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Abstract Ambient intelligence technologies have the objective to improve the
quality of life of people in daily living, by providing user-oriented services and
functionalities. Many of the services and functionalities provided in Ambient
Assisted Living (AAL) require the user position and identity to be known, and thus
user localization and identification are two prerequisites of utmost importance. In
this work we focus our attention on human indoor localization. Our aim is to
investigate how Received Signal Strength (RSS) based localization can be per-
formed in an easy way by exploiting common Internet of Things (IoT) commu-
nication networks, which could easily integrate with custom networks for AAL
purposes. We thus propose a plug and play solution where the Beacon Nodes
(BNs) are represented by smart objects located in the house, while the Unknown
Node (UN) can be any smart object held by the user. By using real data from
different environments (i.e., with different disturbances), we provide a one-slope
model and test localization performances of three different algorithms.
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1 Introduction

Ambient Assisted Living (AAL) is typically classified according to the targeted
functional domain, and might include safety systems, medical devices, telemedicine
platforms, assistive robots and many others [9]. Regardless of the assistive func-
tionality or service provided, AAL technologies typically require the user position
and/or identity to be known. While indoor localization (and mapping) of artificial
systems (e.g. robots) is an already mature research field [4, 11, 13, 16], indoor user
localization has started to attract a lot of interest in the AAL research community
only in the last years, and it is still one of the open challenges to solve [29]. In 2011,
the Evaluating AAL Systems through Competitive Benchmarking (EvAAL) was
established, which aims at establishing benchmarks and evaluation metrics for
comparing Ambient Assisted Living solutions [7]. Since then several localization
solutions for AAL have been proposed, such as the RESIMA architecture for
assisting people with sensory disability in indoor environments [2], and
CARDEAGate for providing an inexpensive and scarcely intrusive way for user
localization and identification [14].

Most of the times, however, localization systems for AAL applications are based
on custom solutions, and thus are difficult to integrate with other systems and
require an extensive calibration during the deployment phase [10]. In this work we
focus our attention on indoor human localization based on the Internet of Things
(IoT) paradigm, seen as the interconnection of devices within the existing internet
infrastructure to offer advanced connectivity of devices, systems, and services. The
proposed localization is thus performed without the use of ad hoc sensors, i.e.,
using wireless networks already installed at home, like those required by smart
objects to operate. Among the available localization methods, those based on
Received Signal Strength Indicator (RSSI) are probably the most suitable for
localizing a person indoor, since they are low-cost, present low-complexity and
exploit already existing networks without the use of further hardware. RSSI is an
indicator which can be used in many applications, such as the implementation of
message routing or self-healing strategies for sensor networks, the detection of
obstacles crossing the radio-links and especially the localization of nodes. RSSI-
based localization techniques rely on two different types of nodes: an Unknown
Node (UN), which acts as a receiver and whose position has to be estimated, and
Beacon Nodes (BNs), which act as transmitters and whose positions are known.
Two types of localization schemes are mainly documented in the literature for
RSSI-based localization [30]: fingerprinting [21, 32] and path loss model [1, 5,
6, 34]. The RSSI-fingerprinting algorithm consists in the calibration and online
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tracking processes. One of the main drawbacks of the RSSI based locating
methodologies is the extensive calibration phase for building a fingerprint database.
As an alternative, path loss models can effectively predict the signal strength [12,
17]. Existing prediction models may fall into two categories: the deterministic and
empirical models [33]. The deterministic model is accurate and site-specific, but
demands a heavy computational load, while the empirical approach can be easily
computed but is less accurate. Once the distance of the UN from the nearest BNs
has been calculated, then it is possible to estimate the UN position by using dif-
ferent estimation algorithms, such as Min-Max, Multilateration and Maximum
Likelihood [22, 24]. RSSI, however, is susceptible to several disturbances, such as
noise, interference, multi-path fading, dilution of precision, which greatly affect the
signal received power [23]. A poor ranging usually determines poor position esti-
mates and, hence, unsatisfactory localization performances: this limit depends on
the ranging errors and cannot be overcome by the use of more sophisticated esti-
mation algorithms. The recent RSSI literature is mainly focused in finding solutions
to improve the localization accuracy [18, 33], to deal with dynamic environments
[27] and to minimize the power consumption of the localization system [31]. These
solutions, however, are oriented towards the world of wireless sensor networks,
where accuracy, robustness and optimized results are obtained at the cost of high
complexity algorithms and time consuming setup phases, and are often limited to
heavily structured environments. On the other hand, commercial solutions typically
require the use of ad hoc devices and do not exploit the already existing wi-fi
network (such as the iBeacon from Apple [15]).

In the proposed work, instead, we focus our attention on the world of IoT and
smart homes for AAL, and want to investigate how RSSI localization can be
performed in an easy way by exploiting common IoT communication networks. We
thus propose a plug and play solution where the BNs are represented by smart
objects located in the house, while the UN can be any smart object held by the user.
By using real data from different environments (i.e., with different disturbances), it
is then possible to provide an empirical model, based on the one-slope model
introduced by Panjwani and Abbott [25] and recently used in [21], which provides
an acceptable localization accuracy for many services in smart homes, but retaining
at the same time the simplicity of a real plug and play solution. At the same time,
we compare this approach with the classical one: a path loss model trained and
validated on the same testbed. Three different and well-known localization algo-
rithms are tested and their results are presented. The work is organized as follows.
Section 2 provides the description of the used hardware and software platforms.
Section 3 contains a brief presentation of the experimental test environments,
together with the considered test protocol. In Sect. 4 we describe the model and its
training in two different scenarios as well as an introduction of the considered
localization algorithms. Section 5 deals with the presentation of the experimental
results obtained in the two scenarios. Conclusions and future works end the work.
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2 Experimental Setup

The whole system is composed by different real-world smart objects, each one
equipped with an Apio General [3] (in detail two lamps, an ambient monitoring
device and a loudspeaker). The Apio General is actually a USB stick that integrates
an Atmel microcontroller with a Lightweight Mesh communication module able to
create a mesh network among these objects. The gateway node is the ambient
monitoring device (namely ComfortBox) and is composed by a Raspberry PI, an
Apio Dongle and different sensors (temperature, humidity, indoor air quality, noise
and brightness). The Apio Dongle has the same hardware specs of the Apio General
but a different firmware and acts as a concentrator node. The gateway node has the
task to elaborate, store and synchronize the data with the cloud (see Fig. 1).

In the presented setup, the Apio General devices which transmit data from the
smart objects are the BNs (see Fig. 2), while the UN is a temperature sensor (see

Fig. 1 The system architecture
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Fig. 3) held by the user and equipped with an Apio General. The software platform
is built using Node.js for what regards the server side and cloud synchronization.
The client side is based on Angular.js and the non-relational database is built using
MongoDB. Thanks to the communication module, objects create a mesh network
and each one can receive the RSSI value of each other. The source code of the
whole OS, USB sticks firmware, server and client modules as well as web appli-
cations are available for free on GitHub [26].

(a) Experimental setup: 4 BNs, one for each 
smart object

(b)  Beacons positioning

Fig. 2 Experimental setup and beacons positioning

(a) A DHT22 sensor and a 9 V battery 
(front view)

(b) An Apio General equipped with  the 
Atmel microcontroller and the Lightweight

Mesh module (rear view).

Fig. 3 Unknown Node to localize
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3 Experimental Tests

Experiments were performed by considering an area of 36 m2 out of the total
surface of five different test environments: a college lab and an office within the
campus of the Polytechnic University of Marche (Ancona, Italy), a garage, a
dwelling’s living room and a gym in the city of Senigallia (in the province of
Ancona). Each test environment is composed by 16 squares with a 1.5 m side (see
Fig. 2), 4 BNs (blue dots) in 4 different configurations and 1 UN (red dot). Sixteen
sampled locations were identified within each environment, and their position
marked on the floor. The average beacon density was 0.11 beacon nodes per square
meter.

RSSI values from beacons, placed at 0.75 m from the floor, were gathered at
each sampled location while the receiver was in the pocket of the user approxi-
mately at the same height of the beacons. Sixteen different tests have been per-
formed in each test environment (four for each beacon configuration). For each test
we collected over 200 readings at each sampled location with a sampling frequency
of 10 Hz. Over 250,000 readings were collected from the physical test beds.

4 Indoor Localization Algorithms

We first considered a one-slope model [25] and then used it to test three different
localization algorithms, namely Min-Max, Trilateration and Maximum Likelihood.
The one-slope model considers a parametric equation of the RSSI-distance
(x) function as reported in Eq. (1):

RSSI ¼ A log xð ÞþB ð1Þ

where RSSI is measured in power ratio dBm and x, the distance between the beacon
node and the receiver node, is expressed in meters. To find the values of A and
B parameters, the least squares method has been considered (see Table 1). In
particular, two different testing scenarios have been used to validate the data.

Scenario I We performed the training of the model by considering eight tests
recorded for only one environment (namely the college laboratory) and the local-
ization performances have been evaluated on the remaining eight tests.
Scenario II We trained the model with the readings collected in eight tests for all
the five test environment, while the performances of the localization have been
evaluated on the remaining tests.

Table 1 One-slope model
parameters computed in two
different scenarios [see
Eq. (1)]

Scenario I Scenario II

A −12.193 A −14.3

B −51.67 B −53.54
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4.1 Min-Max

Min-Max is the most used localization algorithm, whose success is mainly due to its
extreme implementation simplicity [33]. Inverting the nominal distance-power loss
law [see Eq. (1)], the unknown nodes estimate their distance from each beacon.
Then, each unknown node draws a pair of longitudinal lines and a pair of lateral
lines around each beacon to create a bounding box given by [(xi − ri), (yi − ri)]
[(xi + ri), (yi + ri)]. (xi − yi) is the center of the beacon node while ri is the distance
computed by the model. The location of the unknown node is then approximated by
the centre of the intersection box computed by the following equation:

max
i� 1�N

xi � rið Þ; max
i� 1�N

yi � rið Þ
� �

� min
i� 1�N

xi þ rið Þ; min
i� 1�N

yi þ rið Þ
� �

ð2Þ

where N is the total number of beacons (4 in our algorithm). Intuitively, the smaller
the intersection area the better the localization.

4.2 Trilateration

Trilateration is a decentralized localization algorithm based on geometry principles.
As usual, the unknown node collects the beacon messages and estimate their dis-
tance to each beacon through the model. Then, any strayed node computes its own
position by intersecting the circles centered on the positions occupied by three
beacons and having radius equal to the estimated distance between the beacons and
the node itself. The intersection should be ideally a single point on a surface. Due to
several reasons this intersection is an area where the node is likely to be found.
Since we have four beacon nodes, Trilateration is performed each time among three
beacon nodes, thus obtaining four potential areas. The node is then positioned in the
center of the intersection between these areas. Trilateration is more complex than
Min-Max but, at least in principle, it provides better performance, implementing a
more sophisticated localization technique.

4.3 Maximum Likelihood

The Maximum Likelihood (ML) localization technique is based on classical sta-
tistical inference theory. Given the vector of RSSI values r ¼ r1 r2 . . . rn½ �T
obtained from n beacons with coordinates xB1; xB2; . . .; xBn½ � and yB1; yB2; . . .; yBn½ �;
the algorithm computes the a priori probability of receiving r for each potential
position ½x; y� of the unknown node. The position that maximizes the probability is
then selected as the estimated node position. The Maximum Likelihood method is
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more complex than the others, but it tries to minimize the variance of the estimation
error as the number of observations, i.e., of beacon nodes, grows to infinity. In most
of the test scenarios the number of beacons is limited, so that the ML performance
can be rather unsatisfactory.

5 Experimental Results

According to past researches [20], we use the Cumulative Distribution Function
(CDF) of localization error as well as basic statistical metrics (mean value, average
value and standard deviation) of localization error to measure the localization
performance. The CDF F(e) of localization error e is defined in term of a probability
density function f (e) as follows:

F eð Þ ¼
Ze

0

f xð Þdx ðx[ 0Þ ð3Þ

From the CDF of localization error, it is possible to establish the localization
error at a given confidence level (e.g., 50, 90%). Figures 4 and 5 show the
cumulative probability function of the error computed for both considered
scenarios.

Fig. 4 Cumulative probability computed on the validation set in Scenario I
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Table 2 summarize the mean value, standard deviation and median value of the
error for the three algorithms considered. Results obtained are coherent with the
previous literature works, as in [8, 19, 20, 28]. The research results indicate that the
MinMax algorithm has the best accuracy among the three localization algorithms
tested in both scenarios. Furthermore, the MinMax algorithm has other advantages
over the other algorithms: it is easier to implement, the running time and data
storage is linear with the number of beacons. These features bring more conve-
nience to deploy the MinMax algorithm on resource constrained smart objects and
mobile networks. The second important result of this research is that the modeling
of five different real environments (Scenario II) does not strongly affect the local-
ization results. Indeed, as it is possible to notice in Table 2, the average

Fig. 5 Cumulative probability computed on the validation set in Scenario II

Table 2 Accuracy performance comparison of the localization algorithms in the two different
modeling scenarios (errors in meters)

Scenario I Algorithm Mean value Std. deviation Median

Min-Max 1.5295 0.5937 1.7515

Trilateration 2.2622 1.3221 2.1733

Maximum likelihood 3.1504 1.1011 3.1504

Scenario II Algorithm Mean value Std. deviation Median

Min-Max 1.7084 0.9412 1.5805

Trilateration 2.4678 1.4790 2.3149

Maximum likelihood 4.1766 1.5076 4.3752
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performances of MinMax in Scenario II are only 0.18 m worse than those of
Scenario I, when a single environment is used to train and validate the RSSI
one-slope model.

6 Conclusions

In this work we present an RSSI based approach for human indoor localization in
AAL applications. Localization is performed without the use of ad hoc sensors, but
exploits the wireless networks already installed at home, like those required by
smart objects to operate. Three algorithms were evaluated: MinMax, ML, and
Trilateration. To evaluate the algorithms, over 250,000 readings were collected
from five physical test beds. A one-slope model has been created in two different
scenarios: by considering a single test bed both for training and validation (Scenario
I) and by considering all the test beds (Scenario II). Results are coherent with the
literature for what concern Scenario I and seems to be promising for Scenario II.
When training a model for five scenarios the performances obtained are only 11.8%
worse than those obtained in Scenario I. In particular, the MinMax algorithm shows
the best performances and can have the potential for a future adoption in AAL
applications. The results presented in the work are still preliminary, and the authors
are currently testing different RSS models and custom algorithms for localization,
together with different hardware solutions.
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