Community Detection in Signed Networks
Based on Extended Signed Modularity

Tsuyoshi Murata, Takahiko Sugihara and Talel Abdessalem

Abstract Community detection is important for analyzing and visualizing given
networks. In real world, many complex systems can be modeled as signed networks
composed of positive and negative edges. Although community detection in signed
networks has been attempted by many researchers, studies for detecting detailed
structures remain to be done. In this paper, we extend modularity for signed networks,
and propose a method for optimizing our modularity, which is an efficient hierarchical
agglomeration algorithm for detecting communities in signed networks. Based on the
experiments with large-scale real world signed networks such as Wikipedia, Slashdot
and Epinions, our method enables us to detect communities and inner factions inside
the communities.
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1 Introduction

Communities in networks are defined as the groups of nodes within which the edges
are dense but between which the edges are sparse. Community detection in networks
attracts many researchers, and many methods for community detection are proposed
[1, 4, 9]. Most of the previous research on community detection are for normal
networks composed of only one edge type. However, several real relations can be
represented as signed networks composed of positive and negative edges. In this
paper, we extend the modularity for signed networks in order to detect communities
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in signed networks. Itis composed of positive and negative modularity, and itincludes
a balancing parameter for the importance of both types of edges.

Moreover, we propose a method for optimizing our modularity, which is an effi-
cient hierarchical agglomeration algorithm for detecting communities in signed net-
works. It is based on an efficient optimization method for normal networks proposed
by Clauset et al. [1].

We apply our method to several signed networks which represent the relationships
among users on websites such as Wikipedia, Slashdot and Epinions. We successfully
detect communities in large-scale signed networks which have more than 60,000
nodes and more than 600,000 edges. Our method can control the result by adjusting
a parameter and it enables us to detect communities and inner factions inside the
communities.

2 Related Works

Social relations with friendship and hostility can be represented as signed networks
with positive and negative edges. Many attempts have been made for analyzing
signed networks. Although structural balance of triangles of positive and negative
edges is one of the important topics in signed networks, we will not discuss in this
paper. Gomez et al. [5] extended Newman modularity for the analysis of directed and
signed networks. Although the proposed modularity is similar to ours, it has the weak-
ness that the balancing factor of positive and negative edges is fixed. Szell et al. [11]
analyzes interactions of massive multiplayer online games. The authors claim that
reciprocity and clustering coefficient of positive edges are quite different from those
of negative edges. They propose STC model for generating triangles from wedges,
and the model fit well for the data of online games. Leskovec et al. [6] focus on a task
of edge sign prediction, and they propose a method for predicting positive and nega-
tive edges based on logistic regression classifier. Maniu et al. [8] built signed network
from the interactions of editors in Wikipedia. The dataset called Wikisigned is avail-
able at http://konect.uni-koblenz.de/networks/wikisigned-k2. Esmailian et al. [3]
discuss the method for detecting communities based on extended Potts Model. Their
approach is flow-based, and it is quite different from our modularity optimization-
based approach. Influence maximization in signed networks is studied by Li et al.
[71, and link recommendation algorithm is proposed by Song et al. [10], which are
not focus of this paper.

3 Extended Modularity for Signed Networks

In good partitions of signed networks, positive edges should be dense within commu-
nities and sparse between communities, and negative edges should be sparse between
communities and dense within communities. We define an extended modularity for
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undirected signed networks Qy;sneq as a linear combination of positive and negative
modularity.

Qxigned = OlQ+ - (1 - O[)Q7 (1)

Q7 in Eq. (1) is a positive modularity, which represents the fraction of the positive
edges that fall within the given groups minus the expected such fraction if positive
edges were distributed at random. This is represented by Eq. (2).
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In Eq. (2), m* is the number of positive edges, A™ is a positive adjacency matrix and
A;f is its (i, j)-th element.
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At — 1 if there is an positive edge between node i and j
| 0 otherwise

The positive degree k" of node i is defined as the number of positive edges that

connect to i.
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O™ in Eq. (1) is negative modularity, which is represented by Eq. (5).
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In Eq. (5), m™~ is the number of negative edges, A~ is a negative adjacency matrix
and Ay is its (i, j)-th element.

A, =

ij

(6)

1 there is an negative edge between node i and j
0 otherwise

The negative degree k; of node i is defined as the number of negative edges that

connect to i.
=2 ™
J

To simplify the description of our algorithm, we define the following four quantities.
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Equation (8) is the fraction of positive edges that connect nodes in community 7 and
nodes in community j, and Eq. (9) is the fraction of negative edges that connect
nodes in community i and nodes in community j. Equation (10) is the fraction of
positive edges that are attached to nodes in community i, and Eq. (11) is the fraction
of negative edges that are attached to nodes in community i.

With the above four quantities, Egs. (2) and (5) can be simplified as follows:

0" => el — (a)) (12)
0™ = fe; — (a7)) (13)

In good partition of signed networks, the value of Q% should be large and value of
Q™ should be small. In Eq. (1), « indicates the importance of positive edges and
1 — o indicates the importance of negative edges. The value of Qy;gpeq is less than 1,
and it can be negative value.

Other modularities for signed networks are proposed by Gomez et al. [5] and by
Traag et al. [12]. In the modularity by Gomez et al., the value of « is fixed as the
proportion of positive edges in the signed network. Parameters are introduced in the
modularity by Traag et al. for adjusting the size of communities. They are different
from parameter « in our modularity.

For example, the partition of a signed network (Fig. 1) which gives the largest
AQyigneq depends on the value of o. In this signed network, four kinds of partition can
be obtained (Fig.2). When the value of « is large, positive edges within communities

Fig. 1 Example of signed
network
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Fig. 2 Communities for Community community
different o

@ a=05

are more focused. As a result, partitions that include more negative edges within
communities are allowed. Conversely, when the value of « is small, negative edges
between communities are more focused. As a result, partitions that include more
positive edges between communities are allowed. The modularity by Gomez does
not have such flexibility because its parameter is fixed.

4 Method for Optimization

Community detection methods for normal networks cannot be applied directly,
because there are negative edges in signed networks. In this paper, we propose a
detection method for signed networks based on CNM (the method proposed by
Clauset et al.) [1]. By considering the connection patterns of the edges, CNM effi-
ciently calculates the changes in Q that would result from the agglomeration of each
pair of communities. CNM cannot be applied directly because there are some con-
nection patterns that do not exist in normal networks. Thus, it is necessary to extend
CNM appropriately for signed networks.

In initial state of our method, each node is the sole member of a community. Then,
our method calculates changes in Qigneq that would result from the agglomeration of
each pair of communities connected by positive or negative edges. Until the largest
AQsignes becomes negative, it continues agglomeration.
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Algorithm 1 CNM for signed networks
I: Let C = {1, 2, ..., n} be the set of communities

2: for all community pairsdoi=1,2,...,n,j=1,2,...,n
3 ifAf =1then

4: AQ;.' =1/m* — 2al.+a;r, AQ; = —2a; a
5: else if Al.; = 1 then

6: AQ; = —2a,.+a;r, AQ) =1/m™ —2a a;
7 end if

8: end for

9: while max (¢ AQT — (1 —a)AQ™) > 0do
10: (max_i, max_j) = argmax («Q" — (1 —a)Q7)

11: for each community x connected to max_i or max_j do
12: update AQl;tax_ix’ AQ:max_iAQr;ax_ix’ AQJc_max_i

13: end for

14: remove column max_j, row max_j from AQ", AQ™
15: C -max_i = max_i U max_j

16: remove community C - max; from C

17: end while

In line 4 and 6 of Algorithm 1, AQ;I.r (an element of AQ™) and AQ;; (an element
of AQ™) are defined as follows: '

AQf =2(ef —afaf) (14)

AQ; = 2(8; — a;a;) (15)
If node i and j are connected by a positive edge, then we substitute e; =1/2m",
e; = 0 for Egs. (14) and (15). If node i and j are connected by a negative edge, then

we substitute e;; =0, ei; = 1/2m™ for Egs. (14) and (15). Elements of AQ" and
AQ™ are as follows:

1/m*t — 2a?af ifA; =1

AQ; = —Zaj'a;' ifAl-; =1 (16)
0 otherwise
—2a; a; ifA; =1

AQy =1 1/m™ —2a;7a; ifA; =1 amn
0 otherwise

In line 11-14 of Algorithm 1, the community pair (i, j) that gives the largest increase
in AQjigned(= aAQT — (1 —a)AQ™) is agglomerated. Then, we update column i
and row i, and remove column j and row j.

In our method, we avoid the calculation of e; and e; in Egs. (14) and (15) because
it is time consuming. Considering edge connection pattern between agglomerated
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Fig. 3 Four connection

patterns
; : positive or

negatlve edge
(1)
| J | J
X X
communities #, j and x (Fig.3), we apply appropriate update of equations for each

pattern.
Update of equations for AQ™ are as follows:

1. If x is connected to both i and j by positive edges,
then AQ; will be computed as follows:

AQ =2ef + e — (af +a)af)
=2(e} — q; a+)+2(e - q *ah)
= AQ} + AQ (18)
In this pattern, we need only a simple addition.

2. If x is connected to i but not to j by positive edge,
then we substitute e;; = 0 for Eq. (14) and AQ; will be computed as follows:

AQE =2(eff — (af + a-*)a’L)
= 2(e — a a; ) — +a+
= AQ; — a;raj (19)

3. If x is connected to j but not to i by positive edge,
then we substitute e; = 0 for Eq. (14) and AQ; will be computed as follows:

AQ = AQ}; — 24 af (20)
4. If x is not connected to i, j by positive edge,

then we substitute e; = e; = 0 for Eq. (14) and AQ; will be computed as fol-
lows: '
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AQF = —2(af + aj)aj 1)

This is the case that i, j and x are connected only by negative edges. In this case,
there is no positive edge between i, j and x. This is the specific pattern for signed
networks and original CNM does not consider this pattern.

Update equations for AQ™ are as follows:

. If x is connected to both i and j by negative edges,

then AQ;, will be computed as follows:

AQ;, = AQ;, + AQ;, (22)

. If x is connected to i but not to j by negative edge,

then we substitute e; = 0 for Eq. (15) and AQ;, will be computed as follows:

AQ;. = AQ;, — 2aj_a;

(23)

. If x is connected to j but not to i by negative edge,

then we substitute e, = 0 for Eq. (15) and AQ; will be computed as follows:

AQ;, = AQ;, — 2a; a; (24)

1 X

. If x is not connected to i, j by negative edge,

then we substitute ¢;, = ¢;, = 0 for Eq. (15) and AQ;, will be computed as fol-
lows:
AQ;, = —2(a; +a;)a, (25)

This is the case that i, j and x are connected only by positive edges. In this case,
there is no negative edge between i, j and x.

These updates are continued until the largest AQjigneq becomes negative.
Our method reduces computational cost by calculating not the whole Qj;igneq but

AQjignea that would result from the agglomeration. In addition, it also reduces com-
putational cost by avoiding to calculate e; and e;, which are time consuming. These
ingenuities do not affect the resultant value but they significantly improve the effi-
ciency of our method.

5

Experiments

5.1 Synthetic Networks

One way to test our algorithm is to see how well it performs when it is applied to
synthetic signed networks. The generated network is composed of 128 nodes which
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Table 1 Calculation times Method Time (s)
Calculate the whole of Qy;gned 202.0
(not AQjigneq) after agglomeration
Calculate AQg;gneq Without using 2.85
update rules (Egs. 18-25)
Our method 0.35

are split into four communities containing 32 nodes each. We regard these four
communities as correct answer communities. The purpose of this experiment is to
examine whether the answer communities can be extracted. The generation process
is the same as the one used in the experiments by Danon et al. [2]. p; is the noise
rate from positive to negative, and p; is the noise rate from negative to positive.

We detect communities in signed networks (p; = p, = 0.05) by our method. In
order to compare the calculation time, we also detect communities with two other
methods. The first method is “calculate the whole of Qyignea (Ot AQgj040q) after
agglomeration”. The second method is “calculate AQy;gneq Without using update rules
(Egs. 18-25)”. As a result of these three methods (o = 0.5), the four communities
are detected correctly. The calculation times are shown in Table 1. Our method is
quite faster than other two methods.

In order to examine the impact of p; and p,, we detect communities in signed
networks where we set one parameter as 0.05 and change the other from 0.05 to
0.5. 10 signed networks are generated for each state. We use our method where o« =
0.2, 0.5, 0.8 and examine the accuracy of detected communities, which is evaluated
by NMI (Normalized Mutual Information) [2].

Figure 4 shows the result when p; is fixed and p; is changed, and Fig. 5 shows the
result when p; is fixed and p; is changed. X-axis is the value of p;(or p;), and y-axis
is the value of NMI. When « is large, the value of NMI is also large, but when « is
small, the value of NMI is small.

Fig. 4 Results when p; is T T T T T T T T T

changed 1¢ j

NMI

o=0.5

—® «=0.8

— «a=0.2|

0 ! ! . . . . . . .
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

pl
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Fig. 5 Results when p, is T T T T T T T T T T
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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When « is small, the negative edges between communities are more focused.
The density of positive edge in the answer community is less important than when
a is larger. As a result, it becomes hard to agglomerate a pair within the answer
community.

Besides, when p; (noise rate within the answer community) is large, the value of
NMI is relatively larger than the result when p, (noise rate between answer com-
munities) is large. When p, is large, the number of positive edges between answer
communities increases. Therefore, the chance of agglomeration between answer
communities is raised. As a result, detected communities become different from the
correct answer, and the value of NMI becomes small.

5.2 Real-World Networks

We use three real-world signed networks for our experiments. Each data can be
obtained from Stanford Large Scale Network Dataset (http://snap.stanford.edu/data/
index.html) [6]. Original networks are directed signed networks, but we ignore edge
direction in our experiments. In addition, we remove nodes with degree 1, so degrees
of all nodes are 2 or more. We used the datasets of Wikipedia (4,786 nodes, 76,607
positive edges and 21,849 negative edges), Slashdot (47,726 nodes, 329,873 positive
edges and 110,050 negative edges), and Epinions (60,332 nodes, 535,303 positive
edges and 109,040 negative edges).

We detect communities from these signed networks while changing o = 0.1,
0.2, ...,0.9. The average calculation time in Wikipedia is 70 s, in Slashdot is 4,800
seconds, in Epinions is 6,500s. The result of these calculation times show that our
optimization method based on CNM is effective for large-scale signed networks
which have tens of thousands of nodes and several hundreds of thousands of edges.
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Fig. 6 The value of Eq.(26) 0.5
(red line) and Eq. (27) (blue
dotted line) in Epinions 0.45r

fraction

The property of positive and negative edges for each « in Epinions is shown. In
Fig. 6, the value of Eq. (26) is represented by continuous line.

1 +
I 2 Ay (1 =8(cis ) (26)
ij

Equation (26) shows the fraction of positive edges between communities. Therefore,
the result is good for positive edges if this value is small.
In Fig. 6, the value of Eq. (27) is represented by dotted line.

1 <,
S 2 Ay ¢ @7)
ij

Equation (27) shows the fraction of negative edges within communities. Therefore,
the result is good for negative edges if this value is small.

In Fig. 6, when « is small, the number of positive edges between communities
is large but within communities is small. On the other hand, when « is large, the
number of negative edges within community is large but between communities is
small.

In addition, Figs.7 and 8 are about fraction of positive and negative edges con-
nected to the largest community in each result. X-axis is the value of «. Y-axis of
Fig.7 is fraction of negative edges connected to the largest community and y-axis of
Fig. 8 is fraction of positive edges connected to the largest community.

In Fig.7, when « is small, the largest community tends to gather a lot of negative
edges, but when « is large, it does not gather a lot. On the other hand, in Fig.8,
when « is small, the largest community tends to gather a lot of positive edges, but
when « is large, it does not gather a lot. Figures 7 and 8 show foes will be placed in
different communities, but friends also will be placed in different communities when
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Fig. 7 Fraction of negative
edges connected to the
largest community

fraction

—@—wikipedia
e 5 1 ashdot
B— epinions

Fig. 8 Fraction of positive 0.5

el Wik ipedia
edges connected to the e
largest community . B— cpinion

fraction

« is small. In contrast, friends will be placed in the same community, but foes also
will be placed in the same community.

From these results, when « is small, the number of negative edges within commu-
nities is small and between communities is large. It is a good community structure
in terms of negative edges. When « is large, the number of positive edges within
communities is large and between communities is small. It is a good community
structure in terms of positive edges. Certainly, the parameter o we introduce works
as our intention.

In modularity by Gomez et al., they fix « to the fraction of positive edges. Gener-
ally, in most real world signed networks, the number of positive edges is more than
the number of negative edges. Thus, community detection with their modularity will
be biased for the result which allows negative edges within communities. According
to Traag et al. [12], it is difficult to determine the optimal value of «. It depends on
network structure and characteristics required for community structure. Therefore,



Community Detection in Signed Networks Based on Extended Signed Modularity 79

Fig. 9 The largest

9612 positive edges
community with « = 1 and
communities with @ = 0.5 The largest Eéz
(wikipedia) community | | <
(a:‘]) :::::::::

4432 negative edges

splited into
two communltles

Communites
(a=0.5)

in order to try several experiments with values of «, the fast optimization method
proposed in this paper is important.

We also examine the difference between the result where negative edges are
ignored and the results where negative edges are considered. Figure9 is about the
largest community in Wikipedia with @ = 1 (negative edges are ignored) and com-
munities with @ = 0.5. Most of nodes in the largest community with « = 1 are
split into the members of two communities with o = 0.5. There are 9,612 posi-
tive edges (12.5% of positive edges) and 4,432 negative edges (20.3% of negative
edges) between them. Because there are a lot of negative edges between them, they
might be hostile each other. However, they are regarded as members of a community
when negative edges are ignored. Therefore, both types of edges should be consid-
ered appropriately. By adjusting the value of o, we can detect inner factions within
communities.

6 Conclusion

We have extended signed modularity and CNM in order to detect communities in
large-scale signed networks. We detect communities in synthetic signed networks by
our method and examined the relationship between « in our modularity and positive
and negative edges in the resultant communities. From the result of real world signed
networks, we can say that our method is effective also for large-scale signed networks.
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