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Preface

The articles contained in this volume were presented at the 9th International Workshop
on Numerical Software Verification (NSV), held during July 17–18, 2016, in Toronto,
Ontario, Canada. The NSV workshop is alternatively collocated with the International
Conference on Computer Aided Verification (CAV) and the Cyber-Physical Systems
Week (CPSWeek). In 2016, NSV was organized jointly with the 28th International
Conference on Computer Aided Verification.

Numerical computations are ubiquitous in digital systems: supervision, prediction,
simulation, and signal processing rely heavily on numerical calculus to achieve desired
goals. The design and verification of numerical algorithms have a unique set of
challenges, which set it apart from rest of software verification. To achieve the veri-
fication and validation of global properties, numerical techniques need to precisely
represent the local behaviors of each component. The implementation of numerical
techniques on modern hardware adds another layer of approximation because of the use
of finite representations of infinite precision numbers that usually lack basic arithmetic
properties such as commutativity and associativity. Finally, the development and
analysis of cyber-physical systems that involve the interacting continuous and discrete
components pose a further challenge. It is hence imperative to develop logical and
mathematical techniques for reasoning about programmability and reliability. The NSV
workshop is dedicated to the development of such techniques.

The papers of the edition were reviewed by the Program Committee, whose help is
gratefully acknowledged. The invited speakers at NSV 2016 were Alessandro Abate
(University of Oxford, UK), Thomas Heinz (Robert Bosch GmbH, Germany), Eric
Feron (Georgia Institute of Technology, USA), Behzad Samadi (Maplesoft, Waterloo,
Ontario, Canada), Yassamine Seladji (University of Tlem- cen, Algeria), and Cesare
Tinelli (University of Iowa, USA).

The first eight NSV meetings were held in Princeton, New Jersey, collocated with
CAV (2008), San Francisco, California, collocated with CPSWeek (2009), Edinburgh,
UK, collocated with FLoC (2010), Salt Lake City, Utah, collocated with CAV (2011),
Berkeley, California, collocated with CAV (2012), Philadelphia, Pennsylvania, collo-
cated with CPSWeek (2013), Vienna, Austria, collocated with CAV (2014), and
Seattle, Washington, collocated with CPSWeek (2015).

December 2016 Sergiy Bogomolov
Matthieu Martel

Pavithra Prabhakar
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Verification of Networks of Smart Energy
Systems over the Cloud

Alessandro Abate(B)

Department of Computer Science, University of Oxford, Oxford, UK
aabate@cs.ox.ac.uk

Abstract. This contribution advocates the use of formal methods to
verify and certifiably control the behaviour of computational devices
interacting over a shared infrastructure. Formal techniques can provide
compelling solutions not only when safety-critical goals are the target,
but also to tackle verification and synthesis problems on populations of
such devices: we argue that alternative solutions based on classical ana-
lytical techniques or on approximate computations are prone to errors
with global repercussions, and instead propose an approach based on
formal abstractions, error-based refinements, and the use of interface
functions for the synthesis of abstract controllers and their concrete
implementation. Two applicative areas are elucidated, dealing respec-
tively with thermal loads and electricity-generating devices interacting
over a smart energy network or over a local power grid. We discuss the
aggregation of large populations of thermostatically-controlled loads and
of photovoltaic panels, and the corresponding problems of energy man-
agement in smart buildings, of demand-response on smart grids, and
respectively of frequency stabilisation and grid robustness.

Keywords: Cyber-physical systems · Systems of systems · Internet of
things · Hybrid models · Stochastic processes · Nondeterminism · Partial
observations · Real-time systems · Security · Model learning · (quantita-
tive) probabilistic verification · Formal abstractions · Bisimulations · Sta-
tistical verification · Feedback controllers · Policy and strategy synthe-
sis · Distributed control · Safety and performance · Games · Correct-by
design synthesis · Autonomy · Energy and power networks · Electricity
demand-response · Thermostatically controlled loads · Smart buildings
and smart grids · Photovoltaic panels · Blackouts · Aggregations of large
populations

1 Technological Context: Networks of Complex Systems

There is an ever increasing trend to place and integrate computational devices
over the cloud. By “cloud” we denote an infrastructure (predominantly with
digital features over physical qualities) allowing for seamless (mostly wireless)
communication between devices, which thus give form to a network of distinct

c© Springer International Publishing AG 2017
S. Bogomolov et al. (Eds.): NSV 2016, LNCS 10152, pp. 1–14, 2017.
DOI: 10.1007/978-3-319-54292-8 1



2 A. Abate

components1. Such devices are nowadays identified as “smart” – this attribute
denotes a capability to engage with the environment (over the cloud) that is not
purely static: indeed modern devices are clearly changing from having reactive
features to active ones; not only do they interact passively with the environment
(neighbouring devices, or a population-level feedback from the whole network),
but also internally learn from it and indeed actively engage with it by modify-
ing it locally. This interaction, which is either digital or physical depending on
the type of interconnection or embedding within the medium, leads to repercus-
sions over adjacent devices. As such, unlike static or purely reactive elements,
these devices comprise internal dynamics that are locally actively coupled with
neighbouring components.

Such devices are furthermore often “complex”, in that they encompass both
digital components and (possibly) analogue ones, and are likely to evolve (inter-
nally, or spatially within their environment) according to non-trivial dynamics.
Digital components may comprise the computational platforms they run on,
or the logic-based control architectures that affect their dynamical behaviour,
whereas analogue parts may encompass the physical medium they are embedded
into, or the continuous components making up the devices themselves.

These devices is often referred to as “cyber-physical systems” (CPS), and
the network they are part of is thought of as a “system of systems” (SOS), or as
“internet of things” (IoT). The first acronyms seem to be more relevant within
engineering contexts, whereas the second depicts a more abstract concept (it
does not necessarily distinguish between digital and analogue components, nor
automatically emphasises the networking or dynamical aspects) and appears in
use within the applied mathematics literature. The third and last seems to be
widespread within the computer sciences and in general involves fewer elements
of coordination, actuation, and dynamics than CPS.

We are thus facing an engineering platform of multiple, interleaving and
interacting complex systems, a true “system of systems” with issues of synchro-
nisation and coordination, feedback from couplings and interactions, and with a
global behaviour that is emergent from local dynamics. Such complex systems are
thus not monolithic, and entail issues of operational independence, geographical
distribution and heterogeneity, and local adaptability. We argue throughout this
work that this network ought to be quantitatively analysed, by means of formal
methods that are based on mathematical models of the single system compo-
nents and of their networked interactions. Beyond analysis, autonomy can be
established by means of modern feedback control architectures, which ought to
be certified and indeed be “correct-by-design”.

It is often the case that such complex systems are only partially known, that
is they are not exactly nor fully observed, and possibly subject to uncertainty
and/or randomness. We intend the latter aspect to be due to the presence of
heterogeneity, noise, random or chaotic (and as such not precisely predictable)
behaviours (as with, say, weather forecast), or to the presence of human users in

1 In this context we do not distinguish between computations performed over the cloud
(fog computing) or the edge of this platform.
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the loop (interfering with - or perhaps supporting - the autonomy aspects of the
system). All such elements are in general hard to model deterministically, but
can be encompassed by probabilistic terms (whether objectively or subjectively
construed). Notice that we distinguish this presence (probability) from that of
environmental non-determinism (to be separately discussed in each of the next
parts). These assumptions lead to the consideration of stochastic behaviours in
the systems under study, either at the level of their dynamics (this is known as
process noise), or upon their observations (e.g., sensors uncertainty or noise).

We take this opportunity to clarify and distinguish among two different
aspects, both relevant but distinct to the systems under consideration. On the
one hand, this setup deals with issues of learning within the single devices
comprising the overall CPS. Learning can be directed towards models of the
devices, as well as towards specifications (harvesting requirements). On the other
hand, the platform comprises issues of computation, communication, and con-
trol. Whilst learning issues are data-based, and require bottom-up studies, the
latter set of problems naturally require top-down analysis and are classically
model-based. The first issue (learning) is internal to the device interacting (via
sensing and actuation) with and adapting to the local environment. The second
issue (communication) deals with the specifics of the processing and exchange
of information within and among devices.

Next, we move from the perspective of the practical engineering setups, to
that of their mathematical models. This new perspective allows for the develop-
ment of quantitative analysis tools, and to obtain results leveraging the area of
formal methods.

2 Formal Verification of Complex Models

Quantitative issues such as reliability, safety, dependability, are key in practical
applications of the complex engineering setups that we have previously intro-
duced. These issues play a central role either because the components belong to
safety-critical applications, or because it is often the case that the complex net-
work of systems is comprised within a safety-critical setup: much like existing
complex engineering infrastructures, in an era of increasing inter-connectivity
systems are seldom isolated, thus safety criticality depends on coupled behav-
iours and thus represents a global network issue.

The need for formal methods is therefore key. The use of these techniques
is an alternative to approaches based on qualitative analysis, relying on more
classical mathematics and often focusing on global, network-level properties,
which are seldom useful in a complex context preventing analytical or explicit
mathematical results. The use of formal methods is further in juxtaposition to
fine-grained agent-based modelling and related simulation-based techniques, or
to statistical approaches, which are known to be stymied with a number of limita-
tions: they establish presence of potential faults or errors, but cannot assert their
absence in general; they hardly scale when non-determinism and stochasticity
play a relevant role in the dynamics, and when the system under study presents
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continuous (uncountable) variables interleaved with discrete components (dis-
continuous). Sample-based techniques further lack formal guarantees, which is
in particular a fundamental limitation when single devices or whole systems are
to be certified (as opposed to be validated towards quality assurance). On the
other hand these approaches should not be completely dismissed, but rather
integrated within the use of formal approaches which, as is known, present com-
putational limitations when applied to large-scale and complex models, as is the
case of the engineering setups under study.

Formal verification techniques hinge on quantitative models. The verifica-
tion of quantitative models of complex systems requires handling a mathemat-
ical formalism encompassing dynamical variables evolving over hybrid (contin-
uous/discrete) state spaces, comprising probabilistic behaviours, possibly with
continuous-time semantics, and under partial observations of the model’s vari-
ables. Emerging from a broad research initiative on alternative models of com-
putation, a natural modelling framework encompassing all these aspects is that
of stochastic hybrid models [5]. Such models are dynamically rich and require
modern, tailored techniques for analysis, verification and synthesis.

At the outset, it is easy to realise that the verification of such models is bound
to undecidability results, unless the problem at hand admits an analytical (that
is, explicit) solutions, which is quite unlikely in view of models complexity and of
the possibly rich objectives under consideration [18]. On the other hand, state-
of-the-art software tools for automated quantitative model checking of complex
models (e.g., the PRISM model checker) are not applicable to models comprising
all the aspects discussed above. As a partial attainment of the grand goal of ver-
ification of truly complex models, literature has seen probabilistic model check-
ing of finite-state models, model checking of concurrent models with continu-
ous (dense) time semantics, reachability-based verification of (non-probabilistic)
hybrid dynamical models, and some timid early attempts to provide partial eval-
uation of more complex models – all daunted by the sheer complexity of the goal.
Notice that the mentioned successful verification instances apply to strict subsets
of the target models of interest that have been discussed previously.

This body of work has been extended to deal with the verification of non-
deterministic models – such extensions are often bound to conservative outcomes
(whenever non-determinism in quantified universally), or to rather different syn-
thesis frameworks (whenever non-determinism in quantified universally). The
application of SAT or SMT techniques can be of particular interest for this goal,
as well as results on robustness analysis, as classically investigated in control
theory or, more recently, in formal methods.

If formal verification tools have not been fully extended and thoroughly
applied to complex models, might complex models be compelled to fit exist-
ing formal methods tools? The next section elaborates on this goal.

The wider accessibility properties and interconnectivity features that mod-
ern smart devices allow carry as a drawback increased pressure towards issues of
security. Security deals with coping with interferences of various sorts and nature,
often thrusted in surreptitious and hidden manner, which can affect the correct
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functioning of the single devices and can potentially lead to global repercussions.
Amongst major categories of cyber security threats we (non comprehensively)
list those affecting resilience and privacy, as well as malicious intrusions and
attacks. Notice that the presence of security attacks requires models semantics
that are fundamentally different than those (non-deterministic or probabilis-
tic) used to describe the presence of the environment. In this security context,
various frameworks have been put forward: from worst-case non-deterministic
approaches, to average-case probabilistic models, to (possibly stochastic) game-
theoretical frameworks. Of them, the latter approach appears to encompass the
nature of potential attacks and of possible replies, mitigations, or preventions
actions against them.

Key aspects at the interface of communication and computation are those
dealing with real-time engineering. These, within a networking perspective,
relate to important computational issues of inter-operability, synchronisation,
and concurrency; and, from the communications perspective, to problems of
network theory and issues of data integration within models.

Whilst understood as key in the context of CPS applications, we do not delve
into details of such problems any further in this essay.

3 Approximate Model Checking of Stochastic
and Hybrid Models

This contribution is underpinned by recent research on stochastic hybrid mod-
els [5]. Properties of interest are usually encoded within known and exploited
modal logics, such as PCTL or CSL (whether in continuous or discrete time),
or just by looking at the likelihood attached to trajectories verifying linear time
specifications expressed in LTL or as (e.g., Büchi) automata over infinite strings.
Extensions to conditional probabilities have been pursued in recent literature.

Over related frameworks of stochastic and hybrid models, a number of
authors have recently investigated the characterisation of basic probabilistic
reachability and invariance specifications [5], as well as the extension to reach-
avoid (constrained reachability), and to richer properties such as linear-time
properties expressed as a DFA or as Büchi automata [19]. With regards to the
latter, infinite-horizon properties have been also studied, and involve advanced
analytical tools [18].

Beyond characterisation and towards numerical assessment, the properties
above have been computed by means of finite abstractions [3,4]. The derivation
of formal errors due to such finite abstractions [9] has effectively led to the devel-
opment of approximate model checking of stochastic hybrid models. Errors have
been further extended and refined [12,19], and embedded in the development
of a software tool, which feeds complex models to probabilistic model checking
software packages.

FAUST2 [13] is a Matlab-based software tool, which accepts as an input a
stochastic process and a formal specification, and generates a finite abstraction
that can be fed into a probabilistic model checker such as PRISM or MRMC.
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The abstraction is guaranteed to abide by a user-defined error that is required on
the satisfaction of the given property of interest. The error is computed based on
the underlying dynamics of the SHS and on the given property [9], and encom-
passes the difference between the probability distributions (in time) of concrete
and abstract models. It has been shown that such error induces an approximate
probabilistic bisimulation relation between the concrete and the (finite) abstract
models [1,15], which can be also of use to study transient dynamical properties
[2,11,17]. The overall procedure leads to an anytime algorithm, which sequen-
tially refines coarse model abstractions, based on an update of the computed
bound on the current error [9].

Related results have been developed by approximating the concrete stochastic
model with a noiseless abstraction [20,22], which is then deterministically verified
by means of software tools for dynamical models, such as PESSOA. The outcome
allows for the refinement of assertions or of synthesised controllers, in view of
a quantified error of the abstraction procedure. Unlike the approach described
earlier, the new error encompasses (a moment of) the absolute value of the
difference between the solutions of the two models, and is shown to exist under
certain contractivity (which is a form of stability) assumptions on the concrete
model dynamics.

Cognate research on verification of stochastic (and hybrid) dynamical models
has been looking at the use of stochastic SAT modulo theory, the recasting of
a verification objective as the solution of a PDE (with associated numerics),
or the approximation of the above quantitative verification problems as convex
optimisation ones.

The lack of full access to the state variables leads to the setup of partially
observed modes, of which a known instance is that of hidden Markov models.
In view of undecidability issues, substantial work on heuristics for the analysis
of these models within the field of artificial intelligence. Formally, this setup
requires the introduction of sufficient statistics and work over a belief space
which, with the exception of linear models with additive Gaussian noise and asso-
ciated corresponding Kalman estimators, is in general prone to lack analytical
and computational tractability. Further work, both theoretical and algorithmic,
is most definitely needed on this class of models.

The verification of parametric models encompassing non-determinism has
not been focus of thorough and practically scalable investigation, regardless of
whether seen as internal (to be universally quantified against) or external (to
be synthesised over). Perhaps further steps can be attained by principled use of
SMT approaches, or of results in robustness analysis.

A known and evident concern on the applicability of model-based quanti-
tative verification techniques is the issue of scalability: these approaches are
known to be stymied by state-space explosion, which is particularly relevant for
complex CPS models. It is necessary to mitigate this issue by means of a multi-
pronged approach: exploiting model modularity and topological distributivity,
use of assume-guarantee reasoning, employment of deep compositional results,
interfacing with legacy systems (and corresponding models), use of paradigms
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of object-oriented programming, and development of state-less abstractions [21].
On the other hand, it is well understood that sample-based techniques (such as
in paradigms of runtime verification and testing) have the potential to scale to
complex models, whilst on the down side they suffer from lack of tight perfor-
mance guarantees. Within the context of formal verification, it is then of utmost
interest to provide a novel formal integration of sample-based techniques within
model-based deductive approaches [14]. As a side comment, learning algorithms
can be directed towards models of the devices, as well as towards specifications
(harvesting requirements). Towards this direction, the employment of coverage
metrics has recently grown much interest.

As much as sample-based techniques or agent-based simulations seldom pro-
vide formal performance guarantees, approaches based on (non-formal) approx-
imate computations are stymied by lack of certified behaviour. For instance,
employing continuous mean-field limits (which are shown correct exclusively at
asymptotic limits) renders an intrinsically probabilistic population a determin-
istic problem, which prevents the generation of certain allowable fringe behav-
iours. Further, the use of grid-based techniques with no control of the precision
is bound to lead to suboptimal solutions, or errors that accumulate fast with
time and which certainly do not meet any certification requirement or formal
guarantee.

In conclusion, we argue that model verification based on classical analytical
techniques has shown its limits, whereas sample-based results or outcomes based
on non-formal approximate computations are prone to generate uncontrollable
errors with overreaching global repercussions. We argue that a principled applica-
tion of formal methods techniques, properly enhanced via computationally-prone
approaches, is the way forward particularly for CPS applications.

4 From Verification to Synthesis: Correct-by-Design
Control of Complex Models

Beyond quantitative verification, control synthesis also requires proper formal-
isation over complex models. As discussed, control is a form of external non-
determinism, and as such it has to be contrasted with forms of non-determinism
that are resolved by the environment, that are due to coarse-grained abstractions
(internal non-determinism), or with (static) parametric uncertainty. The seman-
tics of external non-determinism involve a volitive agent, which selects functions
of time and of the state, possibly in a randomised manner and accounting for
past history. Such selection leads to control laws known as policies or strate-
gies. It is often of interest to focus on memoryless laws, possibly deterministic
ones, which limit the computational overhead and do not infringe the Markov
property of the closed-loop model. Classical control synthesis deals with per-
formance criteria (introduced either as costs or rewards that are function of the
state and/or the action space), over which optimality is sought via (respectively)
minimisation or maximisation on a finite- or infinite-time horizon, within a pre-
defined class of allowable policies. Of course such an approach can be applied to
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the goal of maximising the likelihood of verifying a quantitative property, such
as those in PCTL logics discussed above for stochastic processes. The study of
finite-horizon quantitative properties expressed in PCTL boils down to a char-
acterisation via multiplicative cost functions [5], whereas that of infinite-horizon
properties can be reduced to reachability computation over a product automaton
[19]. The study of infinite horizon reachability is tricky since it involves extended
notions of absorbing sets that are related to classical ones of bottom strongly
connected components, or of max-end components [18]. Even more so in the case
of controller synthesis over infinite-horizon properties [19].

Of course it is of interest to expand the issue of synthesis over both quan-
titative specifications and over performance: this can be done by resorting to
techniques for multi-criteria or lexicographic optimisation. This goal has been
recently pursued both within the computer science area, the control theory, and
the optimisation literature.

Beyond process noise affecting the state dynamics, lack of exact observations
(as partial access to the hidden variables or presence of sensor noise) lead to
partially observed models, such as POMDP. As in the previous section, control
synthesis for partially observable models brings along a number of technical
and computational hurdles which, whilst thoroughly investigated within artificial
intelligence and control literature, have only in part led to results that can be
deemed satisfactory within the stricter context of formal methods.

Control synthesis problems are further prone to be extended to stochastic
(two-and-a-half player) games [8]. Games can be played against the environ-
ment (e.g., towards compositional reasoning) or against an adversary (e.g., for
applications in security). The author recognises interesting connections between
game-theoretical setups in applied mathematics and control theory (for instance,
dealing with existential results over uncountable models) and problems that are
algorithmically solved for discrete configurations in theoretical computer science.
The concept of formal abstractions (discussed in the previous section) could pro-
vide a link between results in the two areas.

The digital platform that characterises networks of complex systems, which
we called “cloud” earlier, encompasses pervasive elements of wireless commu-
nications, and moves away from older, tethered communications, thus allowing
for more agile reconfigurations as well as practical mobility of the agents in the
network. As much as general communication aspects (real-time issues, protocol
design aspects, and the like) need to be dealt with at the level of modelling,
the specific deployment of wireless channels require proper handling of packets
corruption or losses, and delays. Accepting that controllers are not necessarily
embedded in a monolithic plant, but rather separated from it by a communica-
tion network, a recent and lively literature [23] has started to investigate issues
of communication within control theoretical architectures.

As much as verification algorithms applied to complex CPS models suffer
from state-space explosion, control synthesis ones are stymied by Bellman’s
curse of dimensionality. Techniques aimed at speeding up such formal algorithms
(either via abstractions, or via approximations, or through compositionality, or
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also by mans of data-driven approaches, such as reinforcement learning) are
naturally seen of much priority in this area.

5 Verification of Networks of Smart Energy Systems over
the Cloud

In this section we provide a compelling application of the concepts, models and
problems elaborated above. We discuss how present-day energy networks and
electricity grids are transitioning to become interconnected networks of complex
and smart systems, dynamically coupled both physically and over the cloud. We
argue that their formal verification and correct-by-design control is relevant in
engineering and industrial contexts, as well as for the market opportunities that
they have the potential to catalyse. We provide two case studies zooming in on,
respectively, the smart grid (investigated from the perspective of smart buildings
in [6]) and electricity networks (elaborated in the project [7]).

Smart Buildings over the Smart Grid. Buildings consume more than 40 %
of the energy in Europe. In order to sustainably reduce energy consumption by
improving their usage and management, an optimal operation and an improved
commissioning and maintenance of building management systems (BMS) are
seen as key factors by the sector’s industry. Efficient automation systems embed-
ded in so-called “smart buildings” can indeed reduce the energy consumption
up to an estimated thirty percent in many relevant instances. The objective of
a smart building is to deliver useful building services that make occupants com-
fortable and productive (for instance, providing regulation for thermal comfort
and air quality), at the lowest energy costs, over the entire building life cycle.
This objective requires adding intelligence to the infrastructure of buildings and
utilising information technology during their operation. This enables the con-
nectivity of devices and components in a building (think of home automation
devices, smart appliances, an application related to the broad area known as
the “Internet of Things”), the interaction of buildings with their occupants and
building operators or with their building management systems, as well as (at a
higher level) their connection to other buildings or infrastructure components
within a smart grid platform.

Such modern features and capabilities have opened new challenges related
to the optimised performance of smart buildings, as (components of) networks
of complex dynamical systems. Indeed, both the interconnection of smart BMS
devices (such as sensorised HVAC modules) within a smart building, and (at a
higher level) the local interaction of various buildings within a smart grid, clearly
lead to the CPS configurations discussed above.

In the context of a single building, the construction of models that accurately
capture the time evolution of its physical variables can be based on data gath-
ered from the buildings. The continuous nature of physical variables, the discrete
feature of digital controllers, and the presence of uncertainty originating from
the environment and from the users behaviour, render the general framework of
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Stochastic Hybrid Systems well-suited for modelling purposes [5]. Formal mod-
els enable the solution of engineering problems, such as optimal temperature
regulation in a building, which in view of the slow dynamics we argue can be
promising to tackle in the loop via formal methods. The stochastic and time-
varying nature of the system under study suggests that a data-based update of
the model, and more generally an integration of on-line data within the models
under study [14], are of interest.

At a higher level, each building can be thought as a node in a network, such
as a smart grid, partaking alongside other energy-consuming buildings in its
dynamics, as well as interacting with devices generating energy. The connection
with the CPS framework is again evident. Due to their flexibility in providing
services to occupants, smart buildings can then be engaged in services by energy
companies, such as load shifting, peak shaving, and more general in demand-
response programs. As a result, whilst we can naturally think of engineering
problems such as robustness and resiliency of the energy dynamics within a
local smart grid, there is another layer of problems dealing with market design
for demand response, with the engagement of consumers over grid markets, such
as the electricity one (related to load shifting and consumers’ demand response)
and that dealing with economy of energy production (as per the concept of
prosumers) and storage (zero net-energy buildings).

Within these CPS configurations, it is important to understand how global
dynamics emerge from single dynamics and local interactions. One way to look
at global dynamics arising from local contributions is to develop aggregation
techniques: model aggregations lump together the dynamics of single buildings,
providing a global description that is computable and scales well with the size
of the problem.

Recent research has developed a procedure based on formal abstractions [10],
which generates a finite stochastic dynamical model as an aggregation of the con-
tinuous temperature dynamics of a (possibly heterogeneous) population of Ther-
mostatically Controlled Loads (TCL), which are basic models for the dynam-
ics in smart buildings. The temperature of each single TCL is described by a
stochastic difference equation and the TCL status by a deterministic switch-
ing mechanism – in all, a hybrid model. The procedure is formal as it allows
the exact quantification of the error introduced by the abstraction. Research
has discussed extensions to the case of controlled TCL, with dynamics affected
by an aggregator (which could be a utility company engaged with consumers
on demand response schemes). The structure of a control scheme (centralised,
decentralised or distributed) hinges on many assumptions on the placement of
sensors and on the capability of the actuators (HVAC modules), and in general
on the information flow between the central aggregator and the single compo-
nents of the population. The employment of distributed architectures appears
to be relevant to optimise both engineering and economic goals.

We argue that approaches based on formal aggregation can be relevant both
at an engineering level (working out precise approaches for safe and optimised
energy consumption in a building, or for reliable and robust operation of a smart



Verification of Networks of Smart Energy Systems over the Cloud 11

grid) as well as at a financial level (understanding fairness in market design
between energy providers and customers over demand response schemes [16]). In
conjunction with the development of formal models and quantitative verification
approaches, abstractions can offer a principled approach to the understanding of
the complex dynamics of smart buildings, and to their optimised and certifiable
operation within the context of smart grids.

Renewables Generation over the Power Grid. The previous section has
suggested how the engagement of consumers over a smart grid had the potential
to lead to some paradigm shifts: from a centralised and fuel-based grid oper-
ation to a decentralised and renewable-based economy; from passive electricity
and gas consumers supplied by energy utility companies, to active electricity pro-
sumers and as such to utility companies partners (if not competitors). The grid
becomes an accessible infrastructure to be locally leveraged in both directions
by numerous players on the energy market.

Smart buildings have the capability to generate energy by means of renew-
ables, as is the case of photovoltaic panels or wind turbines. In many regions
worldwide, renewables are increasingly relied upon for electricity generation. As
much as beneficial green energy can be regarded towards a sustainable decrease
of greenhouse gases, the de-carbonisation of energy usage, and the long-term goal
of zero net-energy buildings, renewables pose challenging engineering problems
in view of their distributed engagement within a power grid that was conceived
and built for centralised production and distribution, and of the intrinsically
volatile quality of the electricity generated, which hinges on meteorological and
local grid conditions. The decentralised nature of energy generation and its close
connection with its distribution clearly suggest the presence of features of a
network of complex systems, with evident CPS modelling opportunities.

Transmission System Operators (TSO) have to ensure the physical balancing
of the power grid (the total electricity generation must match the total electricity
consumption). In AC electrical grids, the frequency (50 Hz in nominal conditions)
indicates whether or not the system is balanced. More and more Photo-Voltaic
(PV) Panels are installed in distribution grids and they are not directly control-
lable by the TSO (unless organised in structured, large PV farms). In order to
assess the safe operation and robustness of the whole system, TSO ought to take
PV panels dynamical behaviours into account.

Recent research has attempted to formalise and implement a formal study
of large populations of PV Panels. We have focused on the modelling of the
dynamics of PV panels and their interaction with the power grid as Markov
models. Within the broad goal of formal aggregation of large-scale populations
of Markov models, and the objective to provide new computational algorithms
for the optimal policy synthesis over such a population, we have looked at aggre-
gating and controlling large populations of photovoltaic panels over the power
grid.

We plan to again employ techniques from formal methods to generate quan-
titative abstractions of models of interest (large populations of PV panels),
with specific predictive capabilities and a guaranteed error on the quality of
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the abstractions. Among other goals, we are investigating issues of decentralised
control of such PV, of emergence of global behaviours from local conditions, and
in general issues of robustness, dependability, and reliability over the grid.

6 Conclusions

The increase in complexity, adaptability, and inter-connectivity of modern tech-
nological devices raises new challenges towards their understanding and that of
their complex interaction network. Likewise, their local actuation or the control
of the global network they are part of, pose new challenges at engineering and
technical levels. We have argued for the necessary development of formal verifica-
tion approaches to study networks of complex dynamical systems, underpinned
by quantitative models that are at the core stochastic and hybrid, built from
data and formally reasoned upon.

We envision the development of semi-automatic approaches, based on for-
mal abstractions, for the synthesis of policies around quantitative specifica-
tions encompassing formal requirements (e.g., safety, reliability), and trading
off against performance, as well as the development of formal verification tools
accounting for robustness. Such approaches are deemed “formal” in that they
are enhanced by quantitative guarantees on their outcomes, being it an assertion
over a formal property or the implementation of a control policy towards a given
objective.

Furthermore, in view of the unavoidable connection of the systems of inter-
est with data, we have further advocated more research on a tighter and formal
integration of data-driven, sample-based approaches, with model-based deduc-
tive techniques: we view this integration as necessary not only to encompass
adaptability features for the underlying models towards learning, but also to
increase the scalability of formal verification techniques towards reasoning.

In conclusion, the technical challenges related to the existing technological
trend towards more complex, adaptable and more integrated devices, can be
offset by engineering and economic benefits, provided principled approaches for
integrated data-based modelling, quantitative formal verification, and correct-
by-design synthesis are embraced.
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Abstract. In this paper, we present a model based on copositive pro-
gramming and semidefinite relaxations of it to prove properties on
discrete-time piecewise affine systems. We consider invariant i.e. prop-
erties represented by a set and formulated as all reachable values are
included in the set. Also, we restrict the analysis to sublevel sets of
quadratic forms i.e. ellipsoids. In this case, to check the property is
equivalent to solve a quadratic maximization problem under the con-
straint that the decision variable belongs to the reachable values set.
This maximization problem is relaxed using an abstraction of reachable
values set by a union of truncated ellipsoids.

1 Introduction

The formal verification aims to prove automatically some properties on dynam-
ical systems. In our paper, we are interested in proving invariant i.e. a property
valid for all reachable values without regarding the step when we reach the value.
In our point-of-view, a property can be represented by a set C. Checking the
property can be reduced to check whether the set of the reachable values is fully
contained in C. The paper proposes a static analysis framework to solve the ver-
ification problem. In other words, we develop a technique to check the property
without any system simulation. In this paper, we handle properties representable
as a sublevel of a quadratic function i.e. an ellipsoid. The verification problem
in this case is equivalent to solving an optimization problem where the decision
variable is constrained to belong to the reachable values set. One may think that
to solve the problem, it suffices to represent precisely the reachable values set
to check the property. Nevertheless, classically, in static analysis, the reachable
values set is approached iteratively using Kleene iterations scheme. Since the
computation is slow, Kleene iterations are coupled with acceleration techniques
that degrades the representation of the reachable values set. Thus the verifica-
tion of property may fail because of the loss of precision. In this paper, we use
a direct method based on semidefinite programming to represent the reachable
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values set and check the property in the same time. The main idea is to use a
minimizing abstraction based on union of truncated ellipsoids.

Related Works. This method is an adaptation of [2]. Indeed in [2], we propose
the synthesis of a minimizing polynomial sublevel abstraction based on sums-
of-squares. Here, we allow non-polynomial abstraction but we restrict ourselves
to semidefinite programming to have a better scalability. The method proposed
here is also an extension of [1] since in [1], the only property handled is the
boundedness.

The techniques presented in this paper uses piecewise quadratic Lyapunov
conditions [9,12]. However, in [9,12], the authors are interested in proving stabil-
ity of piecewise affine systems. As classical quadratic Lyapunov functions, piece-
wise quadratic Lyapunov functions provide sublevel invariant sets to the system.
We use this latter interpretation for a verification purpose. In this paper, we are
interesting in synthezing disjunctive invariants. This form of invariants appears
for tropical polyhedra domain [3] where the author generates disjunctions of
zones as invariants. The latter invariants did not encode quadratic relations
between variables. The synthesis of quadratic invariants for switched systems is
studied in [4]. But, the invariants generation is not guided by property or is not
relied on optimization problems.

Organisation of the Paper. The paper is organised as follows. In Sect. 2, we
present the context that is the systems and the properties that we consider in
the paper. Then in Sect. 3, we give detail about the mathematical model using
semidefinite programming to solve optimization problems. In Sect. 4, we conclude
and propose some future works.

2 Proving Properties on Constrained Piecewise Affine
Discrete-Time Dynamical Systems

2.1 Some Recalls About Polyhedra

In this paper, we will denote by Mn×m the set of matrices with n rows and m
columns. For n ∈ N, [n] will denote the set of integers {1, . . . , n}.

In our work, we suppose that a (convex) polyhedron can contain both strict
and weak inequalities.

Definition 1 (Polyhedra of Rd). A polyhedron of Rd is a set of the form:

{
x ∈ R

d |Psx � bs, Pwx ≤ bw}
where Ps ∈ Mns×d, Pw ∈ Mnw×d, bs ∈ R

ns and bw ∈ R
nw . We insist on the

notation: y � z means that for all coordinates l, yl < zl and y ≤ z means that
for all coordinates l, yl ≤ zl.

Lemma 1 (Polyhedra closure). The topological closure of a nonempty or a
nontrivial (not Rd) polyhedron consists in keeping weak inequalities and replacing
strict inequalities by weak inequalities.
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The direct application of Motzkin’s transposition theorem [13] yields to the
next proposition.

Proposition 1 (Test of the emptyness of a polyhedra). Let X be a poly-
hedra. Suppose that X =

{
x ∈ R

d |Psx � bs, Pwx ≤ bw} . Then X �= ∅ if and
only if: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 01×d

bs −Ps

)ᵀ
ps +

(
bw −Pw

)ᵀ
p = 0

ns+1∑

k=1

ps
k = 1, ps ≥ 0, p ≥ 0

has no solution.

Definition 2 (Indices of meeting polyhedra). We consider L finite families
of polyhedra (Si)i∈[L]. For all i ∈ [L], Si = {Xi

1, . . . , X
i
Ni

}. We define:

Com(S1, S2, . . . , SL) = {(i1, i2, . . . , iL) ∈
L∏

i=1

[Ni] |
L⋂

j=1

Xj
ij

�= ∅}.

Corollary 1. Let (Si)i∈[L] be L finite families of polyhedra. Suppose that for all
i ∈ [L], Si has N i elements. Then Com(S1, S2, . . . , SL) can be computed using∏L

i=1 N i linear systems.

Definition 3 (Polyhedric partition). A polyhedric partition is a family of
polyhedra of Rd, {X1, . . . , XN} such that:

∀ i, j ∈ [N ], s. t. i �= j, Xi ∩ Xj = ∅ and
⋃

i∈[N ]

Xi = R
d .

If a polyhedric partition S contains N elements, we will say that S is a polyhedric
partition of size N .

We will denote by f|X the restriction of a function f : X 
→ R
m on the set X.

Definition 4 (Piecewise affine maps). A map f : Rd → R
m is piecewise

affine if and only if there exists a polyhedric partition {Xi, i ∈ [N ]} such that
f|Xi is affine.

Definition 5 (Piecewise quadratic functions). A function f : Rd → R is
piecewise quadratic if and only if there exists a polyhedric partition {Xi, i ∈ [N ]}
such that f|Xi is quadratic.
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2.2 Piecewise Affine Discrete-Time Systems

In this paper, we are interested in proving automatically properties on piecewise
affine discrete-time systems (PWA for short). The term piecewise affine means
that the dynamic of the system is piecewise affine. From Definition 4, there exists
a polyhedric partition {Xi, i ∈ I} such that for all i ∈ I, the dynamic of the
system restricted to Xi is affine. The dynamic of a PWA is thus represented by
the following relation for all k ∈ N, for all i ∈ I:

if xk ∈ Xi, xk+1 = f i(xk), f i : y 
→ Aiy + bi (1)

where Ai ∈ Md×d and bi a vector of Rd. We assume that the initial condition x0

belongs to some polytope X in. We will need homogeneous versions of laws and
thus introduce the (1 + d) × (1 + d) matrices F i defined as follows:

F i =
(

1 01×d

bi Ai

)
. (2)

The system defined in Eq. (1) can be rewritten as (1, xk+1)ᵀ = F i(1, xk).
To sum up, we give a formal definition of what we call a piecewise affine

system (PWA for short).

Definition 6 (Piecewise Affine System). A piecewise affine system (PWA)
is the triple (X in,X ,A) where:

– X in is the polytope of the possible initial conditions;
– X := {Xi, i ∈ I} is the polyhedral partition;
– A := {f i, i ∈ I} is the family of affine laws relative to X satisfying Eq. (1).

Example 1 (Running example). Let us consider the piecewise linear system
depicted in [12]. We bring some modifications: we complete the example by
adding a nondeterministic initial condition and we slighty change the partition
used in [12], to satisfy Definition 3.

Let us take X in = [−1, 1] × [−1, 1]. The dynamical system is defined, for all
k ∈ N, by

xk+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1xk if
{

xk,1 ≥ 0
xk,2 ≥ 0

A2xk if
{

xk,1 ≥ 0
xk,2 < 0

A3xk if
{

xk,1 < 0
xk,2 < 0

A4xk if
{

xk,1 < 0
xk,2 ≥ 0

with

A1 =
( −0.04 −0.461

−0.139 0.341

)
, A2 =

(
0.936 0.323
0.788 −0.049

)

A3 =
(−0.857 0.815

0.491 0.62

)
, A4 =

(−0.022 0.644
0.758 0.271

)
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We thus have

X1 = {x ∈ R
2 | −x1 ≤ 0,−x2 ≤ 0}, X2 = {x ∈ R

2 | −x1 ≤ 0, x2 < 0},
X3 = {x ∈ R

2 | x1 < 0, x2 < 0} and X4 = {x ∈ R
2 | x1 < 0,−x2 ≤ 0}.

Now, we formally define the set of reachable values.

Definition 7 (Reachable values set). Let P = (X in,X ,A) be a PWA. We
define the reachable values set as the set RP defined by:

RP =
⋃

k∈N

A
k(X in), where A : Rd 
→ R

d,A(x) = Aix + bi if x ∈ Xi

In Definition 7, we put P in index, but in the rest of the paper we simply write
R since there will be no confusion.

Example 2 (Reachable values of the running example). Figure 1 depicts a dis-
cretized version of the reachable values set of Example 1. Actually, the set of
intial conditions X in is discretized. The discretization step is of 0.2. Then the
trajectory starting from a point in the discretization of X in is drawn. The tra-
jectories are stopped at exactly 100 runs.

−1 0 1

−1

0

1

x1

x
2

Fig. 1. A discrete version of the reachable values set of Example 1

Definition 8 (Invariant). Let P = (X in,X ,A) be a PWA. A set S ⊆ R
d is a

said to be an invariant if and only if RP ⊆ S.

Example 3 (An invariant for the running example). Figure 2 depicts an invariant
computed as the sublevel of a piecewise quadratic function. We will come back
later on the details of its computation at Subsect. 3.5.
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Fig. 2. An invariant sublevel of a piecewise quadratic function for Example 1, in yellow,
the set of Example 2 (Color figure online)

2.3 Proving Properties on PWA

In this section, we give details about the properties that we can handle. First, we
are interested in proving invariant. This means that for a set S given by the user,
we aim to prove automatically that S is an invariant. Second, we only consider
sets S representable as a sublevel set of a quadratic function i.e. an ellipsoid.
Indeed, we can check properties of this form using quadratic programming. Then
we use semi-definite relaxations of the constructed quadratic programs.

Let V be a quadratic function and let us define S = {x ∈ R
d | V (x) ≤ α}

which is an ellipsoid. Then to check that S is an invariant i.e. R ⊆ S is equivalent
to solve to check supx∈R V (x) ≤ α. Let us consider the following optimization
problem:

sup
x∈R

xᵀMx + 2pᵀx (3)

To determine the optimal value of Problem (3) represents exactly the work that
we have to do to check our properties. The main problem in Problem (3) is that
we cannot use R as in Definition 7. Actually R cannot be implementable and
we propose to use an implementable over-approximation of R. This principle is
not new and corresponds to the concept of abstract interpretation. We refer the
reader to [7] for a seminal presentation of this approach. We can characterize R
as the collecting semantics i.e. the smallest fixed point of a transfer function. Let
us denote by ℘(Rd) the set of subsets of Rd. The transfer function F : ℘(Rd) →
℘(Rd) we use is defined as follows:

F (C) = X in ∪
⋃

i∈I
f i

(
C ∩ Xi

)
(4)
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We equip ℘(Rd) with the partial order of inclusion. The infimum is understood
in this sense i.e. as the greatest lower bound with respect to this order. The
smallest fixed point problem is:

inf
{
C ∈ ℘(Rd) | C = F (C)

}
.

It is well-known from Tarski’s theorem that the solution of this problem exists,
is unique and in this case, it corresponds to R. Tarski’s theorem also states that
R is the smallest solution of the following Problem:

inf
{
C ∈ ℘(Rd) | F (C) ⊆ C

}
.

Finally, any set P ind such that F (P ind) ⊆ P ind provides a safe over-
approximation of R. In this case, such P ind is called inductive invariant. An
abstraction consists in restricting the family of inductive invariants P ind to an
implementable one. Here, we chose to constraint an inductive invariant to be a
sublevel of a piecewise quadratic function. Indeed, to be inductive is equivalent
to asking a Lyapunov condition for sets. Moreover, the sublevels of a Lyapunov
function are inductive invariants if and only if they contain initial conditions. In
the context of piecewise affine systems, the class of piecewise quadratic functions
furnishes a relevant class of Lyapunov functions [9,12]. Consequently, to solve
Problem (3), we will compute a piecewise quadratic function V ind such that the
sublevel set Sind = {x ∈ R

d | V ind(x) ≤ 0}:

is an inductive invariant i.e. F (Sind) ⊆ Sind (5)
minimizes the value sup

x∈Sind
xᵀMx + 2pᵀx (6)

Example 4 (The boundedness problem). To prove automatically that the reach-
able values set R of the running example is bounded, we have to solve the
optimization problem:

sup
(x1,x2)∈R

x2
1 + x2

2

If the problem has a finite optimal value then R is bounded. Following, Eqs. (5)
and (6), we should look for a piecewise quadratic function such that the 0-
sublevel set Sind provides an overapproximation of R which minimizes the error
between the sup(x1,x2)∈R x2

1 + x2
2 and sup(x1,x2)∈Sind x2

1 + x2
2.

3 The Mathematical Model

Now we give the details about the computation of the piecewise quadratic func-
tion V ind such that Sind satisfies Eqs. (5) and (6). First we introduce the notion
of cone-copositive matrices.
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3.1 Cone-Copositive Matrices

The set Sm denotes the set of symmetric matrices. The set S
+
m denotes the

set of (symmetric) positive semidefinite matrices i.e. the matrices A such that
xᵀAx ≥ 0 for all x ∈ R

m. When the dimension of the matrices is obvious we will
also use the notation A � 0 for A is positive semidefinite. The set S

≥0
m denotes

the set of symmetric matrices with nonnegative coefficients.
Let q be a quadratic form i.e. a function such that for all y ∈ R

d, q(y) =
yᵀAqy + bᵀ

qy + cq where Aq ∈ Sd, bq ∈ R
d and cq ∈ R. We define the lift-matrix

of q, the matrix of Sd+1 defined as follows:

M(Aq, bq, cq) = M(q) =
(

cq (bq/2)ᵀ

(bq/2) Aq

)
(7)

It is obvious that the q 
→ M(q) is linear. Let A ∈ Md×d, b ∈ R
d, and q be a

quadratic form, we have, for all x ∈ R
d:

q(Ax + b) =
(

1
x

)ᵀ (
1 01×d

b A

)ᵀ
M(q)

(
1 01×d

b A

)(
1
x

)
. (8)

Lemma 2. Let A ∈ Sd, b ∈ R
d and c ∈ R. Then: (∀ y ∈ R

d, yᵀAy + bᵀy +
c ≥ 0) ⇐⇒ M(A, b, c) ∈ S

+
d+1

Definition 9 ((Cone)-copositive matrices). Let M ∈ Mm×d. A matrix
Q ∈ Sd which satisfies

My ≥ 0 =⇒ yᵀQy ≥ 0

is called M -copositive.
An Idd-copositive matrix is called a copositive matrix. We denote by Cd (M)

the set of M -copositive matrices and Cd the set of copositive matrices.

Lemma 3. A quadratic function q is nonnegative over a polyhedron P if and
only if q is nonnegative on the topological closure of P .

For P ∈ Mn×m and c ∈ R
n, we define the following matrix:

H (P, c) =
(

1 01×m

c −P

)
∈ M(n+1)×(m+1) (9)

We also use the notation H (C) for a polyhedron C with the same meaning
i.e. if C =

{
x ∈ R

d |Psx � bs, Pwx ≤ bw} and we have P =
(

Ps

Pw

)
and b =

(
bs
bw

)
,

then H (C) = H (P, b).

Lemma 4. Let P ∈ Mn×m and c ∈ R
n. Then, for all x ∈ R

n, Px ≤ c ⇐⇒
H (P, c)

(
1
x

)
≥ 0.
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Lemma 5. Let q : Rd → R
d be a quadratic function and C be a polyhedron.

Then M(q) ∈ Cd+1 (H (C)) =⇒ (q(x) ≥ 0, ∀x ∈ C).

Cone-copositive matrix characterizations is an intensive research field and a list
of interesting papers about can be found in [5].

Proposition 2 (Theorem 2.1 of [10]). Let M ∈ Mm×d. Then:

{MᵀCM + S | C ∈ Cd and S ∈ S
+
d } ⊆ Cd (M) (Δ)

If the rank of M is equal to m, then (Δ) is actually an equality.

The next proposition discusses simple a characterization of copositive matrices
as a sum of a semi-definite positive matrix and a nonnegative matrix.

Proposition 3 ([8,11]). We have: ∀ d ∈ N: S
≥0
d + S

+
d ⊆ Cd. If d ≤ 4 then

Cd = S
≥0
d + S

+
d .

Corollary 2. Let M ∈ Mm×d. Then:

Cd (M) ⊇
{

Q ∈ Sd

∣
∣
∣
∣
∃Wp ∈ S

≥0
m , W+ ∈ S

+
m, s. t.

Q − Mᵀ (Wp + W+) M � 0

}
(�)

If M has full row rank and d ≤ 4, then (�) is actually an equality.

Copositive constraints study is a quite recent field of research. Algorithms exist
(e.g. [6]) but for the knowledge of the author no tools are available. In this paper,
in practice, we use Corollary 2 and we replace Cd (M) by the right-hand side of
Eq. (�).

Example 5 (Why is there (1, 01×d) in H (P, c)?). Consider X = {x ∈ R | x ≤ 1}.
Let u(x) = (1, x), and M = (1 −1) (this corresponds to H (1, 1) without (1, 0)).
Then X = {x | Mu(x)ᵀ ≥ 0}.

In R, positive semidefinite matrices and matrices with nonnegative coeffi-
cients define the same set that is the set of nonnegative reals. Now let W ≥ 0
and define X ′ = {x | u(x)MᵀWMu(x)ᵀ ≥ 0}. Since u(x)MᵀWMu(x)ᵀ =
Wu(x)MᵀMu(x)ᵀ = 2W (1 − x)2, X ′ = R for all W ≥ 0.

Now let us take E = H (1, 1) and let W = ( w1 w3
w3 w2 ) with w1, w2, w3 ≥ 0

and define X = {x | u(x)EᵀWEu(x)ᵀ ≥ 0}. Hence, u(x)Eᵀ( w1 w3
w3 w2 )Eu(x)ᵀ =

w1+2w3(1−x)+w2(1−x)2. Taking for example w2 = w1 = 0 and w3 > 0 implies
that X = X. Note that, in this case, we can choose the positive semidefinite
certificate equal to ( 0 0

0 0 ).

3.2 Inductiveness

Come back to the invariant proof. Recall that we are looking for a sublevel
of a piecewise quadratic function that overapproximate RP that minimizes the
abstraction. Since, we are interested in a piecewise quadratic function, we need a
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polyhedric partition. Let us denote by S = (S1, . . . , Sn) the unknown polyhedric
partition. We associate for all indices i ∈ [n] of the partition, a quadratic form
x 
→ xᵀP ix + 2xᵀqi + ri. Then, we have:

Sind =
⋃

i∈[n]

Si,ind where Si,ind = {x ∈ Si | xᵀP ix + 2xᵀqi + ri ≤ 0} (10)

Lemma 6 (Partial S-Lemma). Let q1, q2 be two quadratic forms over R
m

and C be a polyhedron of Rm. If the following assertion

(∃λ ∈ R+, y ∈ C =⇒ λq1(y) − q2(y) ≥ 0)

holds then the following assertion

(y ∈ C ∧ q1(y) ≤ 0 =⇒ q2(y) ≤ 0)

is true.

Remark 1. If Lemma 6, q1 and −q2 are convex and there exists x0 ∈ R
m which

belongs to the interior of C and satisfies q1(x0) < 0 then the two assertions of
Lemma 6 are equivalent.

We now write SDP conditions to constraint Sind to satisfy F (Sind) ⊆ Sind. Recall
that F (C) = X in ∪ ⋃

i∈I f i
(
C ∩ Xi

)
. So F (Sind) ⊆ Sind if and only if:

X in ⊆ Sind and ∀ i ∈ I, f i
(
Xi ∩ Sind

) ⊆ Sind

First, let us consider X in ⊆ Sind. We use the polyhedric partition S to decompose
X in in subproblems X in ∩ Si ⊆ Sind. Then, we use the fact that for i �= j,
Si ∩ Sj = ∅ and then X in ∩ Si cannot meet Sj for j �= i. Hence, we have
X in∩Si ⊆ Sind if and only if X in∩Si ⊆ Si,ind. Finally, from Eq. (10), X in ⊆ Sind

is equivalent to, for all i ∈ Com({X in},S),

−xᵀP ix − 2xᵀqi − ri ≥ 0,∀x ∈ X in ∩ Si

Recall that X in and Si are both polyhedra, the constraint on Sind, X in ⊆ Sind is
equivalent on a finite number of constraints imposing the positivity of a quadratic
form over a known polyhedron. Then, we can reinforce the constraint by applying
Lemma 5 and finally to constraint Sind to satisfy X in ⊆ Sind, we impose:

∀ i ∈ Com({X in},S), M(−P i,−2qi,−ri) ∈ Cd+1

(
H

(
X in ∩ Si

))
. (11)

Now, we study the second constraint that is for all i ∈ I, f i
(
Xi ∩ Sind

) ⊆ Sind.
For i ∈ I, we write:

(f i)−1(S) = {(f i)−1(S1), . . . , (f i)−1(Sn)},

this forms a polyhedric partition of Rd since S is. Let i ∈ I. We use the same
principle as for X in ⊆ Sind and we decompose f i

(
Xi ∩ Sind

)
using the poly-

hedric partition S. First from Eq. (10) and since the direct image of union
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is the union of image, we have f i
(
Xi ∩ Sind

)
= ∪j∈[n]f

i
(
Xi ∩ Sj,ind

)
. Then

we use the fact that S is a polyhedric partition, we get f i
(
Xi ∩ Sind

)
=

∪k∈[n] ∪j∈[n] f
i
(
Xi ∩ Sj,ind

) ∩ Sk. Again, from the fact that the polyhedra Sks
cannot meet each others, we conclude that f i

(
Xi ∩ Sj,ind

) ∩ Sk ⊆ Sind if and
only if f i

(
Xi ∩ Sj,ind

) ∩ Sk ⊆ Sk,ind. Finally, we can restrict the indices (j, k)
to those such that (i, j, k) belongs Com(X ,S, f i−1(S)). In conclusion, the state-
ment: for all i ∈ I, f i

(
Xi ∩ Sind

) ⊆ Sind, is equivalent to:

∀ i ∈ I, ∀ (j, k) ∈ [n]2 s. t. (i, j, k) ∈ Com(X ,S, f i−1
(S)),

∀x ∈ Xi ∩ Sj,ind ∩ (f i)−1(Sk), f i(x)ᵀP kf i(x) + 2f i(x)ᵀqk + rk ≤ 0. (12)

Note that Sj,ind is actually the intersection of the polyhedron Sj and the ellipsoid
{x | xᵀP jx+2xᵀqj+rj ≤ 0} and thus the constraint x ∈ Sj,ind is the conjonction
of affine constraints and a quadratic constraint. Moreover, Xi∩Sj ∩(f i)−1(Sk) is
a polyhedron then we can apply Lemma 6 to get a stronger condition to enforce
the constraint on P j , P k, qj , qk and rj , rk of Eq. (12) and we obtain:

∀x ∈ Xi ∩ Sj ∩ (f i)−1(Sk),

rj + 2xᵀqj + xᵀP jx − f i(x)ᵀP kf i(x) − 2f i(x)ᵀqk − rk ≥ 0. (13)

In Eq. (13), we use Lemma 6 with the positive scalar λ equal to 1 to avoid to
introduce a bilinear constraint. In Eq. (13), we recognize a positivity constraint
of a quadratic form on a polyhedron and thus can be reinforced by a stronger
constraint involving cone-copositive matrices. Finally the constraint for all i ∈ I,
f i

(
Xi ∩ Sind

) ⊆ Sind is replaced by the stronger condition:

∀ i ∈ I, ∀ (j, k) ∈ [n]2 s. t. (i, j, k) ∈ Com(X ,S, f i−1
(S)),

M(P j , 2qj , rj) − F iM(P k, 2qk, rk)F i ∈ Cd+1

(
H

(
Xi ∩ Sj ∩ (f i)−1(Sk)

))

(14)

3.3 Optimality

We detail how to evaluate supx∈Sind xᵀMx + 2pᵀx. First, since:

sup
x∈Sind

xᵀMx + 2pᵀx = inf{η | η − xᵀMx − 2pᵀx ≥ 0, ∀x ∈ Sind}

Now η − xᵀMx − 2pᵀx ≥ 0, ∀x ∈ Sind is equivalent to say that for all i ∈ [n],
we have η −xᵀMx−2pᵀx ≥ 0 for all x ∈ Si ∩{y ∈ R

d | yᵀP iy +2yᵀqi + ri ≤ 0}.
Since xᵀP ix + 2xᵀqi + ri ≤ 0 is a quadratic constraint and Si is a polyhedron
then we can apply Lemma 6. Finally η−xᵀMx−2pᵀx ≥ 0, ∀x ∈ Sind is replaced
by the stronger constraint:

M(P i, 2qi, ri) − M(M, 2p,−η) ∈ Cd+1

(
H

(
Si

))
(15)

Theorem 1 (Optimality). Assume there exists {(P i, qi, ri), P i ∈ Sd, q
i ∈

R
d, i ∈ [n]}, a polyhedric partition S = (S1, . . . , Sn) and a real η such that

Eqs. (11), (14) and (15) hold. Recall that Sind =
⋃

i∈[n]{x ∈ Si | xᵀP ix +
2xᵀqi + ri ≤ 0}. Then, R ⊆ Sind ⊆ {x ∈ R

d | xᵀMx + 2xᵀp ≤ η}.
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3.4 Implementable Model Using Semidefinite Programming

Finally, we construct a model using semidefinite programming. First, we choose
as polyhedric partition the one of the system i.e. S = X . Second, as said before,
we use Corollary 2 to rewrite copositive constraints as semidefinite ones. Then
Eq. (11) becomes:

∀ i ∈ Com({X in},X ),

M(−P i,−2qi,−ri) − H
(
X in ∩ Xi

)ᵀ (
Zi

p + Zi
+

)
H

(
X in ∩ Xi

) � 0 (16)

where Zi
p are unknown matrices with nonnegative coefficients and Zi

+ are
unknown positive semidefinite matrices. Since S = X , then Xi ∩ Sj in Eq. (14)
is replaced by Xi and Eq. (14) becomes:

∀ i ∈ I, ∀ k ∈ I s. t. (i, k) ∈ Com(X , f i−1
(X ))

M(P i, 2qi, ri) − F iᵀM(P k, 2qk, rk)F i

−H
(
Xi ∩ (f i)−1(Xk)

)ᵀ (
U ik

p + U ik
+

)
H

(
Xi ∩ (f i)−1(Xk)

) � 0 ; (17)

where U ik
p are unknown matrices with nonnegative coefficients and U ik

+ are
unknown positive semidefinite matrices. Equation (15) becomes:

∀ i ∈ I, M(P i, 2qi, ri)−M(M, 2p,−η)−H
(
Xi

)ᵀ (
W i

p + W i
+

)
H

(
Xi

) � 0 (18)

where W i
p are unknown matrices with nonnegative coefficients and W i

+ are
unknown positive semidefinite matrices. Let us introduce the following families:

– P := {(P i, qi, ri), P i ∈ Sd, q
i ∈ R

d, i ∈ I}
– W := {(W i

p,W
i
+

) ∈ S
≥0
ni+1 × S

+
ni+1, i ∈ I},

– U := {
(
U ij

p , U ij
+

)
∈ S

≥0
nik

× S
+
nik

, (i, k) ∈ Com(X , f i−1(X ))}
– Z := {(Zi0

p , Zi0
+

) ∈ S
≥0
ni0

× S
+
ni0

, i ∈ Com({X in},X )}
The integers ni + 1 are the sizes of the matrices H

(
Xi

)
, nik the sizes of the

matrices H
(
Xi ∩ (f i)−1(Xk)

)
and ni0 the sizes of the matrices H

(
X in ∩ Xi

)
.

Let us consider the problem:

inf
P,W,U,Z,

α,β

−∑
i ri + η

s. t.
{

(P,W,U ,Z, η) satisfies (18), (17) and (16)
∀ i ∈ I, ri ≤ 0, η ∈ R

(PSD)

Problem (PSD) is thus a semi-definite program. The use of the sum −∑
i ri + η

as objective function enforces the functions x 
→ xᵀP ix+2xᵀqi + ri to provide a
minimal bound η and a minimal ellipsoid containing the initial conditions. How-
ever, ri ≤ 0 is not natural but ensures that the objective function is bounded
from below. The presence of the constraint ri ≤ 0 does not affect the feasibil-
ity. Note that to reduce the size of the problem, we can take qi = 0 and get
homogeneous functions.
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3.5 Results on Example 1

Boundedness Property. Recall the running example which consists of the
following PWA: X in = [−1, 1] × [−1, 1], and, for all k ∈ N:

xk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

A1xk if xk,1 ≥ 0 and xk,2 ≥ 0
A2xk if xk,1 ≥ 0 and xk,2 < 0
A3xk if xk,1 < 0 and xk,2 < 0
A4xk if xk,1 < 0 and xk,2 ≥ 0

with

A1 =
( −0.04 −0.461

−0.139 0.341

)
, A2 =

(
0.936 0.323
0.788 −0.049

)

A3 =
(−0.857 0.815

0.491 0.62

)
, A4 =

(−0.022 0.644
0.758 0.271

)

Then, we have X1 = R+×R+, X2 = R+×R
∗
−, X3 = R

∗
−×R

∗
− and X4 = R

∗
−×R+.

Hence, X = {X1,X2,X3,X4}. We write f−1(X ) for the union of the polyhedric
partitions (f i)−1(X ).

We are interested in proving the boundedness of the reachable values set of
the PWA. Then, we have to solve the optimization problem:

sup
(x1,x2)∈R

||(x1, x2)||22

To get an overapproximation of the optimal value sup(x1,x2)∈R ||(x1, x2)||22 we
solve Problem (PSD). Before it, we have to compute the two sets of indices
Com({X in},X ) and Com(X , f−1(X )). From Corollary 1, we computed using lin-
ear programming Com({X in},X ) = {1, 2, 3, 4} and Com(X , f−1(X )) = {(i, j) |
S(i, j) = 1} with S =

(
1 0 1 1
1 0 0 1
0 1 1 0
1 1 0 0

)
.

Now by solving Problem (PSD), we get a (optimal) piecewise quadratic func-
tion V ind characterized by the following matrices:

P 1 =
(

1.1178 −0.1178
−0.1178 1.1178

)
, P 2 =

(
1.5907 0.5907
0.5907 1.5907

)
,

P 3 =
(

1.3309 −0.3309
−0.3309 1.3309

)
, P 4 =

(
1.2558 0.2558
0.2558 1.2558

)

The vectors q1, q2 q3 and q4 are equal to the null vector. Since r1 = r2 = r3 =
r4 = −2 and η = 2, then R ⊆ ∪i∈{1,2,3,4}{x ∈ Xi | xᵀP ix ≤ 2} ⊆ {x ∈ R

2 |
||x||22 ≤ 2}. The sets R (a discretized version of it) and {x ∈ R

2 | V ind(x) ≤ 2}
are depicted at Fig. 2.

Optimal Value for the First Coordinate. We still consider the running
example Example 1 but now, we are interested in the first coordinate. Thus, we
consider the following optimization problem: sup(x1,x2)∈R x2

1. Now by solving
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Problem (PSD), we get a (optimal) PQL function V ind characterized by the
following matrices:

P 1 =
(

1.0585 −0.1169
−0.1169 0.2339

)
, P 2 =

(
1.0276 0.0553
0.0553 0.1105

)
,

P 3 =
(

1.1739 −0.3478
−0.3478 0.6956

)
, P 4 =

(
1.1220 0.2440
0.2440 0.4880

)

For this problem, the vectors q1, q2 q3 and q4 are equal to the null vector and
r1 = −1.0585, r2 = −1.0276, r3 = −1.1739 and r4 = −1.122 and η = 1.1739.
Then, the optimal value sup(x1,x2)∈R x2

1 ≤ 1.1739. Moreover, it seems that the
maximum is reached in the cell X3.

Optimal Value for the Second Coordinate. We again consider the running
example Example 1 and we consider the values taken by the second coordinate.
Thus, we consider the following optimization problem: sup(x1,x2)∈R x2

2. Now by
solving Problem (PSD), we get a (optimal) PQL function V ind characterized by
the following matrices:

P 1 =
(

0.0198 −0.0099
−0.0099 1.0050

)
, P 2 =

(
0.6919 0.2292
0.2292 1.0759

)
,

P 3 =
(

0.5746 −0.1706
−0.1706 1.0759

)
, P 4 =

(
0.6109 0.3054
0.3054 1.1527

)

For this problem, the vectors q1, q2 q3 and q4 are equal to the null vector and
r1 = −1.0050, r2 = −1.3094, r3 = −1.3094 and r4 = −1.1527 and η = 1.3094.
Then, the optimal value sup(x1,x2)∈R x2

2 ≤ 1.3094. Moreover, it seems that the
maximum is reached in the cell X3 and in the cell X4.

A random property. Let us prove that the reachable value set is fully con-
tained in the ellipsoid {(x, y) ∈ R

2 | −x2 + 2y2 − xy + x − 0.5y ≤ 6}. Thus,
we consider the following optimization problem: sup(x1,x2)∈R −x2 + 2y2 − xy +
x − 0.5y. Now by solving Problem (PSD), we get a (optimal) PQL function V ind

characterized by the following matrices:

P 1 =
(

0.4226 −0.8129
−0.8129 2.0688

)
, P 2 =

(
0.4558 −0.1418

−0.1418 2.4936

)
,

P 3 =
(

1.9959 −0.5084
−0.5084 2.1136

)
, P 4 =

(
1.4772 0.7386
0.7386 2.6193

)

For this problem, the vectors q1, q2 q3 and q4 are equal to the null vector and
r1 = −2.0688, r2 = −3.2331, r3 = −3.0927 and r4 = −2.6193 and η = 5.2936.
Then, the optimal value sup(x1,x2)∈R −x2 + 2y2 − xy + x − 0.5y ≤ 5.2936. This
results validates the property.
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4 Conclusion and Future Works

The paper presents an implementable method to prove automatically that the
reachable values set of a PWA is contained in an ellipsoid. In this case, to check
the property is equivalent to solve a maximization problem. The constraint of
this maximization problem is formulated as to belong to the reachable values
set of the analyzed PWA. By using abstraction by union of truncated ellipsoids,
we get an overapproximation of the optimal value of the problem. The method
developed in the paper uses a semidefinite relaxation of copositive constraints.

First, we plan to complete the benchmarks: to apply the method for more
non-trivial properties such that the avoidance of unsafe regions or “viability”
properties. Some easy extensions can be done such as the consideration of union
of truncated ellipsoids as property set representations instead of ellipsoids. An
extension to constrained piecewise affine systems i.e. with a stopping condition
on the system can be easily considered.
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10. Martin, D.H., Jacobson, D.H.: Copositive matrices and definiteness of quadratic
forms subject to homogeneous linear inequality constraints. Linear Algebra Appl.
35, 227–258 (1981)

11. Maxfield, J.E., Minc, H.: On the matrix equation X’X = A. Proc. Edinb. Math.
Soc. (Series 2) 13(12), 125–129 (1962)

12. Mignone, D., Ferrari-Trecate, G., Morari, M.: Stability and stabilization of piece-
wise affine and hybrid systems: an lmi approach. In: Proceedings of the 39th IEEE
Conference on Decision and Control, vol. 1, pp. 504–509 (2000)

13. Motzkin, T.S.: Two consequences of the transposition theorem on linear inequali-
ties. Econometrica 19(2), 184–185 (1951)



Formal Analysis of Engineering Systems Based
on Signal-Flow-Graph Theory

Sidi Mohamed Beillahi(B), Umair Siddique, and Sofiène Tahar

Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC, Canada

{beillahi,muh sidd,tahar}@ece.concordia.ca

Abstract. Signal-flow-graph theory provides an efficient framework to
model various engineering and physical systems at a higher-level of
abstraction. In this paper, we present the formalization of the signal-
flow-graph theory with an ultimate goal to conduct the formal analysis
of engineering systems within a higher-order-logic theorem prover. In par-
ticular, our formalization can tackle system models which are based on
undirected graphs. We also present the formalization of the system trans-
fer function and associated properties such as stability and resonance.
In order to demonstrate the effectiveness of our work, we present the
formal analysis of two engineering systems namely the PANDA Vernier
resonator and the z-source impedance network, which are commonly used
in photonics and power electronics, respectively.

1 Introduction

A signal-flow-graph (SFG) [17] is a diagram that represents a set of simultaneous
linear algebraic equations describing the flow of different physical quantities
(e.g., electric current) from one point of the system to another point. Many
physical and engineering systems ranging from analog circuits to photonic signal
processors can be represented using the signal-flow-graph theory. Generally, there
are two types of SFGs, i.e., directed and undirected [23,24]. In a directed SFG,
nodes should be ordered, whereas an undirected SFG does not require a strict
ordering of nodes which makes it more convenient to model a variety of systems
such as photonic filters and analog power converters.

Once an SFG representation of the underlying system has been built, the next
step is to analyze the corresponding behavior to ensure that the system meets
its specification. The Mason’s Gain Formula (MGF) [15,16] provides an efficient
way to obtain a transfer function (input-output relation) directly from the SFG
representation. Moreover, the obtained transfer function is used to investigate
different properties of the system such as stability (which ensures that the output
is bounded whenever the input in bounded). Some of the main applications of
MGF include the analysis of wireless networks [14], security protocols [7], process
engineering [13], power electronics [12,20] and photonic signal processing [5].

In the past few decades, formal methods [6] have been successfully applied
to improve the analysis of a variety of software, hardware and physical systems.
c© Springer International Publishing AG 2017
S. Bogomolov et al. (Eds.): NSV 2016, LNCS 10152, pp. 31–46, 2017.
DOI: 10.1007/978-3-319-54292-8 3



32 S.M. Beillahi et al.

The main idea behind formal analysis of a system is to construct a computer
based mathematical model of the given system and formally check that the model
meets its specifications. The rigorous process of building a mathematical model
for the given system and analyzing this model using mathematical reasoning
usually increases the chances for catching subtle but critical design errors that are
often ignored by traditional techniques such as paper-and-pencil based proofs,
numerical methods or simulation. Given the extensive usage of signal-flow-graph
to model engineering systems that are employed in safety-critical applications,
we believe that there is a dire need of building a formal framework to reason
about the signal-flow-graph theory.

The involvement of complex-valued parameters requires an expressive tech-
nique to formalize the notions of the signal-flow-graph theory and MGF. Higher-
order-logic (HOL) theorem proving [11] is a generic formal methods technique
which provides such an expressive formalism to reason about multivariate analy-
sis. In [4], we used the HOL Light theorem prover to formalize the notion of
signal-flow-graph theory and the procedure to obtain the transfer function for
directed SFGs based on MGF. We applied this formalization to verify the sta-
bility of power electronic converters. However, this formalization can only be
used for directed SFGs which limits its usage for many practical systems. In this
paper, we build upon our previous work and formalize undirected SFG theory
and MGF along with the notion of system stability. We apply this formaliza-
tion to two distinct domains, i.e., power electronics and photonics. Indeed, we
present in this paper the formal verification of z-source impedance network [10]
and PANDA Vernier resonator [1] which are commonly used systems in power
electronics and photonics, respectively. The source code of our formalization is
available for download [2] and can be utilized by other researchers and engineers
for further developments and the analysis of more practical systems.

The rest of the paper is organized as follows: we give a preliminary review of
the SFG theory and the Mason’s Gain Formula in Sect. 2. We present the HOL
formalization of undirected SFGs in Sect. 3. Consequently, in Sect. 4, we provide
the formalization of transfer functions along with the notion of stability and
resonance. We describe the formal analysis of the z-source impedance network
and PANDA Vernier resonator as illustrative practical applications in Sects. 5
and 6, respectively. Finally, Sect. 7 concludes the paper and provides hints for
some future directions.

2 Signal-Flow Graphs Theory and Mason’s Gain Formula

Mathematically, a signal-flow-graph represents a set of linear algebraic equa-
tions of the corresponding system [16]. An SFG is a network in which nodes are
connected by directed branches. Every node in the network represents a system
variable and each branch represents the signal transmission from one node to the
other under the assumption that signals flow only in one direction. An example
of an SFG is shown in Fig. 1 consisting of six nodes. An input or source node and
an output or sink node are usually the ones which only have outgoing branches
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and incoming branches, respectively (e.g., nodes 1 and 6 in Fig. 1). A branch is
a directed line from node i to j and the gain of each branch is called the trans-
mittance. A path is a traversal of connected branches from one node to the other
and if no node is crossed more than once and connects the input to the output,
then the path is called forward path, otherwise if it leads back to itself without
crossing any node more than once, it is considered as a closed path or a loop. A
loop containing only one node is called a self loop and any two loops in the SFG
are said to be touching loops if they have any common node. The total gain of
a forward path and a loop can be computed by multiplying the transmittances
of each traversed branch. In the analysis of practical engineering systems (resp.
process), the main task is to characterize the relation among the system’s (resp.
process) input and output which is called the transfer function. The total trans-
mittance or gain between two given nodes (usually input and output) describes
the transfer function of the corresponding system. In 1953, Mason [16] proposed
a computational procedure (also called Mason’s Gain Formula) to obtain the
total gain of any arbitrary signal-flow-graph. The formula is described in Eq. 1
as follows:

G =
∑

k

GkΔk

Δ
(1)

Δ = 1 −
∑

m

Pm1 +
∑

m

Pm2 −
∑

m

Pm3 + . . . + (−1)n
∑

. . . (2)

where Δ represents the determinant of the graph, Δk represents the value of
Δ for the part of the graph that is not touching the kth forward path and
it is called the cofactor of forward path k, Pmr is the gain product of mth

possible combination of r non-touching loops. The gain of each forward path is
represented by Gk.

For example, in Fig. 1 taking the nodes 1 and 6 as the input and output
nodes, respectively. There is one forward path (1 → 2 → 3 → 4 → 5 → 6) and

1 5 6

3 4

2

g23
g34

g43

g52

g22

g45

g56g12

Fig. 1. A signal-flow graph
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three loops (2 → 2, 2 → 3 → 4 → 5 → 2 and 3 → 4 → 3). Thus, we can find the
input to output transfer function using the MGF as follows:

G =
g12.g23.g34.g45.g56

1 − g22 − g23.g34.g45.g52 − g34.g43 + g22.g34.g43
(3)

3 Formalization of Undirected Signal-Flow-Graph Theory

We model a single branch as a triplet (a, tab, b), where a, tab and b represent the
start node, the transmittance and the end node, respectively. Consequently, a
path can be modeled as a list of branches and furthermore an SFG can be defined
as a composition of paths along with the information about the total number of
nodes in the circuit, the source and the sink nodes at which we want to compute
the transfer function. As mentioned before, nodes and transmittance represent
the system variables and gain, respectively. These parameters are indeed com-
plex valued, i.e., a, tab, c ∈ C in the general context of engineering and physical
systems. However, the information about the nodes is just used to find proper-
ties of signals (current) transmission and they do not appear in the gain and
transfer function computation. So, we adapted the conventional approach as in
[16], where nodes of an SFG are represented by natural numbers (N). In order
to simplify the reasoning process, we encode the above information by defining
three type abbreviations in HOL Light1, i.e., branch, path and signal-flow-graph
as follows:

Definition 1 (Branch, Path and SFG).

new type abbrev ("branch", ‘:N × C × N‘)
new type abbrev ("path", ‘:(branch)list‘)
new type abbrev ("sfg", ‘:path × N × N × N‘)

where the second, third, and fourth elements of sfg represent the size, the output
node and the input node of a signal-flow graphs, respectively. It is important
to notice that in the definition of the branch, we did not add any constraint
regarding the order of the two nodes of the branch which makes this formalization
valid for both cases of directed and undirected graphs.

Our next main task is to find all forward paths and loops from the source
node to the sink node for the given system. In [4], we implemented a search
algorithm proposed in [24], which considers only directed graphs. In order to
extend this work to cover both types (i.e., directed and undirected) of SFGs, we
enhanced this algorithm by using some new features of the graph.

In [24], the author used two matrices (G and H) and a vector (P) to perform
the search in an SFG. The matrix G contains the information about the graph,
in particular, each row i of G contains the nodes where there are branches from
i that end at these nodes. The vector P contains the path under consideration

1 In this paper, we use minimal HOL Light syntax in the presentation of definitions
and theorems to improve the readability.
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in the search process, where the first element in the vector is the head of the
path from which the search begins to construct the path. The matrix H is to
ensure that we do not extract the same path twice. Each row i in the matrix H
contains the nodes that cannot form a path with i (dead nodes). The procedure
for extracting the loops can be subdivided into five steps as follows:

1. We first extract the graph information inside the matrix G and initialize the
matrix H to 0. Then we initialize the elements of the vector P to 0 except the
first element (which we initialize to 1) from which the search will start.

2. In the second step, we have a node i which is the tail of the vector P and we
search for a node j in the graph that satisfies three conditions: (a) j is not in
P (i.e., j is not already part of the path); (b) j is not in H(i) (i.e., j is not
a dead node for i); (c) j >i (i.e., all paths are directed). The last condition
constraints the application of this procedure on undirected SFGs. If j is found
we add it in the vector P and repeat the process by replacing i by j. Finally,
if no j is found, we stop the search and move to the next step.

3. In the third step, we want to confirm that the found path in the previous
step is indeed a loop. If a loop is found, we report it and in all cases we go to
the next step.

4. In this step, we confirm that an exhaustive search has been performed for all
the loops that can start from the head of the vector P, otherwise, we initialize
the row of H that contains all the dead nodes to the last node of vector P.

5. In this step, we check if the head of the vector P is the last node in the graph
which indicates the termination of the search, otherwise, we replace the head
of the vector P by the next node in the graph and we go back to the second
step.

Note that the above procedure with slight modifications can be used for
the forward path extraction. In order to extend this algorithm for undirected
SFGs, we add two new matrices G1 and H1. The matrix G1 contains some extra
information about the graph where each row i contains the nodes where there
are branches that start from these nodes and end at i. In graph theory, any
element of a loop can be the head of the loop. Therefore, for computing loops
this means that if we once did exhaustive search for all the loops that start from
a certain node i then in the search for loops that start from another node j we
do not need to consider the node i. This means i is a dead node for j. Hence,
the matrix H1 keeps track of these new dead nodes. The corresponding changes
in the Steps 2 and 5 are summarized as follows:

– We change the third condition for extending the search and replace it by
checking if j is not in H1(i) (means j is not a dead node for i).

– We add a new procedure by inserting the head of P in all the rows i of H1 if
there is a branch that starts from node i and ends at the head of P.

We next provide the definitions of two crucial functions in our formalization of
undirected SFG that perform the Steps 2 and 5. The complete HOL formalization
of the SFG theory can be found at [2].
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Definition 2 (Next Node Search).

� ∀(n m ∈ N) (t1 t2 l1 l2 h1 ∈ N list).
EC next node n m [] t2 l1 l2 h1 = 0 ∧
EC next node n (m + 1) (e1::t1) (e2::t2) l1 l2 h1 =
EC next node n m (e1::t1) t2 l1 l2 h1 ∧
EC next node n 0 (e1::t1) (e2::t2) l1 l2 h1 =
if ((NOT IN LIST e1 l1) ∧ (NOT IN LIST e1 l2) ∧ (NOT IN LIST e1 h1))
then n + 1 else EC next node (n + 1) 0 t1 (e2::t2) l1 l2 h1

where the vector P, the row H(i), and the row H1(i) are represented as the lists l1,
l2, h1, respectively. The function NOT IN LIST accepts a list and an element and
tests the membership of the element. The main function EC next node returns
(n + 1), which represents the position of the node e1 inside the list G[k] (list t1
in the definition) that satisfies the three conditions in Step 2, where k is the
termination node for the considered path. In the process of searching for a path
all the graph nodes are considered.

Next, we define the procedure to update the matrix H1 after completing the
search for loops that start from a given node e1. Here, e1 will be a dead node
for all nodes for which branches exist that end at e1:

Definition 3 (Updating the Matrix H1).

� ∀ (e1 : num) (H1 : (num list) list) (l : num list).
EC H1 MODIFIED e1 H1 [] = H1 ∧
EC H1 MODIFIED e1 H1 (h::l) =
EC H1 MODIFIED e1 (EC H1 REPLACE (EC H MODIFIED0 H1[h − 1] e1) (h − 1) H1) l

where EC H MODIFIED0 accepts an element e1 and a list l (i.e., H1[h − 1]) and
searches for the leftmost zero in the list l and replaces it by e1. The func-
tion EC H1 REPLACE takes a list l (i.e., EC H MODIFIED0 H1[h − 1] e1), an integer
(h − 1) and the matrix then it replaces the row H1[h − 1] by l inside the matrix H.

A transpose of an SFG can be obtained by inverting all the branches and
swapping input and output. We formally define the inversion of branches as
follows:

Definition 4 (Inverse of Graph Branches).

� ∀ (l : path). SFG INVERSE [] = [] ∧ SFG INVERSE e :: l =
(lst of trpl e, snd of trpl e, fst of trpl e)::SFG INVERSE l

Here fst of trpl, snd of trpl, and lst of trpl return the first, second, and
last element of a given triple, respectively. Using this definition, we formalize the
graph transposition as follows:

Definition 5 (Graph Transpose).

� ∀ sfg. SFG TRANSPOSE sfg =
(SFG INVERSE (fst of four sfg), snd of four sfg,
lst of four sfg, thd of four sfg)

In the next section, we provide the formalization of transfer function, Mason’s
gain formula and some associated properties.
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4 Formalization of Transfer Function

As described in Sect. 2, Meson’s Gain Formula requires the list of all loops to
find the graph determinant and the list of forward paths to compute the graph
numerator. We provide in below the main definition in the transfer function
formalization, however, the complete formalization can be found at [2].

Definition 6 (Mason’s gain formula).

� ∀ (system : sfg). Mason Gain system =
PRODUCT FORWARD DELTA (EC system) (FC system)

DETERMINANT (EC system)

where Mason Gain accepts an SFG (i.e., system) and returns the Mason’s gain
as given in Eq. 1. Notice that the function PRODUCT FORWARD DELTA accepts the
lists of loops and forward paths (computed in Sect. 3) in the graph and computes∑

k∈system

GkΔk, where Gk and Δk represent, respectively, the product of all forward

path gains and the determinant of the kth forward path considering the elim-
ination of all loops touching the kth forward path as described in Sect. 2. The
function DETERMINANT takes the list of loops and produces the determinant of the
graph as described in Eq. (2). Finally, we utilize the above formalization along
with loops and forward paths extraction procedures to formalize the transfer
function of a given engineering system as follows:

Definition 7 (System Transfer Function).
� ∀ system. transfer function system = Mason Gain (λs. system s)

where the function transfer function accepts a system which has type
C → sfg and returns a complex (C) number which represents the transfer func-
tion of the engineering system (i.e., system). Here “s” is a complex parameter
of the given system.

The availability of the transfer function provides the facility to analyze the
stability and resonance conditions for the given system. Mathematically, the
stability and resonance are concerned with the identification of all the values of
s for which the system transfer function becomes infinite and zero, respectively.
In the control theory and signal processing literature, these values are called
system poles and system zeros which can be computed by the denominator and
numerator of the transfer function, respectively. Furthermore, all poles and zeros
must be inside the unit circle which means that their complex norm should be
less or equal to 1. We formalize the above mentioned informal description of the
system properties in HOL as follows:

Definition 8 (System Poles).
� ∀ system. poles system = {s | denominator (system s) = 0}
� ∀ system. zeros system = {s | numerator (system s) = 0}
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where the functions poles and zeros take the system as a parameter and return
the set of poles and zeros, respectively. Next, we formalize the notion of stability
and resonance as follows:

Definition 9 (System Stability and Resonance).

� ∀ system. is stable system [p0, ..., pn] ⇔
∀pi. pi ∈ (poles system) ∧ ‖ pi ‖≤ 1

� ∀ system. is resonant system [z0, ..., zn] ⇔
∀zi. zi ∈ (zeros system) ∧ ‖ zi ‖≤ 1

where the predicate is stable accepts a signal-flow-graph model (i.e., system)
and a list of poles [p0, ..., pn] and verifies that each element pi is indeed a pole of
the system and its corresponding magnitude (i.e., norm of a complex number,
‖ pi ‖) is smaller or equal to 1. The predicate is resonant is defined in a similar
way by considering the list of zeros instead of the list of poles of the system. In
the above formalization, pi and zi are continuous complex functions.

In the following sections, we present the formal analysis of two engineering
systems namely z-source impedance network and PANDA Vernier resonator. It is
important to notice that the SFG of the PANDA Vernier resonator is undirected
(e.g., the branch between the nodes 10 and 5). Furthermore, the SFG of the z-
source impedance network is directed, however, its transpose is undirected.

5 Z-Source Impedance Network

The z-source is an impedance-source power converter that is considered to be
more efficient than other commonly used power converters [19]. In [18], the
authors claimed that the model of z-source can be applied to almost all DC-to-
AC, AC-to-DC, AC-to-AC, and AC-to-DC power conversions. Thus it has been
used in hybrid electric vehicles with dual mode, i.e., as a boost converter and
buck converter [8]. The topology of z-source is composed of two-port network
that consists of a split-inductors L1 and L2 and capacitors C1 and C2 connected
in X shape [18]. The circuit configuration of the z-source impedance network is
shown in Fig. 2, and its associate signal-flow-graph is depicted in Fig. 3 [10]. We
first formally define the z-source impedance network model as follows:

Definition 10 (Z-source Impedance Network Model).

� ∀ G1 G2 DA DD G5 R L C s ∈ C.
ZSOURCE model G1 G2 DA DD G5 R L C s =

[(1, G1, 4); (1, G2, 7); (2, DA, 4); (3, R.DA, 4); (3,−DA, 7); (4, 1, 5); (5, 1
L.s , 6);

(6, G5, 4); (6, DD, 7); (6, 1, 9); (7, 1, 8); (8, 1, 9); (8, 1
C.s , 11); (9, 1, 10); (11, DD, 4);

(11, 2, 12)]
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Fig. 2. Schematics of Z-source converter

where ZSOURCE model represents the SFG of the z-source circuit depicted in
Fig. 3 and it accepts the circuit parameters as the graph variables. We next
formally verify the transfer function for the z-source impedance network between
nodes 1 and 12 as follows:

Theorem 1 (Transfer Function of Z-source).

� ∀ G1 G2 DA DD G5 R L C s ∈ C. (C.L 
= 0) ∧ (s 
= 0) =⇒
transfer function (ZSOURCE model G1 G2 DA DD G5 R L C s, 12, 12, 1) =
2(G2.L.s + G1.DD − G2.G5)
L.C.s2 − G5.C.s − DD2

where the two assumptions ensure that the gains 1
Ls

and 1
Cs

are well defined.
The proof steps of the transfer function formula are mainly automated using a
developed tactic that can be found at [2]. Similarly, we can derive other transfer
functions which are listed in Table 1. Next, we present the formal verification
of the stability conditions of the z-source impedance network under the global
parameters:

Theorem 2 (Stability Conditions for Z-source).

� ∀ G1 G2 DA DD G5 R L C ∈ C.

‖ G5.C−
√

(G5.C)2+4.(L.C).DD2

2.L.C ‖≤ 1 ∧ ‖ G5.C+
√

(G5.C)2+4.(L.C).DD2

2.L.C ‖≤ 1 ∧
G5.C+

√
(G5.C)2+4.(L.C).DD2

2.L.C 
= 0 ∧ C.L 
= 0 ∧ G5.C−
√

(G5.C)2+4.(L.C).DD2

2.L.C 
= 0 =⇒
is stable (λ s. (ZSOURCE model G1 G2 DA DD G5 R L C s, 12, 12, 1)) s

[ G5.C−
√

(G5.C)2+4.(L.C).(DD2)

2.L.C ; G5.C+
√

(G5.C)2+4.(L.C).(DD2)

2.L.C ]
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Table 1. Z-source transfer functions

Transfer Function Formula

(C.L �= 0) ∧ (s �= 0) ⇒
~Vsum
~Vdc

SFG Main ((ZSOURCE model G1 G2 DA DD G5 R L C s), 12, 12, 2) =
2.DA.DD

(L.C.s2 − G5.C.s − DD2)
(C.L �= 0) ∧ (s �= 0) ⇒

~Vsum
Iload

SFG Main ((ZSOURCE model G1 G2 DA DD G5 R L C s), 12, 12, 3) =
−2.DA.(L.s − R.DD − G5)

(L.C.s2 − G5.C.s − DD2)
(C.L �= 0) ∧ (s �= 0) ⇒

Iin
~Vdc

SFG Main ((ZSOURCE model G1 G2 DA DD G5 R L C s), 12, 10, 2) =

DA.(1 + DD).C.s

L.C.s2 − G5.C.s − DD2

Fig. 3. Signal-flow-graph of Z-source converter

The first two assumptions ensure that both poles are inside the unit circle,
whereas the last assumptions are required to prove that the poles are not equal
to zero. Similarly, we verify the resonance condition for the z-source impedance
network circuit as follows:

Theorem 3 (Resonance Conditions for Z-source).

� ∀ G1 G2 DA DD G5 R L C ∈ C.
‖ G2.G5−G1.DD

G2.L ‖≤ 1 ∧ G2 
= 0 ∧ (G2.G5 − G1.DD) 
= 0 ∧ C.L 
= 0 =⇒
is resonant (λ s. (ZSOURCE model G1 G2 DA DD G5 R L C s, 12, 12, 1)) s

[ G2.G5−G1.DD
G2.L ]

The assumptions in the theorem ensure that the system zero is inside the unit
circle and it is not equal to zero. The proof steps for the two theorems are mainly
based on first checking that the poles (resp. zeros) belong to the set of poles (resp.
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Fig. 4. Signal flow graph of Z-source converter transpose

zeros) defined in Definition 9. Then checking that the norm of these poles and
zeros are less or equal to 1 using HOL rewriting rules. For electronic circuits,
signal-flow-graph has a particular interesting feature, as shown in [20], namely,
the transfer function of circuit transposition is the same as the original circuit.
For example, Fig. 4 shows the transposed SFG of the z-source impedance net-
work. We formally verified that the transfer functions of the z-source impedance
network signal-flow-graph and its transpose (which is an undirected signal-flow-
graph) are the same:

Theorem 4 (Transfer Function of Z-source Transpose).

� ∀ G1 G2 DA DD G5 R L C s ∈ C. (C.L 
= 0) ∧ (s 
= 0) =⇒
transfer function (SFG TRANSPOSE (ZSOURCE model G1 G2 DA DD G5 R

L C s, 12, 12, 1)) =
2.(G2.L.s + G1.DD − G2.G5)

L.C.s2 − G5.C.s − DD2

In the next section, we show another utilization of undirected SFG formalization
to verify the transfer function of PANDA Vernier Resonator.

6 PANDA Vernier Resonator

The PANDA Vernier resonator is considered as a viable optical device for com-
munication and signal processing [1,22]. It can also be employed as a force sensing
application with a resolution in the range of micro-Newton. Figure 5 shows the
configuration of the PANDA Vernier resonator where we have 4 optical direc-
tional couplers and 3 rings [1]. The directional couplers are optical devices that
transfer the maximum possible optical power from one or more optical devices
to another one in a selected direction. Optical rings are fiber rings that con-
fine the light in a very small volume to perform different operations such as
light amplification and wavelength filtering. Each coupler i is associated with
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Fig. 5. The PANDA resonator

the factor ki (i = 1, 2, r, l) and the insertion loss γ. Consequently, the fraction of
light passed through the through port of the coupler i is Ci =

√
(1 − γ)(1 − ki)

and the fraction passed through the cross path is Si =
√

(1 − γ)ki. Note that
C2

i + S2
i = 1 − γ 
 1. Moreover, for each ring (i.e., main, right, and left) the

parameter ep
i ≡ XiZ

−p (i = l, r) is the multiplication of the one round-trip loss
coefficient Xi = exp(−αLi

2 ) and the transmission of light Z−p = exp(−jϕp),
where ϕ = kneffL is the phase shift and p is the integer resonant mode num-
bers. The associated undirected SFG of PANDA resonator [1] is shown in Fig. 6.
We formally define the PANDA Vernier resonator model as follows:

Definition 11 (PANDA Vernier Resonator Model).

� ∀ er e el nr n nl sr s1 s2 sl cr c1 c2 cl ∈ C.
PANDA model er e el nr n nl sr s1 s2 sl cr c1 c2 cl =

[(1, c1, 3); (1,−j.s1, 4); (2, c1, 4); (2,−j.s1, 3); (4, 4
√

en, 9); (9, cr, 10);

(9,−j.sr, 12); (12,
√
ernr, 13); (13,

√
ernr, 11); (11,−j.sr, 10); (11, cr, 12);

(10, 4
√

en, 5); (5, c2, 7); (5,−j.s2, 8); (6, c2, 8); (6,−j.s2, 7); (7, 4
√

en, 14);

(14, cl, 15); (14,−j.sl, 17); (17,
√
elnl, 18); (18,

√
elnl, 16); (16, cl, 17);

(16,−j.sl, 15); (15, 4
√

en, 2)]

Based on this definition, we formally prove the optical transfer function for the
through port of the PANDA Vernier resonator between nodes 1 and 3, as follows:

Theorem 5 (Transfer Function of the through port).
� ∀ er e el nr n nl sr s1 s2 sl cr c1 c2 cl ∈ C.
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Fig. 6. Signal flow graph of the PANDA resonator

(c12 + s12) = 1 ∧ (c22 + s22) = 1 ∧ (cr2 + sr2) = 1 ∧ (cl2 + sl2) = 1 =⇒
transfer function (PANDA model er e el nr n nl sr s1 s2 sl cr

c1 c2 cl, 18, 3, 1) = {c1.(1 + cl.cr.ernr.elnl − cl.elnl − cr.ernr) +
c2.en.(cl.ernr + cr.elnl − cr.cl − ernr.enl)}

{1 − cl.elnl − cr.ernr − cr.cl.c1.c2.en + cl.cr.ernr.elnl +
cl.c1.c2.ernr.en + cr.c1.c2.elnl.en − c1.c2.ernr.elnl.en}

We also formally verify the drop-port optical transfer function for the
PANDA Vernier resonators between nodes 1 and 8, as follows:

Theorem 6 (Transfer Function of the drop-port).
� ∀ er e el nr n nl sr s1 s2 sl cr c1 c2 cl ∈ C.

(c12 + s12) = 1 ∧ (c22 + s22) = 1 ∧ (cr2 + sr2) = 1 ∧ (cl2 + sl2) = 1 =⇒
transfer function (PANDA model er e el nr n nl sr s1 s2 sl cr

c1 c2 cl, 18, 8, 1) = {s1.s2.ernr.√en − s1.s2.cl.elnl.ernr.
√
en −

cr.s1.s2.
√
en + cr.cl.s1.s2.elnl.

√
en}

{1 − cl.elnl − cr.ernr − cr.cl.c1.c2.en + cl.cr.ernr.elnl +
cl.c1.c2.ernr.en + cr.c1.c2.elnl.en − c1.c2.ernr.elnl.en}
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To this point, we have completed our formal verification of the PANDA
Vernier transfer functions based on our formalization of undirected SFG theory.
Note that we can perform the stability and resonance analysis for the PANDA
Vernier resonator as outlined for the z-source impedance network.

In engineering practices, verification and analysis tools must be largely auto-
mated to be effectively adopted which limits the usage of interactive theorem
provers in industry. Therefore, in order to reduce the user interaction, we devel-
oped an automation procedure; SFG TAC that carries 100% of the proof steps for
extracting loops and forward paths automatically and 90% of the proof steps for
the transfer function. Hence, our reported work can be considered as a one step
towards an ultimate goal of building automatic tools which make use of interac-
tive theorem provers as a certification tool in the design and analysis cycles of
safety-critical real-world systems from different engineering and physical science
disciplines (e.g., signal processing, control systems, power electronics, biology,
optical and mechanical engineering). It is important to note that during our for-
mal analysis of the two engineering applications, we were able to catch missing
parts in the three transfer functions, given in Table 1 in reference [10]. We have
also found a sign mismatch in [1]. We believe this to be a significant feature of
our formalization as compared to the traditional analysis methods.

7 Conclusion

In this paper, we reported a generic formalization of undirected signal-flow-
graph theory targeting any kind of engineering system that can be modeled in
the form of a signal-flow-graph. We provided an overview of our formalization
including the notion of loop extraction and the transposition of a signal-flow-
graph. Consequently, we derive the transfer functions of two real-world engi-
neering applications: (1) the PANDA Vernier resonator; and (2) the z-source
impedance network. We described the formal analysis of the stability and res-
onance conditions for the z-source impedance network. Moreover, we formally
verified that the z-source impedance network and its transpose have the same
transfer function.

Our immediate future work is to develop upon the existing automation pro-
cedures to fully automate the proof process and to build a tool that makes
use of these procedures for the analysis of engineering systems (e.g., photonics
processors [21] and process engineering [3]). Another potential utilization of our
formalization and developed automation tactics is to build a framework to cer-
tify the results produced by informal tools such as MATLAB based SFG analysis
program (available at [9]).
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7. Çapar, Ç., Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.:
Signal-flow-based analysis of wireless security protocols. Inf. Comput. 226, 37–56
(2013)

8. Dehghan, S.M., Mohamadian, M., Yazdian, A.: Hybrid electric vehicle based on
bidirectional Z-source nine-switch inverter. IEEE Trans. Veh. Technol. 59(6), 2641–
2653 (2010)

9. Signal Flow Graph Similification Program for MATLAB (2014). http://www.
mathworks.com/matlabcentral/fileexchange/22-mason-m

10. Gajanayake, C.J., Vilathgamuwa, D.M., Loh, P.C.: Small-signal and signal-flow-
graph modeling of switched Z-source impedance network. IEEE Power Electron.
Lett. 3(3), 111–116 (2005)

11. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, New York (2009)

12. Hote, Y.V., Choudhury, D.R., Gupta, J.R.P.: Robust stability analysis of the
PWM push-pull DC-DC converter. IEEE Trans. Power Electron. 24(10), 2353–
2356 (2009)

13. Isaksson, O., Keski-Seppala, S., Eppinger, S.D.: Evaluation of design process alter-
natives using signal flow graphs. In: ASME Design Engineering Technical Confer-
ences, vol. 11(3), pp. 211–224 (2000)

14. Jennen, R., Max, S., Walke, B.: Frame delay distribution analysis of IEEE 802.11
networks using signal flow graphs. In: IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, pp. 2035–2040 (2010)

15. Mason, S.J.: Feedback theory, further properties of signal flow graphs. In: Proceed-
ing of Institute of Radio Engineers, vol. 44, pp. 920–926 (1956)

16. Mason, S.J.: Feedback theory, some properties of signal flow graphs. In: Proceeding
of Institute of Radio Engineers, vol. 41, pp. 1144–1156 (1953)

17. Mason, S.J., Zimmermann, H.J.: Electronic Circuits, Signals, and Systems. Wiley,
New York (1960)

18. Peng, F.Z.: Z-Source inverter. In: IAS Annual Meeting. Conference Record of the
Industry Applications Conference, vol. 2, pp. 775–781 (2002)

19. Rajakaruna, S., Jayawickrama, Y.R.L.: Designing impedance network of Z-source
inverters. In: International Power Engineering Conference, vol. 2, pp. 962–967
(2005)

20. Schmid, H.: Circuit transposition using signal-flow graphs. In: IEEE International
Symposium on Circuits and Systems, vol. 2, pp. II-25–II-28 (2002)

http://hvg.ece.concordia.ca/projects/control/sfg.html
http://dx.doi.org/10.1007/978-3-319-25423-4_17
http://www.mathworks.com/matlabcentral/fileexchange/22-mason-m
http://www.mathworks.com/matlabcentral/fileexchange/22-mason-m


46 S.M. Beillahi et al.

21. Siddique, U., Beillahi, S.M., Tahar, S.: On the formal analysis of photonic signal
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Abstract. When a floating-point computation is done, it is most of the
time incorrect. The rounding error can be bounded by folklore formulas,
such as ε|x| or ε|◦(x)|. This gets more complicated when underflow is
taken into account as an absolute term must be considered. Now, let
us compute this error bound in practice. A common method is to use
a directed rounding in order to be sure to get an over-approximation
of this error bound. This article describes an algorithm that computes a
correct bound using only rounding to nearest, therefore without requiring
a costly change of the rounding mode. This is formally proved using the
Coq formal proof assistant to increase the trust in this algorithm.

1 Introduction

Floating-point (FP) arithmetic is the way computers deal with computations
on real numbers. It is clearly defined [5,6], but it is not perfect. In particular,
FP numbers have a finite precision, therefore even a single computation may be
incorrect when the result does not fit in a FP number. This error is called a
rounding error, and a part of the computer arithmetic literature tries to improve
or bound these errors on some given algorithms.

The most common model for bounding this rounding error is the standard
model [4] where

◦(x) = x(1 + δ) with |δ| ≤ u

with ◦ being the rounding to nearest and u being the machine epsilon, therefore
2−p when p is the number of bits of the FP mantissa.

This model has two main drawbacks. The first one is that it does not take
underflow into account. For example in binary64, if you round 3 × 2−1075, you
get the FP number 2×2−1074, which gives a huge relative error of 33% compared
to the input, but a small absolute error.

The second drawback is when this error bound needs to be computed. That
is the case for example when considering midpoint-radius interval arithmetic [7].
Indeed, computing ◦ (2−p × ◦(x)) may not be an overestimation of the error
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project of the French National Agency for Research (ANR).
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bound. For example, let us consider x = 2−1022+2−1074

2 . Then ◦(x) = 2−1023 and
the error is 2−1075. But ◦ (2−p × ◦(x)) = ◦ (

2−53 × 2−1023
)

= ◦ (
2−1076

)
= 0,

which is not an overestimation of 2−1075.
This article aims at providing a correct algorithm that computes a bound

on the error of a FP operation. As we also want this algorithm to be fast, we
wish to avoid changing the rounding mode, as it breaks the pipeline. We will
therefore only consider rounding to nearest, both for the operation considered,
and for our algorithm. Moreover, we want to prevent tests as they also break
the pipeline.

More than a pen-and-paper proof, this work gives a high guarantee of its
correctness and gives precise hypotheses on the needed precision and underflow
threshold. We will rely on the Coq proof assistant. From the formal methods
point of view, we will base our proof on the Flocq library [2]. Flocq is a for-
malization in Coq that offers a multi-radix and multi-precision formalization for
various floating- and fixed-point formats (including FP with or without gradual
underflow) with a comprehensive library of theorems. Its usability and practi-
cality have been established against test-cases [1]. The corresponding Coq file is
named Error bound fp.v and is available in the example directory of Flocq1,
available in the current git version, and in the next released versions >2.5.1.

Notations. We denote by ◦ the rounding to nearest, ties to even in radix 2. We
denote by ◦[expr] the rounding of the expression into brackets, where all the
operations are considered to be rounded operations. For example, ◦[3 × x + y]
denotes ◦(◦(3 × x) + y). The smallest subnormal number is denoted by 2Ei and
the number of bits of the mantissa is p > 0. For basic knowledge about FP
arithmetic (roundings, subnormal, error bounds), we refer the reader to [3,6].

2 Theorem

Theorem 1. Let x be a real number. Assume that Ei ≤ −p. Then

|◦(x) − x| ≤ ◦ [
2−p × |◦(x)| + 2Ei

]
.

The assumption is very light: Ei ≤ −p only means that 2−p is in the format.
It holds in all IEEE formats: for example in binary64, p = 53 and Ei = −1074
and in binary32, p = 24 and Ei = −149.

Proof. The first step is to prove that 2−p and 2Ei are in the format, therefore
not rounded. This is trivial as long as Ei ≤ −p.

Then, the error bound we are used to is |◦(x) − x| ≤ 2−p × |◦(x)| + 2Ei−1 or
max

(
2−p × |◦(x)|, 2Ei−1

)
. The first formula looks like our the theorem, rounding

excepted. The other difference is the 2Ei instead of 2Ei−1. Let us prove that the
roundings do not endanger the result.

Let t = ◦ [
2−p × |◦(x)| + 2Ei

]
. Then, we split the proof into 4 cases, depend-

ing on the value of |x|.
1 http://flocq.gforge.inria.fr/.

http://flocq.gforge.inria.fr/
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1. Assume x = 0. Then ◦(x) = 0, and |◦(x)−x| = 0, while t = ◦ (
0 + 2Ei

)
= 2Ei .

So the result holds.
2. Assume 0 < |x| < 2Ei+p. Then x has exponent Ei and |◦(x)−x| ≤ 1

2ulp(x) =
2Ei−1. Moreover, t = ◦ [

2−p × |◦(x)| + 2Ei
] ≥ ◦ (

2Ei
)

= 2Ei . So the result
holds.

3. Assume 2Ei+2p−1 ≤ |x|. Then 2−p × |◦(x)| ≥ 2Ei+p−1 and is normal.
Therefore, the multiplication by 2−p is correct and does not create any
rounding error. Then |◦(x) − x| ≤ 2−p × |◦(x)| = ◦ [2−p × |◦(x)|] ≤
◦ [

2−p × |◦(x)| + 2Ei
]

by monotony of the rounding.
4. Assume 2Ei+p ≤ |x| < 2Ei+2p−1. This is the most complex case, as all round-

ings may go wrong. First |◦(x)−x| ≤ 2−p×|◦(x)|. Let y be 2−p×|◦(x)|. Then
y < 2Ei+p−1 and is therefore in the subnormal range. As |◦(x)−x| ≤ y, what
is left to prove is that y ≤ ◦ (◦(y) + 2Ei

)
. As y is small, ◦(y) is a positive FP

number in the subnormal range, therefore ◦(y)+2Ei is also in the FP format
and ◦ (◦(y) + 2Ei

)
= ◦(y) + 2Ei . What is left to prove is then y ≤ ◦(y) + 2Ei .

Finally, as y is in the subnormal range, |◦(y)−y| ≤ 2Ei−1. So y ≤ ◦(y)+2Ei−1

and the result holds. �

This pen-and-paper proof exactly corresponds to the Coq proof (as it was
written from it). The itemized cases corresponding to the interval values of x
become several lemmas in the Coq proof for the sake of readability.

|x|

Error bounds

max 2−p × |◦(x)| , 2Ei−1

◦ 2−p × |◦(x)| + 2Ei

2Ei 2Ei+1 2Ei+p−1

2Ei+p
2Ei+2p−1

2Ei+2p

2Ei−1

2Ei

2Ei+1

2Ei+p−1

2Ei+p

Fig. 1. Drawings comparing the error bounds of ◦(x)
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3 Tightness of the Bound

The next question is how tight is the proved bound. In particular, is it much
coarser than the usual bound? The answer is no and a graphical explanation is
given in Fig. 1.

When |x| is small, then the optimal bound is 2Ei−1. As this bound is not
a FP number, our algorithm returns the best possible bound, that is to say
2Ei . When |x| is big enough, meaning greater than 2Ei+2p (that is 2−968 in
binary64), we have the optimal bound, meaning 2−p × |◦(x)|. In this case, the
2Ei is indeed negligible and is neglected as we use rounding to nearest (and not
rounding towards +∞). In the middle, meaning between 2Ei+p−1 and 2Ei+2p,
we have a slight overestimation compared to the usual bound. Note that this
overestimation is bounded by 2Ei .

4 Conclusion

We have formally proven that the following algorithm using only the rounding-to
nearest mode:

fabs(x)*0x1.p-53+0x1.p-1074

gives a correct tight bound on the rounding error of x in rounding-to-nearest
binary64. Note that overflow cannot happen here as all values involved are
strictly smaller than the input x.

As for efficiency, random tests have shown it is quite efficient, as it involves
neither tests, nor rounding change (2 flops plus the memory accesses). Never-
theless, on some architectures, subnormal numbers are trapped and handled in
software, and are therefore much slower than normal FP operations. In this case,
computing x*0x1.p-53+0x1.p-1022 might be a better idea. Indeed, the previ-
ous theorem implies that ◦ [

2−p × |◦(x)| + 2Ei+p−1
]

is also an overestimation of
the rounding error. And as 2Ei+p−1 is the smallest normal number, this algo-
rithm does not involve any subnormal number if x is not one and will be faster
in most cases, at the price of a worse bound. A use of the processor max function
may also prevent the use of operation on subnormal numbers, which is known
to be quite costly.

A perspective is to be able to compute an error bound on a given rounding,
using only this given rounding. The formula will probably need to be modified,
for example suppressing the addition when rounding towards +∞, negating twice
the values when using rounding towards −∞. But this needs to be worked out
in depth and formally proved to get correct algorithms.

A harder perspective is to deal with radix 10. Then the multiplication should
not be by 2−p, but by 5× 10−p, and this multiplication is not always exact with
big numbers, as was the case here with radix 2. The provided algorithm does
therefore not hold in radix 10.
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on Computer Arithmetic, Tübingen, Germany, pp. 243–252 (2011)

3. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

4. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM
(2002)

5. Microprocessor Standards Committee: IEEE Standard for Floating-Point Arith-
metic. IEEE Std. 754-2008, pp. 1–58, August 2008

6. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V.,
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828 bd des Maréchaux, 91762 Palaiseau Cedex, France

{alexandre.chapoutot,julien.alexandre-dit-sandretto}@ensta-paristech.fr

Abstract. We propose a numerical analysis of sequences of points of
interest associated to the dynamics of hybrid systems. These sequences
are made of instants of switching mode or instants when a particular
quantity vanishes. This analysis allows one to discover instant of accu-
mulation points, a.k.a. Zeno phenomenon. Some examples are given to
show the potential of this approach.

Keywords: Numerical simulation · Hybrid automaton · Sequence
transformations

1 Introduction

The behavior of hybrid systems, i.e., their temporal evolution can be complex
to analyze due to the mixing of discrete-time and continuous-time dynamics.
Moreover, they can exhibit some behaviors, which are hard to predict such as
Zeno phenomenon. In particular, Zeno behavior is difficult to infer automatically.

A usual way to study hybrid systems is based on numerical simulation
for which several methods exist. Despite this approach suffers from numerical
approximation, it also provides a view of the complexity of the dynamics. We
propose in this article to use the results of numerical simulations to detect Zeno
phenomenon in hybrid systems modeled by hybrid automata [9]. The main idea
is to study particular sequences of values, for example, related to instants of
mode switching.

From a numerical analysis point of view, simulating discrete dynamics (or
jumps) involves detecting events usually through zero-crossing detection. A com-
prehensive survey of zero-crossing detection is given in [13]. The problem of Zeno
phenomenon has been studied in many fields, a comprehensive overview is given
in [10] in the context of set-based simulation. In [10] the handling of Zeno phe-
nomenon is ensured by adding some constraints to hybrid automata such as
energy functions. Our approach offers an alternative to the addition of con-
straints by trying to compute the time of accumulation point only by observing
particular values of the dynamics.

This research was partially supported by the ANR INS Project CAFEIN (ANR-12-
INSE-0007).
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The article is organized as follows. In Sect. 2, we briefly recall the model of
hybrid automata and how they are numerically simulated. We introduce the main
mathematical tool used in this work, i.e., sequence transformations, in Sect. 3.
We provide some examples in Sect. 4 showing the effectiveness of our approach.
Finally, we conclude and provide possible future work in Sect. 5.

2 Numerical Simulation of Hybrid Systems

2.1 Hybrid Automata

In this article, in order to facilitate the understanding of our method, we consider
hybrid systems described by hybrid automata (ha).

We denote by R the set of real numbers, and by IB the set of Boolean (con-
taining two elements, � meaning true and ⊥ meaning false). Given a function
x : R → R

n, we denote by x−(t) its left-limit.

Definition 1 (Hybrid automaton, [9]). An n-dimensional hybrid automa-
ton H = (L,F,E,G,R) is a tuple such that L is a finite set of locations, the
function F : L → (R × R

n → R
n) associates a flow equation to each location,

E ⊆ L × L is a finite set of edges, G : E → (Rn → IB) maps edges to guards
and R : E → (R × R

n → R
n) maps edges to reset maps.

Notice that to simplify the presentation of our approach, we consider ha
without invariant in each location. In other terms there is no constraint on the
state variables. Besides, we assume that a transition e = (�, �′) is taken as soon
as G(e) is true.

Example 1. We consider the classical bouncing-ball system. So, the dynamics of
the height y of the ball is given by

ẏ(t) = vy(t), v̇y(t) = −g (1)

with the gravity constant on Earth g = 9.8. The ha has only one Location �
such that F (�) is the flow defined by Eq. (1). There is also one edge e = (�, �)
representing the instant when the ball bounces on the floor, with a guard G(e) :=
y �→ y � 0 and a reset R(e) = (t, (y, vy)) �→ (y,−0.8vy). �

The operational semantics of an ha [9] is a transition system with two kinds
of transitions for the time elapse and the discrete jumps. From this operational
semantics, we can define the trajectory of the ha, as in [7].

Definition 2 (Trajectory of an hybrid automaton). Suppose given an ha
H = (L,F,E,G,R). A state of H is a pair (x, �) with x ∈ R

n and � ∈ L. A
trajectory of H, on the time interval [t0, tf ], starting from an initial state (x0, �0),
is a pair of functions (x(t), �(t)) with x : [t0, tf ] → R

n and � : [t0, tf ] → L, such
that there exists time instants t0 � t1 � . . . � tN = tf satisfying, for every
index i,
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1. x is continuous and � is constant for all t ∈ [ti, ti+1[,
2. x(0) = x0, �(0) = �0,
3. ∀t ∈ [ti, ti+1[, ẋ(t) = F (�(t))(t, x(t)),
4. ∀t ∈]ti, ti+1[, ∀e = (�(t), �′) ∈ E, G(e)(x(t)) = ⊥,
5. G(e)(x−(ti)) = � with e = (�−(ti), �(ti)) and x(ti) = R(e)(ti, x−(ti)).

In Definition 2, the equations constraint the function x so that it conforms to
the flow and jump conditions of H. Condition 2 ensures that x satisfies the
initial conditions, Condition 3 specifies that the dynamics of x(t) is the flow
at location �(t), conditions 4 and 5 ensure that the time instants ti are the
instants where jumping conditions occur and that x evolves as described by reset
maps when the corresponding guard is satisfied. Notice that we do not discuss
conditions ensuring existence and uniqueness of trajectories as this is beyond
the scope of this paper [8], but implicitly suppose that these are granted.

2.2 Numerical Solver

Numerical simulation aims at producing discrete approximations of the trajec-
tories of an hybrid system H on the time interval [t0, tf ]. We described in details
in [2] how the simulation engine of Simulink operates, and briefly adapt here
this simulation engine to ha.

Suppose that H is an ha, (x0, �0) an initial state, and (x(t), �(t)) a trajec-
tory of H starting from (x0, �0). A numerical simulation algorithm computes
a sequence (tk, xk, �k)k∈[0,N ] of time instants, state variable values and loca-
tions such that ∀k ∈ [0, N ], xk ≈ x(tk). Most of the difficulty lies in approx-
imating the discrete jumps (instants where a guard becomes true), which are
called zero-crossings in the numerical simulation community. In order to com-
pute (tk, xk, �k), the following simulation loop is used, where hk is the simulation
step-size, that can be dynamically adapted in order to maintain a required pre-
cision,

1: repeat
2: xk+1 ← SolveODE(F (�(tk), xk, hk) � Solver step 1
3: (xk+1, �k+1) ← SolveZC(xk, xk+1) � Solver step 2
4: compute hk+1

5: k ← k + 1
6: until tk ≥ tf

In the simulation loop, the solver first makes a continuous transition between
instants tk and tk+hk under the assumption that no jump occurs (Solver step 1),
and then it verifies this assumption (Solver step 2). If it turns out that there was
a jump between tk and tk + hk, the solver approximates as precisely as possible
the time t ∈ [tk, tk + hk] at which this jump occurred. We briefly detail these
both steps in the rest of this section.

Solver step 1. The continuous evolution of x between tk and tk +hk is described
by ẋ(t) = F (�(tk))

(
t, x(t)

)
and with initial condition x(tk) = xk. So, numerical
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simulation methods compute an approximation of the solution x at time tk +hk

of the initial value problem (IVP), with f = F (�(tk)) such that

ẋ(t) = f(t, x(t)) and x(tk) = xk . (2)

Note that we assume classical hypotheses on f ensuring existence and uniqueness
of a solution of IVP, see [8] for more details. Usually, precise simulation algo-
rithms often rely on a variable step solver, for which (hk)k∈N is not constant.
The simplest is probably the Bogacki-Shampine method [12], also named ODE23.
It computes xk+1 by

k1 = f(tk, xk) k2 = f(tk +
hk

2
, xk +

hk

2
k1) k3 = f(tk +

3hk

4
, xk +

3hk

4
k2)

(3a)

xk+1 = xk +
hk

9
(2k1 + 3k2 + 4k3) (3b)

k4 = f(tk + hk, xk+1) zk+1 = xk +
hk

24
(7k1 + 6k2 + 8k3 + 3k4) (3c)

The value zk+1 defined in (3c) is a third order approximation of x(tk + hk),
whereas xk+1 is a second order approximation of this value, and is used to
estimate the error Err = |xk+1−zk+1|. This error is compared to a given tolerance
Tol and the step-size is changed accordingly: if the error is smaller then the step-
size is validated and the step-size increased in order to speed up computations
(in ODE23, next step-size is computed with hk+1 = hk

3
√

Tol/Err), if the error
Err is greater then the step-size is rejected and the computation is tried again
with the smaller step-size hk/2. We refer to [8, p. 167] for a complete description
on such numerical methods.

Solver step 2. Once xk and xk+1 computed, the solver checks if there were a
jump in the time interval [tk, tk+1]. In order to do so, it tests for each edge e
starting from �k whether G(e)(xk) is false and G(e)(xk+1) is true. If there is no
such edge, then it is considered that no jump occurred, we set �k+1 = �k and
continue the simulation. Notice this technique does not guarantee the detection
of all events occurring between [tk, tk+1] as explained in [13] or [6].

If the solver finds such an edge, this means that there was a jump on [tk, tk+1]
and we must approximate the first time instant ξ ∈ [tk, tk + hk] such that
G(e)(x(ξ)) is true. To do so, the solver encloses ξ in an interval [tl, tr] start-
ing with tl = tk and tr = tk + hk, and reduces this interval until the time
precision |tl − tr| is smaller than a given threshold. To reduce the width of the
interval, the solver first makes a guess for ξ using a linear extrapolation and
then computes an approximation of x(ξ) using a polynomial interpolation of x
on [tk, tk +hk]. Depending on G(e)(x(ξ)), it then sets tl = ξ or tr = ξ and starts
over. In the case of Hermite interpolation (which is the method used together
with the ODE23 solver), the polynomial interpolation is given, for t ∈ [tk, tk+hk],
by

x(t) ≈ (2τ3−3τ2+1)xk+(τ3−2τ2+τ)hkẋk+(−2τ3+3τ2)xk+1+(τ3−τ2)hkẋk+1

(4)
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where τ = (t − tk)/hk, and ẋk, ẋk+1 are approximations of the derivative of x
at tk, tk+1 given by F (x(tk)) and F (x(tk+1)) respectively. For more details on
zero-crossing algorithms, we refer to [2,13].

From the results of Solver step 2, we can generate sequences of values, for
example, instants of mode switching. In particular, if these sequences of values
converge to a finite limit this may exhibit a Zeno phenomenon. To study these
sequences of values, we use sequence transformations methods.

3 Acceleration of Sequence Convergence

Convergence acceleration techniques, also named sequence transformations,
allow one to increase the rate of convergence of a sequence. In numerical analysis,
there are several convergence acceleration methods, they transform convergent
sequences (which approach their limits slowly) into sequences which converge
more quickly to the same limit.

3.1 General Definitions

Before giving an overview of sequence transformation techniques (for more
details, we refer to [4]), we recall some basic definitions of metric spaces and
sequence convergence [11].

Definition 3 (Metric space). A metric space is a pair 〈D, d〉 where D is a
non-empty set and d is a metric on D, i.e., a function d : D × D → R

+, such
that ∀x, y ∈ D we have

– d(x, y) = 0 ⇔ x = y.
– d(x, y) = d(y, x).
– d(x, y) � d(x, z) + d(z, y),∀z ∈ D.

The set of sequences over D (denoted by DN) is the set of functions between N

and D.

Definition 4 (Convergent sequence). A sequence (xn) ∈ DN converges to
v ∈ D if and only if we have

lim
n→∞ d(xn, v) = 0 .

Definition 5 (Sequence transformation). Let a sequence (xn) ∈ DN con-
verge to v ∈ D. A sequence transformation is a function T : DN → DN (T
denotes a particular acceleration method) such that: if (yn) = T (xn) then (yn)
converges to v faster than (xn), i.e.,

lim
n→∞

d(yn, v)
d(xn, v)

= 0 .

This means that (yn) is asymptotically closer to v than (xn).
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As mentioned before, there are several sequence transformations changing
convergent sequences into sequences which converge more quickly to the same
limit. Nevertheless, each sequence transformation only increases the rate of con-
vergence of some classes of sequences. These classes are related to the kernel of
transformation methods, formally defined in Definition 6.

Definition 6 (Kernel of sequence transformations). Let T be a sequence
transformation. The kernel θT of T is the set of sequences (xn) ∈ DN, for which
T transforms (xn) to the constant sequence v ∈ D. More precisely,

θT =
{
(xn) ∈ DN : ∃v ∈ R,∀n ∈ N, T (xn) = v

}
.

For the rest of this section, we present only sequence transformations for
real sequences, the extension to sequences on any metric space D is straightfor-
ward. We now present one acceleration method that we used in our experiments
described in Sect. 4.

The Aitken Method. It is probably the most famous sequence transformation.
Given a sequence (xn) ∈ R

N, the accelerated sequence (yn) is defined by

∀n ∈ N, yn = xn − (xn+1 − xn)2

xn+2 − 2xn+1 + xn
. (5)

It should be noted that in order to compute yn for some n ∈ N, three values of
(xn) are required: xn, xn+1 and xn+2.

Example 2. To illustrate Aitken method, we apply it to the following sequence

∀n ∈ N, sn = 1 +
1

n + 1
with lim

n→+∞ sn = 1 .

The obtained results are given in Fig. 1. We can see that the value of the 7th

element of the accelerated sequence is closer to the limit by a factor of two. �

The kernel KAitken of Aitken method is the set of all sequences of the form
xn = s + a.λn where s, a and λ are real constants such that a �= 0 and λ �= 1
(see [5] for more details). Note that the Aitken method is an efficient method for
accelerating sequences, but it highly suffers from numerical instabilities when
xn, xn+1 and xn+2 are close to each other.

4 Experiments

We report in this section, application of sequence transformation techniques to
study Zeno phenomenon in hybrid systems. We consider classical examples such
as the bouncing ball system and the two tanks system. Computations are done
with Matlab2015a using numerical solver ODE23 and zero-crossing methods as
explained in Sect. 2.2.
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Rank Initial sequence Rank Accelerated sequence

0 2.0

1 1.5

2 1.3333333 0 1.25

3 1.25 1 1.16666667

4 1.2 2 1.125

5 1.1666667 3 1.1

6 1.1428571 4 1.0833333

7 1.125 5 1.0714286

8 1.1111111 6 1.0625

9 1.1 7 1.0555556
...

...
...

...

Fig. 1. The results obtained with the Aitken method on the sequence sn = 1 +
1

n + 1
.

4.1 Bouncing Ball

Consider again Example 1 of the bouncing ball system. We will study the fol-
lowing sequences of values

1. the sequence of time instants, denoted by tb, at which the ball hits the ground.
2. the sequence of time instants, denoted by tv, at which the height goes from

increasing to decreasing, i.e., when the velocity becomes zero.
3. the sequence of values, denoted by v, of the height of the ball when the velocity

is zero.

In Fig. 2, a trajectory with a numerical simulation is given. The red bullets
represent the values of Sequence 1 and the Sequence 3. Clearly, we can observe
that the two sequences converge towards a particular value in time and with a
zero height.

For this particular example, we know that the sequence of time instances at
which the ball bounces follow a geometric series which has for limit the value t∗

such that

t∗ =
1
g

(
v0 + v1

(
1 + γ

1 − γ

))
with v1 =

√
v2
0 + 2gx0 .

The values x0 and v0 are respectively the initial position and the initial velocity of
the ball while γ stands for the coefficient of restitution of the ball. In Example 1,
we have γ = 0.8, and we consider the initial values x0 = 0 and v0 = 20 so that
t∗ = 40.774719673802245.

From the numerical simulation, we obtained the following first values of tb,
tv and v:

tb = (4.0775, 7.7472, 11.0499, 14.0224, 16.6977, 19.1054, . . . )
tv = (2.0387, 5.9123, 9.3986, 12.5362, 15.3600, 17.9015, . . . )
v = (20.3874, 16.5138, 13.3761, 10.8347, 8.7761, 7.1086, . . . )
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Fig. 2. Numerical simulation result for the bouncing-ball system

Applying the Aitken method on these sequences of values, we get

Aitken(tb) = (0, 0, 40.7747, 40.7747, 40.7747, 40.7747, . . . )
Aitken(tv) = (0, 0, 40.7747, 40.7747, 40.7747, 40.7747, . . . )

Aitken(v) = 10−10 × (0, 0, 0.6171,−0.2908, 0.3606,−0.0039, . . . )

We observe that the accelerated sequences associated to tb and tv converges
towards the limit 40.7747 which seems to be the accumulation point in time
of the Zeno phenomenon. Moreover, the accelerated sequence associated to v
converges very quickly to zero indicating that at the accumulation point the
height of the ball is zero. Note that all the accelerated sequences start with two
zero values due to the initialization of the algorithm, i.e., Aitken method needs
three values to produce an output.

This initialization phase may be a problem to study hybrid systems for which
ones the amount of data available is not enough.

4.2 Two Tanks

We consider another classical example of hybrid systems exhibiting a Zeno phe-
nomenon that is a two tanks system [10]. The hybrid automaton associated to
the two tanks system is given in Fig. 3. Variable y1 stands for the variation of
water height in Tank 1 while y2 is the variation of water height in Tank 2.
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ẏ1 = 2

ẏ2 = −3

ẏ1 = −2

ẏ2 = 1

y1 := 1; y2 := 1 y2 = 0

y1 = 0

Fig. 3. Hybrid automaton of two tanks

We study the sequences of values associated to state variable y1 (we could
also apply the same idea on variable y2) which are

1. the sequence of time instants, denoted by t, at which the mode is switching,
going from filling Tank 1 to emptying it.

2. the sequence of values, denoted by h, standing for the height of water in
Tank 1 for each instant in t.

In Fig. 4, a trajectory obtained by a numerical simulation is given. The red
bullets represent the values of Sequence 1 and Sequence 2. Clearly, we can observe
that the two sequences converge towards a particular value in time and to the
value zero.

Fig. 4. Numerical simulation result of the two tanks system
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From the numerical simulation, we have the following first values of t and h:

t = (0.3333, 1.4444, 1.8148, 1.9383, 1.9794, 1.9931, . . . )
h = (1.6667, 0.5556, 0.1852, 0.0617, 0.0206, 0.0069, . . . )

Applying the Aitken method on these sequences of values, we get

Aitken(t) = (0, 0, 2.0, 2.0, 2.0, 2.0, . . . )

Aitken(h) = 10−12 × (0, 0, 0.1268, 0.0004, 0.0208,−0.0844, . . . )

We observe that the accelerated sequence associated to t converges towards
the limit 2.0 which seems to be the accumulation point in time of the Zeno
phenomenon. Moreover, the accelerated sequence associated to h converges very
quickly to zero indicating that at the accumulation point the height of the water
is zero.

5 Conclusion

We presented a new method to detect Zeno phenomenon in hybrid systems.
This method only uses observation of points of interest in numerical simulation
results. It does not modified the initial model with constraints such as in [10] to
infer the time of accumulation.

The next work is to apply our method on more complex examples to prove its
scalability and its robustness. The second next work is to adapt such techniques
to the framework of set-based simulation [1,3,10] in order to have safe results.
In particular, a simple approach would be to applied sequence transformation
methods on the sequences of bounds of the intervals produced by set-based
simulation.
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Abstract. We introduce FPBench, a standard benchmark format for
validation and optimization of numerical accuracy in floating-point com-
putations. FPBench is a first step toward addressing an increasing need in
our community for comparisons and combinations of tools from different
application domains. To this end, FPBench provides a basic floating-
point benchmark format and accuracy measures for comparing different
tools. The FPBench format and measures allow comparing and compos-
ing different floating-point tools. We describe the FPBench format and
measures and show that FPBench expresses benchmarks from recent
papers in the literature, by building an initial benchmark suite drawn
from these papers. We intend for FPBench to grow into a standard
benchmark suite for the members of the floating-point tools research
community.

1 Introduction

The increasingly urgent demand for reliable software has led to tremendous
advances in automatic program analysis and verification [4–6,8,18]. However,
these techniques have typically focused on integer programs, and do not apply to
the floating-point computations we depend on for safety-critical control in avion-
ics or medical devices, nor the analyses carried out by scientific and computer-
aided design applications. In these contexts, floating-point accuracy is criti-
cal since subtle rounding errors can lead to significant discrepancies between
floating-point results and the real results developers expect. Indeed, floating-
point arithmetic is notoriously unintuitive and its sensitivity to roundoff errors
makes such computations fiendishly difficult to debug. Traditionally, such errors
have been addressed by numerical methods experts who manually analyze and
rewrite floating-point code to ensure accuracy and stability. However, these man-
ual techniques are difficult to apply and typically do not lead to independently
checkable certificates guaranteeing program accuracy.

The research community has responded to these challenges by developing
a rich array of automated techniques that provide guaranteed bounds on the
accuracy of floating-point computations or attempt to automatically improve

c© Springer International Publishing AG 2017
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accuracy. For example, Fluctuat [12,13], used in many companies, performs sta-
tic analysis of C programs to prove a bound on the rounding errors introduced by
the use of floating-point numbers instead of reals. Fluctuat also helps users debug
floating-point errors by detecting the operations responsible for significant preci-
sion loss. Salsa [10] automatically improves the numerical accuracy of programs
by using an abstract interpretation to guide transformations that minimize the
errors arising during computations. Herbie [21] uses a heuristic search to improve
the numerical accuracy of an arithmetic expression by estimating and localizing
the roundoff errors of an expression using sampled points, applying a set of rules
in order to improve the accuracy of the expression and combining these improve-
ments for different input domains. Rosa [11] combines an exact SMT solver on
reals with sound affine arithmetic to verify accuracy post-conditions from asser-
tions about the accuracy of inputs. Rosa can guarantee that the desired precision
can be soundly obtained in a finite-precision implementation when propagation
error is included. Finally, FPTaylor [24] improves on interval arithmetic by using
Taylor series to narrow the computed error bounds.

As the number of tools dedicated to analyzing and improving numerical accu-
racy grows, it becomes increasingly difficult to make fair comparisons between
the techniques. This is because each tool is targeted to slightly different domains,
uses slightly different formats for expressing benchmarks, and reports results
using related but slightly different measures. Furthermore, without any stan-
dard set of floating-point benchmarks, it is difficult to identify opportunities for
composing complementary tools.

To address these challenges, the floating-point research community needs a
standard benchmark format and common set of measures that enables compar-
ison and cooperation between tools. This goal is motivated by the success of
standard benchmark suites like SPEC [17] and SPLASH-2 [25] in the compiler
community, the DIMACS [1] format in the SAT-solving community, and the
SMT-LIB [3] format in the SMT-solving community. The formats have enabled
fair comparisons between tools, crisp characterizations of the tradeoffs between
different approaches, and useful cooperation between tools with complementary
strengths.

In this article, we propose FPBench, a general floating-point format and
benchmark suite. FPBench describes a common format and a suite of accuracy
measurements; we envision floating-point tools taking in FPBench formatted
programs and using the FPBench accuracy measures to describe accuracy. This
allows users to combine tools that perform complementary tasks and compare
competing tools to choose the one best for their task. The common scientific
methodology FPBench enables is crucial for demonstrating the improvements of
each tool on the state of the art.

The main contributions of this article are the following:

(i) A uniform format for expressing floating-point benchmarks, FPCore.
(ii) A set of utilities for converting to and from FPCore programs, and working

with FPCore programs.
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(iii) A set of measures on which to evaluate various floating-point tools on
FPBench benchmarks.

(iv) An initial suite of benchmarks drawing from existing floating-point litera-
ture.

The remainder of this article is organized as follows. Section 2, describes the
FPBench formats. Section 3 describes the accuracy measures. Section 4 describes
the utilities FPBench provides to support creating and working with bench-
marks. Section 5 surveys our existing benchmark suite, highlighting represen-
tative case studies from recent tools in the literature. Finally, Sect. 6 discusses
future work and concludes.

2 Benchmark Format

FPBench provides a common input format for floating-point tools. This format
makes it possible to develop a collection of floating-point benchmarks common
to our research community, and also allows users to compose floating-point tools.
So, a common floating-point benchmark format must be easy to parse, have sim-
ple and clear semantics, support floating-point details, and be expressive enough
for many domains. To satisfy these requirements, FPBench provides the FPCore
format, a minimal expression-based language for floating-point computations.
A common floating-point benchmark format must also be easy to translate to
and from popular industrial languages like C, C++, Matlab, and Fortran. To
satisfy these requirements, FPBench also provides the extended FPImp format,
a basic imperative language for floating-point computations which can be auto-
matically compiled to FPCore.

2.1 FPCore

FPCore is an S-expression format featuring mathematical functions, if state-
ments, and while loops. All floating-point functions from C11’s math.h and all
Fortran 2003 intrinsics are supported operators, as well as standard arithmetic
operators like addition and comparison; likewise, all constants defined in C11’s
math.h are available as constants. Following IEEE754 and common C and For-
tran runtimes, FPCore does not prescribe the accuracy of built-in mathematical
functions. However, individual benchmarks can declare the accuracy they assume
for built-in operations which analyzers can take into account.

A FPCore benchmark specifies a set of inputs, a floating-point expression,
and optional meta-data flags such as a name, citations, preconditions on inputs,
and the floating-point precision (binary32, binary64, . . . ) used to evaluate that
benchmark. The full FPCore syntax is as follows:1

1 Not shown in the grammar: FPBench uses “;” to indicate that the remainder of a
line is a comment.
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Since the language is S-expression based, parentheses and braces are liter-
als. The semantics of these programs is ordinary function evaluation, with let
bindings evaluated simultaneously and while loops evaluated by simultaneously
updating the loop variables until the condition is true, and then evaluating the
return value:

H : x0
i ⇓ vi H[xi �→ vi]i : c ⇓ �

H[xi �→ vi]i : ei ⇓ x′
i H : (while c ([xi x′

i ei]i) y) ⇓ v

H : (while c ([xi x0
i ei]i) y) ⇓ v

H : x0
i ⇓ vi H[xi �→ vi]i : c ⇓ ⊥ H[xi �→ vi]i : y ⇓ v

H : (while c ([xi x0
i ei]i) y) ⇓ v

The optional properties are used to record additional information about each
benchmark. Benchmarks are currently annotated with a :name, a :description
of the benchmark and its inputs, the floating-point :type (either binary32 or
binary64), a precondition :pre, and a citation :cite. All FPBench tools ignore
unknown attributes, so they represent an easy way to record additional bench-
mark information. We recommend that properties specific to a single tool be
prefixed with the name of the tool.

2.2 FPImp

Where FPCore is the format consumed by tools, FPImp is a format for sim-
plifying the translation from imperative languages to FPCore. While FPCore is
a functional language with a minimal set of features for representing floating-
point computations, FPImp includes common imperative features like variable
assignments, multiple return values, and multi-way if statements. More com-
plex features, such as arrays, pointers, records, and recursive function calls, are
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left to future language extensions. In our experience, translating C, Fortran, and
Matlab to FPImp is relatively easy. FPImp has expressions similar to those in
FPCore, but without if, while, and let expressions; these are instead replaced
with statements. The FPImp syntax is as follows:

As in FPCore, each FPImp benchmark includes free parameters and prop-
erties; as an imperative language, it includes a list of program statements and
multiple return values instead of a single body expression. Assignments and
while loops behave in the usual way. Expressions in FPImp are evaluated simi-
larly to FPCore expressions. An if statement defines a many-way branch; any
else branch must be the last branch in its if. The output statement can return
several values and appears at the end of a function.

The FPImp to FPCore compiler translates FPImp functions to FPCore
benchmarks while retaining all properties and keeping the same set of free para-
meters. It inlines assignments, converts the imperative bodies of FPImp loops
to the simultaneous-assignment loops of FPCore, replaces many-way if state-
ments with nested if s, and generates multiple FPCore benchmarks for FPImp
programs with multiple outputs.

3 Accuracy Measurements

To compare floating-point tools, a common input format is not enough: a com-
mon measure of accuracy is also necessary. FPBench thus defines a collection
of accuracy measures to allow tools to rigorously describe the accuracy measure
they use. Given the diversity of accuracy measures in the literature, standardiz-
ing on a single accuracy measure would be difficult, and could harm the develop-
ment of some classes of tools. Instead, FPBench standardizes several measures
of accuracy; tools that measure accuracy should state which of the FPBench
accuracy measures they use to compare tools.

3.1 Measurement Axes

Floating-point accuracy is best analyzed along several axes: scaling vs non-
scaling error, forward vs. backward error, maximum vs. average error. Tools that
measure error may use sound vs. statistical techniques, and tools that transform
programs have several options for how to measure accuracy improvement.
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Scaling vs non-scaling error (ε). There are several ways to measure the error
of producing the inaccurate value x̂ instead of the true value x. Two common
mathematical notions are the absolute and relative error:

εabs(x, x′) = |x − x̂| and εrel(x, x′) =
∣
∣
∣
∣
x − x̂

x

∣
∣
∣
∣

Relative error scales with the quantity being measured, and thus makes sense
for measuring both large and small numbers, much like the floating-point format
itself. A notion of error more closely tied to the floating-point format is the Units
in the Last Place (ULPs)2 difference. Some tools instead use the logarithm of
the ULPs, which approximately describes the number of incorrect low-order bits
in x̂. These two measures are defined as:3

εulps(x, x′) = |F ∩ [min(x, x̂),max(x, x̂)]| and εbits(x, x′) = log2 εulps(x, x′)

The floating-point numbers are distributed roughly exponentially, so this mea-
sure of error scales in a similar manner to relative error; however, it is better-
behaved in the presence of denormal numbers and infinities.

Forward vs. backward error (ε). Forward error and backward error are two com-
mon measures for the error of a mathematical computation. For a true function f
and its approximation f̂ , forward error measures the difference between outputs
for a fixed input, while backward error measures the difference between inputs
for a fixed output. Formally,4

εfwd(f, f̂ , x) = ε(f(x), f̂(x))

εbwd(f, f̂ , x) = min
{

ε(x, x′) : x′ ∈ F
n ∧ f̂(x′) = f(x)

}
.

Backward error is important for evaluating the stability of an algorithm, and
in scientific applications where multiple sources of error (algorithmic error vs.
sensor error) must be compared. Existing tools typically measure forward error
because backward error can be tricky to compute for floating-point computa-
tions, where there may not be an input that produces the true output.

Average vs. maximum error (E). Describing the error of a floating-point com-
putation means summarizing its behavior across multiple inputs. Existing tools
use either maximum or average error for this task. Formally,5

Emax(f, f̂) = max
{

ε(f, f̂ , x) : x ∈ F
n
}

and Eavg(f, f̂) =
1
N

∑

x∈Fn

ε(f, f̂ , x).

2 Unfortunately, this term means different things in the mathematical and program-
ming communities. We use the definition common for programming tools [19,21,23].

3 We are using |S| to denote the number of elements in a set S.
4 Where n is the number of arguments.
5 Where N is the number of valid inputs, and n is the number of arguments.
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Worst-case error tends to be easier to measure soundly, while average error
tends to be easier to measure statistically.

Sound vs. statistical techniques. Running a floating-point program on all valid
inputs is intractable. Existing tools either soundly overapproximate the error
using static analysis or approximate the error using statistical sampling.

Most static techniques are based on interval or affine arithmetic to over-
approximate floating-point arithmetic, often using abstract interpretation.
Abstract interpretation may use either non-relational [20] or relational abstract
domains [2,7,14], and may use acceleration techniques (widenings [9]) to over-
approximate loops without unrolling them. While such techniques tend to pro-
vide loose over-approximations of the floating-point error of programs, they are
fast and provide sound error bounds. In some embedded applications, correctness
is critical and unsound techniques will not do.

In domains where correctness is not absolutely critical, sampling can provide
tight approximations of error. Many sampling techniques are used, including
naive random samples [21] and Markov-chain Monte Carlo [23]. These tech-
niques involve running a program multiple times, so tend to be slower than
static analysis.

Measuring improvement (ι). Tools that transform floating-point programs need
to compare the accuracy of two floating-point programs: the original and the
transformed. Several comparison measures are possible. Comparisons can use the
improvement in worst-case or average error between the original f̂ and improved
f̂ ′ implementation of the same mathematical function f :

ιimp = E(f, f̂) − E(f, f̂ ′)

However, one cannot usually improve the accuracy of a computation simultane-
ously on all inputs. It is thus often necessary to make a computation less accurate
on some points to make it more accurate overall. In this case, it may be use-
ful to report the largest unimprovement, which measures the cost of improving
accuracy:

ιwrs(f̂ , f̂ ′) = max
{

ε(f, f̂ ′, x) − ε(f, f̂ ′, x) : x ∈ F
n
}

Other measures, such as those describing the trade-off between accuracy and
speed, are also interesting, but are less commonly used in the literature and
thus not standardized in FPBench. Improvement tools could also estimate their
effect on numerical stability using automatic differentiation [15] or Lyapunov
exponents [22], but we do not know of any such tools.

3.2 Existing Tools

The error measures described can be applied to categorize the error measure-
ments used by existing tools. Table 1 compares Fluctuat [12], FPTaylor [24],
Herbie [21], Rosa [11], and Salsa [10].
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Table 1. A comparison of how five floating-point measure error across the axes iden-
tified in this section.

Fluctuat Absolute Forward Max Sound

FPTaylor Absolute Forward Max Sound

Herbie Bits Forward Average Statistical Improvement

Rosa Absolute Forward Max Sound

Salsa Absolute Forward Max Sound Improvement

STOKE ULPs Forward Max Statistical Improvement

Fluctuat, FPTaylor, and Rosa all verify error bounds on the accuracy of
floating-point computations. Given their need for soundness, it is natural that
they use sound error analyses and estimate maximum error. Their use of absolute
forward error derives from the difficulty of approximating the other forms of error
statically. Herbie and Salsa are tools for improving the accuracy of programs,
but differ dramatically in their approach. Salsa uses abstract interpretation to
bound maximum absolute error, producing a sound overapproximation of the
maximum error. Herbie, on the other hand, uses random sampling to achieve
a tight statistical approximation of bits error. The tight estimates enabled by
statistical techniques provide additional opportunities for Herbie to improve the
accuracy of an expression, but prevent it from providing sound error bounds.
Finally, STOKE uses stochastic search to optimize floating-point programs, and
must compare the accuracy of floating-point programs to avoid significantly com-
promising their accuracy. STOKE uses a Markov-chain Monte Carlo sampling
to statistically evaluate maximum ULPs error.

By exactly describing the way each tool measures accuracy, FPBench makes
it possible to compare and relate tools. Unsound tools such as Herbie or STOKE
can be composed with a sound verification tool to produce an accuracy guar-
antee, and this guarantee can be compared to the approximate error measure-
ments those tools made statistically. Since Fluctuat, FPTaylor, Rosa, and Salsa
all soundly measure maximum forward absolute error, they can be compared to
determine which technique is best.

4 Tools

FPBench features a collection of compilers and measurement tools that oper-
ates in its common format, FPCore. These tools can be a community resource,
increasing interoperability as well as code reuse. They also make it easier to
write new floating-point analysis and transformation tools by automating what
are currently common but tedious tasks.

FPImp to FPCore. The FPCore format faithfully preserves important program
constructs, such as variable binding and operation ordering, while abstracting
away details not relevant to floating-point semantics. However, it is syntactically
very different from some of the languages from which benchmarks might origi-
nate. To make translation to FPCore from source languages like C, Fortran, and
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Matlab easier, FPBench provides the FPImp format and a compiler from FPImp
to FPCore. FPImp is syntactically similar to imperative languages to make it
easy to translate benchmarks.

FPCore to C. Since C is a common implementation language for mathematical
computations, FPBench provides a FPCore to C compiler. The FPCore to C
compiler can be used to run FPCore benchmarks through the many available C
analysis tools.

Average error estimation. FPBench provides a tool to statistically approximate
average error using naive sampling. The statistical approach is necessary to pro-
duce accurate estimates of average error given the current state of the art. The
tool can use absolute, relative, ULPs, and bits error.

We plan to continue developing community tools around the FPBench for-
mats, especially tools for estimating the other measures of error described in
Sect. 3.

5 Benchmark Suite and Examples

The FPBench suite currently includes 44 benchmarks sourced from recent papers
on automatic floating-point verification and accuracy improvement. This section
first summarizes these benchmarks and then details how representative exam-
ples were translated to FPBench from the input formats of various tools in the
literature.

The current FPBench suite contains examples from a variety of domains,
including 28 from the Herbie test suite [21], 9 from the Salsa test suite [10], 7
from the Rosa test suite [11], and one example from the FPTaylor test suite [24].
These examples range from simple test programs for early tool development
up to large examples for evaluating more mature tools. The larger examples
are more challenging, including loops that with up to 13 variables mutated in
the loop body. As shown in Tables 2 and 3, these programs exercise the full
range of functionality available in FPBench, and span a variety application areas,
from control software to mathematical libraries. We intend to continue adding
benchmarks to the FPBench suite.

5.1 FPTaylor

FPTaylor [24] uses series expansions and interval arithmetic to compute sound
error bounds. The authors gave the following simple program as an example
input for their tool:
1 : Var iab l e s
2 : f l o a t 6 4 x in [ 1 . 0 0 1 , 2 . 0 ] ,
3 : f l o a t 6 4 y in [ 1 . 0 0 1 , 2 . 0 ] ;
4 : D e f i n i t i o n s
5 : t rnd64= x ∗ y ;
6 : Expres s ions
7 : r rnd64= ( t −1)/( t∗t −1);
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Table 2. Functions and language fea-
tures used in the FPBench benchmarks.
Benchmarks contain a variety of features,
and many benchmarks incorporate sev-
eral. Exponential functions include loga-
rithms, the exponential function, and the
power function.

Feature Benchmarks

Basic arithmetic 44

Exponentials 13

Trigonometric 10

Comparison 12

Loops 12

Conditionals 3

Table 3. Domains which the FPBench
benchmarks are drawn from. Most are
general mathematical operations, useful
in a variety of domains. The general
expressions are the smallest, and are
drawn from Numerical Methods for Sci-
entists and Engineers [16] and Rosa [11].

Domain Benchmarks

General expressions 31

Math algorithms 6

Embedded systems 4

Scientific computing 3

This program is representative of the code necessary to correct sensor data in
control software, where the output of the sensor is known to be between 1.001
and 2.0. We manually translated this program to FPCore, yielding:
(FPCore (x y )

: name”FPTaylor example”
: c i t e ( solovyev−et−al −2015)
: type binary64
: pre ( and ( and (< 1 .001 x ) (< x 2 . 0 ) ) ( and (< 1 .001 y ) (< y 2 . 0 ) ) )
( l e t ( [ t (∗ x y ) ] )

(/ (− t 1 . 0 ) (− (∗ t t ) 1 . 0 ) ) ) )

The benchmark takes inputs x and y and uses a let statement to represent the
intermediate variables from the FPTaylor example. FPCore faithfully preserves
important program constructs, such as variable binding and operation ordering,
making the translation a simple matter. The benchmark additionally specifies a
name and cites its source using a key to a standard file. Since the original
program uses 64-bit floating-point numbers, the type binary64 is specified in
the benchmark. The constraints on input variables are translated to a single
predicate under the :pre property.

5.2 Rosa

Rosa [11] soundly verifies error bounds of floating-point programs, including
looping control flow through recursive function calls. Several benchmarks in its
repository demonstrate this capability, including one that uses Newton’s method
on a series representation of the sine function. In Rosa’s input language the
original benchmark is represented as:
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de f newton (x : Real , k : LoopCounter ) : Real = {
r e qu i r e (−1.0 < x && x < 1 . 0 )
i f ( k < 10) {

newton (x − ( x − ( x ∗∗3)/6 .0 + (x ∗∗5)/120 .0 + (x ∗∗7)/5040 .0) /
( 1 . 0 − ( x∗x )/2 . 0 + (x ∗∗4)/24 .0 + (x ∗∗6)/720 .0 ) , k++)

} e l s e {
x

}
} ensur ing ( r e s => −1.0 < r e s && re s < 1 . 0 )

The require clause denotes input preconditions, and the ensures clause
provides the error bound to be verified. We manually translated this program to
FPCore, yielding:
(FPCore ( x0 )

: name ‘ ‘ Rosa Example”
: c i t e ( darulova−kuncak −2014)
: pre ( and (< −1.0 x0 ) (< x0 1 . 0 ) )
: rosa−post ( and (< −1.0 RES) (< RES 1 . 0 ) )
( whi le (< i 10)

( [ i 0 (+ i 1 ) ]
[ x x0
( l e t ( [ f (+ (+ (− x (/ (pow x 3) 6) )

(/ (pow x 5) 120)) (/ (pow x 7) 5040 ) ) ]
[ d f (+ (+ (− 1 .0 (/ (∗ x x ) 2) )

(/ (pow x 4) 24)) (/ (pow x 6) 7 2 0 ) ) ] )
(− x (/ f df ) ) ) ] )

x ) )

Like the FPTaylor benchmark, this benchmark includes a name, citation for
its source, and precondition on inputs. For completeness, we’ve also included
the ensuring annotation, denoted :rosa-post, demonstrating the ability to
add tool specific annotations by prefixing with the tool name. Note how the
while construct from FPCore can be used to represent the tail-recursive loop
from the Rosa original benchmark.

5.3 Herbie

Herbie [21] heuristically improves the accuracy of straight-line floating-point
expressions. The authors demonstrate the improvements Herbie can produce
using the quadratic formula for computing the roots of a second degree poly-
nomial. It has uses from calculating trajectories to solving matrix equations. In
mathematical notation, the quadratic formula is given by:6

(−b) − √
b2 − 4ac

2a
Herbie produces the following more-accurate variant:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4ac
−b+

√
b2−4ac

/2a if b < 0

(−b − √
b2 − 4ac

)
1
2a if 0 ≤ b ≤ 10127

− b
a + c

b if 10127 < b

6 We use the negative variant here, as in the Herbie paper; the positive variant is
analogous.
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In FPCore format, the original formula is represented as:
(FPCore ( a b c )

: name ‘ ‘NMSE p42 , p o s i t i v e ”
: c i t e (hamming−1987)
: pre ( and (>= ( sqr b) (∗ 4 (∗ a c ) ) ) (!= a 0) )
(/ (+ (− b) ( sq r t (− ( sqr b) (∗ 4 (∗ a c ) ) ) ) ) (∗ 2 a ) ) )

and the improved version is represented as:
(FPCore ( a b c )

: name ‘ ‘NMSE p42 , p o s i t i v e ”
: c i t e (hamming−1987)
: pre ( and (>= ( sqr b) (∗ 4 (∗ a c ) ) ) (!= a 0) )
( i f (< b 0)

(/ (/ (∗ 4 (∗ a c ) ) (+ (− b) ( sq r t (− ( sqr b) (∗ 4 (∗ a c ) ) ) ) ) )
(∗ 2 a ) )

( i f (< b 10 e127 )
(∗ (− (− b) (− ( sqr b) (∗ 4 (∗ a c ) ) ) ) (/ 1 (∗ 2 a ) ) )
(+ (− (/ b a ) ) (/ c b ) ) ) ) )

Like the Rosa and FPTaylor examples, this benchmark gives a name, cita-
tion, and precondition. This benchmark uses FPCore’s ability to write arbi-
trary boolean expressions as preconditions, restricting the value under the square
root to be non-negative and requiring the denominator be non-zero. Unlike the
FPTaylor and Rosa examples, this precondition arises from mathematical con-
siderations, not domain knowledge. The FPCore version of Herbie’s output fur-
thermore uses if constructs to evaluate different expressions for different inputs,
which improves accuracy. Herbie could add additional metadata to the output,
such as its internal estimate of accuracy or the number of expressions considered
during search, by using prefixed keys like :herbie-accuracy-estimate.

5.4 Salsa

Salsa [10] is a tool for soundly improving the worst-case accuracy of programs.
The authors evaluate Salsa on a suite of control and numerical algorithms, includ-
ing the widely used PID controller algorithm. This algorithm is used in aeronau-
tic and avionic systems for which correctness is critical. In C, the benchmark is
written as:
v o l a t i l e double p , i , t , d , dt , invdt , m, e , eold , r ;
i n t pid ( double m0, double kp , double ki , double kd , double c ){

t = 0 . 0 ;
invdt = 5 . 0 ;
dt = 0 . 2 ;
m = m0 ;
eo ld = 0 . 0 ;
i = 0 . 0 ;
whi le ( t < 100 .0 ) {

e = c − m;
p = kp ∗ e ;
i = i + k i ∗ dt ∗ e ;
d = kd ∗ invdt ∗ ( e − eo ld ) ;
r = p + i + d ;
m = m + 0.01 ∗ r ; /∗ computing measure : the p lant ∗/
eo ld = e ;
t = t + dt ;

}
re turn m;

}
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To ease the conversion of this code from C to FPCore, this program was first
manually translated to the following FPImp program:
(FPImp (m kp k i kd )
: name ‘ ‘PID ’ ’
: d e s c r i p t i o n ‘ ‘Keep a measure at i t s s e tpo i n t us ing a PID c o n t r o l l e r . ’ ’
: c i t e ( damouche−martel−chapoutot−nsv14 )
: type binary64
: pre ( and ( and (< −10.0 m) (< m 10 . 0 ) ) ( and (< −10.0 c ) (< c 1 0 . 0 ) ) )
[= t 0 . 0 ]
[= dt 0 . 2 ]
[= invdt (/ 1 dt ) ]
[= c 0 . 0 ]
[= eo ld 0 . 0 ]
[= i 0 . 0 ]
( whi le (< t 100 .0 )

[= e (− c m) ]
[= p (∗ kp e ) ]
[= i (+ i (∗ (∗ k i dt ) e ) ) ]
[= d (∗ (∗ kd invdt ) (− e eo ld ) ) ]
[= r (+ (+ p i ) d ) ]
[= m (+ m (∗ 0 .01 r ) ) ]
[= eo ld e ]
[= t (+ t dt ) ] )

( output m) )

The FPImp program was then automatically compiled, using the compiler
tool in FPBench, to the following FPCore benchmark:
(FPCore (m0 kp k i kd c )

: name ‘ ‘PID”
: d e s c r i p t i o n ”Keep a measure at i t s s e tpo i n t us ing a PID c o n t r o l l e r . ”
: c i t e ( damouche−martel−chapoutot−nsv14 )
: type binary64
: pre ( and ( and (< −10.0 m0) (< m0 10 . 0 ) ) ( and (< −10.0 c ) (< c 1 0 . 0 ) ) )
( whi le (< t 100 .0 )
( [ i 0 . 0 (+ i (∗ (∗ k i 0 . 2 ) (− c m) ) ) ]
[m m0
( l e t ( [ p (∗ kp (− c m) ) ]

[ d (∗ (∗ kd (/ 1 0 . 2 ) ) (− (− c m) eo ld ) ) ] )
(+ m (∗ 0 .01 (+ (+ p (+ i (∗ (∗ k i 0 . 2 ) (− c m) ) ) ) d ) ) ) ) ]

[ eo ld 0 .0 (− c m) ]
[ t 0 . 0 (+ t 0 . 2 ) ] )

m) )

Beyond the metadata used in the FPTaylor, Rosa, and Herbie examples,
this benchmark includes a :description tag to describe for readers what the
benchmark program computes. These descriptions contain information about
the distribution of inputs, the situation in which the benchmark is used, or any
other information which might be useful to tool writers. The FPBench suite
features descriptions for its most complex benchmarks.

6 Conclusion

The initial work on FPBench provides a foundation for evaluating and comparing
floating-point analysis and optimization tools. Already the FPBench format can
serve as a common language, allowing these tools to cooperatively analyze and
improve floating-point code.

Though FPBench supports the composition of the floating-point tools that
exist today, there is still much work to do to support the floating-point research
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community as it grows. FPBench must be sufficiently expressive for the broad
range of applications that represent the future of the community. In the near
term, we will add additional metrics for accuracy and performance to the set
of evaluators provided by the FPBench tooling and begin developing a stan-
dard set of benchmarks around the various measures. We will also expand the
set of languages with direct support for compilation to and from the FPBench
format. As more tools grow support for FPBench, we will provide automated
comparisons of different floating-point tools. Longer term, we intend to support
for mixed-precision benchmarks, fixed-point computations, and additional data
structures such as vectors, records, and matrices.

We hope that FPBench encourages the already strong sense of community
and collaboration around floating-point research. Toward that end, we encourage
any interested readers (and tool writers) to get involved with development of
FPBench by signing up for the mailing list and checking out the project website:
http://fpbench.org/.
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Abstract. Whenever formal verification of dynamical system models
is not applicable, e.g., due to the presence of black-box components,
simulation-based verification and falsification methods are promising
approaches to gain confidence in a system satisfying its specification.
With the introduction of robust semantics it is not only possible to
answer this question in the Boolean sense but to quantify its truth. We
illustrate a number of applications that are interesting from an indus-
trial perspective, and point out how robustness could become even more
versatile in the engineering process.
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1 Introduction

Models of dynamical systems play a crucial role in the development of auto-
motive control systems. Here, we focus on models describing the closed-loop
interaction between physical processes and controllers. Such models exist at
various levels of abstraction, e.g., in order to design a controller, a simpli-
fied physical model is used whereas for validation purposes the controller is
tested against a detailed physical model. Controller models on the other hand
range from abstract continuous-time models to fixed-step implementation mod-
els involving precise digital hardware behavior. There exist a variety of different
modeling tools specialized in different physics domains based on different for-
malisms such as PDEs (partial differential equations), ODEs (ordinary differen-
tial equations), DAEs (differential algebraic equations), and hybrid or switched
versions thereof. The situation is similar for controller models. Modeling tools
such as Matlab/Simulink or Modelica can express both physics and high-level
continuous- or discrete-time controllers in a single model. During refinement of
the controller implementation however, different tools must be used that reflect
real-time scheduling [9], and hardware behavior as well. Co-simulation is required
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to perform closed-loop simulations of such implementation models and physi-
cal processes, i.e., the entire system model is represented by different modeling
tools and the simulation becomes a distributed process which is typically coor-
dinated by a single tool. Alternatively, tool-specific models are converted into
tool-independent models such as FMUs (Functional Mock-up Units) [3]. Given
the current state of the art, it is not possible to formally verify functional proper-
ties of such models. This is partially due to the lack of formal semantics of some
modeling tools and the presence of black-box components in form of libraries. For
physical processes which do not admit an appropriate characterization by closed-
form ODE/DAE models, such as combustion, the model may involve functions
described by large tables of data. In these cases, even if we describe the model
in a mathematically unambiguous way, e.g., as a hybrid automaton, formal ver-
ification such as reachability analysis is often not practically possible with state
of the art methods.

A promising approach to address these complexities is simulation-based veri-
fication resp. falsification built on top of robust semantics for temporal property
specification logics [7,8]. So far research has mostly focused on variants of lin-
ear temporal logic (LTL), in particular metric temporal logic (MTL) and signal
temporal logic (STL). The basic idea is to generalize the Boolean semantics of
a temporal logic by a metric. In the Boolean semantics, a signal (trace) either
satisfies a specification or not. In a robust semantics, a signal is mapped to a real
number indicating some measure of distance to the satisfaction “border”. A value
in R

+
0 indicates that the signal satisfies the specification, a value in R

− shows
that it does not. Such a quantification of truth enables the use of optimization
methods to guide the exploration of a model and to find initial conditions, para-
meters, and possible input signals falsifying the property. If the model indeed
satisfies the property – which is in general undecidable – the exploration tries to
minimize the degree of satisfaction. Under certain assumptions, e.g., the model
being Lipschitz continuous, simulation-based verification is possible, i.e., a finite
number of simulation runs may suffice to show a temporal property [6]. In the
following, these approaches are summarized by the term property conformance
checking.

During model refinement from abstract to implementation models, it is
important to preserve desired properties. Property conformance checking is a
way to increase confidence in this preservation. Besides satisfying particular
properties, it is often desirable that the behavior of a refined system is close to
that of the original system, e.g., when the physics model is replaced by a more
complex one or when disturbances are introduced. Another example is compar-
ing a continuous-time model with a discrete-time version with delays charac-
terizing timing properties of the distributed execution of the controller such as
computation, communication, and scheduling delays. It has been observed that
equivalence notions from discrete systems such as bisimilarity are too strong to
adequately capture similarity of closed-loop control models. Instead, quantify-
ing the distance of pairs of corresponding signals from both models provides a
useful indication of model similarity. Deshmukh et al. [5] introduce an effective
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method to compute the distance of signals under the Skorokhod metric which
considers retimed versions s(r(t)) of a signal s(t) with r being a monotonically
increasing retiming function. The idea is to capture both distortions in space
and time where time distortions can be more general than constant time shifts.
Subsequently, this approach is called model conformance checking.

2 Industrially Relevant Applications

Automatic testing is important in industrial practice to have high confidence
that the product meets its requirements when formal methods are not applicable.
Tests capturing property or model conformance on the level of “virtual” models
are already useful as indicated above. Testing the real system is inevitable even
if the entire chain of model refinements would be formally verified. This is expen-
sive compared to simulations and thus benefits from careful selection of relevant
test cases, i.e., those which either falsify the property, or operate the system at
the satisfiability limit. In the context of vehicle dynamics, such test cases can be
executed from driving robots which control steering, acceleration, and braking
[11]. In the realm of automated driving, a test case may be as complex as finding
a particular challenging road configuration with potential obstacles, and defining
the behavior of dynamic objects other than the automated vehicle itself.

Clearly, it is desirable to have models which admit formal verification in
practice. A formal model could be used to describe the behavior for a subset of
outputs, e.g., a Büchi automaton capturing discrete behavior. Alternatively, it
may be a simplified dynamics model such as a system of ODEs or a linear hybrid
automaton, which presumably overapproximates the behavior in a subset of the
original state space, hence enabling reachability analysis [2,10] and theorem
proving [12]. Model conformance checking can provide best effort indication that
a formal model is indeed an abstraction of the original system.

Property conformance checking as described above computes a single robust-
ness value for a particular signal, and thus quantifies the satisfaction of the
property by that signal. Online monitoring is a form of property conformance
checking where a robustness signal is computed, i.e., a function mapping each sig-
nal prefix to its robustness value [4]. A robustness signal provides valuable feed-
back for developers in understanding how the satisfaction of a property evolves
in time. Moreover, if the monitor can be computed in real-time, its output could
be used to modify the system behavior, e.g., in case a system is approaching its
satisfiability limit, it could activate some fallback behavior before the property
is actually violated.

A black-box model contains inputs, outputs, parameters and states. In prac-
tice, it is often not possible to know all states as they might be hidden in libraries
that are part of the model. For autonomous models, i.e., ones without input,
property or model conformance checking explores a given parameter space. If
inputs are present, the exploration problem becomes more involved. A simple
approach is to select inputs from a predefined family of input functions. The
disadvantage is that the relation of input to state space is unknown. Consider
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the simple property �(x ≥ 2 ⇒ ♦[0,1]y ≤ 3) where x is a state, and y an output.
If the goal is to select an interesting input, it would have to be such that x ≥ 2
holds eventually. Selecting inputs from a predefined set works only if the set is
carefully chosen with knowledge about the model that must be obtained by other
means. Another approach would be to simply set x0 ≥ 2 initially but this is not
possible when the test is performed on a real system as we can obviously not
simply set real physical states in this way. Hence, for this practically relevant
class of specifications, test generation involves control synthesis. There are
numerous publications about this subject such as [13] which constructs a reced-
ing horizon controller from an STL specification. However, it is not clear how to
deal with hidden states. Moreover, constraints on inputs must be respected to
avoid damaging the real system under test.

Scenario-based verification is an important first step in mastering the
safety challenge for automated driving. Instead of testing many individual scenar-
ios, formal specification languages may provide an effective way of producing fam-
ilies of non-deterministic driving scenarios and expectations from the automated
vehicle therein. STL – while being amenable to efficient online monitoring – might
not be convenient or expressive enough because it is not possible to refer to pre-
vious signal values at a given point in time. Introducing the so-called freeze oper-
ator [4] solves this problem but at the cost of online monitoring becoming more
expensive.

3 One Robustness Does Not Fit All

Property conformance checking as described in Sect. 1 is key to various industri-
ally relevant applications sketched above. The notion of robustness generalizes
the classical Boolean semantics by quantifying the satisfaction of a temporal
property. Initially, space robustness [8] was proposed to measure the satisfac-
tion degree of a signal with respect to a formula. The robustness value indicates
how much the entire signal can be shifted in space and still satisfy the for-
mula. Most publications dealing with robust semantics of temporal logics are
based on space robustness. As a generalization, space-time robustness [7] was
introduced where time robustness describes how much a signal may be shifted
in time and still satisfy the formula. Besides various semantics, an STL exten-
sion was proposed which augments the logic by two operators (averaged-until
and averaged-released) [1]. The metric associated with these operators allows to
express for example expeditiousness, persistence (as long as possible), and soft
deadlines (earlier is better).

In practice, the properties of a model can often be written in the form
�

∧
1≤i≤n(φi ⇒ ψi) where φi refers to inputs and states and ψi refers to inputs

and outputs. A single notion of robustness is not sufficient to represent the prop-
erty adequately. For a test/simulation to be relevant, it is required that some φi

is satisfied since otherwise the formula holds trivially. While it is possible that
the precondition benefits from robust semantics, it may as well be sufficient to
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Fig. 1. Robustness for acceleration pedal reaction

evaluate the precondition under the Boolean semantics. For different postcondi-
tions though, different robustness metrics might be desirable. Let

φ1 ≡ φ2 ≡ input step

ψ1 ≡ �[0,10]x ≤ 1.2
ψ2 ≡ ψ2,1 ∧ ψ2,2

ψ2,1 ≡ �[0,13] input unchanged

ψ2,2 ≡ ♦[0,3]�[0,10]0.98 ≤ x ≤ 1.02

where φ1 ⇒ ψ1 is an overshoot and φ2 ⇒ ψ2 is a settling time requirement. It is
natural to evaluate ψ1 under the space robustness semantics (less overshoot is
better), ψ2,1 under the Boolean semantics (input should not change), and ψ2,2

under the time robustness semantics (earlier settling is better). The robustness of
the entire requirement can be computed by suitable monitors for the subformulas
from which a single robustness value can be calculated. This is possible whenever
the formula can be structurally decomposed into parts such that each part can
be assigned any of the standard robustness metrics. However, faster/earlier is
not always better, neither is slower/later. Consider a simplified requirement for
an accelerator pedal.

φ ≡ pedal pushed

ψ ≡ ♦[0,0.5]a ≥ 1

Figure 1 illustrates a robustness definition which favors neither fast nor slow reac-
tion time but defines the optimal reaction time to be at 0.25 s with robustness
1. Recall that a non-negative value indicates satisfaction, and a negative value
indicates violation of the property. Deviations from the optimal reaction time
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are penalized symmetrically, i.e., 0 ≤ r(0.25+Δ) = r(0.25−Δ) ≤ 1, Δ ∈ [0, 0.25]
where r(t) denotes the robustness of reaction time t. Reaction times greater than
0.5 s violate the property and its negative robustness grows quadratically with
increasing reaction time. Such a robustness is not conveniently expressible as
time robustness in the sense mentioned above. It would be possible to approx-
imate this notion arbitrarily by dividing the interval [0, 0.5] into subintervals
each associated with time robustness, and then compute the overall robustness
from the robustness values associated with each time interval. However, such a
specification is neither convenient nor precise.

The notion of robust semantics for temporal logics is very powerful.
MTL/STL offer great flexibility in specifying non-trivial properties. A similar
degree of freedom for specifying metrics would be of great value. Ideally, a devel-
oper would be able to define both the property and a suitable metric. The metric
differentiates between good and bad signals among all those which satisfy the
specification in the Boolean sense. This allows an intuitive understanding of
the robustness signal and enables meaningful computation involving different
robustness values. Besides assisting engineers in assessing the quality of their
models, metric diversity may be useful in steering the optimization process into
different regions of the state space.

4 Conclusion

Property and model conformance checking are versatile approaches to assess cor-
rectness of industrial models that cannot be handled by current state of the art
formal methods due black-box components and other complexities. By quanti-
fying the degree to which a property is satisfied based on recently introduced
robust semantics of linear temporal logics, it is possible to effectively explore
models and discover property violating behavior, or behavior which is close to
the satisfaction “border”. In practice however, one particular robust semantics
cannot adequately capture all desired quantifications of truth. Thus, we encour-
age to develop a generalized robust semantics which enables user-defined metrics,
thus leveraging flexible and intuitive composition of multiple properties.
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Abstract. This paper demonstrates a symbolic tool that generates
C code for nonlinear model predictive controllers. The optimality condi-
tions are derived in a quick tutorial on optimal control. A model based
workflow using MapleSim for modeling and simulation, and Maple for
analysis and code generation is then explained. In this paper, we assume
to have a control model of a nonlinear plant in MapleSim. The first
step of the workflow is to get the equations of the control model from
MapleSim. These equations are usually in the form of differential alge-
braic equations. After converting the equations to ordinary differential
equations, the C code for the model predictive controller is generated
using a tool created in Maple. The resulting C code can be used to
simulate the control algorithm and program the hardware controller.
The proposed tool for automatic code generation for model predictive
controllers is open and can be employed by users to create their own
customized code generation tool.

Keywords: Model predictive control · Code generation · Model based

1 Introduction

A systematic workflow for model based automatic code generation for Model
Predictive Control (MPC) is introduced in this paper (Fig. 1). MPC started as
the alternative advanced control method to PID controllers in chemical process
industries. With the progress of MPC algorithms and the computational power
of hardware controllers, other industries such as the robotics, automotive and
aerospace industries are looking into MPC controllers. The majority of current
MPC controllers use linear models because in that case, the controller needs
to solve a Quadratic Programming (QP), which is a convex optimization prob-
lem that can be solved efficiently. However, linear models are not adequate for
highly nonlinear systems. MPC controller synthesis based on physical model-
ing is the approach that can be employed to overcome the inefficiency of linear
models. Working with physical models is on the other hand not easy. Control
engineers need high-level modeling tools to save time, improve reliability and
prevent human error getting into the controller code.

MapleSim [1], as an advanced high-level tool for physical modeling and sim-
ulation, and Maple [2], as an advanced symbolic analysis and synthesis tool, are
c© Springer International Publishing AG 2017
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natural building blocks of the proposed workflow for automatic code generation
for MPC. The workflow, depicted in Fig. 1, consists of the following steps:

– Modeling: A physical model of the system is built by connecting components
in MapleSim. MapleSim contains more than 550 built-in components from
many different domains. Users can also create their own custom components.

– Extracting the equations: The dynamic equations of this model are then
extracted into Maple. In general, automatically generated dynamic equations
of a physical model are in the form of differential algebraic equations (DAE).

– Converting DAEs to ODEs: Most MPC algorithms assume that the equa-
tions are given in the form of ordinary differential equations (ODE). Maple is
employed in the workflow to convert DAEs to ODEs. The conversion can be
exact or an approximation in order to simplify the resulting ODEs. Currently,
this step is not systematic and it may be different for each system.

– Generating Code: The MPC algorithm for the given the ODE equations can be
generated using Maple’s symbolic computation engine. The resulting Maple
code can be converted to C code automatically using the CodeGeneration
package.

– Simulating the Closed Loop System: The generated C code can be embedded
in a MapleSim model as an External C Block. The closed loop system with
the original DAE equations can then be simulated in MapleSim.

Fig. 1. Model-based automatic code Generation for MPC
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An MPC controller consists of two main parts: problem formulation and the
solver. Both of these parts can be generated in Maple and then translated to
C code. In the Sect. 2, we will explain the approach we have followed to design an
MPC controller. Mathematical details of the approach are described in Sect. 3.
As an example, a system with electrical, mechanical and hydraulic components
is considered in Sect. 4. The importance of this example is that it demonstrates
automatic generation of dynamic equations, MPC problem formulation and an
MPC solver. Corresponding MapleSim models and Maple worksheets will be
provided to interested readers upon request.

2 Model Predictive Control

Consider a driver on a road. For a safe trip, the driver needs to look forward
(prediction), follow the road and avoid any collision (constraints). On top of
that, the driver might want to spend as little time and fuel as possible to reach
the destination (optimization).

MPC can be employed to drive a self-driving car. The MPC controller mini-
mizes a cost function at each time instant. Some of the optimization constraints
that should be respected are listed below:

– Vehicle’s dynamic behavior
– Limited power
– No skidding
– Following the road
– Avoiding collision

MPC is in fact a control method that computes the control input of the
system by solving an Optimal Control Problem (OCP) in real time. The aim
of the OCP is to optimize the trajectory of the system with respect to a cost
function that is defined based on economic or performance measures. An MPC
controller uses a model of the system to predict its behavior within a finite
horizon. The following steps describe what an MPC controller performs in real
time:

1. Measure/estimate the current state.
2. Solve the OCP to compute a sequence of control inputs.
3. Apply the first step in the control input sequence to the system.
4. Go to step 1.

MPC controllers were originally developed to control chemical processes [3].
PID controllers have been common in process control for a long time. However,
there are a few issues with using PID controllers:

– Highly nonlinear systems: PID controllers do not perform well for highly non-
linear systems.
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– Multiple coupled loops: To control a multi-input multi-output (MIMO) sys-
tem, many PID controllers in different loops are required and it is hard to
compensate the coupling effect.

– Tuning: Tuning PID controllers is not an easy task especially when there are
limits on the control input.

MPC controllers have the following features:

– MPC can minimize a cost function defined based on economic or performance
properties of the system.

– MPC can handle constraints on inputs and states.
– MPC can be designed for MIMO nonlinear systems.
– Tuning an MPC controller is more intuitive compared to a set of PID con-

trollers.
– MPC is a systematic, model based approach.
– There are tools for generating code for MPC controllers automatically.

2.1 Applications

MPC was first employed to control chemical processes in 1970s. In a survey
of industrial applications of MPC, reference [3] mentions thousands of applica-
tions in refining, petrochemicals, chemicals, pulp and paper, polymer and food
processing industries. Chemical processes are usually very slow and expensive.
Therefore, there is plenty of time and computational power available to the con-
troller. The largest size for plants reported in [3] is 603 inputs and 283 outputs.
The majority of the MPC controllers in process control use linear models for
the plant. The main reason is that the OCP in an MPC controller for a linear
system with constraints can be formulated as a Quadratic Programming (QP)
problem. Even large QP problems can be solved efficiently.

For nonlinear systems, the OCP is a nonlinear optimization problem, which
are hard to solve in general. In [4], it is stated that, in process control, the use
of linear MPC decreases with increasing process nonlinearity. In recent years,
computational power of microprocessors has increased and new algorithms have
been proposed for implementing MPC controllers. The result has been very fast
implementations of MPC and the increasing interest in robotics, automotive and
aerospace industries to use MPC controllers.

3 Mathematical Description

Consider the following nonlinear system:

ẋ(t) =f(x(t), u(t))
x(t0) =x◦
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where:

– x(t) is the state vector
– u(t) is the input vector

The objective of the MPC controller is to solve the following OCP:

minimize
u

J(x0, t0) = φ(x(tf )) +
∫ tf

t0

L(x(τ), u(τ))dτ

subject to ẋ(t) = f(x(t), u(t))
x(t0) = x◦
gi(x(t), u(t)) = 0, for i = 1, . . . , ng

hi(x(t), u(t)) ≤ 0, for i = 1, . . . , nh

This OCP is in general a nonconvex optimization problem and it is hard to
solve. A particular interior-point algorithm, the barrier method [5], is employed
here to convert the inequality constraints to equality constraints [6]:

minimize
u,σ

φ(x(tf )) +
∫ tf

t0

(
L(x(τ), u(τ)) − rTσ(τ)

)
dτ

subject to ẋ(t) = f(x(t), u(t))
x(t0) = x◦
gi(x(t), u(t)) = 0, for i = 1, . . . , ng

hi(x(t), u(t)) + σi(t)2 = 0, for i = 1, . . . , nh

where σ(t) ∈ R
nh is a vector slack variable and the entries of r ∈ R

nh are
small positive numbers. The vector r is chosen by the user. To put more penalty
on the solution when it gets close to hi(x(t), u(t)) = 0, the user should increase
the corresponding entry of r.

If the problem is discretized into N steps from t0 to tf , we have:

minimize
u,σ

φd(xN ) +
N−1∑

k=0

(
L(xk, uk) − rTσk

)

subject to xk+1 = fd(xk, uk)
x0 = x◦
gi(xk, uk) = 0, for i = 1, . . . , ng

hi(xk, uk) + σ2
ik = 0, for i = 1, . . . , nh

where Δτ = tf−t0
N and:

φd(xN ) =
φ(x(tf ), tf )

Δτ

fd(xk, uk) = xk + f(xk, uk)Δτ
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By putting all the equality constraints into a vector G, we have:

minimize
u,σ

φd(xN ) +
N−1∑

k=0

(
L(xk, uk) − rTσk

)

subject to xk+1 = fd(xk, uk)
x0 = x◦
G(xk, uk, σk) = 0

where:

G(xk, uk, σk) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1(xk, uk)
...

gng
(xk, uk)

h1(xk, uk) + σ2
1k

...
hnh

(xk, uk) + σ2
nhk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

To solve an optimization problem with equality constraints, we can use
Lagrange multipliers. The Lagrangian is defined as:

L(x, u, σ, λ, μ) = φd(xN , N) + (x◦ − x0)Tλ0

+
N−1∑

k=0

(
L(xk, uk) − rTσk

+ (fd(xk, uk) − xk+1)Tλk+1

+G(xk, uk, σk)Tμk

)

Necessary conditions for a point to be an extremum is the following partial
derivatives to be zero:

∂L
∂xk

= 0

∂L
∂λk

= 0 for k = 0, . . . , N

∂L
∂σk

= 0

∂L
∂uk

= 0

∂L
∂μk

= 0 for k = 0, . . . , N − 1
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The Lagrangian L can be rewritten as:

L(x, u, σ, λ, μ) =φd(xN ) + xT
◦ λ0 − xT

NλN

+
N−1∑

k=0

(H(xk, uk, σk, λk+1, μk) − xT
k λk

)

where the Hamiltonian is defined as:

H(xk, uk, σk, λk+1, μk) =L(xk, uk) − rTσk

+ fd(xk, uk)Tλk+1 + G(xk, uk, σk)Tμk

Now, the optimality conditions can be summarized as in the following table.
These conditions are known as Pontryagin’s Maximum Principle.

Partial derivatives Optimality conditions
∂L

∂λk+1
= 0 x�

k+1 = fd(x�
k, u�

k)

∂L
∂λ0

= 0 x�
0 = x◦

∂L
∂xk

= 0 λ�
k = Hx(x�

k, u�
k, σ�

k, λ�
k+1, μ

�
k)

∂L
∂xN

= 0 λ�
N = ∂

∂xN
φd(x�

N )
∂L
∂uk

= 0 Hu(x�
k, u�

k, σ�
k, λ�

k+1, μ
�
k) = 0

∂L
∂σk

= 0 Hσ(x�
k, u�

k, σ�
k, λ�

k+1, μ
�
k) = 0

∂L
∂μk

= 0 G(x�
k, u�

k, σ�
k) = 0

For k = 0, . . . , N − 1 where � denotes the optimal solution and Hu = ∂H
∂uk

and Hσ = ∂H
∂σk

. In the next section, we introduce an algorithm to find a solution
of the optimality conditions.

3.1 Continuation GMRES Method

Following [7], optimality conditions can be written as the equation F (xn, U) = 0
where

F (xn, U) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Hu(x0, u0, σ0, λ1, μ0)
Hσ(x0, u0, σ0, λ1, μ0)

G(x0, u0, σ0)
...

Hu(xN−1, uN−1, σN−1, λN , μN−1)
Hσ(xN−1, uN−1, σN−1, λN , μN−1)

G(xN−1, uN−1, σN−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and:
U = [uT

0 , . . . , uT
N−1, σ

T
0 , . . . , σT

N−1, μ
T
0 , . . . , μT

N−1]
T
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Dynamics equations of the states and costates (Lagrange multipliers corre-
sponding to state equations) are given as:

xk+1 = fd(xk, uk)
x0 = xn

λk = Hx(xk, uk, σk, λk+1, μk)

λN =
∂

∂xN
φd(xN )

Using the Continuation method, instead of solving F (x,U) = 0, we find U
such that:

Ḟ (x,U) = AsF (x,U)

where As is a matrix with negative eigenvalues. Now, we have:

Fxẋ + FU U̇ = AsF (x,U)

To compute U̇ using the following equation, which is linear in U̇ , we use the
generalized minimum residual (GMRES ) algorithm.

FU U̇ = AsF (x,U) − Fxf(x, u)

To compute U at any given time, we need to have an initial value for U and
then use the above U̇ to update it.

4 Example

In this section, we will apply the proposed workflow for MPC controller design
to an Electro Hydraulic Servo System (EHSS). The EHSS system, depicted
in Fig. 2, consists of mechanical system with two arms. The pressure inside a
hydraulic cylinder creates the force to move the arms up and down. The model
of this system is built in MapleSim by connecting components from Multibody
and Hydraulics libraries (Fig. 3). The implementation of the EHSS model in
MapleSim, generating code for the MPC controller in Maple and simulating the
MPC controller in MapleSim are available upon request.

In a Maple worksheet, equations of motion of the EHSS system are extracted
from the MapleSim model. For this example, the extracted equations represent
an implicit ODE. In order to convert the equations into an explicit ODE, we
will assume that the input of the system (the input pressure to the hydraulic
circuit) and the derivative variables (state variables) are given. Then, we need
to create a procedure to compute the derivatives of the state variables. In this
particular case, the implicit ODE contains piecewise expressions that lead to a
fairly complicated piecewise explicit ODE. To simplify the resulting ODE, a few
of the expressions are approximated with rational polynomial functions.

Once the explicit ODE is computed, the MPC algorithm can be generated in
Maple. One of the advantages of a symbolic computation engine such as Maple
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Fig. 2. EHSS system

Fig. 3. EHSS MapleSim model

is that it can work on procedures as opposed to numbers. For example, by apply-
ing the codegen:-optimize command in Maple to a procedure, you can create a
new procedure that computes the same result as the original procedure but it
performs fewer operations. This optimization is done by recognizing common
subexpressions that appear in the equations several times and computing them
as intermediate variables. The intermediate variables are then only used, not
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recomputed, in the rest of the equations. In the MPC workflow, a procedure is
generated that computes the optimality conditions. To that end, partial deriva-
tives of the Hamiltonian with respect to states, inputs, Lagrange multipliers and
slack variables are needed. Also, depending on the solver, we might need the
derivatives of the optimality conditions. Depending of the dynamic equations of
the system, the symbolic representation of the optimality conditions and their
derivatives might become very long expressions. To avoid working with com-
plicated expressions, we create Maple procedures that compute the optimality
conditions. The partial derivatives of a procedure with respect to its input argu-
ments can be computed using the codegen:-JACOBIAN command. The result is
returned as a procedure that computes the corresponding derivative. The main
advantage of using Maple in the workflow is that the procedures and their deriv-
atives are computed automatically based on the original ODE equation. Users
of numerical tools have to write several procedures by hand to implement an
MPC controller. Manually writing procedures takes time and is always prone
to human errors. With Maple, the workflow is automatic and the result is an
optimized procedure. The MPC algorithm can also be translated into C code
using the CodeGeneration package in Maple.

The generated C code for the MPC controller can then be embedded into the
MapleSim model of the EHSS as an External C Block to simulate the closed loop
system. Figure 4 shows the result of the closed simulation of the EHSS system
with the MPC controller. The value of θ (Fig. 2) is shown in solid red and its
desired value is shown in dashed green. Although, in the design of the MPC
controller, we assumed that the setpoint was constant, the MPC controller has
acceptable tracking performance.

Fig. 4. Closed loop simulation
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5 Summary

In this paper, we reviewed a workflow for implementing MPC controllers.
MapleSim, a high-level modeling tool, and Maple, a high-level and symbolic
computation engine, were employed to create an automatic workflow from a
high-level model of the system to the C code of the MPC controller. The MPC
problem formulation and solver were generated in Maple and then converted to
C code. The main advantage of using a symbolic tool in the workflow is that the
required procedures and their corresponding derivatives are computed and opti-
mized automatically. This workflow saves time and it is less sensitive to human
errors.
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Abstract. The polyhedral analysis is widely used for the static analysis
of programs, thanks to its expressiveness but it is also time consuming. To
deal with that, a sub-polyhedral analysis has been developed which offers
a good tread off between expressiveness and sufficiency. This analysis is
based on a set of directions which is defined statically at the beginning
of the analysis. More the cardinality of Δ is big, more the precision of
the result is high. Even if the set Δ is big, the sub-polyhedral analy-
sis can be done in a linear time. The bottleneck is that to construct
the resulting polyhedron with a large number of constraints (one con-
straints per direction) is time consuming. In this article, we present a
minimization method that allows to deal with that, using the max plus
pruning method. We demonstrate the efficiency of our method on some
benchmarks. The first results are very encouraging.

1 Introduction

In the abstract interpretation [2,3], the key component is represented by the
abstract domain. A lot of them have been developed to deal with the multiple
challenges of the program analysis. The most expressiveness one is the poly-
hedra abstract domain [4], but its analysis is time consuming. To deal with
that, a lot of effort have been done by the researchers in the field and that to
find a good trade-off between expressiveness and efficiency. A lot of domains
have been developed, known as the sub-polyhedra or weakly relational abstract
domains [6,8,9,11,12]. The authors in [10] present an abstract domain based
on support functions, noted P

�
Δ. This domain proposes a good balance between

expressiveness and computational time. The lattice of P�
Δ is closed to the lattice

of the template abstract domain [9], but its result is more accurate than the one
obtained using the template analysis. Because the precision of the polyhedral
analysis is preserved using the P

�
Δ analysis and that based on the choice of a

finite set of direction Δ. The larger the cardinality of Δ, the higher the precision
of the result.

The execution time of the P
�
Δ analysis is linear in the cardinality of Δ. So,

we can get a precise post fixed point using a large number of random directions.
The problem is that taking a large number of directions means that the obtained
c© Springer International Publishing AG 2017
S. Bogomolov et al. (Eds.): NSV 2016, LNCS 10152, pp. 96–104, 2017.
DOI: 10.1007/978-3-319-54292-8 9
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polyhedron contains the same number of constraints. So, the minimisation of this
polyhedron is very time consuming. Because the minimization method, firstly,
deletes the redundant constraints then computes the intersection of the other
constraints. In this article, we present a new version of the polyhedral minimiza-
tion method, called the k-minimization. This methods is based on the max plus
pruning method [5].

2 Background

2.1 The Sub-polyhedral Abstract Domain Based Support Functions

The sub-polyhedral abstract domain presented in [10] is based on support func-
tion [7]. This domain is an abstraction of convex polyhedra over R

n, where n

is the space dimension. We denote by P
�
Δ the abstract domain using support

functions. The lattice definition is closed to the lattice of the Template abstract
domain [9]. P�

Δ is parametrize by a finite set of directions Δ = {d1, . . . , dl}. The
directions in Δ are uniformly distributed on the unit sphere, noted Bn. The
definition of P�

Δ is given as follow:
Let Δ ⊆ Bn be the set of directions. We define P

�
Δ as the set of all functions

from Δ to R∞, i.e. P�
Δ = Δ → R∞. We denote ⊥Δ (resp. �Δ) the function such

that ∀d ∈ Δ, ⊥Δ(d) = −∞ (resp. �Δ(d) = +∞).
For each Ω ∈ P

�
Δ, we write Ω(d) the value of Ω in direction d ∈ Δ. Intuitively,

Ω is a support function with finite domain.
The abstraction and concretization functions of P�

Δ are defined as follows:
Let Δ ⊆ Bn be the set of directions.
We define the concretization function γΔ : P�

Δ → P by:

∀Ω ∈ P
�
Δ, γΔ(Ω) =

⋂

d∈Δ

{x ∈ R
n, < x, d >≤ Ω(d)} .

where, < x, d > is the scalar product of x by the direction d.
The abstraction function αΔ : P → P

�
Δ is defined by:

∀P ∈ P, αΔ(P) =

⎧
⎨

⎩

⊥ if P = ∅
� if P = R

n

λd. δP(d) otherwise
.

where, δP(d) is the support function of the polyhedron P in the direction d, and
P represents the polyhedra abstract domain.

Note that, the concretization of an abstract element of P�
Δ is a polyhedron

defined by the intersection of half-spaces, where each one is characterized by its
normal vector d ∈ Δ and the coefficient Ω(d). The abstraction function on the
other side is the restriction of the support function of the polyhedra on the set
of directions Δ. The order structure of P�

Δ is defined using properties of support
functions [7]. The static analysis of a program consists in computing the least
fixed point of a monotone map. To do so, the most used method is the Kleene
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Algorithm. By combining the Kleene algorithm and the P
�
Δ abstract domain,

the obtained algorithm has a polynomial complexity in the number of iterations
and linear in the number of directions in Δ. In addition, its result is as accurate
as possible: at each iterate, we have that Ωi = αΔ(Pi), such that Ωi (resp. Pi)
is the result of the ith Kleene iteration using the P

�
Δ (respectively the polyhedra

abstract domain). So Ω∞ = αΔ(P∞), with Ω∞ is the fixed point obtained in the
P

�
Δ analysis and P∞ is the one obtained using polyhedra domain. That why the

P
�
Δ analysis is more precise than the Template analysis [9]. In other terms, the

P
�
Δ analysis is done with the precision of the polyhedra domain and the over-

approximation is done only, at the end, in the concretization function. When
with Template domain, all the analysis is done in a less expressive domain.

2.2 The Max Plus Pruning Method

In [5], the authors present a method to reduce the curse of dimensionality in
solving an optimal control problem. In this method, the value function is over-
approximated using a set of Max-Plus basis functions. The general formulation
for the pruning problem appearing in max-plus basis methods is the following:
Let F = {1, 2, . . . ,m} be a set of integer, and let g(x) : Rn �→ R be a function
defined as follow:

g(x) = supi∈F gi(x)

where ∀i ∈ [1,m], gi(x) is a basis function. Let B = {g1, . . . , gm} be the set of
these m basis functions. Note that, when solving an optimal control problem the
cardinality of B can be very large. The idea is to approximate g(x) by keeping
only 0 ≤ k ≤ m basis functions from the set B. For that, the authors in [5] need
to compute the set S ⊂ F with cardinality k and then approximate the function
g by:

g(x) 
 supi∈Sgi(x)

The obtained set S should minimize the approximation error. This is known as
a pruning problem. To solve it, a set of witness points W is used to measure the
approximation error, such that: W = {x1, . . . , xm} ⊂ R

n, where n is the space
dimension. This set is constructed using a random points in the space. After-
wards, ∀xi ∈ W,∀gj ∈ B the importance metric is computed, which represents
the distance between g(xi) and gj(xi). This is denoted by cij , such that:

cij = g(xi) − gj(xi)

The obtained results represents the cost matrix C ∈ R
m × R

m (dessiner la
matrix). For a better comprehension, let us take the example of Fig. 1. In this
example, we want to approximate the smooth convex function g (the red graph)
using the basis functions g0, g1, g2 (the green lines). The point x0 is one wit-
ness point. It is used to compute the distance between the function g and all
basis functions. The distance between g(x0) and g0(x0) is represented by the
red dashed line. In this example, if we want to keep only two of the three basis
function. The couple (g0,g2) is the best choice.



Reduce the Complexity of the Polyhedron Minimization 99

Fig. 1. In this figure, we represent the function g (red graph) and some basis functions
(green lines). The dashed red line is the distance between g and g0 using the point x0.
(Color figure online)

Afterwards, the cost matrix C is used to compute the set |S| = k. And that
by applying one of the two methods:

– the K-median problem [1]: to minimize the sum of the lost, such that:

min
S⊂I

m∑

i=1

min
j∈S

cij

– the K-center problem: to maximize the lost, such that:

min
S⊂I

max
i∈[1,m]

min
j∈S

cij

The obtained set S is used to approximate the function g as follow:

g(x) 
 supi∈Sgi(x)

with gi ∈ B.

3 The k-Minimization Method

In this section, we develop our main contribution which is a novel approach
to reduce the complexity of the polyhedron construction and that by reducing
the number of constraints, this method is called the K-minimization, which is
inspired from the Max-Plus pruning method [5].

Let Pm be a polyhedron represented by the intersection of m ∈ N half-spaces
i.e. Pm =

⋂m
i=1 Hi where Hi = {x ∈ R

n : 〈x, ai〉 ≤ bi} with ai ∈ R
n and

bi ∈ R. For an m very large, the computation of Pm is time consuming. To
improve this computation, we over-approximate Pm by keeping only k < m of
their half-spaces, let Pk =

⋂k
i=1 Hi be the resulted polyhedron, such that:
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Fig. 2. (The left part) The intersection of the red dashed half spaces defines the poly-
hedron P. The red directions in bottom represent the normal vectors of the lines those
support these half-spaces. (The right part) the polyhedron P′ is an over-approximation
of P, that by deleting the dashed blue half-space (Color figure online)

– Pk ⊇ Pm.
– Pk is the best approximation of Pm using k half-spaces. Note that, the def-

inition of the best approximation strongly depend on the definition of the
Hausdorff distance between two polyhedra.

For a better comprehension, let me explain the motivation using the example
of Fig. 2. In this figure, the left polyhedron P is defined using the intersection
of seven half-spaces. Each half space, is represented by one direction (given in
red in the bottom of the left figure). We want to over-approximate P by taking
only 6 half-spaces from the 7 one. The resulted polyhedron P′ is given in the
right figure. Where, the half-space to delete is the blue dashed one. Noted that,
P ⊆ P′, with P′ is the best approximation of P using only 6 half-spaces from the
initial one. This approximation is known as the pruning problem, to be able to
solve its automatically, we propose a method called the K-minimization method.

The K-minimization method is based essentially on three steps:

1 The computation of the witness points.
2 The computation of the cost matrix.
3 The application of the K-median algorithm.

Let us detailed these steps:

The witness points computation: Let w ⊆ R
n be a set of points, where each

point of w belongs to one face of Pm. So, the cardinality of w is equal to m,
i.e. |w| = m. In the following, each half-space Hi will be characterized by its
corresponding point xi in the set w, these points are called witness points. Note
that, the computation of these points is known as a convex optimization problem
and to solve it, we may solve m LP problems. For all i ∈ {1, . . . , m}:
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– Solve the following LP problem using the interior point algorithm:

min〈x, ai〉 − bi

s.t. : ∀j ∈ {1, . . . , m} \ {i}, 〈x, aj〉 ≤ bj

– Add the obtained point to w the witness point set.

The cost matrix computation. Let C ∈ Rm×m be a square matrix. We have that
∀i, j ∈ [1,m] Cij represents the euclidean distance between xi the ith point in
the set w and proj(xi, Lj) the orthogonal projection of xi on the plane Lj . This
distance is obtained as follows:

Cij = ‖xi − proj(xi, Lj)‖
= |〈xi,aj〉−bj |

‖aj‖ .

So, each line i of the matrix C contains distances between xi and all the lines
that support the faces of Pm. The matrix C is called the cost matrix.

The application of the k-median algorithm. To tackle the fact that we want to
choose k half-spaces from the m ones and that by minimizing the approximation
error, we propose the use of the k-median algorithmi [1]. The k-median problem
is one of the most studied clustering problem, such that for n points given in a
metric space the aim is to identify the k < n ones that minimize the sum of the
distance to their nearest points.

In our problem, we want to define the k witness points such that the sum
of the distance between these k points and their projections is minimized. For
that, we use the cost matrix C to formalize the k-median problem as follows:

min
S⊂F,|S|=k

m∑

i=1

min
j∈S

Cij .

with F = {1, 2, . . . ,m} the set of the witness point indices in w.
Several algorithms are known to solve this problem, and that returns the

set S of indices of the witness points in w that minimize the sum of distance.
We know that each witness point in w represents one half-space that is used to
define Pm. So, the resulted polyhedron Pk is defined as follows:

Pk =
⋂

i∈S

Hi.

Thus, we have that Pm ⊆ Pk.
To summarize, the k-minimization algorithm is given in Algorithm 1.
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Algorithm 1. The K-minimization algorithm
Require: Pm, k ∈ N

w = witnessPoint(Pn)
for i = 0 to m − 1 do

for j = 0 to m − 1 do
C[i][j]= Distance(w[i], proj(w[i], L[j]))

end for
end for
S = KmedianAlgo(C, k)
return Pk

In Algorithm 1, the set of witness points, noted w, is computed using the
function witnessPoint. This function uses m LP solver. Then, the euclidean
distance is computed between all the points of w and their orthogonal projection
on L, where L are the set of planes that support the faces of the polyhedron
Pm. These distances are computed using the function Distance and the results
are putted in the matrix C. Afterwards, the k-median algorithm is applied using
the matrix C.

In the case of the P
�
Δ analysis, let Ω be the obtained fixed point. Then

γΔ(Ω) =
⋂

d∈Δ{x ∈ R
n, < x, d >≤ Ω(d)} . This is the concretisation of Ω

in the polyhedra abstract domain. Note that, the cardinality of Δ the set of
directions can be very large, So the concretisation of Ω can be time consuming.
That why, the K-minimization method is applied at the end of the P

�
Δ analysis

to over-approximate the result of γΔ(Ω). The concretisation of Ω is very useful,
it allows us to compare our result with the one obtained using the polyhedral
analysis. It, also, can be used as the input of another analysis. Recall that the
P

�
Δ analysis uses a polyhedron as initial input set. The preliminary results are

given in the next section.

4 Benchmarks

We implemented the k-minimization algorithm on the top level of the Parma
Polyhedra Library (PPL: http://bugseng.com/products/ppl/). We apply it on
some programs, which represent digital filters. The obtained results are given in
Fig. 3.

At the end of the P
�
Δ analysis, we concretise the result in the polyhedra

abstract domain. In the table of Fig. 3, we compare the results obtained using
the combination of the k-minimization and the P

�
Δ analysis [10], with the one

obtained using only the P
�
Δ analysis. Note that, in the first result we apply the

k-minimization method before the application of the concretisation function.
Where in the second one, we apply the concretisation function directly on the
result of the P

�
Δ analysis, and that using all the directions in Δ. The first results

are very encouraging, with our method the analysis terminates in some minutes.
Where with the standard minimization function the analysis did not terminates,

http://bugseng.com/products/ppl/
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Program The P
�
Δ analysis + the K-minimization The P

�
Δ analysis

Name |V | |Δ| t(s) K t(s)

lead leg controller 5 350 1m53.811s 116 TO
lp iir 9600 2 6 372 3m0.165s 124 TO
lp iir 9600 4 10 500 6m21.984s 166 TO
lp iir 9600 4 elliptic 10 500 6m20.659s 166 TO
lp iir 9600 6 elliptic 14 692 21m56.076s 230 TO
bs iir 9600 12000 10 chebyshev 22 1268 TO 422 TO

Fig. 3. The execution time obtained using the k-minimization method and the standard
polyhedral minimization

and that after 10 h of executions. Even, with our method, the analysis of the
last program did not terminate in a reasonable execution time. The lack of the
k-minimization algorithm is the computation of the witness points which is time
consuming, because we apply one LP solver per constraints. The improvement
of this point is the subject of our ongoing work.

5 Conclusion

In the P
�
Δ analysis, The execution time is linear in the cardinality of Δ. So to

improve the precision of the analysis, we can take Δ with a large cardinality. The
result of this analysis can be concretised in the polyhedra abstract domain, where
the number of the constraints of the obtained polyhedron is equal to the cardinal-
ity of Δ. So, if we take Δ very large, the computation of the resulted polyhedron
can be time consuming. For that, we present in this paper a method called k-
minimization. This method can be applied before the concretisation method to
reduce its complexity. The k-minimization method is inspired from the Max-
Plus Pruning method. This method over-approximate the obtained polyhedron
by keeping only k from their half-spaces, where k is chosen statically smaller then
the cardinality of Δ. The obtained over-approximation is the one that minimise
the loss of precision.
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Abstract. Contract-based software development is a major methodol-
ogy for the development of safety- and mission-critical embedded sys-
tems. Contracts are an effective mechanism to establish boundaries
between components, and can be used efficiently to verify global, system-
level properties by means of compositional reasoning techniques. A con-
tract specifies the assumptions a component makes on its environment,
and the guarantees it provides. Requirements in a component’s spec-
ification are often case-based, with each case referring to a particular
behavioral mode for the component. This talk introduces CoCoSpec,
a mode-aware assume-guarantee-based contract language for embedded
systems. CoCoSpec, which is built as an extension of the synchronous
data-flow language Lustre, lets users specify mode behavior directly, thus
preserving mode-specific information contained in (natural language)
system requirements. Mode-aware model checkers supporting CoCoSpec
can increase the effectiveness and scalability of compositional analysis
techniques based on the assume-guarantee paradigm. In particular, they
can leverage the fine-tunable abstraction mechanism provided by modes
in order to selectively abstract complex numerical operations by their
contracts, thus facilitating the verification of systems with numerical
components. The talk presents the CoCoSpec language and illustrates
the benefits of mode-aware model-checking on a case study involving a
flight-critical avionics system. The evaluation uses Kind 2, a collabora-
tive, parallel, SMT-based model checker developed at the University of
Iowa that provides full support for CoCoSpec.

This work is was partially funded by NASA under Grant # NNX14AI09G.

c© Springer International Publishing AG 2017
S. Bogomolov et al. (Eds.): NSV 2016, LNCS 10152, p. 105, 2017.
DOI: 10.1007/978-3-319-54292-8



Author Index

Abate, Alessandro 1
Adjé, Assalé 15
Alexandre dit Sandretto, Julien 52

Beillahi, Sidi Mohamed 31
Boldo, Sylvie 47

Chapoutot, Alexandre 52

Damouche, Nasrine 63

Heinz, Thomas 78

Martel, Matthieu 63

Panchekha, Pavel 63

Qiu, Chen 63

Samadi, Behzad 85
Sanchez-Stern, Alexander 63
Seladji, Yassamine 96
Siddique, Umair 31

Tahar, Sofiène 31
Tatlock, Zachary 63
Tinelli, Cesare 105


	Preface
	Organization
	Contents
	Verification of Networks of Smart Energy Systems over the Cloud
	1 Technological Context: Networks of Complex Systems
	2 Formal Verification of Complex Models
	3 Approximate Model Checking of Stochastic and Hybrid Models
	4 From Verification to Synthesis: Correct-by-Design Control of Complex Models
	5 Verification of Networks of Smart Energy Systems over the Cloud
	6 Conclusions
	References

	Proving Properties on PWA Systems Using Copositive and Semidefinite Programming
	1 Introduction
	2 Proving Properties on Constrained Piecewise Affine Discrete-Time Dynamical Systems
	2.1 Some Recalls About Polyhedra
	2.2 Piecewise Affine Discrete-Time Systems
	2.3 Proving Properties on PWA

	3 The Mathematical Model
	3.1 Cone-Copositive Matrices
	3.2 Inductiveness
	3.3 Optimality
	3.4 Implementable Model Using Semidefinite Programming
	3.5 Results on Example 1

	4 Conclusion and Future Works
	References

	Formal Analysis of Engineering Systems Based on Signal-Flow-Graph Theory
	1 Introduction
	2 Signal-Flow Graphs Theory and Mason's Gain Formula
	3 Formalization of Undirected Signal-Flow-Graph Theory
	4 Formalization of Transfer Function
	5 Z-Source Impedance Network
	6 PANDA Vernier Resonator
	7 Conclusion
	References

	Computing a Correct and Tight Rounding Error Bound Using Rounding-to-Nearest
	1 Introduction
	2 Theorem
	3 Tightness of the Bound
	4 Conclusion
	References

	Studying Sequences of Jumps in Hybrid Systems to Detect Zeno Phenomenon
	1 Introduction
	2 Numerical Simulation of Hybrid Systems
	2.1 Hybrid Automata
	2.2 Numerical Solver

	3 Acceleration of Sequence Convergence
	3.1 General Definitions

	4 Experiments
	4.1 Bouncing Ball
	4.2 Two Tanks

	5 Conclusion
	References

	Toward a Standard Benchmark Format and Suite for Floating-Point Analysis
	1 Introduction
	2 Benchmark Format
	2.1 FPCore
	2.2 FPImp

	3 Accuracy Measurements
	3.1 Measurement Axes
	3.2 Existing Tools

	4 Tools
	5 Benchmark Suite and Examples
	5.1 FPTaylor
	5.2 Rosa
	5.3 Herbie
	5.4 Salsa

	6 Conclusion
	References

	Falsification of Dynamical Systems -- An Industrial Perspective
	1 Introduction
	2 Industrially Relevant Applications
	3 One Robustness Does Not Fit All
	4 Conclusion
	References

	Model Based Automatic Code Generation for Nonlinear Model Predictive Control
	1 Introduction
	2 Model Predictive Control
	2.1 Applications

	3 Mathematical Description
	3.1 Continuation GMRES Method

	4 Example
	5 Summary
	References

	Reduce the Complexity of the Polyhedron Minimization Using the Max Plus Pruning Method
	1 Introduction
	2 Background
	2.1 The Sub-polyhedral Abstract Domain Based Support Functions
	2.2 The Max Plus Pruning Method

	3 The k-Minimization Method
	4 Benchmarks
	5 Conclusion
	References

	A Mode-Aware Contract Language for Reactive Systems
	Author Index



