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Abstract This chapter describes the family of languages required to analyze
the scalability, elasticity, and cost-efficiency of services deployed in the cloud.
First, the ScaleDL Overview Model describes the overall structure of a cloud-
based architecture. Second, ScaleDL Usage Evolution specifies how load and work
vary as a function of time. Third, ScaleDL Architectural Templates save time by
reusing best practices. Fourth, the Extended Palladio Component Model is used for
modeling software components and their mapping to underlying software services.
The first three languages are new in CloudScale, while the fourth, Extended Palladio
Component Model, is reused. For each language, we describe the basic concepts
before we give an example. Tool support is then outlined. We list our catalog of
Architectural Templates.

This chapter is structured as follows: Sect. 4.1 outlines the relation between the
ScaleDL languages. For each language, we describe the basic concepts before we
give an example. Tool support is also outlined. The ScaleDL Overview Model
is described in Sect. 4.2. ScaleDL Usage Evolution is explained in Sect. 4.3.
In Sect. 4.4 ScaleDL Architectural Templates are introduced in detail. Section 4.5
describes the Extended Palladio Component Model.
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4.1 Introduction

The Scalability Description Language (ScaleDL) is a collection of languages
to characterize scalability, elasticity, and cost-efficiency aspects of cloud-based
systems. For other aspects like system behavior, data models, etc., complementary
languages like Unified Modeling Language (UML) must be used. ScaleDL consists
of five languages: three new languages (ScaleDL Usage Evolution, ScaleDL
Architectural Templates (ATs), and ScaleDL Overview Model) and two reused
language (Palladio’s Palladio Component Model (PCM) extended by SimuLizar’s
self-adaption language and Descartes Load Intensity Model (DLIM)). For each
of these, we briefly describe their purpose and provide a reference to a detailed
description later in this chapter:

ScaleDL Overview Model (developed in CloudScale) allows architects to model
the structure of cloud-based architectures and cloud deployments at a high level
of abstraction (cf., Sect. 4.2).

ScaleDL Usage Evolution (developed in CloudScale) allows service providers to
specify scalability requirements, e.g., using evolution of work and load of their
offered services (cf., Sect. 4.3).

Descartes Load Intensity Model (DLIM) (reused; see [1]) was originally
designed to model load intensity in terms of evolution of arrival rates over
time, but can also be used for modeling the evolution of work and load in general
(cf. Sect. 4.3).

ScaleDL Architectural Templates (developed in CloudScale) allows architects to
model systems based on best practices as well as to reuse scalability models
specified by architectural template engineers (cf., Sect. 4.4).

Extended Palladio Component Model (reused; see [2]) allows architects to model
the internals of the services: components, components’ assembly to a system,
hardware resources, and components’ allocation to these resources; the extension
allows, additionally, to model self-adaptation: monitoring specifications and
adaptation rules (cf., Sect. 4.5).

Figure 4.1 shows an overview of how the languages relate to each other, and the
transformations and other components they are input to and output from. We will
detail this in the next sections, for one language at a time.

4.2 Overview Model

Important issues while modeling cloud architectures and their deployments are
their replicability and the necessity of high-level descriptions that can be easily
understood and shared. Common approaches for sharing such models are diagrams
and descriptions that are not useful as formal definitions of architectures or
deployment strategies that can be used automatically with different tools, and formal
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Fig. 4.1 Overview of ScaleDL languages and their relationships

descriptions, such as deployment scripts or recipes, provide little utility for the high-
level study of the defined systems.

DEFINITION 4.1: OVERVIEW MODEL

The Overview model is a meta-model that provides a design-oriented
modeling language and allows architects to describe the structure of cloud-
based systems. It provides the possibility of representing private, public, and
hybrid cloud solution, as well as systems running on a private infrastructure.

We will first describe concepts in the Overview Model in Sect. 4.2.1, before we
sketch an example in Sect. 4.2.2. In Sect. 4.2.3 we detail the tool support.

4.2.1 Concepts of Overview Model

The Overview model consists of Architecture, Deployment, and Specification
models. The Architecture model provides a descriptive abstraction of the system’s
architecture without any deployment or performance information, which is defined
in Deployment and Specification models and referenced to the Architecture model.

The Architecture model was designed as a base model for describing and
visualizing components in a cloud environment. It contains different cloud envi-
ronments and external connections, for linking operations with a user interface or
an external black-box service, or to interconnect cloud environments in a hyper-
cloud configuration. The cloud environment component contains basic information
about data centers and performance in different regions, using descriptors defined
in the Specification model. From the architecture point of view, the most important
components in the Architecture model are internal connections, defined between
two components, and a layered tree structure of services, defining a deployment
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hierarchy. The latter is separated into three categories: the infrastructure layer, the
platform layer, and the software layer.

The infrastructure layer contains provided Infrastructure services. Services
mentioned as provided in the Overview model context do not contain further
information about the implementation of a lower-level mechanics. This can be
substituted and described with independent components, capable of executing
higher-level routines, according to measured performance limitations. A set of
aforementioned components defines the Deployment. In practice, every service,
except for the physical hardware, needs a lower-level service on which it operates,
but sometimes the exact specification is not known. To make the Overview model
flexible for such cases, the Provided service interface can be applied on any service
inside the Architecture service layer stack to obscure or simplify the complexity
of the underlying layers. Infrastructure services are the lowest in the service layer
hierarchy, so they must provide the Deployment model. Practical implementation of
the Infrastructure service is the Computing infrastructure service, which reference a
Deployment and a Computing resource descriptor.

The platform and software layers contain provided or deployable platform and
software services. The platform services can act as a placeholder for the software
services or provide a full description of a software by describing the application’s
inner-working with the PCM language in Sect. 4.5.

The descriptions of cloud components inside the Architecture and the Deploy-
ment package are defined inside the Specification model to allow easy extensibility
or migration and performance testing between different cloud providers.

4.2.2 Example of Overview Model

An example model can illustrate more clearly the Overview Model’s capabilities.
Figure 4.2 shows a visual representation of an Overview Model of a simple system
composed of two Tomcat applications running on Amazon EC instances, and which
make use of the Amazon DynamoDB service, a MySQL RDS service, and an e-mail
service.

The model includes networking details such as average latency and bandwidth,
which can be used for the behavior analysis and simulation of the overall system.
Several other data can be defined. For example, we can define the expected statistical
distribution of response time for an external service, or the expected capacity of a
computing unit.

The general Overview Model can thus give a quick understanding of the overall
architecture and deployment strategy, but contains also detailed information that can
be used at different stages of the evaluation of the solution.
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Fig. 4.2 Hybrid cloud architecture example

4.2.3 Tool Support for Overview Model

To simplify the creation and editing of the Overview model, a specially designed
diagram editor with a components palette, properties view, and a number of
supporting wizards has been created. The graphical diagram offers an organized
view of the cloud solution architecture, and the supporting editors, together with a
properties view, provides the ability to alter service descriptions.

The creation of the Overview model starts by choosing the desired cloud
environment. Currently supported environments in the CloudScale Environment
are Amazon web services (AWS), OpenStack, SAP Hana Cloud, and generic. The
latter one contains services that are environment independent. The system architect
has the ability to model hybrid cloud architectures (see Fig. 4.2) by creating multiple
cloud environments in a single Overview model. When the environment is created,
the architect can stack infrastructure and platform services. If the implementation
of a service is described as Partial PCM model, it can simply be imported into the
service component of the Architecture model. A lot of options and settings inside
the properties view of the diagram are selection dependent to speed up the modeling
and configuring process. More demanding, in terms of configuration, software
services have dedicated editors for specifying operation interfaces, data types, and
required connections.

When the Overview model is finished, it can be used for performance and cost
analyses, because it contains the complete description of a cloud solution.

4.3 Usage Evolution

Existing modeling environments like Palladio [2] have usage scenarios with a fixed
value for arrival rate (open) or for population (closed). Work is also fixed. If you
want to analyze what happens with your service during evolution of work and load,
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the current approach would be to run several simulations and manually change load
and work. This manual process is time-consuming as well as error prone, as new
values need to be entered in several locations of the model for each run.

Here, we propose a more direct approach using usage evolution that particularly
accounts for transient phases, i.e., phases in which the system is subject to
contextual changes during simulation. By usage evolution we mean how usage-
oriented concepts like work, load, and quality thresholds vary as a function of time
(Definition 4.2).

DEFINITION 4.2: USAGE EVOLUTION [3]

Usage evolution describes how usage-oriented concepts like work, load, and
quality thresholds vary as a function of time.

In this section, we will first describe concepts for usage evolution in Sect. 4.3.1,
then the usage evolution on an example in Sect. 4.3.2, before we describe tool
support for usage evolution in Sect. 4.3.3.

4.3.1 Concepts for Usage Evolution

Figure 4.3 illustrates the meta-model for usage evolution in CloudScale. Elements
imported from the PCM and DLIM are shown in light gray in the figure. The meta-
model is defined to allow the specification of how the usage evolves over time.
The root element of a Usage Evolution model is the UsageEvolution element. A
UsageEvolution contains an ordered list of one or more Usage elements.

A Usage defines how one UsageScenario from a PCM model evolves over
time. The referenced UsageScenario defines the initial values for work and load.
Evolution of load for the Usage is described in a DLIM model (shown as a relation
to the Sequence element from DLIM in the figure). The output values of the

Usage

UsageEvolution

[1..*] usages

Sequence

WorkParameterEvolutionVariableCharacterization

UsageScenario

[0..*] workEvolutions

[1..1] variableCharacterization

[1..1] scenario

[1..1] evolution

[0..1] loadEvolution

Fig. 4.3 Meta-model for Usage Evolution
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DLIM model determine the evolved arrival rates in the case of open workload,
and population in the case of closed workload. A Usage can also contain zero or
more WorkParameterEvolution objects that each describes how a work parameter
of the PCM model evolves in terms of a DLIM model. Which work parameter is
to evolve is determined by a reference to a VariableCharacterisation defined in the
PCM model.

The root element of a DLIM model is a Sequence, which can hold one or
more function containers. Each such container holds a function for characterizing
seasons and trends. Seasonal variation can be daily (peaks during lunch breaks),
weekly (peaks at weekends), monthly (peaks at pay days), and yearly (peaks before
Christmas). Trends describe a gradual increase or decrease and may be linear or
exponential. Functions can also be combined with other functions through a list of
combinators that can have addition, multiplication, or subtraction semantics. For
further details about the DLIM meta-model, see [1].

4.3.2 Example of Usage Evolution

In this section, we will describe examples of usage evolution for load as well as for
work. In Sect. 6.2.2 more examples will be shown.

Since CloudStore has many different operations, each of these operations could
have had different load evolutions, but a natural simplification is to have one load
parameter, representing the evolution of the average operation, instead of several
operations evolving independently. Figure 4.4 shows how the number of users vary
during a 3-min period for CloudStore. Initially, there are 2000 simultaneous users.
In the first half-minute, this figure illustrates a linearly increasing trend, followed
by a stable period with 5000 users for 1min, and then a new increase up to a new
stable period in the last minute. In this last stable period, there are 10;000 users.
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Fig. 4.6 Simulation results—response time

Figure 4.5 depicts evolution of the work parameter describing the number of
books. For the first three-quarters of a minute, the number of books is stable at
10,000 books. Then, during the next half-minute, we have a linear increase up to
20,000 books, which defines the stable load during the remaining period. The reason
for this sudden increase in the number of books can, for example, be the inclusion
of several new publishers in the book store.

The response time for the Product Detail operation of this example is shown in
Fig. 4.6 and is calculated by running the simulation based on the usage evolution
model. Assume that the service-level objective (SLO) for this operation is a 90%
response time of 3 s. The x-axis on this figure is again minutes, and the y-axis is the
90% response time in seconds. From the figure, we can determine that the initial
increase in load is handled by the system without any increase in response time.
The increase in the number of books just after 1min results in a small increase in
the response time. The further increase in the arrival rate between 1.5 and 2min
leads to a sharp increase in the response times. However, after less than 0.5min,
the response time drops again, even if neither the load nor the work on the system
drops. The reason is of course that because of auto-provisioning, we now use more
cloud resources. Since this auto-provisioning takes some time, we experience high
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response times, before the system eventually returns to normal operation again and
SLOs are no longer violated.

4.3.3 Tool Support for Usage Evolution

The load of the system is described as part of the usage scenarios in the Analyzer [2],
either as a closed load, based on a fixed population and a waiting time, or as an
open load described by the inter-arrival rate of new users. Work is modeled as a
characterization of input and output parameters of operations, and is included in the
service effect specifications (SEFFs), with some initial values defined in the usage
scenario.

Palladio’s usage scenarios define static values for load and work. To support
evolution in terms of variations in load and work over time, we have extended
the modeling support of Palladio by introducing a usage evolution model based on
DLIM, which is used by the load intensity modeling tool LIMBO [1]. While work
evolution and load evolution are explicitly modeled, other evolutions require a new
simulation: change in quality thresholds, new or deprecated operations, or change
in the implementation of operations. See [3] for more details.

We have added support to Palladio’s simulator SimuLizar [4] such that it can run
simulations following the characteristics of usage evolution models. At simulation
time, SimuLizar updates workload parameters according to Load (as specified by
Usage elements) and Work Evolutions (as specified by WorkParameterEvolution
elements). For these updates, SimuLizar samples the linked DLIM models once
per simulated time unit.

4.4 Architectural Templates

The creation of architectural models—especially with analysis capabilities—can
involve huge efforts by software architects. During creation, architects may have
to manually use architectural knowledge in the form of CloudScale’s HowTos
(cf. Sect. 2.9). Common design-time analysis approaches unfortunately lack support
for directly reusing such HowTos. This lack makes the design space for software
architects unnecessarily large; architects potentially consider designs that violate
the constraints of HowTos. Moreover, this lack makes an automatic processing
of HowTos impossible; architects have to manually model elements described in
HowTos over and over again, even in recurring situations. These issues point to an
unused potential to make the work of software architects more efficient.

To use this potential, the CloudScale method introduces so-called Architectural
Templates (ATs) [5] for efficiently modeling and analyzing quality-of-service (QoS)
properties of software architectures. With ATs, software architects can quantify
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such quality properties based on reusable analysis templates (Definition 4.3) of
recurring architectural knowledge such as documented in CloudScale’s HowTos.
Architects only have to customize such templates with parts specific to their
software application, thus reducing effort and leading to a more efficient engineering
approach.

DEFINITION 4.3: TEMPLATE

A template is a reusable model blueprint from which (parts of) concrete
models can be instantiated.

In this section, we will first describe AT concepts in Sect. 4.4.1. An example of
an AT is described in Sect. 4.4.2. Based on our catalog of HowTos in Table 2.1, we
derive a catalog of ATs in Sect. 4.4.3. Tool support for ATs is outlined in Sect. 4.4.4.

4.4.1 Concepts of Architectural Templates

The AT language is a language to specify and apply templates of architectural
models for model-driven design-time analyses [6]. Such templates are called
Architectural Templates (ATs).

At the core, the AT language distinguishes between ATs, i.e., template types
and their instances. ATs consist of (1) roles (Definition 4.4), with parameters and
constraints to extend and restrict elements of architectural models; (2) a mapping of
such roles to a semantically equivalent architectural model construct (translational
semantics [7]); (3) a documentation that references the HowTo to be modeled, e.g.,
to point to the SLOs potentially impacted by the AT; and (4) an optional default
AT instance to be used as a starting point for modeling. These constituents allow to
formalize HowTos as ATs and to collect them in AT catalogs.

AT instances refer both to an AT and to an architectural model, e.g., a ScaleDL
model, into which the AT is instantiated. AT instances particularly include a set
of bindings that instantiate AT roles with bound architectural elements and actual
parameters.

4.4.2 Example for Architectural Templates

Let us have a look at a concrete application of the so-called “loadbalancing”
AT for component instances. The loadbalancing AT specifies a template for the
loadbalancing HowTo of component instances (see Sect. 2.9). Next, we are going
to apply the loadbalancing AT to our running example (CloudStore), as introduced
in Sect. 2.2.
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Fig. 4.7 CloudStore’s architectural model annotated with the “loadbalanced component” role of
the “loadbalancing” AT for component instances
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Fig. 4.8 CloudStore’s architectural model after the execution of the mapping

Figure 4.7 illustrates the modified architectural model of CloudStore. In the
modified version, the Book Shop Web Pages component instance is annotated
with the loadbalanced component role (Definition 4.4). Moreover, we set
“2” as an actual parameter value for the formal Number of Replica parameter.

DEFINITION 4.4: ROLE [8]

A role is the responsibility of a design element within a context of related
elements.

Semantically, this model can then be mapped to the architectural model illus-
trated in Fig. 4.8. The new model includes a load balancer in front of the Book
Shop Web Pages component instance. Moreover, based on the actual parameter
of Number of Replica, the load balancer distributes workload over two copies
of this component instance. The annotation of the original model is not needed
anymore because its semantics have now been equivalently expressed with common
elements of architectural models (such a semantic definition is called “translational
semantics” [7]).

This example application of an AT shows that ATs can simplify recurring mod-
eling tasks: instead of manually modeling a load balancer and creating two replicas,
a simple, declarative annotation in the form of a role and an actual parameter is
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sufficient. ATs group such recurring modeling constructs within parametrizable AT
roles that can be semantically mapped back to the original constructs.

Additionally, AT roles can include constraints. These constraints allow architects
to receive direct feedback during modeling. For example, whenever they annotate
component instances that are stateful, the AT application may be aborted (the load
balancer HowTo demands stateless component instances). Such direct feedback and
restrictions reasonably limit the design space for architects, thus reducing potential
modeling mistakes by architects.

4.4.3 Catalog of Architectural Templates

Based on our catalog of HowTos (see Table 2.1 in Sect. 2.9), we also derived an
AT catalog with carefully engineered ATs. Table 4.1 illustrates CloudScale’s AT
catalog: the table provides for each AT its application domain (first column); its
name, which also points to the realized HowTo (second column); and AT roles, with
their parameters in parentheses (third column).

Table 4.1 CloudScale’s catalog of ATs

Application AT (and HowTo) AT

domain name Roles and parameters

Business information
systems

3-Layer Presentation layer, middle layer,
Data layer

Loadbalancing (container) Loadbalanced container
(Integer: number of replica)

Loadbalancing (component
instance)

Loadbalanced component
(Integer: number of replica)

Cloud computing SPOSAD Presentation layer, middle layer,
data layer, replicable tier

Horizontal scaling
(container)

Horizontal scaling container
(Integer: number of initial replica,
double: scale-in threshold,
double: scale-out threshold)

Horizontal scaling
(component instance)

Horizontal scaling component
(Integer: number of initial replica,
double: scale-in threshold,
double: scale-out threshold)

Vertical scaling Vertical scaling container
(double: scale-up threshold,
double: scale-down threshold,
double: rate step size,
double: minimal rate,
double: maximal rate)

Big data Hadoop MapReduce Map component, Reduce
component
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The ATs of the AT catalog directly correspond to the equally named HowTos of
the HowTo catalog. We therefore refer to the section about the HowTos (Sect. 2.9)
for detailed descriptions of the concepts realized in these ATs. The AT roles and
parameters given in the third column of Table 4.1 are directly derived from these
descriptions and realize corresponding concepts.

Section 4.4.2 provides an example for the loadbalancing AT for component
instances. Another and similar example is the “loadbalancing” AT for containers.
This AT introduces the role of a “loadbalanced container” with a formal parameter
“number of replica” of type “Integer”. Software architects can accordingly attach
this role to a resource container, e.g., a virtual machine. Semantically, this container
is then load balanced; i.e., a load balancer is introduced that distributes workload
over replicas of the container. The actual parameter that architects set for “number
of replica” determines howmany of these replicas exist. These semantics correspond
to the according descriptions of the loadbalancing HowTo.

Analogously to these examples, the CloudScale Wiki [9] documents each AT of
CloudScale’s AT catalog. This documentation includes a detailed description of the
related HowTo, “before mapping” and “after mapping” descriptions with according
figures, and a list of concrete constraints of AT roles.

4.4.4 Tool Support for Architectural Templates

Software architects can use the graphical editors of the CloudScale integrated
development environment (IDE) to apply ATs. Architects select ATs from existing
AT catalogs, e.g., from CloudScale’s catalog (Sect. 4.4.3). When software architects
start an analysis of an architectural model with applied ATs, the mappings of ATs
are automatically (and transparently to the software architect) executed.

To specify additional ATs, the CloudScale IDE provides a graphical editor to
specify the elements of ATs. The mapping of an AT is specified in a separate model
transformation file. As model transformation language, QVT-O [10] is currently
supported.

4.5 The Extended Palladio Component Model

A unique selling point of ScaleDL is that it not only documents cloud-based systems
but also allows for (semi-)automated analyses of scalability, elasticity, and cost-
efficiency. ScaleDL’s key ingredient for these analyses is the “Extended Palladio
Component Model” (Extended PCM), an architectural description language for
elastic (i.e., cloud-based) systems. Models specified with the Extended PCM can
be automatically analyzed by CloudScale’s Analyzer tool. The other ScaleDL parts
(OverviewModel, Usage Evolutions, and ATs) can be mapped to the Extended PCM
to enable their analysis.
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In this section, we describe concepts of the Extended Palladio ComponentModel
in Sect. 4.5.1. Section 4.5.2 shows an example of an Extended Palladio Component
Model. Tool support for the Extended Palladio Component Model is discussed in
Sect. 4.5.3.

4.5.1 Concepts of the Extended Palladio Component Model

In this section, we discuss the core of the Extended PCM—the PCM itself—to
understand its basic paradigms for architectural modeling. Afterward, we describe
PCM extensions for elastic environments that constitute the Extended PCM.

4.5.1.1 The Palladio Component Model

The PCM [2] is an architecture description language that particularly covers
performance-relevant attributes. Instances of the PCM can therefore be analyzed
with respect to performancemetrics like response times, utilization, and throughput.

PCM instances are constituted of partial models. Each of these partial models is
inspired by the UML and covers performance-relevant attributes of the system to be
modeled:

Component Specifications. Models a repository of software components. Com-
ponents provide and optionally require a set of interfaces. Components can be
reused whenever their provided interface is required, or exchanged whenever
other components provide the same interface.
For each operation of a provided interface, components include behavior de-
scriptions, e.g., modeling requests to operations of required interfaces, demands
to resources like CPUs and hard disk drives, and acquiring and releasing
connections from resource pools. These behavior descriptions are called service
effect specifications (SEFFs).

System Model. Models a system that instantiates and assembles the software
components. The system provides interfaces on its own such that users can
externally access them. For implementing its provided interfaces, the system
delegates requests to appropriate component instances. If these instances require
further interfaces, the system includes assembly connectors that delegate requests
to appropriate providing interfaces of further component instances.

Resource Environment Model. Models the resource environment (e.g., in terms
of hardware) in which the system is allocated. The environment consists of
containers connected via networks. Containers can, for instance, represent bare-
metal or virtualized servers. Containers particularly include a set of active
resources like CPUs and hard disk drives. Each of these resources comes with
different processing rates and scheduling strategies.
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Allocation Model. Models the allocation from component instances (system)
to containers (resource environment). Therefore, the allocation specifies which
container component instances demand resources.

Usage Model. Models the workload to a system in terms of its users. The usage
model consists of different usage scenarios, each being either a closed workload
(fixed number of users) or an open workload (users enter based on inter-arrival
rates). In each usage scenario, users can access operations provided by the
system. Users access such operations with a certain probability and with specific
work parameters, e.g., characterizing the size of input data.

4.5.1.2 Extensions for Elastic Environments

The PCM initially was designed for static environments, i.e., for resource envi-
ronments that do not change the amount of their computing resource over time.
However, the usage of information systems shifted from a static to a highly
dynamic behavior that challenged such static environments. For example, online
shops often observe workload increases before Christmas. In such scenarios, static
environments demand that resources be aligned to the maximum workload to be
expected (over-provisioning). Otherwise, customers will remain unserved, which
eventually leads to business losses. The disadvantage of this solution is that such an
over-provisioning is expensive during non-peak times.

Cloud computing, therefore, revised the assumption that resource environments
are static: to minimize expenses for resources, their amount is now elastically
adapted to changing workloads. CloudScale provides PCM extensions for mod-
eling and analyzing these elastic resource environments. CloudScale’s modeling
extensions cover workloads that change over time (dynamic usage environments),
self-adaptation rules that react on these changes by adapting the amount of
resources, and monitors to trigger self-adaptation rules:

Usage Evolution Model. Usage Evolutions specify how workload parameters of
PCM usage models change over time. For example, steadily increasing and
periodically varying arrivals of users can be modeled. Section 4.3 details and
exemplifies Usage Evolutions.

Self-Adaptation Rules. Self-adaptation rules react on changes of the monitored
usage or resource environment. For example, when a certain response time
threshold is exceeded, a self-adaptation rule could trigger a scaling-out of
bottleneck components. These rules, therefore, consist of two parts, a trigger
and an action that can be activated by the trigger. The trigger relates monitored
values to pre-specified thresholds to determine whether to activate the action.
The action describes the change in the system to be applied. Actions are
formulated in terms of model-to-model transformation languages like QVT-
O [10], StoryDiagram [11], and Henshin [12].
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Monitors. Monitors describe which metrics should be recorded at specific mea-
suring points. Monitors can, for instance, measure metrics like utilization of a
specific CPU. The resulting measurements are used as input to the trigger of
self-adaptation rules, which then potentially activates an adaptation action.

4.5.2 Example for the Extended Palladio Component Model

In this section, we describe the elements of the Extended PCM and Architectural
Templates used by a model of CloudStore. Figure 4.9 gives a simplified high-level
overview of these elements.

With this overview, software architects can easily follow the control and data
flow (arrows) from customers through CloudStore’s components (UML compo-
nent symbols) allocated on various resource containers (UML node symbols). In
Fig. 4.9, customers enter CloudStore via the Book Shop Web Pages compo-
nent to browse and order books. To provide its functionality, Book Shop Web
Pages requests information from the Book Shop Business Rules compo-
nent. Book Shop Business Rules can in turn request payment services from
an externally hosted Payment Gateway. Additionally, it can request data about
books and customers from the Book & Customer Data Provider compo-
nent. If a web page returned by Book Shop Web Pages references images, a
customer’s browser subsequently fetches these references via the Book Image

External Services

Web & Application Server

Image Server

Database Server

SPOSAD AT

Book Shop
Web
Pages

Book Shop
Business
Rules

Book &
Customer
Data Provider

Book
Image
Provider

@presentation layer @application layer @data access layer

Customer

 Horizontal Scaling AT
@loadbalanced container
      (number of initial replicas: 2,
      scale-in threshold: 5%,
      scale-out threshold: 80% )

 Vertical Scaling AT
@vertical scaling container
      (scale-down threshold: 5%,
      scale-up threshold: 80%,
      rate step size: 1 GHz,
      minimum rate: 1 GHz,
      maximum rate: 2 GHz )

Payment
Gateway

Fig. 4.9 Simplified ScaleDL model of the CloudStore online bookshop with annotated AT roles
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Provider component. As illustrated in Fig. 4.9, Book Shop Web Pages
and Business Rules are allocated on a Web & Application Server,
Book & Customer Data Provider on a Database Server, and Book
Image Provider on a dedicated Image Server.

All of these elements come from the Extended PCM: customers entering the
system (Usage Model), components (Component Specifications) instantiated and
assembled to CloudStore (System Model), and the allocation of these instances
(Allocation Model) to different resource containers (Resource Model). As software
architects, we are interested in analyzing the impact on CloudStore’s QoS properties
when applying architectural knowledge. Therefore, Fig. 4.9 additionally illustrates
elements from ScaleDL’s AT language: applications of the ATs SPOSAD, Horizon-
tal Scaling, and Vertical Scaling are annotated (bold italic text in dashed boxes).

The SPOSAD AT (middle of Fig. 4.9) introduces roles to structure CloudStore
into a presentation layer (bound to Book Shop Web Pages), an application
layer (bound to Book Shop Business Rules), and a data access layer
(bound to Book & Customer Data Provider). These roles constrain the
bound components to only access the respective lower-level layer (in Fig. 4.9
shown from left to right). Moreover, the SPOSAD AT requires components on
the presentation and application layers to be stateless. Because ATs formalize
such constraints, an architecture tool with AT support (like the CloudScale IDE;
cf. Sect. 8.7) can ensure their fulfillment, e.g., by forbidding direct connections from
Book Shop Web Pages to Book & Customer Data Provider.

The Horizontal Scaling AT (top middle of Fig. 4.9) introduces a loadbalanced
container role bound to the Web & Application Server. In a preprocessing
step of a design-time analysis, a template engine will reflect the performance impact
of this binding by creating a load balancer in front of the container that distributes
workload. According to the parameters given in Fig. 4.9, the load balancer initially
distributes workload over two container replicas and dynamically decreased or
increased this number if the CPU utilization of the container drops below 5% or
exceeds 80%, respectively.

The Vertical Scaling AT (top right of Fig. 4.9) introduces a vertical scaling
container bound to the Database Server. A template engine will create
adaptation rules that dynamically increase or decrease the processing rate of this
container’s CPU. The rate is decreased if CPU utilization drops below 5% and
increased if it exceeds 80% (see the role’s parameters in Fig. 4.9). These adaptations
come in steps of 1GHz within a range of 1–2GHz (hence, the rate is either 1 or
2GHz).
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4.5.3 Tool Support for the Extended Palladio Component
Model

Software architects can specify instances of the Extended PCM with the graphical
editors of the CloudScale IDE. Once specified, architects can use various analysis
tools to inspect the QoS properties of a modeled system. Moreover, if the source
code of a system is already available, CloudStore’s Extractor can be used to
automatically create partial instances of the Extended PCM. This section briefly
describes the analysis tools and the Extractor for the Extended PCM.

4.5.3.1 Analysis Tools

PCM instances serve as input (Fig. 4.10) (left) to various analysis tools (Fig. 4.10)
(right):

Analyzer. CloudScale’s Analyzer is a simulation of the modeled system. The
simulation interprets the input PCM instance to provide measurements for
performance metrics like response times. Because the Analyzer interprets PCM
instances, it can also acknowledge changes of these instances during simulation
time. This feature, therefore, allows to model self-adaptive systems: the execu-
tion of a self-adaption action transforms a current PCM instance into an adapted
version. The Analyzer subsequently continues by simulating the adapted version.
Moreover, the Analyzer supports ScaleDL’s Usage Evolution models: at simula-
tion time, the Analyzer updates workload parameters according to an input Usage
Evolution model. For these updates, the Analyzer samples the Usage Evolution
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Fig. 4.10 Instances of the Extended PCM serve as input to various analysis tools
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model once per simulated time unit to receive the concrete workload parameter
for the current simulation time.

LQNs. Layered queuing networks (LQNs) extend queuing networks with layered
structures and related elements, e.g., to fork/join different layers. Based on input
PCM instances, transformations can create LQN models. These models can then
be solved with numerical mean-value approximation methods, e.g., to provide
mean response times as output. In contrast to simulations, these methods require
less time for analyses; however, they provide only information about mean
values.

ProtoCom Prototype. ProtoCom transforms PCM instances into runnable per-
formance prototypes. Such performance prototypes can execute in different
target environments andmimic demands to different types of hardware resources.
Their execution, therefore, allows to take performancemeasurements for an early
assessment of the modeled software system within a real environment.

Code Skeletons. Based on a PCM instance, a transformation generates appro-
priate code skeletons. These skeletons serve developers as a starting point
for implementing the modeled system. Code skeletons are therefore especially
important in forward engineering (see Chap. 6).

4.5.3.2 Extractor

ScaleDL models can be created manually. This is described in more detail in
Chap. 6. However, CloudScale’s Extractor tool can assist in potentially tedious
manual tasks, given that source code is available.

The Extractor is a reverse engineering tool for the automatic extraction of partial
Extended PCM models, thus lowering modeling effort for system engineers if
source code already exists. The Extractor is based on the Archimetrix approach [13]
that combines different reverse engineering approaches to iteratively recover and
reengineer component-based software architectures.

The inputs to the Extractor are source code and configuration parameters for
reverse engineering, e.g., thresholds that specify when to cluster classes into
components. Software architects particularly have to decidewhich part of the system
should be extracted. In a large system, architects may only be interested in a few
critical services.

Once configured, software architect can start the Extractor. After parsing the
source code, the Extractor clusters relevant elements based on these parameters into
software components. The output is a partial Extended PCM model, i.e., a model
that covers the component-based structure of the extracted source code as well as
its control and data flow. The model is partial because it misses context information
like system usage and hardware specifications.
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While the Extractor relieves software architects from potentially tedious model-
ing tasks, software architects need to spend some effort finding the right configura-
tion parameters.

In general, software architects start with the Extractor’s default configuration and
assess whether the resulting Extended PCM model is satisfying for their system.
Software architects are typically unsatisfied if the result is too abstract (e.g., the
Extractor clustered the whole system into one component) or too fine-grained (e.g.,
the Extractor clustered each class into a dedicated component). In that case, software
architects alter configuration parameters and rerun the Extractor until satisfied.

The main parameters for the Extractor are (default values included):

Clustering Merge Threshold Max (End Value) (100) Start threshold between
0 and 100 for deciding whether to merge the elements of a component candidate
into a single component by melting the component candidates in a single
component. The lower the value is the fewer components are merged into single
components.

Clustering Merge Threshold Min (Start Value) (45) End threshold between 0
and 100 for deciding whether to merge the elements of a component candidate
into a single component. The lower this value is the more likely less connected
component candidates will be merged into a single component.

Clustering Merge Threshold Increment (10) The increment between 0 and 100
for the merging components. The Extractor will merge components using a
threshold starting at the start value and ending at the end value using this
increment.

Clustering Composition Threshold Max (Start Value) (100) The start thresh-
old between 0 and 100 for deciding whether to compose the elements of a
component candidate into a new composed component by linking the component
candidates using connectors. The lower the value is the fewer components are
composed into a new composed component.

Clustering Composition Threshold Min (End Value) (25) The end threshold
between 0 and 100 for deciding whether to compose the elements of a component
candidate into a composed component. The lower this value is the more likely
less connected component candidates will be composed into a composed
component.

Clustering Composition Threshold Decrement (10) The increment between 0
and 100 for the composing components. The Extractor will compose components
using a threshold starting at the start value and ending at the end value using this
increment.

The Extractor has additional parameters which characterize the coupling of
component candidates which need to be adjusted for each project to be extracted. A
description of these parameters can be found in the CloudScale user manual [14].
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4.6 Conclusion

This chapter presents ScaleDL as of a family of related languages. The ScaleDL
Overview Model describes the overall structure of a cloud-based architecture.
ScaleDL Usage Evolution specifies how load and work vary as a function of time.
ScaleDLATs save modeling efforts by reusing formally captured best practices. The
Extended Palladio Component Model is used for modeling software components
and their mapping to underlying elastic software services.

With the ScaleDL family of languages, software architects can specify critical
aspects of a software system to enable analysis of scalability, elasticity, and cost-
efficiency. Software architects may model the complete software system using all
the languages, but selectively using a subset (or only fragments) of languages is
also possible.

Subsequent chapters show how ScaleDL is integrated in the CloudScale method
and how CloudScale’s tools utilize ScaleDL. In particular, Chap. 8 describes how
ScaleDL may be extended in the future.
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