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Abstract In-home monitoring technologies deployed in personal living spaces are
increasingly used for the assessment of health status in older adults, through the
measurement of relevant at-tributes ranging from vital parameters to activities and
behaviors including mobility, gait velocity, movements in bed, and so on. Several
studies agree that unobtrusive monitoring (with the exception of video-recording) is
generally well accepted by older adults, especially if non-intrusive technologies are
adopted (e.g., not need to wear any device) which do not interfere with daily life
(e.g., not need to learn new technical skills, no change in routines, etc.). In order to
address the problem of in-home automatic fall detection by continuous unobtrusive
monitoring, this study investigates the use of a promising ambient technology, that
is the ultra-wideband (UWB) radar sensing, which provides rich information but
outside the human sensory capabilities (i.e., not directly usable for obtaining
privacy-sensitive information) and thus well acceptable by end-users. Moreover, the
problem of performance under real-life conditions has been addressed by sug-
gesting an unsupervised approach not requiring fall-based training but only a
subject-specific calibration phase based on observation of daily activities.
Preliminary results are very encouraging, showing the effectiveness to achieve good
detection performance under real-life conditions through unobtrusive monitoring.
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1 Introduction

In-home monitoring technologies deployed in personal living spaces are increas-
ingly used for the assessment of health status in older adults, through the mea-
surement of relevant attributes ranging from vital parameters to activities and
behaviors including mobility, gait velocity, movements in bed, and so on.
Furthermore, such technologies can also be used to provide more safety (e.g., fall
detection) and support with daily activities (e.g., issuing reminders).

Recently, ethical issues concerning technology interventions involving older
adults have received increasing attention [1]. Among others, the most common
concerns regard privacy (i.e., risks of inappropriate access to personal information)
and security (i.e., risks of intrusion through computer systems). However, several
studies report that unobtrusive monitoring (with the exception of video-recording)
is generally well accepted by older adults, especially if nonintrusive technologies
are adopted (e.g., not need to wear any device) which do not interfere with daily life
(e.g., not need to learn new technical skills, no change in routines, etc.) [2]. In
addition, the good acceptability of unobtrusive monitoring enables the measurement
of relevant attributes in continuous modality, producing long-term health data
useful for early prediction of heath disorders (e.g., cognitive impairment, dementia,
etc.).

In-home monitoring solutions are generally classified into two types: wearable
devices and ambient (or context-aware) systems [3]. Wearable-based technologies,
typically consisting of embedded MEMS accelerometers/gyroscopes (e.g., fall
detection or activity recognition) or skin electrodes (e.g., measurement of vital
parameters), suffer from several drawbacks such as limited battery life, the need for
on-board processing and/or wireless communication (i.e., both energy-demanding
functions), the inconvenience of having to remember to wear a device and the
discomfort caused by the device itself. All these drawbacks make the use of
wearable devices still far from being suitable for continuous unobtrusive monitoring
[4]. On the contrary, the ambient systems are more suitable for this purpose, since
they are based on various kinds of sensors deployed in the environment ranging
from information-poor but well accepted devices such as simple on/off switches,
pressure sensors, infrared sensors and so on, to more information-rich devices, like
video cameras, but that raise privacy concerns.

In order to address the problem of in-home automatic fall detection by contin-
uous unobtrusive monitoring, this paper investigates the use of a promising ambient
technology, that is the ultra-wideband (UWB) radar sensing, which provides rich
information but outside the human sensory capabilities (i.e., not directly usable for
obtaining privacy-sensitive information) and thus well acceptable by end-users.
Additionally, UWB radar is a multi-purpose technology whose application range
spans from detection and measurement of vital parameters to localization, move-
ment detection, and even secure high-throughput wireless communication [5].
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2 Materials and Methods

2.1 System Overview

The unobtrusive monitoring system is based on a monostatic sensor module P410
manufactured by Time Domain [6], which is connected via USB to an embedded
PC. Both devices are presented in Fig. 1. The P410 is a state-of-the-art UWB radar
sensor, working from 3.1 to 5.3 GHz centered at 4.3 GHz, covering a distance
range of about 30 m, having good object penetrating capabilities and compact
(7.6 � 8.0 � 1.6 cm) board dimensions. The P410 is equipped with an omnidi-
rectional antenna, which in this study has been modified by adding a planar back
reflector in order to reduce the azimuth pattern to around 100°. Range data from the
P410 are processed by the Embedded PC (EPC), which has low computational
profile (i.e., Intel Atom processor based), low power consumption (25 W) and
reduced (13.2 � 9.5 � 3.7 cm) dimensions.

The EPC runs the processing algorithms, including (as better explained in the
following) preprocessing steps and machine learning, for detection of fall events in
real-time.

2.2 Algorithmic Framework for Fall Detection

On the algorithmic side, there are three main stages: preprocessing, feature
extraction, event detection. Regarding the preprocessing stage, the scattered radar
signal is first filtered by a 16th-order Butterworth (bandpass 3.1–5.3 GHz) and then
by a 3-tap FIR motion filter in order to improve the signal-to-clutter ratio. The
resulting range profiles are normalized in amplitude and time within a sliding
window of time length 1.5 s and distance range up to 5 m. The time duration of

Fig. 1 UWB Radar Sensor P410 (left) and embedded PC (right)
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1.5 s was experimentally determined, as that able to discriminate both fast actions
(e.g., falls) and slow ones (e.g., voluntary lying down). Amplitudes and
Times-of-Arrival (ToAs) are estimated by peak analysis and tracked with Kalman
filter in order to isolate the only target of interest (i.e., the monitored subject). The
preprocessed radar signal is shown in Fig. 2.

The extracted features are based on the Micro-Doppler effect which is briefly
introduced as follows. As well known, the relative motion between radar and target
introduces a Doppler frequency shift which relates directly to the radial velocity:
movements towards (away from) the radar introduce a positive (negative) frequency
shift. Furthermore, a human target consists of different parts (e.g., head, torso, legs,
etc.) which move at different velocities during the same action (e.g., walking,
sitting, etc.). The multiple Doppler shifts produced by these smaller motions are
referred to as Micro-Doppler features. The feature extraction process starts by
computing the Doppler spectrogram which represents the signal power distribution
over frequency (x-axis) and distance (y-axis). In Fig. 3, the Doppler spectrograms
of radar scans taken during a simulated fall (Fig. 3a) and walking activity (Fig. 3b)
are presented. As evident from Fig. 3a, the spectrogram exhibits horizontally
aligned peaks (Micro-Doppler) related to movements of body’s parts during the fall
event. The Doppler spectrogram is computed by applying the short-time Fourier
transform to the analytic form of the radar signal. Hence, the Micro-Doppler fea-
tures are extracted by convolving the spectrogram with a Gaussian filter and
summing the power spectrum at all distances for each frequency, in order to obtain
one-dimensional Micro-Doppler signatures as those reported in Fig. 3c, d associ-
ated with the simulated fall (Fig. 3a) and the walking activity (Fig. 3b),
respectively.

The event detection stage deals with the recognition of a fall occurrence from the
extracted features. The commonly used methodologies are based on supervised
machine learning techniques trained with both positive (falls) and negative
(ADL-Activity of Daily Living) samples, both simulated by healthy young subjects.
As a result, due to such a training protocol, fall detectors inevitably exhibit lower
performance when used in real-world situations, in which monitored subjects are
older adults [3]. In order to address this problem and to improve fall detection

Fig. 2 Preprocessed radar signal referred to a person moving inside a room at a distance of about
4 m from the radar sensor
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performance under real-life conditions, an unsupervised approach has been used in
which the fall occurrence is detected as a “novelty” with respect the usual daily
activities performed by the monitored subject. In the suggested unsupervised
approach, novelties are detected using votes casted by multiple one-class K-means
classifiers [7]. For evaluation purpose, a classical supervised detector based on
Support Vector Machine (SVM) [8] has been also experimented and its perfor-
mance compared with the unsupervised one.

2.3 Experimental Setup

Both ADLs and falls were performed in a home-like setting, as depicted in Fig. 4,
by involving ten healthy subjects divided into two age groups of avg. 24 and
48 years old, respectively. For each participant, a total amount of 436 actions were
collected, of which 30 were simulated falls and the remaining were daily activities
such as walking, sitting down, standing up, etc. The SVM-based supervised

Fig. 3 Doppler spectrum (a) and Micro-Doppler signature (c) of a radar scan referred to a person
falling down at a distance of about 3 m from the sensor. Doppler spectrum (b) and Micro-Doppler
signature (d) of a radar scan referred to a person walking at a distance of about 4 m from the sensor
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approach has been evaluated using both intra-group and inter-group strategies.
More specifically, the first strategy consisted in training and testing the classifier
with actions simulated by individuals belonging to the same group. On the contrary,
with the second strategy the classifier has been trained with actions simulated by
individuals of the young group and tested by involving individuals of the older
group. In both strategies, the SVM classifier was trained with 90 falls and 738 daily
actions, and was tested with the remaining 60 falls and 492 daily actions.

Regarding the K-means-based unsupervised approach, since it is oriented to
detect falls as novelties among daily “normal” activities (walking, sitting down,
standing up, etc.), it has been validated involving the same subject in both obser-
vation and testing phases. The observation phase lasted for about 95 min for each
subject (i.e., 190 actions), after which the testing phase started and 30 falls/person
were performed.

3 Results and Discussion

As summarized in Table 1 the best performance was achieved using the
SVM-based supervised approach validated with the intra-group strategy. Although
this performance is comparable with previous studies [9], nevertheless there is no
guarantee that it could be achieved under real-life conditions since the classifier
needs to be trained with simulated falls. In fact, the performance declined with the
inter-group validation strategy, in which falls were simulated by young and tested
by older subjects (as happens in real-life). More interestingly, the K-means-based
unsupervised approach outperformed the supervised (inter-group) one without
requiring any fall-based training, and thus more reproducible in real-life scenarios.
However, it is worth noting that the unsupervised approach requires a preliminary
calibration phase during which almost all daily “normal” activities should be
observed and labelled as not-fall. In this study, such a calibration phase lasted

Fig. 4 Experimental setup: home-like setting (left) and radar station (right)
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95 min per subject, but in real-world it may take much longer depending on habits
of monitored subject.

The presented system may find application for continuous indoor monitoring of
older adults living alone. In fact, after a period of observation (i.e., unsupervised
training), the system can reliably detect fall events against daily activities. The
presence of moving objects (e.g., chairs, sofas, etc.) in the room does not interfere
with the event detection, since the Kalman filter allows tracking of peaks associated
with a human target in the radar signal. Furthermore, it is worth to note that because
of the high penetrating ability of the UWB radar, the presence of medium-sized
objects (e.g., tables, chairs, etc.) between radar sensor and human target does not
raise any occlusion problem. Instead, the most serious noise source in indoor
environments is the clutter signal containing reflections from stationary structures
(e.g., walls, furniture, etc.). In this study the clutter signal has been strongly
attenuated by motion filtering the radar signal. However, this technique is not quite
effective for through-wall sensing, in which case more sophisticated clutter removal
techniques should be adopted.

As already mentioned, the system reliably detects falls when only one person is
present in the room (i.e., a living-alone elderly). When two or more people are
present, on the other hand, the system takes into account only the movement
patterns of the person nearest to the radar sensor, and thus it is able to detect only
falls of the nearest subject. Additionally, when two or more people stay at the same
radial distance with respect to the radar sensor, their motion patterns may interfere,
affecting the detection performance.

4 Conclusion

The main contribution of this work concerns the investigation and validation in a
home-like setting of an unobtrusive monitoring system for fall detection based on
UWB radar sensor. Moreover, the problem of performance under real-life condi-
tions has been addressed by suggesting an unsupervised approach not requiring
fall-based training but only a subject-specific calibration phase based on observa-
tion of daily activities. Preliminary results are very encouraging, showing the

Table 1 Experimental
results

Approach Sensitivity (%) Specificity (%)

Unsuperviseda 91 89

Supervised intra-groupb 96 90

Supervised inter-groupc 86 75
aNot trained with simulated falls
bTrained and tested with falls simulated involving the same group
cTrained with falls simulated by the young group and tested with
falls simulated by the older group
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effectiveness to achieve good detection performance under real-life conditions
through unobtrusive monitoring.

The ongoing work is focused, on one hand, on extending the proposed system to
detect falls in multi-user scenarios (e.g., in community dwellings) by facing the
multi-target/multi-detection association problem. On the other hand, the future
work is to investigate the use the UWB radar sensor also for continuous and
unobtrusive in-home monitoring of vital parameters.
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