd → R
m is piecewise

affine if and only if there exists a polyhedric partition {Xi, i ∈ [N ]} such that
f|Xi is affine.

Definition 5 (Piecewise quadratic functions). A function f : Rd → R is
piecewise quadratic if and only if there exists a polyhedric partition {Xi, i ∈ [N ]}
such that f|Xi is quadratic.
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2.2 Piecewise Affine Discrete-Time Systems

In this paper, we are interested in proving automatically properties on piecewise
affine discrete-time systems (PWA for short). The term piecewise affine means
that the dynamic of the system is piecewise affine. From Definition 4, there exists
a polyhedric partition {Xi, i ∈ I} such that for all i ∈ I, the dynamic of the
system restricted to Xi is affine. The dynamic of a PWA is thus represented by
the following relation for all k ∈ N, for all i ∈ I:

if xk ∈ Xi, xk+1 = f i(xk), f i : y 
→ Aiy + bi (1)

where Ai ∈ Md×d and bi a vector of Rd. We assume that the initial condition x0

belongs to some polytope X in. We will need homogeneous versions of laws and
thus introduce the (1 + d) × (1 + d) matrices F i defined as follows:

F i =
(

1 01×d

bi Ai

)
. (2)

The system defined in Eq. (1) can be rewritten as (1, xk+1)ᵀ = F i(1, xk).
To sum up, we give a formal definition of what we call a piecewise affine

system (PWA for short).

Definition 6 (Piecewise Affine System). A piecewise affine system (PWA)
is the triple (X in,X ,A) where:

– X in is the polytope of the possible initial conditions;
– X := {Xi, i ∈ I} is the polyhedral partition;
– A := {f i, i ∈ I} is the family of affine laws relative to X satisfying Eq. (1).

Example 1 (Running example). Let us consider the piecewise linear system
depicted in [12]. We bring some modifications: we complete the example by
adding a nondeterministic initial condition and we slighty change the partition
used in [12], to satisfy Definition 3.

Let us take X in = [−1, 1] × [−1, 1]. The dynamical system is defined, for all
k ∈ N, by

xk+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1xk if
{

xk,1 ≥ 0
xk,2 ≥ 0

A2xk if
{

xk,1 ≥ 0
xk,2 < 0

A3xk if
{

xk,1 < 0
xk,2 < 0

A4xk if
{

xk,1 < 0
xk,2 ≥ 0

with

A1 =
( −0.04 −0.461

−0.139 0.341

)
, A2 =

(
0.936 0.323
0.788 −0.049

)

A3 =
(−0.857 0.815

0.491 0.62

)
, A4 =

(−0.022 0.644
0.758 0.271

)
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We thus have

X1 = {x ∈ R
2 | −x1 ≤ 0,−x2 ≤ 0}, X2 = {x ∈ R

2 | −x1 ≤ 0, x2 < 0},
X3 = {x ∈ R

2 | x1 < 0, x2 < 0} and X4 = {x ∈ R
2 | x1 < 0,−x2 ≤ 0}.

Now, we formally define the set of reachable values.

Definition 7 (Reachable values set). Let P = (X in,X ,A) be a PWA. We
define the reachable values set as the set RP defined by:

RP =
⋃

k∈N

A
k(X in), where A : Rd 
→ R

d,A(x) = Aix + bi if x ∈ Xi

In Definition 7, we put P in index, but in the rest of the paper we simply write
R since there will be no confusion.

Example 2 (Reachable values of the running example). Figure 1 depicts a dis-
cretized version of the reachable values set of Example 1. Actually, the set of
intial conditions X in is discretized. The discretization step is of 0.2. Then the
trajectory starting from a point in the discretization of X in is drawn. The tra-
jectories are stopped at exactly 100 runs.

−1 0 1

−1

0

1

x1

x
2

Fig. 1. A discrete version of the reachable values set of Example 1

Definition 8 (Invariant). Let P = (X in,X ,A) be a PWA. A set S ⊆ R
d is a

said to be an invariant if and only if RP ⊆ S.

Example 3 (An invariant for the running example). Figure 2 depicts an invariant
computed as the sublevel of a piecewise quadratic function. We will come back
later on the details of its computation at Subsect. 3.5.
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−1 0 1

−1

0

1

x1

x
2

Fig. 2. An invariant sublevel of a piecewise quadratic function for Example 1, in yellow,
the set of Example 2 (Color figure online)

2.3 Proving Properties on PWA

In this section, we give details about the properties that we can handle. First, we
are interested in proving invariant. This means that for a set S given by the user,
we aim to prove automatically that S is an invariant. Second, we only consider
sets S representable as a sublevel set of a quadratic function i.e. an ellipsoid.
Indeed, we can check properties of this form using quadratic programming. Then
we use semi-definite relaxations of the constructed quadratic programs.

Let V be a quadratic function and let us define S = {x ∈ R
d | V (x) ≤ α}

which is an ellipsoid. Then to check that S is an invariant i.e. R ⊆ S is equivalent
to solve to check supx∈R V (x) ≤ α. Let us consider the following optimization
problem:

sup
x∈R

xᵀMx + 2pᵀx (3)

To determine the optimal value of Problem (3) represents exactly the work that
we have to do to check our properties. The main problem in Problem (3) is that
we cannot use R as in Definition 7. Actually R cannot be implementable and
we propose to use an implementable over-approximation of R. This principle is
not new and corresponds to the concept of abstract interpretation. We refer the
reader to [7] for a seminal presentation of this approach. We can characterize R
as the collecting semantics i.e. the smallest fixed point of a transfer function. Let
us denote by ℘(Rd) the set of subsets of Rd. The transfer function F : ℘(Rd) →
℘(Rd) we use is defined as follows:

F (C) = X in ∪
⋃

i∈I
f i

(
C ∩ Xi

)
(4)
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We equip ℘(Rd) with the partial order of inclusion. The infimum is understood
in this sense i.e. as the greatest lower bound with respect to this order. The
smallest fixed point problem is:

inf
{
C ∈ ℘(Rd) | C = F (C)

}
.

It is well-known from Tarski’s theorem that the solution of this problem exists,
is unique and in this case, it corresponds to R. Tarski’s theorem also states that
R is the smallest solution of the following Problem:

inf
{
C ∈ ℘(Rd) | F (C) ⊆ C

}
.

Finally, any set P ind such that F (P ind) ⊆ P ind provides a safe over-
approximation of R. In this case, such P ind is called inductive invariant. An
abstraction consists in restricting the family of inductive invariants P ind to an
implementable one. Here, we chose to constraint an inductive invariant to be a
sublevel of a piecewise quadratic function. Indeed, to be inductive is equivalent
to asking a Lyapunov condition for sets. Moreover, the sublevels of a Lyapunov
function are inductive invariants if and only if they contain initial conditions. In
the context of piecewise affine systems, the class of piecewise quadratic functions
furnishes a relevant class of Lyapunov functions [9,12]. Consequently, to solve
Problem (3), we will compute a piecewise quadratic function V ind such that the
sublevel set Sind = {x ∈ R

d | V ind(x) ≤ 0}:

is an inductive invariant i.e. F (Sind) ⊆ Sind (5)
minimizes the value sup

x∈Sind
xᵀMx + 2pᵀx (6)

Example 4 (The boundedness problem). To prove automatically that the reach-
able values set R of the running example is bounded, we have to solve the
optimization problem:

sup
(x1,x2)∈R

x2
1 + x2

2

If the problem has a finite optimal value then R is bounded. Following, Eqs. (5)
and (6), we should look for a piecewise quadratic function such that the 0-
sublevel set Sind provides an overapproximation of R which minimizes the error
between the sup(x1,x2)∈R x2

1 + x2
2 and sup(x1,x2)∈Sind x2

1 + x2
2.

3 The Mathematical Model

Now we give the details about the computation of the piecewise quadratic func-
tion V ind such that Sind satisfies Eqs. (5) and (6). First we introduce the notion
of cone-copositive matrices.
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3.1 Cone-Copositive Matrices

The set Sm denotes the set of symmetric matrices. The set S
+
m denotes the

set of (symmetric) positive semidefinite matrices i.e. the matrices A such that
xᵀAx ≥ 0 for all x ∈ R

m. When the dimension of the matrices is obvious we will
also use the notation A � 0 for A is positive semidefinite. The set S

≥0
m denotes

the set of symmetric matrices with nonnegative coefficients.
Let q be a quadratic form i.e. a function such that for all y ∈ R

d, q(y) =
yᵀAqy + bᵀ

qy + cq where Aq ∈ Sd, bq ∈ R
d and cq ∈ R. We define the lift-matrix

of q, the matrix of Sd+1 defined as follows:

M(Aq, bq, cq) = M(q) =
(

cq (bq/2)ᵀ

(bq/2) Aq

)
(7)

It is obvious that the q 
→ M(q) is linear. Let A ∈ Md×d, b ∈ R
d, and q be a

quadratic form, we have, for all x ∈ R
d:

q(Ax + b) =
(

1
x

)ᵀ (
1 01×d

b A

)ᵀ
M(q)

(
1 01×d

b A

)(
1
x

)
. (8)

Lemma 2. Let A ∈ Sd, b ∈ R
d and c ∈ R. Then: (∀ y ∈ R

d, yᵀAy + bᵀy +
c ≥ 0) ⇐⇒ M(A, b, c) ∈ S

+
d+1

Definition 9 ((Cone)-copositive matrices). Let M ∈ Mm×d. A matrix
Q ∈ Sd which satisfies

My ≥ 0 =⇒ yᵀQy ≥ 0

is called M -copositive.
An Idd-copositive matrix is called a copositive matrix. We denote by Cd (M)

the set of M -copositive matrices and Cd the set of copositive matrices.

Lemma 3. A quadratic function q is nonnegative over a polyhedron P if and
only if q is nonnegative on the topological closure of P .

For P ∈ Mn×m and c ∈ R
n, we define the following matrix:

H (P, c) =
(

1 01×m

c −P

)
∈ M(n+1)×(m+1) (9)

We also use the notation H (C) for a polyhedron C with the same meaning
i.e. if C =

{
x ∈ R

d |Psx � bs, Pwx ≤ bw} and we have P =
(

Ps

Pw

)
and b =

(
bs
bw

)
,

then H (C) = H (P, b).

Lemma 4. Let P ∈ Mn×m and c ∈ R
n. Then, for all x ∈ R

n, Px ≤ c ⇐⇒
H (P, c)

(
1
x

)
≥ 0.
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Lemma 5. Let q : Rd → R
d be a quadratic function and C be a polyhedron.

Then M(q) ∈ Cd+1 (H (C)) =⇒ (q(x) ≥ 0, ∀x ∈ C).

Cone-copositive matrix characterizations is an intensive research field and a list
of interesting papers about can be found in [5].

Proposition 2 (Theorem 2.1 of [10]). Let M ∈ Mm×d. Then:

{MᵀCM + S | C ∈ Cd and S ∈ S
+
d } ⊆ Cd (M) (Δ)

If the rank of M is equal to m, then (Δ) is actually an equality.

The next proposition discusses simple a characterization of copositive matrices
as a sum of a semi-definite positive matrix and a nonnegative matrix.

Proposition 3 ([8,11]). We have: ∀ d ∈ N: S
≥0
d + S

+
d ⊆ Cd. If d ≤ 4 then

Cd = S
≥0
d + S

+
d .

Corollary 2. Let M ∈ Mm×d. Then:

Cd (M) ⊇
{

Q ∈ Sd

∣
∣
∣
∣
∃Wp ∈ S

≥0
m , W+ ∈ S

+
m, s. t.

Q − Mᵀ (Wp + W+) M � 0

}
(�)

If M has full row rank and d ≤ 4, then (�) is actually an equality.

Copositive constraints study is a quite recent field of research. Algorithms exist
(e.g. [6]) but for the knowledge of the author no tools are available. In this paper,
in practice, we use Corollary 2 and we replace Cd (M) by the right-hand side of
Eq. (�).

Example 5 (Why is there (1, 01×d) in H (P, c)?). Consider X = {x ∈ R | x ≤ 1}.
Let u(x) = (1, x), and M = (1 −1) (this corresponds to H (1, 1) without (1, 0)).
Then X = {x | Mu(x)ᵀ ≥ 0}.

In R, positive semidefinite matrices and matrices with nonnegative coeffi-
cients define the same set that is the set of nonnegative reals. Now let W ≥ 0
and define X ′ = {x | u(x)MᵀWMu(x)ᵀ ≥ 0}. Since u(x)MᵀWMu(x)ᵀ =
Wu(x)MᵀMu(x)ᵀ = 2W (1 − x)2, X ′ = R for all W ≥ 0.

Now let us take E = H (1, 1) and let W = ( w1 w3
w3 w2 ) with w1, w2, w3 ≥ 0

and define X = {x | u(x)EᵀWEu(x)ᵀ ≥ 0}. Hence, u(x)Eᵀ( w1 w3
w3 w2 )Eu(x)ᵀ =

w1+2w3(1−x)+w2(1−x)2. Taking for example w2 = w1 = 0 and w3 > 0 implies
that X = X. Note that, in this case, we can choose the positive semidefinite
certificate equal to ( 0 0

0 0 ).

3.2 Inductiveness

Come back to the invariant proof. Recall that we are looking for a sublevel
of a piecewise quadratic function that overapproximate RP that minimizes the
abstraction. Since, we are interested in a piecewise quadratic function, we need a
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polyhedric partition. Let us denote by S = (S1, . . . , Sn) the unknown polyhedric
partition. We associate for all indices i ∈ [n] of the partition, a quadratic form
x 
→ xᵀP ix + 2xᵀqi + ri. Then, we have:

Sind =
⋃

i∈[n]

Si,ind where Si,ind = {x ∈ Si | xᵀP ix + 2xᵀqi + ri ≤ 0} (10)

Lemma 6 (Partial S-Lemma). Let q1, q2 be two quadratic forms over R
m

and C be a polyhedron of Rm. If the following assertion

(∃λ ∈ R+, y ∈ C =⇒ λq1(y) − q2(y) ≥ 0)

holds then the following assertion

(y ∈ C ∧ q1(y) ≤ 0 =⇒ q2(y) ≤ 0)

is true.

Remark 1. If Lemma 6, q1 and −q2 are convex and there exists x0 ∈ R
m which

belongs to the interior of C and satisfies q1(x0) < 0 then the two assertions of
Lemma 6 are equivalent.

We now write SDP conditions to constraint Sind to satisfy F (Sind) ⊆ Sind. Recall
that F (C) = X in ∪ ⋃

i∈I f i
(
C ∩ Xi

)
. So F (Sind) ⊆ Sind if and only if:

X in ⊆ Sind and ∀ i ∈ I, f i
(
Xi ∩ Sind

) ⊆ Sind

First, let us consider X in ⊆ Sind. We use the polyhedric partition S to decompose
X in in subproblems X in ∩ Si ⊆ Sind. Then, we use the fact that for i �= j,
Si ∩ Sj = ∅ and then X in ∩ Si cannot meet Sj for j �= i. Hence, we have
X in∩Si ⊆ Sind if and only if X in∩Si ⊆ Si,ind. Finally, from Eq. (10), X in ⊆ Sind

is equivalent to, for all i ∈ Com({X in},S),

−xᵀP ix − 2xᵀqi − ri ≥ 0,∀x ∈ X in ∩ Si

Recall that X in and Si are both polyhedra, the constraint on Sind, X in ⊆ Sind is
equivalent on a finite number of constraints imposing the positivity of a quadratic
form over a known polyhedron. Then, we can reinforce the constraint by applying
Lemma 5 and finally to constraint Sind to satisfy X in ⊆ Sind, we impose:

∀ i ∈ Com({X in},S), M(−P i,−2qi,−ri) ∈ Cd+1

(
H

(
X in ∩ Si

))
. (11)

Now, we study the second constraint that is for all i ∈ I, f i
(
Xi ∩ Sind

) ⊆ Sind.
For i ∈ I, we write:

(f i)−1(S) = {(f i)−1(S1), . . . , (f i)−1(Sn)},

this forms a polyhedric partition of Rd since S is. Let i ∈ I. We use the same
principle as for X in ⊆ Sind and we decompose f i

(
Xi ∩ Sind

)
using the poly-

hedric partition S. First from Eq. (10) and since the direct image of union
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is the union of image, we have f i
(
Xi ∩ Sind

)
= ∪j∈[n]f

i
(
Xi ∩ Sj,ind

)
. Then

we use the fact that S is a polyhedric partition, we get f i
(
Xi ∩ Sind

)
=

∪k∈[n] ∪j∈[n] f
i
(
Xi ∩ Sj,ind

) ∩ Sk. Again, from the fact that the polyhedra Sks
cannot meet each others, we conclude that f i

(
Xi ∩ Sj,ind

) ∩ Sk ⊆ Sind if and
only if f i

(
Xi ∩ Sj,ind

) ∩ Sk ⊆ Sk,ind. Finally, we can restrict the indices (j, k)
to those such that (i, j, k) belongs Com(X ,S, f i−1(S)). In conclusion, the state-
ment: for all i ∈ I, f i

(
Xi ∩ Sind

) ⊆ Sind, is equivalent to:

∀ i ∈ I, ∀ (j, k) ∈ [n]2 s. t. (i, j, k) ∈ Com(X ,S, f i−1
(S)),

∀x ∈ Xi ∩ Sj,ind ∩ (f i)−1(Sk), f i(x)ᵀP kf i(x) + 2f i(x)ᵀqk + rk ≤ 0. (12)

Note that Sj,ind is actually the intersection of the polyhedron Sj and the ellipsoid
{x | xᵀP jx+2xᵀqj+rj ≤ 0} and thus the constraint x ∈ Sj,ind is the conjonction
of affine constraints and a quadratic constraint. Moreover, Xi∩Sj ∩(f i)−1(Sk) is
a polyhedron then we can apply Lemma 6 to get a stronger condition to enforce
the constraint on P j , P k, qj , qk and rj , rk of Eq. (12) and we obtain:

∀x ∈ Xi ∩ Sj ∩ (f i)−1(Sk),

rj + 2xᵀqj + xᵀP jx − f i(x)ᵀP kf i(x) − 2f i(x)ᵀqk − rk ≥ 0. (13)

In Eq. (13), we use Lemma 6 with the positive scalar λ equal to 1 to avoid to
introduce a bilinear constraint. In Eq. (13), we recognize a positivity constraint
of a quadratic form on a polyhedron and thus can be reinforced by a stronger
constraint involving cone-copositive matrices. Finally the constraint for all i ∈ I,
f i

(
Xi ∩ Sind

) ⊆ Sind is replaced by the stronger condition:

∀ i ∈ I, ∀ (j, k) ∈ [n]2 s. t. (i, j, k) ∈ Com(X ,S, f i−1
(S)),

M(P j , 2qj , rj) − F iM(P k, 2qk, rk)F i ∈ Cd+1

(
H

(
Xi ∩ Sj ∩ (f i)−1(Sk)

))

(14)

3.3 Optimality

We detail how to evaluate supx∈Sind xᵀMx + 2pᵀx. First, since:

sup
x∈Sind

xᵀMx + 2pᵀx = inf{η | η − xᵀMx − 2pᵀx ≥ 0, ∀x ∈ Sind}

Now η − xᵀMx − 2pᵀx ≥ 0, ∀x ∈ Sind is equivalent to say that for all i ∈ [n],
we have η −xᵀMx−2pᵀx ≥ 0 for all x ∈ Si ∩{y ∈ R

d | yᵀP iy +2yᵀqi + ri ≤ 0}.
Since xᵀP ix + 2xᵀqi + ri ≤ 0 is a quadratic constraint and Si is a polyhedron
then we can apply Lemma 6. Finally η−xᵀMx−2pᵀx ≥ 0, ∀x ∈ Sind is replaced
by the stronger constraint:

M(P i, 2qi, ri) − M(M, 2p,−η) ∈ Cd+1

(
H

(
Si

))
(15)

Theorem 1 (Optimality). Assume there exists {(P i, qi, ri), P i ∈ Sd, q
i ∈

R
d, i ∈ [n]}, a polyhedric partition S = (S1, . . . , Sn) and a real η such that

Eqs. (11), (14) and (15) hold. Recall that Sind =
⋃

i∈[n]{x ∈ Si | xᵀP ix +
2xᵀqi + ri ≤ 0}. Then, R ⊆ Sind ⊆ {x ∈ R

d | xᵀMx + 2xᵀp ≤ η}.
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3.4 Implementable Model Using Semidefinite Programming

Finally, we construct a model using semidefinite programming. First, we choose
as polyhedric partition the one of the system i.e. S = X . Second, as said before,
we use Corollary 2 to rewrite copositive constraints as semidefinite ones. Then
Eq. (11) becomes:

∀ i ∈ Com({X in},X ),

M(−P i,−2qi,−ri) − H
(
X in ∩ Xi

)ᵀ (
Zi

p + Zi
+

)
H

(
X in ∩ Xi

) � 0 (16)

where Zi
p are unknown matrices with nonnegative coefficients and Zi

+ are
unknown positive semidefinite matrices. Since S = X , then Xi ∩ Sj in Eq. (14)
is replaced by Xi and Eq. (14) becomes:

∀ i ∈ I, ∀ k ∈ I s. t. (i, k) ∈ Com(X , f i−1
(X ))

M(P i, 2qi, ri) − F iᵀM(P k, 2qk, rk)F i

−H
(
Xi ∩ (f i)−1(Xk)

)ᵀ (
U ik

p + U ik
+

)
H

(
Xi ∩ (f i)−1(Xk)

) � 0 ; (17)

where U ik
p are unknown matrices with nonnegative coefficients and U ik

+ are
unknown positive semidefinite matrices. Equation (15) becomes:

∀ i ∈ I, M(P i, 2qi, ri)−M(M, 2p,−η)−H
(
Xi

)ᵀ (
W i

p + W i
+

)
H

(
Xi

) � 0 (18)

where W i
p are unknown matrices with nonnegative coefficients and W i

+ are
unknown positive semidefinite matrices. Let us introduce the following families:

– P := {(P i, qi, ri), P i ∈ Sd, q
i ∈ R

d, i ∈ I}
– W := {(W i

p,W
i
+

) ∈ S
≥0
ni+1 × S

+
ni+1, i ∈ I},

– U := {
(
U ij

p , U ij
+

)
∈ S

≥0
nik

× S
+
nik

, (i, k) ∈ Com(X , f i−1(X ))}
– Z := {(Zi0

p , Zi0
+

) ∈ S
≥0
ni0

× S
+
ni0

, i ∈ Com({X in},X )}
The integers ni + 1 are the sizes of the matrices H

(
Xi

)
, nik the sizes of the

matrices H
(
Xi ∩ (f i)−1(Xk)

)
and ni0 the sizes of the matrices H

(
X in ∩ Xi

)
.

Let us consider the problem:

inf
P,W,U,Z,

α,β

−∑
i ri + η

s. t.
{

(P,W,U ,Z, η) satisfies (18), (17) and (16)
∀ i ∈ I, ri ≤ 0, η ∈ R

(PSD)

Problem (PSD) is thus a semi-definite program. The use of the sum −∑
i ri + η

as objective function enforces the functions x 
→ xᵀP ix+2xᵀqi + ri to provide a
minimal bound η and a minimal ellipsoid containing the initial conditions. How-
ever, ri ≤ 0 is not natural but ensures that the objective function is bounded
from below. The presence of the constraint ri ≤ 0 does not affect the feasibil-
ity. Note that to reduce the size of the problem, we can take qi = 0 and get
homogeneous functions.
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3.5 Results on Example 1

Boundedness Property. Recall the running example which consists of the
following PWA: X in = [−1, 1] × [−1, 1], and, for all k ∈ N:

xk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

A1xk if xk,1 ≥ 0 and xk,2 ≥ 0
A2xk if xk,1 ≥ 0 and xk,2 < 0
A3xk if xk,1 < 0 and xk,2 < 0
A4xk if xk,1 < 0 and xk,2 ≥ 0

with

A1 =
( −0.04 −0.461

−0.139 0.341

)
, A2 =

(
0.936 0.323
0.788 −0.049

)

A3 =
(−0.857 0.815

0.491 0.62

)
, A4 =

(−0.022 0.644
0.758 0.271

)

Then, we have X1 = R+×R+, X2 = R+×R
∗
−, X3 = R

∗
−×R

∗
− and X4 = R

∗
−×R+.

Hence, X = {X1,X2,X3,X4}. We write f−1(X ) for the union of the polyhedric
partitions (f i)−1(X ).

We are interested in proving the boundedness of the reachable values set of
the PWA. Then, we have to solve the optimization problem:

sup
(x1,x2)∈R

||(x1, x2)||22

To get an overapproximation of the optimal value sup(x1,x2)∈R ||(x1, x2)||22 we
solve Problem (PSD). Before it, we have to compute the two sets of indices
Com({X in},X ) and Com(X , f−1(X )). From Corollary 1, we computed using lin-
ear programming Com({X in},X ) = {1, 2, 3, 4} and Com(X , f−1(X )) = {(i, j) |
S(i, j) = 1} with S =

(
1 0 1 1
1 0 0 1
0 1 1 0
1 1 0 0

)
.

Now by solving Problem (PSD), we get a (optimal) piecewise quadratic func-
tion V ind characterized by the following matrices:

P 1 =
(

1.1178 −0.1178
−0.1178 1.1178

)
, P 2 =

(
1.5907 0.5907
0.5907 1.5907

)
,

P 3 =
(

1.3309 −0.3309
−0.3309 1.3309

)
, P 4 =

(
1.2558 0.2558
0.2558 1.2558

)

The vectors q1, q2 q3 and q4 are equal to the null vector. Since r1 = r2 = r3 =
r4 = −2 and η = 2, then R ⊆ ∪i∈{1,2,3,4}{x ∈ Xi | xᵀP ix ≤ 2} ⊆ {x ∈ R

2 |
||x||22 ≤ 2}. The sets R (a discretized version of it) and {x ∈ R

2 | V ind(x) ≤ 2}
are depicted at Fig. 2.

Optimal Value for the First Coordinate. We still consider the running
example Example 1 but now, we are interested in the first coordinate. Thus, we
consider the following optimization problem: sup(x1,x2)∈R x2

1. Now by solving
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Problem (PSD), we get a (optimal) PQL function V ind characterized by the
following matrices:

P 1 =
(

1.0585 −0.1169
−0.1169 0.2339

)
, P 2 =

(
1.0276 0.0553
0.0553 0.1105

)
,

P 3 =
(

1.1739 −0.3478
−0.3478 0.6956

)
, P 4 =

(
1.1220 0.2440
0.2440 0.4880

)

For this problem, the vectors q1, q2 q3 and q4 are equal to the null vector and
r1 = −1.0585, r2 = −1.0276, r3 = −1.1739 and r4 = −1.122 and η = 1.1739.
Then, the optimal value sup(x1,x2)∈R x2

1 ≤ 1.1739. Moreover, it seems that the
maximum is reached in the cell X3.

Optimal Value for the Second Coordinate. We again consider the running
example Example 1 and we consider the values taken by the second coordinate.
Thus, we consider the following optimization problem: sup(x1,x2)∈R x2

2. Now by
solving Problem (PSD), we get a (optimal) PQL function V ind characterized by
the following matrices:

P 1 =
(

0.0198 −0.0099
−0.0099 1.0050

)
, P 2 =

(
0.6919 0.2292
0.2292 1.0759

)
,

P 3 =
(

0.5746 −0.1706
−0.1706 1.0759

)
, P 4 =

(
0.6109 0.3054
0.3054 1.1527

)

For this problem, the vectors q1, q2 q3 and q4 are equal to the null vector and
r1 = −1.0050, r2 = −1.3094, r3 = −1.3094 and r4 = −1.1527 and η = 1.3094.
Then, the optimal value sup(x1,x2)∈R x2

2 ≤ 1.3094. Moreover, it seems that the
maximum is reached in the cell X3 and in the cell X4.

A random property. Let us prove that the reachable value set is fully con-
tained in the ellipsoid {(x, y) ∈ R

2 | −x2 + 2y2 − xy + x − 0.5y ≤ 6}. Thus,
we consider the following optimization problem: sup(x1,x2)∈R −x2 + 2y2 − xy +
x − 0.5y. Now by solving Problem (PSD), we get a (optimal) PQL function V ind

characterized by the following matrices:

P 1 =
(

0.4226 −0.8129
−0.8129 2.0688

)
, P 2 =

(
0.4558 −0.1418

−0.1418 2.4936

)
,

P 3 =
(

1.9959 −0.5084
−0.5084 2.1136

)
, P 4 =

(
1.4772 0.7386
0.7386 2.6193

)

For this problem, the vectors q1, q2 q3 and q4 are equal to the null vector and
r1 = −2.0688, r2 = −3.2331, r3 = −3.0927 and r4 = −2.6193 and η = 5.2936.
Then, the optimal value sup(x1,x2)∈R −x2 + 2y2 − xy + x − 0.5y ≤ 5.2936. This
results validates the property.
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4 Conclusion and Future Works

The paper presents an implementable method to prove automatically that the
reachable values set of a PWA is contained in an ellipsoid. In this case, to check
the property is equivalent to solve a maximization problem. The constraint of
this maximization problem is formulated as to belong to the reachable values
set of the analyzed PWA. By using abstraction by union of truncated ellipsoids,
we get an overapproximation of the optimal value of the problem. The method
developed in the paper uses a semidefinite relaxation of copositive constraints.

First, we plan to complete the benchmarks: to apply the method for more
non-trivial properties such that the avoidance of unsafe regions or “viability”
properties. Some easy extensions can be done such as the consideration of union
of truncated ellipsoids as property set representations instead of ellipsoids. An
extension to constrained piecewise affine systems i.e. with a stopping condition
on the system can be easily considered.
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