
Engineering
Scalable, Elastic,
and Cost-E� cient
Cloud Computing
Applications

Ste� en Becker
Gunnar Brataas
Sebastian Lehrig Editors

The CloudScale Method

Engineering Scalable, Elastic, and Cost-Efficient
Cloud Computing Applications

Steffen Becker • Gunnar Brataas • Sebastian Lehrig
Editors

Engineering Scalable,
Elastic, and Cost-Efficient
Cloud Computing
Applications
The CloudScale Method

123

Editors
Steffen Becker
Reliable Software Systems Group
University of Stuttgart
Stuttgart, Germany

Gunnar Brataas
Software Engineering, Safety & Security
SINTEF Digital
Trondheim, Norway

Sebastian Lehrig
IBM Research
Dublin, Ireland

ISBN 978-3-319-54285-0 ISBN 978-3-319-54286-7 (eBook)
DOI 10.1007/978-3-319-54286-7

Library of Congress Control Number: 2017937065

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

The digitization of the world around us also impacts IT systems themselves.
The increased connectivity of everything and everybody with IT services creates
challenges in software design. Systems are becoming increasingly distributed, open,
adaptive, dynamic, and mobile.

As a consequence for software quality engineering, run-time factors are increas-
ingly determining the quality of a system. Formerly, assumptions on the run-time
context could be taken as static and hence be modeled at design time. Such models
were then used in software quality analysis. Nowadays, the context and the system
itself are more dynamic. The context changes, and the system, being adaptive, also
reflects such changes.

This means, we have no fixed moment during design when system properties are
fixed and can be determined by a static analysis. For software quality, this means,
instead of proven design-time properties, we need to shift to a means to deal with
this dynamicity at run-time. For example, instead of proven security, we talk about
highly resilient systems; instead of performance, we talk about scalability.

However, all such measures to increase the resilience of scalability need to be
built into the software at design time. Hence, techniques that are able to evaluate at
design time the effects of such run-time measures and run-time system properties
are of interest. While this may sound impossible, the approach shown in this
book demonstrates the feasibility and applicability of this design-time evaluation
of quality properties depending on run-time factors in the domain of performance
engineering. This book is therefore overdue. After the advent of cloud-based
systems in the beginning of the century, this trend of cloud computing is even
enforced by the ubiquitous use of several mobile devices, which all need to work
with consistent data. Due to the mobility of the devices and the highly fluctuating
number of users, the workload of the cloud drastically varies.

This underpins the relevance of the methods presented in this excellent book by
outstanding researchers in this field of scalability modeling and analysis. There is
no book before this that enlightens us so much about this shift from performance

v

vi Foreword

to scalability! I hope you can read it with the same gain as I did and with the same
joy—of seeing Palladio being used and advanced!

Karlsruhe, KIT and FZI Professor Dr. Ralf Reussner
Germany Chair Software Design and Quality, KIT
December 2016 Executive Director FZI

Preface

Berlin, 2017: The start-up company SmartService has built an application allowing
users to manage subscriptions to business services, magazines, etc. and to send out
cancellations automatically and on time. The service is implemented based on a
cloud computing environment and uses various third-party services, for example,
a service to convert images of contracts uploaded by users into PDF. So far,
SmartService has assumed that using a cloud platform will allow it to scale its
application as needed without further actions. With this application, SmartService
has found a promising niche. The application has spread rapidly, showing a perfect
growth of a hockey stick-shaped curve.

Unfortunately, the rising number of users leads to ever-increasing infrastructure
costs and, especially during peak loads, to high end-to-end response times, which
result in customer losses. The application faces some severe scalability issues. If
they cannot fix the problem soon, the whole start-up will be at risk. SmartService
needs to address the problem quickly.

Did you ever wonder how to engineer cloud computing services that are
scalable, elastic, and cost-efficient—just like the above fictional scenario about the
SmartService company?

In this book we describe a detailed method—the CloudScale method—for
ensuring that services running on the cloud achieve exactly these properties, ideally
by design. With the CloudScale method, software architects can analyze both
existing and planned IT services. The method allows to answer questions like:

• With an increasing number of users, can my service still deliver an acceptable
quality of service?

• What if each user uses the service more intensively, can my service still handle
it with an acceptable quality of service?

• What if the number of users suddenly increases, will my service still handle it?
• Will my service be cost-efficient?

vii

viii Preface

Continuing SmartService’s scenario, the CloudScale method allows them to
analyze the scalability problem in detail and identify scalability anti-patterns and
bottlenecks within its application. Using the method, SmartService quickly realizes
that its scalability problems are caused by conservative handling of data in the
realization of the application. SmartService uses CloudScale’s scalability know-how
and applies the CloudScale method to find the best scalable architecture. Equipped
with this knowledge, the company swiftly restructures its application and continues
its path of growth successfully. In the future, CloudScale’s method and tools will
allow SmartService to avoid any such critical scalability problems right from the
beginning.

When we, the CloudScale EU project,1 began our work about 4 years ago, we
pursued the vision to provide assistance to stakeholders involved in engineering
scalable, elastic, and cost-efficient cloud computing services. The “Berlin, 2017”
scenario about the SmartService company describes our ideas pretty well. Youmight
still consider such a scenario purely fictional. But, in fact, it is realistic!

For example, the initial design of SAP’s BusinessByDesign system had severe
scalability issues.2 As a consequence, SAP suffered from significant financial losses
and had to reimplement large parts of the system before it was ready to be released.
Another recent famous example is the US government’s healthcare system.3 The
system broke down under the load caused by users trying to gather information
about their health insurance during the first weeks. Officials had not tested the
system with the load the system finally had to face. Also online games regularly face
scalability issues during the week of a new game or add-on release. For example, in
World of Warcraft, Blizzard regularly faces issues on new game releases despite its
extensive experience in this business domain.4

Motivated by such scenarios, we began our work on the CloudScale method.
You, the reader of this book, have the final outcome of our efforts in your hands:
This book gives you an overview of the problems involved in engineering scalable,
elastic, and cost-efficient cloud computing services and describes the CloudScale
method—a description of rescue tools and the required steps to exploit these tools.

This book is meant for all stakeholders interested in achieving our vision:
managers, product owners, software architects, developers, testers, operational
personnel, etc. With this book, they can both see the overall picture and drill into
issues of particular interest.

1www.cloudscale-project.eu.
2www.v3.co.uk/v3-uk/news/1970547/sap-update-business-bydesign-plans.
3www.informationweek.com/healthcare/policy-and-regulation/why-healthcaregov-failed/d/d-id/
1112064.
4www.ibtimes.com/battlenet-servers-down-world-warcraft-hearthstone-overwatch-players-
around-world-2383254.

www.cloudscale-project.eu
www.v3.co.uk/v3-uk/news/1970547/sap-update-business-bydesign-plans
www.informationweek.com/healthcare/policy-and-regulation/why-healthcaregov-failed/d/d-id/1112064
www.informationweek.com/healthcare/policy-and-regulation/why-healthcaregov-failed/d/d-id/1112064
www.ibtimes.com/battlenet-servers-down-world-warcraft-hearthstone-overwatch-players-around-world-2383254
www.ibtimes.com/battlenet-servers-down-world-warcraft-hearthstone-overwatch-players-around-world-2383254

Preface ix

This book presents results developed by a motivated group of researchers from
different companies, originating from various countries. Not all of them participated
in writing this book. However, this book would not exist without their contributions.
We thank all CloudScale members for this effort.

Chemnitz, Germany Steffen Becker
Trondheim, Norway Gunnar Brataas
Dublin, Ireland Sebastian Lehrig
December 2016

Acknowledgments

The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007–2013) under grant number
317704 (CloudScale) and the Norwegian Research Council under grant number
256669 (ScrumScale). Richard Sanders and Gregor Pipan contributed with
proofreading.

Gregor Pipan
XLAB d.o.o.
Pot za Brdom 100, 1000 Ljubljana, Slovenia
e-mail: gregor.pipan@xlab.si

Richard Torbjørn Sanders
SINTEF Digital
Strindvegen 4, 7034 Trondheim, Norway
e-mail: Richard.Sanders@sintef.no

xi

Contents

Part I Introduction and Overview

1 Introduction . 3
Steffen Becker, Gunnar Brataas, Mariano Cecowski, Darko Huljenić,
Sebastian Lehrig, and Ivana Stupar
1.1 Getting It Right . 4
1.2 Software in the Cloud Computing Era . 5
1.3 Some Useful Definitions to Characterize Services 7

1.3.1 Operations .. 7
1.3.2 Service-Level Objectives . 8
1.3.3 Workload . 8
1.3.4 Capacity . 9

1.4 Quality Properties of Services . 9
1.4.1 Scalability . 10
1.4.2 Elasticity. 10
1.4.3 Cost-Efficiency .. 11

1.5 Consequences of Scalability, Elasticity, and Cost-Efficiency
Issues . 12

1.6 Causes of Scalability, Elasticity, and Cost-Efficiency Issues 13
1.7 How Should You Manage Scalability, Elasticity,

and Cost-Efficiency?.. 13
1.8 Reactive Scalability, Elasticity, and Cost-Efficiency

Management . 14
1.8.1 Immediate Temporal Solutions . 14
1.8.2 Long-Term Solutions . 15

1.9 Proactive Scalability, Elasticity, and Cost-Efficiency
Management . 16

1.10 The CloudScale Method .. 17
1.11 What Does It Cost? . 18

xiii

xiv Contents

1.12 What Do You Need? . 19
1.13 Conclusion . 20
References . 21

2 CloudScale Method Quick View. 23
Gunnar Brataas, Steffen Becker, Mariano Cecowski, Darko Huljenić,
Sebastian Lehrig, and Ivana Stupar
2.1 Process Steps of the CloudScale Method . 24
2.2 Running Example .. 26
2.3 Identify Service-Level Objectives, Critical Use Cases,

and Key Scenarios . 27
2.3.1 Service-Level Objectives . 27
2.3.2 Critical Use Cases. 28
2.3.3 Key Scenarios . 28

2.4 Identify Scalability, Elasticity, and Cost-Efficiency
Requirements . 29
2.4.1 Scalability Requirements . 30
2.4.2 Elasticity Requirements. 30
2.4.3 Cost-Efficiency Requirements . 31

2.5 Specify ScaleDL Model . 32
2.6 Use Analyzer. 32

2.6.1 Scalability Analysis . 32
2.6.2 Elasticity Analysis . 33
2.6.3 Cost-Efficiency Analysis . 34

2.7 Use Spotters . 34
2.8 Realize, Deploy, and Operate System . 35
2.9 Cloud Computing HowTos . 35
2.10 Cloud Computing HowNotTos . 37
2.11 The CloudScale Method in the Unified Process. 41

2.11.1 Unified Processes . 41
2.11.2 Relating the CloudScale Method . 42

2.12 Conclusion . 43
References . 43

Part II Modeling Cloud Computing Applications

3 Cloud Computing Applications . 47
Mariano Cecowski, Steffen Becker, and Sebastian Lehrig
3.1 Introduction . 48
3.2 Web Applications .. 49
3.3 Cloud Computing Characteristics . 51
3.4 FromWeb to Cloud Computing Applications .. 52
3.5 Requirements of Cloud Computing Applications 53
3.6 Modeling Cloud Computing Applications . 54

3.6.1 Common View Types for Applications . 54
3.6.2 Cloud-Specific View Types for Applications 55

Contents xv

3.7 CloudStore Running Example . 56
3.8 Modeling Hints . 58
3.9 Conclusion . 59
References . 60

4 ScaleDL . 61
Gunnar Brataas, Steffen Becker, Mariano Cecowski, Vito Čuček,
and Sebastian Lehrig
4.1 Introduction . 62
4.2 OverviewModel . 62

4.2.1 Concepts of Overview Model . 63
4.2.2 Example of Overview Model . 64
4.2.3 Tool Support for Overview Model . 65

4.3 Usage Evolution . 65
4.3.1 Concepts for Usage Evolution .. 66
4.3.2 Example of Usage Evolution . 67
4.3.3 Tool Support for Usage Evolution . 69

4.4 Architectural Templates . 69
4.4.1 Concepts of Architectural Templates . 70
4.4.2 Example for Architectural Templates . 70
4.4.3 Catalog of Architectural Templates . 72
4.4.4 Tool Support for Architectural Templates 73

4.5 The Extended Palladio Component Model . 73
4.5.1 Concepts of the Extended Palladio Component Model 74
4.5.2 Example for the Extended Palladio Component Model 76
4.5.3 Tool Support for the Extended Palladio

Component Model . 78
4.6 Conclusion . 81
References . 81

Part III The CloudScale Method for Software Architects

5 The CloudScale Method . 85
Gunnar Brataas and Steffen Becker
5.1 Introduction . 86
5.2 Granularity . 86
5.3 Method Notation .. 88
5.4 Roles in the Method . 89
5.5 Method Steps . 90
5.6 Identify Service-Level Objectives, Critical Use Cases,

and Key Scenarios . 92
5.7 Identify Scalability, Elasticity, and Cost-Efficiency

Requirements . 94
5.8 Use-Case I: Analyzing a Modeled System . 96
5.9 Use-Case II: Analyzing and Migrating an Implemented System 97
5.10 Realize, Deploy, and Operate . 98

xvi Contents

5.11 Conclusion . 99
References . 99

6 Analyzing a Modeled System . 101
Sebastian Lehrig, Gunnar Brataas, Mariano Cecowski,
and Vito Čuček
6.1 Introduction . 102
6.2 Step I: Specify ScaleDL Model . 102

6.2.1 Determine Granularity . 104
6.2.2 Specify Usage Evolution . 106
6.2.3 Specify Overview Model and Generate Extended

Palladio Component Model . 109
6.2.4 Complete Extended Palladio Component Model 111
6.2.5 Summary for the Specification of ScaleDL Models 115

6.3 Step II: Use Analyzer . 115
6.3.1 Set Configuration Parameters . 117
6.3.2 Run Analyzer and Assess Requirements.. 118

6.4 Analyzer Running Example . 119
6.4.1 Step I: Specifying a CloudStore Model via ScaleDL 119
6.4.2 Step II: Using the Analyzer with the CloudStore Model . . . 123

6.5 Conclusion . 127
References . 128

7 Analyzing and Migrating an Implemented System . 131
Steffen Becker and Sebastian Lehrig
7.1 Introduction . 132
7.2 Spotting HowNotTos . 133
7.3 Statically Detecting HowNotTos . 136
7.4 Dynamically Detecting HowNotTos . 138
7.5 Resolving HowNotTos with HowTos . 140
7.6 Spotter Running Example .. 141

7.6.1 Static Spotter . 141
7.6.2 Dynamic Spotter . 143

7.7 Conclusion . 145
References . 146

Part IV Making the CloudScale Method Happen

8 The CloudScale Method for Managers . 149
Steffen Becker, Gunnar Brataas, Mariano Cecowski, Darko Huljenić,
Sebastian Lehrig, and Ivana Stupar
8.1 Introduction . 150
8.2 Key Considerations .. 150
8.3 Relation to Other Engineering Methods . 152
8.4 Pros and Cons of the CloudScale Method .. 154

8.4.1 Critical Success Factors for Method Adoption and Use . . . 154

Contents xvii

8.4.2 Organizational Issues . 156
8.4.3 Costs . 156
8.4.4 Covering the Cost of the CloudScale Method Adoption . . . 157
8.4.5 Risks . 158
8.4.6 Critical Factors for Successful Projects . 158

8.5 A Pilot Project . 159
8.6 Setting Up the CloudScale Environment . 161
8.7 Complementing Tools . 162
8.8 Following the CloudScale Method for the Pilot Project 163
8.9 Conclusion . 164
References . 165

9 Case Studies . 167
Darko Huljenić, Ivana Stupar, and Mariano Cecowski
9.1 Case Study: Electronic Health Record. 167

9.1.1 Electronic Health Record . 168
9.1.2 Applying the CloudScale Method and Tools

to Electronic Health Record . 170
9.1.3 Discussion of the Electronic Health Record Case 176

9.2 Case Study: Kantega’s Flyt CMS . 177
9.2.1 Flyt CMS . 177
9.2.2 Applying the CloudScale Method and Tools

to Flyt CMS . 179
9.2.3 Discussion of the Flyt CMS Case . 180

9.3 Additional Case Studies for the CloudScale Method 181
9.4 Conclusion . 182
References . 183

Glossary . 185

Index . 187

Contributors

Steffen Becker University of Stuttgart, Stuttgart, Germany

Gunnar Brataas SINTEF Digital, Trondheim, Norway

Mariano Cecowski XLAB d.o.o., Ljubljana, Slovenia

Vito Čuček XLAB d.o.o., Ljubljana, Slovenia

Darko Huljenić Ericsson Nikola Tesla, Zagreb, Croatia

Sebastian Lehrig IBM Research, Dublin, Ireland

Ivana Stupar Ericsson Nikola Tesla, Zagreb, Croatia

xix

Part I
Introduction and Overview

Cloud computing applications operate in environments that tailor the number of
computing resources to current requests—we refer to this dynamic tailoring as
elasticity. For example, if an application is heavily requested, the environment
can allocate further CPUs to the application. Such additional resources are only
beneficial if the application makes actual use of the resources, e.g., by integrating
additional resources into its load-balancing strategy—we refer to this ability as
scalability. For varying numbers of requests, scalable and elastic applications
neither suffer from under-provisioning (too few resources available) nor over-
provisioning (too many resources available). Avoiding over-provisioning saves
application providers costs for operating the application—we refer to such savings
as an improved cost-efficiency.

The CloudScale method allows software architects to engineer applications for
scalability, elasticity, and cost-efficiency. This engineering is supported by various
best practices for engineering cloud computing applications and dedicated analyses,
e.g., based on models of an application and its environment, static code analyses,
and a dynamic instrumentation of an application. Analysis results provide software
architects feedback for improving their applications.

In Part I, we motivate the importance of scalability, elasticity, and cost-efficiency
as driving quality attributes of modern cloud computing applications (Chap. 1).
Moreover, to analyze and optimize these quality attributes, we motivate and outline
the CloudScale method by giving a brief overview (Chap. 2).

Chapter 1
Introduction

Steffen Becker, Gunnar Brataas, Mariano Cecowski, Darko Huljenić,
Sebastian Lehrig, and Ivana Stupar

Abstract When building IT systems today, developers face a set of challenges
unknown a few years ago. Systems have to operate in a much more dynamic
world, with users coming and going in an unpredictable manner. User counts have
exceeded the limit of billions of users, and the Internet of Things will even increase
those numbers significantly. Hence, building scalable systems which can cope with
their dynamic environment has become a major success factor for most IT service
providers. Those systems are run on a vast amount of hardware and software
resources offered by cloud providers. Therefore, this chapter gives an introduction
into the world of cloud computing applications, the terminology and concepts used
in this world, and the challenges developers face when building scalable cloud
applications. Afterward, we outline our solution for engineering cloud computing
applications on a very high level to give the reader a jump-start into the topic.

This chapter is structured as follows. In Sect. 1.1 we sketch the world of cloud
applications and motivate the need for engineering their scalability. For those who
have not worked on a cloud system, we outline its characteristics in Sect. 1.2 and
define its essential concepts in Sect. 1.3. As this book is about building scalable

S. Becker (�)
University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
e-mail: steffen.becker@informatik.uni-stuttgart.de

G. Brataas
SINTEF Digital, Strindvegen 4, 7034 Trondheim, Norway
e-mail: gunnar.brataas@sintef.no

M. Cecowski
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia
e-mail: mariano.cecowski@xlab.si

D. Huljenić • I. Stupar
Ericsson Nikola Tesla, Krapinska 45, 10000 Zagreb, Croatia
e-mail: darko.huljenic@ericsson.com; ivana.stupar@ericsson.com

S. Lehrig
IBM Research, Technology Campus, Damastown Industrial Estate, Dublin 15, Ireland
e-mail: sebastian.lehrig@ibm.com

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7_1

3

mailto:steffen.becker@informatik.uni-stuttgart.de
mailto:gunnar.brataas@sintef.no
mailto:mariano.cecowski@xlab.si
mailto:darko.huljenic@ericsson.com
mailto:ivana.stupar@ericsson.com
mailto:sebastian.lehrig@ibm.com

4 S. Becker et al.

cloud computing applications, we introduce the most important quality properties
(scalability, elasticity, and cost-efficiency) in Sect. 1.4. In Sect. 1.5 we describe what
consequences you will face when failing to get the quality of your application right,
while Sect. 1.6 explains reasons why developers fail to provide sufficient quality
when not following specialized methods. As development efforts and methods need
to be managed, Sect. 1.7 describes what it takes to manage scalability, elasticity, and
cost-efficiency. Management can be done in two ways, i.e., reactively (cf. Sect. 1.8)
or proactively (cf. Sect. 1.9). Once you have understood why you should care about
scalability, we sketch our solution approach, the CloudScale method (cf. Sect. 1.10).
We explain what it costs to introduce it in Sect. 1.11 and what is required to be
successful (cf. Sect. 1.12).

1.1 Getting It Right

Building properly scalable systems has been a challenge for software developers
for decades already. Here, scalable systems means systems which either had some
spare resources left (i.e., over-provisioned resources), or which were expected to
process further workload when moved to faster hardware. Why then did the cloud
computing area lead to an even more increased attention on scalability topics?
The reason is the shift in the type of applications we are building and operating
today. Providers like Facebook, Amazon, Twitter, and Netflix operate on a so-called
WebScale [1]. WebScale refers to the fact that any person connected via some device
to the Internet is a potential customer and might generate requests for the service.
As a consequence, we see both high and very unpredictable loads as well as huge
amounts of data being worked upon.

Today, most of these systems are less critical and may determine only the fate
of its providing company. But in the near future, many of these systems will be or
will become mission critical, i.e., the fate of people’s life, economic welfare, or of
whole societies will depend on these systems. For example, consider systems which
form the backend of connected devices like smart distribution grids for electricity,
or water; traffic control systems for autonomous connected cars, trains, or airplanes;
high-frequency stock trading; etc.

The more critical these systems become, the more crucial it becomes to get them
right? Getting them right means to implement systems in a way that they comply
to their requirements right from the beginning. In particular, they have to comply to
their extra-functional requirements, including scalability, elasticity, and efficiency.
A non-scalable smart grid system will break in case of an unpredicted event, causing
a burst of unprocessed control messages; a non-scalable traffic control system might
route cars and trains right into traffic, worsening the situation and causing a huge
loss of time and money. But even on smaller scales, non-scalable systems cause
problems. For example, the initial design of SAP’s BusinessByDesign system had
severe scalability issues. As a consequence, SAP suffered from significant financial
losses and had to reimplement large parts of the system [2] before it was ready

1 Introduction 5

to be released. Another recent famous example is the US government’s health-
care system. The system broke down under the load caused by users trying to
gather information about their health insurance during the first weeks. Officials
had not tested the system with the load the system finally had to face. Also online
games or games with online authorization components regularly face scalability
issues during the week of a new game or add-on release. For example, in World
of Warcraft, Blizzard faces regularly issues on new game releases despite their
extensive experience in this business domain [3].

Looking at all these examples, one might ask what to do to get it right. When
revisiting classical software development, the most often practiced technique to
ensure that systems comply to their requirements is testing. However, testing focuses
frequently on testing the functional correctness of systems, while extra-functional
properties are often ignored. To address extra-functional concerns, special types of
tests are needed. For instance, performance and scalability is tested in so-called
load or staging tests. However, these tests are often complicated in practice. To
test systems under high load or heavy work conditions, those conditions have to
be created first. The larger the load or work situation is, the more infeasible this
becomes as it requires a huge amount of resources to generate that load or work.

Often, the requirements specifications themselves are part of the problem.
While functional requirements are typically specified in detail, extra-functional
properties are either lacking or are expressed in vague specifications which cannot
be systematically engineered nor tested.

New engineering methods are needed to tackle the problem. The CloudScale
method introduced in this book provides such a method. By explicitly taking
scalability, elasticity, and efficiency requirements into account and by providing
approaches to verify their fulfillment either using models of the system under
development or their actual implementation, it provides a way to implement cloud
computing applications right from the beginning in a way that they fulfill their
requirements. This is mainly achieved by introducing engineering principles in the
software development process which have not been integrated before. In particular,
by analyzing the system’s design already early on in the development process
and later checking for this, it provides the means to forecast the success of the
development endeavor and avoid surprises.

1.2 Software in the Cloud Computing Era

With the rapid development of computing hardware, high-speed networks, web
programming, distributed and parallel computing, and other technologies, cloud
computing has recently emerged as a commercial reality. Cloud computing is
rapidly emerging as the new computing paradigm of the coming decade.

Its main idea is to perceive computing power, storage capacities, and networking
resources as resources which can be utilized like we utilize energy. These resources

6 S. Becker et al.

are offered by specialized companies, while the resource users neither know nor
care how or where this actually takes place.

In practice, providers offer resources by virtualizing them. They make revenue
due to the fact that not all resources sold will be used at all times. Providers sell
not just hardware (Infrastructure as a Service, IaaS), but software resources as well
(Platform as a Service, PaaS, or Software as a Service, SaaS). This has attracted the
attention of industry developers as well as researchers across the world.

Cloud computing has five major properties: on-demand self-service, broad
network access, resource pooling, rapid elasticity or expansion, and measured
service [4]. With on-demand self-service, cloud customers request their needed
resources themselves, typically using fully automated provisioning application
programming interfaces (APIs). Broad network access gives them the ability to
access their services. Resource pooling is used by the cloud providers to share
their resources among all their customers efficiently. Rapid elasticity allows cloud
customers to provision and deprovision their resources in small time frames, often
in the range of minutes or even seconds. Exploiting this elasticity, cloud customers
can match the resource demand of their application. This leads to a cost-efficient
delivery. Finally, measured services refers to the fact that cloud providers meter
the resource by their cloud customers and charge them based on usage, i.e., cloud
customers only pay for resources they have actually used.

Cloud computing offers a viable solution to the challenges of addressing
scalability and availability concerns for large-scale applications. This is partly due
to the rapid elasticity property mentioned, but also thanks to the expertise of the
cloud providers to operate their resources without failures. Cloud computing has
evolved during the years starting from data centers to present-day infrastructure
virtualization. Although cloud computing is maturing, there are still many unsolved
challenges: formal models to analyze properties of cloud computing applications,
immature infrastructures and their configuration options, a need for novel architec-
tures (like microservice-based architectures), rapid and timely provision of services,
and development of applications utilizing the new opportunities best.

In the “classical” IT environment, software is binary code installed onto a local
computer. Software in a cloud becomes a service. The cloud deployment model
for software (SaaS) delivers code and data remotely. Cloud software is designed
to be loosely coupled services, to be encapsulated, and to be available through
the web. In traditional software systems, the most important characteristics are:
reliability, configurability, and usability. In cloud based systems the most important
characteristics are: scalability, security of the processed data, and performance.

Cloud computing is not a completely novel paradigm but evolved from service-
oriented computing (SOC), and shares most of its properties. SOC is a computing
paradigm that exploits both web services and service-oriented architecture (SOA)
as fundamental elements for developing software systems that use remote services.
This paradigm changes the way software systems are designed, delivered, and
consumed. The service-oriented paradigm is emerging as a new way to engineer
systems that are composed of and exposed as remote services for use through
standard protocols.

1 Introduction 7

One of the important advantages of for cloud computing is its encouragement
to reuse assets. Asset reuse can constitute reuse of computing models, reuse of
architecture and infrastructure, and reuse of platforms and services.

Cloud computing provides a new criterion for service provisions from scratch,
with reduced upfront investment, expected performance, high availability, fault
tolerance capability, and “infinite” scalability, and opens a new era for freshly
spawned companies to provide services at humble initial cost investment.

1.3 Some Useful Definitions to Characterize Services

In cloud computing, services are often characterized along their functionality,
i.e., their set of provided operations. Moreover, service providers and consumers
negotiate the quality-of-service targets that these operations need to achieve—
so-called service-level objectives (SLOs). SLOs define a system’s capacity: the
maximum workload a system (with all of its operations) can handle, e.g., in terms
of the number of customers.

Operations, SLOs, workload, and capacity are at the core of the CloudScale
method: these concepts characterize a service and, thus, need to be taken into
account during its engineering. In this section, we define and exemplify operations,
SLOs, workload, and capacity. Subsequent chapters detail how software architects
can engineer—along the CloudScale method—services with these issues in mind.

1.3.1 Operations

A service typically offers several operations (see Definition 1.1). Each operation
represents a unique way of interacting with the service. Several words are more or
less synonyms for operation: activity, function, process, and even transaction. On a
higher level, a use case will often be implemented by one or more operations.

DEFINITION 1.1: OPERATION [5, BASED ON]

An operation specifies the name, type, parameters, and constraints for
invoking an associated behavior.

An electronic book store service will, for example, have operations for accessing
the home page as well as other operations for searching for books to buy. In
the search operation, the name of the author or the title may be parameters. The
operations in a service may be more and less demanding, and also the popularity
of operations may differ drastically. An operation for buying books may depend on
many complex underlying services and will therefore be demanding. On the other
hand, retrieving information about a particular book is simpler, especially since this
information normally does not change and therefore is easy to cache.

8 S. Becker et al.

1.3.2 Service-Level Objectives

SLOs are the quality-of-service targets of a service’s operations (see Definition 1.2).
To specify an SLO, service providers and consumers need to agree on a suitable
metric and a threshold for this metric. The metric should be “a defined measurement
method and measurement scale” [6], and the threshold the lower limit for which
a metric measurement violates the SLO. Violations of SLOs potentially lead to
contractually specified penalties, e.g., the consumer may get discounts for service
usage.

DEFINITION 1.2: SERVICE-LEVEL OBJECTIVE (SLO) [7, BASED ON]

The quality-of-service target that must be achieved for each of a service’s
operation.

Let us exemplify an SLO negotiation. A service provider and a consumer
negotiate an SLO for performance of a particular service operation. The consumer
suggests the performance metric “maximum response time” and a concrete thresh-
old of “2 s”. The service provider disagrees to guarantee 2 s response time in 100%
of the time. Therefore, the provider suggests a refined threshold that asks for “2 s for
99% of monthly requests”. The consumer agrees, thus resulting in the performance
SLO: “the offered service responds with a maximum response time of 2 s for 99%
of requests in a month”. Analogously to this negotiation, each service provider and
consumer determine SLOs for each of a service’s operations.

1.3.3 Workload

Given a service, its quality of service may differ depending howmany consumers are
using it concurrently. Therefore, the behavior of customers is a context factor that
needs to be taken into account, e.g., when negotiating SLOs and when engineering
a service. The concept of workload (see Definition 1.3) allows software architects
to characterize this context factor.

DEFINITION 1.3: WORKLOAD [8]

Workload is the combined characterization of work and load where

• work is the characterization of the data that is processed by a service’s
operations and

• load is the characterization of the quantity of consumer requests to a
service’s operations at a given time.

1 Introduction 9

Workload characterizes the usage context of a service regarding two distinct
aspects—work and load—over its operations. Work characterizes the data to be
processed by a service’s operations. For example, a typical characteristic is the
array size when an operation processes an array, e.g., for sorting its elements.
Load characterizes the number of consumers served by a service’s operations.
For example, typical characteristics are the frequency and probability with which
consumers request an operation.

1.3.4 Capacity

Given the concepts of SLOs and workload, the question arises whether a service can
sustain an unlimited amount of workload or whether there is a limit. The concept of
capacity (see Definition 1.4) captures this limit.

DEFINITION 1.4: CAPACITY [9]

Capacity is the maximum workload a service can handle as bound by its
SLOs.

For example, a web service for providing information about books may have a
capacity of 100 consumers per second with a constant work. The limiting factor
that determines this capacity may be a CPU with too low processing rate or a too
strict SLO. Therefore, both increasing CPU processing rate and agreeing on less
restrictive SLOs can be options to increase capacity.

1.4 Quality Properties of Services

Quality properties characterize “how well” a service operates. From the view of
service consumers, externally observable properties are important—i.e., the degree
to which SLOs are fulfilled and the involved usage costs. From the view of service
providers, internal properties are important—i.e., the degree to which SLOs can be
fulfilled and the involved operation costs.

Scalability, elasticity, and cost-efficiency are the internal quality properties that
service providers need to consider to minimize operation costs while fulfilling SLOs
as best as possible. They are the only quality properties focused in this book. This
section describes and exemplifies these properties. Subsequent chapters explain how
software engineers follow the CloudScale method to engineer their services for these
properties.

10 S. Becker et al.

1.4.1 Scalability

Scalability is a quality property that tells whether a service can increase its capacity
by consuming more services of its underlying layers or not (see Definition 1.5).
Here, only this ability is important—not the degree to which it does.

DEFINITION 1.5: SCALABILITY [9]

Scalability is the ability of a service to increase its capacity by expanding its
quantity of consumed lower-layer services.

Examples for underlying services are third-party services (e.g., a payment service
for web shops) and directly consumed resources (e.g., servers, CPUs, and hard disk
drives). Given a service that consumes all of these lower-level services, it is scalable
if an increased consumption of at least one underlying service leads to an increased
capacity. That is, consuming either more third-party services (e.g., by issuing more
parallel requests to the payment service) or more direct resources (e.g., by using
more servers) leads to an increased capacity.

An example of an unscalable service is a service where many consumers share
items of the same database. Whenever a change of a single item is made by a
consumer, this part of the database is locked. Changes made by other consumers
on this item cannot be processed until the first consumer is finished. The capacity
of such a service stays at one customer per request, independent of the number of
additional database servers, CPUs, etc. To make such a service scalable, alternative
means to manage database items have to be found, e.g., by using alternative
databases with less restrictive constraints on data consistency or by assigning
database items to dedicated users only.

1.4.2 Elasticity

Elasticity describes to which extent a service can adapt its capacity to changes
in workload (see Definition 1.6). Elasticity needs to be considered over time for
changing workloads, e.g., for sudden workload peaks that require an adaptation
of capacity. Such an adaptation needs to be timely, i.e., such that potential
SLO violations are minimized. Timeliness entails an adaptation process that is
autonomous, i.e., it is either automated or guaranteed to be manually realized in
time.

DEFINITION 1.6: ELASTICITY [9]

Elasticity is the degree to which a service autonomously adapts capacity to
workload over time.

1 Introduction 11

Based on this definition, a service needs to be able to adapt its capacity to
be elastic. Because exactly this property is captured in scalability, scalability is a
prerequisite for elasticity. For example, a service is elastic if it dynamically boots a
dedicated virtual machine (VM) that copes with work-intensive requests (and shuts
it down once the request has been served).

The benefit of an elastic service is that, at each point in time, only the minimal
amount of underlying services are used (in the example above: a minimal amount
of virtual machines). This minimization improves the cost-efficiency of the service
as discussed in the next section.

1.4.3 Cost-Efficiency

Cost-efficiency for a service describes the relation between the amount of capacity
demanded and the amount of consumed lower-layer services (see Definition 1.7). A
cost-efficient service uses cost-efficient lower-layer services to deliver the required
capacity.

DEFINITION 1.7: COST-EFFICIENCY [9]

Cost-efficiency is a measure relating demanded capacity to consumed
services over time.

Cost-efficiency is closely related to optimal provisioning. Optimal provision-
ing strikes a balance between over-provisioning and under-provisioning. Under-
provisioning results in SLO violations like high response times or low throughput,
resulting in dissatisfied customers. Over-provisioning leads to low utilization of
lower-level services [10]. However, since lower-level services also have a cost,
optimal provisioning is not enough. For a given service with a given workload,
two lower-level services may both provide optimal provisioning, but their cost may
differ. In addition to optimal provisioning, cost-efficiency therefore also is about
selecting cheap lower-level resources.

With a variable workload, the cost-efficient amount of lower-level services will
vary. A service which cannot adjust its amount of lower-level services as the
capacity demand varies will have poor cost-efficiency. Therefore, elasticity is a
prerequisite for cost-efficiency. However, also with a constant workload, a poor
match between a service and its demanded lower-level services can result in the
cost being too high, and far from optimal. As a result, cost-efficiency will be poor.

An example of a service which is not cost-efficient is a service that relies on
a lower-level costly database service. Redesigning this service so that it uses a
less expensive database service may considerably improve the cost-efficiency. This
saving must be traded off against the cost of redesigning the service.

12 S. Becker et al.

1.5 Consequences of Scalability, Elasticity,
and Cost-Efficiency Issues

As described in Sect. 1.4.1, a scalable system can handle an increasing workload
by consuming more lower-layer services. Therefore, it is important to know the
maximum workload our service must handle and design, implement, and tune the
service accordingly. A service which is not able to scale up to the required workload
will result in:

Unsatisfied end-users End-users will experience long response times, and ulti-
mately, no response at all. If there are alternatives, disappointed end-users will
go to your competitor.

Frustrated employees To handle a service with poor scalability will be challeng-
ing for all personnel involved: from the help desk answering frustrated or even
angry end-users, to service engineers responsible for handling operations as best
as possible, and, finally, to architects and developers working overtime trying to
fix the service. When they come home late at night, their spouses may wait with
divorce papers, before they die due to work-related stress.

Financial loss Revenue may plummet if customers go elsewhere because of poor
SLOs. The organization responsible for such a service will get a bad reputation
and may find it hard to get new customers or to recruit qualified personnel. To
redesign a non-scalable service will take time. During this time, quality will still
be bad, and thus you lose even more customers. Redesigning services is costly
and you may end up using personnel which was actually meant to design new,
profitable functionality instead of redesigning old functionality. A service with
poor scalability may also require costly lower-level services. You may actually
end up paying more for the lower-level services than what you earn from your
customers.

Loss of lives In the case where critical public infrastructure stops working be-
cause of missing scalability, lives may eventually be lost, because of overloaded
services for telecom, hospitals, air traffic management, etc.

We now assume that our service is scalable, but that it is not elastic enough.
When the number of users grows quickly or if the amount of work they perform
also increases fast, this challenges the elasticity of the service. A service which is
not elastic enough results in poor SLOs. We will face the same consequences as for
bad scalability. The consequences will not last for so long, since eventually we will
be able to provision the required lower-level services.

A service which is not cost-efficient may still offer acceptable quality to its end-
users. The problem is the large bill from the lower-level services. Consequences of
this may still be severe, but limited to the organization offering the service. Costly
redesign may also be required.

1 Introduction 13

1.6 Causes of Scalability, Elasticity, and Cost-Efficiency
Issues

A very scalable service can scale up to infinite work and load, provided we supply
enough lower-level services. Why not engineer all services with high scalability?
The answer is simply that designing scalable software has several consequences:

Cost A software design organization has a typical way of making services which
gives a certain scalability. If more scalability is required, then this will not only
cost twice as much. It may cost ten times more, and will also require more time,
since new design solution must be explored.

Non-standard solutions New solutions may be required, contributing to more
complex development, testing, maintenance, and operations.

Other qualities suffers It is well-known that scalable services may be more
complex to maintain, but if a scalable service is required, this may also limit
the amount of security which is possible to implement. With a fixed budget, a
costly scalable service may also miss functionality compared to a less scalable
service.

In summary, scalability is a trade-off between other qualities. A good trade-
off gives services with balanced qualities, but if scalability is neglected during
architecture, design, testing, and operations, this will have consequences as outlined
in Sect. 1.5.

Scalability is holistic and will be affected by the weakest part of the system.
Obviously, a bad architecture will lead to bad scalability, but also sloppy coding or
uniformed choice of configuration parameters may lead to scalability problems. The
large difference is that the latter is much cheaper and faster to fix. However, for a
solution which simply has to work on a specific occasion, the damage is already
done.

The causes of inferior elasticity and cost-efficiency may resemble the causes of
bad scalability.

1.7 How Should You Manage Scalability, Elasticity,
and Cost-Efficiency?

As we saw in the previous sections, it is important to address scalability, elasticity,
and efficiency requirements. Failure to manage these requirements properly may
lead to severe losses of business opportunities, money, or even human life. Hence,
it is important to manage them early on and throughout the system lifecycle in the
same way as is necessary to manage other (quality) requirements.

Due to this necessity, we have to talk about managing scalability engineering in
software development projects. In the beginning, the management tasks start with
either training existing personnel or employing skilled new personnel. Required

14 S. Becker et al.

skills include handling of extra-functional properties, gathering extra-functional
requirements correctly, analyzing systems and their designs for requirement ful-
fillment, etc.

It is necessary to integrate steps dealing with scalability, elasticity, and efficiency
requirements into the software development process. This does not imply only
technical activities like system design and implementation, but also business-related
activities like finding, evaluating, and selecting an appropriate cloud computing
provider. As cloud providers differ significantly in the offered price model as well
as in technical parameters like startup times of provisioned virtual machines, this
has a direct impact on properties like elasticity and cost-efficiency.

In most cases, managing scalability, elasticity, and efficiency requirements
requires good communication between the customer, the developers, and the opera-
tions team. Stakeholders need to understand concepts sufficiently so they can discuss
and decide on the requirements in an educated way. It also may include establishing
a new development process or culture, as is currently propagated in the DevOps
movement [11]. Here, developers and operations people work closely together to
achieve high-quality services. In particular, implementing sophisticated elasticity
requirements requires a close cooperation between developers and operators; the
reason is that developers need to implement monitoring and reporting of the
current work and load situation faced by the running system. The information is
used at runtime by operators, who then, based on the delivered data, provision or
deprovision resources.

Finally, managing scalability, elasticity, and efficiency requirements also has an
impact on time and cost estimations for development projects of cloud computing
applications. The more complex and critical these requirements are, the more effort
will be needed.

1.8 Reactive Scalability, Elasticity, and Cost-Efficiency
Management

Solving problems on running systems is muchmore complicated and expensive than
tackling the scalability, elasticity, and efficiency from the start. Time spent in a good
architectural design and careful implementation will save several times more effort
in solving problems once a system is implemented and in production.

Nevertheless, it is not seldom that we find ourselves in a situation in which we
need to find a solution for a running system that is struggling to process an existing
load, or has problems when peaks occur, fails to respond quickly enough to peaks,
or simply becomes too expensive to make commercial sense.

1.8.1 Immediate Temporal Solutions

There are a few things that we can do to alleviate the system stress to cope with
the load if horizontal scaling, i.e., introducing more instances of the service, is not

1 Introduction 15

helping due to lack of scalability. The most obvious being vertical scaling: having
instances with more RAM, CPUs, or disk space can bring the system to normal
functioning without any other change (provided we understand what produces
the bottleneck). This action can help to keep the system operational while more
permanent solutions are worked out.

Elasticity problems can be reduced by over-provisioning, though damaging
the cost-effectiveness of the system. This is particular common when there are
replicable components that are very expensive to replicate (e.g., huge databases).

In multi-tenant systems it is sometimes possible to divide the information that is
stored in independent copies of the system, routing the requests to the appropriate
deployment. This is only possible if the information from different tenants is
independent of each other.

Other solutions include making use of an external service implementing a
particular component (e.g., a static storage from a public PaaS provider) or throttling
the requests while reducing the SLOs.

1.8.2 Long-Term Solutions

Any permanent solution to a system that does not scale beyond a certain point, or
does not do it quickly enough, will require an analysis of the problem, and probably
a redesign, reimplementation, and redeployment of some or several of the system’s
components. The first step in solving these problems is that of the measurement
and analysis of the system’s behavior by means of dynamic measurements (e.g.,
with the Dynamic Spotter introduced in this book and an appropriate measurements
methodology; cf. Sect. 7.4), the static code (e.g., the Static Spotter introduced later;
cf. Sect. 7.3) and model simulation (the Analyzer introduced later; cf. Sect. 6.3).
This will help us understand when and, more importantly, where do the bottlenecks
occur, in order to plan for a course of action to solve them.

Often, these issues arise due to deployment problems and misconfigurations,
which can be solved relatively easy. A bad gateway, a low connection pool size,
or a poor load-balancing policy can greatly affect the performance, scalability, and
efficiency of a system, but can be solved without the need of costly refactoring.

Poor technology choices (e.g., the usage of an embedded database) can also have
a great impact on the system, but replacing them (e.g., to a distributed database) can
require costly changes in the code (e.g., SQL flavor) and, in some cases, complete
redesign of the entire solution and rewrite of a large part of the system (e.g., if
moving from a relational database to a key-value store).

Finally, a bad design and architecture can result in an inherently poor system that
will suffer efficiency and scalability issues sooner than later, and might require a
mostly new system from scratch. Common pitfalls in the design and development
of cloud systems can be found in Sect. 2.10.

Any solution that requires a revision of the architectural design can be validated
prior to its actual implementation, e.g., by means of analyzing its blueprint and

16 S. Becker et al.

simulation of foreseeable scenarios, to then start its actual implementation, and its
implementation be tested and measured before being deployed in production to de-
phase the temporary solution that has hopefully been able to cope until now.

1.9 Proactive Scalability, Elasticity, and Cost-Efficiency
Management

Because solving scalability problems on a running system is costly and complicated,
it is essential to try to minimize them already during the design and implementation
phases. There are several things that we have to keep in mind that can help us avoid
common mistakes and minimize future scalability problems.

During the design of the system architecture, it is very useful to make use
of existing architectural models (i.e., Architectural Templates) and follow best
practices (i.e., HowTos) with proven practical scalability properties, while avoiding
common pitfalls and badmodels (i.e., HowNotTos) that will eventually translate into
run-time problems. This is particularly helpful because it allows us to calculate the
cost-efficiency of very different workloads, different architectures and deployments,
and even different infrastructure providers in order to find the best combination of
those, without incurring in performing many expensive test runs and measurements.

Perhaps the most general advice is to decouple independent units or sub-systems
that can be scale independent, which helps not only in detecting scalability and
contention problems if they arise, but will also help improve efficiency (by using
just the right amount of each) and the scalability, by isolating inherently hard-to-
scale parts, such as a database. This is also one of the essential ideas of the current
movement to microservice-based architectures [12].

Additionally, it is useful to make use, whenever possible, of an eventually
consistent approach to data instead of a transactional model, since it has a much
better scaling expectation since it avoids the contention problems present in
transactional models, which require a distributed commit in order to assure constant
coherence of the information present in a database cluster.

Once we have a design, we can then analyze it for different work and loads
in order to evaluate the scalability properties of our future system (detailed in
Sect. 6.3). Even if certain properties of the infrastructure or external systems might
not be yet known, such simulations can help design problems very early on in
product development, which can save a lot of headaches, money, and resources later,
when the system is fully developed, deployed, and running.When one such problem
is detected, it is necessary to update the design and repeat the cycle.

It is also important to make measurements during the implementation of the
system, which will help detect efficiency and scalability problems as early as
possible. This should be part of the continuous deployment and testing process that
validates the quality of the entire system.

1 Introduction 17

These tests should be performed in infrastructures and platforms analogous to
the final product infrastructure, in order to prevent unpleasant surprises later on.
This includes the expected range of work and loads, underlying static storages,
database clusters and any other such PaaS elements, computing nodes, virtual disks
and other IaaS items, and elasticity settings. Likewise, it is important to stress-test
any necessary external service to confirm its ability to cope with the expected load
and defined SLOs.

The earlier problems are found in the design and development phases, the easier
and cheaper it is to tackle them. A problem found during design can be hundreds
or even thousands of times cheaper to treat than in a system already running in
production, without taking into account even opportunity losses.

1.10 The CloudScale Method

To engineer scalable, elastic, and cost-efficient systems is a complex undertaking.
The CloudScale method guides stakeholders by describing the steps to follow

when engineering scalable, elastic, and cost-efficient systems, and also describes
when different stakeholders are involved. The basis for the CloudScale method is
the CloudScale tools, which automate some parts of the method. The CloudScale
Method describes the input as well as the output of the CloudScale tools. In some
cases, inputs to a CloudScale tool are produced with another CloudScale tool, but
manual steps may also be required to produce the required inputs. The CloudScale
method describes the sequence of manual and tool-driven steps required when
engineering scalable, elastic, and cost-efficient systems using the CloudScale tools.

In a typical cloud-based system, scalability, elasticity, and cost-efficiency are
only some of the requirements to take care of. The CloudScale method must
therefore be embedded in a wider method where the functions of the system are es-
tablished and detailed. This wider method will take care of the functionality as well
as other extra-functional requirements like security, usability, and maintainability.
The CloudScale method is flexible concerning this wider method.

The CloudScale method covers two distinct use cases. These use cases are
distinguished by the key artifact, being either a model of a system or an implemented
system. A model typically represents unimplemented parts of a system. When a
model is sufficiently detailed, it will be possible to project scalability, elasticity,
and cost-efficiency. A model must be built, feed with inputs, and interpreted. The
CloudScale method describes these steps.

An implemented system can be tested using different workloads, and it may
then be possible to identify scalability problems in the system. Moreover, it may
also be possible to find the weak spots in the system that are the root cause of
these scalability problems. When investigating an implemented system, a mixture
of tool-driven and manual steps are described in the CloudScale method so that root
causes are identified. A fully detailed description of the CloudScale method follows
in Chap. 2.

18 S. Becker et al.

1.11 What Does It Cost?

When considering to introduce the CloudScale method, managers typically want to
know how much it costs to introduce it into their development processes. They then
have to compare these costs to the expected benefits to make an educated decision.
To better judge the cost/benefit ratio of the CloudScale method, the following
paragraphs detail the two main cost categories.

Costs come as one-time costs for the initial introduction of the CloudScale
method and as per-execution cost for each project using the CloudScale method.
For introducing the CloudScale method, the major cost driver is education of the
people who are to use the CloudScale method. In principle, there are two options:
either train already existing personnel or employ/hire persons who already have
appropriate skills. Training the necessary skills on a very basic level during a
guided workshop takes about 2–3 days. More details with respect to these costs
are described in Sect. 8.4.3.

After appropriate personnel has been trained, costs for executing the CloudScale
method occur on each application of the method during a particular software de-
velopment endeavor. These costs depend on the skills of the personnel (as discussed
before), the experience they have, and the situation the software development project
is in.

The first and important aspect is to gather the systems requirements. In prac-
tice, for many systems, requirements for non-functional properties have not been
sufficiently detailed in a quantitative manner. However, this is a precondition for
the CloudScale method. Therefore, you need to plan for costs to collect and define
these requirements in a more detailed way. In particular, requirements for scalability,
elasticity, or cost-efficiency do not exist for classical software systems, as their
importance increased only when cloud computing applications becamemainstream.
In our experience, gathering such requirements can take a couple of months as it
involves quite a number of stakeholders who have to meet and discuss. This incurs
some costs. However, you should have gathered these requirements anyhow, no
matter whether you plan to use the CloudScale method or not.

Benefits of knowing the extra-functional requirements in a detailed and quanti-
tative way allows for systematic designing for them and testing them. In so doing,
software architects can avoid risks which exist if the software is underperforming
during operation. In particular, for mission-critical systems, i.e., systems which have
to be available all the time, avoiding such risks is essential.

For model creation, an existing software architecture description which is up
to date is an important speed-up factor. Otherwise, software architecture reverse
engineering approaches like the Extractor tool are needed (cf. Sect. 4.5.3.2). They
often require specially prepared inputs (e.g., code in a certain format) as well as
configuration by their users—often identified in a trial-and-error procedure.

Measurement data from preexisting software is useful. It can help in identifying
the system’s current and expected workload, its current and future resource de-
mands, etc. In addition, software architects can use measurements to characterize

1 Introduction 19

their infrastructure layer (e.g., VM provisioning delay and basic performance
measures like the system speed of processing). Again, the real costs are situation
dependent. Overall, the data gathering phase might take up to half a person-year—
depending on the situation and the system’s complexity.

The benefits of having a model in the end are manifold. First, having a model
has its use as documentation, even without doing any kind of analyses. Having such
a documentation eases any kind of maintenance task. In addition, models allow for
analyses and predictions, e.g., via simulations. In particular, models enable software
architects to perform what-if analyses and evaluate the system under development
in different environments or settings, as explained in Chap. 6.

When validating implemented systems via CloudScale’s Spotter tools
(cf. Chap. 7), the system has to be readily implemented and executed. In addition,
a workload driver has to stress-test the system in various settings. Therefore, costs
arise from installing and operating the system. Installation costs originate mainly
from the effort spent by operations personal. System operational costs are costs you
have to pay for used cloud resources (virtual machines, network resources, storage
resources). These costs can be significant as the Spotter tools drive the system to its
scalability limits, which means also to a state in which it should consume the most
resources. As spotting problems may take quite some time (even in the magnitude
of days), the sum of operational costs can quickly become a significant factor.

1.12 What Do You Need?

There are a bunch of questions to clarify, before you can begin to introduce the
CloudScale method into your own development processes. First of all, introducing
the CloudScale method is not a matter of downloading, installing, and using the
CloudScale tools bundled in its integrated development environment (IDE). As
outlined in Sect. 1.11, one of the main factors is to have appropriate personnel that
has the right skill set, i.e., trained in modeling and system analyses.

No matter, whether you hire suitable candidates or train them yourself, all of this
requires management commitment. Your management has to be convinced of the
benefits the CloudScale method has to offer and be supportive of it. This support
covers providing all necessary resources: the time and money to train or establish
required skills and the time and money to model or otherwise analyze systems.
In addition, management should foster and encourage the use of the CloudScale
method. This is of major importance as the CloudScale method promotes activities
which are not directly related to common development activities like programming.
In addition, it shifts efforts from late development phases, in particular system
staging tests, to early phases. The reason for this is that application of the
CloudScale method aims at avoiding surprises due to late discovery of insufficient
scalability. However, late discovery of such issues may lead to very expensive
reengineering of the system under development. In this light, you may consider

20 S. Becker et al.

the CloudScale method to be a risk mitigation technique: it adds additional efforts
in early development phases to avoid costly and dangerous risks in late phases.

Besides management commitment, you also need to integrate the CloudScale
method into your existing development methods and culture. This requires a good
understanding of your current development process and sufficient control of it.
Only then can you understand what a combined process could look like for your
organization. Once defined, you also need to implement this process in your
organization.When doing this, you may encounter resistance from your developers,
who will now be forced to use methods and techniques unfamiliar to them. Again,
management commitment in this phase is very important to overcome such issues.
Also, a good organizational internal communication is needed to explain the new
method and its benefits.

To summarize, the benefits of the CloudScale method do not come for free, and
not just using a set of novel tools. It requires rethinking your development process
and integrating new steps with appropriate management backup and sufficient
resources. In the end, it is a decision you have to take: risk late project failures due
to insufficient scalability or invest in your processes to avoid these risks to a large
extent. In the web-scale economy of many of today’s systems, the severe impact of
failing to meet scalability often justifies introducing the CloudScale method.

1.13 Conclusion

As industry adoption of cloud computing is rising, building properly scalable
cloud systems will become more and more critical. In order to achieve such
systems, one must have a holistic approach regarding the systems requirements, i.e.,
scalability, elasticity, and cost-efficiency requirements must be considered in the
system engineering process. An example of such engineering approach is offered
through the CloudScale method, thoroughly described throughout this book.

As an increasing number of both service and infrastructure providers are ready
to invest in proper service engineering, they recognize that achieving quality of
service in cloud environments has become an imperative. In order to track the
service quality, a service needs to be characterized in terms of operations it offers,
SLOs specified as quality-of-service targets, and workload. Service can then be
described using their internal quality properties—scalability, elasticity, and cost-
efficiency—defining if the service can increase its capacity, to which extent can the
capacity be adapted to the changes in the workload, and if it can be done in a cost-
efficient way. Lack of service scalability can lead to financial loss, disappointed
end-users, and even some fatal circumstances, depending on the service type.
Hence, service providers examine these properties in order to achieve specific level
of quality of service while minimizing service operational cost.

In order to avoid consequences of bad system scalability, risking poor SLOs,
and costly solutions, the scalability, elasticity, and cost-efficiency requirements
should be managed early on and during the whole system lifecycle. By using new

1 Introduction 21

engineering methods that promote and focus on proactive scalability, elasticity,
and cost-efficiency management during the service design and implementation
phases, service providers can significantly reduce the need of complex and costly
solutions of scalability problems that need to be applied on the running system.
However, although they offer significant benefits and decrease the risk of late project
failures, applying methods such as the CloudScale method requires additional
efforts and their introduction into the current development process has to be
carefully considered and planned.

References

1. Web-scale IT: http://www.webopedia.com/TERM/W/web-scale-it.html (2016) [Visited on
11/13/2016]

2. Marshall, R.: Sap gives update on business bydesign plans. http://www.v3.co.uk/v3-uk/news/
1970547/sap-update-business-bydesign-plans (2016) [Visited on 11/13/2016]

3. Battle.net Servers Down for World of Warcraft, Hearthstone and Overwatch Play-
ers Around the World: http://www.ibtimes.com/battlenet-servers-down-world-warcraft-
hearthstone-overwatch-players-around-world-2383254 (2016) [Visited 11/13/16]

4. The NIST Definition of Cloud Computing: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf (2016) [Visited on 04/18/2016]

5. UML Operation: http://www.uml-diagrams.org/operation.html (2016) [Visited on 10/18/2016]
6. Cloud Select Industry Group on Service Level Agreements Subgroup (C-SIG SLA): Cloud

service level agreement standardisation guidelines. Cloud Select Industry Group (C-SIG),
Technical Report (2014)

7. Gartner, Inc. and/or its Affiliates, The gartner glossary of information technology acronyms
and terms. Gartner Inc., Technical Report (2003)

8. CloudScale Wiki: Glossary: http://wiki.cloudscale-project.eu/Glossary (2016) [Visited on
12/19/2016]

9. Lehrig, S., Eikerling, H., Becker, S.: Scalability, elasticity, and efficiency in cloud computing: a
systematic literature review of definitions and metrics. In: Proceedings of the 11th International
ACM SIGSOFT Conference on Quality of Software Architectures, ser QoSA ’15, Montreal,
QC, pp. 83–92. ACM, New York (2015) [Online]. Available: http://doi.acm.org/10.1145/
2737182.2737185

10. Brataas, G., Stav, E., Lehrig, S., Becker, S., Kopcak, G., Huljenić, D.: CloudScale: scalability
management for cloud systems. In: Proceedings of International Conference on Performance
Engineering (ICPE). ACM, New York (2013)

11. Bass, L., Weber, I., Zhu, L.: Devops: A Software Architect’s Perspective, 1st edn. Addison-
Wesley Professional, New York (2015)

12. Fowler, M.: http://www.martinfowler.com/articles/microservices.html (2016) [Visited on
11/13/2016]

http://www.webopedia.com/TERM/W/web-scale-it.html
http://www.v3.co.uk/v3-uk/news/1970547/sap-update-business-bydesign-plans
http://www.v3.co.uk/v3-uk/news/1970547/sap-update-business-bydesign-plans
http://www.ibtimes.com/battlenet-servers-down-world-warcraft-hearthstone-overwatch-players-around-world-2383254
http://www.ibtimes.com/battlenet-servers-down-world-warcraft-hearthstone-overwatch-players-around-world-2383254
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://www.uml-diagrams.org/operation.html
http://wiki.cloudscale-project.eu/Glossary
http://doi.acm.org/10.1145/2737182.2737185
http://doi.acm.org/10.1145/2737182.2737185
http://www.martinfowler.com/articles/microservices.html

Chapter 2
CloudScale Method Quick View

Gunnar Brataas, Steffen Becker, Mariano Cecowski, Darko Huljenić,
Sebastian Lehrig, and Ivana Stupar

Abstract In this chapter, we overview the complete CloudScale method and
show how the CloudScale method relates to existing development processes. Our
overview is accompanied by a running example termed CloudStore—a simple
online bookshop to be operated in a cloud computing environment. In a fictional
scenario, we exemplify how a software architect follows the CloudScale method
to realize CloudStore. The architect finally realizes CloudStore such that all of its
scalability, elasticity, and cost-efficiency requirements are fulfilled. After having
exemplified the CloudScale method, additional guidelines for software architects
are given in the form of best practices (HowTos) and common pitfalls (HowNotTos).
The chapter closes with a discussion on how the CloudScale method can be
integrated into existing development processes such as the Unified Process.

This chapter is structured as follows. Section 2.1 overviews the process steps
of the CloudScale method, and Sect. 2.2 introduces CloudStore as a running
example. Afterward, the fictional scenario starts in which a software architect
identifies critical use cases and key scenarios (Sect. 2.3), derives appropriate service-
level objectives (SLOs) (Sect. 2.4), creates an architectural model of CloudStore

G. Brataas (�)
SINTEF Digital, Strindvegen 4, 7034 Trondheim, Norway
e-mail: gunnar.brataas@sintef.no

S. Becker
University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
e-mail: steffen.becker@informatik.uni-stuttgart.de

M. Cecowski
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia
e-mail: mariano.cecowski@xlab.si

D. Huljenić • I. Stupar
Ericsson Nikola Tesla, Krapinska 45, 10000 Zagreb, Croatia
e-mail: darko.huljenic@ericsson.com; ivana.stupar@ericsson.com

S. Lehrig
IBM Research, Technology Campus, Damastown Industrial Estate, Dublin 15, Ireland
e-mail: sebastian.lehrig@ibm.com

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7_2

23

mailto:gunnar.brataas@sintef.no
mailto:steffen.becker@informatik.uni-stuttgart.de
mailto:mariano.cecowski@xlab.si
mailto:darko.huljenic@ericsson.com
mailto:ivana.stupar@ericsson.com
mailto:sebastian.lehrig@ibm.com

24 G. Brataas et al.

(Sect. 2.5), improves this model based on analyses (Sect. 2.6), implements Cloud-
Store and resolves implementation issues (Sect. 2.7), and deploys and operates
CloudStore in a cloud computing environment (Sect. 2.8). Afterward, Sect. 2.9
describes HowTos, and Sect. 2.10, HowNotTos. Finally, the CloudScale method is
related to the Unified Process in Sect. 2.11.

2.1 Process Steps of the CloudScale Method

After briefly motivating the CloudScale method in Sect. 1.10, this section gives
a high-level overview of the CloudScale method based on Fig. 2.1.1 Figure 2.1
illustrates the control and data flow (denoted as arrows) for software architects who
want to follow the CloudScale method. Various nodes denote a flow’s start/end
(rounded rectangles), processes supported by tools (rectangles with double-struck
vertical lines), decisions for software architects (diamonds), and manual tasks
(trapezoids).

The CloudScale method deals with scalability, elasticity, and cost-efficiency of a
system and must therefore be embedded in a wider method where the functionality
of the system is specified. The functionality of a service is expressed as one or more
operations offered by the service. Therefore, the first step of Fig. 2.1 is to look at
these operations and identify the most important operations from a performance
point of view—these are the critical use cases. As a prerequisite for finding the
most critical operations, software architects have to establish rough service-level
objectives (SLOs) for these operations. Later, software architects must also estimate
where, in the planning horizon, these critical use cases are most likely to be
toughest—these are the key scenarios.

In the second step of Fig. 2.1, critical use cases and key scenarios allow
software architects to define coarse requirements for scalability, elasticity, and cost-
efficiency. Software architects formulate their requirements via SLOs (as described
in Sect. 1.3).

The first decision node of Fig. 2.1 branches based on the type of artifacts to be
studied. If the analysis shall be based on modeling, software architects go to the left,
and if the analysis shall be based on implementation artifacts, software architects go
to the right.

A model in the CloudScale method is an architectural model expressed in the
Scalability Description Language (ScaleDL)—software architects have to specify
such a model when following the left path in Fig. 2.1. ScaleDL is comparable
to a Unified Modeling Language (UML) model with dedicated annotations for
quality analyses, similar to UML’s MARTE profile [4]. ScaleDL represents the
structure and behavior of the system’s architecture, the workload by the users, as

1The CloudScale method extends the Q-ImPrESS method [1] and builds on the Palladio perfor-
mance modeling tool [2]. A first draft of the CloudScale method was introduced in [3].

2 CloudScale Method Quick View 25

Use Spotters

Analysis
based on?

Requirements
met?

Stop

Use Analyzer

Model

Start

Legend

control &

Identify scalability, elasticity,

requirements

Start or
Stop

Tool-driven
process

Decision

Manual task

Identify SLOs,
critical use cases, and

key scenarios

Specify
ScaleDL model

Realize, deploy, and
operate system

Implementation

No

Yes

Fig. 2.1 High-level process steps of the CloudScale method

well as hardware and software resource demands. In addition, ScaleDL specifies
how workload changes over time and how autonomous elasticity managers behave.
ScaleDL is described in more detail in Chap. 4.

The ScaleDL model can either be a complete new design or a refinement of
an earlier architectural model. Moreover, a model can be partially extracted from
existing implementations via the so-called Extractor tool for reverse engineering.
Partially extracted ScaleDLmodels must be completed manually inside the “Specify
ScaleDL model” process step.

Modeled systems are analyzed in the “Use Analyzer” process step in Fig. 2.1.
This analysis may reveal a perfect system, or one or more weaknesses. When these
weaknesses have been corrected on the model level, the model can be analyzed
again. Moreover, analyses may reveal that some of the requirements are hard to
fulfill. Based on negotiations with the relevant stakeholders, alleviated requirements
may then be derived and analyzed. In this way, important trade-offs between cost

26 G. Brataas et al.

and quality can be resolved before the system is put in operation where users
potentially react furiously as a result of unsatisfying user experience.

Alternatively, if the analysis shall be based on implementation, software archi-
tects continue with the “Use Spotters” process step of Fig. 2.1, where anti-patterns
are detected and handled using the so-called Spotter tool. The Spotter tool has two
parts: the Static Spotter examines static code, while the Dynamic Spotter comprises
instrumentation and load generation of a running service. In both cases, software
architects reengineer the code for spotted anti-patterns by fixing their root causes.

The second decision node of Fig. 2.1 checks (based on analysis result of Spotter
or Analyzer) whether scalability, elasticity, and cost-efficiency requirements can be
sufficiently met. If met, the realization of the system can be completed and the
CloudScale method stops. For new systems, software architects realize the service
based on the architectural representation in the ScaleDL model. After realizing a
service, the Static Spotter may be used for static spotting of anti-patterns in the code.
For existing systems, software architects semi-automatically reengineer detected
issues based on either Spotter or Analyzer suggestions. A realized system will be
deployed. After deployment, youmay use Dynamic Spotter on the deployed service,
which may spot further anti-patterns.

The CloudScale Method has one feedback loop. If, during operations, new
requirement violations arise, a new iteration of the method needs to be executed,
again supported by dedicated detection tools. A result of the analysis may also be a
relaxation of some of the requirements and the subsequent identification of refined
critical use cases and key scenarios. If the system meets its requirements, software
architects can stop the CloudScale method, and only have to reenter the method in
case requirements or the system’s environment change.

In later chapters, we refine some of the core steps in the method. These
refinements will further introduce feedback loops.

2.2 Running Example

This section introduces a running example, which will—later in this book—be
reused, revisited, and extended. The running example is termed CloudStore—an
online bookshop to be deployed in a cloud computing environment. In that sense,
one can think of CloudStore as a simplified variant of Amazon.

CloudStore’s book-selling services have four core operations:

Home Page Provide the home page of CloudStore.
Search Look for a suitable book.
Shopping Cart Put a book in the shopping cart.
Pay Check-out the books in the shopping cart and get them shipped.

These core operations represent the basic functionality of CloudStore. Other
operations for registering customers, order inquiry, etc. are also required but will
not be considered now.

2 CloudScale Method Quick View 27

Web Server

Book Shop
Web Pages

Customer

Database Server

Book &
Customer
Data Provider

Fig. 2.2 Conceptual CloudStore architecture

CloudStore has two work parameters: number of customers and number of
books. With more customers and more books, each operation in CloudStore will
be heavier.

The overall structure of CloudStore is depicted in Fig. 2.2. A customer makes
use of the CloudStore service via a web browser and most of the functionality
is handled by a Web Server. This Web Server connects to a Database
Server storing information about customers and the book items of the shop. For
now, it is assumed that payment is handled internally by the Web Server.

2.3 Identify Service-Level Objectives, Critical Use Cases,
and Key Scenarios

A software architect plans to realize CloudStore as introduced in Sect. 2.2. This
section outlines how the software architect can start following the CloudScale
method by identifying CloudStore’s business-related requirements.

The software architect first establishes the SLOs and, afterward, the critical use
cases or operations from a scalability, elasticity, and cost-efficiency point of view.
The software architect also identifies the key scenarios where the load, as well as
work, on this critical operation becomes highest.

2.3.1 Service-Level Objectives

As a first step, the software architect has to estimate rough SLOs for the four
CloudStore operations introduced in Sect. 2.2. As described in Sect. 1.3, an SLO
consists of a quality metric and a quality threshold for this metric. The software
architect selects 90 percentile response times as a suitable metric. As a first
approximation, the software architect wants the Home Page and the Shopping
Cart operations to respond in 1 s for 90% of requests to these operations. The
Search operation has to complete in 2 s, and the Pay operation has to complete
in 5 s.

28 G. Brataas et al.

2.3.2 Critical Use Cases

Critical use cases correspond to the critical operations in CloudStore. The software
architect inspects the four CloudStore operations described in Sect. 2.2 and assesses
their risks:

Home Page Providing the home page will essentially be a read operation and
does not require any writes to the database. Moreover, this read operation can
easily be cached, and it is also not critical if the content is not completely up to
date.

Search Searching for a suitable book is also a read operation, but the stock level
must reflect the actual situation. Realizing this requirement should be trivial in a
well-indexed database.

Shopping Cart Putting a book in the shopping cart involves some writing to the
database.

Pay To pay for books in a secure way is clearly the most complex operation. This
is a transaction that involves several different payment systems. Moreover, the
Pay operation is mission critical. If the Pay operation goes wrong, involved
stakeholders potentially lose money. Customers also get very upset if there are
problems with payments, much more than with the other functionality of a
website. The Pay operation thus has to work.

When considering these four operations, the Pay operation is clearly the most
challenging. Even if the SLO for this operation, as described in Sect. 2.3.2, is
most flexible, the software architect still considers this operation to be the most
challenging. To reduce the complexity in later analyses, the software architect
focuses on this operation.

2.3.3 Key Scenarios

To establish key scenarios for scalability, the software architect first establishes
the length of the planning horizon. The software architect uses a 3-year planning
horizon for CloudStore’s services.

Subsequently, the software architect must find the most critical point in the
planning horizon. The software architect inspects when in the 3-year planning
horizon CloudStore’s requirements become toughest. As already established in
Sect. 1.3, work, load, and quality thresholds for CloudStore’s quality metrics are
the key ways of characterizing a service in terms of scalability, elasticity, and cost-
efficiency.

When it comes to load, the load of an operation often has seasonal variations.
These variations typically span several time scales. The software architect identifies
where in these seasonal variations CloudStore will have the highest load:

Yearly variation Most customers approach CloudStore just before Christmas.

2 CloudScale Method Quick View 29

Monthly variation Most customers approach CloudStore at salary, social secu-
rity, and pension days, which is often the 20th of every month.

Weekly variation Most books are bought on Mondays. Later in the week, the
sale gradually drops until it reaches a new peak on Mondays.

Daily variation Requests peak at noon, i.e., during lunch break.

In addition, the software architect identifies an exponential, yearly increase trend
in the 3-year planning horizon. Therefore, based on the seasonal variation as well as
the trend, the highest load on the Pay operation is expected to happen at noon on a
Monday just before Christmas in the third year. The software architect assumes that
this situation will also be a critical scenario for work and regarding CloudStore’s
SLOs.

Elasticity concerns the ability of CloudStore’s services to handle sudden in-
creases in workload while still fulfilling CloudStore’s SLOs. When establishing key
scenarios for elasticity, the software architect therefore considers sudden changes
in load and work. The software architect first looks at sudden changes in load. The
arrival of a new best-seller book typically leads to a peak in load.

When it comes to the two work parameters described in Sect. 2.2, the number
of customers is connected to the number of payment operations. The software
architect consequently inspects key scenarios regarding the number of books. The
number of books can suddenly grow when customers buy many new books at once.
Realistically, the software architect expects this to happen when CloudStore buys
books from a new publisher.

SLOs must also be handled at an acceptable operational cost. The software
architect therefore considers key scenarios for cost-efficiency. To be on the safe side,
the software architect could use the same large deployment configuration throughout
the day. However, CloudStore will not take advantage of scaling down during the
night or at other times when CloudStore has less than peak load. In our example,
the cost-efficiency requirements will be as follows: we take the cost required for
handling the maximum daily load and divide it by 2. On average, the cost shall only
be half as much as the cost required to satisfy the maximum daily load. With this
cost-efficiency requirement, the simple option of using the same configuration at all
times is no longer feasible.

2.4 Identify Scalability, Elasticity, and Cost-Efficiency
Requirements

The software architect next derives technical requirements from the business-related
requirements of Sect. 2.3. Of course, the software architect must ensure that the
functionality and non-functional requirements like security and maintainability are
fulfilled. However, motivated by the focus of this book, the software architect
focuses on scalability, elasticity, and cost-efficiency requirements.

30 G. Brataas et al.

As described in Sect. 1.3, load and work are key service properties from the point
of view of scalability, elasticity, and cost-efficiency. In this section, the software
architect therefore determines the expected load and work for CloudStore.

2.4.1 Scalability Requirements

In Sect. 2.3.3, the software architect has decided that the planning horizon is 3 years
long. For this planning horizon, the software architect estimates the largest load
and work and the toughest quality thresholds for CloudStore’s quality metrics. The
software architect’s estimates then allow to specify scalability requirements.

The software architect has already identified that

• the Pay operation is the most complex (cf. Sect. 2.3.2),
• the 90 percentile metric with a threshold of 5 s is used for the Pay operation

(cf. Sect. 2.3.1), and
• the highest load on the Pay operation is expected to happen at noon on a Monday

just before Christmas in the third year (cf. Sect. 2.3.3).

Based on experience and available data, the software architect next estimates the
maximum load at this particular time. Historical data and the software architect’s
best business-forecasting tools indicate that the load will be 1000 simultaneous
customers for the Pay operation.

CloudStore has two work parameters: number of books and number of cus-
tomers. The software architect expects the total number of customers to be
proportional to the load. Based on experience, this number is 1000 times the number
of simultaneous Pay operations, which gives 1;000;000 customers in total. When
it comes to the work parameter “number of books”, the software architect simply
expects a gradual growth. This means that CloudStore has the highest number
of books at the end of the planning horizon. Here, the software architect expects
1;000;000 books indexed in CloudStore’s database.

In summary, the software architect’s scalability requirement can be formulated as
the ability to handle 1000 simultaneous users on the Pay operation with 1;000;000

customers and 1;000;000 books. Here, handling refers to CloudStore’s SLO—
i.e., Pay fulfills the less-than-5 s 90 percentile response time SLO. The software
architect will later investigate this scalability requirement via modeling.

2.4.2 Elasticity Requirements

Elasticity concerns the ability of CloudStore’s services to handle sudden increases
in workload while still fulfilling CloudStore’s SLOs. The software architect first
investigates elasticity requirements for sudden changes in load.

2 CloudScale Method Quick View 31

The arrival of a new best-seller book typically leads to a peak in load
(cf. Sect. 2.3.3). During such a scenario, the software architect expects that
CloudStore must handle 100% more payment operations compared with what it
must normally handle. In Sect. 2.4.1, the software architect identified a maximum
of 1000 simultaneous customers on the Pay operation. Based on this maximum,
CloudStore clearly must handle a peak of 1000 simultaneous customers on the
Pay operation. However, the software architect also needs some estimation of how
fast this peak will build up. The software architect guesses that, during a period of
1min, the number of simultaneous Pay operations can grow from 500 to 1000. The
software architect therefore formulates the elasticity requirement that CloudStore
must be able to handle such load variations.

When it comes to the work parameter “number of customers”, this requirement
is connected to the number of payment operations by the factor 100. That is,
CloudStore must be able to go from 500;000 customers to 1;000;000 customers
within 1min.

The number of books can suddenly grow when CloudStore provisions many
new books at once. As outlined in Sect. 2.3.3, the software architect expects such
a situation when CloudStore starts to buy books from a new publisher. CloudStore
will then provision 100;000 new books at once. The software architect particularly
expects that this number of books will be added during 1 week. Compared with the
increase in terms of both load and customers, the increase in the number of books is
so slow that the software architect can simply ignore this increase when considering
elasticity requirements.

In summary, the software architect formulates the elasticity requirement that
CloudStore must be able to handle both an increase from 500 to 1000 simultaneous
Buy operations and an increase from 500;000 customers to 1;000;000 customers
within 1min.

2.4.3 Cost-Efficiency Requirements

Cost-efficiency covers the cost for handling CloudStore’s workload while fulfilling
its SLOs. In Sect. 2.3.3, the software architect formulated the cost-efficiency
requirement to pay only half the cost required for handling the maximum daily load
(assuming we used the same configuration throughout the day). This requirement
is detailed enough from a technical point of view, so the software architect adds no
new details here.

The software architect will next inspect the scalability, elasticity, and cost-
efficiency requirements, given the expected load, work, and SLOs.

32 G. Brataas et al.

2.5 Specify ScaleDL Model

The software architect next checks whether CloudStore can handle the scalability,
elasticity, and cost-efficiency requirements as formulated in Sect. 2.4. The software
architect may use benchmarking by testing an implemented CloudStore that uses
a wide selection of cloud computing resources. In the software architect’s case,
CloudStore is not fully developed. Therefore, the software architect decides to based
the analysis of SLOs on a ScaleDL model.

The ScaleDL model basically contains the following information:

Usage Evolution It describes the anticipated usage of CloudStore. It has already
been described at an overall level in Sect. 2.3.3, but in this step, the software
architect will go deeper into the expected evolution of work, load, and potentially
also SLOs.

Component Model It describes the relations between the software components
inside of CloudStore.

Resource Model It describes the hardware and software resources in the under-
lying cloud resources for the Web Server and the Database Server, as well as how
the components relate to these hardware resources. It must reflect the properties
of the specific cloud computing resources used for both the Web Server and
the Database Server.

This understanding of the ScaleDL model is extended in Chap. 4.
As described in Sect. 2.1, software architects can create a ScaleDL model based

on educated guessing, based on extracting relevant parts of the source code, or from
monitoring data. Because the software architect only has a partial implementation of
CloudStore, the software architect will base the model on a combination. Available
artifacts of CloudStore will be extracted into a model, which the software architect
will then complete based on educated guessing. The software architect must also
estimate resource demands; i.e., how components inside of CloudStore’s model use
cloud computing resources.

2.6 Use Analyzer

The software architect uses the CloudStore’s ScaleDL model created in Sect. 2.5 for
performing scalability, elasticity, and cost-efficiency analyses using CloudScale’s
Analyzer tool. In the following, each analysis is reported in a separate subsection.

2.6.1 Scalability Analysis

In a scalability analysis, the software architect experiments with several cloud
resource configurations for the Web Server and for the Database Server.

2 CloudScale Method Quick View 33

The software architect’s goal is to find a configuration that delivers a 90 percentile
response time of less than 5 s with 1000 simultaneous customers for the Pay
operation. At the same time, CloudStore’s database has to hold 1;000;000 customer
items and 1;000;000 book items (cf. Sect. 2.4.1).

Unfortunately, the software architect cannot find a suitable cloud resource
configuration—CloudScale’s Analyzer predicts SLO violations for inspected vari-
ants. Even if the software architect assumes that a more suitable cloud resource
will appear on the market in the next 3 years, Analyzer shows that SLOs cannot be
fulfilled.

Therefore, the software architect uses CloudScale’s Spotter tool to find the root
cause of the problem. Spotter points to the locking of the transactional database as
the root cause. The software architect therefore decides to use a NoSQL database
implementation instead.

After remodeling CloudStore’s ScaleDL model with the new database type,
the software architect runs the Analyzer again. The software architect finds that
CloudStore is able to fulfill its scalability requirements now. However, the total cost
for the envisioned cloud resource configuration is quite high, i.e., $ 100 per hour.
Even if the software architect expects prices to drop during the next 3 years, this
amount is more than what the software architect expected.

2.6.2 Elasticity Analysis

During the scalability analysis in the preceding step, the software architect used a
steady-state version of the load. Now, the software architect conducts an elasticity
analysis for transient phases. The software architect looks closer at the best-seller
book scenario in Sect. 2.4.2 to see if CloudStore is able to fulfill its SLOs.

Again, the software architect focuses on the toughest workload described in the
scalability analysis. As described in Sect. 2.6.1, the software architect has decided
to use a NoSQL database. Because this database offers autoscaling, the CloudStore
model also reflects this important aspect of the Database Server. Particularly, the
Web Server also offers autoscaling.

The software architect defines scaling-out when average CPU utilization exceeds
70% and scaling-in when average CPU utilization is below 50%. Using this
autoscaling rules, the software architect finds that CloudStore is able to fulfill its
SLOs throughout the day. This fulfillment holds for the elasticity requirement to
handle an increase, within 1min, from 500 to 1000 simultaneous requests to the Buy
operation and from 500;000 customer items to 1;000;000 customer items within
CloudStore’s database.

34 G. Brataas et al.

2.6.3 Cost-Efficiency Analysis

In Sect. 2.4.3, the software architect has defined the cost-efficiency requirement that
operational cost should be half the cost of the expensive cloud resource configu-
ration. The software architect runs a cost-efficiency analysis with the Analyzer to
check this requirement.

The software architect finds that this requirement is violated—no matter which
adjustments the software architect makes in the auto-scaling configuration. How-
ever, the software architect finds that CloudStore is able to achieve an overall
operational cost of 60% of the operational cost of the most expensive cloud resource
configuration (assuming we used this configuration the whole time). As a result, the
software architect adjusts the cost-efficiency requirement accordingly.

In this cost-efficiency analysis, the software architect has found that the require-
ments were too optimistic. Adjusting requirements before investing in development
efforts is wise since adjustments allow to resolve trade-offs with different stake-
holders before continuing the development effort. An alternative to an adjustment of
infeasible requirements is to stop the development project, which can, by all means,
be a viable option because of unexpected high development efforts and unrealistic
expectations.

2.7 Use Spotters

After the software architect has realized CloudStore, the software architect may
use the two parts of the Spotter tool to identify anti-patterns. The Static Spotter
examines static code, while the Dynamic Spotter comprises instrumentation and
load generation of a running service. In both cases, the code is reengineered if anti-
patterns or root causes are spotted. Spotter comes with a catalog of supported anti-
patterns, which is detailed in Sect. 2.10.

Within a test environment, the software architect has now set CloudStore in
operation but observes that response times are too high. In other words, CloudStore’s
SLOs are violated.

Using the Spotter, the software architect first finds potential weak spots in the
CloudStore code and fixes them. Afterward, the software architect experiments with
different loads derived from the key scenarios. The software architect finds out that
connection pooling is a bottleneck and a simple solution is to make the connection
pool larger. This solves all problems, and CloudStore’s customers are again happy.
The software architect is also happy, being the one responsible for the operation of
CloudStore.

2 CloudScale Method Quick View 35

2.8 Realize, Deploy, and Operate System

After having analyzed CloudStore’s ScaleDL architectural model and its implemen-
tation, the software architect realizes CloudStore as a service. At this point, the
software architect is more confident than without analyses that the service will
satisfy its requirements. The analysis also revealed information that assists this
realization, especially because automatic code generation can be employed.

After the software architect has set up the operating environment, the software
architect deploys the CloudStore. As an extra precaution, the software architect
may use the Dynamic Spotter to identify potential issues in the final production
environment.

After deployment, the software architect puts the system in operation with real
customers. Monitoring is active during the system operation and enables control of
system behavior. Monitoring includes collecting measurements for scalability, elas-
ticity, and cost-efficiency parameters. Measurements allow the software architect to
revise SLOs, which potentially triggers a rerun through the CloudScale method.

In this step, the software architect may also discover new anti-patterns. These
new anti-patterns can then be put into the anti-pattern catalog (cf. Sect. 2.10) used
by the Spotter for its automatic detections.

2.9 Cloud Computing HowTos

HowTos describe reusable best practices for software architects to design systems in
recurring situations. Such situations typically appear in specific application domains
and with respect to particular quality properties. In this section, we shed light on the
respective HowTos directly or indirectly related to the cloud computing domain,
especially with a focus on scalability and elasticity as cloud computing’s defining
characteristics. By following these HowTos, software architects can effectively and
efficiently create ScaleDL models and realize cloud-aware systems.

Table 2.1 lists the HowTos so far collected in CloudScale’s catalog of HowTos.2

This catalog covers the application domains of business information systems, cloud
computing, and big data (first column). For each of these domains, the table gives
the name of the HowTo (second column), its type (third column), and the fostered
quality properties (fourth column).

HowTos in cloud computing focus on elasticity that particularly improves cost-
efficiency and depends on scalability. Because of this dependency, scalability
HowTos from related domains, i.e., business information systems and big data, are
required as well.

2An up-to-date description of the catalog is available at CloudScale’s Wiki page [5].

36 G. Brataas et al.

Table 2.1 CloudScale’s catalog of HowTos

Application HowTo HowTo Quality

domain name type properties
Business
information
systems

3-Layer Architectural style Maintainability

Loadbalancing Architectural pattern Scalability

(Container)

Loadbalancing Architectural pattern Scalability

(Component instance)

Static content Architectural pattern Scalability

Sharding Architectural pattern Scalability
Cloud
computing

SPOSAD Architectural style Elasticity

Horizontal scaling Architectural pattern Elasticity

(Container)

Horizontal scaling Architectural pattern Elasticity

(Component instance)

Vertical scaling Architectural pattern Elasticity
Big data MapReduce Architectural style Scalability

Hadoop MapReduce Reference architecture Scalability

In the domain of business information systems, the identified HowTos lay
the foundations for cloud computing HowTos. The 3-layer HowTo represents a
common architectural style to structure a system into three different logical layers:
a presentation layer, an application layer, and a data access layer. Each of these
layers can only access the respective lower-level layer. Because of this restriction,
the system becomes loosely coupled and therefore more maintainable and easier to
scale. Other HowTos can be particularly applied on each layer in separation.

The load-balancing HowTo represents an architectural pattern that requires the
existence of a proxy (i.e., a load balancer) that distributes workload for improving
scalability. Depending on the variant of this HowTo, the load balancer distributes
workload either over a replica of a stateless container, e.g., a virtual machine, or
a stateless component instance. For example, the load-balancing pattern can be
applied on component instances of the application layer if these are implemented
without state.

The static content HowTo represents an architectural pattern that separates static
content, e.g., images and static HTML files, from dynamically created content. This
separation improves scalability because static content requires no state, and thus, it
can be easily load balanced and cached.

The sharding HowTo represents an architectural pattern similar to the load-
balancing HowTo: it also requires a load balancer to improve scalability. However,
instead of requiring load-balanced elements to be stateless, the sharding HowTo
separates workload based on the requested data. The data is divided into partitions
(so-called shards) such that each load-balanced element is responsible for only

2 CloudScale Method Quick View 37

a particular set of shards. Requests to the same data are then processed by the
responsible element.

In cloud computing, the SPOSAD [6] HowTo is an architectural style to promote
elastic and multi-tenant software applications. SPOSAD describes a variation of
the 3-layer HowTo that additionally requires stateless component instances on the
middle layer [6]. Because they are stateless, these component instances can be
safely replicated (scaled out) and load balanced. In SPOSAD, the load-balancing
HowTo can therefore be applied on component instances of the middle layer. For
multi-tenancy, SPOSAD introduces a metadata manager on the application layer
that provides different tenants with tenant-specific information. This information
includes tenant-specific user interface elements, business logic, and data frommulti-
tenant databases.

The horizontal scaling HowTo [7, 8] depends on SPOSAD’s architectural
constraints and extends the load-balancing HowTo such that the load balancer dy-
namically adapts the required number of component instances or container replicas
to the current workload.While the load-balancingHowTo improves scalability only,
the horizontal scaling HowTo improves elasticity as well.

The vertical scaling HowTo [7, 8] requires that computing resources of a
single computing node be dynamically (de-)provisioned. For example, a virtual
machine allows to dynamically provision higher CPU processing rates and more
main memory. This HowTo therefore improves scalability and elasticity without
requiring stateless component instances; however, it can only be applied if sufficient
computing resources are available.

In the big data domain, the MapReduce HowTo is a common architectural
style to foster scalability. MapReduce requires that data be processed independently
from each other within mapper and reducer functions. Mapper functions filter and
sort such data, and reducer functions summarize collected data. Based on data
independence, multiple mapper and reducer functions can run in parallel, thus
improving scalability.

Hadoop MapReduce represents a technical HowTo because it suggests using
Apache’s Hadoop, an open-source MapReduce framework. This HowTo can, how-
ever, also be seen as a reference architecture [9] that illustrates how to implement the
MapReduce HowTo. The reference architecture essentially describes a processing
pipeline for the control and data flow of the MapReduce HowTo.

2.10 Cloud Computing HowNotTos

Similar to HowTos that provide with best practices and suggested approaches to
common problems, we can also identify the most common pitfalls for the design and
development of cloud computing systems—so-called HowNotTos. Once deployed
in production, these bad practices can results in problems related to security,
performance, scalability, and others. In the CloudScale method, software architects

38 G. Brataas et al.

can detect these HowTos on the model level and within the realization of the system.
This detection can be both manual and automatic using CloudScale’s Spotter.

On the conceptual level, it is worth mentioning that our work differentiates from
the current state of the art in performance engineering in an important aspect:
we distinguish between performance anti-patterns and scalability anti-patterns.
Performance anti-patterns are classical issues which hinder a system to perform as
expected under a given constant workload. Scalability anti-patterns are those anti-
patterns which prevent the system from scaling when the system has to face higher
workloads because of an evolving usage profile (cf. Sect. 4.3). An example for a
HowNotTo is Excessive Dynamic Allocation, as described in Fig. 2.3.

Focusing here on scalability (and thus indirectly also on performance), we can
categorize the most usual symptoms and their most common root causes. In Fig. 2.1,
we show a taxonomical representation of the symptoms and causes that are available
at the CloudScale Wiki [11] documentation, and which we will outline in the
following (Fig. 2.4).

Application Hiccups refer to a temporary degradation of the system perfor-
mance, mostly related to the implementation within internal processes of the
system such as a garbage collector, online reindexing of a database, or any such
maintenance task that has a system-wide impact due to its complexity and/or the
need to work on a big portion of the system’s information.

The Ramp is the progressive degradation of a system’s performance associated
with implementation problems, most commonly related to unreleased resources
(locks, memory objects, temporary database objects, etc.) or related to unfinished
processes that prevent the system to regain access to certain resources.

The Blob is a design bad practice in which most of the complexity of the system’s
logic is enclosed in a single functional unit (e.g., a class), not only decreasing the
maintainability of the code, but also resulting in many cases of unnecessary traffic
(Excessive Messaging), of massive amounts of data (e.g., sending an entire object
instead of only the changes) and requests (due to lack of local reference), and often
preventable lock contentions due to poor granularity.

The Empty Semi-Truck refers to the usage of messages to send very small
pieces of information, which results in Excessive Messaging that would be pre-
ventable by clubbing similar or related requests into one single request, greatly
reducing messaging overhead, latency, and throughput. The most common cases
are related to single-row requests instead of a query to obtain a result set, or the
individual requests of different attributes of an object instead of the entire object.

In Excessive Dynamic Allocation, chunks of memory or other resources are
reserved very often, taking a considerable part of the system’s working time. It
occurs most commonly in object-oriented-language designs in which objects are
created and destroyed very often, overloading the system with the costly task of
allocating memory and instantiating new objects from scratch. Having a pool of
resources marked as obsolete (objects that are not needed any more, but kept in
memory to be reinstantiated when needed) can greatly alleviate this problem.

The One-Lane Bridge is a common design in which a passive resource (a
connection pool, database, lock, mutex, etc.) is needed by different process at the

2 CloudScale Method Quick View 39

HowNotTo Example: “Excessive Dynamic Allocation”

Name: Excessive Dynamic Allocation
Abstract: The Excessive Dynamic Allocation occurs in object-oriented software systems
when dynamic allocations are needed. Excessive Dynamic Allocation is where creation and
destruction of the objects of the same class are frequent and unnecessary.
Example: An example in cloud computing is when the same resource (an object composed
of several child objects) offered by cloud vendors in a certain service is regularly needed by
most cloud users. Rather than creating and destroying this set of objects dynamically on a
per-user basis, a set of objects can be pre-created and shared among the users who need the
service.
Context: In object-oriented software systems, where many dynamic allocations are used for
objects. Typically, those allocations occur in frequent behaviors like loop bodies or event
handlers for requests.
Problem: When a new object is created in object-oriented software systems, the memory
used to contain the object must be allocated from the heap (i.e., a sufficiently large chunk
of free heap memory needs to be found and reserved) and any code used to initialize all
the objects contained in this memory location must be executed. Memory leaks can be
avoided by doing memory clean-up and returning the reclaimed the memory to the heap,
when objects are no longer needed. Performance can be significantly improved by removing
the overheads, which are caused by frequent and unnecessary creation and destruction of
objects.
Detection: One way of detecting this HowNotTo is based on observing memory allocations
and identifying reoccurring patters with high amounts of allocations of objects of the same
class.
Solution: There are two possible ways to solve the problem of Excessive Dynamic
Allocation:

• The first is to recycle old objects rather than create new ones every time they are needed.
This means allocating and storing a large amount of objects (a pool of objects) in a
collection. When new objects are needed, they can be fetched from the pool, and when
old objects are no longer in use, they can be returned to the pool. This can be very
useful when new objects with relatively short lifespans are created all the time like the
objects in the example above. This means we spent a little more time in the initialization
of the system caused by allocating objects in the pool, but also reduce the overheads for
creating and destroying the same objects all the time. This can help to reduce the problem
of memory leaks and the overheads caused by garbage collection.

• The second way is to use sharing instead of creating new objects. An example of this is
the use of the Flyweight design pattern, which allows all clients to share a single object.

Spotter Implementation: Statically, occurrences of memory allocations (“new”) are
detected by identifying parts (a) in which larger memory blocks are allocated (e.g., Arrays)
and (b) which are executed often (e.g., in a loop). Dynamically, Excessive Dynamic
Allocation can be detected indirectly by leveraging the Application Hiccups detection where
the user has to manually analyze whether the hiccups were caused by garbage collection or
memory defragmentation.
See also: C. Smith [10]

Fig. 2.3 Excessive dynamic allocation HowNotTo example

40 G. Brataas et al.

Fig. 2.4 Main synthoms (inner nodes) and their most common root causes (leaves)

same time, becoming the bottleneck for the most important operations of the system
by limiting its concurrent processing. A concurrent contention can be alleviated by
adding additional passive resources, but the contention point is only moved higher
and not resolved. A completely different design approach is needed in order to
obtain a really scalable system, though solutions are often impractical, and thus,
a good-enough approach is followed.

The Stifle is basically an Empty Semi-Truck that updates data within the
database. For example, if calculating the current age of each employee, we retrieve
the birth date, calculate the age, and insert it in that row one at a time instead of
using a single SQL statement to update all the rows at the same time.

Expensive Database Calls is another design problem that affects the database,
this time related to The Blob. Complex data queries such as those needed for data
warehousing and analytics, or back-up systems, can bring a database’s performance
close to zero. This is particularly true for queries that hold locks for longer
times (e.g., if consistency of relationships must be preserved), basically preventing
operation on most of the database. Night batch processing and parallel warehouse
databases are common approaches to solve this problem.

These are, by no means, all the existing symptoms and root causes of cloud
computing. A thorough study of these bad practices and common pitfalls can be
found in [12].

2 CloudScale Method Quick View 41

2.11 The CloudScale Method in the Unified Process

After exemplifying the CloudScale method in the preceding sections, this section
describes how the CloudScale method fits into existing development processes. In
particular, this section focuses on relating the CloudScale method to the Unified
Process, as described next.

2.11.1 Unified Processes

Any kind of software development follows some more or less explicit process
steps that transform an initial idea to a working solution. Best practices have been
accumulated during the last decades, and currently, there are development processes
covering parts of or the whole lifecycle for software products. Some development
processes are thin and solve a partial problem, and some of them are more complete.
Complete development processes are often termed unified processes. The unified
process (UP) is a generic name for a family of process models that are iterative,
incremental, architecture centric, driven by use cases, and focus on addressing
risks early on. In general, UP defines four project phases: inception, elaboration,
construction, and transition. The most recognized unified processes are the rational
unified process (RUP) [13] and OpenUP. RUP was created by Rational Software
(now owned by IBM) and is supported by commercial tools. OpenUP is promoted
by the Eclipse Foundation and is supported by free tools.

Agile development processes have gained traction in recent years. Agility
development processes are evenmore important in cloud-aware development, where
the creation of new services is expected to be fast. The Agile Unified Process, as
simplification of RUP, has prepared for agile and lean development.

RUP consists of nine disciplines, from which six are related to technical software
development: business modeling, requirements, analysis and design, implementa-
tion, test, and deployment. Three RUP disciplines are related to executive support:
configuration and change management, project management, and environment. In
the further analysis, the focus will be on the inception and elaboration phase and the
first three disciplines: business modeling, requirements, and analysis and design.

The inception phase is focused on establishing the business case for the system
and delimits the project scope. In this phase, all external entities and system roles
(actors) must be recognized, and the nature of their interactions described. The
business case includes success criteria, risk assessment, and estimates of required
resources. The main output of the inception phase is a vision document that contains
a general vision of the core project requirements, key features, and main constraints.
Additional key outputs are initial use-case models and prototypes.

The elaboration phase focuses on analyzing the problem domain and establishes
a sound architectural foundation. To fulfill such an expectation, a wide-enough
and deep-enough view of the system is required. Architectural decisions have to

42 G. Brataas et al.

be made with an understanding of the whole system based on the scope, major
functionality, and non-functional requirements, such as performance requirements.
Themain outputs from the elaboration phase are executable architectural prototypes,
supplementary requirements capturing non-functional ones, finished use-case mod-
els, software architecture descriptions, and potential business models.

2.11.2 Relating the CloudScale Method

The essential objective of the CloudScale method is to guide software architects
by means of an engineering method to develop scalable, elastic, and cost-efficient
applications. The CloudScale method provides a framework to build new systems
and to analyze deployed systems in operation. Building a new system is focused on
system analysis based on a system model and can be done from scratch or by using
some existing components. Looking at the described phases of UP, we see that the
CloudScale method fits into some elements of the UP, where the CloudScale method
performs a deeper analysis of key elements of the system for cloud deployment.

The CloudScale method starts with requirements’ collection, with an additional
focus on the scalability, elasticity, and cost-efficiency requirements. In the UP, this
means that core requirements are extended, with clear concepts for scalability,
elasticity, and cost-efficiency requirements. Additionally, system constraints are
also clarified. Based on initial requirements and definition of actors, we define
the foundation for basic decisions in the CloudScale method: should we develop
a system from the scratch, reuse some components, or evolve an existing system
into the cloud environment by reusing the existing artifacts of the software system?

When we decide what will be our starting point, we proceed to the elaboration
phase in the UP. This phase is correlated with the specification of a ScaleDL
model that can be based on the existing software or a completely new model.
When applicable, CloudScale’s HowTos (cf. Sect. 2.9) provide good assistance
for model creation. By constructing the model, we prepare an architecture that
can be further analyzed by using Static Spotter and it is the first architectural
prototype that can be tested according to scalability, elasticity, and cost-efficiency
requirements. An additional possibility is to use some additional external tools and
test dynamic behavior of the provided system model. The key supporting elements
in the CloudScale method are tools and the provided HowTos (cf. Sect. 2.9) and
HowNotTos (cf. Sect. 2.9) that guide system architects in selection of optimal
architecture decision and behavior according to requirements. Selecting a good
architectural prototype with the CloudScale method creates a very good foundation
for the construction phase of the UP.

Analysis of a running system is done in the transition phase in the UP by testing
and analyzing system behavior and by collecting critical information about system
behavior, with points for potential improvements. The Dynamic Spotter from the
CloudScale method supports software architects in this task.

2 CloudScale Method Quick View 43

2.12 Conclusion

This chapter gives a first overview of the CloudScale method by guiding a software
architect through the development of CloudStore. Best practices (HowTos) and
common pitfalls (HowNotTos) are also described to assist in the work of the
software architect. The overview of the CloudScale method has particularly allowed
to relate it with existing development processes such as the Unified Process.

Throughout this chapter, the main benefits of the CloudScale method are
exemplified. CloudStore’s software architect has been able to analyze scalability,
elasticity, and cost-efficiency on the model level, i.e., even before implementing
CloudStore. This analysis enabled the architect to resolve any issues early on, which
reduced risks of violating SLOs during CloudStore’s operation in a production
environment. The Spotter tool, HowTos, and HowNotTos additionally helped the
software architect in engineering a bullet-proof online shop.

While this chapter only gives a quick high-level overview of the CloudScale
method, subsequent chapters provide further details. Particularly, Part III provides
detailed step-by-step instructions that explain how software architects can follow
the CloudScale method.

References

1. Q-ImPrESS: Project Deliverable D6.1: Method and Abstract Workflow.
www.q-impress.eu/wordpress/wp-content/uploads/2011/03/D6.1-method_and_abstract_
workflow-v2.0.pdf. Visited: 2 November 2015

2. Becker, S., Busch, A., Brosig, F., Burger, E., Durdik, Z., Heger, C., Happe, J., Happe,
L., Heinrich, R., Henss, J., Huber, N., Hummel, O., Klatt, B., Koziolek, A., Koziolek, H.,
Kramer, M., Krogmann, K., Küster, M., Langhammer, M., Lehrig, S., Merkle, P., Meyerer, F.,
Noorshams, Q., Reussner, R.H., Rostami, K., Spinner, S., Stier, C., Strittmatter, M., Wert, A.:
In: Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H., Kramer,
M., Krogmann, K. (eds.) Modeling and Simulating Software Architectures – The Palladio
Approach, 408 pp. MIT Press, Cambridge, MA (2016) [Online]. Available: http://mitpress.
mit.edu/books/modeling-and-simulating-software-architectures

3. Brataas, G., Stav, E., Lehrig, S., Becker, S., Kopcak, G., Huljenić, D.: CloudScale: scalability
management for cloud systems. In: Seetharami S. (ed.) Proceedings of International Confer-
ence on Performance Engineering (ICPE), pp. 335–338. ACM, New York (2013). http://dx.doi.
org/10.1145/2479871.2479920

4. OMG: UML Profile for MARTE. http://www.omg.org/spec/MARTE/. Version 1.1, Inspected
11 November 2016, June 2011

5. CloudScale Wiki: HowTos: (2016) [Visited on 12/19/2016]
6. Koziolek, H.: The SPOSAD architectural style for multi-tenant software applications. In:

Proceedings of the 2011 Ninth Working IEEE/IFIP Conference on Software Architecture
(WICSA), pp. 320–327. IEEE Computer Society, Washington (2011). http://dx.doi.org/10.
1109/WICSA.2011.50

7. Erl, T., Puttini, R., Mahmood, Z.: Cloud Computing: Concepts, Technology and Architecture,
1st edn. Prentice Hall Press, Upper Saddle River (2013)

8. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud Applications. Springer Vienna, Vienna
(2014). http://dx.doi.org/10.1007/978-3-7091-1568-8_1

http://www.q-impress.eu/wordpress/wp-content/uploads/2011/03/D6.1-method_and_abstract_workflow-v2.0.pdf
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://dx.doi.org/10.1145/2479871.2479920
http://dx.doi.org/10.1145/2479871.2479920
http://www.omg.org/spec/MARTE/
http://wiki.cloudscale-project.eu/HowTos
http://dx.doi.org/10.1109/WICSA.2011.50
http://dx.doi.org/10.1109/WICSA.2011.50
http://dx.doi.org/10.1007/978-3-7091-1568-8_1

44 G. Brataas et al.

9. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Longman Publishing Co., Boston, MA (1998)

10. Smith, C.U., Williams, L.G.: Software performance antipatterns. In: Proceedings of the 2nd
International Workshop on Software and Performance (WOSP), pp. 127–136. ACM, New York
(2000). http://dx.doi.org/10.1145/350391.350420

11. CloudScale Wiki: HowNotTos: wiki.cloudscale-project.eu/HowNotTos:_Anti-Patterns (2016)
[Visited on 12/19/2016]

12. Wert, A.: Performance problem diagnostics by systematic experimentation. Dissertation,
Fakultät für Informatik (INFORMATIK). Karlsruhe Institute of Technology, Karlsruhe (2015)

13. Kruchten, P.: The Rational Unified Process: An Introduction (The Addison-Wesley Object
Technology Series). Addison-Wesley, Boston (2003)

http://dx.doi.org/10.1145/350391.350420
http://wiki.cloudscale-project.eu/HowNotTos:_Anti-Patterns

Part II
Modeling Cloud Computing Applications

After having introduced the topic of this book in Part I, we address modeling cloud
computing systems in this part. The use of various kinds of models is standard
in software development. Software developers use models to analyze the problem
domain and to specify how the system under development should be structured.

Since the late 1990s, software architects have used models to describe the
architecture of their systems in terms of components (or services), connectors,
associated hardware and software environments, etc. Since the early 2000s, software
architects have also used models of their software architecture to analyze and
predict the quality attributes of their systems, e.g., performance, reliability, and
maintainability.

In the last years, the shift toward web-scale systems has raised the demand for
analyses that focus on quality properties important in the cloud computing era:
scalability, elasticity, and cost-efficiency.Modeling languages are needed to capture
the essential behavior of cloud computing applications, their scaling behavior, and
their resource consumptions. These languages enable software architects to model
and analyze their systems. In this part, we introduce the modeling language used by
the CloudScale method.

In Chap. 3 we introduce cloud computing applications in detail and discuss the
aspects that need to be captured in models of such applications. In the CloudScale
method, these aspects are captured in instances of the ScaleDL modeling language.
This language is introduced in Chap. 4.

Chapter 3
Cloud Computing Applications

Mariano Cecowski, Steffen Becker, and Sebastian Lehrig

Abstract Cloud computing focuses on elasticity, i.e., providing constant quality of
service independent of workload. For achieving elasticity, cloud computing appli-
cations utilize virtualized infrastructures, distributed platforms, and other software-
as-a-service offerings. The surge of cloud computing applications responds to the
ability of cloud computing environments to only pay for utilized resources while
saving upfront costs (e.g., buying and setting up infrastructure) and allowing for
dynamic allocation of resources even in public-private hybrid scenarios.
This chapter investigates the shift from classical three-tier web applications to
such elastic cloud computing applications. After characterizing web applications,
we describe cloud computing characteristics and derive how web applications can
exploit these characteristics. Our results motivate novel requirements that have to be
engineered and modeled, as further described in this chapter.

The remainder of this chapter is structured as follows. Section 3.1 gives a high-
level overview of views and aspects important for cloud computing applications.
Afterward, Sect. 3.2 details characteristics of web applications, and Sect. 3.3, those
of cloud computing. Section 3.4 outlines how web applications can be moved to
cloud computing applications by exploiting cloud computing characteristics. Based
on these insights, we derive novel requirements for cloud computing applications
in Sect. 3.5 and show how to appropriately model cloud computing applications to
analyze such requirements in Sect. 3.6. Section 3.7 refines our running example—
CloudStore—to a cloud computing application. Subsequently, Sect. 3.8 highlights
some hints for modeling such applications.

M. Cecowski (�)
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia
e-mail: mariano.cecowski@xlab.si

S. Becker
University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
e-mail: steffen.becker@informatik.uni-stuttgart.de

S. Lehrig
IBM Research, Technology Campus, Damastown Industrial Estate, Dublin 15, Ireland
e-mail: sebastian.lehrig@ibm.com

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7_3

47

mailto:mariano.cecowski@xlab.si
mailto:steffen.becker@informatik.uni-stuttgart.de
mailto:sebastian.lehrig@ibm.com

48 M. Cecowski et al.

3.1 Introduction

This introduction outlines views and aspects of cloud applications to give engineers
a broad high-level understanding of such applications. These views and aspects are
detailed in subsequent sections.

From a historical view, advancements in hardware virtualization have enabled a
novel infrastructure management that, together with the adoption of standards for
the definition of HTTP interfaces or application programming interfaces (APIs),
has shifted the focus of distributed computing from grid computing toward cloud
computing environments. Cloud computing is not limited to applications from the
scientific or high performance computing (HPC) world since even applications
that have been historically considered desktop applications—from e-mail to office
suits—appear as online services for the general public. Cloud computing is par-
ticularly attractive for building new applications while outsourcing the necessary
infrastructure and expertise needed for its management.

In general, cloud computing [1] refers to the ability of an on-demand self-
service of capabilities, infrastructure resource pooling, and an elastic (auto-scalable)
resource allocation for infrastructure, platform services, and software services.
Cloud applications, i.e., software applications operating in a cloud computing
environment, share some general properties: they provide a service available
simultaneously to multiple consumers (either users or composed services), they can
be replicated in order to increase their capacity, they can be migrated from one
infrastructure to another, and they are reachable through an API.

As with other distributed applications, cloud applications require a great degree
of decoupling between its different logical components and as little contention as
possible. These requirements allow for increasing the applications’ capacity by
allocating more instances of each needed component. The most important charac-
teristics we need to keep in mind when analyzing a cloud application therefore are
capacity, scalability, elasticity, and cost-efficiency, as defined in Sect. 1.3.

Nevertheless, in order to analyze these characteristics, we first need to clearly de-
fine the system’s qualities with service-level objectives (SLOs) (cf. Definition 1.2).
SLOs often focus on the user experience for the application, e.g., by monitoring the
response time needed to perform a certain task or the success rate of such tasks.
It is only then that we can obtain, for a given setup, the capacity or any other
such indicator by measuring the point after which the system cannot guarantee the
fulfillment of the SLO.

Other aspects that describe a cloud application are related to its internal structure
and technical architecture. The first web applications have only made use of static
HTML to present the information of the distributed application. Scripts made it
possible to generate web pages on demand based on a session context, and are
still used in some applications. Dynamic pages, remote objects, servlets, and other
techniques have been and are still used for implementing cloud applications [2].

3 Cloud Computing Applications 49

Moreover, in the last years, the model-view-controller (MVC) paradigm has become
very popular. Following the MVC paradigm and since the arrival of HTML5, more
and more of the presentation logic has been moved to the browser, e.g., via single-
page web applications (a.k.a. service-oriented front-end applications) [3].

Finally, an important aspect of cloud applications centers around the security
and privacy concerns related to having publicly reachable APIs, computing and
storage in public clouds, and a relative lack of control over both the execution of
the processes and the physical access to the data.

The subsequent sections detail the shift from classical web applications to cloud
computing applications.

3.2 Web Applications

Technically speaking, web applications are programs that have their front-end in a
user’s browser, which in turn communicates with its back-end services. The code
that runs at the user’s computer is the presentation or view part of the layered or
MVC architecture, while the code running in the service represents the other layers
containing the control, model, and data parts of the system (see Fig. 3.1 for a typical
example).

Examples of such applications are web-mail implementations (from Gmail1 or
Yahoo mail2 to open-source solutions such as SquirrelMail3 or Roundcube4), con-
tent management systems (OpenCms,5 Umbraco,6 WordPress7), and e-commerce

Fig. 3.1 Typical model-view-controller with user interaction and database

1https://gmail.com.
2https://mail.yahoo.com.
3https://squirrelmail.org/.
4https://roundcube.net/.
5http://www.opencms.org.
6https://umbraco.com/.
7https://wordpress.com//.

https://gmail.com
https://mail.yahoo.com
https://squirrelmail.org/
https://roundcube.net/
http://www.opencms.org
https://umbraco.com/
https://wordpress.com//

50 M. Cecowski et al.

systems (OpenCart,8 osCommerce,9 simpleCart10), which provide a typical layout
with more or less dynamic behavior.

Frameworks for creating desktop-like web applications are very popular (from
Angular,11 jQuery12 to Flash13 or Silverlight14), allowing for applications to achieve
high standards in terms of usability and responsiveness, while more complex web
applications that mimic complex desktop counterparts also exist (Pixlr15 image
editor, Plex16 for media streaming, Google Hangouts17 for video conferencing).

At the time of writing this book, web applications often make use of JavaScript
and dynamic content to provide a close-to-desktop experience, while relaying
most of the logic to the remote service. These remote services can maintain a
session identifier that is passed with each call in order to follow the state of the
user’s interaction, retrieve information from storage—e.g., a database, a key-value
store, or static files—or connect to further services to obtain other information
and functionality, such as a weather gateway or an external payment system. It is
becomingmore common to make use of the approach of composite services to break
down a web application’s back-end into smaller pieces, so-called micro-services.
Microservices communicate through an API—e.g., a RESTFull API—and use the
much more decoupled pieces to provide a per-service scalability and elasticity.

Decoupling the service’s components has several further advantages besides
scalability. For example, each component can be developed in the most appropriate
technology for that task, be deployed on the hardware configuration that provides
the best cost-efficiency, or make use of an external service (see example in Fig. 3.2).
In recent years, a small fragmentation of components has been supported in the form
of Docker containers—virtual environments within the same operating system—to
run different component instances within the same instance of the operating system
and programming libraries, reducing the overhead of virtualization.

Web applications are thus designed to serve several users with the same running
service, and are expected to manage an increasing number of customers by
replicating instances of those component types that are being flooded by work.
Nevertheless, scalability not always comes naturally, and adding more resources
to certain components can only marginally improve the number of serviceable
customers, or even undermine it.

8https://www.opencart.com/.
9https://www.oscommerce.com/.
10http://simplecartjs.com/.
11https://angularjs.org/.
12https://jquery.com/.
13http://www.adobe.com/software/flash/about/.
14https://www.microsoft.com/silverlight/.
15https://pixlr.com/.
16https://www.plex.tv/.
17https://hangouts.google.com/.

https://www.opencart.com/
https://www.oscommerce.com/
http://simplecartjs.com/
https://angularjs.org/
https://jquery.com/
http://www.adobe.com/software/flash/about/
https://www.microsoft.com/silverlight/
https://pixlr.com/
https://www.plex.tv/
https://hangouts.google.com/

3 Cloud Computing Applications 51

Fig. 3.2 Simplified example of composed back-end services of loosely coupled components,
including external services

A common example of such scalability issues is that of relational databases. Once
clustered, relational databases can provide good scalability for reading operations
but suffer from the nature of transactional queries that require all versions of the
data to be synchronized. In such clusters, a transaction has to be propagated to all
nodes before any further operation can be done on that data. Modern approaches
follow an eventually-consistent approach that relaxes the transactional paradigm,
but which in turn brings its own issues and trade-offs. This paradigm renounces
the idea of having a consistent state throughout all instances of a replicated dataset
and focuses on eventually having all the instances updated. This relaxation of the
consistency can be useful in systems where it is not imperative to use the latest up-
to-date value in computations or displaying it to the user. For example, a limited
delay in showing the actual number of “Likes” in an entry within a social media
element is mostly irrelevant.

Cloud computing characteristics are inspected next and, subsequently, compared
to these technical considerations of web applications for investigating the shift from
web to cloud computing applications.

3.3 Cloud Computing Characteristics

For engineering cloud computing applications, software architects need to consider
the essential characteristics of the cloud computing domain. Therefore, this section
gives a quick summary of these characteristics.

This summary is based on the well-accepted and standardized NIST definition of
cloud computing [1], which finds the following characteristics to be essential:

On-demand self-service: A cloud consumer can request additional resources on
demand, without requiring human interaction on the cloud provider side.

52 M. Cecowski et al.

Broad network access: Cloud providers provide access to cloud services
through standardized network interfaces, thus supporting both thin and thick
clients on the cloud consumer side.

Resource pooling: Cloud providers can group resources, e.g., storage, process-
ing, and memory resources, into pools from which multiple cloud consumers
(tenants) can be served. In such a multi-tenant setup, each tenant is unaware of
the activities of other tenants and actual physical resources, so the number of
available resources appears to be unlimited.

Rapid elasticity: Services of cloud providers can autonomously scale in and
scale out, depending on cloud consumer demand, through an elasticity manage-
ment.

Measured service: Cloud providers measure the usage of resources by cloud
consumers. Cloud consumers typically only pay for the resources they have used
or reserved (pay per use).

There is a strong relation between these characteristics and the internal quality
properties of services as described in Sect. 1.4. The rapid elasticity characteristic,
for example, demands for the cloud computing service to be both scalable and
elastic. To achieve these properties, such a service needs to make use of an on-
demand self-service that accesses resource pools of cloud providers, in order to
cope with varying workloads. Such an approach becomes cost-efficient because of
the measured service and the involved pay-per-use paradigm: cloud consumers only
have to pay for the resources needed to cope with varying workloads.

3.4 From Web to Cloud Computing Applications

We have described web applications as web pages that attempt to provide a user
experience similar to that of desktop applications. However, web application logic
and data reside on a remote—and often cloud-deployed—set of services.

Cloud computing applications are any kind of service that is deployed to run on
a cloud computing platform. In that sense, cloud computing applications include
web applications but they include other services and applications for which a web
interface is secondary, or at least just another means of interaction with it.

The following applications are examples of web applications based on cloud
computing platforms, i.e., they are not classical web applications. A back-up service
that stores incremental information on remote servers by means of a small daemon
application running on a user’s machine provides a web interface to navigate and
download those files through a browser. However, the core service is not web
oriented, and in any case, the web interface uses an API that is available to
different front-ends, including even a mobile application. File storage services like
DropBox, GoogleDrive, or Microsoft OneDrive are typical examples of such cloud
applications.

3 Cloud Computing Applications 53

There are, nevertheless, less clear examples that can blur the line separating the
two. Most social networks can be seen as web applications or more general cloud
applications, especially those which make their APIs available to third parties. But
as soon as a web application allows its back-end services to be used by means other
than a web browser, we generally consider it more as a cloud application rather than
a web application.

3.5 Requirements of Cloud Computing Applications

As discussed in the previous sections, web applications based on cloud computing
platforms present some characteristics that differentiate them from classical web
applications. Therefore, cloud computing applications need new approaches for
requirements elicitation.

Despite the classical requirements for web applications—for which we assume
that it is known how to gather them—new approaches are needed to elicit the
requirements of cloud computing applications. This includes new aspects to be
discussed with the system’s stakeholders, and new approaches and languages to
persist the collected set of requirements.

Revisiting the NIST definition of cloud computing (see Sect. 3.3), we can identify
that requirements elicitation needs to address the following system aspects:

On-demand self-service: Requirements need to be captured for conditions under
which the system should use the on-demand self-service APIs and provision
or deprovision necessary resources. This also includes the degree of autonomy
the system should have; i.e., whether there are any boundaries where human
interaction is needed. For example, the system may not be allowed to provision
more than 100 servers, with an administrator authorizing this.

Broad network access: The requirements for the amount and speed of data sent
to and from the cloud computing application need to be identified and elicited in
order to verify against the network access service level agreement (SLA) of the
cloud offering.

Resource pooling: Cloud computing uses shared resources to fulfill customer’s
demands; i.e., the same physical resources are used by multiple tenants. Besides
requirements toward security (protection of the data of different shared resources
against each other’s access), this also imposes requirements toward performance
isolation. A tenant using a lot of compute power at any given point in time should
not impact other customers in their compute tasks. A level of acceptable per-
formance interaction should be identified and compared to the cloud provider’s
performance isolation SLAs.

Rapid elasticity: For the CloudScale method, rapid elasticity is the most impor-
tant characteristic of cloud computing applications. This importance is caused
by the primary focus of elasticity: reducing total cost of ownership (TOC). Re-
quirements toward rapid elasticity need to identify, e.g., the amount of acceptable
SLA violations due to elasticity management reacting too slowly. A main metric

54 M. Cecowski et al.

impacting the speed of the elastic behavior of the cloud computing application
is the time to provision resources in lower application layers. Requirements
toward these reaction times should be derived from requirements for the overall
application elasticity.

Measured service: Cloud computing applications need to be measured for var-
ious reasons. On the one hand, measurements need to be taken to charge
customers of the application for their service usage. On the other hand, measure-
ments are also needed within the application itself to inform the rapid elasticity
management when it is time to provision or deprovision resources. There exists
a trade-off between monitoring frequency (directly influencing reacting time)
and monitoring overhead. Therefore, requirements need to be elicited on this
reaction time and acceptable monitoring overheads; i.e., what percentage of the
used resources may be utilized by the monitoring subsystem.

The best way to express most of the cloud computing application requirements—
as for most other quality-of-service requirements—is to characterize them quantita-
tively, i.e., with concrete figures specifying thresholds for the application’s behavior.

However, as with performance requirements, standardized languages usable in
practice to persist the elicited requirements are not established. In today’s practice,
as a consequence, software architects need to invent their own way of persisting the
aspects described in the list above.

The CloudScale method mitigates the issue of lacking requirement specification
languages to some extent. In particular, it allows to capture the usage evolution in
a quantified mode to characterize the system’s work and load context over time.
In addition, it provides a model to model the system’s SLOs in a quantitative mean.
Both models are requiredwhen using the Analyzer, but they provide additional value
even if the Analyzer is not used.

3.6 Modeling Cloud Computing Applications

When designing cloud computing applications, the question arises on how software
architects can model these applications to document and analyze their designs.
When looking at the de-facto software modeling standard UML2, several lacking
features become visible. In the following, we will discuss which types of modeling
views are needed to describe cloud computing applications, including the ones that
already exist and those that need to be considered anew.

3.6.1 Common View Types for Applications

In the beginning, for each application, there should be a model showing its use-cases
to motivate its development and give an overview. In UML2, this is done in use-case
diagrams. Use- cases show the main actors and their most important interactions

3 Cloud Computing Applications 55

Fig. 3.3 Diagram of the internal and external components of CloudStore

with the modeled system. Use cases should be accompanied by scenarios. In turn,
scenarios model concrete interactions of the system’s actors with the modeled
system, including the frequency of these interactions, the data sent to and received
from the system, etc.

Internally, cloud computing applications—as regular applications—have static
and dynamic aspects to be modeled. Statically, they are composed on a coarse-
grained level of components that implement the primary functional blocks, and
which collaborate via communication channels over so-called connectors. This
aspect is typically modeled using languages similar to UML2 component diagrams
or box-and-line diagrams (see Fig. 3.3 for an example), which often have only
loosely defined semantics.

Components offer operations that internally perform a certain dynamic behavior.
This behavior is commonly modeled using UML2 activity diagrams or state charts,
where the latter is however uncommon for web and cloud applications. Activities
depict the behavior of operations as a sequence of actions which are connected by
control and/or data-flow arcs.

When the implementing components are modeled, they are allocated on
resources of lower application layers, like an (elastic) Infrastructure as a Service
(IaaS) layer. In UML2, deployment diagrams show both the allocation of
components to layers and the stacking of different vertical layers on top of each
other.

3.6.2 Cloud-Specific View Types for Applications

All of the view types discussed so far are used for non-cloud computing applica-
tions, too. The following view types are special to cloud computing applications.

As cloud computing applications are targeted toward highly dynamic environ-
ments with strong variations in the workload, it is important to model workload

56 M. Cecowski et al.

changes over time, particularly if the model is used to analyze and predict the
behavior of the system. There are no standard modeling languages available today
to represent this aspect of the system. However, the LIMBO language [4] is a
research proposal that can be used to model such changes. LIMBO basically
models a function of the varying aspect of the system, e.g., the system’s load, over
time. LIMBO can model different types of variational patterns, including trends or
repetitive change over time, e.g., different load situations over the hours of a day.

Finally, cloud computing applications are elastic applications; i.e., they change
the amount of used resources and the allocation of components on these resources
at particular points in time when certain environmental conditions are met. For
example, a cloud application provisions additional resources if it notices that the
load has increased and, consequently, system response times go down. Such actions
are often called self-adaptations.Again, there is no standard modeling language to
model self-adaptations today. In research literature, there are proposed languages
that are based on graphical model transformation languages, in particular Story-
Diagrams [5], that have been adapted to particular domains like component-based
software development. In these languages, software architects model the changes
a self-adaptation performs on the components, their connectors, or allocations as a
model transformation.

To summarize, we can model cloud computing applications using the traditional
use-case, static, dynamic, and allocation views. In addition, novel views are needed
to describe the changing environment and the cloud computing application’s self-
adaptations. This can be done via LIMBO and graphical model transformation
languages. We describe our modeling approach, which is based on these views,
in Chap. 4.

3.7 CloudStore Running Example

CloudStore is a simple open-source e-commerce web application that represents an
online bookshop. We introduced CloudStore on a high level in Sect. 2.2, and in this
section we refine it slightly with concepts that we have introduced in this chapter.

CloudStore is based on the functional and non-functional requirements defined
by the TPC-W standard [6] for the implementation and provision of an online
bookshop. Figure 3.3 gives an overview of CloudStore’s components.

Customers access CloudStore via a web browser that has direct IP communi-
cation to components that provide the user experience. Most of the functionality
is handled by a web server that receives HTTP requests from the customer’s
browsers, and for information retrieval purposes connects to a database server
storing information about the customers and the items of the shop (books) and
transactions (purchases). The HTTP responses from the back-end to the customer’s
browser contain references to static elements that are contained in an image server
(to efficiently display pictures of books and other graphics). In the case of payment
transactions, the HTTP response contains references to a payment gateway, which

3 Cloud Computing Applications 57

Table 3.1 The 14 CloudStore operations and their default probabilities and quality thresholds

Operation Probability (%) Quality threshold (s)

Home 29:00 3

New products 11:00 5

Best sellers 11:00 5

Product detail 21:00 3

Search request 12:00 3

Search results 11:00 10

Shopping cart 2:00 3

Customer registration 0:82 3

Buy request 0:75 3

Buy confirm 0:69 5

Order inquiry 0:30 3

Order display 0:25 3

Admin request 0:10 3

Admin confirm 0:09 20

is expected to perform the money exchange independently of the system, but which
is currently mocked-up within CloudStore for testing purposes.

CloudStore, following TPC-W’s definitions, specifies that the system should ob-
tain credit card authorization from a payment gateway emulator, and, if successful,
present the customer with an order confirmation. The standard also defines other
aspects such as data element’s size and expected response times and error rates, as
well as expected customer behavior and workload (i.e., the probability of each of the
API’s calls and session durations). These non-functional requirements were used to
specify a set of SLOs that should be respected by the deployed service.

Table 3.1 shows all the 14 operations and their probability values defined for the
“Browsing Mix”, as well as 90 percentile response time quality thresholds defined
for its SLO.

Within the CloudScale project, CloudStore served as a showcase application for
the usage of the projects’ tools and methodology. As such, a first implementation
of CloudStore was subject to a scalability analysis, code extraction, static and run-
time spotting of scalability bottlenecks, and different metrics (capacity, scalability,
elasticity, cost-efficiency) while following the CloudScale method.

This process has resulted in three different CloudStore versions, each with a
different implementation and deployments that had as a final goal the reduction in
the total cost of ownership for a projected usage load. The first version is a rewrite
of the old TPC-W implementation using the more modern Spring framework, but
in a monolithic way. The second version separates different components based on
the MVC paradigm. The third and final version makes use of elastic deployments
for each component (elastic computing and elastic storage and database services),
as well as an external payment gateway.

58 M. Cecowski et al.

3.8 Modeling Hints

Even for experienced software architects, modeling can be a complex task. Fortu-
nately, the samemodeling tasks and challenges often recur. Such recurring situations
allow for providing modeling hints that suggest software architects what to do and
what to avoid, given certain situations. This sections gives a list of such hints based
on the lessons learned during the CloudScale project.

Identify the critical use cases and key scenarios! Modeling is a lot about ab-
straction. Without abstraction, a model would be a one-to-one representation of
the realized system. However, such a representation is bad because it involves
high modeling effort, negatively impacts analyzability (the larger the model, the
longer the analysis takes), and obfuscates the main quality-of-service issues of an
application. Maybe the most important task for software architects is therefore to
get the abstraction level right. But how should a software architect know whether
the abstraction level is indeed the most convenient?
Acknowledging the importance of abstraction, the CloudScale method pro-
vides a dedicated process step as answer to this question: software architects
need to identify the critical use cases and key scenarios for their application
(cf. Sect. 2.3). Models must allow to assess these cases and scenarios—yet
nothing more! If this constraint holds, the abstraction level is the right one, and
the effort for creating models is kept minimal.
For example, to create a model of CloudStore, CloudScale has spent high efforts
to cover every one of CloudStore’s 14 operations. However, analysis results
indicate that only three of these operations (Home, Shopping Cart, and Buy
Request) are crucial when it comes to scalability, elasticity, and cost-efficiency
issues. That is, to get the same insights, CloudScale could have spent nearly 80%
less time by focusing only on the three critical cases (assuming each operation
involves the same modeling effort). While CloudScale can justify the incurred
effort for CloudStore—it serves as a running example and for learning—a real-
life use case can typically not afford such “unnecessary” efforts.

Iterate! Software architects should iteratively create models. This hint is related
to the previous suggestion about abstraction levels: often, it helps to find the
right abstraction level by starting as coarse grained as possible. For example,
we may start modeling CloudStore with only a single component. Only when
realizing that, e.g., web and database components should be distinguished, the
initial component should be split into two.

Reuse! Modeling tasks are often repetitive. For example, load balancers and
caches appear over several applications and different contexts. If possible,
software architects should reuse such recurring situations, e.g., by copying or
by using dedicated reuse mechanism.
CloudScale has collected HowTos for these recurring situations (cf. Sect. 2.9).
CloudScale’s tooling particularly provides dedicated reuse mechanisms for
applying these HowTos (cf. Sect. 4.4). Evaluations based on CloudStore have

3 Cloud Computing Applications 59

shown that over 80% of time spent on modeling can be saved when using these
mechanisms.

Learn modeling frameworks! In model-driven development, a certain amount
of technical expertise is required. There is a huge community of modeling ad-
vocates that use frameworks which integrate into the Eclipse platform integrated
development environment (IDE) [7]. It is generally a good advice to get familiar
with these frameworks, especially if existing tools need to be extended.

Practice in small scale! As in programming languages, creating a minimal
“hello world!” example helps in getting a starting point. Do the same for
modeling. Start with a minimal project for which also a small model suffices and
extend it with more advanced features to get the big picture. Our pilot project
described in Sect. 8.5 provides an example for such a minimal project.

Share and discuss! Nothing is more disappointing than spending huge efforts in
creating a model to then just throw it away and start all over again. Such a waste
of effort can actually happen when the model created does not represent what is
needed.
The good practice against this issue is to share and discuss created models with
other stakeholders—as early and often as possible. This approach especially
helps in getting shared knowledge about the application under investigation.
Typically, everyone involved learns something new, which eventually leads to
a better overall design of applications. When done early and often, the model
converges to what is really useful (an accurate reflection of critical use cases and
key scenarios) while not deviating from the actual application.

3.9 Conclusion

Web applications are systems that run on the browser while interacting and present-
ing information to the user. Most of its business logic makes use of cloud computing
applications at its back-end. These and other cloud computing applications can
be used by multiple users and applications at the same time. Cloud computing
applications are limited by the resources available to them and their ability to scale
these resources with workload. To that end, cloud computing applications require
a number of characteristics, namely on-demand self-service of resources, broad
network access, and resource pooling, as well as rapid elasticity to automatically
cope with the change in workload. These characteristics particularly call for novel
types of requirements andmodeling approaches—e.g., as covered by the CloudScale
method.

The CloudScale method enables software architects to model the architecture
of a cloud computing application. Models can be analyzed to predict the dynamic
behavior of the application in different conditions and the application’s elastic
responsiveness under different loads. With the CloudScale method, such predictions
are possible even before an application is actually implemented and without testing
the application within a potentially expensive infrastructure. In particular, modeling

60 M. Cecowski et al.

allows to identify the architecture, implementation, and configuration with the most
suitable trade-offs.

However, modeling can be a difficult and costly process. Fortunately, some good
practices can make the process simpler. For example, identifying the most important
components to model, improving existing models, and sharing experiences and
models between colleagues can quickly improve knowledge and reduce modeling
efforts while increasing their benefits. The remainder of this book details these initial
hints and the CloudScale method.

References

1. The NIST Definition of Cloud Computing: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf (2016) [Visited on 04/18/2016]

2. Tim, O.: What is web 2.0? design patterns and business models
for the next generation of software (2005) [Online]. Available: oreil-
lynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

3. Bass, L., Clements, P., Kazman, R.: Single Page Web Applications. Manning, Shelter Island,
NY (2013)

4. von Kistowski, J., Herbst, N.R., Kounev, S.: Using and extending LIMBO for the descriptive
modeling of arrival behaviors. In: Proceedings of the Symposium on Software Performance
2014, pp. 131–140. University of Stuttgart, Faculty of Computer Science, Electrical Engineer-
ing, and Information Technology, Best Poster Award, Stuttgart (2014)

5. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a new graph rewrite language
based on the unified modeling language and java. In: Selected Papers from the 6th International
Workshop on Theory and Application of Graph Transformations, ser TAGT’98, pp. 296–309.
Springer, London (2000) [Online]. Available: http://dl.acm.org/citation.cfm?id=645872.668867

6. García, D.F., García, J.: TPC-W E-Commerce benchmark evaluation. Computer 36(2), 42–48
(2003) [Online]. Available: http://dx.doi.org/10.1109/MC.2003.1178045

7. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language Toolkit. The
Eclipse Series. Addison-Wesley (2009) [Online]. Available: http://books.google.de/books?id=
8CrCXVZXLjcC

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://dl.acm.org/citation.cfm?id=645872.668867
http://dx.doi.org/10.1109/MC.2003.1178045
http://books.google.de/books?id=8CrCXVZXLjcC
http://books.google.de/books?id=8CrCXVZXLjcC

Chapter 4
ScaleDL

Gunnar Brataas, Steffen Becker, Mariano Cecowski, Vito Čuček,
and Sebastian Lehrig

Abstract This chapter describes the family of languages required to analyze
the scalability, elasticity, and cost-efficiency of services deployed in the cloud.
First, the ScaleDL Overview Model describes the overall structure of a cloud-
based architecture. Second, ScaleDL Usage Evolution specifies how load and work
vary as a function of time. Third, ScaleDL Architectural Templates save time by
reusing best practices. Fourth, the Extended Palladio Component Model is used for
modeling software components and their mapping to underlying software services.
The first three languages are new in CloudScale, while the fourth, Extended Palladio
Component Model, is reused. For each language, we describe the basic concepts
before we give an example. Tool support is then outlined. We list our catalog of
Architectural Templates.

This chapter is structured as follows: Sect. 4.1 outlines the relation between the
ScaleDL languages. For each language, we describe the basic concepts before we
give an example. Tool support is also outlined. The ScaleDL Overview Model
is described in Sect. 4.2. ScaleDL Usage Evolution is explained in Sect. 4.3.
In Sect. 4.4 ScaleDL Architectural Templates are introduced in detail. Section 4.5
describes the Extended Palladio Component Model.

G. Brataas (�)
SINTEF Digital, Strindvegen 4, 7034 Trondheim, Norway
e-mail: gunnar.brataas@sintef.no

S. Becker
University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
e-mail: steffen.becker@informatik.uni-stuttgart.de

M. Cecowski • V. Čuček
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia
e-mail: mariano.cecowski@xlab.si; vito.cucek@xlab.si

S. Lehrig
IBM Research, Technology Campus, Damastown Industrial Estate, Dublin 15, Ireland
e-mail: sebastian.lehrig@ibm.com

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7_4

61

mailto:gunnar.brataas@sintef.no
mailto:steffen.becker@informatik.uni-stuttgart.de
mailto:mariano.cecowski@xlab.si
mailto:vito.cucek@xlab.si
mailto:sebastian.lehrig@ibm.com

62 G. Brataas et al.

4.1 Introduction

The Scalability Description Language (ScaleDL) is a collection of languages
to characterize scalability, elasticity, and cost-efficiency aspects of cloud-based
systems. For other aspects like system behavior, data models, etc., complementary
languages like Unified Modeling Language (UML) must be used. ScaleDL consists
of five languages: three new languages (ScaleDL Usage Evolution, ScaleDL
Architectural Templates (ATs), and ScaleDL Overview Model) and two reused
language (Palladio’s Palladio Component Model (PCM) extended by SimuLizar’s
self-adaption language and Descartes Load Intensity Model (DLIM)). For each
of these, we briefly describe their purpose and provide a reference to a detailed
description later in this chapter:

ScaleDL Overview Model (developed in CloudScale) allows architects to model
the structure of cloud-based architectures and cloud deployments at a high level
of abstraction (cf., Sect. 4.2).

ScaleDL Usage Evolution (developed in CloudScale) allows service providers to
specify scalability requirements, e.g., using evolution of work and load of their
offered services (cf., Sect. 4.3).

Descartes Load Intensity Model (DLIM) (reused; see [1]) was originally
designed to model load intensity in terms of evolution of arrival rates over
time, but can also be used for modeling the evolution of work and load in general
(cf. Sect. 4.3).

ScaleDL Architectural Templates (developed in CloudScale) allows architects to
model systems based on best practices as well as to reuse scalability models
specified by architectural template engineers (cf., Sect. 4.4).

Extended Palladio Component Model (reused; see [2]) allows architects to model
the internals of the services: components, components’ assembly to a system,
hardware resources, and components’ allocation to these resources; the extension
allows, additionally, to model self-adaptation: monitoring specifications and
adaptation rules (cf., Sect. 4.5).

Figure 4.1 shows an overview of how the languages relate to each other, and the
transformations and other components they are input to and output from. We will
detail this in the next sections, for one language at a time.

4.2 Overview Model

Important issues while modeling cloud architectures and their deployments are
their replicability and the necessity of high-level descriptions that can be easily
understood and shared. Common approaches for sharing such models are diagrams
and descriptions that are not useful as formal definitions of architectures or
deployment strategies that can be used automatically with different tools, and formal

4 ScaleDL 63

Extended PCM

ScaleDL
Architectural Template

ScaleDL Overview to
Architectural Template

ScaleDL Overview
to PCM

1..*

ScaleDL Overview

input

input

output

output

ScaleDL Usage
Evolution

DLIM

Analyzer
input

input

usage scenario

1..*

Report on
measured metrics

output

Legend

Model Component Report

Fig. 4.1 Overview of ScaleDL languages and their relationships

descriptions, such as deployment scripts or recipes, provide little utility for the high-
level study of the defined systems.

DEFINITION 4.1: OVERVIEW MODEL

The Overview model is a meta-model that provides a design-oriented
modeling language and allows architects to describe the structure of cloud-
based systems. It provides the possibility of representing private, public, and
hybrid cloud solution, as well as systems running on a private infrastructure.

We will first describe concepts in the Overview Model in Sect. 4.2.1, before we
sketch an example in Sect. 4.2.2. In Sect. 4.2.3 we detail the tool support.

4.2.1 Concepts of Overview Model

The Overview model consists of Architecture, Deployment, and Specification
models. The Architecture model provides a descriptive abstraction of the system’s
architecture without any deployment or performance information, which is defined
in Deployment and Specification models and referenced to the Architecture model.

The Architecture model was designed as a base model for describing and
visualizing components in a cloud environment. It contains different cloud envi-
ronments and external connections, for linking operations with a user interface or
an external black-box service, or to interconnect cloud environments in a hyper-
cloud configuration. The cloud environment component contains basic information
about data centers and performance in different regions, using descriptors defined
in the Specification model. From the architecture point of view, the most important
components in the Architecture model are internal connections, defined between
two components, and a layered tree structure of services, defining a deployment

64 G. Brataas et al.

hierarchy. The latter is separated into three categories: the infrastructure layer, the
platform layer, and the software layer.

The infrastructure layer contains provided Infrastructure services. Services
mentioned as provided in the Overview model context do not contain further
information about the implementation of a lower-level mechanics. This can be
substituted and described with independent components, capable of executing
higher-level routines, according to measured performance limitations. A set of
aforementioned components defines the Deployment. In practice, every service,
except for the physical hardware, needs a lower-level service on which it operates,
but sometimes the exact specification is not known. To make the Overview model
flexible for such cases, the Provided service interface can be applied on any service
inside the Architecture service layer stack to obscure or simplify the complexity
of the underlying layers. Infrastructure services are the lowest in the service layer
hierarchy, so they must provide the Deployment model. Practical implementation of
the Infrastructure service is the Computing infrastructure service, which reference a
Deployment and a Computing resource descriptor.

The platform and software layers contain provided or deployable platform and
software services. The platform services can act as a placeholder for the software
services or provide a full description of a software by describing the application’s
inner-working with the PCM language in Sect. 4.5.

The descriptions of cloud components inside the Architecture and the Deploy-
ment package are defined inside the Specification model to allow easy extensibility
or migration and performance testing between different cloud providers.

4.2.2 Example of Overview Model

An example model can illustrate more clearly the Overview Model’s capabilities.
Figure 4.2 shows a visual representation of an Overview Model of a simple system
composed of two Tomcat applications running on Amazon EC instances, and which
make use of the Amazon DynamoDB service, a MySQL RDS service, and an e-mail
service.

The model includes networking details such as average latency and bandwidth,
which can be used for the behavior analysis and simulation of the overall system.
Several other data can be defined. For example, we can define the expected statistical
distribution of response time for an external service, or the expected capacity of a
computing unit.

The general Overview Model can thus give a quick understanding of the overall
architecture and deployment strategy, but contains also detailed information that can
be used at different stages of the evaluation of the solution.

4 ScaleDL 65

Fig. 4.2 Hybrid cloud architecture example

4.2.3 Tool Support for Overview Model

To simplify the creation and editing of the Overview model, a specially designed
diagram editor with a components palette, properties view, and a number of
supporting wizards has been created. The graphical diagram offers an organized
view of the cloud solution architecture, and the supporting editors, together with a
properties view, provides the ability to alter service descriptions.

The creation of the Overview model starts by choosing the desired cloud
environment. Currently supported environments in the CloudScale Environment
are Amazon web services (AWS), OpenStack, SAP Hana Cloud, and generic. The
latter one contains services that are environment independent. The system architect
has the ability to model hybrid cloud architectures (see Fig. 4.2) by creating multiple
cloud environments in a single Overview model. When the environment is created,
the architect can stack infrastructure and platform services. If the implementation
of a service is described as Partial PCM model, it can simply be imported into the
service component of the Architecture model. A lot of options and settings inside
the properties view of the diagram are selection dependent to speed up the modeling
and configuring process. More demanding, in terms of configuration, software
services have dedicated editors for specifying operation interfaces, data types, and
required connections.

When the Overview model is finished, it can be used for performance and cost
analyses, because it contains the complete description of a cloud solution.

4.3 Usage Evolution

Existing modeling environments like Palladio [2] have usage scenarios with a fixed
value for arrival rate (open) or for population (closed). Work is also fixed. If you
want to analyze what happens with your service during evolution of work and load,

66 G. Brataas et al.

the current approach would be to run several simulations and manually change load
and work. This manual process is time-consuming as well as error prone, as new
values need to be entered in several locations of the model for each run.

Here, we propose a more direct approach using usage evolution that particularly
accounts for transient phases, i.e., phases in which the system is subject to
contextual changes during simulation. By usage evolution we mean how usage-
oriented concepts like work, load, and quality thresholds vary as a function of time
(Definition 4.2).

DEFINITION 4.2: USAGE EVOLUTION [3]

Usage evolution describes how usage-oriented concepts like work, load, and
quality thresholds vary as a function of time.

In this section, we will first describe concepts for usage evolution in Sect. 4.3.1,
then the usage evolution on an example in Sect. 4.3.2, before we describe tool
support for usage evolution in Sect. 4.3.3.

4.3.1 Concepts for Usage Evolution

Figure 4.3 illustrates the meta-model for usage evolution in CloudScale. Elements
imported from the PCM and DLIM are shown in light gray in the figure. The meta-
model is defined to allow the specification of how the usage evolves over time.
The root element of a Usage Evolution model is the UsageEvolution element. A
UsageEvolution contains an ordered list of one or more Usage elements.

A Usage defines how one UsageScenario from a PCM model evolves over
time. The referenced UsageScenario defines the initial values for work and load.
Evolution of load for the Usage is described in a DLIM model (shown as a relation
to the Sequence element from DLIM in the figure). The output values of the

Usage

UsageEvolution

[1..*] usages

Sequence

WorkParameterEvolutionVariableCharacterization

UsageScenario

[0..*] workEvolutions

[1..1] variableCharacterization

[1..1] scenario

[1..1] evolution

[0..1] loadEvolution

Fig. 4.3 Meta-model for Usage Evolution

4 ScaleDL 67

DLIM model determine the evolved arrival rates in the case of open workload,
and population in the case of closed workload. A Usage can also contain zero or
more WorkParameterEvolution objects that each describes how a work parameter
of the PCM model evolves in terms of a DLIM model. Which work parameter is
to evolve is determined by a reference to a VariableCharacterisation defined in the
PCM model.

The root element of a DLIM model is a Sequence, which can hold one or
more function containers. Each such container holds a function for characterizing
seasons and trends. Seasonal variation can be daily (peaks during lunch breaks),
weekly (peaks at weekends), monthly (peaks at pay days), and yearly (peaks before
Christmas). Trends describe a gradual increase or decrease and may be linear or
exponential. Functions can also be combined with other functions through a list of
combinators that can have addition, multiplication, or subtraction semantics. For
further details about the DLIM meta-model, see [1].

4.3.2 Example of Usage Evolution

In this section, we will describe examples of usage evolution for load as well as for
work. In Sect. 6.2.2 more examples will be shown.

Since CloudStore has many different operations, each of these operations could
have had different load evolutions, but a natural simplification is to have one load
parameter, representing the evolution of the average operation, instead of several
operations evolving independently. Figure 4.4 shows how the number of users vary
during a 3-min period for CloudStore. Initially, there are 2000 simultaneous users.
In the first half-minute, this figure illustrates a linearly increasing trend, followed
by a stable period with 5000 users for 1min, and then a new increase up to a new
stable period in the last minute. In this last stable period, there are 10;000 users.

Time [Minutes]

L
o

ad
 [

#
 U

se
rs

]

1 2 3

2 000

5 000

10 000

Fig. 4.4 Load evolution

68 G. Brataas et al.

W
o
rk

 [
#
 B

o
o
k
s]

1 2 3

10 000

20 000

Time [Minutes]

Fig. 4.5 Work evolution

Minutes

R
es

p
o
n
se

 t
im

e
(s

ec
)

1 2 3

1.0

3.0

6.0

Fig. 4.6 Simulation results—response time

Figure 4.5 depicts evolution of the work parameter describing the number of
books. For the first three-quarters of a minute, the number of books is stable at
10,000 books. Then, during the next half-minute, we have a linear increase up to
20,000 books, which defines the stable load during the remaining period. The reason
for this sudden increase in the number of books can, for example, be the inclusion
of several new publishers in the book store.

The response time for the Product Detail operation of this example is shown in
Fig. 4.6 and is calculated by running the simulation based on the usage evolution
model. Assume that the service-level objective (SLO) for this operation is a 90%
response time of 3 s. The x-axis on this figure is again minutes, and the y-axis is the
90% response time in seconds. From the figure, we can determine that the initial
increase in load is handled by the system without any increase in response time.
The increase in the number of books just after 1min results in a small increase in
the response time. The further increase in the arrival rate between 1.5 and 2min
leads to a sharp increase in the response times. However, after less than 0.5min,
the response time drops again, even if neither the load nor the work on the system
drops. The reason is of course that because of auto-provisioning, we now use more
cloud resources. Since this auto-provisioning takes some time, we experience high

4 ScaleDL 69

response times, before the system eventually returns to normal operation again and
SLOs are no longer violated.

4.3.3 Tool Support for Usage Evolution

The load of the system is described as part of the usage scenarios in the Analyzer [2],
either as a closed load, based on a fixed population and a waiting time, or as an
open load described by the inter-arrival rate of new users. Work is modeled as a
characterization of input and output parameters of operations, and is included in the
service effect specifications (SEFFs), with some initial values defined in the usage
scenario.

Palladio’s usage scenarios define static values for load and work. To support
evolution in terms of variations in load and work over time, we have extended
the modeling support of Palladio by introducing a usage evolution model based on
DLIM, which is used by the load intensity modeling tool LIMBO [1]. While work
evolution and load evolution are explicitly modeled, other evolutions require a new
simulation: change in quality thresholds, new or deprecated operations, or change
in the implementation of operations. See [3] for more details.

We have added support to Palladio’s simulator SimuLizar [4] such that it can run
simulations following the characteristics of usage evolution models. At simulation
time, SimuLizar updates workload parameters according to Load (as specified by
Usage elements) and Work Evolutions (as specified by WorkParameterEvolution
elements). For these updates, SimuLizar samples the linked DLIM models once
per simulated time unit.

4.4 Architectural Templates

The creation of architectural models—especially with analysis capabilities—can
involve huge efforts by software architects. During creation, architects may have
to manually use architectural knowledge in the form of CloudScale’s HowTos
(cf. Sect. 2.9). Common design-time analysis approaches unfortunately lack support
for directly reusing such HowTos. This lack makes the design space for software
architects unnecessarily large; architects potentially consider designs that violate
the constraints of HowTos. Moreover, this lack makes an automatic processing
of HowTos impossible; architects have to manually model elements described in
HowTos over and over again, even in recurring situations. These issues point to an
unused potential to make the work of software architects more efficient.

To use this potential, the CloudScale method introduces so-called Architectural
Templates (ATs) [5] for efficiently modeling and analyzing quality-of-service (QoS)
properties of software architectures. With ATs, software architects can quantify

70 G. Brataas et al.

such quality properties based on reusable analysis templates (Definition 4.3) of
recurring architectural knowledge such as documented in CloudScale’s HowTos.
Architects only have to customize such templates with parts specific to their
software application, thus reducing effort and leading to a more efficient engineering
approach.

DEFINITION 4.3: TEMPLATE

A template is a reusable model blueprint from which (parts of) concrete
models can be instantiated.

In this section, we will first describe AT concepts in Sect. 4.4.1. An example of
an AT is described in Sect. 4.4.2. Based on our catalog of HowTos in Table 2.1, we
derive a catalog of ATs in Sect. 4.4.3. Tool support for ATs is outlined in Sect. 4.4.4.

4.4.1 Concepts of Architectural Templates

The AT language is a language to specify and apply templates of architectural
models for model-driven design-time analyses [6]. Such templates are called
Architectural Templates (ATs).

At the core, the AT language distinguishes between ATs, i.e., template types
and their instances. ATs consist of (1) roles (Definition 4.4), with parameters and
constraints to extend and restrict elements of architectural models; (2) a mapping of
such roles to a semantically equivalent architectural model construct (translational
semantics [7]); (3) a documentation that references the HowTo to be modeled, e.g.,
to point to the SLOs potentially impacted by the AT; and (4) an optional default
AT instance to be used as a starting point for modeling. These constituents allow to
formalize HowTos as ATs and to collect them in AT catalogs.

AT instances refer both to an AT and to an architectural model, e.g., a ScaleDL
model, into which the AT is instantiated. AT instances particularly include a set
of bindings that instantiate AT roles with bound architectural elements and actual
parameters.

4.4.2 Example for Architectural Templates

Let us have a look at a concrete application of the so-called “loadbalancing”
AT for component instances. The loadbalancing AT specifies a template for the
loadbalancing HowTo of component instances (see Sect. 2.9). Next, we are going
to apply the loadbalancing AT to our running example (CloudStore), as introduced
in Sect. 2.2.

4 ScaleDL 71

Web Server

Book Shop
Web Pages

Customer

Database Server

Book &
Customer
Data Provider

 Loadbalancing AT
@loadbalanced component
 (Number of Replica: 2)

Fig. 4.7 CloudStore’s architectural model annotated with the “loadbalanced component” role of
the “loadbalancing” AT for component instances

Book Shop

Web Server

Book Shop
Web Pages

Customer

Database Server

Book &
Customer
Data Provider

Loadbalancer Server

Load-
balancer

Fig. 4.8 CloudStore’s architectural model after the execution of the mapping

Figure 4.7 illustrates the modified architectural model of CloudStore. In the
modified version, the Book Shop Web Pages component instance is annotated
with the loadbalanced component role (Definition 4.4). Moreover, we set
“2” as an actual parameter value for the formal Number of Replica parameter.

DEFINITION 4.4: ROLE [8]

A role is the responsibility of a design element within a context of related
elements.

Semantically, this model can then be mapped to the architectural model illus-
trated in Fig. 4.8. The new model includes a load balancer in front of the Book
Shop Web Pages component instance. Moreover, based on the actual parameter
of Number of Replica, the load balancer distributes workload over two copies
of this component instance. The annotation of the original model is not needed
anymore because its semantics have now been equivalently expressed with common
elements of architectural models (such a semantic definition is called “translational
semantics” [7]).

This example application of an AT shows that ATs can simplify recurring mod-
eling tasks: instead of manually modeling a load balancer and creating two replicas,
a simple, declarative annotation in the form of a role and an actual parameter is

72 G. Brataas et al.

sufficient. ATs group such recurring modeling constructs within parametrizable AT
roles that can be semantically mapped back to the original constructs.

Additionally, AT roles can include constraints. These constraints allow architects
to receive direct feedback during modeling. For example, whenever they annotate
component instances that are stateful, the AT application may be aborted (the load
balancer HowTo demands stateless component instances). Such direct feedback and
restrictions reasonably limit the design space for architects, thus reducing potential
modeling mistakes by architects.

4.4.3 Catalog of Architectural Templates

Based on our catalog of HowTos (see Table 2.1 in Sect. 2.9), we also derived an
AT catalog with carefully engineered ATs. Table 4.1 illustrates CloudScale’s AT
catalog: the table provides for each AT its application domain (first column); its
name, which also points to the realized HowTo (second column); and AT roles, with
their parameters in parentheses (third column).

Table 4.1 CloudScale’s catalog of ATs

Application AT (and HowTo) AT

domain name Roles and parameters

Business information
systems

3-Layer Presentation layer, middle layer,
Data layer

Loadbalancing (container) Loadbalanced container
(Integer: number of replica)

Loadbalancing (component
instance)

Loadbalanced component
(Integer: number of replica)

Cloud computing SPOSAD Presentation layer, middle layer,
data layer, replicable tier

Horizontal scaling
(container)

Horizontal scaling container
(Integer: number of initial replica,
double: scale-in threshold,
double: scale-out threshold)

Horizontal scaling
(component instance)

Horizontal scaling component
(Integer: number of initial replica,
double: scale-in threshold,
double: scale-out threshold)

Vertical scaling Vertical scaling container
(double: scale-up threshold,
double: scale-down threshold,
double: rate step size,
double: minimal rate,
double: maximal rate)

Big data Hadoop MapReduce Map component, Reduce
component

4 ScaleDL 73

The ATs of the AT catalog directly correspond to the equally named HowTos of
the HowTo catalog. We therefore refer to the section about the HowTos (Sect. 2.9)
for detailed descriptions of the concepts realized in these ATs. The AT roles and
parameters given in the third column of Table 4.1 are directly derived from these
descriptions and realize corresponding concepts.

Section 4.4.2 provides an example for the loadbalancing AT for component
instances. Another and similar example is the “loadbalancing” AT for containers.
This AT introduces the role of a “loadbalanced container” with a formal parameter
“number of replica” of type “Integer”. Software architects can accordingly attach
this role to a resource container, e.g., a virtual machine. Semantically, this container
is then load balanced; i.e., a load balancer is introduced that distributes workload
over replicas of the container. The actual parameter that architects set for “number
of replica” determines howmany of these replicas exist. These semantics correspond
to the according descriptions of the loadbalancing HowTo.

Analogously to these examples, the CloudScale Wiki [9] documents each AT of
CloudScale’s AT catalog. This documentation includes a detailed description of the
related HowTo, “before mapping” and “after mapping” descriptions with according
figures, and a list of concrete constraints of AT roles.

4.4.4 Tool Support for Architectural Templates

Software architects can use the graphical editors of the CloudScale integrated
development environment (IDE) to apply ATs. Architects select ATs from existing
AT catalogs, e.g., from CloudScale’s catalog (Sect. 4.4.3). When software architects
start an analysis of an architectural model with applied ATs, the mappings of ATs
are automatically (and transparently to the software architect) executed.

To specify additional ATs, the CloudScale IDE provides a graphical editor to
specify the elements of ATs. The mapping of an AT is specified in a separate model
transformation file. As model transformation language, QVT-O [10] is currently
supported.

4.5 The Extended Palladio Component Model

A unique selling point of ScaleDL is that it not only documents cloud-based systems
but also allows for (semi-)automated analyses of scalability, elasticity, and cost-
efficiency. ScaleDL’s key ingredient for these analyses is the “Extended Palladio
Component Model” (Extended PCM), an architectural description language for
elastic (i.e., cloud-based) systems. Models specified with the Extended PCM can
be automatically analyzed by CloudScale’s Analyzer tool. The other ScaleDL parts
(OverviewModel, Usage Evolutions, and ATs) can be mapped to the Extended PCM
to enable their analysis.

74 G. Brataas et al.

In this section, we describe concepts of the Extended Palladio ComponentModel
in Sect. 4.5.1. Section 4.5.2 shows an example of an Extended Palladio Component
Model. Tool support for the Extended Palladio Component Model is discussed in
Sect. 4.5.3.

4.5.1 Concepts of the Extended Palladio Component Model

In this section, we discuss the core of the Extended PCM—the PCM itself—to
understand its basic paradigms for architectural modeling. Afterward, we describe
PCM extensions for elastic environments that constitute the Extended PCM.

4.5.1.1 The Palladio Component Model

The PCM [2] is an architecture description language that particularly covers
performance-relevant attributes. Instances of the PCM can therefore be analyzed
with respect to performancemetrics like response times, utilization, and throughput.

PCM instances are constituted of partial models. Each of these partial models is
inspired by the UML and covers performance-relevant attributes of the system to be
modeled:

Component Specifications. Models a repository of software components. Com-
ponents provide and optionally require a set of interfaces. Components can be
reused whenever their provided interface is required, or exchanged whenever
other components provide the same interface.
For each operation of a provided interface, components include behavior de-
scriptions, e.g., modeling requests to operations of required interfaces, demands
to resources like CPUs and hard disk drives, and acquiring and releasing
connections from resource pools. These behavior descriptions are called service
effect specifications (SEFFs).

System Model. Models a system that instantiates and assembles the software
components. The system provides interfaces on its own such that users can
externally access them. For implementing its provided interfaces, the system
delegates requests to appropriate component instances. If these instances require
further interfaces, the system includes assembly connectors that delegate requests
to appropriate providing interfaces of further component instances.

Resource Environment Model. Models the resource environment (e.g., in terms
of hardware) in which the system is allocated. The environment consists of
containers connected via networks. Containers can, for instance, represent bare-
metal or virtualized servers. Containers particularly include a set of active
resources like CPUs and hard disk drives. Each of these resources comes with
different processing rates and scheduling strategies.

4 ScaleDL 75

Allocation Model. Models the allocation from component instances (system)
to containers (resource environment). Therefore, the allocation specifies which
container component instances demand resources.

Usage Model. Models the workload to a system in terms of its users. The usage
model consists of different usage scenarios, each being either a closed workload
(fixed number of users) or an open workload (users enter based on inter-arrival
rates). In each usage scenario, users can access operations provided by the
system. Users access such operations with a certain probability and with specific
work parameters, e.g., characterizing the size of input data.

4.5.1.2 Extensions for Elastic Environments

The PCM initially was designed for static environments, i.e., for resource envi-
ronments that do not change the amount of their computing resource over time.
However, the usage of information systems shifted from a static to a highly
dynamic behavior that challenged such static environments. For example, online
shops often observe workload increases before Christmas. In such scenarios, static
environments demand that resources be aligned to the maximum workload to be
expected (over-provisioning). Otherwise, customers will remain unserved, which
eventually leads to business losses. The disadvantage of this solution is that such an
over-provisioning is expensive during non-peak times.

Cloud computing, therefore, revised the assumption that resource environments
are static: to minimize expenses for resources, their amount is now elastically
adapted to changing workloads. CloudScale provides PCM extensions for mod-
eling and analyzing these elastic resource environments. CloudScale’s modeling
extensions cover workloads that change over time (dynamic usage environments),
self-adaptation rules that react on these changes by adapting the amount of
resources, and monitors to trigger self-adaptation rules:

Usage Evolution Model. Usage Evolutions specify how workload parameters of
PCM usage models change over time. For example, steadily increasing and
periodically varying arrivals of users can be modeled. Section 4.3 details and
exemplifies Usage Evolutions.

Self-Adaptation Rules. Self-adaptation rules react on changes of the monitored
usage or resource environment. For example, when a certain response time
threshold is exceeded, a self-adaptation rule could trigger a scaling-out of
bottleneck components. These rules, therefore, consist of two parts, a trigger
and an action that can be activated by the trigger. The trigger relates monitored
values to pre-specified thresholds to determine whether to activate the action.
The action describes the change in the system to be applied. Actions are
formulated in terms of model-to-model transformation languages like QVT-
O [10], StoryDiagram [11], and Henshin [12].

76 G. Brataas et al.

Monitors. Monitors describe which metrics should be recorded at specific mea-
suring points. Monitors can, for instance, measure metrics like utilization of a
specific CPU. The resulting measurements are used as input to the trigger of
self-adaptation rules, which then potentially activates an adaptation action.

4.5.2 Example for the Extended Palladio Component Model

In this section, we describe the elements of the Extended PCM and Architectural
Templates used by a model of CloudStore. Figure 4.9 gives a simplified high-level
overview of these elements.

With this overview, software architects can easily follow the control and data
flow (arrows) from customers through CloudStore’s components (UML compo-
nent symbols) allocated on various resource containers (UML node symbols). In
Fig. 4.9, customers enter CloudStore via the Book Shop Web Pages compo-
nent to browse and order books. To provide its functionality, Book Shop Web
Pages requests information from the Book Shop Business Rules compo-
nent. Book Shop Business Rules can in turn request payment services from
an externally hosted Payment Gateway. Additionally, it can request data about
books and customers from the Book & Customer Data Provider compo-
nent. If a web page returned by Book Shop Web Pages references images, a
customer’s browser subsequently fetches these references via the Book Image

External Services

Web & Application Server

Image Server

Database Server

SPOSAD AT

Book Shop
Web
Pages

Book Shop
Business
Rules

Book &
Customer
Data Provider

Book
Image
Provider

@presentation layer @application layer @data access layer

Customer

 Horizontal Scaling AT
@loadbalanced container
 (number of initial replicas: 2,
 scale-in threshold: 5%,
 scale-out threshold: 80%)

 Vertical Scaling AT
@vertical scaling container
 (scale-down threshold: 5%,
 scale-up threshold: 80%,
 rate step size: 1 GHz,
 minimum rate: 1 GHz,
 maximum rate: 2 GHz)

Payment
Gateway

Fig. 4.9 Simplified ScaleDL model of the CloudStore online bookshop with annotated AT roles

4 ScaleDL 77

Provider component. As illustrated in Fig. 4.9, Book Shop Web Pages
and Business Rules are allocated on a Web & Application Server,
Book & Customer Data Provider on a Database Server, and Book
Image Provider on a dedicated Image Server.

All of these elements come from the Extended PCM: customers entering the
system (Usage Model), components (Component Specifications) instantiated and
assembled to CloudStore (System Model), and the allocation of these instances
(Allocation Model) to different resource containers (Resource Model). As software
architects, we are interested in analyzing the impact on CloudStore’s QoS properties
when applying architectural knowledge. Therefore, Fig. 4.9 additionally illustrates
elements from ScaleDL’s AT language: applications of the ATs SPOSAD, Horizon-
tal Scaling, and Vertical Scaling are annotated (bold italic text in dashed boxes).

The SPOSAD AT (middle of Fig. 4.9) introduces roles to structure CloudStore
into a presentation layer (bound to Book Shop Web Pages), an application
layer (bound to Book Shop Business Rules), and a data access layer
(bound to Book & Customer Data Provider). These roles constrain the
bound components to only access the respective lower-level layer (in Fig. 4.9
shown from left to right). Moreover, the SPOSAD AT requires components on
the presentation and application layers to be stateless. Because ATs formalize
such constraints, an architecture tool with AT support (like the CloudScale IDE;
cf. Sect. 8.7) can ensure their fulfillment, e.g., by forbidding direct connections from
Book Shop Web Pages to Book & Customer Data Provider.

The Horizontal Scaling AT (top middle of Fig. 4.9) introduces a loadbalanced
container role bound to the Web & Application Server. In a preprocessing
step of a design-time analysis, a template engine will reflect the performance impact
of this binding by creating a load balancer in front of the container that distributes
workload. According to the parameters given in Fig. 4.9, the load balancer initially
distributes workload over two container replicas and dynamically decreased or
increased this number if the CPU utilization of the container drops below 5% or
exceeds 80%, respectively.

The Vertical Scaling AT (top right of Fig. 4.9) introduces a vertical scaling
container bound to the Database Server. A template engine will create
adaptation rules that dynamically increase or decrease the processing rate of this
container’s CPU. The rate is decreased if CPU utilization drops below 5% and
increased if it exceeds 80% (see the role’s parameters in Fig. 4.9). These adaptations
come in steps of 1GHz within a range of 1–2GHz (hence, the rate is either 1 or
2GHz).

78 G. Brataas et al.

4.5.3 Tool Support for the Extended Palladio Component
Model

Software architects can specify instances of the Extended PCM with the graphical
editors of the CloudScale IDE. Once specified, architects can use various analysis
tools to inspect the QoS properties of a modeled system. Moreover, if the source
code of a system is already available, CloudStore’s Extractor can be used to
automatically create partial instances of the Extended PCM. This section briefly
describes the analysis tools and the Extractor for the Extended PCM.

4.5.3.1 Analysis Tools

PCM instances serve as input (Fig. 4.10) (left) to various analysis tools (Fig. 4.10)
(right):

Analyzer. CloudScale’s Analyzer is a simulation of the modeled system. The
simulation interprets the input PCM instance to provide measurements for
performance metrics like response times. Because the Analyzer interprets PCM
instances, it can also acknowledge changes of these instances during simulation
time. This feature, therefore, allows to model self-adaptive systems: the execu-
tion of a self-adaption action transforms a current PCM instance into an adapted
version. The Analyzer subsequently continues by simulating the adapted version.
Moreover, the Analyzer supports ScaleDL’s Usage Evolution models: at simula-
tion time, the Analyzer updates workload parameters according to an input Usage
Evolution model. For these updates, the Analyzer samples the Usage Evolution

(Extensions)

System

Model

Instance

(Extended)

Palladio

Component

Model

Component

Specifications

Resource

Environment

Model

Usage Model

Part of

Transformation

Code

Skeletons

#inc lude
<nothing>
unsigned
main()
{

Allocation

Model

ProtoCom

Prototype

Numerical

Analysis

Execution

Implementation

Partial Models Analysis Tools

SimuLizar

(Analyzer)

Simulation

LQNs

Usage Evolution

Model

Self-Adaptation

Rules

Part of Part of

Fig. 4.10 Instances of the Extended PCM serve as input to various analysis tools

4 ScaleDL 79

model once per simulated time unit to receive the concrete workload parameter
for the current simulation time.

LQNs. Layered queuing networks (LQNs) extend queuing networks with layered
structures and related elements, e.g., to fork/join different layers. Based on input
PCM instances, transformations can create LQN models. These models can then
be solved with numerical mean-value approximation methods, e.g., to provide
mean response times as output. In contrast to simulations, these methods require
less time for analyses; however, they provide only information about mean
values.

ProtoCom Prototype. ProtoCom transforms PCM instances into runnable per-
formance prototypes. Such performance prototypes can execute in different
target environments andmimic demands to different types of hardware resources.
Their execution, therefore, allows to take performancemeasurements for an early
assessment of the modeled software system within a real environment.

Code Skeletons. Based on a PCM instance, a transformation generates appro-
priate code skeletons. These skeletons serve developers as a starting point
for implementing the modeled system. Code skeletons are therefore especially
important in forward engineering (see Chap. 6).

4.5.3.2 Extractor

ScaleDL models can be created manually. This is described in more detail in
Chap. 6. However, CloudScale’s Extractor tool can assist in potentially tedious
manual tasks, given that source code is available.

The Extractor is a reverse engineering tool for the automatic extraction of partial
Extended PCM models, thus lowering modeling effort for system engineers if
source code already exists. The Extractor is based on the Archimetrix approach [13]
that combines different reverse engineering approaches to iteratively recover and
reengineer component-based software architectures.

The inputs to the Extractor are source code and configuration parameters for
reverse engineering, e.g., thresholds that specify when to cluster classes into
components. Software architects particularly have to decidewhich part of the system
should be extracted. In a large system, architects may only be interested in a few
critical services.

Once configured, software architect can start the Extractor. After parsing the
source code, the Extractor clusters relevant elements based on these parameters into
software components. The output is a partial Extended PCM model, i.e., a model
that covers the component-based structure of the extracted source code as well as
its control and data flow. The model is partial because it misses context information
like system usage and hardware specifications.

80 G. Brataas et al.

While the Extractor relieves software architects from potentially tedious model-
ing tasks, software architects need to spend some effort finding the right configura-
tion parameters.

In general, software architects start with the Extractor’s default configuration and
assess whether the resulting Extended PCM model is satisfying for their system.
Software architects are typically unsatisfied if the result is too abstract (e.g., the
Extractor clustered the whole system into one component) or too fine-grained (e.g.,
the Extractor clustered each class into a dedicated component). In that case, software
architects alter configuration parameters and rerun the Extractor until satisfied.

The main parameters for the Extractor are (default values included):

Clustering Merge Threshold Max (End Value) (100) Start threshold between
0 and 100 for deciding whether to merge the elements of a component candidate
into a single component by melting the component candidates in a single
component. The lower the value is the fewer components are merged into single
components.

Clustering Merge Threshold Min (Start Value) (45) End threshold between 0
and 100 for deciding whether to merge the elements of a component candidate
into a single component. The lower this value is the more likely less connected
component candidates will be merged into a single component.

Clustering Merge Threshold Increment (10) The increment between 0 and 100
for the merging components. The Extractor will merge components using a
threshold starting at the start value and ending at the end value using this
increment.

Clustering Composition Threshold Max (Start Value) (100) The start thresh-
old between 0 and 100 for deciding whether to compose the elements of a
component candidate into a new composed component by linking the component
candidates using connectors. The lower the value is the fewer components are
composed into a new composed component.

Clustering Composition Threshold Min (End Value) (25) The end threshold
between 0 and 100 for deciding whether to compose the elements of a component
candidate into a composed component. The lower this value is the more likely
less connected component candidates will be composed into a composed
component.

Clustering Composition Threshold Decrement (10) The increment between 0
and 100 for the composing components. The Extractor will compose components
using a threshold starting at the start value and ending at the end value using this
increment.

The Extractor has additional parameters which characterize the coupling of
component candidates which need to be adjusted for each project to be extracted. A
description of these parameters can be found in the CloudScale user manual [14].

4 ScaleDL 81

4.6 Conclusion

This chapter presents ScaleDL as of a family of related languages. The ScaleDL
Overview Model describes the overall structure of a cloud-based architecture.
ScaleDL Usage Evolution specifies how load and work vary as a function of time.
ScaleDLATs save modeling efforts by reusing formally captured best practices. The
Extended Palladio Component Model is used for modeling software components
and their mapping to underlying elastic software services.

With the ScaleDL family of languages, software architects can specify critical
aspects of a software system to enable analysis of scalability, elasticity, and cost-
efficiency. Software architects may model the complete software system using all
the languages, but selectively using a subset (or only fragments) of languages is
also possible.

Subsequent chapters show how ScaleDL is integrated in the CloudScale method
and how CloudScale’s tools utilize ScaleDL. In particular, Chap. 8 describes how
ScaleDL may be extended in the future.

References

1. Kistowski, J.V., Herbst, N., Zoller, D., Kounev, S., Hotho, A.: Modeling and extracting
load intensity profiles. In: Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS ’15, pp. 109–119. IEEE,
New York (2015)

2. Becker, S., Busch, A., Brosig, F., Burger, E., Durdik, Z., Heger, C., Happe, J., Happe,
L., Heinrich, R., Henss, J., Huber, N., Hummel, O., Klatt, B., Koziolek, A., Koziolek, H.,
Kramer, M., Krogmann, K., Küster, M., Langhammer, M., Lehrig, S., Merkle, P., Meyerer,
F., Noorshams, Q., Reussner, R.H., Rostami, K., Spinner, S., Stier, C., Strittmatter, M., Wert,
A.: In: Reussner R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H.,
Kramer, M., Krogmann, K. (eds.) Modeling and Simulating Software Architectures – The
Palladio Approach, 408 pp. MIT, Cambridge, MA (2016). [Online] http://mitpress.mit.edu/
books/modeling-and-simulating-software-architectures

3. Brataas, G., Stav, E., Lehrig, S.: Analysing evolution of work and load. In: QoSA: Conference
on the Quality of Software Architectures. ACM, New York (2016)

4. Becker, M., Becker, S., Meyer, J., SimuLizar: design-time modelling and performance analysis
of self-adaptive systems. In: Proceedings of Software Engineering 2013 (SE2013), Aachen
(2013)

5. Lehrig, S.: Architectural templates: engineering scalable saas applications based on architec-
tural styles. In: Gogolla, M. (ed.) Proceedings of the MODELS 2013 Doctoral Symposium
Co-located with the 16th International ACM/IEEE Conference on Model Driven Engineering
Languages and Systems (MODELS 2013), Miami, October 1, 2013. CEUR Workshop
Proceedings, vol. 1071, pp. 48–55 (2013). CEUR-WS.org [Online]. http://ceur-ws.org/Vol-
1071/lehrig.pdf

6. Lehrig, S.: Applying architectural templates for design-time scalability and elasticity analyses
of saas applications. In: Proceedings of the 2Nd International Workshop on Hot Topics in Cloud
Service Scalability. HotTopiCS ’14, Dublin, pp. 2:1–2:8. ACM, New York (2014). [Online]
http://doi.acm.org/10.1145/2649563.2649573

http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://ceur-ws.org/Vol-1071/lehrig.pdf
http://ceur-ws.org/Vol-1071/lehrig.pdf
http://doi.acm.org/10.1145/2649563.2649573

82 G. Brataas et al.

7. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages Using
Metamodels, 1st edn. Addison-Wesley, Upper Saddle River, NJ (2008)

8. Buschmann, F., Henney, K., Schmidt, D.: Pattern-Oriented Software Architecture: On Patterns
and Pattern Languages. Wiley, New York (2007)

9. CloudScale Wiki: HowTos. http://wiki.cloudscale-project.eu/HowTos [Visited on 12/19/2016]
10. Object Management Group (OMG), Meta Object Facility (MOF) 2.0 — Query/View/Transfor-

mation Specification. Technical Report OMG Document Number: formal/2011-01-01 (2011).
http://www.omg.org/spec/QVT/-1.1/

11. von Detten, M., Heinzemann, C., Platenius, M., Rieke, J., Travkin, D., Hildebrandt, S.: Story
diagrams - syntax and semantics, Software Engineering Group, Technical Report, Heinz
Nixdorf Institute, University of Paderborn (2012)

12. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced concepts
and tools for in-place emf model transformations. In: Proceedings of the 13th International
Conference on Model Driven Engineering Languages and Systems: Part I. MODELS’10, Oslo,
pp. 121–135. Springer, Berlin (2010). [Online] http://dl.acm.org/citation.cfm?id=1926458.
1926471

13. Platenius, M.C., Von Detten, M., Becker, S.: Archimetrix: improved software architecture
recovery in the presence of design deficiencies. In: Software Maintenance and Reengineering
(CSMR 2012), pp. 255–264. IEEE, New York (2012)

14. CloudScale: User Manual of the CloudScale Environment. http://www.cloudscale-project.
eu/media/filer_public/2016/02/01/cloudscaleenvironment-userguide_1_1.pdf [Visited on
12/19/2016]

http://wiki.cloudscale-project.eu/HowTos
http://www.omg.org/spec/QVT/-1.1/
http://dl.acm.org/citation.cfm?id=1926458.1926471
http://dl.acm.org/citation.cfm?id=1926458.1926471
http://www.cloudscale-project.eu/media/filer_public/2016/02/01/cloudscaleenvironment-userguide_1_1.pdf
http://www.cloudscale-project.eu/media/filer_public/2016/02/01/cloudscaleenvironment-userguide_1_1.pdf

Part III
The CloudScale Method for Software

Architects

In this part, we detail the CloudScale method introduced in Part I. We describe the
manual steps required when using the ScaleDL tool suite introduced in Part II.

To describe the manual and tool-supported method steps, this part gives an
overview of the complexity and the amount of manual work involved in using
the CloudScale method. We explain the significant trade-offs between the amount
of manual work and the prediction accuracy for scalability, elasticity, and cost-
efficiency. This is useful for anyone dealing with systems where these qualities
are important. The method steps are flexible and can be merged with a variety of
commonly used development methods.

Chapter 5 describes the CloudScale method in detail. The forward engineering
part of the CloudScale method, using modeling tools, is then detailed in Chap. 6.
This is applicable when developing a new service. The reverse engineering and
reengineering parts of the CloudScale method are outlined in Chap. 7. These are
applicable when an existing (legacy) service is modified.

Chapter 5
The CloudScale Method

Gunnar Brataas and Steffen Becker

Abstract This chapter details the CloudScale method. We describe its high-level
process with the most important steps. We look more closely at the CloudScale
method from Sect. 2.1 and detail it with respect to the developer roles executing
it. We also introduce the two major method use cases. Method use case I is about
analyzing a modeled system; method use case II deals with analyzing and migrating
an implemented system. All discussions in this chapter are guided by the granularity
of the analysis you want to perform, hence; this chapter also introduces granularity
as a key concept and discusses how to find the right one.

As granularity is important for all steps of the CloudScale method, it is
introduced in Sect. 5.2. As a second basis, our graphical notation is described in
Sect. 5.3. The method description starts with an introduction into the CloudScale
method roles in Sect. 5.4. As a core section in this chapter, Sect. 5.5 gives a detailed
overall overview on the CloudScale method. Afterward, the following sections give
details on all method steps: Sect. 5.6 outlines how to identify service-level objectives
(SLOs), critical use cases, and their associated key scenarios from business needs;
Sect. 5.7 then describes how to transform the SLOs and critical use cases into
scalability, elasticity, and cost-efficiency requirements. Afterward, the two main
use cases of the CloudScale method are introduced: Sect. 5.8 outlines how to use
models to analyze a system’s properties, while Sect. 5.9 sketches how to analyze
implemented and executable systems. Finally, Sect. 5.10 briefly describes how to
realize and operate the system.

G. Brataas (�)
SINTEF Digital, Strindvegen 4, 7034 Trondheim, Norway
e-mail: gunnar.brataas@sintef.no

S. Becker
University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
e-mail: steffen.becker@informatik.uni-stuttgart.de

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7_5

85

mailto:gunnar.brataas@sintef.no
mailto:steffen.becker@informatik.uni-stuttgart.de

86 G. Brataas and S. Becker

5.1 Introduction

As already described in Sect. 1.10, the CloudScale method guides stakeholders by
describing the steps to follow when engineering scalable, elastic, and cost-efficient
systems. It also describes the set of different stakeholders involved. The CloudScale
method as presented in this book is based on initial ideas published in [1] and further
refined in [2]. In addition, it was inspired by the Q-ImPrESS method to engineer
evolving service-oriented systems [3].

The basis for the CloudScale method is CloudScale’s tools, which automate some
parts of the method. The CloudScale method describes the input as well as the output
of the CloudScale tools. In some cases, the input to a CloudScale tool is produced
by another CloudScale tool, but manual steps may also be required to produce the
required inputs.

Before starting the CloudScale method, you must have a clear idea of what you
want to learn. Possible overall objectives are:

• Trade-off between cost, functionality, and quality during development. You may,
for example, compare two different architectures.

• Trade-off between cost, functionality, and quality during modification. The new
parts can be a new operation, or a new architecture. A new architecture may
simply mean to compose existing services and components differently, but it may
also mean replacing some of them.

• Compare scalability, elasticity, and cost-efficiency of competing services.
• Compare competing deployments for an existing service.

Common for all these objectives is that you need to do some sort of scalability,
elasticity, or cost-efficiency analysis. The CloudScale method is a method for
performing such analysis. When you do this analysis, you have a granularity
trade-off. Generally, answering a more detailed question, like finding an optimal
deployment, requires more details, compared to finding the best of two competing
architectures. An important part of this method is the necessary manual steps,
like setting objectives for scope and accuracy, setting configuration parameters,
instrument source code, or finding out if the defined quality objectives are met.
Which guidance is available for performing them and how do you know if you have
to adjust something, and then what shall you adjust?

5.2 Granularity

By granularity, we refer to the level of detail. A coarse-grainedmodel has few details
compared to a fine-grainedmodel, for example.We will describe this in more details
for each method step, but more generally, the level of detail will have consequences
both for what you put into the analysis as well as what you get out of the analysis
and the time an analysis will take.

5 The CloudScale Method 87

For what you put into the analysis, two aspects related to granularity, or level of
detail, are important:

• Amount of manual work, or effort used to follow the method. Making a
scalability model of a service consists of several manual steps, and generally the
effort is related to the sophistication of the model. The level of detail of a model
increases when you model more operations, more components, more resources,
and more complex relation between them.

• Run time to do the analysis on the computer. Most often this time will be
negligible, but for some analyses you may spend several hours, and then this time
will also influence the amount of manual work. The amount of instrumentation
will often be related to run time, because the more instrumentation you have, the
higher the run time will be.

When it comes to what you get out of the analysis, three aspects of the result are
important and are also related to granularity, or level of detail:

• Precision, relating to the repeatability of the results, normally quantified by a
confidence interval [4]. To increase precision (i.e. reducing confidence intervals),
you can run a simulation several times (with different seeds).

• Accuracy, the difference between the reported value and the “real” value [4].
Generally, a more complex model may be more accurate, since it is then easier
to match reality. Validation where you compare the “actual” service with the
modeled service is the key to increase accuracy [4].

• Scope, relating to coverage. You may look for scalability problems in the
complete service as well as all its underlying services, a broad scope, but you
may also confine the scalability investigation to one of the many classes inside
of the service, a narrow scope. Similarly, you may focus on the use of processing
resources and ignore the use of storage resources. You may also focus on one
critical operation and ignore the remaining operations.

Generally, the more you put into the method in terms of effort and run time, the
more detailed your model will be and the more you get out in terms of precision,
accuracy, and scope. A comprehensive approach gives good precision but with a
high effort, whereas a coarse approach gives low precision with a low effort. An
important part of the method is to shed light on this granularity trade-off. The level
of granularity should be sufficient for meeting this objective, but not more detailed,
because then it will also be too costly in terms of manual effort.

This granularity trade-off is important, because the manual effort involved using
our tools as well as our methods is the showstopper for their widespread use. Using
more coarse-grained models, this manual work may be reduced, but then at the cost
of precision, accuracy, and scope. The question afterward becomes: which precision,
accuracy, and scope are required for spotting scalability/elasticity/cost-efficiency
problems in a software service? The answer may not be simple. For example,
more accurate instrumentation/models may be required to spot elasticity problems

88 G. Brataas and S. Becker

than what is required to spot scalability problems. Probably a baseline scalability
model will be required first, also with validation, before it is meaningful to analyze
elasticity and cost-efficiency. We recommend a coarse approach first and afterward
to increase the granularity of key parts so that you reach the given precision/accuracy
and scope. We advise to avoid small increments as this leads to too many iterations
of the method.

5.3 Method Notation

The notation used in this chapter as well as its decomposed method steps in later
chapters is shown in Fig. 5.1 and explained below:

• Start or stop: describes the start and stop of these method steps. For a decomposed
process, you start and stop where the high-level process starts and stops.

• Tool-driven process: a task which is supported by a tool. This process may be
later decomposed.

• Decision: the flow of control depends upon a decision. This decision may involve
complex manual tasks.

• Artifact: a file used to store text or models.
• External artifact: an artifact which is external to the process shown.
• Manual tasks: manual, complex tasks which may also be assisted by tools outside

of CloudScale like text editors, compilers, monitoring tools, etc.
• External manual task: a manual task which is external to the process shown.
• Role: one of CloudScale’s roles.
• Data flow: data flow in the specified direction.
• Data & control flow: data flow as well as flow of control with manual work in the

specified direction.
• Parallel tasks: synchronization points between or after parallel tasks.

Start or
Stop

Manual
taskDecision

Tool-driven
process Artifact

Data Flow Data & Control Flow Parallel tasks

Role

External
artifact

External
manual task

Fig. 5.1 Notation used in the CloudScale Method

5 The CloudScale Method 89

5.4 Roles in the Method

In this section, we identify major roles required to (re)design scalable services in a
cloud environment. We define the following six roles:

Service consumer: a person or enterprise entity that uses the service and its
resources and therefore has a service-level objective (SLO) for this service. The
service consumer is part of a larger business process. As this business process
has business needs, there are resulting SLOs the service consumer needs to have
fulfilled by a supporting IT system. Since there are different delivery models of
cloud services (Infrastructure as a Service [Iaas], Platform as a Service [PaaS],
Software as a Service [SaaS], and all of their subgroups), you can distinguish
different service consumer roles for each of these delivery models. Depending
on the type of service and their role, the consumer works with different user
interfaces and programming interfaces.

Product manager: responsible for identifying system requirements and defining
development goals, especially from the business perspective. The product man-
ager is engaged in making decisions regarding the requirements fulfillment and
business potential of the solution. The main interests of the product manager
are the overall system behavior, architecture compliance, and price of the final
solution. He is also a final decision-maker for the solution and negotiation
with the customer about service/system acceptance and approval of the system
evolution during operation.

System engineer: responsible for deploying the service and for the monitoring
of the system in operation. Based on monitoring results, the system engineer
optimizes the system’s operation parameters. If required, the system engineer
initiates the system evolution process steps so that further redesign and reimple-
mentation of the system may be triggered if it is impossible to fix the system
by fine tuning. The system engineer cooperates with all other roles during the
system lifecycle.

System architect: is the architect of a certain layer in the cloud stack and the
main system modeler. He is responsible for selecting the system components
on a certain cloud layer and their interaction. The responsibility of the system
architect is to find an optimal cloud service organization and deployment for all
used cloud services. The system architect cooperates with the product manager
and the service developer. He is also the main user of the tools and methods
during design. During the system design phase, the system architect needs to
provide an optimal evolution scenario and include optimal system components
into the system architecture.

Service developer: develops a cloud service for a deployment model on a
certain layer in the cloud stack. The service developer is responsible for both
development and testing during service realization, and for preparing the system
deployment process. The service developer cooperates with the system architect
for checking realized services and with the system engineer when preparing
system deployments. Most of the current deployed cloud services are developed

90 G. Brataas and S. Becker

for SaaS cloud deployment models. Services developed for the IaaS and PaaS
deployment models will subsequently be used by SaaS developers and cloud
providers. The service developer uses infrastructure, as well as all accompanying
mechanisms, provided by the cloud service provider on certain cloud stack
layers.

Service provider: delivers the service to the consumer. The service provider is
responsible for fulfilling SLOs and other requirements toward service consumers.
She prepares service requirements and interacts with system engineers to enable
an appropriate service, operates the system during the whole system lifecycle,
and identifies the needs for system evolution.

The cloud computing definition published by the NIST [5] defines five basic
cloud computing actors: cloud consumer, cloud provider, cloud auditor, cloud
broker, and cloud carrier. The NIST actor cloud consumer is similar to the service
consumer role in CloudScale. However, we focus more on the service itself and less
on the cloud infrastructure. The latter three roles may also be relevant to scalability
analysis, but are not considered further in this book.

The NIST actor for cloud providers is further decomposed into five NIST actors
for service deployment, service orchestration, cloud service management, security,
and privacy. The CloudScale role of system engineer aggregates the NIST actors
for service deployment, service orchestration, cloud service management, but with
a focus on scalability engineering. The NIST actors for security and privacy are
complementary to the CloudScale roles.

The CloudScale roles for product manager, system architect, service developer,
and service provider are not explicitly mentioned by the NIST, but they are relevant
to CloudScale with our focus on (re)design.

5.5 Method Steps

The CloudScale method was introduced in Sect. 2.1. In this chapter, we show which
roles are relevant to each method step. We also point out two main method use
cases: one for modeling projected services and the other for reengineering existing
services.

The product manager has tight cooperation with the service customer, and as
a result, the product manager identifies the need for a new service. He or she
elicits more or less vague business-oriented scalability, elasticity, and cost-efficiency
requirements for this new service. In cooperation with the service provider, the
product manager identifies SLOs, critical use cases, and key scenarios. In our
context, critical use cases are the riskiest operations. Key scenarios describe when
these operations have the highest workload.

Based on the business-oriented scalability, elasticity, and cost-efficiency require-
ments defined in the previous step, the system architect joins the discussion with
the product manager and the service provider, and, together with them, agrees

5 The CloudScale Method 91

on projected workloads. In this way, the technical requirements for scalability,
elasticity, and cost-efficiency requirements are established.

In this scenario, the system architect has to design a new system. Therefore, she
uses the CloudScale method in method use case I: the analyses will be based on a
model as no useable source code exists so far. This method use case is described
in more detail in Sect. 5.8. In this method use case, the system architect, together
with the service developer, specifies a Scalability Description Language (ScaleDL)
model. This is a complex task with several manual steps, where the system architect
provides high-level information concerning the overall architecture describing how
the components fit together and where the service developer fills in all the details
about the components. Some details may be required from the system engineer
concerning the cloud resources used. Moreover, the requirements for scalability,
elasticity, and cost-efficiency are detailed as part of working with the ScaleDL
model.

When the system architect, together with the service developer, is satisfied with
the ScaleDL model, it is fed into the Analyzer. The system architect, together
with the service developer, uses the results from the simulation in the Analyzer to
improve both the high-level architecture as well as more detailed design choices.
When the service developer, together with the system architect, decides that
the service model is sufficiently mature, it is realized. After realization, service
implementation is later deployed.

When a service is deployed, the system engineer takes over the responsibility.
Hopefully, he will discover any poor scalable, elastic, or cost-efficient behavior
before the service consumers do, and will then trigger the required reengineering
steps in method use case II. Method use case II deals with analyzing and migrating
an implemented system, and its steps are performed using the Spotter tools, which
can identify scalability root causes based on either code or a running system. This
method use case is described in more detail in Sect. 5.9.

There are fundamentally two ways of progress during design: adding details and
making implementation decisions. These two will often be linked. As part of the
development process, when detailing the architecture or implementing the system,
the level of detail will increase:

Decomposition of operations: so that one operation becomes several operations.
The opposite process of aggregation of operations, where operations are merged,
is less likely.

SLOs may be detailed: where groups of operations sharing an SLO each get
individual SLOs.

More work parameters: may be required to cope with the increased level of
detail in a more elaborate design.

92 G. Brataas and S. Becker

5.6 Identify Service-Level Objectives, Critical Use Cases,
and Key Scenarios

In this section, we look at the requirements from a business point of view. A first
step when executing the CloudScale method is to identify which of the system’s
SLOs imply the most risks from a business point of view. This is the first step of the
CloudScale method. You can find it at the top of the actions in Fig. 5.2.

Risks are often functional, i.e., implementing the wrong functionality or im-
plementing it different to customers’ expectations. For example, the use case to
administer the bookshop is important from a functional point of view but does
not intersect with any risks concerning scalability, elasticity, or cost-efficiency.
Therefore, for the CloudScale method, we need to identify use cases where those
three properties are risky to implement.We call such use cases critical. Knowing the
critical use cases is important for any kind of analysis—either model based or on the
real system—because they are the major input to focus on the analysis steps. The
reason is that these steps can be quite time consuming. Accordingly, it is important

Use
Spotters

Analysis
based on?

Requirements
met?

Stop

Use Analyzer

Model

Start

Legend

control &

Identify scalability, elasticity,

requirements

Start or
Stop

Tool-driven
process

Decision

Manual task

Identify SLOs,
critical use cases and

key secenarios

Specify
ScaleDL
model

Realize, deploy, and
operate system

Implementation

No

Yes

Software
architect

Role

Service
developer

Product
manager

Service
consumer

System
engineer

Service
provider

Software
architect

System
engineer

Fig. 5.2 High-level process steps and roles of the CloudScale method

5 The CloudScale Method 93

to execute them not on the complete system but only on the identified critical use
cases in order to keep the overall task small and manageable. As critical use cases
are those which deal with high-risk scenarios, the following outlines the risks for
scalability, elasticity, and cost-efficiency.

Let us focus on scalability risks first. As described in Sect. 1.3, an SLO consists
of a quality metric and a quality threshold for this metric. In Sect. 2.3.1 we used
the 90% response times as metric and the quality thresholds for the four CloudStore
operations were between 1 and 5 s.

To identify scalability risks, software architects first need to identify rough SLOs
for the most important functionality, i.e., the most important operations. Based on
these SLOs, the software architect looks at these operations and finds the most
critical operations, making up critical use cases. Based on rough SLOs for the four
CloudStore operations in Sect. 2.3.2, as well as some reasoning, we identified the
Pay operation to be most critical.

Afterward, the architect has to consider the planning horizon and based on
seasonal and trend variations estimate the point in time when the work and load
on the most critical operations are likely to pose the biggest threat to the scalability
of the system. As this identifies a scenario for the critical use case which stresses its
SLOs the most, it is called a key scenario. In Sect. 2.3.3, we find that in scenarios
for the Pay operation, the highest load is expected to happen at noon on a Monday
just before Christmas in the third year. Therefore, we assume that this will also be
the key scenario used in analyses.

Once the scalability risks are known, we have to focus on elasticity risks next.
Elasticity allows the system to scale according to its actual workload. Typically,
risks arise in this area from insufficient adaptations or adaptation speed of the
resources available to the system. Hence, we need to identify critical use cases in
which rapid provisioning and deprovisioning of resources are required. For example,
when a bunch of customers decide to buy books at almost the same point in time,
this might need swift provisioning of additional resources and can therefore serve
as a critical use case. To identify the risk, we need to figure out how long it will
take for a certain rapid increase in load to increase resources as fast as possible,
given their provisioning time. As the latter depends upon the capabilities of lower
system layers like the IaaS layer, software architects need to identify risks that
provisioning of resources in these lower layers might be slow or might happen
delayed. The assessment of elasticity risks also depends on how critical it is that
customers might leave our web shop, in case they do not get an answer in time due
to an ongoing adaptation of the available resources. The more critical this is, the
higher the architectural risk of such a scenario becomes. When specifying a key
scenario for this critical use case, we need to specify how fast the load increases
from the normal level to the level where many customers arrive at the bookshop in
a burst.

Finally, we need to identify cost-efficiency risks of the system. These are risks
where high losses of money are caused by massive over-provisioning of resources.
For example, if there is a critical use case with a dramatic and rapid drop in the
number of customers in a web shop but the elasticity management takes a long time

94 G. Brataas and S. Becker

to notice this and the cost for provisioned resources is high, then this is a financial
risk. Even worse, adding resources in a situation where the system faces increasing
load but has already reached its capacity will cause significant financial losses, too.
This setting emphasizes once more the importance of the system’s capacity limits.
In a key scenario of such a critical use case, you need specifications of the drop
in the number of users but also information on the reaction time of the elasticity
management of your system (including provisioning and deprovisioning times, the
delay needed to detect the new situation, etc.).

As a result of the three identification steps, the software architect has a complete
list of SLOs, associated critical use cases, and their scenarios. This is used as input
in the next step to identify requirements as outlined in the following subsection.

5.7 Identify Scalability, Elasticity, and Cost-Efficiency
Requirements

In Sect. 5.6 we identified business-related risky SLOs with respect to scalability,
elasticity, and cost-efficiency; derived critical use cases from them; and selected
key scenarios for those critical use cases. In this section, we revisit these business-
related SLOs, critical use cases, and key scenarios from the previous step and
enrich them with detailed workload information. As a result, we get technical
requirements for scalability, elasticity, and cost-efficiency. In addition, we also sort
these requirements according to their priority. This section, therefore, describes the
second step on top of Fig. 5.2.

A requirement can be formulated on several levels of detail. For example, a
generic, business-driven requirement may be that the system should be able to
respond within 1 s. Here, the metric, the operations, the maximum load, as well as
specifications of the work parameters are missing. However, one quality threshold is
already specified. Such a requirement will therefore be open to interpretation. Nev-
ertheless, it might make sense from a business perspective to specify them in the first
place. To continue with the CloudScale method, such business-related requirements
need to be revisited and detailed to reach a precise technical requirement. In this
process we may differentiate between the quality thresholds among the operations.
In addition, we may add information about the precise quality metric used, the
operations, work parameters, and load. In practice, this will be an iterative progress
between the first step and this second step in the CloudScale method.

Together with SLOs and the expected maximum workload under a specific sce-
nario, these more detailed technical requirements guide the selection of architecture
as well as implementation in the case of a new system. For an existing system, the
technical requirements will guide our analysis efforts. Armed by these technical
requirements, it will also be possible to test a system: is it able to manage the
expected workload while adhering to the SLOs?

To identify scalability requirements, software architects need to determine the
maximum workload the system should handle as constrained by the SLOs, critical

5 The CloudScale Method 95

use cases, and key scenarios from the previous step. Workload covers both aspects,
work and load.

There is a fundamental difference between the user point of view and the actual
implementation. The requirements of a system should be formulated without con-
sidering the implementation of the system. This distinction between requirements
and their realization might not be so easy in practice, because the operations
constrained by SLOs can be already seen as part of the implementation. In practice,
this is handled by iterations. In addition, to fully characterize the scalability,
elasticity, and cost-efficiency of a service, we must also specify its configuration
parameters as well as its deployments. These details are often fixed late in the
development process. Therefore, feedback from these cycles might have an impact
on requirements fulfillment and might require iterating them.

For dynamic properties like elasticity, it is furthermore important to know
the change of the load and work over time. This is called usage evolution in
the CloudScale method. This information needs to be captured quantitatively. In
particular, for each key scenario (Sect. 5.6), the architect should capture information
about the work and load evolution quantitatively.

Similarly, we also need to identify more details for work and load evolution also
for the key cost-efficiency scenarios to transform them into technical requirements.
Here, we are interested, in particular, in situations where the load and work decrease
so that resources can be released.

After specifying the technical requirements, finally, the software architect should
sort them with respect to risks for scalability, elasticity, and cost-efficiency accord-
ing to priority, e.g., based on the severity of their business impact. In this way, the
software architect starts with the most critical ones and first analyzes them. Note that
this allocation of priorities should be done by the architecture board (i.e., architects,
managers, the shop operator, and other relevant stakeholders).

When prioritizing, we also have some trade-offs concerning the granularity of
the information:

Operations Some operations are much more important than other operations
because of their product of work and load. Even a rare operation may be critical
with a high work, and an operation with a low work may also be significant with
a high load.

SLOs (service-level objectives) describing both a quality metric and a threshold
for this metric. To fully specify a service, we need an SLO for all operations,
but a first simplification may be to say that all operations share the same quality
metric and also that they share the same quality threshold.

Load We can specify the load for all the operations individually. Another
possibility is to specify the probability between the operations, together with
the load on the average operation. In this case, we also need the operation mix
describing the probability of each of these operations. Note that for a scalability
analysis, load is often an output of the analysis.

Work The granularity of the work specification can be adjusted by putting the
focus on a fewwork parameters only in contrast to modeling all work parameters.

96 G. Brataas and S. Becker

For each of the identified and prioritized requirements, we run through an
analysis as described in the next steps. Once the most critical use cases have been
analyzed, the next critical use case might be selected from the remaining list. It then
will also get analyzed. This repeats as long as critical use cases are remaining, and
further analyses should be performed.

Depending on the scenario, the type of information available, in particular the
availability of executable source code and usable resources, the architect makes a
decision for each identified requirement: Should it be analyzed using a model of
the system or should it be analyzed by inspecting the system code and executing
it? Situations in which the architect wants to model a system and the steps needed
in this case are detailed in Sect. 5.8. In Sect. 5.9 we look at situations in which the
system’s implementation is used as basis for analysis, i.e., either by source code
analysis or by executing and tracing the system.

5.8 Use-Case I: Analyzing a Modeled System

One alternative to check the identified critical use cases and key scenarios for
fulfillment of the risky requirements is to use amodel of the system under study (see
left branch in Fig. 5.2). There are different situations in which software architects
like to gain the benefits of analyzing a system based on a model. First, in a greenfield
development situation, i.e., a situation in which no preexisting implementation of
the system under development exists, a model allows to analyze the critical use
cases. Such a model will most likely be on an abstract level, which is often good
enough for assessing the identified risky requirements. Second, a model is beneficial
in cases where an implementation exists; however, the critical use case contains
key scenarios, which are difficult and costly to execute, as they may require a lot
of effort and resources. For example, executing a system in a high-load situation
is a challenge for load generators due to the needed hardware or operating system
resources. In addition, executing scenarios, in particular, elasticity or cost-efficiency
scenarios, might take a long time. Third, software architects may want to use a
model for quick analyses of a variety of what-if scenarios, often in order to optimize
their system’s behavior. Due to the large amount of slightly varied scenarios, the
time it takes to analyze a running system is even multiplied. And finally, a model
is also useful in cases of brownfield developments, where software architects face
a combination of existing, legacy system components and non-existing, to-be-
developed components.

Despite the benefits models provide in the situations outlined in the previous
paragraph, there are also drawbacks of models, which might prevent their use.
First, creating and parameterizing a model is a non-trivial task and requires skill
and effort. The CloudScale method tries to lower these drawbacks by providing
the CloudScale integrated development environment (IDE) and the CloudScale
Extractor tool (details on ScaleDL extracting in Sect. 4.5.3.2), which aid in the
model creation process for brownfield developments.

5 The CloudScale Method 97

In case the software architect wants to use a system model, he has to execute two
coarse-grained steps: First, he needs to specify the system using the ScaleDL mod-
eling language with the aid of CloudScale’s modeling tools (for details on ScaleDL
modeling, refer to Chap. 4). As soon as the model is done, the software architect can
use the ScaleDL model as input to the Analyzer. The Analyzer simulates whether
scalability, elasticity, and cost-efficiency requirements are sufficiently achieved,
thus allowing the software architect to iteratively improve the architectural model
until satisfied (details in Sect. 6.3). Once satisfied, service developers and system
engineers can realize, deploy, and operate the planned system with a lowered risk
of violating the identified risky requirements. If system engineers—during testing
or operation—still detect requirement violations, they can reiterate through the
CloudScale method. Because the system has now been realized, system engineers
can also decide to analyze the newly implemented system in the next iteration.

5.9 Use-Case II: Analyzing and Migrating an Implemented
System

In contrast to using a model (cf. Sect. 5.8), software architects might want to analyze
existing system implementations and check for the fulfillment of the identified risky
requirements (see right branch in Fig. 5.2). This might be useful in the following
situations. First, the system has been implemented before and faces a change in its
environment; in particular, it is exposed to a critical use case which includes a usage
evolution for which the system might not be prepared. In this case, the architect
wants to know whether the system will still comply with its requirements under the
changed load and/or work situation. Second, the system might face a plannedmigra-
tion. One example, which is particularly important for CloudScale, is the migration
of an existing, non-cloud legacy application to a cloud computing environment.
However, when migrating such a system to a cloud computing environment, the
system does not automatically guarantee scalability. Scalability might be limited by
a system’s capacity due to existing software bottlenecks, like the ones imposed by
the One-Lane Bridge HowNotTo (cf. Sect. 2.10). Therefore, when system engineers
want to move an existing system to a cloud computing environment, they have
to analyze whether their system fulfills scalability requirements or suffers from
scalability issues.

The benefit of using a real implementation of the system is that the analyses are
representative of the studied scenario, as they do not include abstractions as models
do. Therefore, the gained results are often considered more trustworthy by decision-
makers. In addition, analyzing the implementation of a system often does not require
as much manual effort as creating a model, in particular, in cases where the system
is already installed and configured in a representative testing lab.

98 G. Brataas and S. Becker

The drawback of analyzing the implementation of a system is that it often takes
much longer until analysis results become available, as executing the system under
study and collecting sufficient measurements might be time consuming and resource
consuming. In addition, system engineers need to provision a representative in-
frastructure environment and install the application in it. Furthermore, they need
to provide realistic load scripts which implement the identified key scenario under
study, e.g., using Apache’s JMeter.

With the CloudScale method, system engineers are able to use CloudScale’s
scalability detection tool called Spotter. Spotter has two subcomponents called
Static Spotter and Dynamic Spotter. The Static Spotter can detect potential scal-
ability issues at the code level without executing the code. Instead, it identifies
potential scalability issues. These potential scalability issues point the Dynamic
Spotter to the code it should instrument. Based on a workload generator, it test
drives the application in different work and load situations and identifies whenever
the application does not scale in the performed tests. Based on a detailed analysis on
which of the tests failed and for what reason they failed, the Dynamic Spotter reports
a set of diagnostic statements with found scalability anti-patterns (CloudScale’s
HowNotTos). After software engineers eliminate detected scalability issues, they
can continue to deploy the reengineered system and test for other identified critical
use cases, as long as there are some left.

5.10 Realize, Deploy, and Operate

Once the selected analysis (based on Spotters or the Analyzer) indicates that
scalability, elasticity, and cost-efficiency requirements are sufficiently met, the
realization of the system can be completed (see lower-right corner of Fig. 5.2). This
realization depends on whether a new system or an existing system is to be realized.

For new systems, system engineers realize the system based on the architectural
representation in the ScaleDL model. For example, for each modeled software
component, according source code has to be implemented, reused from existing
components, or be externally bought. The Static Spotter may be used for static
spotting of anti-patterns in the code.

For existing systems, system engineers semi-automatically reengineer detected
issues based on either the Spotter or Analyzer suggestions. The Spotter points to
code that requires reengineering and suggests HowTos to solve detected issues. The
Analyzer suggests a revised ScaleDL model that software architects have approved
to satisfy SLOs. System engineers have to then reengineer the system according to
this revised model.

Once realized, the system has to be deployed and operated. The ScaleDL model
particularly prescribes how a system’s components are assembled and deployed to
the target environment. System engineers follow this prescription and set the system
in operation.

5 The CloudScale Method 99

The Dynamic Spotter may be used on the system in operation to further spot anti-
patterns. If new requirement violations arise, a new iteration of the method needs
to be executed, again supported by the dedicated detection tools. One result of the
analysis may also be a relaxation of some of the requirements and the subsequent
identification of refined critical use cases and key scenarios.

If the system meets its requirements, system engineers can stop the CloudScale
method and only have to reenter the method in case requirements or the system’s
context change.

5.11 Conclusion

This chapter introduced the CloudScale method. This method can be used to
engineer cloud services, which have critical requirements with respect to scalability,
elasticity, and cost-efficiency. The method supports two main usages: analyze
non-existing systems on a model basis and analyze systems which have been
implemented before and can be executed. The method is introduced step per step
starting with requirements elicitation and ranging until system deployment and
operation.

The CloudScale method provides benefits to software architects, service de-
ployers, and service customers. It allows to check for requirements fulfillment
as early as possible, thus avoiding costly rework activities. In addition, it is a
useful method when migrating existing systems to the cloud. In contrast to other
method, like software performance engineering (SPE), it focuses specifically on
cloud computing applications. In contrast to SPE by Smith [6], for these systems,
scalability, elasticity, and cost-efficiency are more important than performance.
However, a good performance is the prerequisite to implement scalability, elasticity,
and cost-efficiency.

In the following chapters, we outline the two use cases of the CloudScale method
in more detail, give hints on how to manage introducing and executing the method,
and illustrate it in case studies. In the future, the method can be extended by further
steps, or it can be enriched by introducing new tools into the method’s steps. For
example, tools which reduce the manual effort to create and enrich ScaleDL models
would have a significant impact on the method’s applicability.

References

1. Brataas, G., Stav, E., Lehrig, S., Becker, S., Kopcak, G., Huljenić, D.: CloudScale: scalability
management for cloud systems. In: Proceedings of International Conference on Performance
Engineering (ICPE). ACM, New York (2013)

2. Brataas, G., Becker, S., Lehrig, S., Huljenić, D., Kopcak, G., Stupar, I.: The CloudScale method:
a white paper (2016). http://www.cloudscale-project.eu/publications/whitepapers

http://www.cloudscale-project.eu/publications/whitepapers

100 G. Brataas and S. Becker

3. Koziolek, H., Schlich, B., Bilich, C., Weiss, R., Becker, S., Krogmann, K., Trifu, M., Mirandola,
R., Koziolek, A.: An industrial case study on quality impact prediction for evolving service-
oriented software. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.) Proceeding of the 33rd
International Conference on Software Engineering (ICSE 2011), Software Engineering in
Practice Track. Acceptance Rate: 18% (18/100), Waikiki, Honolulu, HI, pp. 776–785 (2011).
[Online] http://doi.acm.org/10.1145/1985793.1985902

4. Lilja, D.: Measuring Computer Performance. Cambridge University Press, Cambridge (2000)
5. NIST Cloud Computing Standards Roadmap. National Institute of Standards and Technology

(NIST), Technical Report 500-291 (2013). http://www.nist.gov/itl/cloud/upload/NIST_SP-500-
291_Version-2_2013_June18_FINAL.pdf [Visited on 06/18/2016]

6. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison-Wesley, Boston, MA (2002)

http://doi.acm.org/10.1145/1985793.1985902
http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf

Chapter 6
Analyzing a Modeled System

Sebastian Lehrig, Gunnar Brataas, Mariano Cecowski, and Vito Čuček

Abstract Architectural analysis describes the activity of discovering important sys-
tem properties—like functional requirements and service-level objectives (SLOs)—
using models of the system. The main benefit of such analysis is that software
architects can assess their design and what-if scenarios without having to imple-
ment each option. For example, architects can easily elaborate alternatives and
variants of HowTos. This chapter describes how software architects follow the
CloudScale method to model and analyze systems via ScaleDL. The chapter links
the CloudScale Method outlined in Chap. 5 with the ScaleDL language described
in Chap. 4. For ScaleDL modeling, the most important manual and automated steps
are described. For ScaleDL analysis, the usage of the Analyzer tool is detailed. A
running example brings the different pieces together and shows how scalability,
elasticity, and cost-efficiency can be projected based on a ScaleDL model.

The chapter starts in Sect. 6.1 with detailing the modeling steps in the CloudScale
method. We refine the two steps specific for the model-based analysis of a modeled
system: the specification of ScaleDL models (Sect. 6.2) and using CloudScale’s
Analyzer tool for its analysis (Sect. 6.3). After a detailed description of these steps,
we illustrated the whole process based on our running example (Sect. 6.4).

S. Lehrig (�)
IBM Research, Technology Campus, Damastown Industrial Estate, Dublin 15, Ireland
e-mail: sebastian.lehrig@ibm.com

G. Brataas
SINTEF Digital, Strindvegen 4, 7034 Trondheim, Norway
e-mail: gunnar.brataas@sintef.no

M. Cecowski • V. Čuček
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia
e-mail: mariano.cecowski@xlab.si; vito.cucek@xlab.si

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7_6

101

mailto:sebastian.lehrig@ibm.com
mailto:gunnar.brataas@sintef.no
mailto:mariano.cecowski@xlab.si
mailto:vito.cucek@xlab.si

102 S. Lehrig et al.

6.1 Introduction

The analysis of modeled systems paves for software architects the way from
functional requirements and service-level objectives (SLOs) to the realization and
evolution of a system. Intermediate stages in this way include engineering the
general system architecture from requirements and SLOs, refining the system
architecture with concrete software components, mapping components to source
code, deploying components to target environments, operating the system, and
planning and executing system evolutions. For these stages, architectural analyses
allow software architects to continuously ensure the required quality of the system
under development and to make decisions with predictable, requirement-fostering
outcomes throughout the whole process. Because all these goals are non-trivial,
software architects need both education and guidance in engineering with architec-
tural analyses, e.g., in the form of training courses, documented guidelines, and tool
support.

In the CloudScale Method, the analysis of modeled systems is tailored to cloud
computing environments and explicitly addresses scalability, elasticity, and cost-
efficiency SLOs. As such, the CloudScale method is more concrete than general
architectural analysis methods. This concreteness fortunately allowed us to give
software architects more precise guidelines and tools that come with a higher degree
of automation (and therefore involve less effort for software architects in the cloud
computing domain).

It is the goal of this chapter to guide the reader step by step through this Scalabil-
ity Description Language (ScaleDL)-driven analysis process, thereby, refining the
overview of the CloudScale method from Chap. 5, as illustrated in Fig. 6.1.

6.2 Step I: Specify ScaleDL Model

The specification of ScaleDL models consists of several steps that software archi-
tects need to conduct in close cooperation with service developers. This section
describes these steps as illustrated in Fig. 6.2.

Figure 6.2 shows that software architects first have to decide whether to refine an
existing ScaleDL model (left path through Fig. 6.2) or whether to start modeling
from scratch (right path through Fig. 6.2). Quite obviously, software architects
choose to refine an existing ScaleDL model only if such a model already exists.

When starting from scratch, software architects proceed as we detail in the
following. Based on the pre-specified critical use cases and key scenarios, they
can determine the granularity with which ScaleDL models need to be modeled
(Sect. 6.2.1). As a result, software architects can specify ScaleDL Usage Evolution
models (Sect. 6.2.2) that cover usage evolutions at the right level of abstraction.
These usage evolutions particularly allow software architects to derive the needed
system interaction in combination with the given critical use cases and key

6 Analyzing a Modeled System 103

Use
Spotters

Analysis
based on?

Requirements
met?

Stop

Use Analyzer

Model

Start

Legend

control &

Identify scalability, elasticity,

requirements

Start or
Stop

Tool-driven
process

Decision

Manual task

Identify SLOs,
critical use cases and

key secenarios

Specify
ScaleDL
model

Realize, deploy, and
operate system

Implementation

No

Yes

Software
architect

Role

Service
developer

Product
manager

Service
consumer

System
engineer

Service
provider

Software
architect

System
engineer

a modeled system

Fig. 6.1 Analyzing a system according to the CloudScale method through ScaleDL

scenarios. Derived system interactions enable architects to specify a ScaleDL
Overview Model from which they can eventually generate a ScaleDL Extended
Palladio Component Model (Extended PCM) (Sect. 6.2.3). The generated model is
finally completed by software architects and service developers. This completion
involves adding information that could not be automatically derived from the
ScaleDL Overview Model (Sect. 6.2.4). This completion can be guided along
HowTos as formalized via ScaleDL Architectural Templates (ATs) and be enriched
with information from existing source code. In particular, software architects have to
calibrate the Extended PCM model such that modeled resource demands accurately
reflect the targeted environment.

When refining existing ScaleDL models, software architects generally proceed
analogously. The only difference is that they take the existing models as the basis for
the refinement (note: which allows to specify more fine-granular ScaleDL models
compared to the initial specification).

104 S. Lehrig et al.

Start

Extended
PCM

Stop

Usage
Evolution

Determine
granularity

Overview
Model

Specify Overview
Model & generate

Extended PCM

HowTos:
Architectural
Templates

Specify Usage
Evolution

Complete
Extended PCM

from scratch?

Start from
scratch

Extended PCM

Evolution

ScaleDL model

Model & regenerate
Extended PCM

critical use
cases & key
scenarios

Software
architect

Legend

Start or
Stop

Decision

manual
task

Role

exernal
artifact

artifact

Existing
source
code

Service developer
& software architect

Fig. 6.2 Specify ScaleDL model process steps

6.2.1 Determine Granularity

As described in Sect. 5.2, there is a granularity trade-off between the amount of
detail in ScaleDL models and the accuracy of their predictions. We advice to start
with a coarse model and then introduce more details as needed. Generally speaking,
a more comprehensive PCM model will require more manual work. On the other
hand, it is challenging to make good abstractions. An elaborated model will more
accurately resemble the actual service. This is also the case when introducing more
sophisticated statistical resource modeling. However, a model with no statistical
modeling of resources (i.e., where only one value is used for resource demands and
few potential values are distinguished by a probability) will have lower confidence
intervals; so in this case, accuracy will be improved with more detailed resource
modeling, whereas precision will be reduced.

We will focus on the granularity of PCM models. ScaleDL Overview Model
basically consists of a high-level PCM diagram; therefore, granularity trade-offs
will be similar. Granularity trade-offs when making ScaleDL ATs are also the same
as when making PCM models. For a PCM model, granularity is determined by (1)
the service itself and its internal components, (2) its usage, and (3) its resources as

6 Analyzing a Modeled System 105

well allocation of internal components to resources.We will describe the granularity
of each of these levels in turn:

Service granularity For the service itself, granularity is first connected to the
number of components. On the one extreme, each method is a component, and
on the other extreme, the complete service only consists of one component.
In between, you can have one component for each class, or you may put
classes together. Second, the number of operations in each component can vary.
A detailed characterization of a component has many operations, whereas a
coarse characterization has few or only one operation. Third, the number of
connections between components is relevant. A coarse characterization ignores
less important connections, whereas a detailed characterization includes all
possible connections.

Usage granularity Granularity of the usage of a service also consists of several
aspects. First, the number of user operations represent the way the users invoke
a service. If the user mainly uses a few operations, a coarse characterization
may ignore rare operations. However, uncommon operations may be important
because they may have large resource demands. Second, the number of work
parameters may vary from one to many. Third, the probability of the operations
may span from a full Markov matrix to only the probabilities of each operation (a
vector). Fourth, there may be one or more user scenarios like the browsing mix
or the shopping mix for CloudStore. Fifth, quality thresholds (SLOs) may also
be specified more or less accurately.

Resource granularity The lower-level services also have granularity trade-offs.
First, some of the lower-level services (tiers) may be ignored. In CloudStore,
we may, for example, neglect the payment and the image servers. Second,
when it comes to resources, we may focus on processing using CPUs and not
consider network, disk, or (primary) memory. Third, we may model more or
less of the complexity of each resource. For example, a CPU has several cores,
which may or may not be modeled explicitly. Fourth, for the operations of the
resources, we may use an average CPU operation. When it comes to storage
and network, we may also simplify the number of operations in the resources.
Fifth, the work modeling of the operations may be more or less complex. We
may model work parameters like message lengths to the amount of disk storage,
but we can also ignore this. Sixth, we may use statistical distribution of resource
demands or just a constant. The sophistication of the statistical resource demand
distribution may also vary, from a coarse model with only two different values
where one probability is enough to describe the distribution between them, to
many different resource demand values where several probability values are
required to characterize their distribution. Furthermore, the allocation of software
to resources (or lower-level services) may be more or less sophisticated. There
may be many links between components and resources, or fewer links.

106 S. Lehrig et al.

In addition, granularity of the usage evolution is determined by several factors.
First, the number of operations with independent load evolution. Second, the
number of work parameters with independent work evolution. Third, you may
also change the usage scenario, but altering the operation mix (probabilities of the
operations) as well as the quality thresholds.

Finally, the Analyzer configuration variables determine simulation time as well
as precision and accuracy. The run length determines the accuracy of the results.
A longer run length will typically give higher confidence intervals, but then also a
better match to the “real” service. We may vary the number of times to run the model
(with different seeds). More runs may result in a higher confidence interval and,
therefore, seemingly worse confidence intervals, but then with improved accuracy.

The following sections detail how software architects create ScaleDL models
while considering these trade-offs. The modeling hints from Sect. 3.8 provide
further insights as to how software architects can make these trade-offs.

6.2.2 Specify Usage Evolution

In Sect. 4.3 we have described ScaleDL Usage Evolution together with a simple
example both for load and for work evolution during a 3min interval. For the
iterative CloudScale method described in Sect. 5.5, we described how requirements
are also refined when we analyze scalability, elasticity, or cost-efficiency. We will
now describe using the CloudStore example in Sect. 2.2 how we can model its usage
evolution.

As described earlier in Sect. 1.3, SLOs, load, and work are key service properties
from the point of view of scalability, elasticity, and cost-efficiency. Expected
values for these key properties will therefore represent basic requirements, in
addition to more detailed requirements for scalability, elasticity, and cost-efficiency.
Requirements for these key propertiesmay be elicited with varying level of detail, as
explained in the CloudScale method in Sects. 5.6 and 5.7. The simplest solution is to
find one value representing each of these requirements. This was done in Sect. 2.4.1.
We will now go one step further and coarsely describe how these key characteristics
will evolve during a 3-year period.

6.2.2.1 Service-Level Objectives

For our customers, the 90 percentile represents a sound quality metric. For each
of the four operations in Sect. 2.2, we must decide the quality threshold which
marks the distinction between acceptable SLO and SLO violation. Since the four
CloudStore operations differ considerably both in frequency and in complexity, we
will distinguish between their quality thresholds. We consider the quality thresholds
as indicated in the third column in Sect. 2.3.1 to represent sound quality thresholds.

6 Analyzing a Modeled System 107

N
o

rm
al

is
ed

 Q
T

1 2 3

0.5

1.0

Time [Year]

Fig. 6.3 Quality threshold evolution for 3 years

However, in the last half-year of the 3-year period, we expect the competition
to become so tough that we will halve all of these quality thresholds. This is
represented in Fig. 6.3, where we have one value representing the quality threshold
evolution for all operations, with their original values as the start values. This, for
example, means that the quality threshold for the Pay operation will become 2.5 s
instead of the start value of 5.0 s, in the last 6 months.

6.2.2.2 Load

Since CloudStore has four different operations, each of these operations may have
different load evolutions, but a natural simplification is to have one load parameter,
representing the evolution of the average operation, instead of several operations
evolving independently.

As briefly outlined in Sect. 2.3.3, the load of a typical system will often have
several seasonal variations. We will have a general variation for our 3-year period,
but in addition, we may also have yearly variations, for example, an increased
number of customers before Christmas and a reduced number of customers after
Easter. There may be variations during a month as well as during a week and during
each day. When it comes to days, then Saturday and Sunday may differ from the
other days of the week. To keep our example simple, except for the 3-year trend, we
only have a daily variation.

Scalability is the ability to handle a certain workload, and for this metric, we are
therefore interested in the maximum for each day. Daily evolution is not relevant to
scalability. Figure 6.4 shows how the maximum number of daily users vary during
a 3-year period for CloudStore. Originally, there are 2000 maximum simultaneous
users. In the first half-year, this figure illustrates a linearly increasing trend, followed
by a stable period with 5000 simultaneous users of 1 year, and then a new increase
up to a new stable period in the last year. In this last stable period, there are 10;000
simultaneous users.

108 S. Lehrig et al.

L
o
ad

 [
#
 U

se
rs

]

1 2 3

2 000

5 000

10 000

Time [Year]

Fig. 6.4 Load evolution for 3 years

Hours during a typical day

F
ra

ct
io

n
 o

f
u
se

rs

8 16 24

0.2

0.5

1.0

Fig. 6.5 Daily load evolution

For both elasticity and cost-efficiency, we are also interested in the daily
evolution. While Fig. 6.4 represents the maximum number of daily users during
the 3-year period, Fig. 6.5 describes in more detail the daily variation in users. For
simplicity, we state that each day has the same pattern. From Fig. 6.5 we observe
that just in the 4 h interval between 18 and 22, the maximum number of daily users
are present. During the night, between 0 and 8, only 20% of the maximum users are
present, and during the normal working hours, from 9 to 16, half of the maximum
number of users are using our online bookstore.

6.2.2.3 Work

CloudStore has two work parameters: the number of books and the number of
customers. As a rule of thumb, we expect the number of customers to be 100 times
the number of simultaneous users. Therefore, the number of customers will grow
from 200;000 to 1;000;000 in the 3-year period, as derived from looking at Fig. 6.4.

Figure 6.6 depicts the evolution of the work parameter describing the number
of books. For the first 9 months, the work parameter number of books is stable

6 Analyzing a Modeled System 109

W
o
rk

 [
#
 B

o
o
k
s]

1 2 3

10 000

20 000

Time [Year]

Fig. 6.6 Work evolution for 3 years

at 10;000 books. Then, during the next 6 months, we have a linear increase up to
20;000 books, which defines the stable load during the remaining period.

6.2.3 Specify Overview Model and Generate Extended Palladio
Component Model

AnOverviewModel provides a high-level abstract view of the software architecture,
services, deployment, and the infrastructure of cloud-based architectures and its
deployment at a high and user-friendly level of abstraction, allowing for a formal
definition that can be used to share best practices and potentially automate analysis
and deployment actions.

The Overview Model can also encapsulate a software service implementation
(represented as a partial PCM model). This separation of the architecture and the
implementation into separate models provides a greater flexibility to reuse and
analyze existing software components using various software architectures. If we
want to analyze an already existing system, the easiest way is to extract logical parts
of the existing code, produce a partial PCM model, and attach it to the software
service containers in the Overview Model. This process can be automated and
guided by the Overview import wizard, which can also create the initial cloud
environment and the deployment with the desired properties.

Figure 6.7 shows a visual representation of an Overview Model of a simple
system composed of two Tomcat applications running on Amazon EC instances,
and which make use of the Amazon DynamoDB service, a MySQL RDS service,
and an email service. The model includes networking details such as average latency
and bandwidth, which can be used for the behavior analysis and simulation of
the overall system. Several other data can be defined. For example, we can define
the expected statistical distribution of response time for an external service, or the
expected capacity of a computing unit.

110 S. Lehrig et al.

Fig. 6.7 Overview Model of a simple two-tier application

To create the Overview Model from scratch, the system architect can use the
Overview diagram editor, which allows the user to drag components (e.g. services,
connections, cloud environments: : :) into a canvas and define their main properties.

The Architecture is the root component of the Overview Model. It holds
the descriptions of all external black-box services (e.g. external services) and
Cloud Environments (e.g. infrastructure services with well-defined properties).
Each Cloud Environment contains descriptions about availability zones, regions,
internal network, and services. The latter are divided onto three separate layers,
the infrastructure, the platform, and the software layer. This separation is based on
the type of a functionality it provides. The description of the particular service in
the Overview Model is modeled with the composition of interfaces and properties,
abstracted by the Descriptor entities. Descriptors are reusable objects with static
properties and can be referenced by services and network connections in the
Overview Architecture. This offers simplified migration of the described software
architectures between different cloud providers.

When the Overview Model is created together with partial PCM models, the
system is fully described and ready to be transformed into Extended PCM models,
which, besides the definition of the components, resources, and overall architecture
of a system, allows for the definition of self-adaptation rules, monitoring specifica-
tions, and SLOs.

Elastic properties of the infrastructure and the ability to program its runtime
behavior open a whole new horizon of possibilities. The infrastructure adaptation
and deployment can be modeled using the ATs language. In addition to this, the
role of ATs is to generalize the particular system architecture and provide basic
parameters to produce reusable models. Those ATs models can then be used in the
Overview-to-Extended PCM transformation process. Depending on the Overview’s
model deployment specification, the transformation process selects the appropriate
ATs and applies them to the Resource Environment and System models. In other
words, the OverviewModel contains a description of the elastic properties, together

6 Analyzing a Modeled System 111

with the deployment, and the ATs provides the implementation for the Analyzer
simulation engine.

6.2.4 Complete Extended Palladio Component Model

To unleash the full capabilities of ScaleDL-based analyses, software architects need
to provide completely specified Extended PCM models. This section describes how
software architects proceed with this completion—the last process from Fig. 6.2.

As a starting point, partial Extended PCMmodels can be automatically generated
from existing artifacts. Existing artifacts are either ScaleDL Overview Models
(as described in the previous section) or existing source code (as described in
Sect. 4.5.3.2). These models are only partial as, e.g., the Overview Model has no
detailed information about control and data flow, and the extracted model from
source code misses information about the resource environment and allocation
models.

Either way, software architects have to manually complete their Extended
PCM models in cooperation with service developers (Sect. 6.2.4.1). HowTos help
software architects in this task (Sect. 6.2.4.2).

6.2.4.1 Manually Creating and Adapting Extended Palladio Component
Models

The creation and adaption of Extended PCM models can be classified based on
the sub-models that need to be specified. Sub-models include the normal PCM
models and models for self-adaptation rules as available in the Extended PCM
(cf. Sect. 4.5.1). The specification of Usage Evolution models is part of a dedicated,
earlier process step (cf. Sect. 6.2.2). This section provides a brief summary of these
two categories; on the CloudScale website, we provide a detailed step-by-step
workshop [1].

Specifying Palladio Component Models

The Extended PCM allows to specify the same models as the PCM: component
specification, system model, resource environment model, and allocation model
are part of both languages. Therefore, software architects can simply follow the
processes already described for the PCM in the Palladio approach.

The development process according to the Palladio approach is based on the
process for component-based development [2]. Koziolek and Happe have refined
this process for quality-of-service (QoS) analyses [3]. The Palladio approach
follows this process and provides appropriate editors to software architects and
service developers [4, 5]. In summary, software architects proceed as follows.

112 S. Lehrig et al.

First, software architects derive system interfaces based on the pre-specified
Usage Evolution models. Each use case specified in these models is covered in a
dedicated interface. The operations of each interface can be derived from the needed
system interactions to realize the respective use case. The interfaces are attached to
the system via PCM’s system model.

Second, software architects derive and assemble components based on the
core business of the service to be developed. For example, for a bookshop like
CloudStore, the core business is books. Software architects accordingly need to
specify a business component that allows to manage books. The provided interface
of these components includes all business-relevant operations, e.g., to add new
books and to alter existing books. Software architects also specify the instantiation
and assembly of these components within PCM’s system model.

Third, software architects request implementations for these business com-
ponents from service developers. Service developers specify the SLO-relevant
behavior of these components, e.g., as resource demands. The result is refined
component specifications.

Fourth, software architects specify the allocation of the assembled components
onto processing resources. For this specification, they specify PCM’s resource
environment and allocation models according to the deployment information of
ScaleDL’s Overview Model.

Specifying Self-adaptation Rules

Typical cloud computing applications are elastic, i.e., they are able to adapt required
resources to actual workload demands. For this reason, an accurate ScaleDL model
needs to model such adaptations via self-adaptation rules. Software architects
specify self-adaptation rules via model-to-model transformations that consist of (1)
a trigger and (2) an action that can be activated by the trigger (cf. Sect. 4.5.1.2).

Software architects first specify the trigger as a simple query inside the model-
to-model transformation. This query checks whether monitored values exceed a
threshold value. For example, software architects may formulate a query that checks
whether 90% of response times of the last 10 s were below 2 s.

This query determines whether a transformation rule, which software architects
specify in the second step, is triggered. The transformation rule translates a PCM
model from a state (a) to a state (b). In the example in Fig. 6.8, state (a) describes
a system where two replicas of a Web & Application Server are load
balanced, whereas state (b) describes a system where three of these replicas are
load balanced. A transformation takes care of this adaptation.

6 Analyzing a Modeled System 113

Book Shop
Web

Book Shop
Business

Loadbalancer Server

Book Shop
Web

Book Shop
Business

Load-
balancer

Web & Application Server

Book Shop
Web
Pages

Book Shop
Business
Rules

Customer

Database Server

Book &
Customer
Data Provider

transformation

(a)

(b)

Loadbalancer Server

Book Shop
Web

Book Shop
Business

Load-
balancer

Web & Application Server

Book Shop
Web
Pages

Book Shop
Business
Rules

Customer

Database Server

Book &
Customer
Data Provider

Fig. 6.8 A transformation can adapt a system from a state (a) to a state (b)

Calibrating Palladio Component Models

PCM models have to be calibrated once they are specified. A calibration enriches
a PCM model with concrete resource demands of active resources, e.g., a CPU.
Resource demands can either be estimated by experts or measured in the target
environment (based on prototype or actual implementations). If the actual imple-
mentation is already available, the latter approach should be followed, because the
implementation can be used to measure demands directly in the target environment;
this is generally more accurate.

6.2.4.2 Using HowTos for Specifying Extended Palladio Component
Models

Software architects create architectural models, like Extended PCM models, based
on a given set of scalability, elasticity, and cost-efficiency requirements. Ap-
plications conforming to these models should optimally meet all pre-specified

114 S. Lehrig et al.

requirements. Architects try to meet these requirements by making suitable design
decisions during architectural modeling.

Fortunately, decision-making is not a purely creative task but can be governed by
HowTos, i.e., best practices to design systems in recurring situations (see Sect. 2.9).
In applying HowTos, software architects are less likely to create models that would
lead to requirement violations. Software architects only have to find and select
suitable HowTos for their particular situation and subsequently apply the HowTos
correctly—we describe these steps in the following.

Finding HowTos

When software architects follow the CloudScale method, a natural source for
HowTos is the CloudScale’s HowTos catalog (see Sect. 2.9 for the catalog). HowTos
from this catalog are especially useful if the relevant HowTos are formalized via ATs
because it eases their application (see Sect. 4.4.3 for formalized ATs).

However, there are more sources to be considered other than CloudScale’s
HowTos catalog. A generally good source is books on software architecture,
e.g., [6–12]. These books provide several HowTos in the form of architectural styles
and patterns for general and distributed software.

For more specific domains, specialized software architecture books report appro-
priate HowTos. For example, for the domain of cloud computing, several of such
books exist [13–16]. These books provide valuable information for variations and
additional descriptions to CloudScale’s HowTos catalog, which only includes the
most common HowTos from these sources, e.g., patterns for horizontal and vertical
scaling.

Besides such books, specialized HowTos are often directly provided by providers
of services and frameworks. For example, Amazon web services (AWS) provides
several HowTos for its cloud computing services in the “AWS Architecture Cen-
ter” [17].

Selecting HowTos

From the set of found HowTos, software architects need to select the HowTos that
they want to apply to their architectural model. Architects select by matching their
QoS requirements to the promises of the HowTo. For example, for performance
requirements, architects may select a HowTo that promises to improve response
times, like the Horizontal Scaling HowTo from Sect. 2.9. If software architects
cannot find such a suitable HowTo, software architects have to continue without
following HowTos (thus following a less engineering and more creative approach).

6 Analyzing a Modeled System 115

Applying HowTos

For applying HowTos, software architects follow the best practices described within
these HowTos. While software architects can follow these practices manually, the
use of HowTos formalized as ATs automatically ensures that architects follow these
practices consistently and correctly.

With ATs, software architects create appropriate bindings to AT roles and set
actual parameters. For example, they bind the load-balanced container role of
the Horizontal Scaling AT to the Web & Application Server, as shown in
Fig. 4.9.

Modeling tools prevent architects thereby from violations of constraints captured
in the boundAT, e.g., by disabling the creation of illegal connections and by pointing
to missing elements or existing but invalid elements. In contrast, such a consistent
and correct application of HowTo is not guaranteed when done manually.

6.2.5 Summary for the Specification of ScaleDL Models

With the completion of an Extended PCM model, software architects have final-
ized the specification process of ScaleDL models. As illustrated in Fig. 6.2, all
constituents of a ScaleDL model are now available: Usage Evolution, Overview
Model, Extended PCM (including potentially applied ATs). These constituents
completely characterize all relevant factors of a system’s scalability, elasticity,
and cost-efficiency. Therefore, ScaleDL models are suitable for analyses of these
properties. The next section describes such analyses using CloudScale’s Analyzer.

6.3 Step II: Use Analyzer

As illustrated in Fig. 6.1, the second step for architectural analyses within the
CloudScale method is the Use Analyzer step. Figure 6.9 details this step to show
how to configure, run, and interpret results of the Analyzer—CloudScale’s simulator
for ScaleDL models.

During simulation, the Analyzer measures metrics for typical cloud computing
properties, i.e., scalability, elasticity, and cost-efficiency. Based on these mea-
surements, software architects can decide whether their service requirements are
met. If these requirements are violated, software architects can iteratively alter
their ScaleDL model and check whether this alteration improves the situation.

116 S. Lehrig et al.

Start

ScaleDL model

Metric
measurements

Require-
ments met?

Stop

Yes

No

Run analyzer
Specify
ScaleDL
model

parameters

Legend

Start or
Stop

Tool-driven
process

Decision

manual
task

control &

external
manual

task

exernal
artifactartifact

Fig. 6.9 Use Analyzer process steps

Typical elements to be altered are additions and modifications of HowTos (e.g.,
adding caches and modifying load balancer parameters) and of resources (e.g.,
adding CPUs and increasing their processing rates). Once requirements are met,
software architects, service developers, and system engineers can continue to
realize, deploy, and operate their service—with a reduced risk that their system
violates requirements.

Figure 6.9 shows that, before starting an analysis, software architects must
determine a set of configuration parameters for the Analyzer (Sect. 6.3.1). Once
configured, software architects run the analysis (Sect. 6.3.2), which results in a
set of metric measurements. Based on whether these measurements indicate that
service requirements are met, software architects decide whether (a) to alter the
specification of their ScaleDL model and to reiterate the process or (b) to finalize
the Use Analyzer process. In case (a), software architects return to the previous step
described in Sect. 6.2. Moreover, in a later step of the CloudScale method—i.e.,
the realize, deploy, and operate system step (Sect. 5.10)—software architects can
compare analysis results against actual measurements in the target environment.
Such comparisons allow software architects to check whether the system has been
correctly realized.

6 Analyzing a Modeled System 117

6.3.1 Set Configuration Parameters

The first step in Fig. 6.9 is to set the Analyzer’s configuration parameters. The
Analyzer’s configuration parameters determine which metrics are investigated, the
confidence in measurement results, the total simulation time of the Analyzer, and
how capacity is investigated. Software architects need to determine which metrics
are of interest and how to trade off confidence with total simulation time. The
suggested strategy is to start with small total simulation times. Subsequently,
software architects can increase the confidence where needed.

Besides configuring a ScaleDL model as input, the Analyzer’s main parameters
are the following:

Monitor specification: Allows software architects to configure which metrics
will be measured. A monitor specification includes a set of monitors. Each
monitor points (1) to an architectural element for which measurements need to
be taken and (2) to a set of concrete metrics that have to be measured for that
element. In setting up these monitors, the Analyzer automatically measures the
configured metrics.
The Analyzer can simulate typical performance metrics like response times,
throughput, and utilization. Moreover, the Analyzer supports metrics for scal-
ability, elasticity, and cost-efficiency [18].
For example, the number of SLO violations [19] elasticity metric counts the
number of violated SLOs during adaptation. Another example is themean time to
quality repair [19] elasticity metric, which measures the time a system needs to
move from a state that violates SLOs to a state that satisfies all SLOs. An example
for a cost-efficiency metric is the cost over time [20] metric, which computes the
operation costs incurred for using cloud computing resources per billing interval.

Simulation time stop condition: Limits the total execution time of an Analyzer
run. A longer run will typically give a higher confidence interval.

Measurement count stop condition: Limits the maximum number of measure-
ments of an Analyzer run. A higher number will typically give a higher
confidence interval but increase the total execution time.

Capacity investigation interval: Sets an interval for the number of users for
which the Analyzer investigates whether a system can fulfill SLOs. The Analyzer
first checks whether the system fulfills SLOs at interval borders. If the lower
border already violates SLOs, the Analyzer reports that the capacity is below this
lower threshold. If the upper border fulfills SLOs, the Analyzer reports that the
capacity is beyond this upper threshold. Otherwise, the lower border is fulfilled
but the upper border is not. The Analyzer then conducts a binary search for
determining the concrete capacity for the given interval.

118 S. Lehrig et al.

Enable scalability analysis: Determines whether the Analyzer assumes an un-
limited amount of available resources (as virtually available in cloud computing
environments). If enabled, the Analyzer uses the previously described capacity
analysis to determine whether the upper interval bound fulfills all SLOs, given
an unlimited amount of resources. If all SLOs are fulfilled, the Analyzer reports
that the system is scalable; otherwise, the Analyzer reports that the system
includes a scalability bottleneck, along with metric measurements to investigate
this bottleneck.

6.3.2 Run Analyzer and Assess Requirements

In the Run Analyzer and Assess Requirements step from Fig. 6.9, software architects
start the Analyzer with a given ScaleDL model and the configuration parameters
from the previous step. The analysis results subsequently allow software architects
to assess whether QoS requirements were met.

For assessing QoS requirements, software architects have to investigate analysis
results and compare them to the QoS requirements. The CloudScale Environment
provides a dedicated results view for this purpose. Inside the results view, software
architects can select results by choosing the metrics of interest.

For example, Fig. 6.10 illustrates analysis results for the response times of a
fictional DefaultUsageScenario. The view on the left part of Fig. 6.10 allows

Fig. 6.10 Example analysis results for the response times metric

6 Analyzing a Modeled System 119

software architects to select such analysis results. The view on the right part of
Fig. 6.10 subsequently visualizes the results, e.g., in an XY graph.

The XY graph in Fig. 6.10 shows response time measurements (Y-axis) over
the simulated time (X-axis). For example, after 19 s of simulation, the Analyzer
measured a response time of approximately 18 s. If a QoS requirement stated that
response times are never allowed to exceed the 10 s mark, such a requirement would
clearly be broken. In consequence, software architects would have to go back to
the previous step of specifying the ScaleDL model to refine and alter the model
such that QoS requirements can be finally met. Another Analyzer run can confirm
whether this is the case.

For further details, the Palladio workshop [1] includes step-by-step instructions
for software architects. These instructions cover the whole Run Analyzer and Assess
Requirements step.

6.4 Analyzer Running Example

This section illustrates how we created a ScaleDL model for CloudStore
(Sect. 6.4.1) and shows how we used this model to evaluate capacity, scalability,
elasticity, and cost-efficiency metrics (Sect. 6.4.2). Particularly, we report the efforts
we made during these actions in terms of creation and evaluation times. We provide
a detailed description on how we created and evaluated the CloudStore model
in [21] and as online screencasts [22].

6.4.1 Step I: Specifying a CloudStore Model via ScaleDL

In the first step for analyzing modeled systems (cf. Sect. 6.2), we specify a
ScaleDL model for CloudStore. We required a total specification effort of approxi-
mately 214 h. This specification involves the specification of Usage Evolutions, an
Overview Model, and an Extended PCM model (83 h effort), the calibration of the
PCM model (121 h effort), and the evaluation of the model (10 h effort).

The modeling granularity is determined by the critical use cases from Sect. 5.6:
the Sell Single Book and the Premium Customer Sale use cases.
These use cases require customers to interact with a total of four different system
operations. Each of these operations needs to be covered in one of CloudStore’s
system interfaces and is modeled in the following.

120 S. Lehrig et al.

6.4.1.1 Constructing the Model

To specify an extended PCMmodel for CloudStore, we first used the Extractor to get
an initial overview of CloudStore’s structure and behavior. Afterward, we manually
refined and completed the extracted CloudStore by inspecting the source code of
CloudStore’s implementation.

Figure 6.11 depicts the resulting model. It refines the previously described
simplified CloudStore model (see Fig. 4.9) and uses the same syntax by illustrating:
(1) the static system structure of the CloudStore system via connected component
instances; (2) the allocation of these components to system resources (Web &
Application Server, Image Server, Database Server, and exter-
nally hosted External Services); and (3) the system entry point for customers
(interfaces for accessing web pages for books, home page, shopping carts, and

Web & Application Server

Image Server

Customer

Image
Loading

IImage

Image
Server
Connection

Shopping
Cart
PagesICart

Web &
Application Server
Connection

Order
Pages

IOrder

Book
Pages

IBook

IConnect

IConnect

External Services

Payment
Gateway

IPay

Database
Connection
Pool

IConnect

Database Server

DatabaseIDB

Database
Server
Connection

IConnect

IBookDB

ICustomerDB

ICartDB

IOrderDB

Database
Access

Home
Page

IHome

Legend:

compo-
nent

resource
containerrequests

provided
interface

required
interface

provided
infrastructure
interface

required
infrastructure
interface

infras-
structure
component

Fig. 6.11 Extended PCM model of the CloudStore online bookshop

6 Analyzing a Modeled System 121

orders). We specified each of these views in a dedicated extended PCM model with
a behavior, as described next.

Customers enter the system via the web pages provided by the Book Pages,
Home Page, Shopping Cart Pages, and Order Pages components al-
located on the Web & Application Server. Book Pages provides op-
erations regarding books (e.g., to query book details or search for books). The
Home Page component shows CloudStore’s home page, which welcomes its
customers and displays possible book categories for browsing. Shopping Cart
Pages allows customers to register, add books to a shopping cart, and check-out
the shopping cart. Afterward, Order Pages allows to follow up on the order.
Order pages can particularly request payment services from the externally
hosted Payment Gateway.

The aforementioned components require operations of the Database compo-
nent as allocated on the Database Server. CloudStore’s database stores entries
for books, customers, shopping carts, and orders. Moreover, if a returned web page
references images (e.g., book covers), a customer’s browser subsequently fetches
these references via the Image Loading component allocated on the dedicated
Image Server.

Requests to the Database are intercepted by a Database Access compo-
nent that manages database connections. Database Access receives/returns
such connections from/to the Database Connection Pool component.
Also Web & Application, Image, and Database Server use pools for
handling customer requests (Web & Application Server Connection,
Image Server Connection, Database Server Connection).
These pools (white-colored infrastructure components in Fig. 6.11) are typical
performance factors as their pool size limits the amount of requests that can be
processed in parallel.

The extended PCM supports acquiring and releasing connections from these
resource pools within service effect specifications (SEFFs; cf. Sect. 4.5.1.1). In our
model, every interaction requires the acquisition of connections and their release
once the interaction ends.

Figure 6.12 illustrates this pattern for SEFFs of front-end component operations
that interact with database and image components. Actions (1)–(3) model the
performance impact of creating an HTML page for customers, while action (4)
models the performance impact of subsequently resolving image references. These
two phases—receiving an HTML page and subsequently its references—reflect the
typical behavior of web browsers.

122 S. Lehrig et al.

(4) Interact with
Image Loading

(2) Interact with
Database Access &
Create HTML Page

Component: Database Access Component: Image Loading

(1) Acquire Web &
Application Server

Connection

(3) Release Web &
Application Server

Connection

(2.1) Acquire
Database

Connection

(2.2) Access
Database

(2.3) Release
Database

Connection

(4.1) Acquire
Image Server
Connection

(4.2) Load
Image

(4.3) Release
Image Server
Connection

Component: Database

(2.2.1) Acquire
Database Server

Connection

(2.2.2) Use
Database

(2.2.3) Release
Database Server

Connection

Fig. 6.12 Behavior of front-end components interacting with database and image components

We also used the concept of connection pools to realize transactions; modeled
as connection pools with pool size 1. Our transactions include write operations for
creating new customers, books, and orders. Such transactions typically have a major
performance impact. The complete model is available at [23].

6.4.1.2 Calibrating the Model

For the calibration of the CloudStore model, we measure demands directly in the
target environment because we have the actual implementation already available.
We accordingly executed the following actions:

Set up on-premise environment. We used three equivalent computers for each
of CloudStore’s tiers. Each computer operates with Ubuntu 14.04, 2.67GHz 2-
core CPUs, and 2� 4.00 GiB main memory. We synchronized these values with
our performance model for CloudStore.

Deploy CloudStore servlets into the environment. For the front-end, we de-
ployed CloudStore’s servlets on a TomCat 7.0.30 (Web & Application
Server). For the back-end, we used an Apache HTTP 2.2.29 server (Image
Server) and MySQL 5.5.27 (Database Server). We limited the size of
pools to 250 server connections (for servers)/100 database connections (for
the Database Access component). We synchronized these values with our
performance model.

Generate workload and measure resource demands. For each operation of in-
terest, we generated dedicated workloads to measure the exclusive resource
demands for that operation (with a 10-min warm-up phase). We used Kieker
1.9 [24] as the monitoring framework. Kieker sent response time measurements
to a home-brew performance engineering tool for visualizing and recording these

6 Analyzing a Modeled System 123

measurements in an appropriate format. For requests to Image and Database
Server, we only measured their response times as externally observed by the
Web & Application Server, i.e., without conducting more fine-grained
measurements on these servers. Because our focus is on software applications,
we wanted to center on the behavior of the Web & Application Server
itself and avoided digging deeper in the file management of Image Server
database details.

Put measured demands into the performance model. Our home-brew perfor-
mance engineering tool allowed us to live-monitor and store received measure-
ments. Based on this data, we calculated probabilistic distribution functions
for response times and enriched our performance model with these functions.
Because CloudStore is CPU bound, we enriched our model only with functions
for CPU demands.

6.4.1.3 Evaluating the Model

We evaluated the performancemodel’s accuracywith the “BrowsingMix” workload
(cf. Sect. 3.7) and a load of 300 users. In contrast to the calibration workloads
(which are separated per operation), such a workload is considerably more complex
and, thus, suited for evaluation. Because the Palladio-Bench allowed us to generate
JMeter workload scripts from our “Browsing Mix” usage scenario model, we
used Apache JMeter 2.12 [25] as workload generator and for response time
measurements. We had to iterate the model creation process two times as we
discovered modeling mistakes during evaluation (e.g., we forgot to return acquired
connections, resulting in drastically increasing response times). After these two
iterations, we achieved a prediction error of 2.76%. As this value was below our
30% threshold, we considered our model creation process to be successful.

6.4.2 Step II: Using the Analyzer with the CloudStore Model

This section details our analysis results for the CloudScale model. This analysis
is the second step for analyzing modeled systems (cf. Fig. 6.1) and requires only
minor effort compared to model specification (we required less than 10min per
investigated quality property).

124 S. Lehrig et al.

6.4.2.1 Capacity Analysis

By using our CloudStore model as input, the Analyzer can automatically determine
capacity values for a given user number interval (see Sect. 6.3.1). For example, when
we set the interval to [1 user, 1000 users], the Analyzer determines the concrete
capacity for that interval. If the real capacity is beyond the interval borders, the
Analyzer returns “1000 users” as a result, thus leaving to the software architect the
decision to investigate further intervals.

A run of the Analyzer with our CloudStore model and a range of [1 user, 1000
users] indeed results in this situation: The Analyzer outputs that the user capacity is
1000 users (or more). To get more accurate results, we next configured the Analyzer
for the interval [1000 users, 2000 users]. Unfortunately, the Analyzer throws an
“unable to create new native thread” exception when started like this. After digging
into the cause of this exception, we found that the Analyzer’s simulation engine
creates two threads per simulated user; however, our operating system does not
support the creation of so many threads. We reported this limitation at a Palladio
developer meeting and got informed that a new implementation of the simulation’s
thread handling based on light-weight threads for the Java virtual machine (JVM)
(fibers) is currently ongoing, which will fix the issue.1 At this point, we stopped the
investigation of CloudStore’s capacity based on our model, while noting that the
result for 1000 users is in line with the corresponding benchmark.

6.4.2.2 Scalability Analysis

Given the same inputs as for the capacity analysis, the Analyzer again outputs a
value of 1000 users for a scalability analysis (configured as described in Sect. 6.3.1).
The interpretation of this result is that there is no scalability issue in the range of 1
to 1000 users. Given that the capacity for this configuration is at least 1000 users,
this result is no surprise: it generally holds that “scalability range � capacity” for
any system configuration.

6.4.2.3 Elasticity Analysis

Elasticity analyses make sense only for elastic systems. Therefore, the CloudStore
model needs to include self-adaptation rules that specify how CloudStore minimizes
SLO violations when workload changes, e.g., in the case of sudden workload peaks.

1The minutes of the developer meeting can be found (in German) at https://sdqweb.ipd.kit.edu/
wiki/PCM_Development/Palladio_Concall/Minutes_20150509.

https://sdqweb.ipd.kit.edu/wiki/PCM_Development/Palladio_Concall/Minutes_20150509
https://sdqweb.ipd.kit.edu/wiki/PCM_Development/Palladio_Concall/Minutes_20150509

6 Analyzing a Modeled System 125

Web & Application Server

Image Server

Customer

Image
Loading

IImage

Image
Server
Connection

Shopping
Cart
PagesICart

Web &
Application Server
Connection

Order
Pages

IOrder

Book
Pages

IBook

IConnect

IConnect

External Services

Payment
Gateway

IPay

Database
Connection
Pool

IConnect

Database Server

DatabaseIDB

Database
Server
Connection

IConnect

IBookDB

ICustomerDB

ICartDB

IOrderDB

Database
Access

Home
Page

IHome

 Horizontal Scaling AT
@loadbalanced container
 (number of initial replicas: 1,
 scale-in threshold: 5%,
 scale-out threshold: 80%)

Fig. 6.13 Extended PCM model of the CloudStore online bookshop with an annotated AT role

We have included such a self-adaptation mechanism via the Horizontal
Scaling (Container)AT (described in Sect. 4.4.3) in our model. Figure 6.13
illustrates that the AT’s load-balanced container role annotation at the
Web & Application Server models horizontal scaling: Initially, Cloud-
Store has one replica, scales out if average CPU utilization increases above 80%,
and scales in if average CPU utilization decreases below 5%. Such averages are
determined every 5min (like in Amazon EC2).

126 S. Lehrig et al.

Fig. 6.14 Elasticity result for CloudStore with a horizontal scaling web & application server

The graph in Fig. 6.14 shows the result of the elasticity analysis with regard to
the number of SLO violations. Over simulation time (X-axis), response times (Y-
axis) are repeatedly too high and violate the given response times SLO of 3 s. The
Analyzer output highlights these violations, as specified in the graph’s legend.

The interesting observation is that—despite the applied AT—response times
keep violating the SLO. These results therefore point to the fact that we actually
reconfigured the wrong server: The Database Server is the actual bottleneck
for the investigated workload (which can be seen, e.g., in the Analyzer’s results
for Database Server utilization). A way to resolve the issue is to apply
the Vertical Scaling AT (cf. Sect. 4.4.3) to the Database Server, like
illustrated in Fig. 4.9. A second elasticity analysis run indeed confirms that then no
SLOs are violated anymore.

6.4.2.4 Cost-Efficiency Analysis

Given a system that dynamically scales in and out, different costs incur over time
for the demanded resource containers. The Analyzer reports the total costs incurred
within a specific time interval over time.

The example result in Fig. 6.15 illustrates such an Analyzer output. Over time
(X-axis), different costs incur for resource usage (Y-axis). Costs vary because the
system demands more and more resource containers (i.e., replicas of CloudStore’s
Web & Application Server).

6 Analyzing a Modeled System 127

Fig. 6.15 Cost-efficiency result for CloudStore with a horizontal scaling web & application server

6.5 Conclusion

This chapter details the process, using the CloudScale method, that software archi-
tects can employ to analyze a modeled system. The two essential steps that software
architects need to conduct in this process are (1) to model a system in ScaleDL and
(2) to analyze this model using CloudScale’s Analyzer. Based on analysis results,
software architects can decide whether SLOs need to be renegotiated, the model
needs adaptations to fulfill SLOs, or the system can be realized as planned.

The main benefit of such a model-based analysis is that software architects can
assess their design and what-if scenarios without having to implement each option.
For example, software architects may need to decide whether they should horizon-
tally scale a particular server. As our results in this chapter show, such patterns can
be easily applied wrongly, i.e., without being beneficial: In the CloudStore example,
it was not beneficial to horizontally scale the web & application server. The analysis
results directly pointed to this issue without much effort.

128 S. Lehrig et al.

Some modeling effort (and experience) is required to create accurate ScaleDL
models. Fortunately, CloudScale’s Extractor allows to automatically extract initial
models from existing source code. Moreover, CloudScale’s HowTos—and ATs in
particular—allow software architects to efficiently integrate recurring patterns in
their models. Also the power of the Analyzer—with support for capacity, scalability,
elasticity, and cost-efficiency analyses—often outweighs modeling efforts.

References

1. CloudScale: Whitepapers, http://www.cloudscale-project.eu/publications/whitepapers [Visited
on 12/19/2016]

2. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying Component-
Based Software. Addison-Wesley Longman, Boston (2000)

3. Koziolek, H., Happe, J.: A QoS driven development process model for component-based
software systems. In: Proceedings of the 9th International Conference on Component-Based
Software Engineering, ser. CBSE06, Væsterås, pp. 336–343. Springer, Lund (2006)

4. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-driven
performance prediction. J. Syst. Softw. 82, 3–22 (2009). [Online] Available: http://dx.doi.org/
10.1016/j.jss.2008.03.066

5. Becker, S., Busch, A., Brosig, F., Burger, E., Durdik, Z., Heger, C., Happe, J., Happe,
L., Heinrich, R., Henss, J., Huber, N., Hummel, O., Klatt, B., Koziolek, A., Koziolek, H.,
Kramer, M., Krogmann, K., Küster, M., Langhammer, M., Lehrig, S., Merkle, P., Meyerer, F.,
Noorshams, Q., Reussner, R.H., Rostami, K., Spinner, S., Stier, C., Strittmatter, M., Wert, A.:
In: Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H., Kramer,
M., Krogmann, K. (eds.) Modeling and Simulating Software Architectures – The Palladio
Approach, p. 408. MIT Press, Cambridge (2016). [Online] Available: http://mitpress.mit.edu/
books/modeling-and-simulating-software-architectures

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Longman, Boston (1998)

7. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. Wiley, New York (2009)

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, New York (1996)

9. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, vol. 2. Wiley, New York (2000)

10. Kircher, M., Jain, P., Pattern-Oriented Software Architecture: Patterns for Resource Manage-
ment. Wiley, New York (2004)

11. Buschmann, F., Henney, K., Schmidt, D.: Pattern-Oriented Software Architecture: A Pattern
Language for Distributed Computing. Wiley, New York (2007)

12. Buschmann, F., Henney, K., Schmidt, D.: Pattern-Oriented Software Architecture: On Patterns
and Pattern Languages. Wiley, New York (2007)

13. Rhoton, J., Haukioja, R.: Cloud Computing Architected: Solution Design Handbook. Recursive
Press, London (2011)

14. Wilder, B.: Cloud Architecture Patterns: Using Microsoft Azure. O’Reilly Media, Sebastopol
(2012)

15. Erl, T., Puttini, R., Mahmood, Z.: Cloud Computing: Concepts, Technology and Design.
Prentice Hall PTR, Upper Saddle River (2013)

16. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud Applications. Springer, Heidelberg (2014)

17. AWS Architecture Center. http://aws.amazon.com/architecture [Visited on 05/20/2016]

http://www.cloudscale-project.eu/publications/whitepapers
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://aws.amazon.com/architecture

6 Analyzing a Modeled System 129

18. Lehrig, S., Becker, M.: Approaching the cloud: using Palladio for scalability, elasticity, and
efficiency analyses. In: Proceedings of the Symposium on Software Performance 2014, 26–28
November 2014, Stuttgart (2014)

19. Becker, M., Lehrig, S., Becker, S.: Systematically deriving quality metrics for cloud computing
systems. In: Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering, ser. ICPE’15, pp. 169–174. ACM, Austin (2015). [Online] Available: http://doi.
acm.org/10.1145/2668930.2688043

20. Lehrig, S., Eikerling, H., Becker, S.: Scalability elasticity, and efficiency in cloud computing: a
systematic literature review of definitions and metrics. In: Proceedings of the 11th International
ACM SIGSOFT Conference on Quality of Software Architectures, ser. QoSA’15, pp. 83–92.
ACM, Montreal (2015). [Online] Available: http://doi.acm.org/10.1145/2737182.2737185

21. Lehrig, S., Becker, S.: Using performance models for planning the redeployment to
infrastructure-as-a-service environments: a case study. In: Proceedings of the 12th International
ACMSIGSOFT Conference on Quality of Software Architectures, ser. QoSA’16. ACM, Venice
(2016)

22. Screencasts. http://www.cloudscale-project.eu/results/screencasts/ (2016)
23. CloudStore Model. https://github.com/CloudScale-Project/Examples/tree/master/CloudStore/

analyser (2016)
24. Kieker. http://kieker-monitoring.net [Visited on 06/20/2016]
25. Apache JMeter. http://jmeter.apache.org [Visited on 06/20/2016]

http://doi.acm.org/10.1145/2668930.2688043
http://doi.acm.org/10.1145/2668930.2688043
http://doi.acm.org/10.1145/2737182.2737185
http://www.cloudscale-project.eu/results/screencasts/
https://github.com/CloudScale-Project/Examples/tree/master/CloudStore/analyser
https://github.com/CloudScale-Project/Examples/tree/master/CloudStore/analyser
http://kieker-monitoring.net
http://jmeter.apache.org

Chapter 7
Analyzing and Migrating an Implemented
System

Steffen Becker and Sebastian Lehrig

Abstract While modern systems are often built in a way that respects cloud
computing requirements, the majority of existing systems have been built before
dynamically allocatable resources became mainstream. Those systems have been
designed and implemented for dedicated hardware, often large-scale servers, which
had been sized to the maximum workload the systems were expected to face. This
approach led to a high amount of wasted resources, which were operated in a stand-
by fashion only to deal with seldom high-load situations. Therefore, it is desirable
to migrate legacy systems in a way that they can benefit from the cloud computing
approach. However, several issues arise. Legacy systems were often built without
upfront modeling or the models became outdated over time. Additionally, while
there are several tools that analyze legacy systems to detect insufficient coding
style or bad designs, almost no tooling exists that spots defects in the systems. This
deficiency hinders systems to smoothly operate in cloud computing environments,
i.e., these systems have a limited scalability. In CloudScale, we address this issue by
dedicated, built-in method support for system evolution, i.e., for migrating legacy
systems to cloud computing environments. In this chapter, we outline CloudScale’s
evolution support and present tools which help software architects to migrate legacy
systems to scalable, cloud computing applications.

Section 7.2 describes the process steps when spotting HowNotTos. Statical
detection of HowNotTos is further elaborated in Sect. 7.3, while dynamic detection
is discussed in Sect. 7.4. Section 7.5 links HowNotTos with best-practice HowTos.
An example is described in Sect. 7.6.

S. Becker (�)
University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
e-mail: steffen.becker@informatik.uni-stuttgart.de

S. Lehrig
IBM Research, Technology Campus, Damastown Industrial Estate, Dublin 15, Ireland
e-mail: sebastian.lehrig@ibm.com

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7_7

131

mailto:steffen.becker@informatik.uni-stuttgart.de
mailto:sebastian.lehrig@ibm.com

132 S. Becker and S. Lehrig

7.1 Introduction

In the following, we give a brief overview of the evolution support process in the
CloudScale method (cf. Fig. 7.1).

When using the CloudScale method in evolution scenarios, we take the route
highlighted in Fig. 7.1 using a bold black, dashed arrow. These evolution scenarios
cover methods and tools to assist software engineers to evolve an existing software
system to enable its deployment in cloud computing environments by checking for
and implementing scalability requirements.

Besides the steps already explained in Chap. 5, the relevant step for evolution
scenarios is the Use Spotters step. It is needed for scenarios where software
architects want to knowwhether their existing systems will scale. This is particularly
important if legacy systems are migrated to a cloud computing environment, where
the underlying platform provisions additional resources to deal with increasing
demands. Only scalable software is able to effectively utilize the additional re-
sources and, hence, to cope with the increased demands. The Use Spotters
step analyzes the source code of existing code-bases or implemented, deployed,

Legend

control &

Start or
Stop

Tool-driven
process

Decision

Manual task

Role

and migrating an
implemented system

Use
Spotters

Analysis
based on?

Requirements
met?

Stop

Use Analyzer

Model

Start

Identify scalability, elasticity,

requirements

Identify SLOs,
critical use cases and

key secenarios

Specify
ScaleDL
model

Realize, deploy, and
operate system

Implementation

No

Yes

Software
architect

Service
developer

Product
manager

Service
consumer

System
engineer

Service
provider

Software
architect

System
engineer

Fig. 7.1 Reverse engineering and reengineering in the CloudScale method

7 Analyzing and Migrating an Implemented System 133

and executing systems. In various substeps (as explained in Sect. 7.2), it diagnoses
problems (called HowNotTos, as introduced in Sect. 2.10). These HowNotTos
indicate limits in the code’s or the deployed system’s scalability. In the remainder
of this chapter, we explain in detail how this spotting works.

7.2 Spotting HowNotTos

This section details the Use Spotters step in the CloudScale method as depicted
in Fig. 7.1. Figure 7.2 shows the subactions that have to be executed by an engineer
in the Use Spottersmethod step.

Engineers start the Use Spotters activity in Fig. 7.2 with a static detection
of anti-pattern candidates in the source code of the system’s implementation. This is
done in the Use Static Spotter step and supported by the Static Spotter tool.
For this detection, the tool takes three artifacts as input (see top row of Fig. 7.2):
the system’s source code, an anti-pattern catalog (e.g., the scalability anti-pattern
catalog provided by CloudScale), and a Static Spotter configuration defining various
detection parameters (as documented in CloudScale’s user manual [1]). The main
parameters are those which configure the included Extractor run. More details on
these parameters can be found in Sect. 4.5.3.2.

The Static Spotter tool first creates a model from the provided source code
(by reusing internally the Extractor tool; cf. Sect. 4.5.3.2). Afterward, the Static
Spotter tool searches inside the created model for anti-pattern candidates provided
in the anti-pattern catalog. For example, it looks for and marks all synchronized
methods in an implementation, as they are all potential One-Lane Bridges (OLBs).
Details on the Static Spotter and its anti-pattern catalog are given in Sect. 7.3. After
successfully executing the Static Spotter, software engineers have a set of anti-
pattern candidates. This set might be helpful on its own, as it provides useful insights
to developers. If developers can make sense out of the anti-pattern candidates,
they can abort executing the spotter method here. However, normally, developers
continue with the next steps.

The goal of the next steps is to check whether identified anti-pattern candidates
from the static detection manifest in actual anti-patterns. In these steps, software
engineers first prepare the desired target environment for a dynamic detection. For
this, software engineers conduct two steps in parallel: They set an instrumented
service into operation (left hand fork in Fig. 7.2) and they configure the dynamic
detection run (right hand fork in Fig. 7.2). Note that there is more configuration and
set-up work needed for the Dynamic Spotter, as it is generally more complex to
instrument and execute a system in an artificial workload environment than doing
static code analysis.

For instrumentation, the system’s source code has to be instrumented with
probes that measure various performancemetrics like response times, passage times,
waiting times, or utilizations. This instrumentation is a semi-automatic step for
developers and depends on the instrumentation framework used. Typical frame-

134 S. Becker and S. Lehrig

Start

Source Code

Anti-Pattern
Candidates

Require-
ments met?

Stop

Yes

No

Run Static
Spotter

Set Static Spotter

parameters

Legend

Start or
Stop

Tool-driven
process

Decision

manual
task

control &

exernal
artifactartifact

Static Spotter

Anti-Pattern
Catalog

Run Dynamic
Spotter

Instrument
Source Code

Instrumented
Service

Deploy and
Operate
Service

Set Dynamic Spotter

parameters

Selection of anti-
pattern

candidates, load
scripts,

connection

Detected Pattern
and Root-Causes

Fix Root-Cause

Fig. 7.2 Overview on the Use Spotters process

7 Analyzing and Migrating an Implemented System 135

works used for instrumentation are Kieker,1 AIM,2 and DynaTrace.3 Configuring an
instrumentation framework is a semi-automatic step, as developers need to manually
define the positions in the system’s implementation that they want to monitor.
Afterward, the monitoring frameworks can automatically insert probes into the
system’s implementation. The anti-pattern candidates identified by the Static Spotter
serve as starting points for the manual identification of suited monitoring spots.
Once the system is instrumented with probes, it is started in its genuine execution
environment.

Concurrently, the Dynamic Spotter is configured by selecting the anti-pattern
candidates to be verified, load scripts implementing key scenarios, and settings
that specify how to connect to the instrumented service (for detailed configuration
documentation, consult CloudScale’s user manual [1]). In case the Static Spotter
provided suitable anti-pattern candidates, the selected candidates allow the Dynamic
Spotter to inspect only those candidates. But even in case no anti-pattern candidates
have been found (or no suitable candidates have been selected), the Dynamic
Spotter operates with a set of default dynamic anti-pattern candidates. These
default candidates then allow for a coarse-grained inspection of the system, i.e.,
by using only probes at the system boundary and not analyzing system internals.
For example, such a probe might only inspect the main business logic interface or
the entry of the database access layer.

Once these inputs are prepared, the Dynamic Spotter analysis step is conducted.
As output, the Dynamic Spotter provides a list of detected anti-patterns as well as
their root causes. This step is further detailed in Sect. 7.4.

After running the Dynamic Spotter, the software engineer has a set of HowNot-
Tos that hinder his system to scale. It is up to the engineer now to decide whether any
found HowNotTos are severe and need to be fixed or whether they are satisfied with
the current state of the system. Depending on whether this list includes crucial anti-
patterns (i.e., those that cause violations in the configured service-level objectives
(SLOs)), the software engineer can decide as part of the reengineering activity to
fix root causes of such crucial anti-patterns. For fixing root causes, we provide
a novel concept that links anti-patterns to patterns (cf. Sect. 7.5). Once fixed, the
system engineer can then iterate the Spotter process again to check whether he or
she successfully removed detected anti-patterns or to fix more anti-patterns.

Once the results are satisfactory, the Use Spotters substep in Fig. 7.1 is
finished, and engineers can resume executing the CloudScale main method.

1http://kieker-monitoring.net.
2http://sopeco.github.io/AIM.
3https://www.dynatrace.com.

http://kieker-monitoring.net
http://sopeco.github.io/AIM
https://www.dynatrace.com

136 S. Becker and S. Lehrig

7.3 Statically Detecting HowNotTos

In this section, we describe the Static Spotter’s internals, and the methodology used.
The Static Spotter is a reverse engineering tool based on Reclipse [2], a tool for
the automatic detection of so-called search patterns, which are then interpreted
as potential scalability anti-patterns. Search patters formalize certain source code
structures, which may appear in existing code, e.g., a block of Java statements
encapsulated in a synchronized block. Such a structure becomes a scalability
anti-pattern if the synchronized block turns out to become a OLB scalability anti-
pattern in the case of increased workload. Here, we use the Static Spotter to
detect scalability anti-pattern candidates so that during the evolution phase, software
engineers can locate potential or dormant scalability issues with the help of the
Static Spotter.

In the following, we describe the Static Spotter’s methodology. The Static Spotter
takes partial Scalability Description Language (ScaleDL) models as an input. Partial
ScaleDL models can be the ones generated by the Extractor (cf. Sect. 4.5.3.2). The
output of the Static Spotter is a ranked list of scalability anti-pattern candidates.

The Static Spotter does two things: parse the code and models, and then look for
search patterns and interpret them as scalability pattern candidates. There is a pre-
configuring step before parsing and searching: to set up the search pattern catalogs.
In these catalogs, graph patterns are used to formalize the search patterns. Figure 7.3
shows a catalog used to detect the scalability anti-pattern OLB. For example, it
shows an AcquireReleasePair on the top, which is a pattern detecting a code region
protected by a mutual exclusive semaphore, or a SynchronizedMethod pattern at the
bottom, which detects synchronized Java methods. Other visible patterns are helper
patterns.

Since synchronized blocks and synchronized methods are potential OLB can-
didates, Fig. 7.4 depicts an AcquireReleasePair pattern. A static analysis parses
partial ScaleDL models and searches for instances of the defined search patterns.
The black rectangles represent objects to be detected in one of the source models
(code or extracted ScaleDL model). For the AcquireRelease pair, Fig. 7.4 shows

Fig. 7.3 Overview of a pattern catalog

7 Analyzing and Migrating an Implemented System 137

Fig. 7.4 Static Spotter search pattern for AcquireReleasePair

an AcquireAction and a ReleaseAction to be detected. Black lines represent links
between objects. For example, the Acquire Action and ReleaseAction have to be
linked to the same service effect specification (SEFF) (cf. Sect. 4.5.1.1). Ellipses
are annotations used by the Static Spotter tool. Black ellipses are annotations which
have been created before, during the detection of a subpattern or helper pattern.
A subpattern or helper pattern describes a reusable partial pattern that can be
used in the specification of multiple higher-level patterns. Green ellipses specify
annotations to be added to the model as marker for found patterns. In our example,
the AcquireReleasePair annotationwill be used to mark any detected instance of this
anti-pattern. The pattern specification language supports more concepts; see [2].

The result of the static analysis is a set of annotations that complywith the search-
pattern specifications. We then interpret some of these search patterns as potential
scalability anti-patterns (while others just form helper search patterns to structure
the search-pattern catalog). The tool provides together with each detected scalability
anti-pattern a relevance ranking based on likelihoods. Each likelihood informs the
user how certain the tool is that the found scalability anti-pattern indeed is a correct
one.

In Fig. 7.5, you see example results after running the Static Spotter. In these
results, the Static Spotter finds two instances of AcquireReleasePair pattern and
five instances of SynchronizedMethod pattern, as introduced before. Other patterns
are helper patterns. The 100% ranking means that the Static Spotter would classify
the candidates as certain scalability anti-patterns.

The accuracy of the detection results generated by the Static Spotter obviously
depends on the used granularity when configuring the Static Spotter. On a high

138 S. Becker and S. Lehrig

Fig. 7.5 Static Spotter result view

granularity, it will use large components as input. Using large components means
abstracting more from the actual component behavior. In these abstract behavior
models, scalability issues might not be detectable any more. Using a low granularity,
the Static Spotter might detect more anti-pattern candidates, but it takes much longer
to complete if it completes at all. Therefore, when using the Static Spotter, system
engineers need to pay attention to granularity, as discussed in Sect. 5.2.

7.4 Dynamically Detecting HowNotTos

This section describes the internals of the Dynamic Spotter tool. The tool is an
extended version of the method and tool developed by A. Wert and others in A.
Wert’s PhD thesis and related works [3–5]. In principle, the tool can be compared
to the way a doctor diagnoses a disease. By asking for certain symptoms, like high
blood pressure, fever, etc., a doctor includes or excludes potential diseases from
his final diagnosis. When the list of potential diseases has been reduced to a single
disease, she knows what the root cause is and how to treat the patient.

The Dynamic Spotter applies this principle on running software. As symptoms,
it uses measurements taken from the instrumented system and interprets these
measurements. Such measurements can be classified into two categories: normal
measurements and abnormal measurements. For example, if the response times of
the critical use case increase the longer the system is running, this is abnormal
behavior. Any abnormal behavior is interpreted as a symptom. Based on these
symptoms, the Dynamic Spotter maintains a list of “diseases”, i.e., a list of
HowNotTos which might be a root cause of any of the found symptoms. To improve
the Dynamic Spotter’s performance, symptoms and root causes are structured in a
hierarchy (similar to Fig. 2.4) where deeper levels are refinements of their parent
levels (cf. Sect. 2.10). In this way, the Dynamic Spotter can skip inspecting a child
layer if no symptoms are found that indicate the existence of the parent level. In our
example, for the steadily increasing response times, the Dynamic Spotter includes

7 Analyzing and Migrating an Implemented System 139

Fig. 7.6 Anti-pattern hierarchy for first iteration: detected anti-patterns are marked in red

the “The Ramp” HowNotTo as the possible root cause, which, for example, can
be refined into a memory leak when further diagnosed. If none of the symptoms
indicate the existence of “The Ramp”, we can skip looking for a memory leak.
Figure 7.6 shows an example of the final result of running the Dynamic Spotter. It
shows the hierarchy of investigated HowNotTos. In front of each HowNotTo, a flag
indicates whether this HowNotTo is supported by the identified symptoms. Green
flags show HowNotTos that are unsupported by the observed symptoms; red flags
mark HowNotTos that provide an explanation of the observed symptoms.

As explained in the general principle used in the Dynamic Spotter, it is important
to collect the right measurements to efficiently detect HowNotTos. Collecting the
right measurements has two aspects: finding the right measurement point and
correctly interpreting the identified key scenarios, in particular, the right work and
load situations.

In order to find the right measurement points to instrument, our Use
Spotters process conceptually integrates static and dynamic analyses. After
detecting the pattern candidates in the static analysis step, the software system under
analysis is executed and only the candidates’ behavior is traced; i.e., the candidates
are used as measurement points. A number of measurements are generated for each
candidate. The measurements are then analyzed as to whether they are normal or
abnormal. In doing so, just parts of the complete program behavior are measured,
i.e., only those parts that belong to one of the candidates. This drastically reduces
the search space for the dynamic analysis. However, just as the Static Spotter’s
results depend on the granularity of the extracted model, so do the Dynamic
Spotter’s results, on the granularity of this model, as it determines the amount of
measurement points.

The key scenarios to be tested by the Dynamic Spotter are derived from the key
scenarios identified in the beginning of the CloudScale method. They determine
the work and load situations for the Dynamic Spotter’s measurements. It is a bit of

140 S. Becker and S. Lehrig

manual effort to convert the identified key scenarios into the right configuration of
the Dynamic Spotter’s workload driver. The reason for that is that key scenarios
in the CloudScale method often come with a specification of work and load
whose realization in the Dynamic Spotter is distributed over multiple configuration
parameters. Details can be found in CloudScale’s user manual [1].

Overall, the Dynamic Spotter is a long-running tool. Analyses might take hours
or even days, as the system under study is measured for each key scenario in all
different types of usages as defined by the usage evolution. However, once the
system and the Dynamic Spotter are configured, the Dynamic Spotter executes
automatically; i.e., it does not need user interaction. The effort for configuring the
Dynamic Spotter itself is rather low in cases where the Dynamic Spotter already
provides plug-ins for the used development platform. In case such plug-ins are
lacking and need to be produced first, adaptation efforts of the tool might be much
higher. More effort is also typically spent in configuring and instrumenting the
system under study. As companies often have their systems configured in testing
labs anyhow, in practice, this effort is often also low. As both efforts are rather low
in many real-world settings, the effort in using the Dynamic Spotter in companies
is typically rather low, i.e., in the range of a couple of days or weeks. In addition,
the tool requires limited training, and developers often trust measurements more
than model-based predictions. These arguments have led to our observation that
companies often prefer using the Dynamic Spotter over modeling to get started.

7.5 Resolving HowNotTos with HowTos

The “Reengineer” step—illustrated in Fig. 7.2—involves manual and potentially
complex actions by reengineers. To guide reengineers, we therefore linked HowNot-
Tos with best-practice HowTos that potentially resolve the respective anti-pattern.

Table 7.1 presents our initial suggestion for this linking. The first column lists
some of our scalability HowNotTos (as introduced in Sect. 2.10). The second
column lists, per scalability HowNotTo, the scalability HowTos (cf. Sect. 2.9) we
associated to these anti-patterns. We associated the patterns we previously formal-
ized as ScaleDL Architectural Templates (ATs) (cf. Sect. 4.4.1) where feasible, i.e.,
whenever its problem description matched the description of a detected anti-pattern.

As Table 7.1 shows, we associated the Service Load Balancer, Dynamic Horizon-
tal Scaling, Dynamic Vertical Scaling, and Map Reduce to the OLB. A strategy to
cope with an OLB is to shorten the time jobs hold a passive resource, e.g., when
jobs wait for semaphores to be returned by other jobs. This time can be either
shortened by introducing more servers (i.e., multiple lanes) or by lowering service
times. More servers are introduced via Service Load Balancer, Dynamic Horizontal
Scaling, and Map Reduce. Lower service times are expected via Dynamic Vertical
Scaling. Therefore, these patterns should help if an OLB is detected.

7 Analyzing and Migrating an Implemented System 141

Table 7.1 Link between
performance or scalability
HowNotTos and scalability
HowTos

Performance or
scalability

HowNotTo Associated HowTo

OLB (a) Service Load Balancer

(b) Dynamic Horizontal Scaling

(c) Dynamic Vertical Scaling

(d) Map Reduce

The Blob (a) Service Load Balancer

(b) Dynamic Horizontal Scaling

(c) Dynamic Vertical Scaling

(d) Map Reduce

Empty Semi-Truck (a) Data Transfer Object

Excessive Dynamic
Allocation

(a) Resource Pooling

We suggest the same patterns for The Blob. The rationale is the same: To improve
the scalability of a Blob component, we can either distribute it over multiple servers
or improve its service time.

For Empty Semi Trucks and Excessive Dynamic Allocation, we follow Smith
and William’s suggestion to use Data Transfer Objects, respectively Resource
Pooling [6].

Our anti-pattern catalog (available at our Wiki [7]) now includes the complete
list of suggested solutions to detected anti-patterns.

7.6 Spotter Running Example

In this section, we highlight the results of executing the Use Spotters process
depicted in Fig. 7.2 on the CloudStore running example. The remainder of this
section is structured into two subsections—each one corresponding to one of the
main steps: Static Spotting and Dynamic Spotting.

7.6.1 Static Spotter

As first step, we needed to run the Static Spotter. Therefore, we needed to provide
a good Static Spotter configuration and the system’s source code (the anti-pattern
catalog is provided by our CloudScale tool support). In particular, as part of the
Static Spotter configuration, we needed a good extractor configuration. For the
modernized CloudStore version, we needed eight iterations (2 h effort) with our
Static Spotter to find a good trade-off for the granularity of the ScaleDL instance
and the identified anti-pattern candidates (a few coarse-grained components with

142 S. Becker and S. Lehrig

Fig. 7.7 PCM component repository extracted from the CloudStore code base

a lot of functionality vs. lots of fine-grained components). For each iteration, we
had to either modify Extractor configuration parameters (e.g., too high clustering
thresholds for merging components into a single component) or resolve issues
within the modernized CloudStore’s source code (e.g., removing test classes the
Static Spotter wrongly used as main application). At the end, we got a good high-
level understanding of the CloudStore implementation: We extracted a Façade
component representing the servlet container, and inner servlet components that
require data access components for handling database queries. This high-level view
fits to our expectation and the actual implementation, thus suggesting that we
successfully extracted a ScaleDL instance for the modernized CloudStore version.

After we found a good configuration and fixed all source code issues, executing
the Static Spotter could be considered successful. Internally, it extracted 16 compo-
nents, of which 4 are composite components (see the repository model illustrated
within a tree editor in Fig. 7.7; the marked components are composite components).
Overall, this amount of components provides us a good overview of the system
and reflects how the implementation code is actually structured, e.g., in terms of
database accesses.

However, the Static Spotter’s resulting anti-pattern candidate list was empty for
the modernized CloudStore version. Obviously, this version did not contain any
statically detectable anti-patterns—as it was expected by this version’s developers.
They paid close attention not to introduce scalability bottlenecks. As there are
no anti-pattern candidates for running the Dynamic Spotter, no hints for more
specialized instrumentation can be derived. As a consequence, we configure it to
detect anti-patterns at the system’s entry point, as outlined in the next section.

7 Analyzing and Migrating an Implemented System 143

7.6.2 Dynamic Spotter

As described before, we had to execute the Dynamic Spotter step with the default
configuration,which detects scalability issues of the overall application.We took the
CloudStore source code, compiled and deployed it on appropriate instances running
dedicated virtual servers. Afterward, we instrumented the system using the AIM
monitoring framework. Overall, it took several days to complete all these steps,
as we had no pre-existing lab version of the CloudStore running and we faced
several technical issues, which we had to overcome. For example, the Dynamic
Spotter needed to be adapted to our used platform and networking infrastructure,
which prevented direct communication of the Dynamic Spotter with the Java virtual
machines (JVMs) hosting the application in order to collect its measurements. In
addition, the Dynamic Spotter’s class loader needed adaptations, as it interfered
with the class loader used in the Tomcat application server. At first, we configured
the Spotter to examine both the application server (Tomcat with the modernized
CloudStore) and the database server (MySQL with data of all books).

Once the system was deployed, instrumented, and running, we configured the
Dynamic Spotter. The most time-consuming task here was to encode CloudStore’s
critical use case and its key scenario into a load driver script. We used Apache
JMeter in our case for this, which already provides assistance for this task. We
configured the maximum number of users. This value describes the number of users
the system under test should be able to handle. We set it to a maximum of 100 to
be tested in four steps; so, the Dynamic Spotter tests the system with 1 user, 34,
67, and 100 users. For each symptom in the anti-pattern hierarchy, we measured
the instrumented system for 5min. We changed the default requirement threshold
to 100, which describes the response time SLO in milliseconds. Overall, this added
another couple of days until all was configured correctly. Finally, we were able to
execute the Dynamic Spotter tool using CloudScale’s catalog of HowNotTos.

As a result, we got a list of tested HowNotTos, each with an annotation telling
us whether it could be diagnosed in the CloudStore or not. The result is depicted
in Fig. 7.8. As good news, CloudStore does not show application hiccups when
executing its critical use case. Then, the tool detected a Continuously Violated
Requirement. This means that CloudStore violates its SLOs continuously under high
load.

Therefore, the Dynamic Spotter tried to further investigate this anti-pattern to
identify the root cause. From the measurements taken from the running CloudStore,
a Traffic Jam anti-pattern was diagnosed next. It describes a scalability problem,
either due to software bottlenecks or hardware limitations in general.

When further refining this Traffic Jam, the Dynamic Spotter diagnosed a One-
Lane Bridge anti-pattern. Looking at the Dynamic Spotter’s detail view, we could
see response time, which increased under growing load, while the CPU level stayed
constantly low. In detail, we get a measurement tuple showing the system’s average
response time for each of the configured load situations (1, 37, 66, or 100) and its
corresponding CPU utilization. The average response times are increasing, while

144 S. Becker and S. Lehrig

Fig. 7.8 First run of the Dynamic Spotter step

the CPU utilization is constantly around 50% usage. If there was no OLB in the
modernized CloudStore version, the CPU level would, however, increase further.
The OLB obviously causes the CPU utilization to stay on its level. Therefore,
the system slows down under increasing load. The average response times are
increasing. This scalability HowNotTo can be solved, for example, by increasing
the number of concurrent processes which can access a limited resource or by
reducing the time a process holds the limiting resource. After diagnosing the OLB,
the Dynamic Spotter did not diagnose more anti-patterns and finished its execution.

In a second Dynamic Spotter run, we wanted to increase the statistical signif-
icance of our results by running each experiment longer (600 s instead of 300 s)
and with a higher number of users (150 users in five steps instead of only 100
users in four steps). However, these increases caused an out-of-memory Exception
within our Dynamic Spotter tool in the first place. We determined the root cause
for this to be a bad configuration of the instrumented Tomcat application server: It
had only 128MB of heap size. This configuration was also the potential root cause
for the detected OLB in the first iteration. We accordingly doubled the heap size of
our Tomcat to 256MB and were subsequently successful in running the Dynamic
Spotter with increased experiment times and users. Due to these increases, the whole
run through the hierarchy took 4 h (instead of only 0.5 h for the first run). However,
we were rewarded in the end for this effort with a different combination of diagnosed
anti-patterns.

A difference is that we also detected application hiccups (see Fig. 7.9, which
shows the system’s response time measurements, including the hiccups, as frequent
spikes). A hiccup is an anti-pattern that often can only be diagnosed when
experiments run for a longer time—which explains why we did not diagnose it in
the first Dynamic Spotter run. In the second run, we discovered that CloudStore

7 Analyzing and Migrating an Implemented System 145

Fig. 7.9 Response time measurements from CloudStore with hiccups

suffers—from time to time—from high response-time peaks. We suspect that these
peaks come from Java’s garbage collection; however, we did not investigate this
issue further.

7.7 Conclusion

This chapter details the steps of the CloudScale method used for analyzing and
migrating implemented systems. It illustrates the Spotter tool and its substeps. The
Spotter helps in identifying root causes of performance and scalability issues. Our
method steps then provide hints for reengineering the system. The chapter shows
the results of the method when executed on CloudStore.

From this execution, several benefits have been illustrated in the chapter. First
of all, we could see that CloudScale’s method supports for analyzing and migrating
an implemented system works, and provides useful insights into the problems of
implemented systems. We also learnt that there is no free lunch: Executing the Use
Spotters activity takes time and requires some experience in configuring the
tools, preparing the source code, and operating the instrumented system. However,
given the overall effort of a development endeavor like CloudStore, the required
effort is still rather low.

Even though both the Spotter tools are useful, they are not industrial, well-proven
tools. In Chap. 8 we describe the required steps for aligning both tools with existing
software engineering processes.

146 S. Becker and S. Lehrig

References

1. CloudScale: User Manual of the CloudScale Environment. http://www.cloudscale-project.
eu/media/filer_public/2016/02/01/cloudscaleenvironment-userguide_1_1.pdf [Visited on
12/19/2016]

2. von Detten, M., Meyer, M., Travkin, D.: Reverse engineering with the reclipse tool suite. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering (ICSE
2010), Cape Town, 2–8 May 2010

3. Wert, A.: Performance problem diagnostics by systematic experimentation. Karlsruhe Institut
fur Technologie, Technical Report (2015)

4. Wert, A., Happe, J., Happe, L.: Supporting swift reaction: automatically uncovering per-
formance problems by systematic experiments. In: Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE’13, pp. 552–561. IEEE Press, San Francisco
(2013). [Online] Available: http://dl.acm.org/citation.cfm?id=2486788.2486861

5. Wert, A., Oehler, M., Heger, C., Farahbod, R.: Automatic detection of performance anti-patterns
in inter-component communications. In: Proceedings of the 10th International ACM Sigsoft
Conference on Quality of Software Architectures, ser. QoSA’14, pp. 3–12. ACM, Marcq-en-
Bareul, France (2014). [Online] Available: http://doi.acm.org/10.1145/2602576.2602579

6. Smith, C.U., Williams, L.G.: Software performance antipatterns. In: Proceedings of the 2nd
International Workshop on Software and Performance, ser. WOSP’00, pp. 127–136. ACM,
Ottawa (2000). [Online] Available: http://doi.acm.org/10.1145/350391.350420

7. CloudScale Wiki: HowNotTos, wiki.cloudscale-project.eu/HowNotTos:_Anti-Patterns [Visited
on 12/19/2016].

http://www.cloudscale-project.eu/media/filer_public/2016/02/01/cloudscaleenvironment-userguide_1_1.pdf
http://www.cloudscale-project.eu/media/filer_public/2016/02/01/cloudscaleenvironment-userguide_1_1.pdf
http://dl.acm.org/citation.cfm?id=2486788.2486861
http://doi.acm.org/10.1145/2602576.2602579
http://doi.acm.org/10.1145/350391.350420
wiki.cloudscale-project.eu/HowNotTos:_Anti-Patterns

Part IV
Making the CloudScale Method Happen

We introduced the CloudScale method in the previous parts, where we focused
on the CloudScale method’s motivation, gave a high-level overview, and finally
explained all technical details of the method. In this part, we focus on a different
aspect of the CloudScale method, which is equally important for its success in
practice: its implementation in real-world projects.

Implementing a novel development method in a software development process
is not only a matter of a well-defined, tool-supported method, but also one of
motivating, educating, and encouraging developers to actually use it. Using a
new method means shifting from established and familiar development steps to
novel steps, unknown in the beginning and with no prior experience. Therefore,
this process requires management guidance and support. In order to convince
developers, but also higher-level managers, of the endeavor of implementing a new
method, one needs good arguments, i.e., the benefits of the new method must be
crystal clear. On the other hand, managers also need a good understanding of the
costs incurred by additional method steps.

One way of judging the benefits and drawbacks of a new method is by studying
reference projects. In the case of the CloudScale method, several demonstrators and
reference projects have been executed. In this part, we report on them and distill the
lessons learned.

In Chap. 8, we directly address both business-oriented and technical managers,
and provide guidance in all steps of implementing the CloudScale method as well as
in making decisions during that implementation. Our demonstrators and reference
projects described in Chap. 9 serve as a starting point when you want to learn from
our experience.

Chapter 8
The CloudScale Method for Managers

Steffen Becker, Gunnar Brataas, Mariano Cecowski, Darko Huljenić,
Sebastian Lehrig, and Ivana Stupar

Abstract Having described the CloudScale method for engineering scalable cloud
computing applications in the previous chapters, we explicitly address managers of
software development processes in this chapter. It answers questions managers have
in mind when considering the CloudScale method: Is it worth implementing the
CloudScale method in my organization? What does it take? What are the benefits?
What will be the costs? How should I get started? This chapter addresses all
these questions and provides answers based on our own experience that we gained
when introducing and applying the CloudScale method in practice. In the course
of the chapter, we distinguish two types of managers: project managers, who are
concerned with managing project teams that implement the business requirements,
and technical managers, who manage the actual development efforts and take
technical decisions.

The chapter is structured as follows. After a brief introduction (cf. Sect. 8.1),
it first addresses project managers. We illustrate key considerations that project
managers should be making when applying the CloudScale method (cf. Sect. 8.2).
Afterward, we sketch how the CloudScale method interacts with other development
processes (cf. Sect. 8.3) and what its pros and cons are (cf. Sect. 8.4). The remainder
of the chapter addresses technical managers. First, it sketches a pilot project

S. Becker (�)
University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
e-mail: steffen.becker@informatik.uni-stuttgart.de

G. Brataas
SINTEF Digital, Strindvegen 4, 7034 Trondheim, Norway
e-mail: gunnar.brataas@sintef.no

M. Cecowski
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia
e-mail: mariano.cecowski@xlab.si

D. Huljenić • I. Stupar
Ericsson Nikola Tesla, Krapinska 45, 10000 Zagreb, Croatia
e-mail: darko.huljenic@ericsson.com; ivana.stupar@ericsson.com

S. Lehrig
IBM Research, Technology Campus, Damastown Industrial Estate, Dublin 15, Ireland
e-mail: sebastian.lehrig@ibm.com

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7_8

149

mailto:steffen.becker@informatik.uni-stuttgart.de
mailto:gunnar.brataas@sintef.no
mailto:mariano.cecowski@xlab.si
mailto:darko.huljenic@ericsson.com
mailto:ivana.stupar@ericsson.com
mailto:sebastian.lehrig@ibm.com

150 S. Becker et al.

in Sect. 8.5 to guide the discussion. Using this pilot, in Sect. 8.6, we briefly outline
how to set up CloudScale’s IDE, which can be complemented by third-party tools
introduced in Sect. 8.7. We apply the CloudScale method on the pilot in Sect. 8.8.

8.1 Introduction

After introducing the CloudScale method and its tools for software architects and
developers, you as project and technical managers might still wonder how the entire
process of following the CloudScale method looks like in practice. Despite that
the CloudScale method steps were already described in more detail in previous
chapters, in particular in Chaps. 5–7, this chapter gives an overview of the entire
CloudScale method targeting management aspects. First, aspects related to project
management are discussed, followed by technical management aspects. For the
latter, we introduce in Sect. 8.5 a simple application used as a pilot.

The goal of this chapter is to guide interested project managers with respect to
the cost and effort required to perform the steps of the method. You will be informed
about some of the key considerations in the CloudScale method in order to gain most
benefit out of it. We will discuss the pros and cons of the CloudScale method based
on our own experience. The relation of the CloudScale method to other engineering
practices is discussed and possible integrations are introduced. Afterward, we guide
technical managers through the process of using the CloudScale method for an
analysis and optimization of a simple pilot project. This includes the setup of
the CloudScale Environment, as well as the choice of the CloudScale tools and
complementing tools needed to complete the CloudScale method iteration. At the
end of the chapter, we briefly outline future prospects of the CloudScale method
usage.

8.2 Key Considerations

When project managers consider using the CloudScale method, they should answer
a set of questions for their specific organization and project context (which might
be elaborated together with the technical manager). We call these questions the key
considerations to make before implementing the CloudScale method.

Is it worth it at all? The first question that project managers should address
is whether they want to invest the money and effort required in implementing the
CloudScale method at all. The answer to that question depends, to a large extent, on
the risk of failing to meet scalability, elasticity, or cost-efficiency requirements. The
more business or mission critical these requirements are, the greater is the benefit
you get out of the CloudScale method. For example, when you implement an online
flower shop, it is important to scale to the customer load faced on Mother’s Day as
well as using only few resources during the remainder of the year.

8 The CloudScale Method for Managers 151

What is my use case? Once you have decided to use the CloudScale method,
the next thing to consider is the use case in which you want to use the CloudScale
method. In case you have an existing development ongoing, you most likely want to
verify it to identify potential issues. This often happens in the context of migrating
an existing system to the cloud. In this case, you have the source code of this system.
The next thing to consider is the language and maturity of the code: Is it written in
Java? Does it follow a clean modularization in terms of classes or components or is
the code a “big ball of mud”—grown without governance over time? In the former
case, you get more support by the existing CloudScale tools; in the latter case, you
should consider asking the technical manager to refactor the source code in general
before addressing its scalability or before migrating it to new platforms.

How complex is my system? What analysis granularity do I need? When
tool usage on the source code is possible, the next thing to consider is the system’s
complexity. In case it is a huge system, this has two consequences. First, the
system’s implementation might be too large to be consumed by the CloudScale
tools. In this case, you should plan for efforts involved in adjusting the CloudScale
tools to your system’s complexity. Second, you should carefully consider all
configuration options which have an impact on the granularity of CloudScale’s
analyses (cf. Sect. 5.2). In the case of huge systems, you should definitely start with
a coarse-grained analysis and refine it later on.

Which analysis questions do I need to have answered? Which requirements
do I have?Next, you should also consider your particular problem or question. First,
you should know the quality attributes which are crucial for your mission’s success.
This also means, if you have not gathered scalability, elasticity, or cost-efficiency
requirements and quantified them, now is a good time to do so. This will help you
in your future development even when not using any of CloudScale’s methods or
tools. When collecting such requirements, you should also additionally collect the
critical use cases and key scenarios. From our experience, problems with scalability
of systems are often rooted in ill-specified or non-existing scalability requirements!

Do I already know about scalability issues? When the requirements are
clarified, you should consider where in your system you may have weak spots
which might prevent requirements’ fulfillment. Typically, the development team of
a certain software system has a good idea about the quality properties of the system.
Go ahead and interview them to learn about the most critical components in your
system. If you are lucky, you also learn about concrete problems with your system
as it is at that time. You should use this information to focus on particular parts of
your software and analyze them right in the beginning.

Which metric do I want to have analyzed? Finally, you should be clear about
the type of information you would like to gather during the analysis of your system;
i.e., you should have concrete questions and metrics you want to know about the
system. Having a proper understanding of this helps again to focus the analyses and
also ensures that the answers you get are the answers you wanted.

How do I map my system and context to the CloudScale method? Before you
start analyzing your system, you should revisit the CloudScale method and check
whether you fully understood all method steps needed. In particular, you have to be

152 S. Becker et al.

able to map your system and context to the CloudScale method steps. All required
inputs (documentation, code, etc.) should be available for all steps. If not, you have
to gather them first.

When modeling, do I have enough skilled people? In case you want to
implement a new function or large parts of your system from scratch, using a model
to plan and verify your design is more useful. You should consider the maturity
of your developers and of the development process before doing so. In particular,
you need to ensure that you have the needed skills available in your development
team. We recommend also to start modeling on a small project or subsystem before
moving to large systems.

After running the method, how do I reflect on its success? All the above
key considerations are pure theory as long as you have not tried to execute the
CloudScale method at least once. When you have decided to do so, you should
also define an evaluation plan to judge the method application in the end: Did it
provide the benefits you expected from it? Were all the tools scalable for your use
case? Did the tools provide enough usability? Did you provide good-enough third-
party tools? What could you improve on the next iteration of the method? Did you
properly identify the context of the method application or do you need to readjust
this for the next iteration? In addition, you should track the time needed for each
of the method steps and compare it to your expectations. In case of misalignments,
identify the causes and try to improve it.

To summarize, there are several questions to consider and answer by taking your
context into account. It helps to have an idea about the CloudScale method (as
provided by the pilot project; cf. Sect. 8.5). It also helps to interview your technical
manager or developers about the current status of the system and the most important
known issues. Also, you should have clear plans where you want to go with the
system, i.e., when migrating it from legacy to cloud platforms. In particular, you
should know the resulting requirements based on the new or extended business
models behind the newly developed system features or quality properties.

8.3 Relation to Other Engineering Methods

The CloudScale method will almost, in any case, not be the sole engineering method
needed for the development of your cloud application. The CloudScale method will
rather be complementing your normal development processes and methods. In that
way, the CloudScale method complements classical development processes like
SCRUM or the rational unified process (RUP). When looking at such processes,
the CloudScale method complements several traditional steps with enhanced or
additional activities and tools.

When looking at the commonalities of all engineering processes, we can identify
the following core ingredients to engineer cloud systems:

8 The CloudScale Method for Managers 153

Foundations This covers the fundamental basics, underlying concepts, guiding
principles, and taxonomies of the used cloud concepts, terms, and technologies.

Implementation This covers the building blocks and practices used to realize
cloud applications.

Lifecycle This aspect covers the lifecycle model of the cloud application. It
typically describes end-to-end iterations of a particular cloud development and
operation.

Management This aspect addresses the management questions arising when
realizing a cloud application. It should cover both design time and runtime
cloud management. Each management aspect should be tackled from multiple
perspectives.

Our CloudScale method and its tools partly cover all these cloud engineering
elements. This method contributes to the foundations of cloud concepts, terms,
and technologies with scalability guidelines and a library of appropriate Architec-
tural Templates (ATs). It furthermore provides definitions of important concepts
like scalability, elasticity, and cost-efficiency. In the implementation phase, the
CloudScale method provides a plethora of analyses and guiding principles that
software architects can apply to systematically address scalability, elasticity, or
cost-efficiency issues. CloudScale’s support is more limited toward the lifecycle
ingredient. However, it can cover elements related to design via models, or to quality
assurance and evolution support via its Spotters. For the management ingredient in
particular, we have included lots of experiences, key considerations, a pilot project,
etc. in this chapter.

However, other methods and tools also cover aspects related to cloud systems’
realization. For many domains, there are standard supporting engineering principles.
In the cloud environment, is important to emphasize that used methods and tools
have to enable the process of designing the system in a way that it leverages the
power and economics of cloud resources to solve a (scalable) business problem.
As cloud applications is still a growing market, it is taking a serious commercial
track and there are a lot of supporting tools and ready-to-use documented HowTos,
for example, specialized cloud patterns. The main focus of current offerings on the
market is tools for price/cost calculation of the required IaaS resources in a particular
cloud environment like Amazon EC2. Often, these offerings are much simpler than
the CloudScale method, but also much more inaccurate. In addition, they are often
in-transparent to the customer; i.e., the customer cannot verify whether the approach
computes correct costs and whether it suggests the best IaaS provider (in contrast to
suggesting IaaS providers based on hidden contractual relationships).

To summarize, there are two different relations of the CloudScale method to other
engineering methods. First, it has to be integrated and mixed with classical software
engineering methods like SCRUM or RUP. This integration will be organization
and project specific. The CloudScale method provides method steps and tools which
have been tailored to be reusable building blocks, which can be put on top of other
engineering methods. Second, there are alternative or competing cloud engineering
methods and tools. In particular, there are several commercial offers today on the

154 S. Becker et al.

market. For these, you have to judge the extent to which they can complement the
CloudScale method or they are in conflict with the CloudScale method. You also
need to identify their real contributions in one of the above listed core ingredients.
In addition, you need to judge whether they provide open and objective or biased
information.

8.4 Pros and Cons of the CloudScale Method

Introducing any new step in the organizational system development process always
poses a question of the benefit that the organization can gain from the newly
added step (novel part of the process). There is no method that can provide gains
exclusively, without any expense, because there is always effort and cost that must
be invested into achieving advantages and potential profit. This is the main reason
why in this chapter, we analyze the parameters that are important for making the
decision on how useful the employment of the CloudScale method and its tools
is. These analyses are the foundation for identifying organizational pros and cons
of using CloudScale method and tools. The organization that wants to implement
the CloudScale method should be prepared to actually calculate the benefits of the
needed investment for the additional quality provided, in contrast to potential losses
due to potential system problems and costs to maintain or reengineer bad system
components in operation, or, even worse, with system failure or delays during
operation.

8.4.1 Critical Success Factors for Method Adoption and Use

Successful adoption and use of the CloudScale method and tools relies on several
conditions in terms of requirements.

• Having clearly instantiated requirements in order to identify particular system
scalability, elasticity, and cost-efficiency needs, as well as having established
system behavior scalability conditions.

• Having use cases related to system usage, which enables extracting usage
patterns and correlating them with scalability requirements (primarily system
work and load expected through the system lifecycle, with a focus on the behavior
in the limits).

• Freedom to change currently implemented architectural patterns. Some orga-
nizations use general architectural patterns, or patterns adapted in a custom
way, which in most cases need serious reengineering in order to fulfill the new
system requirements. This usually requires thoughtful architectural discussions
and decisions.

• An organizational development process: Many organizations use a plethora of
available processes and methods, and as such, they are usually less limited and

8 The CloudScale Method for Managers 155

controlled in adopting new ones. In contrast, there are big development organiza-
tions that follow standardized general-purpose or adapted/tailored development
processes in a much stricter way. In such cases, it is usually required to elaborate
benefits for introducing some new process or changing the steps in their own
established development process environment.

• Team experience in dealing with system performance issues: This is usually also
related to the selected development method and the possibility to solve overall
system behavior issues or to focus on a particular system problem. Another
question that needs to be considered is how much freedom does the development
team have to experiment and prototype the system before they start to produce a
solution.

• If the solution for the new system, or a part of it, is produced by reusing an
existing code base, a good understanding of the source code that has been reused
in the new system is of great importance. Similarly, a solid knowledge about the
system is required when a solution for the problems with a system in operation
needs to be found.

In case of applying the CloudScale method and its tools on a system that
reuses an existing code base, it is very important to have the reused source code
available for analysis. If the system is built from scratch, it is crucial that your
organization is willing to follow the concept of model-based development. Also,
an appropriate person that can create a model of the analyzed system has to be
assigned to achieve an adequate accuracy in the prediction of the potential system
behavior.

• Documentation of the newly introduced method and tools: Depending on the
extent of the existing documentation, users should be prepared to invest certain
effort into researching and investigating new tools and their features, since they
are likely not documented to the same level as mature tools.

• The tool’s ability to deal with a large existing code base.
• Potential of the tools to work with so-called grey-box components and grey-box

models, meaning that the capability of creating models and conducting analysis
does not depend on having the entire code available; instead, it should be possible
to just describe the component behavior. This can be very important for systems
which access external services without available source code.

• Usage of existing frameworks as a base for developing or encapsulating new
services: In this case, an architect is not interested in the analysis of existing
frameworks, but only in analyzing the interaction with a custom-developed
component.

If the provided method and its tools can fulfill the requirements for their
implementation in the development process of an organization, it is possible to
predict successful usage and user’s satisfaction. In the case of the CloudScale
method and its tools, fulfillment of stated requirements is the foundation for their
application on the system under analysis.

156 S. Becker et al.

8.4.2 Organizational Issues

The development of new systems and services is a team effort in any organization.
The development process starts with the collection of requirements and defining
the expected development scope. The product manager, together with the customer
(e.g., in cloud-based system, it is most likely a service provider), formulates both
functional and extra-functional requirements and determine the main focus of the
cloud system’s scalability requirements. Based on the collected requirements and
the expected system behavior, the system architect makes early decisions on the
overall system architecture. This is the foundation for the organizational decision
which parts of the expected final architecture can be reused from previously
developed systems, and what new services need to be developed. This is where
the first challenges may arise because the combination of certain existing compo-
nents/services can look promising, and the decision needs to be made quickly about
the way the system will be realized. In such situations, it is crucial to determine
whether the proposed realization of the system is feasible, or at all possible, and how
it will impact the expected system behavior. Also, it is important to consider what
can happen to the scalability requirements when composing services according to
the selected architecture. If an organization skips this step, which aims at identifying
the appropriate solution and making the right decisions about the system early on,
and immediately jumps to service implementation, it can lead to costly issues found
during the testing phase, or even worse, during the system’s operational phase.
Managing scalability requirements from the beginning of the system development
requires full understanding of the scalability concepts and usage of all needed tools
and methods that can support architects and developers to make fast selections of
good solutions. In terms of organizational preconditions, achieving such a way
of working can sometimes be challenging due to the complexity of the decision-
making process in large companies. This is due to heterogeneous teams participating
in the development process using the method and tools in different system lifecycle
phases.

8.4.3 Costs

Using almost any kind of method, and especially introducing a new one in the
development process, results in certain costs due to the time and effort invested
in performing specific method steps. The costs involved when using the CloudScale
method can be structured as follows:

New process steps The CloudScale method introduces process steps that will be
new compared to the current methods employed in the organization’s develop-
ment process. Performing each of those steps has costs in terms of human effort.

Employee training Training of the involved personnel requires teaching them
about the conceptual aspects of the CloudScale method (e.g., cloud computing

8 The CloudScale Method for Managers 157

paradigm, SLOs, scalability concepts, etc.), as well as training them in the use
of the CloudScale method and its tools. From our experience, the entrance
barrier is somewhat lower for CloudScale’s migration and evolution support,
as it is more closely oriented toward analyzing the system’s implementation.
Training personnel in model-based analysis typically requires certain time, since
most developers and software architects working in practice are unfamiliar with
such approaches. Hence, they need to learn and understand modeling techniques
and languages, as well as identifying the right model abstractions. In addition,
CloudScale’s tools require some familiarity with stochastic theory, which is a
knowledge that in practice often needs to be refreshed, especially in an industrial
environment. We estimate that training these skills on a basic level requires a 2-
or 3-day workshop.

New organizational processes The organization itself must also be adapted to
the CloudScale method. New ways of collaboration may be required due to the
different roles involved in conducting the CloudScale method.

8.4.4 Covering the Cost of the CloudScale Method Adoption

As mentioned in the previous section, the CloudScale method will inevitably
produce a certain cost, and this expense should be offset by savings in the overall
system lifecycle costs. In that way, adoption of the CloudScale method will become
profitable, and is able to benefit the organization on the long run. We identify four
ways of reducing the overall lifecycle costs when using the CloudScale method:

Better quality When a service suffers from insufficient scalability, their users
become dissatisfied and leave. Ultimately, in addition to losing customers (and
in severe cases the organization’s reputation), additional money may be lost by
investing in the system’s maintenance and paying for SLO violation penalties. A
controlled system design from the beginning of the product lifecycle will result in
better system quality, thus reducing the potential cost of complex and expensive
problem-solving activities in the operational system phase.

Less redesign It takes an additional engineering effort to fix a service with poor
scalability. Other than just introducing the cost of providing the problem solution,
your engineering team will not be able to build new functionality due to their
involvement in fixing the problem.Additionally, redesigning a service takes time,
during which the original services will suffer from an inadequate scalability.

Less gold plating A development team which is eager to avoid scalability prob-
lems may use too much engineering effort when designing parts of a service.
As a result, development costs will be higher, but since a scalable service may
sometimes also be more complex, maintenance costs may also increase. A better
overall view of the system’s scalability requirements may reduce gold plating, so
engineering efforts are used only where required.

158 S. Becker et al.

Lower operating costs Services with poor efficiency will require a considerable
amount of costly cloud computing resources. A system with poor elasticity will
also be challenging to operate and will therefore require more manual tuning,
thus requiring more engineering man-hours.

Having both costs and benefits in mind, development organizations should
perform serious analysis before they decide to start using the CloudScale method
and its tools so that they can understand the potential offset of their investment by
savings in the overall system’s lifecycle expenses.

8.4.5 Risks

We have identified the following risks related to using the CloudScale method:

Too high effort The effort involved in using the CloudScale method may simply
be higher than what is possible to argue in an organization. This risk can be
reduced if the CloudScale method is used on smaller projects first so that the
organization gets a better grip of the actual costs involved in using the CloudScale
method. As the organization gets more familiar with the CloudScale method and
its tools, the size of the projects may gradually be increased.

Lack of accuracy It is very important to have an overall idea of the required level
of accuracy when using the CloudScale method. To a large extent, the accuracy
depends on the quality of the parameters used.

Based on our experience in applying the CloudScale method and its tools
on differently sized systems and in different organizational environments (small,
medium, and large companies), with careful selection of the project and a well-
balanced granularity of the system, the mentioned risks can be mitigated and
properly addressed.

8.4.6 Critical Factors for Successful Projects

Whenever an organization tries to apply a new or improved method in its de-
velopment process, it is important to understand the potential implementation
environment. The three essential aspects of the targeted environment are: the
development team that will produce the first pilot, the system selected for the
experimentation/piloting, and the time available for learning new concepts and
making experimental developments. Based on these presumptions, we can define a
list of critical success factors for the project that you should consider when applying
the CloudScale method:

• Modeling experience—assign a development team which has experience with
abstract concepts and system performance modeling.

8 The CloudScale Method for Managers 159

• Time for learning the methods and tools—the team must have enough time to
learn the concepts implemented by the tools and to be able to map the problem
to the adequate tool.

• Compatibility with the current development environment—many development
organizations already use standard (or customized) development frameworks that
encapsulate tools and methods, and it is very important to have sufficient time to
adapt to the new environment and have enough freedom to correlate and include
the outputs of the new method in their existing environment.

• Availability of the source code for the system analysis—especially in the case of
system composition, it is important to have the system’s source code as well as
any documented problems with the currently used frameworks.

• Organization of the existing code—currently used frameworks and applied
development conventions should reflect the current state of the art.

8.5 A Pilot Project

After highlighting the considerations to be made by the project manager, in this
section, we will introduce a very simple example system which can be used by
technical managers or senior developers to get started with the CloudScale method.
Its purpose is to help them to get an impression of what the CloudScale method
is, what it provides, and how complex it is to get started, and to assess whether it
is worth to consider using it in their own development projects. This pilot project
is also part of the CloudScale integrated development environment (IDE), as an
example ready to be used out of the box so that it can be understood and inspected
in all aspects.

The pilot system is a simple client/server application implemented in Java. The
server generates HTTP responses under pre-defined URLs (in a REST-like style)
and the client issues corresponding HTTP requests. The client can be scaled up so
that it generates a significant amount of load on the server. The two main operations
provided by the server are (a) a computation of a dynamic number of Fibonacci
numbers, and (b) a simple query operation, which, however, contains a synchronized
block, i.e., can be executed only mutually exclusive. Figure 8.1 shows an excerpt of
the code for the query operation where the call method of the OLB singleton
contains the synchronized block.

1 @GET
2 @Path("testOLB")
3 @Produces(MediaType.APPLICATION_JSON)
4 public String testOLB() {
5 OLB.getInstance().call();
6 return "Hello from OLB Test Method!";
7 }

Fig. 8.1 Source code of the server-side example query method in the pilot project

160 S. Becker et al.

1 public final class OLB {
2 [..]
3 /**
4 * Method leading to a One Lane Bridge.
5 */
6 public synchronized void call() {
7 try {
8 Thread.sleep(TIME_TO_SLEEP);
9 } catch (final InterruptedException e) {}

10 }
11 }

Fig. 8.2 Source code of the call() method in the OLB singleton

At runtime, the client can execute this method by issuing an HTTP request to
the server for the URL http://<servername>/testOLB. The idea of the
two methods of the pilot project is that one method is rather resource intensive
(fibonacci), while the other represents an One-Lane Bridge (OLB) scalability
HowNotTo (cf. Sect. 2.10; code shown in Fig. 8.2). Both methods are easy to
understand in a few seconds and illustrate both common problems of web services
and the capabilities of the CloudScale method and its tool support.

The pilot project can be used to showcase the CloudScale method. It covers
both use cases of the CloudScale method. Software developers can easily create
a model of the system. This can be done manually using the editors, as the system’s
complexity is really low, or by using the Extractor tool, as the system is provided
as object-oriented Java code (i.e., it fulfills the Extractor’s prerequisites). Using the
model, software developers can analyze questions like:

• What is the response time of the system under varying load?
• What is the system’s capacity?
• How does the system scale up or down during elastic adaptations?
• etc.

On the other hand, the pilot project can also be used in the second CloudScale
method use case, the detection of HowNotTos. This can be done statically (again,
the necessary prerequisite is that a model can be extracted by the Extractor) or
dynamically by executing the pilot project. The project’s client and server come
with the needed stand-alone web server and client libraries so that they should run as
soon as a Java virtual machine (JVM) can be found in the target environment.When
executed, the CloudScale’s Dynamic Spotter can detect the HowNotTos which have
been injected into the example (i.e., the OLB or the excessive CPU consumption
HowNotTos). To get things up and running here also with little effort, the Dynamic
Spotter provides a custom-tailored load generator for the pilot project which can be
used with minimum configuration effort.

Overall, this pilot should give project and technical managers a good idea of the
benefits and considerations when wondering whether to try the CloudScale method.

8 The CloudScale Method for Managers 161

We will also come back to the pilot project when we give a more detailed high-
level walk-through through the CloudScale method based on the pilot in order to
highlight the management decisions needed when executing the CloudScale method
in Sect. 8.8 (in contrast to the technical aspects of the method discussed in the
previous chapters).

8.6 Setting Up the CloudScale Environment

When the decision has beenmade to use or try the CloudScale method, the first thing
you want to do is to learn the CloudScale method and to install its tool support in
form of the CloudScale Environment. CloudScale’s tools are altogether integrated
in the so-called CloudScale Environment. This integration makes it easy to use
all tools from a coherent user interface providing a unified user experience. In
addition, the CloudScale Environment supports you when following the CloudScale
method: It provides a build-in CloudScale method view, which you can use as a
workflow engine to track your progress in the CloudScale method. The CloudScale
Environment can freely be downloaded at CloudScale’s web page [1].

It is available for all major platforms. It requires a JVM on the developer
machine, as it is based on the well-known Eclipse IDE, which is implemented in
Java. There is no need to install it; downloading and extracting the provided files
should be enough; i.e., it is easy to try it out without polluting your development
environment too much.

After starting the CloudScale Environment for the first time, we suggest to get
used to it using the provided pilot project. It can be found under Examples as the
Minimum Example. Using the pilot, you can go through all CloudScale tools.
They can be accessed using the most common parameters only from the CloudScale
perspective. However, in case you need to fine-tune a single tool or access advanced
features, the CloudScale Environment also provides dedicated perspectives which
provide access to the advanced features and settings of each tool.

Overall, the CloudScale Environment provides the following tools and guides
software architects in the order in which they have to be optimally applied:

ScaleDL editors The CloudScale Environment provides several editors to create
and modify Scalability Description Language (ScaleDL) models. CloudScale’s
catalog of ATs is integrated in these editors, allowing software architects to
efficiently create even complex models.

Extractor The Extractor is a reverse engineering tool for automatic model
extraction. It parses source code and generates partial ScaleDL models that can
be further used by the Analyzer and the Spotter.

Analyzer The Analyzer allows to analyze ScaleDL models regarding scalability,
elasticity, and cost-efficiency of cloud computing applications at design time. For
these capabilities, CloudScale integrated novel metrics for such properties into
the Analyzer. Analyses are based on analytical solvers and/or simulations. The

162 S. Becker et al.

Analyzer particularly supports to analyze self-adaptive systems, e.g., systems
that can dynamically scale out and in.

Spotter The Spotter allows to statically and dynamically detect scalability issues.
For a static detection, the Spotter automatically detects search patterns on
ScaleDL instances created by the Extractor. Found patterns are interpreted as
potential scalability anti-patterns. All scalability anti-patterns are defined in a
pre-defined but extensible pattern catalog.
For a dynamic detection, the Spotter provides a framework for measurement-
based, automatic detection of software performance problems in Java-based
enterprise software systems. The framework combines the concepts of software
performance anti-patterns with systematic experimentation.

Distributed JMeter [2] Distributed JMeter is a workload generator application.
When estimating resource demands, e.g., to parametrize ScaleDL models, such a
workload generation is needed. Distributed JMeter can be deployed on Amazon
web services (AWS) or OpenStack.

To get started, go through each tool and use it on the provided pilot project!

8.7 Complementing Tools

The engineering of cloud computing applications cannot be completely automated;
however, appropriate tools can help software engineers in becoming more efficient.
For the CloudScale method, CloudScale’s Environment is a good choice because it
is tailored for an efficient use within this method.

The CloudScale method is not tied to the official CloudScale tools: other tools
can substitute or complement the official ones. This independence has the benefit
that there is no vendor lock-in, and that tools that are already in use can be retained.

The following list of tools exemplifies their integration into the CloudScale
method. The list is not exhaustive and should only serve for exemplification and
initial pointers.

Palladio [3] Palladio is the open-source software architecture simulator that
underlies CloudScale’s Analyzer. Palladio can be used in stand-alone mode,
without depending on the CloudScale Environment.

Apache JMeter [4] Apache JMeter is an open-source application to generate
workload and measure performance metrics. It was the basis for CloudScale’s
Distributed JMeter, but can also be used in stand-alone mode.

Kieker [5] Kieker is an open-source performance monitoring framework. Kieker
allows to instrument source code with probes which gather response time mea-
surements at runtime. Response time measurements are especially important for
estimating resource demands, e.g., to parametrize ScaleDL models. CloudScale
does not provide a dedicated tool for this purpose; CloudScale’s evaluations also
used Kieker.

Dynatrace Application Monitoring [6] Dynatrace Application Monitoring is a
commercial alternative to Kieker with advanced features that ease performance

8 The CloudScale Method for Managers 163

problem detections. The tool therefore may replace dynamic detection parts of
CloudScale’s Spotter.

JProfiler [7] JProfiler is a commercial application to profile Java applications.
Profiling helps in understanding performance characteristics of applications,
which finally allows to identify critical use cases.

Java VisualVM [8] Java VisualVM is a freely available profiling tool for Java
applications. The tool comes together with Oracle’s JVM and therefore provides
a good alternative to JProfiler.

R [9] R is a freely available programming language and environment for statisti-
cal assessment of data. With R, the data from performance monitoring tools can
be appropriately prepared to be used as resource demand estimates.

8.8 Following the CloudScale Method for the Pilot Project

This section will provide a walk-through through the CloudScale method based
on the provided pilot project. As such, it brings together the lessons learnt from
the previous sections on the pilot and the tools, and shows key considerations and
management decisions which are useful for the small example system.

When starting with the CloudScale method, the first step is to elicit SLOs and
derive critical use cases and key scenarios from them (cf. Sect. 5.5). For the pilot
project, we assume in the following that it has a response time SLO which says that
both provided operations should react in acceptable times for Internet users. This
can be considered to be 2 s. Therefore, we define SLO violations to happen if the
mean response times over 10 s intervals exceeds those of 2 s. As critical use case,
we consider a mix of equally calling both the OLB and the Fibonacci service. A
key scenario is one where 100 concurrent users access the system hosted on a single
machine for this. The latter can also serve as technical requirements for scalability
in this simplified example.

In the CloudScale method, we have to consider then whether we want to model
the system or whether we want to base analyses on code. As we have no real idea
of the properties of the pilot project, we consider using the code as the main basis
for the first method iteration. An additional aspect which suggests using code-based
analysis is that the code is provided in Java and is well-structured.

After making this decision, we have to run the Spotter on the pilot project. In
a first step, the Static Spotter extracts a model from the code using the Extractor
and, when configured correctly (i.e., using the right granularity, which is a low one
for this simple project), spots the OLB method already and reports it as a potential
scalability HowNotTo. In the second step, we run the pilot project using the provided
built-in server and use the Dynamic Spotter on it, together with the provided load
generator. We set the number of concurrent users to 100 and the SLO violation
threshold to 2 s. After running the Dynamic Spotter, we analyze the results and
find that the OLB method—due to its limited concurrency—violates our technical
requirements.

164 S. Becker et al.

Hence, we can rework the pilot project. For example, we could assume that the
synchronized keyword is a mistake made when implementing the method. As a
simple fix, we can remove it and then rerun the analysis. Now, everything should be
fine, as one server is usually strong enough to deal with 100 users.

This concludes the CloudScale method for the pilot project. However, we could
for example go ahead and add another service to the pilot and use a model to analyze
this evolved system. We would extend the critical use case and the key scenario
to cover also the new method. Using the Extractor and manual model annotations
would yield a model to be analyzed. Using this model, we could then check for
example what the system’s capacity is for the 2 s response time SLO.

8.9 Conclusion

In this chapter we discussed the CloudScale method from the perspective of
managers considering to introduce the CloudScale method into their development
processes. Introducing a newmethod in the current development process established
within an organization will inevitably introduce expenses as well. For this reason,
the decision on implementing a new method has to be based on a carefully
performed analysis of potential benefits and novel costs implied by the integration
of the novel process steps, which require effort and time. This chapter presents a
practical point of view regarding the adoption and usage of the CloudScale method
and its tools. We identify potential issues, costs, and risks of the CloudScale method
adoption, as well as how those risks can be mitigated, and what are the factors
determining the success of both the introduction of the new method and the project
it will be applied on. One of the main challenges related to the CloudScale method is
the time it takes to get familiar with the concepts it brings to its potential users (i.e.,
system performancemodeling, etc.) and the readiness of the organization to invest in
the proper integration of such methods in their currently established processes and
environments. The whole process of following the CloudScale method is explained
on a simple pilot so that the reader can promptly get a grip on the method steps.
We consider and present different aspects of the CloudScale method adoption from
the perspective of development teams in organizations that are already using various
development processes and frameworks.

Despite all considerations, the CloudScale method provides major benefits to the
development of scalable, elastic, and cost-efficient cloud computing applications. It
offers benefits to software architects to make the right engineering decisions, but
also to managers as to how to avoid risks of implementing systems which will fail
in the end to meet their scalability, elasticity, or cost-efficiency requirements.

The overall objective for further work on the CloudScale method is to introduce
improvements, such as simplifying the use of the tools (i.e., users could be
presented with fewer choices, and the manual modeling effort could be reduced),
and potentially further reducing the need for new engineering knowledge. This also
requires more studies of how scalability, elasticity, and cost-efficiency are actually

8 The CloudScale Method for Managers 165

handled in organizations today and how it could be handled more effectively in the
future.With such additional studies, we can also providemore guidancewith respect
to choosing the right granularity level or planning for the amount of manual effort
needed. Additional improvements such as more ATs or scalability anti-patterns can
drastically reduce the modeling effort and increase tools’ usability and, therefore,
increase the return on investment. In this way, the CloudScale method may become
a part of standard practice in contemporary software development, especially for
projects where scalability, elasticity, and cost-efficiency requirements are major
threats to a project’s success.

References

1. CloudScale: The CloudScale Environment (2016). http://www.cloudscale-project.eu/results/
tools/ [Visited on 12/19/2016]

2. CloudScale: Distributed JMeter (2016). http://github.com/CloudScale-Project/Distributed-
Jmeter [Visited on 06/20/2016]

3. Palladio: The software architecture simulator (2016). http://www.palladio-simulator.com
[Visited on 06/20/2016]

4. Apache JMeter: (2016). http://jmeter.apache.org [Visited on 06/20/2016]
5. Kieker: (2016) http://kieker-monitoring.net [Visited on 06/20/2016]
6. Dynatrace Application Monitoring: (2016). http://www.dynatrace.com/en/application-

monitoring/ [Visited on 06/20/2016]
7. JProfiler: (2016). https://www.ej-technologies.com/products/jprofiler/overview.html [Visited on

06/20/2016]
8. Java VisualVM: Java Virtual Machine Monitoring, Troubleshooting, and Profiling Tool (2016).

https://visualvm.github.io/ [Visited on 06/20/2016]
9. R: The R Project for Statistical Computing (2016). https://www.r-project.org [Visited on

06/20/2016]

http://www.cloudscale-project.eu/results/tools/
http://www.cloudscale-project.eu/results/tools/
http://github.com/CloudScale-Project/Distributed-Jmeter
http://github.com/CloudScale-Project/Distributed-Jmeter
http://www.palladio-simulator.com
http://jmeter.apache.org
http://kieker-monitoring.net
http://www.dynatrace.com/en/application-monitoring/
http://www.dynatrace.com/en/application-monitoring/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://visualvm.github.io/
https://www.r-project.org

Chapter 9
Case Studies

Darko Huljenić, Ivana Stupar, and Mariano Cecowski

Abstract As described in the previous chapters, the CloudScale method lets
software architects manage scalability, elasticity, and cost-efficiency throughout the
whole system lifecycle. To illustrate its usage, this chapter describes an application
of the CloudScale method and its tools on two industrial case studies. The first case
study—Ericsson’s electronic health record (EHR)—is an electronic health record
software, and the second one—Kantega’s Flyt CMS—is a content management
system (CMS). The case studies exemplify scenarios that require an engineering
approach to ensure the system is scalable and performs well. The providers of
the stated industrial cases are different organizations that follow their own internal
development processes. The chapter closes by briefly pointing to complementing
case studies that were used to evaluate the CloudScale method, both separately and
in the context of the CloudScale method.

The following sections cover the essential steps and tools in the CloudScale
method for the EHR (Sect. 9.1) and Flyt CMS (Sect. 9.2) case studies. Subsequently,
the complementing case studies are overviewed (Sect. 9.3).

9.1 Case Study: Electronic Health Record

The first case study inspects an electronic system for managing health records that
was developed by Ericsson. The system, called electronic health record (EHR),
is an example of a service for which it is crucial to achieve scalability due to
its functionality and a large user base. In order to ensure EHR’s scalability, the
migration of the EHR system to the cloud was considered as a solution. The cloud-
based EHR could significantly decrease infrastructure over-provisioning due to the
elastic properties of the cloud resources. However, in order to successfully migrate
EHR to the cloud, it was necessary to identify potential scalability bottlenecks and

D. Huljenić • I. Stupar (�)
Ericsson Nikola Tesla, Krapinska 45, 10000 Zagreb, Croatia
e-mail: darko.huljenic@ericsson.com; ivana.stupar@ericsson.com

M. Cecowski
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia
e-mail: mariano.cecowski@xlab.si

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7_9

167

mailto:darko.huljenic@ericsson.com
mailto:ivana.stupar@ericsson.com
mailto:mariano.cecowski@xlab.si

168 D. Huljenić et al.

problems in existing code bases. CloudScale tools and method were used to assist
in evaluating possible problems and solutions, as well as to predict the cloud-based
system behavior. The focus of the EHR case study are actions of the CloudScale
method that require software architects to apply the tools Extractor, Analyzer, and
Static Spotter.

9.1.1 Electronic Health Record

EHR provides digitally stored patient health information, supporting care, edu-
cation, and research. It stores information on medications, past medical history,
immunizations, laboratory data, radiology reports, etc. The EHR system needs to
share data with healthcare providers, insurance institutions, government agencies,
and patients, making it a data-centric system with a large user base. As such, it is
crucial that the EHR system is adequately provisioned, and that the EHR services
delivered to the end users fulfill the service-level objectives (SLOs). The traditional
non-cloud version of EHR is implemented as a web-based enterprise system.

EHR is one of the main components of the Ericsson Healthcare Exchange
(EHE) [1] platform. The EHE platform is a part of Ericsson’s healthcare portfolio,
deployed on a national level in Croatia. Several platform services are integrated in
many healthcare provider institutions, resulting in a large user base. For example, the
e-Prescription service is integrated in more than 2300 general practitioner offices,
over 2500 dentist offices, 192 pediatrician offices, and more than 1100 pharmacies.

The traditional on-premises version of the EHR system is centralized and consists
of an EHR database and a service layer developed above the database. Database
mechanisms such as database clusters, connection pools, and database replication
ensure system scalability and responsiveness up to a certain level, which can be
guaranteed by extensive, but limited, infrastructure resources. The infrastructure
used for the non-cloud EHR deployment has to be dimensioned according to the
highest demands in order to be able to handle workload peaks, which is achieved by
over-provisioning. The resource demand per user is non-linear.

A high-level view of the EHR platform architecture can be seen in Fig. 9.1.
The core of the EHR platform provides basic functions such as workflow man-
agement, authorization and authentication, error handling, data model, messaging,
and reporting support. The access to the EHR services is enabled by service APIs.
The EHR platform also provides an API so the external services can use the EHR
core operations. Further details on the EHR architecture and implementation can be
found in [2].

A cloud-based EHR solution is beneficial because of the scalability and elasticity
offered by the cloud environment, but also because of cost minimization. A cloud
solution also facilitates the provisioning of healthcare products and services to
patients located in remote areas and to patients with limited access to quality
medical services. However, in the process of migrating the EHR platform to the
cloud, it was hard to estimate the optimal service provisioning. Hence, in the

9 Case Studies 169

Fig. 9.1 EHR system architecture

case of EHR migration, the CloudScale method and tools were used to evaluate
system scalability and potential issues, and to provision an optimal amount of cloud
resources for a given workload in a cost-effective way.

170 D. Huljenić et al.

There are several scenarios in the EHR service implementation that will poten-
tially affect system scalability. One of them is the change of the EHR service load,
including possible growth of the service user base. The number of EHR users might
grow due to the new services, integration of additional institutions, or deployment of
the EHR solution in countries with lager population. Also, for specific annual events
(e.g., regular flu) and not-so-frequent events that result in increased patient number
(e.g., bird flu, large earthquakes, or tsunami), there is a need for an elastic system
scale-up. However, the system needs to scale down as the workload decreases to
reduce operational cost. Constant system resource usage monitoring is necessary to
be able to determine when and how to adjust the amount of resources allocated to
the service. The work variation of the EHR service is mainly linked to the size
of the health records, which can grow unpredictably. Some of the medical data
records can be very large, due to treatment images, video files, sensor data for
remote patient monitoring, etc. Additional consideration includes the change of
resources and infrastructure price, which will affect the service cost. Changes in
the primary healthcare process (e.g., regulatory changes) can produce changes in
functional implementation of existing EHR services. Such functional changes can
have an impact on the work or load of the EHR service, as well as on the addition
of the new service offered by the EHR platform. All of the mentioned scenarios
can affect system scalability and the fulfillment of system SLOs. Modeling the new
services and predicting scalability impact on the existing system could in such cases
be performed using CloudScale tools. The actual analysis performed on the EHR
service is described in the next section, with a focus on finding optimal service
provisioning and current scalability issues.

9.1.2 Applying the CloudScale Method and Tools to Electronic
Health Record

The focus of the EHR case study was to apply the CloudScale method in the
context of engineering the migration of the EHR solution from traditional on-
premises infrastructure to cloud infrastructure. The CloudScale method was used
for evaluating what is the predicted system scalability under specific workload, and
if the design and architecture of the EHR system are ready to be used for a cloud-
based solution. Since the CloudScale method is supported through the CloudScale
Environment, which integrates all of the CloudScale tools, the method steps were
easy to follow.

As one of the initial steps of the CloudScale method, software architects need
to make a decision on creating the model of the EHR system manually or by using
reverse engineering to extract the model out of the EHR source code. Since the
EHR service was already implemented, the Extractor tool was used to extract parts
of the model from the EHR system’s source code in order to shorten the model
preparation time. The EHR system is written in Java and consists of several modules

9 Case Studies 171

Fig. 9.2 Repository model diagram of an EHR module component generated by the Extractor tool
after layout rearrangement

organized in projects containing the source code. The system and repository models
were generated for each of the projects that were used as an input for the Extractor
tool. An example of the extracted repository model can be seen in Fig. 9.2.

The initial layout of the diagram components had to be rearranged, and additional
manual improvements have been introduced. As the main effort in improving
the model obtained by reverse engineering, we identified the creation of service
effect specifications (SEFFs) for each model component. Users should have a
good understanding of the metrics affecting the process of clustering and merging
components in the model. Obtaining the wanted level of granularity requires an
iterative approach in finding the best extraction configuration. Also, since the
Extractor input is a Java project, the granularity of the extracted model was
determined by the organization and structure of the source code. To adjust the level
of granularity to one that should be convenient for further analysis and proceeding
with the CloudScale method, the whole model of the EHR system was created by
combining the manually created model components (mostly related to the EHR
platform core) with the parts of the model generated using the Extractor tool (EHR
services). Figure 9.3 conveys an impression of the static structure of the resulting
model.

Following the CloudScale method, the source code was analyzed using the
CloudScale Static Spotter tool with the purpose of finding anti-patterns in current
implementation of the EHR system, and to see if the design has to be adjusted
for the cloud-based EHR. The tool was used on a set of 22 projects containing
the source code of the EHR system core and services. During the Static Spotter
analysis, we focused on finding scalability anti-patterns. After running the static
code analysis, the Static Spotter detected two EHR modules that used synchronized
methods in the source code, possibly resulting in scalability issues due to the One-
Lane Bridge (OLB) anti-pattern. Source code inspection confirmed that these were
the only projects from the input set using the synchronized methods. It is, however,
important to note that the detection of the anti-pattern was also affected by the

172 D. Huljenić et al.

F
ig

.9
.3

M
od
el
of

th
e
E
H
R
sy
st
em

us
ed

in
th
e
A
na
ly
ze
r
to
ol

9 Case Studies 173

configuration parameters provided before the start of the analysis. Since a certain
amount of details from the source code is lost during the process of merging and
clustering, it is to be expected that the information about the possible anti-pattern
implementation might be lost as well. If the parameters used to generate the model
from the source code are set to create merged components, parts of information from
the source code might not be preserved in the model and the Static Spotter might
not be able to detect anti-patterns, although they might exists in the source code.

As we proceeded with the analysis, we evaluated the forward engineering
scenario using the previously created model of the EHR system. The aim was to
find potential scalability bottlenecks with CloudScale’s Analyzer tool. In order to
validate results provided by the CloudScale Analyzer tool against the measurements
conducted in the cloud environment, a test-bed was prepared for deploying the EHR
system. The private IaaS cloud used for EHR service deployment was deployed
using the OpenStack software platform. The test environment consisted of three
hosts, as shown in Fig. 9.4, employed for the roles of controller, compute, and
storage nodes.

Both EHR application and EHR database were deployed as virtual machine
instances. User requests were simulated using a load generator. In order to evaluate

Fig. 9.4 EHR cloud deployment validation environment

174 D. Huljenić et al.

Fig. 9.5 EHR Simulated and measured average response times

Table 9.1 Instance types
used for EHR cloud
deployment

Instance name Resource properties

Small RAM: 2048MB, Disk: 20 GB, VCPU 1

Medium RAM: 4096MB, Disk: 40 GB, VCPU 2

Large RAM: 8192MB, Disk: 80 GB, VCPU 4

model accuracy, the response times of the simulated requests were compared to
the response times obtained from measurements (Fig. 9.5). The simulated results
slightly underestimated the response times when the number of parallel users was
greater than 100. The mean absolute percentage error of the model for the observed
load range was 4.11%, which demonstrated good model accuracy.

The focus of the analysis were metrics most relevant for an industrial business
case—capacity and the number of SLO violations. By using capacity metrics, we
wanted to identify what part of the current EHR service user base can be served
by different cloud instance types without violating the defined SLOs. This is why
we also needed to track the number of SLO violations. We observed the scenario
of retrieving information about the patient from the EHR database. The analysis
was performed using an SLO specifying that the response time of the observed user
request should not exceed 2 s.

The capacity metric was estimated for several different deployment configu-
rations. We deployed the EHR platform on three different instance types (small,
medium, and large instance), whose specifications can be seen in Table 9.1.

The measurements were performed to determine the capacity of a certain service
deployment. For each deployment configuration, the number of response time SLO
violations was measured while varying the number of parallel user requests. The

9 Case Studies 175

Fig. 9.6 EHR: simulated and measured capacity for different instance sizes

capacity of each configuration was noted as the maximum number of parallel user
requests that resulted with no SLO violations. The measured instance capacities
were compared with the ones obtained by the Analyzer tool (Fig. 9.6). The mean
average percentage error of the model was 7.59%. The capacity determined by the
Analyzer tool using the small instance was 52, very similar to the measured value
of 53. The simulated capacity of the medium instance was 70, which was a lower
value compared to the measured capacity of 76. However, the large instance was
predicted to have a capacity of 87 parallel users, while repeated measurements on
the validation environment demonstrated that the capacity of the large instance was
77, most likely due to the database processing rate, which was not entirely reflected
in the simulations.

The second metric used during the validation of the EHR case was the number
of SLO violations. In order to validate the implementation of this metric in the
Analyzer tool, a series of measurements were performed where the number of
parallel user requests was increased from 1 to 150. The system was deployed on the
small instance (Table 9.1) in the previously described test environment. The number
of SLO violations was observed with the response time thresholds of 2 s (Fig. 9.7).
The root mean square error (RMSE) was calculated for each set of measurements,
indicating the difference between actual measurements and values predicted by the
model using the number of SLO violations metric in the Analyzer. The following
figure demonstrates the percentage of requests resulting in the violation of the
response time SLO, for both measured and simulated data (RMSE= 6.46%).

176 D. Huljenić et al.

Fig. 9.7 EHR: simulated and measured number of SLO violations

9.1.3 Discussion of the Electronic Health Record Case

The EHR case used several activities from the CloudScale method and followed the
CloudScale scenario of system migration to cloud environments. We first used the
Extractor tool to successfully generate a model of each EHR module. However,
the granularity of the extracted model was determined by the organization and
structure of the source code. This means that the highest possible level of model
abstraction was the level of system modules. From an industrial point of view,
reverse engineering support in the creation of the model is beneficial because it
makes the modeling process less time-consuming in the case of large code bases.
In the EHR case, this turned out to be limiting in terms of adjusting the model
granularity level according to the user’s needs so the extracted model is useful in
terms of enhancing it with monitoring data. However, we found that parts of the
model generated by the Extractor tool can be used during the manual creation of the
model; thus, all model components do not have to be specified from scratch.

The conclusion of the Static Spotter tool validation is that the tool generally
returned expected output. However, the results for generating a model from source
code varied depending on the Static Spotter’s component-merging parameter.
Generating a model for one of the projects failed, possibly due to the lack of enough
main memory needed to process a large quantity of source code (>190k lines of
code). Using the tool in other projects resulted in successful model creation and
anti-patterns were detected when most of the information from the source code
was preserved in the model. The experiment with the model component merging
led to the conclusion that pattern detection is highly dependable on the parameters

9 Case Studies 177

used for model generation, since the detection process is based on the model of the
system. Because of this fact, users of the tool will have to be well informed about
the parameters used in model creation. Also, in the case of larger volumes of source
code, it is expected that the Static Spotter tool faces issues in allocating enough
main memory for source code processing. The benefit of the Static Spotter is the
simplicity of use, resulting in a short learning curve, and detection of design-related
issues, which is a non-trivial task, especially in systems with large code bases—
a common case of products in Ericsson’s portfolio, e.g., the EHR platform. The
benefits offered by the tool will increase further with the number of implemented
scalability anti-patterns.

We used the Analyzer to conduct simulations of several EHR usage scenarios,
including different deployment strategies and workloads. The simulation-based
analysis confirmed our assumption that the bottleneck of the EHR system deployed
as a conventional non-cloud distributed system was the database. We proceeded
with the analysis of the EHR system deployed to the cloud environment, with the
focus on determining capacity, scalability, and elasticity system capabilities while
monitoring the number of SLO violations. Model-based analysis has demonstrated
promising results, which might lead to significant cost savings, since it is possible
to determine optimal system provisioning without having to deploy an operational
service. However, it is crucial to achieve a high level of model accuracy, which can
be time-consuming. From the perspective of an industrial tool user, the Analyzer is a
powerful but complex tool, and it takes time to understand it for producing accurate
models.

9.2 Case Study: Kantega’s Flyt CMS

Kantega’s Flyt CMS is an open-source contentmanagement system (CMS) targeting
anything from small personal web pages to large enterprise solutions, and is being
used by many of Kantega’s customers, both in private and in public sector. Kantega
is a Norwegian SME providing IT consultancy services. The municipality of
Trondheim uses Flyt CMS for providing information to its inhabitants, and in peak
situations, e.g., in the case of strikes, the public wants to retrieve urgent information
at the same time. It is thus critical that Flyt CMS satisfies its SLOs. In this case
study, the Dynamic Spotter tool was applied to detect potential scalability issues by
monitoring the operational Flyt CMS system.

9.2.1 Flyt CMS

Flyt CMS [3] is a CMS solution built with Java. It enables publishing and
administrating content from any popular web browser and offers a flexible template
system, as well as a platform for building custom software. The most common user

178 D. Huljenić et al.

operations are read, update, and search for content. In addition, there are multiple
administration features that ease the administration of the CMS.

Kantega has used Flyt CMS for many different customers, with customization
suiting their different needs and requirements. It is currently a non-cloud solution.
However, as it gains an increasing user base, moving to the cloud could be a
viable alternative, since the likelihood of facing performance issues will increase
with an increasing number of users. Flyt CMS is typically hosted in virtualized
environments that, in a sense, emulate a cloud environment.

Flyt CMS is a three-layer architecture, data-centric application that contains
logic for integrating data from different local sources and indexing content for
fast searches. Figure 9.8 shows Flyt CMS’ three-layer architecture. The Flyt CMS
application handles data transmissions to and from the database, including dataflows
from different sources. It enables administration tasks, access control, content
management, and delivery of the content to the users. Flyt CMS is flexible with
regard to integrating with different external data sources like business systems, data
feeds, etc. Additional information regarding Flyt CMS implementation can be found
in [2].

The case study on Flyt CMS provides an insight into its scalability, which is
valuable for customers with a large user base and more concurrent activities on

Fig. 9.8 Overview of the Flyt CMS architecture

9 Case Studies 179

the CMS. Flyt CMS used the CloudScale method in the context of monitoring an
already deployed and running application. CloudScale’s Dynamic Spotter provides
a means for measurement-based testing, with an automatic analysis based on the
chosen symptom or group of symptoms. Kantega has previously used Apache JMe-
ter and HP LoadRunner as performance testing tools, which are easily integrated
with the Dynamic Spotter through its extension plug-ins. Therefore, it was very
convenient to include the Dynamic Spotter as a standard tool in the Kantega testing
toolset.

9.2.2 Applying the CloudScale Method and Tools to Flyt CMS

While the EHR case deals primarily with the migration scenario, Flyt CMS serves
as a case that utilizes CloudScale’s Dynamic Spotter for monitoring and analyzing
services in the operational phase. The Dynamic Spotter analysis was done with the
OLB pattern, which looks for single points in the application which are used by
many paths and thus hinders the application from scaling.

To gain results from the Dynamic Spotter, several prerequisites should be met.
First, the running application must be started with an instrumentation agent that can
instrument the byte code and report about measurements during runtime. Second, a
load generation tool, which is not a part of the Spotter itself, must place a load on the
running application. The Flyt CMS is defined as aMaven project written in Java, and
it could be started with the instrumentation agent provided by the original Dynamic
Spotter project. In addition, after setting up a load generation script through JMeter,
a load generation tool that already exists in the collection of workload adaptors in
the Dynamic Spotter, all prerequisites were fulfilled and the Dynamic Spotter was
consequently applied to the Flyt CMS case.

There are two scopes available for the Dynamic Spotter analysis that specify
where to look for scalability issues—the entry-point scope and the database scope.
The entry-point scope instruments the starting servlet classes and reports about a
scalability issue as the response time is increasing while having a constant (and low)
CPU level. Knowing that there is an issue at entry level usually does not give enough
information for pinpointing the problem in the Flyt CMS code base. The next option
used is the “database scope”, which gives detailed results per SQL query. However,
as there are many classes that use the same queries, more information was needed
for the analysis.

The central performance element in the Flyt CMS use case is how the CMS
handles the communication with the database. Therefore, a major scalability
weakness is related to this communication. To enable a major weakness in the Flyt
CMS use case, a number of concurrent database connections from the application
to the database were removed by setting the database pool the maximum. This
configuration is done in the application settings, and cannot be discovered by a
static tool. To test whether the Dynamic Spotter is able to pinpoint the limitation

180 D. Huljenić et al.

Fig. 9.9 Dynamic Spotter executed on the Flyt CMS use case, indicating increasing response
times and the detection of the OLB anti-pattern

in database pool sizes, a test was run with the OLB pattern at both the entry
scope and the database scope. A pre-defined response time threshold that should
be used during the Dynamic Spotter’s analysis was set. For both scopes, the
Dynamic Spotter correctly discovered a scalability issue and reported on this with a
description (Fig. 9.9).

9.2.3 Discussion of the Flyt CMS Case

The Dynamic Spotter was used for the discovery of potential scalability issues on
Kanetga’s Flyt CMS. The focus was on detecting the OLB anti-pattern in a running
service. Finding the root cause of an OLB has involved detection runs in both the
entry and database scopes. Both scopes provide valuable information, but in the case
of a detected OLB, it is a necessity to identify the actual root cause that typically
is between the entry and database scopes. The entry scope generally tells that an
OLB is present in the application as a whole, but it does not answer the question
on where the problem really is. Since the Dynamic Spotter is available as an open-
source project, Kantega managed to get around this shortcoming by customizing
the entry scope by adding a trace functionality that instruments the methods used
by the classes originally specified for instrumentation, hence providing more in-
depth information at the entry level. Although the addition of the user-defined scope
was not reported to require a lot of effort, having more options on what level to
instrument out of the box was noted as being very beneficial. The addition of more
anti-patterns supported by the Dynamic Spotter and the ability to automate the
process of detecting them have the potential of significantly decreasing the manual
work in Kantega’s traditional performance testing.

9 Case Studies 181

9.3 Additional Case Studies for the CloudScale Method

The CloudScale project was applied to existing industry solutions to test and
evaluate CloudScale tools in a real-life environment. In total, there were five systems
used for the CloudScale tools’ evaluation. These systems were used in various
phases of the tools’ implementation, and have hence been employed for the testing
and validation of the different tools’ functionalities. Some of them were used
more extensively during the project, while other covered a smaller fragment of the
CloudScale project results. Table 9.2 describes the usage of the CloudScale tools by
each of the use cases.

Two industrial use cases, EHR and Flyt CMS, were the focus of the project
validation activities. These case studies are described in detail in the previous
sections of this chapter (Sects. 9.1 and 9.2). An additional open-source showcase
was planned to allow for the evaluation and reproducibility of the results related to
the CloudScale method and each tool performed by any party.

Early on during the project, the CloudStore e-commerce sample application
was designed and implemented as an additional result of the project to be used
as a showcase. The CloudStore showcase has been already described in detail
in Sect. 3.7, including its storyline of expected load growth throughout time.
CloudStore was found to have scalability problems related to its database storage.
First, some configuration problems were detected (related to the connection pool);
later on, the inherent problem of a relational database cluster was found to become
a bottleneck during high loads.

Additional to these three use cases, two industry solutions were included in the
validation process. SAP HANA Cloud, used in the earlier phases of the project, and
GeoServer, a very popular geographical information service implementation. Both
use cases made use of the CloudScale tools in order to analyze potential scalability
problems in their implementation and typical deployments.

GeoServer is a part of XLAB’s GAEA+ geographical information services.
Being one of the cornerstones of the solution, it was important to detect any potential
scalability issues it could present, in particular for the given features being used.
Having several features based on GeoServer as a composite service, the ability
of scaling GeoServer efficiently would allow for providing services to additional
clients with well-understood marginal costs. CloudScale was able to detect a few

Table 9.2 CloudScale tools usage by use-cases

Tool ENT SAP Flyt GeoServer CloudStore

Extractor Yes Yes Yes Yes Yes

Analyzer Yes – – – Yes

Static spotter Yes – Yes Yes Yes

Dynamic spotter – Yes Yes Yes Yes

CloudScale method Yes – Yes Yes Yes

CloudScale Environment Yes – Yes Yes Yes

182 D. Huljenić et al.

potential issues in GeoServer, though under closer inspection, these issues did not
represent any major scalability problem, since they were located on sections of the
system that are executed only during the start-up of the service.

SAP’s HANA offered two of its components, SuccessFactor Service and Docu-
ment Service, as additional applications tested by CloudScale.

While all of the stated cases contributed to the development and improvement
of the CloudScale tools, the focus of the CloudScale method validation was on the
EHR and Flyt CMS cases, which serve as an example of industrial products with
a large user base and offer a perspective of employing the CloudScale method in a
commercial environment for gaining relevant insights related to service engineering.

9.4 Conclusion

This chapter details two case studies used for inspecting the CloudScale method and
tools in an industrial context. The first industrial case, EHR, follows the CloudScale
method in a migration scenario, using the source code of EHR implemented for
a traditional on-premises deployment and predicting the service behavior in a
cloud environment. The second case study, Flyt CMS, is used for a scalability
issue detection on a running service. Basic functionality, architecture, and some of
the major scalability concerns are presented, together with the possible situations
affecting service scalability. Several additional systems used for the testing and
validation of the CloudScale tools used in different stages of their development are
also presented.

The CloudScale method offered guidelines in approaching the migration of
the EHR system to the cloud, and the resulting analysis provided insights into
the behavior of the EHR system based on its model. The analysis provided by
the CloudScale tools was found to be very useful for capacity planning of the
infrastructure where the EHR system was planned to be deployed in the cloud
environment. Also, the results of the simulations in terms of response times and
the number of SLO violations can be used as guidelines when it comes to quality-
of-service (QoS) assurance. The use of CloudScale’s Dynamic Spotter on the Flyt
CMS case demonstrated the possibility of significantly reducing manual effort in
the process of troubleshooting the scalability issues on operational services.

Generally, the observed usability of tools was estimated as good. All of the
CloudScale tools are available through the CloudScale Environment, offering a
systematic and convenient view of the projects and tool results. However, since tools
such as the Analyzer are fairly complex, software architects will likely have to invest
some time in training and studying CloudScale’s documentation and in creating
accurate service component models in order to gain benefit from using CloudScale
tools. Nevertheless, the toolset offers functionality that is especially interesting from
the industrial point of view (e.g., the extraction of the model from the service source
code, model-based scalability analysis, automated scalability anti-pattern detection
on an operative service), which can be utilized to significantly reduce the cost of

9 Case Studies 183

experimental scalability analysis and the time to find the problem solution. Further
details on case studies and detailed lessons learned can be found in a dedicated
deliverable of the CloudScale project [2].

References

1. Ericsson Healthcare Exchange - EHE: http://www.ericsson.hr/ericsson-healthcare-exchange
(2016) [Visited on 12/02/2016]

2. CloudScale: Project Deliverable D4.3: Requirements and validation, final version http://www.
cloudscale-project.eu/media/filer_public/2016/02/02/d43_requirements_and_validation_third_
version.pdf (2016), Visited: 1 December

3. Flyt CMS GitHub Repository: https://github.com/kantega/Flyt-cms (2016) [Visited on
12/02/2016]

http://www.ericsson.hr/ericsson-healthcare-exchange
http://www.cloudscale-project.eu/media/filer_public/2016/02/02/d43_requirements_and_validation_third_version.pdf
http://www.cloudscale-project.eu/media/filer_public/2016/02/02/d43_requirements_and_validation_third_version.pdf
http://www.cloudscale-project.eu/media/filer_public/2016/02/02/d43_requirements_and_validation_third_version.pdf
https://github.com/kantega/Flyt-cms

Glossary

Analyzer The Analyzer allows to analyze ScaleDL models regarding scalability,
elasticity, and cost-efficiency of cloud computing applications at design time.

Capacity Capacity is the maximum workload a service can handle as bound by its
SLOs.

Cost-Efficiency Cost-efficiency is a measure relating demanded capacity to con-
sumed services over time.

Elasticity Elasticity is the degree to which a service autonomously adapts capacity
to workload over time.

Extractor The Extractor is a reverse engineering tool for automatic model extrac-
tion by parsing and analyzing source code.

Operation An operation specifies the name, type, parameters, and constraints for
invoking an associated behavior.

Scalability Scalability is the ability of a service to increase its capacity by
expanding its quantity of consumed lower-layer services.

ScaleDL editors Editors provided by the CloudScale IDE to create or update all
aspects of the ScaleDL modeling language.

Service-Level Objective, SLO The quality-of-service target that must be achieved
for each of a service’s operations.

Spotter The Spotter allows to statically and dynamically detect scalability issues
in implemented and running systems.

Workload Workload is the combined characterization of work and load, where
work is the characterization of the data that is processed by a service’s operations,
and load is the characterization of the quantity of consumer requests to a service’s
operations at a given time.

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7

185

Index

3-layer, 36, 72

Abstraction, 58
Activity diagram, 55
Agile Unified Process, 41
Analyzer. See CloudScale Analyzer, 161, 173

case study, 173
example, 119

Apache Hadoop, 37
Apache JMeter, 179
Application Hiccups, 38
Architectural Templates. See HowTos, 70

3-layer, 72
catalog, 72
concepts, 70
example, 70
horizontal scaling, 72
loadbalancing, 72
SPOSAD, 72
tool support, 73
vertical scaling, 72

Artifact, 88
ATs. See Architectural Templates

Big data, 37
Box-and-line diagram, 55
Broad network access, 51, 53
Business information systems, 36

Capacity, 9
Case studies, 167
Cloud application, 48

Cloud computing, 6, 48
applications, 52, 54
characteristics, 51

broad network access, 51, 53
measured service, 52, 54
on-demand self-service, 51, 53
rapid elasticity, 52, 53
resource pooling, 52, 53

modeling, 54
requirements, 53

CloudScale
Analyzer, 32
method, 24
Spotter, 34

dynamic, 34
static, 34

CloudScale Environment, 161
workflow engine, 161

CloudScale method, 17
accuracy, 87
analyzing a modeled system, 96
analyzing an implemented system, 97
costs, 18, 156
critical use cases, 92
factors for successful projects, 158
granularity, 86
idenfy risks, 92
key scenario, 93
notation, 88
objectives, 86
operation, 99
organizational issues, 156
precision, 87
prerequisites, 19
risks, 158

© Springer International Publishing AG 2017
S. Becker et al. (eds.), Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications, DOI 10.1007/978-3-319-54286-7

187

188 Index

scope, 87
steps, 90
success factors, 154
technical requirements, 94

CloudStore, 26, 56, 181
Complementing tools, 162
Component diagram, 55
Cost-efficiency, 11

analysis, 34
requirements, 31

Critical use cases, 28, 92

Data & control flow, 88
Data flow, 88
Data Transfer Objects, 141
Deployment diagram, 55
DevOps, 14
Distributed computing, 48
Docker, 50
Document Service, 182
DropBox, 52
Dynamic Spotter. See CloudScale Spotter

dynamic, 138, 179
case study, 179
Example, 143

EHE. See Ericsson Healthcare Exchange
EHR. See Electronic Health Record
Elasticity, 10

analysis, 33
requirements, 30

Electronic Health Record, 167, 168, 170, 181
Empty Semi-Truck, 38, 141
Ericsson, 167
Ericsson Healthcare Exchange, 168
Eventually-consistent, 51
Excessive Dynamic Allocation, 38, 141
Expensive Database Calls, 40
Extended Palladio Component Model, 73

specify, 111
External artifact, 88
External manual task, 88
Extractor, 79, 161, 170

case study, 170

Flyt CMS, 167, 177, 181

GAEA+, 181
GeoServer, 181
GoogleDrive, 52

Granularity, 151
during modeling, 104
resource granularity, 105
service granularity, 105
usage granularity, 105

Grid computing, 48

Hadoop MapReduce, 37
High performance computing, 48
Horizontal scaling, 37, 72, 140
HowNotTos, 37

Application Hiccups, 38
Empty Semi-Truck, 38
Excessive Dynamic Allocation, 38
Expensive Database Calls, 40
One-Lane Bridge, 38, 97, 136, 140, 171
resolving, 140
spot dynamically, 138
spot statically, 136
The Blob, 38
The Ramp, 38
The Stifle, 40

HowTos, 35
3-layer, 36
catalog, 35
Hadoop MapReduce, 37
horizontal scaling, 37, 140
loadbalancing, 36, 140
MapReduce, 37, 140
sharding, 36
SPOSAD, 37
static content, 36
vertical scaling, 37, 140

HP LoadRunner, 179
HPC. See high performance computing
HTML5, 49

JMeter, 179

Kantega, 167, 177, 181
Key considerations, 150
Key scenario, 93
Key scenarios, 28

LIMBO, 56
Loadbalancing, 36, 72, 140

Management
Cost-efficiency, 13

Index 189

Elasticity, 13
Proactive, 16
Reactive, 14
Scalability, 13

Manual tasks, 88
MapReduce, 37, 140
Measured service, 52, 54
Micro-service, 50
Microservice, 16
Microsoft OneDrive, 52
Model-view-controller, 49
Modeling hints, 58
Monitoring, 35
Monitors, 76
MVC. See Model-view-controller

On-demand self-service, 51, 53
One-Lane Bridge, 38, 97, 133, 136, 140, 171,

179
OpenStack, 173
OpenUP, 41
Operations, 7
Overview Model

specify, 109
Overview model, 63

concepts, 63
definition, 63
example, 64
tool support, 65

Palladio Component Model, 74
allocation model, 74
examples, 76
resource environment model, 74
system model, 74
tool support, 78
usage model, 75

Parallel tasks, 88
PCM. See Palladio Component Model
Pilot project, 159
Planning horizon, 28

Rapid elasticity, 52, 53
Rational Unified Process, 41
Resource Pooling, 141
Resource pooling, 52, 53
RESTFull API, 50
Role, 88

developer, 89
product manager, 89
service consumer, 89

service provider, 90
system architect, 89
system engineer, 89

Roles
CloudScale, 89
NIST, 90

RUP. See Rational Unified Process, 153

SAP HANA Cloud, 181
Scalability, 10

analysis, 32
requirements, 30

ScaleDL, 24
Architectural Templates, 70
Extended Palladio Component Model, 73
model specification, 32
Overview model, 63
Usage Evolution, 66

ScaleDL editors, 161
SCRUM, 153
SEFFs. See Service Effect Specifications
Self-adaptation, 56
Self-adaptation rules, 75
Service Effect Specifications, 74
Service level objectives, 8, 27
Service-oriented Architecture, 6
Service-oriented front end applications, 49
Sharding, 36
Single page web applications, 49
SLOs. See Service level objectives
SPOSAD, 37, 72
Spotter. See CloudScale Spotter, 162
Spotters

Dynamic Spotter, 138
Static Spotter, 136

Spring, 57
State chart, 55
Static content, 36
Static Spotter. See CloudScale Spotter static,

136, 171
case study, 171
Example, 141

StoryDiagrams, 56
SuccessFactor Service, 182
System

deployment, 35
operation, 35
realization, 35

Technical requirement, 94
The Blob, 38, 141
The Ramp, 38

190 Index

The Stifle, 40
Tool-driven process, 88
Tools

Dynatrace, 162
JMeter, 162
JProfiler, 163
Kieker, 162
Palladio, 162
R, 163
VisualVM, 163

TPC-W, 56

UML MARTE, 24
UML2, 54
Unified Process, 41
Usage Evolution, 66

concepts, 66

definition, 66
example, 67, 106
specify, 106
tool support, 69

Usage evolution, 95
Use-cases, 54

Vertical scaling, 37, 72, 140

Web application, 49
Web Scale IT, 4
Workload, 8

XLAB, 181

	Foreword
	Preface
	Acknowledgments
	Contents
	Contributors
	Part I Introduction and Overview
	1 Introduction
	1.1 Getting It Right
	1.2 Software in the Cloud Computing Era
	1.3 Some Useful Definitions to Characterize Services
	1.3.1 Operations
	1.3.2 Service-Level Objectives
	1.3.3 Workload
	1.3.4 Capacity

	1.4 Quality Properties of Services
	1.4.1 Scalability
	1.4.2 Elasticity
	1.4.3 Cost-Efficiency

	1.5 Consequences of Scalability, Elasticity, and Cost-Efficiency Issues
	1.6 Causes of Scalability, Elasticity, and Cost-Efficiency Issues
	1.7 How Should You Manage Scalability, Elasticity, and Cost-Efficiency?
	1.8 Reactive Scalability, Elasticity, and Cost-EfficiencyManagement
	1.8.1 Immediate Temporal Solutions
	1.8.2 Long-Term Solutions

	1.9 Proactive Scalability, Elasticity, and Cost-EfficiencyManagement
	1.10 The CloudScale Method
	1.11 What Does It Cost?
	1.12 What Do You Need?
	1.13 Conclusion
	References

	2 CloudScale Method Quick View
	2.1 Process Steps of the CloudScale Method
	2.2 Running Example
	2.3 Identify Service-Level Objectives, Critical Use Cases, and Key Scenarios
	2.3.1 Service-Level Objectives
	2.3.2 Critical Use Cases
	2.3.3 Key Scenarios

	2.4 Identify Scalability, Elasticity, and Cost-EfficiencyRequirements
	2.4.1 Scalability Requirements
	2.4.2 Elasticity Requirements
	2.4.3 Cost-Efficiency Requirements

	2.5 Specify ScaleDL Model
	2.6 Use Analyzer
	2.6.1 Scalability Analysis
	2.6.2 Elasticity Analysis
	2.6.3 Cost-Efficiency Analysis

	2.7 Use Spotters
	2.8 Realize, Deploy, and Operate System
	2.9 Cloud Computing HowTos
	2.10 Cloud Computing HowNotTos
	2.11 The CloudScale Method in the Unified Process
	2.11.1 Unified Processes
	2.11.2 Relating the CloudScale Method

	2.12 Conclusion
	References

	Part II Modeling Cloud Computing Applications
	3 Cloud Computing Applications
	3.1 Introduction
	3.2 Web Applications
	3.3 Cloud Computing Characteristics
	3.4 From Web to Cloud Computing Applications
	3.5 Requirements of Cloud Computing Applications
	3.6 Modeling Cloud Computing Applications
	3.6.1 Common View Types for Applications
	3.6.2 Cloud-Specific View Types for Applications

	3.7 CloudStore Running Example
	3.8 Modeling Hints
	3.9 Conclusion
	References

	4 ScaleDL
	4.1 Introduction
	4.2 Overview Model
	4.2.1 Concepts of Overview Model
	4.2.2 Example of Overview Model
	4.2.3 Tool Support for Overview Model

	4.3 Usage Evolution
	4.3.1 Concepts for Usage Evolution
	4.3.2 Example of Usage Evolution
	4.3.3 Tool Support for Usage Evolution

	4.4 Architectural Templates
	4.4.1 Concepts of Architectural Templates
	4.4.2 Example for Architectural Templates
	4.4.3 Catalog of Architectural Templates
	4.4.4 Tool Support for Architectural Templates

	4.5 The Extended Palladio Component Model
	4.5.1 Concepts of the Extended Palladio Component Model
	4.5.1.1 The Palladio Component Model
	4.5.1.2 Extensions for Elastic Environments

	4.5.2 Example for the Extended Palladio Component Model
	4.5.3 Tool Support for the Extended PalladioComponent Model
	4.5.3.1 Analysis Tools
	4.5.3.2 Extractor

	4.6 Conclusion
	References

	Part III The CloudScale Method for Software Architects
	5 The CloudScale Method
	5.1 Introduction
	5.2 Granularity
	5.3 Method Notation
	5.4 Roles in the Method
	5.5 Method Steps
	5.6 Identify Service-Level Objectives, Critical Use Cases, and Key Scenarios
	5.7 Identify Scalability, Elasticity, and Cost-EfficiencyRequirements
	5.8 Use-Case I: Analyzing a Modeled System
	5.9 Use-Case II: Analyzing and Migrating an Implemented System
	5.10 Realize, Deploy, and Operate
	5.11 Conclusion
	References

	6 Analyzing a Modeled System
	6.1 Introduction
	6.2 Step I: Specify ScaleDL Model
	6.2.1 Determine Granularity
	6.2.2 Specify Usage Evolution
	6.2.2.1 Service-Level Objectives
	6.2.2.2 Load
	6.2.2.3 Work

	6.2.3 Specify Overview Model and Generate Extended Palladio Component Model
	6.2.4 Complete Extended Palladio Component Model
	6.2.4.1 Manually Creating and Adapting Extended Palladio Component Models
	6.2.4.2 Using HowTos for Specifying Extended Palladio Component Models

	6.2.5 Summary for the Specification of ScaleDL Models

	6.3 Step II: Use Analyzer
	6.3.1 Set Configuration Parameters
	6.3.2 Run Analyzer and Assess Requirements

	6.4 Analyzer Running Example
	6.4.1 Step I: Specifying a CloudStore Model via ScaleDL
	6.4.1.1 Constructing the Model
	6.4.1.2 Calibrating the Model
	6.4.1.3 Evaluating the Model

	6.4.2 Step II: Using the Analyzer with the CloudStore Model
	6.4.2.1 Capacity Analysis
	6.4.2.2 Scalability Analysis
	6.4.2.3 Elasticity Analysis
	6.4.2.4 Cost-Efficiency Analysis

	6.5 Conclusion
	References

	7 Analyzing and Migrating an Implemented System
	7.1 Introduction
	7.2 Spotting HowNotTos
	7.3 Statically Detecting HowNotTos
	7.4 Dynamically Detecting HowNotTos
	7.5 Resolving HowNotTos with HowTos
	7.6 Spotter Running Example
	7.6.1 Static Spotter
	7.6.2 Dynamic Spotter

	7.7 Conclusion
	References

	Part IV Making the CloudScale Method Happen
	8 The CloudScale Method for Managers
	8.1 Introduction
	8.2 Key Considerations
	8.3 Relation to Other Engineering Methods
	8.4 Pros and Cons of the CloudScale Method
	8.4.1 Critical Success Factors for Method Adoption and Use
	8.4.2 Organizational Issues
	8.4.3 Costs
	8.4.4 Covering the Cost of the CloudScale Method Adoption
	8.4.5 Risks
	8.4.6 Critical Factors for Successful Projects

	8.5 A Pilot Project
	8.6 Setting Up the CloudScale Environment
	8.7 Complementing Tools
	8.8 Following the CloudScale Method for the Pilot Project
	8.9 Conclusion
	References

	9 Case Studies
	9.1 Case Study: Electronic Health Record
	9.1.1 Electronic Health Record
	9.1.2 Applying the CloudScale Method and Toolsto Electronic Health Record
	9.1.3 Discussion of the Electronic Health Record Case

	9.2 Case Study: Kantega's Flyt CMS
	9.2.1 Flyt CMS
	9.2.2 Applying the CloudScale Method and Toolsto Flyt CMS
	9.2.3 Discussion of the Flyt CMS Case

	9.3 Additional Case Studies for the CloudScale Method
	9.4 Conclusion
	References

	Glossary
	Index

