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Preface

The International Workshop on Complex Networks CompleNet (www.complenet.
org) was initially proposed in 2008, and the first workshop took place in 2009 in
Catania. The initiative was the result of efforts from researchers from the
(i) BioComplex Laboratory in the Department of Computer Sciences at Florida
Institute of Technology, USA, and the (ii) Dipartimento di Ingegneria Informatica e
delle Telecomunicazioni, University di Catania, Italy. CompleNet aims at bringing
together researchers and practitioners working on complex networks or related
areas. In the past two decades, we have indeed witnessed an exponential increase
of the number of publications in this field. From biology to computer science, from
economics to social systems, complex networks are becoming pervasive in many
fields of science. CompleNet aims at addressing this interdisciplinary nature of
complex networks. CompleNet 2017 was the eighth event in the series and was
hosted at the Inter University Center Dubrovnik, Croatia, during March 21–24,
2017.

This book includes the peer-reviewed list of works presented at CompleNet
2017. We received 106 submissions from 32 countries. Each submission was
reviewed by at least three members of the Program Committee. Acceptance was
judged based on the relevance to the symposium themes, clarity of presentation,
originality and accuracy of results and proposed solutions. After the review process,
9 full papers and 13 short papers were selected to be included in this book. The 22
contributions in this book address many topics related to complex networks and
have been organized in seven major groups: (1) Theory of complex networks,
(2) Community detection, (3) Dynamics and spreading phenomena on networks,
(4) Applications of network science, (5) Social structure, (6) Human behavior,
(7) Biological networks. We would like to thank the Program Committee members

v



for their work in promoting the event and refereeing submissions. We are grateful to
our speakers: Johan Bollen, Guido Caldarelli, Gourab Ghoshal, Aniko Hannak,
Ágnes Horvát, Vito Latora, Jörg Menche, Stasa Milojevic, Anastasios Noulas,
Giovanni Petri, Zoltan Toroczkai; their presentation is one of the reasons
CompleNet 2017 was such a success.

New York, NY, USA Bruno Gonçalves
Melbourne, FL, USA Ronaldo Menezes
Budapest, Hungary Roberta Sinatra
Zagreb, Croatia Vinko Zlatic
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Theory of Complex Networks



Second-Order Assortative Mixing
in Social Networks

Shi Zhou, Ingemar J. Cox and Lars K. Hansen

Abstract In a social network, the number of links of a node, or node degree, is often
assumed as a proxy for the node’s importance or prominence within the network. It
is known that social networks exhibit the (first-order) assortative mixing, i.e. if two
nodes are connected, they tend to have similar node degrees, suggesting that people
tend tomixwith those of comparable prominence. In this paper, we report the second-
order assortative mixing in social networks. If two nodes are connected, we measure
the degree correlation between their most prominent neighbours, rather than between
the two nodes themselves. We observe very strong second-order assortative mixing
in social networks, often significantly stronger than the first-order assortativemixing.
This suggests that if two people interact in a social network, then the importance of
the most prominent person each knows is very likely to be the same. This is also
true if we measure the average prominence of neighbours of the two people. This
property is weaker or negative in non-social networks. We investigate a number of
possible explanations for this property. However, none of them was found to provide
an adequate explanation.We therefore conclude that second-order assortativemixing
is a new property of social networks.

1 Background

A network or graph consists of nodes connected together via links. Networks are
utilised in many disciplines. The nodes model physical elements such as people,
proteins or cities, and the links between nodes represent connections between them,
such as contacts, biochemical interactions, and roads. In recent years studying the

S. Zhou (B) · I.J. Cox
Department of Computer Science, University College London (UCL),
Gower Street, London WC1E 6BT, UK
e-mail: s.zhou@ucl.ac.uk

L.K. Hansen
Department of Applied Mathematics and Computer Science, Danish Technical
University (DTU), Kongens Lyngby, Denmark

© Springer International Publishing AG 2017
B. Gonçalves et al. (eds.), Complex Networks VIII,
Springer Proceedings in Complexity, DOI 10.1007/978-3-319-54241-6_1
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4 S. Zhou et al.

structure, function and evolution of networked systems in society and nature has
become a major research focus [2, 4, 7, 19, 21, 23].

The degree, k, of a node is defined as the number of links the node possesses. The
probability distribution of node degrees is indicative of a network’s global connec-
tivity. For example random graphs with a Poisson degree distribution [9] have most
nodes with degrees close to the average degree. In contrast, many complex networks
in nature and society are scale-free graphs [1] exhibiting a power-law degree distri-
bution, where many nodes have only a few links and a small number of nodes have
very large numbers of links. However, the degree distribution alone does not provide
a full description of a network’s topology. Networks with exactly the same degree
distribution can possess other properties that are vastly different [13, 15, 24].

One such property, is the mixing pattern between the two end nodes of a link [17,
18], i.e. the joint probability distribution of a node with degree k being connected to a
node with degree k ′. In general, biological and technological networks are disassor-
tativemixing meaning that well-connected nodes tend to link with poorly-connected
nodes, and vice versa. In contrast, social networks, such as collaborations between
film actors or scientists, exhibit assortativemixing, where nodes with similar degrees
tend to be connected.

To quantify this mixing property, Newman [17] proposed the assortative coef-
ficient, r , where −1 ≤ r ≤ 1. It is derived by considering the Pearson correlation
between two sequences, where corresponding elements in the two sequences repre-
sent the degree of the nodes at either end of a link in the network. For a directed
network, the degree of the starting node of a link is contained in one sequence, and
the degree of the ending node is in the other sequence. The number of elements in
each sequence is the number of links. For an undirected network, as all the networks
studied in this paper, each undirected link is replaced by two directed links pointing at
opposite directions. Thus the number of elements in a sequence is twice the number
of links.

A network with assortative mixing is characterised by a possible value of r ; where
r = 1 corresponds to a perfect assortative mixing, i.e., every link connects two nodes
with the same degree. A network with disassortativemixing has a negative value of r ;
where r = −1 corresponds to a perfect disassortativemixing, i.e., every link connects
two nodes with difference degrees. When r equals or close to 0, there is no degree
correlation, i.e., the network is random or neutral in terms of degree mixing.

The mixing pattern has been studied as a fundamental property of networks, and
the assortative coefficient r has been widely used to measure this property.

2 Second-Order Mixing Pattern

Wenow introduce and define a related property whichwe refer to as the second-order
mixing pattern.
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2.1 Definition ofRmax andRavg

Following Newman’s definition of the (first-order) assortative coefficient r [17], we
define Rmax as the second-order assortative coefficient based on the neighbours
maximum degree,

Rmax =
L−1

∑

i

Ki K
′
i −

[
1

2
L−1

∑

i

(Ki + K ′
i )

]2

1

2
L−1

∑

i

(Ki
2 + K ′

i
2
) −

[
1

2
L−1

∑

i

(Ki + K ′
i )

]2 , (1)

where L is the number of links in the network, Ki and K ′
i are the neighboursmaximum

degrees of the two nodes a and b connected by the link i , i.e. Ki = max(kna : na ∈
Na\b) and K ′

i = max(knb : nb ∈ Nb\a); Na\b denotes the set of neighbours of node a,
excluding node b; and Nb\a denotes the set of neighbours of node b, excluding node a.

Note that when calculating the first and second assortative coefficients, we actu-
ally use the excess degree [17], which is degree minus one. This is because, when
considering two connected nodes, A and B, the neighbourhood of A is defined to
exclude B. And likewise for the neighbourhood of B. See Fig. 1 for examples.

Similarly we define Ravg as the second-order assortative coefficient based on
the neighbours average degrees by replacing Ki and K ′

i in the above equation as
Ki = 1

ka

∑
na∈Na\b kna and K ′

i = 1
kb

∑
nb∈Nb\a knb .

2.2 Results

We consider eleven networks, including five social networks, two biological net-
works, two technology networks, and two synthetic networks based on random con-
nections [9] and the Barabási and Albert [1] model, respectively. Values of both

Fig. 1 Examples of node
excess degrees, which is
node degree minus one.
Consider the link between
nodes A and B, the excess
degree of node A is 5; and
the neighbours maximum
excess degree of node A is 7,
which is the excess degree of
node C
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the first-order and the second-order assortative coefficients, r , Ravg and Rmax are
provided in Table1.

2.2.1 Statistical Significance

The expected standard deviation σ on the value of assortative coefficient r can be
obtained by the jackknife method [8] as σ 2 = ∑L

i=1(ri − r)2, where ri is the value of
r for the network inwhich the i-th link is removed and i = 1, 2, ...L . And likewise for
second-order assortative coefficientsRmax andRavg . For all cases shown in Table1,
the value of σ is very small (<0.03), which validates the statistical significance of
the coefficients.

2.2.2 Null Hypothesis Test

A high correlation score between two value sequences must be tested against the null
hypothesis. For each network and each coefficient in Table1, we randomly permuted
the order of degree values in one of the two degree sequences and re-computed the
coefficient. Thiswas repeated100 times and thenwecalculated themean and standard
deviation. Our calculation shows that for each network and each coefficient the mean
value is close to zero and the standard deviation is small. This result again confirms
the statistical significance of the first and second-order assortative coefficients.

2.2.3 Social Networks

Four social networks (a)-(d) showpositive values of first-order assortative coefficient,
and notably they show significantly higher values of second-order assortative coeffi-
cients. This indicates that in these social networks, people judge on other individual’s
social status based on not only the individual’s own prominence (e.g. the number of
co-starred films or co-authored publications), but more crucially, the prominence of
is collaborators.

Interestingly, the Musician network exhibits very low first-order assortative
mixing although it shows one of the strongest second-order assortative mixing. In
other words, although musicians in this network do exhibit a strong social parity, it
cannot be revealed by measuring the prominence of musicians themselves; instead
we must measure the prominence of other musicians that each musician has ever
performed with.

The Secure email network’s strong second-order assortative mixing is due to
the security feather of this network where a person’s security credit relies on endorse-
ment from its contacts—the more credit a contact already has the more valuable its
endorsement.



Second-Order Assortative Mixing in Social Networks 7

Ta
bl
e
1

Pr
op
er
tie
s
of

th
e
ne
tw
or
ks

un
de
r
st
ud
y.
Pr
op
er
tie
s
sh
ow

n
ar
e
th
e
nu
m
be
rs
of

no
de
s
an
d
lin

ks
;t
he

as
so
rt
at
iv
e
co
ef
fic
ie
nt
s
r,

R
av

g
an
d
R

m
a
x
w
ith

th
e

co
rr
es
po
nd
in
g
ex
pe
ct
ed

st
an
da
rd

de
vi
at
io
n

σ
r
,σ

av
g
an
d

σ
m
a
x
;a
nd

th
e
av
er
ag
e
cl
us
te
ri
ng

co
ef
fic
ie
nt
of

no
de
s
in
a
ne
tw
or
k,

〈C
〉.(

a)
Fi
lm

ac
to
rc
ol
la
bo

ra
tio

ns
[1
],

w
he
re

tw
o
ac
to
rs
ar
e
co
nn
ec
te
d
if
th
ey

ha
ve

co
-s
ta
rr
ed

in
a
fil
m
;(
b)

Sc
ie
nt
is
tc
ol
la
bo

ra
tio

ns
[1
6]
,w

he
re

tw
o
sc
ie
nt
is
ts
ar
e
co
nn

ec
te
d
if
th
ey

ha
ve

co
-a
ut
ho

re
d
a

pa
pe
ri
n
co
nd

en
se

m
at
te
rp

hy
si
cs
;(
c)
Ja
zz

m
us
ic
ia
n
ne
tw
or
k
[1
0]
,w

he
re
tw
o
m
us
ic
ia
ns

ar
e
co
nn
ec
te
d
if
th
ey

ha
ve

pl
ay
ed

in
a
ba
nd
;(
d)

Se
cu
re
em

ai
ln
et
w
or
k
[3
],

w
he
re

a
lin

k
re
pr
es
en
t
a
se
cu
re

em
ai
l
ex
ch
an
ge

be
tw
ee
n
tw
o
tr
us
te
d
us
er
s
us
in
g
th
e
Pr
et
ty

G
oo
d
Pr
iv
ac
y
(P
G
P)

al
go
ri
th
m
;
(e
)
G
en
er
al

em
ai
l
ne
tw
or
k
[1
1]
,

w
he
re

em
ai
l
ex
ch
an
ge
s
ta
ke

pl
ac
e
at

a
un

iv
er
si
ty
,
in
cl
ud

in
g
a
la
rg
e
am

ou
nt

of
un

so
lic

ite
d
em

ai
ls
;
(f
)
W
es
te
rn

St
at
es

Po
w
er

G
ri
d
of

th
e
U
ni
te
d
St
at
es

[2
2]
;

(g
)
C
.e
le
ga
ns

m
et
ab
ol
ic

ne
tw
or
k
[1
2]
,
w
he
re

tw
o
m
et
ab
ol
ite

s
ar
e
co
nn

ec
te
d
if
th
ey

pa
rt
ic
ip
at
e
in

a
bi
oc
he
m
ic
al

re
ac
tio

n;
(h
)
th
e
pr
ot
ei
n
in
te
ra
ct
io
ns

of
th
e

ye
as
t
Sa
cc
ha
ro
m
yc
es

ce
re
vi
si
ae

[5
,
14

];
(i
)
In
te
rn
et

[1
8]

(h
ttp

://
w
w
w
.r
ou
te
vi
ew

s.
or
g/
),
w
he
re

tw
o
se
rv
ic
e
pr
ov
id
er
s
ar
e
co
nn
ec
te
d
if
th
ey

ha
ve

a
co
m
m
er
ci
al

ag
re
em

en
tt
o
ex
ch
an
ge

da
ta
tr
af
fic
;(
j)
th
e
ra
nd
om

gr
ap
hs

[9
];
an
d
(k
)
th
e
B
ar
ab
ás
i-
A
lb
er
t(
B
A
)
gr
ap
hs

[1
]

N
et
w
or
k

N
od
es

L
in
ks

r
σ
r

R
av

g
σ
av

g
R

m
a
x

σ
m
a
x

〈C
〉

(a
)
Fi
lm

ac
to
r

82
,5
93

3,
66
6,
73
8

0.
20
6

0.
01
3

0.
83
6

0.
02
7

0.
81
3

0.
00
9

0.
75

(b
)
Sc
ie
nt
is
t

12
,7
22

39
,9
67

0.
16
1

0.
00
7

0.
68
0

0.
01
4

0.
64
7

0.
00
5

0.
65

(c
)
M
us
ic
ia
n

19
8

2,
74
2

0.
02
0

0.
01
9

0.
54
3

0.
02
3

0.
30
7

0.
02
9

0.
62

(d
)
Se
cu
re

em
ai
l

10
,6
80

24
,3
16

0.
23
8

0.
00
7

0.
65
3

0.
00
9

0.
68
0

0.
00
7

0.
27

(e
)
G
en
er
al

em
ai
l

1,
13
3

5,
45
1

0.
07
8

0.
01
4

0.
24
2

0.
01
4

0.
24
7

0.
01
4

0.
22

(f
)
Po

w
er

gr
id

4,
94
1

6,
59
4

0.
00
4

0.
01
4

0.
20
5

0.
01
5

0.
25
8

0.
01
6

0.
08

(g
)

M
et
ab
ol
is
m

45
3

2,
02
5

−0
.2
26

0.
01
1

0.
26
5

0.
03
2

0.
26
3

0.
02
3

0.
65

(h
)
Pr
ot
ei
n

4,
62
6

14
,8
01

−0
.1
37

0.
00
8

−0
.0
46

0.
00
7

0.
03
3

0.
00
9

0.
09

(i
)
In
te
rn
et

11
,1
74

23
,4
09

−0
.1
95

0.
00
1

−0
.0
97

0.
00
4

0.
03
6

0.
00
8

0.
30

(j
)
R
an
do
m

gr
ap
h

10
,0
00

30
,0
00

�
0

0.
00
9

�
0

0.
01
1

�
0

0.
00
6

�
0

(k
)
B
A
gr
ap
h

10
,0
00

30
,0
00

�
0

0.
00
4

�
0

0.
00
8

�
0

0.
00
8

�
0

http://www.routeviews.org/


8 S. Zhou et al.

2.2.4 Non-social Networks

Other forms of networks do not exhibit the very strong second-order correlations
exhibited by social networks.

The General email network is not considered as a typical social network,
because it contains a large amount of unsolicited, one-way communications, such
as notices and advertisements forwarded from departmental secretaries to all stu-
dents. Not surprisingly, this network’s second assortative mixing is as weak as the
Metabolism and Power grid networks.

The Internet and Protein networks, the second order assortative coeffi-
cients are either zero (Rmax ) or negative (Ravg).

As expected, neutral random networks generated by graph models are completely
uncorrelated, i.e. Rmax = Ravg = 0.

2.3 Frequency Distributions of Links as Functions
of Degrees

Figure2 provides amore detailed look into the assortativemixing in theScientist
network. Figure2a shows there is a strong first-order correlation between node
degrees when k < 20, and the correlation rapidly decreases with increasing degree,
as expected for a scale-free network.

(b) (d)

(a) (c)

Fig. 2 The first and second-order assortative mixing in the Scientist network. We show the
link frequency distribution as functions of (A) degrees k and k′ of the two end nodes of a link, with
k ≥ k′; (B) the neighboursmaximumdegrees of the twonodes, Kmax and K ′

max ,with Kmax ≥ K ′
max ;

and (C) the neighbours average degrees, Kavg and K ′
avg , with Kavg ≥ K ′

avg , respectively. (D) is
the same as (B), where links are randomly rewired while preserving the degree distribution. The
maximum degree of the network is 97
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For the second-order assortative mixing, Fig. 2b shows a very strong correlation
for almost all values of the neighbours maximum degree Kmax , where the link dis-
tribution along the diagonal does not decrease with the increase of Kmax . Of course
the correlation in Fig. 2b is not perfect, and a second process appears to be uniform
noise. The noise might be better modelled as Gaussian which is probably due to the
summation of many nodes and the central limit theorem. If the neighbours average
degree rather than the maximum is considered, we still observe a strong correlation
in Fig. 2c.

3 Seeking Possible Explanations

Here we examine whether the second-order mixing is a new topological property,
i.e. whether it can be explained by other known properties of the networks.

3.1 Increased Neighbourhood

One may wonder whether the strong correlation scores associated with second-order
assortative mixing could simply be due to the increased neighbourhood (from dis-
tance of one hop to two hops), as a node always has more second-order neighbours
than first-order neighbours. To exclude this possibility we also examined the X th-
order assortative coefficients, Rmax and Ravg , which are calculated using the max-
imum or average degree within the neighbourhood of up to X hops from each end
node of a link. Of course, if the neighbourhood continues to increase, we observed
that eventually the coefficients would increase and approach to one. This is to be
expected since eventually, the neighbourhood encompasses the entire network.

However, we observed that for all networks under study, the values of the third-
order coefficients were actually smaller than the 2nd-order coefficients. This suggest
that the second-order assortative mixing cannot be explained by increased neigh-
bourhood.

The fact that the third-order coefficients are smaller than the second-order coef-
ficients has rich meanings. For technology networks, consider the Internet, where a
network service provider only cares about the prominence of a customer (disassor-
tative first-order mixing), it does not know and care about who else the customer has
linked with (neutral second-order mixing), and care even less about those one step
further away. For social networks, one tends to match its collaborator’s prominence
(first-order assortative mixing) and the prominence of the collaborator’s contacts
(stronger second-order assortative mixing), but it does not know or care about con-
tacts of the collaborator’s contacts whom the collaborator does not know directly. In
other words, the value of social prominence vanishes rapidly after the second-order.
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3.2 High-Degree Nodes

Another possible explanation for the high values of second-order assortative coeffi-
cients considered, is that there are a few hub nodes that are extremely well connected
and dominate the network structure. To test this we removed the best-connected
node (together with the links attaching to it and any resulting isolated nodes) from
the networks and re-computed the coefficients. We also calculate the coefficients
after removing the top 5 best-connected nodes. Results show that in all cases, the
coefficients change very little. For some networks, such as the Secure email,
Musician and Metabolism networks, the second-order coefficients became
stronger after the best-connected nodes are removed. This suggest that the second-
order assortative mixing cannot be explained by the existent of high-degree nodes.

3.3 Power-Law Degree Distribution

While high degree nodes do not explain the high second order assortative mixing
scores, the underlying heterogenous power-law structure of the networks was also a
possible explanation. To exclude this possibility we used the random link rewiring
algorithm [15, 24] to produce surrogate networks by randomly rewiring links while
preserving the exact degree distribution of the networks under study.

Figure2d illustrates the distribution of links as a function of Kmax and K ′
max in a

randomly rewired version of theScientist network. The second-order assortative
mixing in the original network disappears completely in the randomised case.

This result shows that the second-order mixing is determined by a network’s
degree distribution, because two networks (the original and the randomised case)
with the identical degree distribution show hugely different mixing patterns, both in
the first-order [15, 24] and in the second-order (see Fig. 2).

This result again demonstrates the limitation of characterising network topology
by degree distribution alone, and highlights the critical importance of characterising
a network’s topology using multiple properties from different aspects.

3.4 Clustering Coefficient

We also examined whether the second-order assortative mixing is a consequence
of the clustering behaviour observed in many social networks, where one’s friends
are also friends of each other. This is quantified by the clustering coefficient, Ci ,
which is defined as Ci = ei

ki (ki−1)/2 , where ki is the degree of node i and ei is the
number of connections between the node’s neighbours [23]. The average clustering
coefficient, 〈C〉, is the arithmetic average over all nodes in the network. Comparison
of 〈C〉 against Ravg and Rmax in Table1 and Fig. 3 shows that high values of the
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Fig. 3 Second-order mixing
coefficients vs average
clustering coefficient

Fig. 4 Average clustering
coefficient of k-degree nodes

second-order coefficients occur for both high and low values of clustering coefficient.
There is no correlation between them.

Figure4 reveals that theScientist network and theSecure email network
are fundamentally different in the relation between clustering coefficient and node
degree, yet they have similar Ravg and Rmax . Whereas the Scientist network
and the Metabolism exhibit very similar clustering coefficient properties, but their
second-order coefficients are significantly different.

The above results suggest that the second-order assortative mixing is something
quite unexpected, particularly considering the work on the hierarchical organisation
of complex networks [6, 20].
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Table 2 Link ratio values of the networks under study

Network L<4/L (%) L<2/L (%) L<1/L (%) LΔ/L (%) Rmax

(a) Film actor 34.2 34.2 34.1 34.1 0.813

(b) Scientist 50.2 45.4 42.9 41.6 0.647

(c) Secure email 43.2 37.8 35.5 34.6 0.680

(d) Email 26.8 20.2 15.0 12.8 0.247

(e) Musician 56.3 56.0 55.7 55.7 0.307

(f) Metabolism 51.3 51.1 50.8 50.7 0.263

(g) Protein 10.5 8.0 6.4 5.7 0.033

(h) Power grid 68.1 38.3 19.1 7.8 0.258

(i) Internet 20.5 20.3 20.2 20.2 0.036

3.5 Common Most Prominent Neighbour

It is interesting to consider how often the most prominent contact at each end of a
link is the same person, and therefore they form a triangle. Let X denote the degree
difference between the most prominent neighbour of the two end nodes of a link,
i.e. X = |Kmax − K ′

max |, and L<x denote the number of links with X < x . Table2
shows the ratio of L<4, L<2 and L<1 to the total number of links, L , respectively.
Note that L<1 represents the case where Kmax = K ′

max . Also shown is LΔ/L , where
LΔ is the number of links for which the most prominent neighbour of the two end
nodes are one and the same node and therefore forming a triangle, LΔ ∈ L<1. Clearly
the common most prominent neighbour does not provide an adequate explanation
for our observations.

3.6 Bipartite Network

A bipartite network is a network with two non-overlapping sets of nodes Δ and Γ ,
where all links must have one end node belonging to each set. For example, actors
star in films, scientist write papers, and musician play in bands. The Film actor,
Scientist and Musician networks under study are constructed from bipartite
networks, e.g. two actors are linked if they co-star in a film and two scientists are
linked if they co-author a paper.

The Film actor, Scientist and Musician networks all exhibit strong
second-order assortativemixing. It is therefore reasonable to askwhether the second-
order assortative mixing can be attributed to the nature of bipartite networks? For
example, all actors of one film constitute a complete subgraph, in which everyone
connects with the highest-degree node in the group.

However, we found no support for this hypothesis. Firstly, the Metabolic net-
work is also constructed from a bipartite network where the two types of nodes are
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Fig. 5 Second-order
assortative coefficients Rmax
and Ravg vs first-order
assortative coefficient r

metabolites and reactions. Twometabolites are linked if they participate in a reaction.
TheMetabolic network, however, does not show a strong second-order assortative
mixing.

Secondly, the Secure email network is a non-bipartite network, where two
email users are linked by direct email communications. It exhibits one of the strongest
second-order assortative mixing.

3.7 Relation Between First and Second-Order Mixing
Coefficients

Figure 5 compares the assortative coefficient r and the second-order coefficients
Rmax and Ravg for the networks under study. They are seemingly loosely related.

However, there are exceptions. Consider the Metabolic network and the
Email network, the former is strongly disassortative with r = −0.226, whereas
the later is assortative with r = 0.078. Yet both networks exhibit similar values of
the second-order mixing coefficients.

4 Conclusion

Our experimental results demonstrated very strong-second order assortative mixing
in social networks where human are in charge of forming connections; but weaker,
or even negative values for biological and technological networks where there is a
lack of social preference.

We examined a larger variety of other network properties in an effort to establish
whether second-order assortative mixing was induced from other network properties
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such as its power law distribution, cluster coefficient, and bipartite graphs. However,
although some of them might be a contributing factor, none of these properties
was found to provide an adequate explanation. We therefore conclude that second-
order assortative mixing is a new property, which reveals a new dimension to the
hierarchical structure present in social networks.

For social networks, the degree of a node is often considered a proxy for the
prominence or importance of a person. First order assortative mixing has then been
interpreted as indicating that if two people interact in a social network then they
are likely to have similar prominence. The much stronger second-order assortative
mixing suggests that there could be an even stronger social parity when measuring
the prominence of a person’s contacts. Whether our most prominent contacts serve
to introduce us or we simply prefer to mix with people who know similarly important
people, remains an open question.

We expect that our work will provide new clues for studying the structure and
evolution of social networks as well as complex networks in general.

Acknowledgements The authors thank Ole Winther and Sune Lehmann of DTU, Denmark for
discussions relating to the clustering coefficient.
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Network Motifs Detection Using Random
Networks with Prescribed Subgraph
Frequencies

Miguel E.P. Silva, Pedro Paredes and Pedro Ribeiro

Abstract In order to detect network motifs we need to evaluate the exceptional-
ity of subgraphs in a given network. This is usually done by comparing subgraph
frequencies on both the original and an ensemble of random networks keeping cer-
tain structural properties. The classical null model implies preserving the degree
sequence. In this paper our focus is on a richer model that approximately fixes the
frequency of subgraphs of size K − 1 to compute motifs of size K . We propose a
method for generating random graphs under this model, and we provide algorithms
for its efficient computation. We show empirical results of our proposed methodol-
ogy on neurobiological networks, showcasing its efficiency and its differences when
comparing to the traditional null model.

Keywords Network motifs · Random graphs · Subgraph counting

1 Introduction

Complex networks have been established as essential tools to model and analyze
several real-life systems and problems. A technique that greatly contributed for this
reputation is networkmotif analysis [15]. Networkmotifs consist of over-represented
substructures of a network, or subgraphs that appear in ahigher number than expected.
This method has been used successfully in many fields of science, such as biology
[22, 23] or sociology [4].

In order to perform a meaningful network motif analysis, it is important to decide
on a definition of what is the expected frequency of a certain subgraph. To do so,
one chooses a determined null model of random graphs and computes the average
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frequency of the given subgraph on this null model. The most used null model is
maintaining the degree sequence of the original network [4, 13, 14, 23].Othermodels
have been proposed [3, 15], but here we focus on a new model.

One can think of graph edges as subgraphs of size 2. A natural extension would
therefore be to maintain counts of larger subgraphs. Moreover, certain patterns can
be essentially the consequence of over-represented smaller subgraphs contained in
them. With all of this mind we propose to keep the frequency of subgraphs of size
K − 1 when discovering motifs of size K , aiming towards a much richer null model,
able to really distinguish when a subgraph is really significant by itself and not just
a product of smaller subtopologies. A limited version of this idea for size 4 motifs
was shown in [15], but here we aim for a generic method (that works for any feasible
K ) and that is also efficient.

Our main contributions to the stated problem are the following:

• A method that generates random networks using the invariant of subgraphs of
frequency K − 1, up to a certain margin, with an algorithm based on simulated
annealing [10];

• A study of different ways of applying the previous method by using additional
invariants like the classic degree sequence invariant;

• An algorithm, based on [17, 25], that updates the frequency of subgraphs after an
edge addition or removal, which is used in order to compute the frequencies of
subgraphs of size K − 1 that the mentioned method requires;

We analyze our method to show that it is both efficient and accurate. To do
so, we rely on different real complex networks and show that our method obtains
different results when comparing with the classic degree sequence model. We also
show that our frequency update algorithm performs much better than recalculating
all frequencies in every iteration of the generation method.

The rest of this paper is organized as follows. Section2 discusses some prelim-
inaries and background concepts regarding network motif analysis, needed for the
following sections. Section3 presents our generation method and also show some of
its properties. In Sect. 4 we showcase our frequency updating algorithm and prove its
correctness. Section5 contains a brief experimental analysis of our proposedmethods
and algorithms. Finally we conclude in Sect. 6.

1.1 Related Work

Milo et al. [15] use, as null model, random graphs that maintain the degree sequence
and subgraph count of size K − 1, when calculating motifs of size K . Their imple-
mentation uses a Monte Carlo Metropolis-Hastings algorithm for directed networks
to calculatemotifs of size 4, but does not suggest an immediate strategy for undirected
networks or subgraph size greater than 4.

In other related work, Bois and Gayraud in [3] use prior probability to generate
random graphs with a given count of subgraphs, but only present priors for two types
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of directed subgraphs of size 3. Ritchie et al. [21] present an algorithm parametrized
by a degree sequence and a set of subgraphs that generates random graphs with those
parameters. It is based on the matching algorithm [14], whereas our work uses a
Markov chain Monte Carlo method of generation.

We also note that, as far as we know, there is no known method that efficiently
updates subgraph frequencies on an edge addition or removal.

2 Network Motif Finding

2.1 Definition of Network Motif

The concept ofmotifs as building blocks of networkswas first described byMilo et al.
in [15] as patterns of inter-connections occurring in numbers that are significantly
higher than what one would expect. To simplify notation, we will refer to network
motifs simply as motifs.

A determined subgraph is considered significant if its frequency in the original
graph is exceptionally high in comparison with its frequency on random networks
under a certain null model. To assess exceptionality, one computes the probability
that the number of times the subgraph appears on a randomized network is lower
than on the original network and then compares it with a certain threshold P . This
probability can be estimated using Z-scores on a standard normal distribution, by
computing the standardized difference between the observed and expected frequency.

To be classified as a motif, according to the original definition [15], it is also
required to fulfill two other properties. For a given subgraph, let fo be the frequency
of the subgraph on the original network and fr the average frequency of the same
subgraph on random networks with an unspecified null model. The first constraint
is minimal frequency, that is, fo has to have a minimum value of U , to ensure a
quantitative minimum. The second constraint is minimal deviation, that is, fo needs
to be significantly larger than fr , to prevent the detection of motifs that have a small
difference between these two values but have a narrow distribution in the random
networks. This can be stated has fo − fr > D · fr , where D is a proportionality
threshold.

With this information, we can give a formal definition of motif. Given a set of
parameters {P,U, D}, a subgraph of a given graph is considered a motif if:

• P( fr > fo) ≤ P (over-representation)
• fo ≥ U (minimal frequency)
• fo − fr > Dfr (minimum deviation)
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2.2 Algorithms for Subgraph Counting

The main primitive of motif finding is counting subgraphs on graphs, which is called
a subgraph census. There are essentially three differentways of doing so: in a network
centric way, which corresponds to counting the occurrences of all subgraphs up to
a certain size K ; in a subgraph centric way, which corresponds to counting the
occurrences of a single subgraph; in a set centric way, which corresponds to counting
the occurrences of a set of subgraphs.

The state of the art algorithms that do a generic network centric census are Qua-
teXelero [9] and FaSE [17], which are similar contemporaneous algorithms. Both
build on previousmethods [25] that do an enumeration of all subgraphs up to a certain
size K and then perform isomorphism tests on each one using a tool likenauty [11].
By building an intermediate structure (a quaternary tree and a g-trie, respectively)
the number of necessary isomorphism tests is decreased to a multiple of the number
of different types of subgraph present in the network. More recently, some methods
[12, 18] explore combinatorial properties of graphs to achieve algorithms that are
orders of magnitude better than any generic method, but that can only work with
subgraphs up to a certain size (currently up to 5 for undirected graphs [18] and 4 for
directed [12]).

The most well known subgraph centric algorithm is the work by Grochow and
Kellis [8], which efficiently counts the frequency of a single subgraph using a set of
generated symmetry breaking conditions. Finally, there is only one known set centric
algorithm, the work by Ribeiro and Silva [20].

2.3 Random Graphs

The study of random graphs is growing rapidly as a model of complex networks.
Although the research on this topic dates back to the late 1950s, where, in a series of
publications, Paul Erdos and Alfréd Rényi [5, 6] introduce a model, known as Erdos-
Rényi (ER). In this model, each pair of vertices is connected with an independent
probability p. More recently, other models have been proposed that follow closely
characteristics from real world networks. Among these, Watts and Strogatz [24],
propose a model to generate smalls-world graphs, networks whose average path
length grows proportionally to the logarithm of the number of nodes in the network,
and Barabasi-Albert [1] introduce another model for scale-free graphs [2], where the
degree distribution follows a power law.

When focusing on more local properties, random graphs using a given degree
sequence have become one of the most studied models, after their widespread use as
null model for network motifs discovery [13, 15]. There is a multitude of algorithms
to generate this type of graphs, of which we highlight the main two:
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• The switching method [19] uses a Markov chain, starting with an initial network
with the desired degree sequence and carries out a series of Monte Carlo switches
that preserve that sequence.

• The matching algorithm [16] is based on “stubs”. Each vertex is assigned a set of
edge extremities, either incoming or outgoing. For each of these stubs, the vertex
tries to connect with another one with the opposite type of stub.

On their original work,Milo et al. [15] use as null model both the degree sequence
and subgraph frequency of size 3. To achieve this, they use the switching method
to preserve the degree sequence and a Monte Carlo Metropolis-Hastings algorithm
to approximate the subgraph count of the referred size. The frequency vectors are
updated using analytical expressions using the neighbours of the vertices used for
the edge switch.

3 Generation of Random Graphs

In this section, we discuss a generator of random graphs, with the novelty of allow-
ing the random networks to be generated with approximately the same frequency of
subgraphs of size K − 1 as an original network. We also permit the graphs to main-
tain or vary their degree sequence. The generation procedure is split in two phases:
randomization and convergence.

3.1 Randomization

We offer three ways of creating an initial network. The first two employ a Markov
chain edge swapping technique like in [15] and the third is a classical ER model,
with number of edges equal to the number of edges in the original network.

The two Markov chain algorithms we utilize are similar, they both start with a
real network and perform edge switches. The first version, which maintains degree
sequence, given different nodes A, B, C and D, with connections A → B and C →
D, removes these existing connections and adds the new edges, A → D andC → B.
Nodes are selected in a way that ensures the prior inexistence of these two new
connections. We do not distinguish between single and double edges, considering
double edges simply as two independent single ones. The undirected case is easily
generalizable.

The second type of Markov chain edge swap modifies the out-degree sequence of
the network, for directed networks, and both in and out-degree sequences, in undi-
rected networks. Given different nodes A, B andC , we delete the connection A → B
and annex the edge C → B, reducing the out-degree of node A by 1, while incre-
mentingC’s by the same amount. As before, nodes are selected with the requirement
that A is connected to B but C is not.
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The difference between the initial graphs produced by these two Markov chain
variants lies in the time taken to converge to the desired subgraph count, the first
version requires a lesser number of iterations. However, both produce graphs with a
similar level of energy. Given two vectors (V1 andV2)with the number of appearances
of each type of subgraph, whereΓ denotes the set of these subgraphs, in two different
networks, we define energy as the distance between these two vectors and calculate
it as:

e =
∑
i∈Γ

|V1,i−V2,i |
V1,i+V2,i

|Γ |
We refer to the energy of a random network as the distance between its vector of

subgraph frequency and the corresponding vector from the original network.
For both Markov chain schemes, we repeat the edge swapping process O(E)

times, where E represents the number of edges in the graph. The constant used is
diverse in the existing literature, so we studied how the energy varies in function of
the number of switches applied to the original network. We observed that a higher
number of switches does not lead to higher energy. It should be noted that energy
is not the sole measure of how well a graph is randomized and a low number of
switches may not cause enough impact on other measures.

3.2 Convergence

After generating the initial network, we start the process of switching edges to obtain
a subgraph count close to that of the real network. The convergence phase stops when
the energy reaches a certain tunable threshold, where energy equal to 0 means that
the subgraph frequencies of the random network and the original network are the
same. In this phase, we use simulated annealing [10].

Simulated annealing is a metaheuristic technique used to approximate the global
optimum of a large search space. On a general case, on each iteration, the heuristic
chooses a randomneighbouring state of the current state and decides probabilistically
between changing to the new state or staying in the current one. This process is
repeated until a global optimum solution is found or a solution that differs from the
optimum less than a given threshold.

In our implementation of the method, the neighbouring state is chosen using the
edge swapping mechanism described previously. If our initial network was obtained
through the ER model or the out-degree changing Markov chain method, the swap
also uses the out-degree changing switch. Otherwise, if the degree sequence was
maintained throughout the randomization process,we only perform the type of switch
that preserves it.

In order to decide if the the new candidate graph is accepted, we use an acceptance
probability function P(e, e′, t), where e represents the current graph’s energy, e′ the
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candidate graph’s energy and t is a parameter that decays over time, called the
temperature. We use the same acceptance function as in the original formulation by
Kirkpatrick et al. in [10], if e′ < e, we always accept the transition, otherwise, we
accept it with probability exp( e−e′

t ).
A feature of simulated annealing is the decreasing temperature over time. This

forces the state to converge to an optimum as, with lower temperature, the probability
of accepting a state with higher energy is lessened. Upon reaching a point in the
computation where the temperature reaches 0, only states with lesser energy are
accepted and the computation eventually stops. The rate at which the temperature
decreases is called the cooling factor of the algorithm.

4 Updating Frequencies of Subgraphs

The main bottleneck of the method described in the previous section is computing
the frequencies of subgraphs in every iteration, to estimate the energy of the current
solution. In [15], an analogous operation was done recounting the frequencies of
subgraphs after each iteration of their algorithm until convergence. Our approach
avoids recomputing all of the frequencies by only considering the subgraphs that are
changed by the addition or removal of a certain edge.

The base of our method is the FaSE [17] algorithm, which we will extend in order
to only count subgraphs that touch a given edge. Firstly, we will briefly describe the
algorithm.

4.1 FaSE Algorithm

The original FaSE algorithm enumerates all connected subgraphs of a given size
K and in the end computes the isomorphism of some of the subgraphs. To avoid
having to compute the isomorphism of all subgraphs, the algorithm partitions sub-
graphs into intermediate classes during the enumeration process. By requiring that
all subgraphs in one of the intermediate classes are isomorphic, in the end we only
need to compute one isomorphism test per class. This is done by encapsulating the
topological features of the enumerating graph in a tree like data structure. Thus, we
can divide the algorithm into two interleaved concepts: the enumeration and a tree
data structure.

Enumeration: The enumeration step can be done using any algorithm that grows
a set of connected vertices. The algorithm from [25], ESU, was chosen since it is
simple, efficient and fulfills all the requirements. We will describe its functioning
since it will be useful for the end of this section.

ESU works by enumerating all size K subgraphs exactly once. It does so by
keeping two ordered sets of vertices: Vs , which represents the partial subgraph that
is currently being enumerated; Vext , which represents the set of vertices that can be
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added to Vs as a valid extension. Each vertex is represented by a label which is unique
and defined between 1 and |V |.

For each vertex v the algorithm repeats the same procedure setting initially Vs =
{v} and Vext = N (v), where N (v) are the neighbors of v. This procedure starts by
removing one element u of Vext at a time. For each u, a new V ′

s and V ′
ext are created

and the same procedure is repeated. V ′
s is set to Vs ∪ {u} and V ′

ext is set to Vext

without u and with additionally each element in Nexc(u, Vs) with value greater than
v. Nexc(u, Vs) are the exclusive neighbors of u given Vs , that is, the neighbors of
u that are not neighbors of elements in Vs . This procedure stops when the size of
Vs reaches K , in which case Vs contains one occurrence of size K . The addition
of elements in Nexc(u, Vs) along with the u > v, ensure that there is no subgraph
enumerated twice, and it can be proved [25] that this procedure stops and enumerates
all subgraphs.

The tree data structure: During the enumeration process, this data structure
is used to encapsulate information about the subgraph contained in Vs . Since this
is a recursive procedure, one can use information about the initial content of Vs

to build a partial isomorphism representation, that can be complemented on each
vertex insertion in Vs . For this, a data structure called a gtrie is used, which is similar
to a prefix tree of subgraphs. Whenever a new vertex is added to Vs , one uses the
information of connectivity with the previous elements of Vs to generate a label
that identifies the current partial subgraph, which is used as the identifier for the
mentioned intermediate classes.

Figure1 summarizes the whole algorithm. The tree on the left represents the
implicit recursion tree ESU creates. The induced g-trie on the right is a visual rep-
resentation of the actual g-trie FaSE creates. More information about the FaSE can
be found in [17].

Fig. 1 Summary of the FaSE algorithm
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4.2 FaSE with Updates

Ourmethod to efficiently update frequency counts works by altering the enumeration
algorithm to count frequencies starting on edges.When adding an edge, the algorithm
first counts all subgraphs that use the edge’s two ends and decrements their frequency.
Afterwards, it adds the new edge and counts all subgraphs that touch that edge. To
remove an edge we do an analogous process. Our method is based on the ESU
algorithm, altering it to start on a given edge.

For a given edge to add, {a, b}, the algorithm first considers as initial sets Vs =
{a, b} and Vext = N (a) ∪ N (b) \ {a, b} and only uses these as initial sets (meaning
it does not recurse on other initial Vs and Vext ). The rest of the procedure is similar
to the original ESU algorithm, but the symmetry breaking is removed, that is, when
adding a node u′ to Vext , there is no comparison with a: if u′ belongs to Nexc(u, Vs)

it will be added to Vext .
To prove that this method is correct we use the original correction proof of the

ESU algorithm. If a is theminimal node of the graph (that is, for every node v, a ≤ v),
all subgraphs that include a will be enumerated on the first iteration of the algorithm.
For that iteration, if b is the first element of Next , then it will be removed and
the next iteration has Vs = {a, b} and Vext = N (a) \ {b} ∪ Nexc(b, {a}) = N (a) ∪
N (b) \ {a, b}. Since this is the only recursion path that will include a and b (since b
was the first node to be removed from the initial Next ), all subgraphs that contain a
and bwill be counted on this recursive subtree. Since this is analogous to our method,
its correctness implies the correctness of our method.

5 Experimental Evaluation

We apply our techniques to four networks, two of them neurobiological, based
on [23]. The neurobiological networks are directed and represent a macaque visual
cortex, with 30 nodes and 311 connections, and a macaque cortex, with 71 nodes and
746 edges. The other two networks are undirected and represent a social network of
jazz musicians [7], with 198 nodes and 2742 edges, and a geo-spacial network of a
power grid in the United States [24], with 4941 nodes and 6594 edges.

We measure the significance of subgraphs of size K = 4 and K = 5, using the Z-
score metric. For each network and each type of initial random network, we generate
an ensemble of 100 random networks. For the convergence phase, we define our
energy threshold as 5%, if the vectors of subgraphs count differ in 5% or less, we
stop the computation and output the network as it is at that point. We use an initial
temperature of 0.01 and a cooling factor of 0.99. Table1 presents results for the
mentioned networks, by comparing the Z-score calculated by our methods against
simply maintaining the degree sequence.

Using our generator as null model, the Z-score of the first and second subgraphs
on the macaque cortex and fourth, fifth, seventh and eighth on the macaque visual
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Table 1 Z-score results for some subgraphs in the macaque cortex and macaque visual cortex
networks.

Network K Subgraph Original Keep K − 1

Keep
Deg. Seq.

Change
Deg. Seq.

ER

Macaque cortex 4 61.20a −2.29 −0.71 −4.41

182.30a 6.19 2.47 12.66

−10.17b 12.01 10.64 15.20

Macaque visual cortex 4 36.76a −1.58 −0.63 −2.88

14.63a −2.29 −2.20 −2.61

−3.49b 12.01 4.90 5.40

5 278.57b 4.11 3.85 −0.71

117.72b 8.79 6.41 1.62

Power 5 82.83b 4.88 −3.45 2.86

−21.57b −18.25 −17.65 0.09

Jazz 5 438.35b 60.47 29.62 15.82

−45.84b −17.31 6.18 70.54

aresult was taken from [23]. bwas calculated by us, using degree sequence invariance as null model

cortex was significantly lower than the Z-score calculated using solely the degree
sequence as invariant. We speculate that these subgraphs, which are considered over-
represented in the original network by Sporns et al. [23], are simply a consequence of
the prevalence of their induced subgraphs of size K − 1. By preserving the frequency
of the latter, the former become more common in the generated random networks.

On the other hand, subgraphs third and sixth from macaque cortex and macaque
visual cortex respectively, are originally considered under-represented but, under our
generator, can be considered motifs. Note that the Z-score values are similar using
different initial perturbations on the original networks.

On the power network, we show a subgraph of size 5 that was considered a
motif under the previous model, but with our new model, it is not considered over-
represented anymore. The other example for the same network, using aMarkov chain
edge swap as the initial network yields a similar Z-score as the original model, but
converging from an ER network produces a significantly different score.

For the jazz network, we present an example where an extremely over-
represented subgraph is still considered a motif under our model. It is the size 5
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Table 2 Average execution time, in seconds, and speedup, of the efficient update in comparison
with the full census, to generate a random network preserving the frequency of subgraphs of size 3
for the neurobiological networks and size 4 for the jazz and power networks

Macaque cortex Macaque visual
cortex

Power Jazz

Efficient update (s) 64.85 0.22 239.56 1034.06

Full census (s) 103.58 12.35 4274.47 25102.0

Speedup (×faster) 1.6 56.1 17.8 24.3

clique and its over-representation can not be simply explained by the number of size
4 cliques. In the other example, each of the models for the initial random network
provides a substantially different Z-score, from being considered under represented
if the Markov chain edge swap process that retains the degree sequence is used, to
being treated as motif if the initial network follows the ER model.

We also study the improvement obtained by efficiently updating subgraph counts.
To this end, Table2 shows the average execution time, in seconds, for each network,
comparing the efficient update against running a full census after each edge swap.
These tests were runwith initial temperature 0.01, cooling factor set to 0.99 and using
the Markov chain edge swap variant that preserves the degree sequence. Subgraph
frequency of size 3 was maintained for the macaque networks and size 4 for the
power and jazz networks.

For the macaque cortex network, in average, each network took nearly twice as
much doing the full census after each edge switch than using our efficient frequency
update. However, for the jazz and power networks, in average, each network was
1 order of magnitude faster using the efficient update technique and the macaque
visual cortex was about 2 orders of magnitude faster.

Clearly, both macaque networks are outliers of efficiency, probably because they
are both small dense networks. Our efficient update method works best for larger
sparse networks, because in this case, on average, the number of subgraphs that
change after a single edge addition or removal is only a small fraction of the total
number of subgraphs. In this sense, the jazz and power networks are better fits
for this model, as are most social networks.

6 Conclusion

We introduced a generator of random graphs that preserves the frequency of sub-
graphs of size K − 1. The generation is split in two phases, where the original
networks first suffers an initial perturbation, via aMarkov chain edge swapping tech-
nique or a classic Erdos-Renyi model, and then converges to the desired frequency
up to a difference of percentage threshold, using simulated annealing.

We applied our generator to four real complex networks and compared the signifi-
cance of different subgraphs against results published in [23]. The Z-score calculated
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by using our generator as null model is significantly lower for certain subgraphs of
size K , which can be explained by the prevalence of induced subgraphs of size K − 1.

We also devised a technique to efficiently update the frequency of subgraphs
after an addition or removal of a single edge. In summary, it works by searching
all the subgraphs that touch the edge’s endpoints and updates their frequency. This
technique is critical to the convergence phase of our generator, as it is, on average,
at least 2 times faster and in many cases orders of magnitude faster than running the
full networks census from scratch.
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Fuzzy Centrality Evaluation in Complex
and Multiplex Networks

Sude Tavassoli and Katharina A. Zweig

Abstract Centrality rankings are classically used to analyze the influence of nodes
in different types of networks. However, since most centrality indices are very sen-
sitive to missing or additional edges and since most complex networks are based on
faulty data, a precise ranking is quite unlikely to be obtained. Thus, in this paper we
propose to use an assignment of the nodes to a predefined and small set of central-
ity classes using a fuzzy model, ranging from “very peripheral” to “very central”.
We show empirically that the assignment of nodes to these classes is quite robust
against random noise. Furthermore, the method can also be used to combine possi-
bly conflicting classes of the nodes based on different centrality values over multiple
networks using a fuzzy operator.

1 Introduction

Many real networks are based on incomplete data that demands new network ana-
lytic approaches which can handle uncertainty issues. For example, the number of
connections that a node has in a network, might not be exactly the one that is logged
in the dataset. Then, analyzing centrality indices and obtaining a precise ranking
might underestimate the existing uncertainty. One way of dealing with such issues is
the use of fuzzy models in the corresponding analysis. In this paper, we consider the
analysis of normalized degree and closeness centrality in multiplex networks as a
decision making problem and aim at analyzing them within all the layers using fuzzy
logic models. It has been shown in many studies that fuzzy models can deal with the
issues coming from uncertainty and can avoid information loss in decision making
problems [10–12, 18–20]. Therefore, in a wide range of studies from different fields,
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these models have been used, such as expressing medical situations [5], analyzing
ranking methods [2], fuzzy rule-based classification systems [6], and analyzing cen-
tral nodes in fuzzy cognitive maps [16]. In the last study [16], a fuzzy linguistic
model (proposed by Herrera in [10]) is used to obtain the central nodes by using
several classical centrality measures in fuzzy cognitive maps, which is a model for
representing a domain knowledge and the connections between different factors of
the domain. Our work is similar to that study in the sense of using the fuzzy model
for proposing a new centrality concept but in a different research area.

We aim at addressing the question to which degree a node is central instead of
its seemingly precise ranking position in multiple layers of a multiplex network. As
always when a node’s centrality needs to be compared over multiple networks, it is
necessary to normalize the values beforehand. Furthermore, there are different strate-
gies of aggregation. We have shown that the sensitivity of rankings—obtained from
only the degree centrality—to the choices of different modeling decisions in multi-
plex networks, can heavily influence the findings and thus the interpretations [21].
This encourages us to find a solution for dealing with the sensitivity of rankings,
especially in multiplex representations, where multiple types of interaction have dif-
ferent roles in the identification of influential nodes. We present the results using new
visualizations that show the assignments of the nodes to a set of predefined classes
of fuzzy centrality.

The rest of this paper is organized as follows: Sect. 2 discusses the motivation
and the used dataset. Section 3 elaborates the theoretical background of multiplex
networks and fuzzy logic models. Section 4 explains the steps of fuzzy centrality eval-
uation and Sect. 5 contains all the experimental results including the visualizations.
Finally, Sect. 6 summarizes the study.

2 Motivations and the Used Dataset

In most of the studies related to centrality concept—from simple graphs to multiplex
networks—a centrality ranking is mostly used to present the importance of the nodes
with respect to a centrality measure. In our recent study [21], we have shown that
very basic and seemingly simple modeling decisions like different normalizations
and aggregations used for the degree centrality in a multiplex network, can change
a node’s ranking from being the most central to the least central. This is because the
different choices of modeling decisions result in conflicting rankings of the nodes
and this changes the interpretations of the findings. Next to the mentioned problem
in a multiplex network, some studies have also shown the effects of missing data in
different types of real networks on their analysis regarding the centrality concept [3,
15]. By contrast, some other studies have explained that centrality measures are
almost robust to random network errors and thus, finding the confidence interval
around a centrality index value is not impossible [1, 4]. These different views about
centrality measures motivated us to find a model that can facilitate the evaluation
of centrality in many real complex networks. Therefore, in this paper, Centrality is
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considered as a fuzzy concept and instead of giving the nodes a discrete and exact
ranking position with respect to their normalized centrality values in a multiplex
network, the nodes are partitioned into groups of about the same centrality. The
robustness of the model to random edge deletion and edge addition is then represented
at the end of the evaluation.

We use a real network containing multiple interactions between 79 individuals in
the so-called Noordin terrorist group, which was behind several terrorist attacks
from 2003 to 2005. The data was drawn from a report in 2006 [14] and was then
structured by Roberts et al. [17]. It was also analyzed in detail as a so-called “dark
network” by Everton and Cunningham [7]. The dataset encompasses very rich infor-
mation about different types of relations and interactions among the members as
well as their attributes such as military training, nationality, and their education
level. In this paper, we use three different types of interactions as three layers of a
multiplex network as follows: the trust network, which is the aggregated version of
four different ties representing friendship, classmate, soulmate, and kinship relations
among the 79 members. The operational network aggregates relations that exist if
two individuals provided the same logistics, were in common meetings, participated
in common operations, or in the same training event. The communication network
represents whether two individuals communicated using messages inside the group
or had a communication using external mediums such as codes and videos to recruit
the other members outside the group. All single layers are represented as simple
graphs where two nodes are connected if the corresponding persons are in at least
one of the aforementioned relations in the respective layer.

3 Theoretical Background

3.1 Multiplex Networks and Centrality Measures

In this section, all the preliminaries required for the fuzzy centrality evaluation in
multiplex networks are described in detail.

Definition 1 A multiplex network is a network comprised of |L| = n layers L =
{l1, l2, . . . , ln}, where each layer li is a simple graph with a set of nodes denoted by
Vi and a set of edges Ei ⊆ Vi × Vi, which represents a specific type of interaction in
the layer li.

The centrality measures in a simple graph are defined by Freeman [9] and here are
extended to a multiplex network.

Definition 2 The degree of a node v is the number of edges connected to the node
v in layer li and denoted by degi(v). Then, the normalized degree of the node v in
layer li is obtained by
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CD(v, li) := degi(v) − min{degi(v)|v ∈ Vi}
max{degi(v)|v ∈ Vi} − min{degi(v)|v ∈ Vi} , (1)

Definition 3 Let di(v, u) denote the distance of two nodes in layer li which is defined
if and only if v, u ∈ Vi. The closeness of a node v is the inverse of the sum of its
distances to all the other nodes in the largest connected component of layer li.

closei(v) =
⎡

⎣
∑

u �=v

di(v, u)

⎤

⎦
−1

, (2)

Accordingly, the normalized closeness centrality CC(v, li) of the node v in layer li
can be obtained as measured for the degree centrality.

3.2 Fuzzy Logic Models

Fuzzy linguistic models were introduced by Zadeh [22] and further used in a fuzzy
2-tuple model introduced by Herrera [10] to solve a decision making problem.

Definition 4 A Multi-Criteria Decision Making problem searches for a satisfying
solution among a set of alternatives based on multiple, conflicting criteria.

In a way, searching for the most central nodes in a multiplex network is such an
MCDM problem: while some nodes are perfectly central in some of the layers and
rather peripheral in other layers, other nodes might be quite central in all layers, but
only a few nodes are perfectly central in all. Now, an MCDM problem searches for
a solution (a node) that fulfills the criteria (high centrality) the best.

In earlier work [21], we either directly used the normalized centrality values or
we used the ranking position of the nodes. In this paper, based on the observation
that incomplete data might change the ranking, we assign each node in each layer in
one of five categories, from “very peripheral” to “very central”. The five categories
and their textual description form a linguistic term set. For obtaining the category of
centrality for the node v in the layer li, we fuzzify its normalized centrality index in
the interval of [0, 1] by Gaussian membership functions, each of which describes a
term in a linguistic term set. Herrera explains that each value in this interval can be
fuzzified using these functions [11].

For the fuzzification, assume that S = {
s0, . . . , sg

}
is a linguistic term set and

si ∈ S is a linguistic term. Each term si can then be described using a symmetric
Gaussian function including some parameters, which can be obtained using a fuzzy
toolbox. Given a set of five classes (labels), and an ordering of these classes as shown
in Fig. 1, the membership values μsi of the normalized centrality CX(v) of any node v
is then determined by the intersection of the value and the corresponding class of si.
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Fig. 1 Five linguistic terms and their semantic are described using five overlapping Gaussian
membership functions

A vector that contains the membership values for a node and all classes is called
a fuzzy set, as exemplified in Fig. 1 for the value of 0.15. A symbolic aggregation
operation can then be used to obtain an aggregated value over the fuzzy set [11].

Definition 5 Let T = {(s0, μs0), (s1, μs1), . . . , (sg, μsg )} be a fuzzy set, then a sym-
bolic aggregation operation is as follows:

β =
∑g

j=0 j · μsj∑g
j=0 μsj

(3)

The result of the aggregation is β ∈ [0, g], i.e., it is a linear projection onto the
sequence of the linguistic term set.

Definition 6 Let β be the result of symbolic aggregation, then the equivalent infor-
mation of β in the linguistic term set S can be expressed using a 2-tuple model by
the function of Δ : [0, g] → S × [−0.5, 0.5):

Δ(β) = (si, α), with

{
si, i = round(β)

α = β − i, α ∈ [−0.5, 0.5),
(4)

where round is the usual operation of rounding as defined by Herrera in [11]. That is,
the 2-tuple contains the category of which a node is mostly the member of, plus the
parameter α ∈ [−0.5, 0.5), which is the value of the symbolic translation. It supports
the difference of information between β and the closest index to it in {0, . . . , g}.

In our last work [21], we used the Maximum Entropy Ordered Weighted Average
introduced by Yager to deal with the conflicting criteria in an MCDM problem [8,
21]. The MEOWA fuzzy operator including the 2-tuples is defined by Herrera to deal
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with the aggregation of multiple criteria that their satisfactions are expressed using
a 2-tuple [10, 11].

Definition 7 Let A = {(a1, α1), . . . , (an, αn)} be a set of 2-tuples and w = (w1, . . . ,

wn) be a weight vector that satisfies wi ∈ [0, 1] and
∑

wi = 1. The 2-tuple MEOWA
operator denoted by Fe is then defined:

Fe((a1, α1), . . . , (an, αn)) = Δ

⎛

⎝
n∑

j=1

wj . . . β
∗
j

⎞

⎠ , (5)

where each β is the equivalent information of the corresponding 2-tuple and can be
obtained using the function of Δ−1 : S × [−0.5, 0.5) → [0, g] as follows:

Δ−1(si, α) = i + α = β, (6)

Assume that all the β-values are obtained, then the operator multiplies the weight
vector by the non-increasingly sorted version of the vector of β-values (denoted
by β∗). Then, it again uses the Δ-function to result in a 2-tuple. For obtaining the
MEOWA weight vector, the following function based on a parameter γ is introduced
by Yager [8]:

wi = eγ n−i
n−1

∑n
j=1 eγ

n−j
n−1

, (7)

For lim γ = ∞, the weight vector is (1, 0, . . . , 0). Thats it, since the classes are
sorted, the aggregation strategy returns the maximum value. In total, such an aggre-
gation operation will select as the most central node with the best class of centrality
in any layer. For lim γ = −∞, the weight vector is (0, 0, . . . , 1) and the minimum
value has the most important role in the aggregation strategy, which means a node
with the highest class of centrality in all layers is of favor. When γ = 0, the weight
vector is ( 1

n , 1
n , . . . , 1

n ) and the aggregation strategy is a regular average over the
β-values.

4 Fuzzy Centrality Evaluation

The proposed evaluation model is comprised of multiple steps. First, a normalized
centrality index value of a node is fuzzified using the membership functions and a
fuzzy set including the classes and the membership values are obtained. Second, an
aggregated value over the fuzzy set is computed, whose equivalent information in
the predefined term set including five classes, is expressed using a fuzzy 2-tuple—
this results in a class of fuzzy centrality for a node and the degree to which the node
is close to its class in a network layer. Then, having all centrality classes for the
node over multiple layer obtained, the question to be addressed is to which class
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of centrality the node can be assigned with respect to different aggregation strategy.
Therefore, the next step is dedicated to the usage of the MEOWA operator to produce
the different aggregations. Again, the fuzzy 2-tuple model is used to determine the
class of centrality after the aggregation. Finally we show the robustness of the model
with respect to noises. We use randomly edge deletion and edge addition with the rates
of 10, 20, and 30%|Ei|. For adding a single edge, a pair of nodes is randomly selected
and checked whether they are not connected but have a common neighbor, then the
edge is added. For each rate of noise, we perform the procedure 50-times and obtain
an average over all the obtained closeness centrality values for a node. For removing
the edges, a sequence of edges are randomly selected and removed from a layer, then
the closeness centrality of the nodes is measured in the largest connected component
in the corresponding layer. Afterward, the differences are measured between the
assignments of classes of centrality for all nodes in the original network layer and
the layer including the noise using the following equation:

dclass(li, l′i) :=
∑|Vi|

v=1 |(s, α)v − (s′, α′)v|
g . . . |Vi| , (8)

where (s, α)v is the class of centrality of a node v in the layer li and (s′, α′)v is its
class of centrality in the layer with the noise l′i and g is the maximum change that
a node can have within the five classes, which is 4 here. Note that using Eq. (6),
the β−values of the classes can be achieved. The lower and upper bound of dclass is
[0, 1]. A value close to 0 indicates that overall, the nodes have minimum changes in
their fuzzy centrality classes between the original layer and the layer with the noise
and a value close to 1 indicates that the nodes have maximum changes in between.

5 Experimental Results

All the nodes in the three layers of trust network, operational network, and commu-
nication network are colored in Fig. 2 with respect to their classes based on degree
centrality. The isolated nodes in the layers are removed from the visualization. Among
the nodes in the trust network, A. Sungkar in the center of the network is in the highest
class of centrality, which is labeled Very Central.

The five nodes around him in the class of High degree centrality, are Noordin,
M. Rais, Tohir, A. B. Ba’asyir, and F. Al. Ghozi. Noordin is always in the best class
in the layers of operational network and communication network. In terms of doing
the operations, A. Husin with the role of Bomb expert is the second node that is
assigned to the class of Very Central. A. Dharmawan as the coordinator of attack
and logistics is the only one in the class of High centrality in the layer of operational
network. In contrast to the other layers, the nodes in the layer of communication
network are mainly assigned to the classes of Very Peripheral and Low centrality.
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Fig. 2 The assignments of the nodes to the five classes of degree centrality are separately demon-
strated for the three layers of the network

For the multiplex evaluation, as visualized in Fig. 3, the nodes are assigned to all
of the five previously defined classes of centrality, i.e., the classes in the x-axis and
the |α|-value in the y-axis. In order to avoid the overlapping of the nodes’ label, we
use the α-value in the x-axis as well. This makes the node that has a negative α-value,
stay before the middle line of its label (ticked) and the one that has a positive α-value,
shift ahead of the label. Note that in this visualization, the nodes can have the same
class and the same |α| − value, thus a point can be dedicated to several nodes.

The importance of the nodes with respect to their highest class of centrality in at
least one or in all the layers is shown in Fig. 3. In the first aggregation strategy, where
a node with the most satisfying classes of centrality in all the layers, is identified
as the most important one, four terrorists are the most distinguished, key members
in the organization with the different classes of centrality: A. R. Ridho who is the
Noordin’s courier, A. Dharmawan as the coordinator of attack and logistics, A. Husin
as the Bomb expert, and Noordin on the top. In a recently published study [13], it
has been shown that using several types of multiplex page rank, these four members
are always on top—which is the same result as observed here. A. Sungkar, who had
the role of strategist in the dataset, is not among the top nodes in the first aggregation
strategy as he has only one role with a satisfying class of centrality, not in all the
layers. However, when having at least one important role is enough to identify a
node as the important one, he is among the Very Central nodes as shown in Fig. 3b,
because of his important role in the layer of trust network. There are many cases that
are assigned to the classes of Medium and High in the second aggregation strategy,
which were rather not distinguished as important nodes in the first aggregation; this
means their least class of centrality was not satisfying enough to represent them as
the key members.

For the fuzzy closeness centrality, we used the similar visualization, as shown
in Fig. 4. All the detailed visualizations including the classes and |α| − value are
depicted for the three layers in Fig. 5a–c respectively. The four nodes: Ubeid (who
was jailed after four months being in the organization), A. Sungkar, Noordin and A.
R. Ridho are categorized into the class of Very Central in the layer of trust network.
Although the first node did not have a direct connection with Noordin in this layer,
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(a) all layers

(b) at least one

(c) on average

Fig. 3 The assignments of 79 individuals to the classes of fuzzy degree centrality are depicted
based on the results of the different aggregations over the three layers
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(a) the (b) thetrust network (c) theoperational network communication network

Fig. 4 The assignments of the nodes to the five classes of closeness centrality are separately
demonstrated for the three layers of the network
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(a) (b) (c)the trust network the operational network the communication network

Fig. 5 The assignments of the nodes to the classes of closeness centrality in the layers are separately
shown here

he was connected to multiple important members such as the strategist, Noordin’s
courier, U. Bin Sef (a facilitator for the operation materials), and A. Dharmawan (the
coordinator of attacks and logistics). The Bomb expert and Noordin are assigned to
the class of Very Central in the layer of operational network and Noordin top also
has the best class of centrality in the layer of communication network.

In the multiplex representation, as the results shown in Fig. 6, Noordin has the best
class of closeness centrality with in all the layers, and the three key members of the
organization, the Bomb expert, Noordins’ courier, and the coordinator of attack and
logistics are the important nodes after Noordin, as assigned to the classes of High to
Medium. In the second aggregation strategy, A. Sungkar and Ubeid are among the
nodes in the class of Very Central as having at least one important role is enough to
represent them as important members. However, as observed in the first aggregation,
the strategist is identified as a Very Peripheral node; this is because he had no link
to others regarding the operations and also had very small communication links to
the others in the communication network. Thus, when his role in all the layers is
evaluated, he belongs to the class of Very Peripheral nodes.

In order to show the robustness of the model to the noises, we measure the dis-
tances between the results of the fuzzy closeness centrality obtained in the original
network layer and the layer with the noise. As listed in Table 1, the results indicate
the robustness of the used model for almost all the rates of the noises. The highest dif-
ference is obtained in the layer of operational network with the noise rate of 30%|Ei|
and the lowest difference in the layer of communication network with respect to the
noise rate of 10%|Ei|.

For a detailed investigation, the assignments of the nodes to the classes after
applying the noise rate of 20%|Ei| to all the three layers of the network, are depicted
in Fig. 7. It can be observed that the majority of the nodes almost stay in the same
class of centrality in comparison with the obtained results in the original network
layers as shown in Fig. 5.
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(a) all layers

(b) at least one

(c) on average

Fig. 6 The assignments of the nodes to the classes of closeness centrality after the aggregation of
the results over the layers

Table 1 The differences of the assignments of the classes (denoted by dclass(li, l′i)) between the
original network layer of li and the layer of l′i including the noise are listed

Edge deletion Edge addition

10% 20% 30% 10% 20% 30%

Trust network 0.047 0.061 0.072 0.015 0.028 0.056

Operational network 0.054 0.089 0.106 0.025 0.043 0.059

Communication network 0.041 0.065 0.091 0.006 0.014 0.025
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(a) Edge deletion from the trust (b) Edge deletion from the operational (c) Edge deletion from the communication

(d) Edge addition to the trust (e) Edge addition to the operational (f) Edge addition to the communication

Fig. 7 The assignments of 79 individuals in the terrorist network to the different classes of closeness
centrality after applying 20%|Ei| noise to the three layers are represented

6 Summary

In this paper we aim at evaluating the centrality of nodes within the layers of a mul-
tiplex network with respect to their fuzzified, normalized centrality values. The used
fuzzy logic model allows for a comprehensive evaluation of centrality in complex and
multiplex networks. Since centrality rankings can be sensitive to the different choices
of modeling decisions in multiplex networks or to the incompleteness of a network
data, in this model instead of using a discrete ranking, the nodes are partitioned into
groups of nodes with the same classes of centrality. In order to show the robustness
of the model, several noises are applied to the layers of the network and the differ-
ences of the assignments between the original network and the network including
the noises are measured. The empirical results show that the model is almost robust
to the noises. This model will be even more practical for evaluating the concept of
fuzzy centrality, when the classes of centrality are modeled using unbalanced fuzzy
partitions.
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Enhancing Space-Aware Community
Detection Using Degree Constrained
Spatial Null Model

Remy Cazabet, Pierre Borgnat and Pablo Jensen

Abstract Null models have many applications on networks, from testing the signif-
icance of observations to the conception of algorithms such as community detection.
Theyusually preserve somenetwork properties, such as degree distribution.Recently,
some null-models have been proposed for spatial networks, and applied to the com-
munity detection problem. In this article, we propose a new null-model adapted to
spatial networks, that, unlike previous ones, preserves both the spatial structure and
the degrees of nodes. We show the efficacy of this null-model in the community
detection case on synthetic networks.

1 Introduction

In recent years, complex networks have become an important topic of research, and
are used to model systems and interactions in many different fields, from social
sciences to biology.

When elements represented as vertices have a location in space, and the distance
between them plays a role, we use spatial networks to represent them. Examples of
networks modelled by spatial networks include transportation networks, infrastruc-
ture networks, mobility networks, or even neural networks. Several models of spatial
networks exist, such as random planar graph [1], or generalizations of the Watts-
Strogatz model. The distinctive characteristic of spatial network models is that the
probability of observing an edge between vertices depends on the distance between
them. This characteristic can be represented by a deterrence function. For a broad
overview of existing work on spatial networks, one can turn to [2].
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In complex networks, null-models are frequently used to compare the observed
properties (assortativity, diffusion, clustering, frequency of patterns, etc.) of a col-
lected network with the ones in a randomized version of it. Another common usage
is in community detection, where a quality function called Modularity compares
the fraction of edges found inside communities in the observed network and in the
corresponding null-model. The most commonly used null model, often called the
configuration model (see Sect. 2.1.1), rewires randomly connections between ver-
tices while conserving the degree distribution.

Previously proposed null-models for spatial networks conserve the position of
nodes, the deterrence function and the total number of edges, but not the degree
distribution. In this article,wepropose a nullmodel for spatial networks that preserves
as much as possible both the spatial properties and the degrees of nodes.

1.1 Related Works

In [3], the authors propose amethod to find space-independent communities in spatial
networks. They successfully uncover a linguistic partition in a Belgian mobile phone
calls dataset, that was otherwise hidden by geographical proximities. To do so, they
use a modified version of the quality function called Modularity (see Sect. 2.3). We
will detail this gravity-based null model in Sect. 2.1.2. They use a modified version
of the Louvain algorithm [4] to optimize their variant of modularity. Several articles,
for instance [5, 6], applied this approach on different case studies.

In [7], the authors propose to use a mechanism similar than the one in [3], but
replace the gravity-based spatial null-model by a radiation-based one. The radiation
model has been recently proposed as an alternative to the gravity one, andhas attracted
a lot of attention since then. Their model is described in Sect. 2.1.3. They do not use
the exact same method than [3] to optimize their quality function, but a variant of it.

2 Description of Evaluation Settings

2.1 Description of State-of-the-art Null-Models

2.1.1 Configuration Model

The configuration model, or NG model, has been introduced in [8]. It proposes to
rewire randomly the graph while keeping the degrees of nodes.
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2.1.2 Gravity-Based

This null-model introduced in [3] is based on works coming from the transportation
domain, where gravity models have long been used to model the repartition of trips
among areas such as cities, countries or neighborhoods.

In recent works, a general version of the law is often used [9],

PGra
i j = nin j f (di j ) (1)

with f (d) any deterrence function, and ni same as before. Instead of being decided
a priori, the deterrence function can be learned from the data as follows [7]:

f (d) =
∑

i, j |di j=d Ai j
∑

i, j |di j=d nin j
(2)

with Ai j the observed flow (number of trips, communications, etc.) between nodes i
and j , and di j , ni same as in Eq.1.

We can note that if the distance has no effect, the deterrence function is a constant
function, and the gravity-based model becomes exactly the configuration model.

2.1.3 Radiation-Based

Just as the gravity law is an analogy of Newton’s law of gravity, the radiation model
takes his inspiration form laws of radiation in physics. It has first been introduced in
[10], and has been successfully applied in several cases since. It is defined as:

PRad
i j = Ti

nin j

(ni + ri j )(ni + n j + ri j )
(3)

with ri j = qi j − (ni + n j ), qi j being the sum of nk for all k in the circle of center i
and radius di j (population closer from i than j). Other notations identical to Eq.7.

A particularity of thismodel is that it does not need an explicit deterrence function,
as the interactions between nodes depends on their intrinsic strength and of the
presence of other nodes around them.

To be able to tune the importance of distance, however, the variant of the radiation
model introduced in [7] adds a deterrence function effect learned from data, identical
to the one previously introduced. The Distance Tuned radiation model becomes:

PDT Rad
i j = Prad

i j f (di j ) (4)

with f (di j ) a deterrence function defined as in the gravity-based case.
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2.2 Synthetic Benchmarks for Space-Corrected Community
Detection

The benchmark introduced in [3] in a gravity-based version and extended in [7] to a
radiation process generates a network with both a planted community structure and
a spatial structure. Its distinctive feature is that all edges probabilities have to respect
the spatial structure. Compared with the version presented in [7], we introduce two
minor modifications:

• We generalize it in order to allow any deterrence function
• We allow the gravity version to handle variable intrinsic weights

The generic test benchmark is defined as:

pInc
i j = λ(ci , c j )P

SNM
i j ( f (di j ))Z1 (5)

with ci the community containing node i , the function λ(ci , c j ) = 1 if nodes i and j
are in the same community, and λ(ci , c j ) = λd otherwise, PSNM

i j ( f (d)) a probability
given by the chosen spatial null model with deterrence function f (d), and Z1 a
normalization constant ensuring that Σi> j pInc

i j = 1.
Parameters are: N the number of nodes,C the number of communities, l the length

of the sides of the considered square 2-dimensional space, μ the graph’s density, λd

the mixing coefficient, f (d) the deterrence function and Imin, Imax the minimum
and maximum intrinsic strengths. We generate graphs according to the following
procedure:

1. Attribute a position to each of the N nodes in space, defined uniformly at random
such that nx ∈ [0, l], ny ∈ [0, l]

2. Attribute an intrinsic strength to each node, uniformly at random such that nI ∈
[Imin, Imax ]

3. Attribute a community to each node, taken uniformly at random in the set
{1, . . . ,C}

4. Compute pInc
i j for all i , j , for the chosen λd ,PSNM

i j , f (d)

5. Distribute uniformly at random L = μN (N − 1)/2 edges, where there is an edge
between i and j with probability pInc

i j , and multiple edges are interpreted as
weights.

2.3 Community Detection Algorithm

The community detection procedure we use is identical to the one in [3].
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2.4 Community Partition Evaluation

For each set of benchmark’s parameters to test, a graph is generated, and communi-
ties are found for each tested null-model using modified Louvain. It then becomes
possible to compare the detected partition, result of the algorithm, with the planted
partition. As in previous works [3, 7], we use the Normalized Mutual Information
(NMI) [11].

3 Definition of a Degree Constrained Gravity-Based Model

In the previously introduced spatial null models, there is no simple relation between
the intrinsic strength of a node and its actual strength (sum of weights of adjacent
edges) in a network generated according to this null model. This means that if the
only available data is an observed network, and we use observed degrees of nodes as
a proxy for their intrinsic importance, then any of the previously proposed spatial null
model fitted on this observed network will not conserve the degrees of nodes. The
null model we propose is searching for a degree constrained solution, i.e. a spatial
null-model preserving the degrees of nodes.

To do so, we take inspiration from the doubly constrained gravity model [12],
and adapt it to the case of spatial networks with estimated deterrence function. The
intuition is that we are searching for values of intrinsic strength that would best
explain the observed degrees. We present the method in its more general form,
adapted to oriented weighted networks. Therefore, we compute separately for each
node an Incoming estimated Intrinsic Strength (nIeis) and an Outgoing estimated
Intrinsic Strength (nOeis). For non-oriented networks, nIeis = nOeis .

The method consists in iteratively estimating the new values for nIeis and nOeis

that satisfies the observed indegrees (degin) and outdegrees (degout ) constraints.
We can define them recursively as:

nIeis = degout (i)∑
i n

Oeis f (di j )
, nOeis = degin(i)∑

i n
I eis f (di j )

(6)

and the corresponding Degree Constrained gravity model is:

PDCgrav

i j = nOeisn Ieis f (di j ) (7)

Starting with initial values nOeis = degout and nIeis = degin , we first compute all
values for nOeis , then all values for nIeis , and so on and so forth until the degrees
obtained in the gravity model defined in Eq.7 are close enough to the target network.
Although this process is known to converge [12], in this article we will use a fix num-
ber of iterations, i = 5, to avoid discussions on stopping criterium and convergence
time.
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3.1 Recomputation of the Deterrence Function

Because the computed deterrence function depends on the intrinsic strength of nodes,
estimating it using observed degrees as a proxy leads to a biased approximation. By
recomputing the deterrence function after each iteration of the algorithm, we can in
part correct this bias.

4 Validation of Null Models on Synthetic Benchmarks

4.1 Benchmark Parameters

To limit the number of cases to study, we decided to fix some parameters. The
influence of these parameters has already been studied in [7], and minor changes
do not affect much the results. Of course, major changes can have strong effect,
for instance is the graph becomes extremely sparse, finding communities becomes
harder for all methods.

We choose values close to the ones studied in [7]. Fixed parameters and their
values: N = 100, l = 10, μ = 100, Imin = 10, Imax = 100, C = 2.

For the deterrence function, whose impact was not studied in [7], we con-
sider several values: For gravity based benchmarks, we take f (d) among { f (x) =
1/x, f (x) = 1/x0.5, f (x) = 1/x2}. For the Radiation case, we consider f (d) ∈
{ f (x) = 1, f (x) = 1/x}. f (x) = 1 corresponds to the original definition of the
Radiation model, with no explicit definition of deterrence function.

As in [7], we allow the mixing parameter λd to vary from 0 to 1, i.e. from perfectly
unambiguous community structure to a network with only a spatial structure.

4.2 Evaluation Process

For each set of parameters, we generate 50 instances of networks. For each instance,
we run the modified Louvain algorithm with each of the following null models:

• Configuration model [13], noted as NG
• Gravity-based [3], noted as Gra
• Radiation-based (original) [10], noted as Rad
• Radiation-based with deterrence function [7], noted as DFrad
• Degree constrained Gravity-based, introduced in the present paper, noted as

DCgra

For each of these algorithms, we consider two cases, Fully Informed and Net-
work/Position Only.



Enhancing Space-Aware Community Detection … 53

(a) f (x) = 1/x, Fully Informed (b) f (x) = 1/x2, Fully Informed

(c) f (x) = 1/x0.5, Fully Informed (d) f (x) = 1/x, N/P Only

(e) (f)f (x) = 1/x2, N/P Only f (x) = 1/x0.5, N/P Only

Fig. 1 Results for the synthetic benchmark, using a generative Gravity model. In fully informed
cases, the gravity null-model is the most efficient, while the proposed DCgra model gives best
results when only the network and position of nodes is known

In the Fully Informed version, we consider that we know not only the observed
network, but also the intrinsic strength of nodes and the deterrence function used to
generate the network. This is the same setting than tests conduced in [3, 7].

In the Network/Position Only version, we consider that we only know the
observed network, and the position of nodes. The deterrence function is first com-
puted from these data, when needed, and the degree of nodes is used as proxy for the
intrinsic importance of nodes, as it is often done in applications to collected datasets,
for instance in [6, 7]. This setting is more realistic, for applications to real world
datasets.
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f (x) = 1, Fully informed (b)(a) f (x) = 1, N/P Only

(c) f (x) = 1/x2, Fully informed (d) f (x) = 1/x2, N/P Only

Fig. 2 Results on the synthetic benchmark, using a Radiation generative model, both for Fully
Informed andNetwork/PositionOnly settings.While the DFradmodel gives by far the best results
in fully informed cases, its efficacy dwindlewhen less information is available, and theDCgramodel
and the original Radiation Null-models give the best results

4.3 Results

In Fig. 1, left column, we present the results for the synthetic benchmark with a
generative gravity model, and the fully informed case. As expected, the Gra null-
model is the most efficient.We can observe that the problem becomes harder with the
increase in the exponent of the deterrence function. In fact, the more this exponent is
low, the more the network resemble a non-spatial network. The proposed DCgravity
model, that does not benefit from full information, comes nevertheless second in
most settings.

In Fig. 1, right column, tests are conduced with same settings but in Net-
work/Position Only version, i.e. similar to a collected dataset. In this configuration,
results for the original gravity model dwindle, in particular with a high exponent for
the deterrence function, in which cases the radiation models give better results. The
DCgravity algorithm gives best results in most settings.

In Fig. 2, a radiation generative model is used. With the function f (x) = 1, both
Rad and DFrad give similar result, because this function is implicitly assumed by the
Rad null model. Although they reach high NMI scores in Full Information settings,
again the results shrink in the N/P only case, in particular for DFrad. With a modified
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deterrence function, DFrad is the only one to give good results on Fully informed
settings, but again, it does not maintain this efficiency for N/P Only. Interestingly,
results for DCgra and Rad are comparable in the N/P Only cases.
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Node-Centric Community Detection
in Multilayer Networks with Layer-Coverage
Diversification Bias

R. Interdonato, A. Tagarelli, D. Ienco, A. Sallaberry and P. Poncelet

Abstract The problem of node-centric, or local, community detection in informa-
tion networks refers to the identification of a community for a given input node,
having limited information about the network topology. Existing methods for solv-
ing this problem, however, are not conceived to work on complex networks. In
this paper, we propose a novel framework for local community detection based on
the multilayer network model. Our approach relies on the maximization of the ratio
between the community internal connection density and the external connection den-
sity, according to multilayer similarity-based community relations. We also define a
biasing scheme that allows the discovery of local communities characterized by dif-
ferent degrees of layer-coverage diversification. Experimental evaluation conducted
on real-world multilayer networks has shown the significance of our approach.

1 Introduction

The classic problem of community detection in a network graph corresponds to an
optimization problemwhich is global as it requires knowledge on the whole network
structure. The problem is known to be computationally difficult to solve, while its
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approximate solutions have to cope with both accuracy and efficiency issues that
become more severe as the network increases in size. Large-scale, web-based envi-
ronments have indeed traditionally represented a natural scenario for the development
and testing of effective community detection approaches. In the last few years, the
problem has attracted increasing attention in research contexts related to complex
networks [2, 7–9, 11–14], whose modeling and analysis is widely recognized as a
useful tool to better understand the characteristics and dynamics of multiple, inter-
connected types of node relations and interactions [1, 6].

Nevertheless, especially in social computing, one important aspect to consider is
that we might often want to identify the personalized network of social contacts of
interest to a single user only. To this aim, we would like to determine the expanded
neighborhood of that user which forms a densely connected, relatively small sub-
graph. This is known as local community detection problem [4, 5], whose general
objective is, given limited information about the network, to identify a community
structure which is centered on one or few seed users. Existing studies on this prob-
lem have focused, however, on social networks that are built on a single user relation
type or context [4, 15]. As a consequence, they are not able to profitably exploit the
fact that most individuals nowadays have multiple accounts across different social
networks, or that relations of different types (i.e., online as well as offline relations)
can be available for the same population of a social network [6].

In this work, we propose a novel framework based on the multilayer network
model for the problem of local community detection, which overcomes the afore-
mentioned limitations in the literature, i.e., community detection on a multilayer
network but from a global perspective, and local community detection but limited
to monoplex networks. We have recently brought the local community detection
problem into the context of multilayer networks [10], by providing a preliminary
formulation based on an unsupervised approach. A key aspect of our proposal is
the definition of similarity-based community relations that exploit both internal and
external connectivity of the nodes in the community being constructed for a given
seed, while accounting for different layer-specific topological information. Here we
push forward our research by introducing a parametric control in the similarity-based
community relations for the layer-coverage diversification in the local community
being discovered. Our experimental evaluation conducted on three real-world mul-
tilayer networks has shown the significance of our approach.

2 Multilayer Local Community Detection

2.1 TheML-LCDMethod

We refer to themultilayer networkmodel described in [9].We are given a set of layers
L and a set of entities (e.g., users) V . We denote with GL = (VL , EL ,V ,L ) the
multilayer graph such that VL is a set of pairs v ∈ V , L ∈ L , and EL ⊆ VL × VL
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is the set of undirected edges. Each entity of V appears in at least one layer, but not
necessarily in all layers. Moreover, in the following we will consider the specific
case for which nodes connected through different layers the same entity in V , i.e.,
GL is a multiplex graph.

Local community detection approaches generally implement some strategy that
at each step considers a node from one of three sets, namely: the community under
construction (initialized with the seed node), the “shell” of nodes that are neighbors
of nodes in the community but do not belong to the community, and the unexplored
portion of the network. A key aspect is hence how to select the best node in the shell
to add to the community to be identified. Most algorithms, which are designed to
deal with monoplex graphs, try to maximize a function in terms of the internal edges,
i.e., edges that involve nodes in the community, and to minimize a function in terms
of the external edges, i.e., edges to nodes outside the community. By accounting for
both types of edges, nodes that are candidates to be added to the community being
constructed are penalized in proportion to the amount of links to nodes external to the
community [5].Moreover, as first analyzed in [4], considering the internal-to-external
connection density ratio (rather than the absolute amount of internal and external links
to the community) allows for alleviating the issue of inserting many weakly-linked
nodes (i.e., outliers) into the local community being discovered. In this work we
follow the above general approach and extend it to identify local communities over
a multilayer network.

Given GL = (VL , EL ,V ,L ) and a seed node v0, we denote with C ⊆ V
the node set corresponding to the local community being discovered around node
v0; moreover, when the context is clear, we might also use C to refer to the local
community subgraph.Wedenotewith S = {v ∈ V \ C | ∃((u, Li ), (v, L j )) ∈ EL ∧
u ∈ C} the shell set of nodes outside C , and with B = {u ∈ C | ∃((u, Li ), (v, L j )) ∈
EL ∧ v ∈ S} the boundary set of nodes in C .

Our proposed method, named MultiLayer Local Community Detection (ML-
LCD), takes as input the multilayer graph GL and a seed node v0, and computes
the local community C associated to v0 by performing an iterative search that seeks
to maximize the value of similarity-based local community function for C (LC(C)),
which is obtained as the ratio of an internal community relation LCint (C) to an exter-
nal community relation LCext (C). We shall formally define these later in Sect. 2.2.

Algorithm ML-LCD works as follows. Initially, the boundary set B and the com-
munity C are initialized with the starting seed, while the shell set S is initialized with
the neighborhood set of v0 considering all the layers inL . Afterwards, the algorithm
computes the initial value of LC(C) and starts expanding the node set in C : it evalu-
ates all the nodes v belonging to the current shell set S, then selects the vertex v∗ that
maximizes the value of LC(C). The algorithm checks if (i) v∗ actually increases the
quality of C (i.e., LC(C ∪ {v∗}) > LC(C)) and (ii) v∗ helps to strength the internal
connectivity of the community (i.e., LCint (C ∪ {v∗}) > LCint (C)). If both condi-
tions are satisfied, node v∗ is added to C and the shell set is updated accordingly,
otherwise node v∗ is removed from S as it cannot lead to an increase in the value
of LC(C). In any case, the boundary set B and LC(C) are updated. The algorithm
terminates when no further improvement in LC(C) is possible.
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2.2 Similarity-Based Local Community Function

To account for the multiplicity of layers, we define the multilayer local community
function LC(·) based on a notion of similarity between nodes. In this regard, two
major issues are how to choose the analytical form of the similarity function, and
how to deal with the different, layer-specific connections that any two nodes might
have in the multilayer graph. We address the first issue in an unsupervised fashion,
by resorting to any similarity measure that can express the topological affinity of
two nodes in a graph. Concerning the second issue, one straightforward solution is
to determine the similarity between any two nodes focusing on each layer at a time.
The above points are formally captured by the following definitions. We denote with
EC the set of edges between nodes that belong to C and with EC

i the subset of EC

corresponding to edges in a given layer Li . Analogously, E B refers to the set of edges
between nodes in B and nodes in S, and E B

i to its subset corresponding to Li .
Given a community C , we define the similarity-based local community function

LC(C) as the ratio between the internal community relation and external community
relation, respectively defined as:

LCint (C) = 1

|C |
∑

v∈C

∑

Li ∈L

∑

(u,v)∈EC
i ∧ u∈C

simi (u, v) (1)

LCext (C) = 1

|B|
∑

v∈B

∑

Li ∈L

∑

(u,v)∈E B
i ∧ u∈S

simi (u, v) (2)

In the above equations, function simi (u, v) computes the similarity between any
two nodes u, v contextually to layer Li . In this work, we define it in terms of Jaccard
coefficient, i.e., simi (u, v) = |Ni (u)∩Ni (v)|

|Ni (u)∪Ni (v)| , where Ni (u) denotes the set of neighbors
of node u in layer Li .

2.3 Layer-Coverage Diversification Bias

When discovering a multilayer local community centered on a seed node, the iter-
ative search process in ML-LCD that seeks to maximize the similarity-based local
community measure, explores the different layers of the network. This implies that
the various layers might contribute very differently from each other in terms of edges
constituting the local community structure. In many cases, it can be desirable to con-
trol the degree of heterogeneity of relations (i.e., layers) inside the local community
being discovered.

In this regard, we identify two main approaches:

• Diversification-oriented approach. This approach relies on the assumption that
a local community is better defined by increasing as much as possible the number
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of edges belonging to different layers. More specifically, we might want to obtain
a local community characterized by high diversification in terms of presence of
layers and variability of edges coming from different layers.

• Balance-oriented approach. Conversely to the previous case, the aim is to pro-
duce a local community that shows a certain balance in the presence of layers,
i.e., low variability of edges over the different layers. This approach relies on the
assumption that a local community might be well suited to real cases when it is
uniformly distributed among the different edge types taken into account.

Following the above observations, here we propose a methodology to incorporate
a parametric control of the layer-coverage diversification in the local community
being discovered. To this purpose, we introduce a bias factor β in ML-LCD which
impacts on the node similarity measure according to the following logic:

β =

⎧
⎪⎨

⎪⎩

(0, 1], diversification-oriented bias

0, no bias

[−1, 0), balance-oriented bias

(3)

Positive values ofβ push the community expansion process towards a diversification-
oriented approach, and, conversely, negative β lead to different levels of balance-
oriented scheme. Note that the no bias case corresponds to handling the node sim-
ilarity “as is”. Note also that, by assuming values in a continuous range, at each
iterationML-LCD is enabled to make a decision by accounting for a wider spectrum
of degrees of layer-coverage diversification.

Given a node v ∈ B and a node u ∈ S, for any Li ∈ L , we define the β-biased
similarity simβ,i (u, v) as follows:

simβ,i (u, v) = 2simi (u, v)

1 + e−b f
, (4)

b f = β[ f (C ∪ {u}) − f (C)] (5)

where b f is a diversification factor and f (C) is a function that measures the current
diversification between the different layers in the community C ; in the following, we
assume it is defined as the standard deviation of the number of edges for each layer
in the community. The difference f (C ∪ {u}) − f (C) is positive when the insertion
of node u into the community increases the coverage over a subset of layers, thus
diversifying the presence of layers in the local community. Consequently, when β

is positive, the diversification effect is desired, i.e., there is a boost in the value of
simβ,i (and vice versa for negative values of β). Note that β introduces a bias on the
similarity between two nodes only when evaluating the inclusion of a shell node into
a community C , i.e., when calculating LCext (C).
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3 Experimental Evaluation

We used three multilayer network datasets, namely Airlines (417 nodes correspond-
ing to airport locations, 3588 edges, 37 layers corresponding to airline companies) [3],
AUCS (61 employees as nodes, 620 edges, 5 acquaintance relations as layers) [6],
and RealityMining (88 users as nodes, 355 edges, 3 media types employed to com-
municate as layers) [8]. All network graphs are undirected, and inter-layer links are
regarded as coupling edges.

Size and structural characteristics of local communities. We first analyzed the
size of the local communities extracted byML-LCD for each node. Table1 reports on
the mean and standard deviation of the size of the local communities by varying of β.
As regards the no bias solution (i.e., β = 0.0), largest local communities correspond
to Airlines (mean 11.33± 14.78), while medium size communities (7.90± 2.74) are
found for AUCS and relatively small communities (3.37 ± 1.77) for RealityMining.
The impact of β on the community size is roughly proportional to the number of
layers, i.e., high on Airlines, medium on AUCS and low on RealityMining. For Air-
lines and AUCS, smallest communities are obtained with the solution corresponding
to β = −1.0, thus suggesting that the discovery process becomes more xenophobic
(i.e., less inclusive) while shifting towards a balance-oriented scheme. Moreover, on
Airlines, the mean size follows a roughly normal distribution, with most inclusive
solution (i.e., largest size) corresponding to the unbiased one. A near normal distri-
bution (centered on 0.2 ≤ β ≤ 0.4) is also observed for RealityMining, while mean
size values linearly increase with β for AUCS.

To understand the effect of β on the structure of the local communities, we ana-
lyzed the distributions of per-layer mean average path length and mean clustering
coefficient of the identified communities (results not shown). One major remark is
that on the networks with a small number of layers, the two types of distributions
tend to follow an increasing trend for balance-oriented bias (i.e., negative β), which
becomes roughly constant for the diversification-oriented bias (i.e., positive β). On
Airlines, variability happens to be much higher for some layers, which in the case of
mean average path length ranges between 0.1 and 0.5 (as shown by a rapidly decreas-
ing trend for negative β, followed by a peak for β = 0.2, then again a decreasing
trend).

Distribution of layers over communities. We also studied how the bias factor
impacts on the distribution of number of layers over communities, as shown in Fig. 1.
This analysis confirmed that using positive values of β produces local communities
that lay on a higher number of layers. This outcome can be easily explained since
positive values of β favor the inclusion of nodes into the community which increase
layer-coverage diversification, thus enabling the exploration of further layers also in
an advanced phase of the discovering process. Conversely, negative values of β are
supposed to yield a roughly uniform distribution of the layers which are covered by
the community, thus preventing the discovery process from including nodes coming
fromunexplored layers once the local community is already characterized by a certain
subset of layers.
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(a) Airlines (b) AUCS

(c) RealityMining

Fig. 1 Distribution of number of layers over communities by varying β. Communities are sorted
by decreasing number of layers

As regards the effects of the bias factor on the layer-coverage diversification, we
analyzed the standard deviation of the per-layer number of edges by varyingβ (results
not shown, due to space limits of this paper). As expected, standard deviation values
are roughly proportional to the setting of the bias factor for all datasets. Considering
the local communities obtained with negative β, the layers on which they lay are
characterized by a similar presence (in terms of number of edges) in the induced
community subgraph. Conversely, for the local communities obtained using positive
β, the induced community subgraphmay be characterized by a small subset of layers,
while other layers may be present with a smaller number of relations.

Similarity between communities. The smooth effect due to the diversification-
oriented bias is confirmed when analyzing the similarity between the discovered
local communities. Figure2 shows the average Jaccard similarity between solutions
obtained by varying β (i.e., in terms of nodes included in each local community). Jac-
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(b) AUCS(a) Airlines

Fig. 2 Average Jaccard similarity between solutions obtained by varying β

card similarities vary in the range [0.75, 1.0] for AUCS and Airlines, and in the range
[0.9, 1.0] for RealityMining (results not shown). For datasets with a lower number
of layers (i.e., AUCS and RealityMining), there is a strong separation between the
solutions obtained for β > 0 and the ones obtained with β < 0. On AUCS, the local
communities obtained using a diversification-oriented bias show Jaccard similarities
close to 1, while there is more variability among the solutions obtained with the
balance-oriented bias. Effects of the bias factor are lower on RealityMining, with
generally high Jaccard similarities. On Airlines, the effects of the bias factor are still
present but smoother, with gradual similarity variations in the range [0.75, 1.0].

4 Conclusion

We addressed the novel problem of local community detection in multilayer net-
works, providing a greedy heuristic that iteratively attempts tomaximize the internal-
to-external connection density ratio by accounting for layer-specific topological
information. Our method is also able to control the layer-coverage diversification
in the local community being discovered, by means of a bias factor embedded in the
similarity-based local community function. Evaluation was conducted on real-world
multilayer networks. As future work, we plan to study alternative objective func-
tions for the ML-LCD problem. It would also be interesting to enrich the evaluation
part based on data with ground-truth information. We also envisage a number of
application problems for which ML-LCD methods can profitably be used, such as
friendship prediction, targeted influence propagation, and more in general, mining
in incomplete networks.
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Community Detection in Signed Networks
Based on Extended Signed Modularity

Tsuyoshi Murata, Takahiko Sugihara and Talel Abdessalem

Abstract Community detection is important for analyzing and visualizing given
networks. In real world, many complex systems can be modeled as signed networks
composed of positive and negative edges. Although community detection in signed
networks has been attempted by many researchers, studies for detecting detailed
structures remain to be done. In this paper, we extendmodularity for signed networks,
and propose amethod for optimizing ourmodularity,which is an efficient hierarchical
agglomeration algorithm for detecting communities in signed networks. Based on the
experiments with large-scale real world signed networks such asWikipedia, Slashdot
and Epinions, our method enables us to detect communities and inner factions inside
the communities.

Keywords Signed networks · Community detection · Signed modularity

1 Introduction

Communities in networks are defined as the groups of nodes within which the edges
are dense but between which the edges are sparse. Community detection in networks
attracts many researchers, and many methods for community detection are proposed
[1, 4, 9]. Most of the previous research on community detection are for normal
networks composed of only one edge type. However, several real relations can be
represented as signed networks composed of positive and negative edges. In this
paper, we extend the modularity for signed networks in order to detect communities
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in signed networks. It is composed of positive and negativemodularity, and it includes
a balancing parameter for the importance of both types of edges.

Moreover, we propose a method for optimizing our modularity, which is an effi-
cient hierarchical agglomeration algorithm for detecting communities in signed net-
works. It is based on an efficient optimization method for normal networks proposed
by Clauset et al. [1].

We apply ourmethod to several signed networks which represent the relationships
among users on websites such asWikipedia, Slashdot and Epinions. We successfully
detect communities in large-scale signed networks which have more than 60,000
nodes and more than 600,000 edges. Our method can control the result by adjusting
a parameter and it enables us to detect communities and inner factions inside the
communities.

2 Related Works

Social relations with friendship and hostility can be represented as signed networks
with positive and negative edges. Many attempts have been made for analyzing
signed networks. Although structural balance of triangles of positive and negative
edges is one of the important topics in signed networks, we will not discuss in this
paper. Gomez et al. [5] extended Newmanmodularity for the analysis of directed and
signed networks.Although the proposedmodularity is similar to ours, it has theweak-
ness that the balancing factor of positive and negative edges is fixed. Szell et al. [11]
analyzes interactions of massive multiplayer online games. The authors claim that
reciprocity and clustering coefficient of positive edges are quite different from those
of negative edges. They propose STC model for generating triangles from wedges,
and the model fit well for the data of online games. Leskovec et al. [6] focus on a task
of edge sign prediction, and they propose a method for predicting positive and nega-
tive edges based on logistic regression classifier.Maniu et al. [8] built signed network
from the interactions of editors in Wikipedia. The dataset called Wikisigned is avail-
able at http://konect.uni-koblenz.de/networks/wikisigned-k2. Esmailian et al. [3]
discuss the method for detecting communities based on extended Potts Model. Their
approach is flow-based, and it is quite different from our modularity optimization-
based approach. Influence maximization in signed networks is studied by Li et al.
[7], and link recommendation algorithm is proposed by Song et al. [10], which are
not focus of this paper.

3 Extended Modularity for Signed Networks

In good partitions of signed networks, positive edges should be dense within commu-
nities and sparse between communities, and negative edges should be sparse between
communities and dense within communities. We define an extended modularity for

http://konect.uni-koblenz.de/networks/wikisigned-k2
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undirected signed networks Qsigned as a linear combination of positive and negative
modularity.

Qsigned = αQ+ − (1 − α)Q− (1)

Q+ in Eq. (1) is a positive modularity, which represents the fraction of the positive
edges that fall within the given groups minus the expected such fraction if positive
edges were distributed at random. This is represented by Eq. (2).

Q+ = 1

2m+
∑

ij

(A+
ij − k+

i k
+
j

2m+ )δ(ci, cj) (2)

In Eq. (2),m+ is the number of positive edges, A+ is a positive adjacency matrix and
A+
ij is its (i, j)-th element.

A+
ij =

{
1 if there is an positive edge between node i and j
0 otherwise

(3)

The positive degree k+
i of node i is defined as the number of positive edges that

connect to i.
k+
i =

∑

j

A+
ij (4)

Q+ in Eq. (1) is negative modularity, which is represented by Eq. (5).

Q− = 1

2m−
∑

ij

(A−
ij − k−

i k
−
j

2m− )δ(ci, cj) (5)

In Eq. (5), m− is the number of negative edges, A− is a negative adjacency matrix
and A−

ij is its (i, j)-th element.

A−
ij =

{
1 there is an negative edge between node i and j
0 otherwise

(6)

The negative degree k−
i of node i is defined as the number of negative edges that

connect to i.
k−
i =

∑

j

A−
ij (7)

To simplify the description of our algorithm, we define the following four quantities.

e+
ij = 1

2m+
∑

s∈ci

∑

t∈cj
A+
st (8)
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e−
ij = 1

2m−
∑

s∈ci

∑

t∈cj
A−
st (9)

a+
i = 1

2m+
∑

s∈ci,t∈V
A+
st (10)

a−
i = 1

2m−
∑

s∈ci,t∈V
A−
st (11)

Equation (8) is the fraction of positive edges that connect nodes in community i and
nodes in community j, and Eq. (9) is the fraction of negative edges that connect
nodes in community i and nodes in community j. Equation (10) is the fraction of
positive edges that are attached to nodes in community i, and Eq. (11) is the fraction
of negative edges that are attached to nodes in community i.

With the above four quantities, Eqs. (2) and (5) can be simplified as follows:

Q+ =
∑

i

{e+
ii − (a+

i )2} (12)

Q− =
∑

i

{e−
ii − (a−

i )2} (13)

In good partition of signed networks, the value of Q+ should be large and value of
Q− should be small. In Eq. (1), α indicates the importance of positive edges and
1 − α indicates the importance of negative edges. The value of Qsigned is less than 1,
and it can be negative value.

Other modularities for signed networks are proposed by Gomez et al. [5] and by
Traag et al. [12]. In the modularity by Gomez et al., the value of α is fixed as the
proportion of positive edges in the signed network. Parameters are introduced in the
modularity by Traag et al. for adjusting the size of communities. They are different
from parameter α in our modularity.

For example, the partition of a signed network (Fig. 1) which gives the largest
ΔQsigned depends on the value of α. In this signed network, four kinds of partition can
be obtained (Fig. 2). When the value of α is large, positive edges within communities

Fig. 1 Example of signed
network
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Fig. 2 Communities for
different α

are more focused. As a result, partitions that include more negative edges within
communities are allowed. Conversely, when the value of α is small, negative edges
between communities are more focused. As a result, partitions that include more
positive edges between communities are allowed. The modularity by Gomez does
not have such flexibility because its parameter is fixed.

4 Method for Optimization

Community detection methods for normal networks cannot be applied directly,
because there are negative edges in signed networks. In this paper, we propose a
detection method for signed networks based on CNM (the method proposed by
Clauset et al.) [1]. By considering the connection patterns of the edges, CNM effi-
ciently calculates the changes in Q that would result from the agglomeration of each
pair of communities. CNM cannot be applied directly because there are some con-
nection patterns that do not exist in normal networks. Thus, it is necessary to extend
CNM appropriately for signed networks.

In initial state of our method, each node is the sole member of a community. Then,
our method calculates changes inQsigned that would result from the agglomeration of
each pair of communities connected by positive or negative edges. Until the largest
ΔQsigned becomes negative, it continues agglomeration.
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Algorithm 1 CNM for signed networks
1: Let C = {1, 2, . . . , n} be the set of communities
2: for all community pairs do i = 1, 2, . . . , n, j = 1, 2, . . . , n
3: if A+

ij = 1 then

4: ΔQ+
ij = 1/m+ − 2a+

i a
+
j ,ΔQ−

ij = −2a−
i a

−
j

5: else if A−
ij = 1 then

6: ΔQ+
ij = −2a+

i a
+
j ,ΔQ−

ij = 1/m− − 2a−
i a

−
j

7: end if
8: end for
9: while max (αΔQ+ − (1 − α)ΔQ−) > 0 do
10: (max_i,max_j) = argmax (αQ+ − (1 − α)Q−)

11: for each community x connected to max_i or max_j do
12: update ΔQ+

max_ix,ΔQ+
xmax_iΔQ−

max_ix,ΔQ−
xmax_i

13: end for
14: remove column max_j, row max_j from ΔQ+,ΔQ−
15: C · max_i = max_i ∪ max_j
16: remove community C · maxj from C
17: end while

In line 4 and 6 of Algorithm 1, ΔQ+
ij (an element of ΔQ+) and ΔQ−

ij (an element
of ΔQ−) are defined as follows:

ΔQ+
ij = 2(e+

ij − a+
i a

+
j ) (14)

ΔQ−
ij = 2(e−

ij − a−
i a

−
j ) (15)

If node i and j are connected by a positive edge, then we substitute e+
ij = 1/2m+,

e−
ij = 0 for Eqs. (14) and (15). If node i and j are connected by a negative edge, then
we substitute e+

ij = 0, e−
ij = 1/2m− for Eqs. (14) and (15). Elements of ΔQ+ and

ΔQ− are as follows:

ΔQ+
ij =

⎧
⎨

⎩

1/m+ − 2a+
i a

+
j if A+

ij = 1
−2a+

i a
+
j if A−

ij = 1
0 otherwise

(16)

ΔQ−
ij =

⎧
⎨

⎩

−2a−
i a

−
j if A+

ij = 1
1/m− − 2a−

i a
−
j if A−

ij = 1
0 otherwise

(17)

In line 11–14 of Algorithm 1, the community pair (i, j) that gives the largest increase
in ΔQsigned(= αΔQ+ − (1 − α)ΔQ−) is agglomerated. Then, we update column i
and row i, and remove column j and row j.

In our method, we avoid the calculation of e+
ij and e

−
ij in Eqs. (14) and (15) because

it is time consuming. Considering edge connection pattern between agglomerated
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Fig. 3 Four connection
patterns

communities i, j and x (Fig. 3), we apply appropriate update of equations for each
pattern.

Update of equations for ΔQ+ are as follows:

1. If x is connected to both i and j by positive edges,
then ΔQ+

ix will be computed as follows:

ΔQ+
ix = 2(e+

ix + e+
jx − (a+

i + a+
j )a+

x )

= 2(e+
ix − a+

i a
+
x ) + 2(e+

jx − a+
j a

+
x )

= ΔQ+
ix + ΔQ+

jx (18)

In this pattern, we need only a simple addition.
2. If x is connected to i but not to j by positive edge,

then we substitute e+
jx = 0 for Eq. (14) and ΔQ+

ix will be computed as follows:

ΔQ+
ix = 2(e+

ix − (a+
i + a+

j )a+
x )

= 2(e+
ix − a+

i a
+
x ) − 2a+

j a
+
x

= ΔQ+
ix − 2a+

j a
+
x (19)

3. If x is connected to j but not to i by positive edge,
then we substitute e+

ix = 0 for Eq. (14) and ΔQ+
ix will be computed as follows:

ΔQ+
ix = ΔQ+

jx − 2a+
i a

+
x (20)

4. If x is not connected to i, j by positive edge,
then we substitute e+

ix = e+
jx = 0 for Eq. (14) and ΔQ+

ix will be computed as fol-
lows:
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ΔQ+
ix = −2(a+

i + a+
j )a+

x (21)

This is the case that i, j and x are connected only by negative edges. In this case,
there is no positive edge between i, j and x. This is the specific pattern for signed
networks and original CNM does not consider this pattern.

Update equations for ΔQ− are as follows:

1. If x is connected to both i and j by negative edges,
then ΔQ−

ix will be computed as follows:

ΔQ−
ix = ΔQ−

ix + ΔQ−
jx (22)

2. If x is connected to i but not to j by negative edge,
then we substitute e−

jx = 0 for Eq. (15) and ΔQ−
ix will be computed as follows:

ΔQ−
ix = ΔQ−

ix − 2a−
j a

−
x (23)

3. If x is connected to j but not to i by negative edge,
then we substitute e−

ix = 0 for Eq. (15) and ΔQ−
ix will be computed as follows:

ΔQ−
ix = ΔQ−

jx − 2a−
i a

−
x (24)

4. If x is not connected to i, j by negative edge,
then we substitute e−

ix = e−
jx = 0 for Eq. (15) and ΔQ−

ix will be computed as fol-
lows:

ΔQ−
ix = −2(a−

i + a−
j )a−

x (25)

This is the case that i, j and x are connected only by positive edges. In this case,
there is no negative edge between i, j and x.

These updates are continued until the largest ΔQsigned becomes negative.
Our method reduces computational cost by calculating not the whole Qsigned but

ΔQsigned that would result from the agglomeration. In addition, it also reduces com-
putational cost by avoiding to calculate e+

ij and e
−
ij , which are time consuming. These

ingenuities do not affect the resultant value but they significantly improve the effi-
ciency of our method.

5 Experiments

5.1 Synthetic Networks

One way to test our algorithm is to see how well it performs when it is applied to
synthetic signed networks. The generated network is composed of 128 nodes which
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Table 1 Calculation times Method Time (s)

Calculate the whole of Qsigned
(not ΔQsigned ) after agglomeration

202.0

Calculate ΔQsigned without using
update rules (Eqs. 18–25)

2.85

Our method 0.35

are split into four communities containing 32 nodes each. We regard these four
communities as correct answer communities. The purpose of this experiment is to
examine whether the answer communities can be extracted. The generation process
is the same as the one used in the experiments by Danon et al. [2]. p1 is the noise
rate from positive to negative, and p2 is the noise rate from negative to positive.

We detect communities in signed networks (p1 = p2 = 0.05) by our method. In
order to compare the calculation time, we also detect communities with two other
methods. The first method is “calculate the whole of Qsigned (not ΔQsigned) after
agglomeration”. The secondmethod is “calculateΔQsigned without using update rules
(Eqs. 18–25)”. As a result of these three methods (α = 0.5), the four communities
are detected correctly. The calculation times are shown in Table1. Our method is
quite faster than other two methods.

In order to examine the impact of p1 and p2, we detect communities in signed
networks where we set one parameter as 0.05 and change the other from 0.05 to
0.5. 10 signed networks are generated for each state. We use our method where α =
0.2, 0.5, 0.8 and examine the accuracy of detected communities, which is evaluated
by NMI (Normalized Mutual Information) [2].

Figure4 shows the result when p2 is fixed and p1 is changed, and Fig. 5 shows the
result when p1 is fixed and p2 is changed. X-axis is the value of p1(or p2), and y-axis
is the value of NMI. When α is large, the value of NMI is also large, but when α is
small, the value of NMI is small.

Fig. 4 Results when p1 is
changed
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Fig. 5 Results when p2 is
changed
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When α is small, the negative edges between communities are more focused.
The density of positive edge in the answer community is less important than when
α is larger. As a result, it becomes hard to agglomerate a pair within the answer
community.

Besides, when p1 (noise rate within the answer community) is large, the value of
NMI is relatively larger than the result when p2 (noise rate between answer com-
munities) is large. When p2 is large, the number of positive edges between answer
communities increases. Therefore, the chance of agglomeration between answer
communities is raised. As a result, detected communities become different from the
correct answer, and the value of NMI becomes small.

5.2 Real-World Networks

We use three real-world signed networks for our experiments. Each data can be
obtained from Stanford Large Scale Network Dataset (http://snap.stanford.edu/data/
index.html) [6]. Original networks are directed signed networks, but we ignore edge
direction in our experiments. In addition, we remove nodes with degree 1, so degrees
of all nodes are 2 or more. We used the datasets of Wikipedia (4,786 nodes, 76,607
positive edges and 21,849 negative edges), Slashdot (47,726 nodes, 329,873 positive
edges and 110,050 negative edges), and Epinions (60,332 nodes, 535,303 positive
edges and 109,040 negative edges).

We detect communities from these signed networks while changing α = 0.1,
0.2, . . . , 0.9. The average calculation time in Wikipedia is 70 s, in Slashdot is 4,800
seconds, in Epinions is 6,500s. The result of these calculation times show that our
optimization method based on CNM is effective for large-scale signed networks
which have tens of thousands of nodes and several hundreds of thousands of edges.

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
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Fig. 6 The value of Eq. (26)
(red line) and Eq. (27) (blue
dotted line) in Epinions
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The property of positive and negative edges for each α in Epinions is shown. In
Fig. 6, the value of Eq. (26) is represented by continuous line.

1

2m+
∑

ij

A+
ij (1 − δ(ci, cj)) (26)

Equation (26) shows the fraction of positive edges between communities. Therefore,
the result is good for positive edges if this value is small.

In Fig. 6, the value of Eq. (27) is represented by dotted line.

1

2m−
∑

ij

A−
ij δ(ci, cj) (27)

Equation (27) shows the fraction of negative edges within communities. Therefore,
the result is good for negative edges if this value is small.

In Fig. 6, when α is small, the number of positive edges between communities
is large but within communities is small. On the other hand, when α is large, the
number of negative edges within community is large but between communities is
small.

In addition, Figs. 7 and 8 are about fraction of positive and negative edges con-
nected to the largest community in each result. X-axis is the value of α. Y-axis of
Fig. 7 is fraction of negative edges connected to the largest community and y-axis of
Fig. 8 is fraction of positive edges connected to the largest community.

In Fig. 7, when α is small, the largest community tends to gather a lot of negative
edges, but when α is large, it does not gather a lot. On the other hand, in Fig. 8,
when α is small, the largest community tends to gather a lot of positive edges, but
when α is large, it does not gather a lot. Figures7 and 8 show foes will be placed in
different communities, but friends also will be placed in different communities when
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Fig. 7 Fraction of negative
edges connected to the
largest community
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Fig. 8 Fraction of positive
edges connected to the
largest community
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α is small. In contrast, friends will be placed in the same community, but foes also
will be placed in the same community.

From these results, when α is small, the number of negative edges within commu-
nities is small and between communities is large. It is a good community structure
in terms of negative edges. When α is large, the number of positive edges within
communities is large and between communities is small. It is a good community
structure in terms of positive edges. Certainly, the parameter α we introduce works
as our intention.

In modularity by Gomez et al., they fix α to the fraction of positive edges. Gener-
ally, in most real world signed networks, the number of positive edges is more than
the number of negative edges. Thus, community detection with their modularity will
be biased for the result which allows negative edges within communities. According
to Traag et al. [12], it is difficult to determine the optimal value of α. It depends on
network structure and characteristics required for community structure. Therefore,
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Fig. 9 The largest
community with α = 1 and
communities with α = 0.5
(wikipedia)

in order to try several experiments with values of α, the fast optimization method
proposed in this paper is important.

We also examine the difference between the result where negative edges are
ignored and the results where negative edges are considered. Figure9 is about the
largest community in Wikipedia with α = 1 (negative edges are ignored) and com-
munities with α = 0.5. Most of nodes in the largest community with α = 1 are
split into the members of two communities with α = 0.5. There are 9,612 posi-
tive edges (12.5% of positive edges) and 4,432 negative edges (20.3% of negative
edges) between them. Because there are a lot of negative edges between them, they
might be hostile each other. However, they are regarded as members of a community
when negative edges are ignored. Therefore, both types of edges should be consid-
ered appropriately. By adjusting the value of α, we can detect inner factions within
communities.

6 Conclusion

We have extended signed modularity and CNM in order to detect communities in
large-scale signed networks. We detect communities in synthetic signed networks by
our method and examined the relationship between α in our modularity and positive
and negative edges in the resultant communities. From the result of real world signed
networks,we can say that ourmethod is effective also for large-scale signed networks.
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Characterising Inter and Intra-Community
Interactions in Link Streams Using
Temporal Motifs

Jean Creusefond and Remy Cazabet

Abstract The analysis of dynamic networks has received a lot of attention in recent
years, thanks to the greater availability of suitable datasets. One way to analyse
such dataset is to study temporal motifs in link streams, i.e. sequences of links for
which we can assume causality. In this article, we study the relationship between
temporal motifs and communities, another important topic of complex networks.
Through experiments on several real-world networks,with synthetic and ground truth
community partitions, we identify motifs that are overrepresented at the frontier—or
inside of—communities.

1 Introduction

Communication networks represent human interactions that happen at certain times.
The properties of these networks are often studied in order to have a better under-
standing of human dynamics [2, 8].

The basic building blocks of networks are called motifs, small structures that
appear multiple times in the network. This concept was originally formulated for
static networks [12] and has been extended for temporal networks [19]. In the case
of communication networks, these motifs are an indication of the nature of the com-
munication [18]. For instance, a set of messages in a back-and-forth pattern between
two individuals is probably a conversation.

It is a common assumption that the nature of the relationship of two individuals
define the nature of the communities that they share [1]. If the motifs characterise the
relationships between individuals, they may be related to the community structure.

The existing definitions of motifs describe messages that are received and sent
in a short time-frame. Such motifs do not include causally-linked interactions that
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happen outside of the time-frame. These interactions could be due to an individual
that is not active on the network at that time, and therefore unaware of the messages
received.

In this paper, we first propose an adaptation of the definition of a motif that takes
into account users’ activity periods. We then study experimentally the frequency of
motifs inside and outside communities in order to test the hypothesis that temporal
motifs are linked to the community structure.

2 Related Work

Zhao et al. [19] defined temporalmotifs. Theymeasured the frequency of the different
motifs and characterised them by their shape (ping pong, star, chain). Kovanen et
al. [10] extended the definition of motifs in order to take into account the order of
communications. For instance, their definition differentiates a “AB-BA-AB” motif
from a “AB-AB-BA” motif, which the previous definition does not.

Zhang et al. [18] considered the relative frequency of some 3-events motifs when
increasing the time window. They observed that the dominant 3-event motifs were
related to the dominant 4-event motifs in the 6 datasets that were used.

In order to decide of their significance, the frequency of the motifs in the dataset
is often compared with null models [16, 19]. These models describe a network that
is identical to the data, except for one feature that is randomised. This methodology
is used to evaluate the influence of the randomised feature on the measurements.

Zhao et al. [19] compared their results to the time-mixing model, a null model
where all timestamps of the dataset are randomised. They observed that the time-
mixing model created mainly isolated entries, which is an important difference with
empirical observations. However, the time-mixing model deletes the phenomenon
of burst in the activity of individuals, on top of deleting causality effects.

Tabourier et al. [16] presented a null model that conserves this feature, the
correlation-mixing model. As for the time-mixing model, all source and destinations
are kept and timestamps are randomised. However, this randomisation is carried out
over the messages that were emitted by the same individual, and not over all mes-
sages. It implies that temporal features such as the burstiness of communications is
conserved, but not the causal link between messages.

Several works have been done on the question of detecting communities on
dynamic networks [4]. However, these approaches focus on slowly evolving net-
works, in which edges are persistent along time (relations, for instance friendship
or colleague relation). On the contrary, this work focuses on networks which have
a much faster temporality than communities, i.e. interactions are short-lived (for
instance messages, calls between friends or colleagues). We therefore assume a fixed
community structure, and observe interactions over this structure.
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3 Adapting Motifs for Communication Networks

In this section, we will introduce a variation on motifs that take into account the
activity periods of individuals. We call this variation an a-motif.

Wemodel the communication network as links streamsG = (V, E). A link stream
is composed of a set V of nodes and a set E ⊂ V × V × R

+ of timestamped links
between nodes.We note that multiple linksmay exist between the same pair of nodes.

A temporal motif describes the structure of a sequence of communications. For-
mally, a temporal motif is an equivalence class of a communication graph [19], that
is defined as follows on link streams:

Definition 1 (communication graph) A communication graph on a window of size
W ∈ R

+ is a link stream G = (V, E) such that ∀(ui , vi , ti ) ∈ E , ∃(u j , v j , t j ) ∈ E
that respects (ui , vi , ti ) �= (u j , v j , t j ), {ui , vi } ∩ {u j , v j } �= ∅ and 0 < |ti − t j | < W .

Two communication graphs belong to the same equivalence class (i.e. motif) if
the corresponding weighted graphs (a link is weighted by the number of communi-
cations) are isomorphic. Kovanen et al. [10] extend this equivalence relationship by
taking into account the order of the links in the communication graphs. We call a
communication graph that belong to such an equivalence class an instance of a motif.

This paper focuses on communication networks such as e-mails or answers in an
online forum. In such networks, the individual receiving a message is not always
aware of the message at the time of reception. Typically, receiving an e-mail does
not mean that it is acknowledged. In that case, the causal link between two commu-
nications may not be directly related to the reaction time. We define the a-motif (for
activity motifs) in order to take that phenomenon into account.

We first split the messages emitted by the individuals into activity periods. These
periods are time intervals when an individual emits messages in a short burst.

Definition 2 (μ-activity period) For each node v ∈ V in a link stream G = (V, E),
we note Ev the set of messages emitted by v and med(v ∈ V ) the median of the time
elapsed between two consecutive messages emitted by v. We also note t ((u, v, x) ∈
E) = x the date of an edge. A μ-activity period of an individual v ∈ V is a time
interval [a; b] during which v emitted a set of messages M(a, b) = {e ∈ Ev | a ≤
t (e) ≤ b}, that respects the following properties:

• ∃e1 ∈ M(a, b), t (e1) = a and ∃e2 ∈ M(a, b), t (e2) = b and
• ∀e1 ∈ M(a, b), t (e1) �= b ⇒ ∃e2 ∈ M(a, b), 0 < t (e2) − t (e1) ≤ μ · med(v) and
• ∀e ∈ Ev, t (e) < a ⇒ t (e) < a − μ · med(v) and t (e) > b ⇒ t (e) > b + μ ·
med(v).

We then define the a-motifs as equivalence classes of activity graphs, formed as
follows. If an edge (u1, v1, t1) belongs to an activity graph, the edge (u2, v2, t2) may
also belong in that graph if t1 < t2 and:
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Fig. 1 For a node, the messages that are emitted are grouped into activity periods. The set of
incident edges forms activity graphs

• u1 = u2 and t1 and t2 belong to the same activity period of u1. There might be a
causal link between two messages emitted by an individual in the same activity
period.

• v1 = u2 and t2 belong in the next activity period of u2 that happens after t1. If t1
is inside an activity period of u2, then t2 must belong to the same activity period.
There might be a causal link between a message received and the next messages
sent by the recipient during his/her next activity period.

We use the equivalence function introduced in Kovanen et al. [10] to define the a-
motifs as equivalence classes of activity graphs. The detection of a-motifs instances
is illustrated Fig. 1.

For complexity reasons, we restrict our study to size 3 a-motifs, i.e. those that are
made of three edges. This size is chosen as a compromise between the computation
time needed for the detection of instances and the complexity of the structures that
are observed.

We identify the motifs by letters that correspond to the nodes that are involved in
the motif.

Some size 3 a-motifs are geometrically similar, such as “AB-AC-BC” and “AB-
AC-CB”, or “AB-BC-CB” and “AB-BA-BC”. In order to reduce the number of
observations, we focus on four motifs that have been identified as important in the
associated literature [16, 18, 19] and a fifth that we identified as interesting. Those
are: the star “AB-AC-AD”, the ping-pong “AB-BA-AB”, the triangle “AB-BC-CA”
and the chain “AB-BC-CD”. We add the spam “AB-AB-AB” to that list because of
its direct possible interpretation. Those motifs are illustrated Fig. 2.

There may be activity periods including dozens of messages while others include
only a few. If an activity period of a node v is made of k edges and if v received l
messages before that period, then k · l instances of size 2 a-motifs are created. The
impact of a message on a-motifs frequency is therefore dependent of the size of the
activity periods of the receiver.
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Fig. 2 The five studied motifs. Numbers indicate the order of the edges

In this work, we consider that a message should not have more impact on the
results than another because of the size of activity periods. To that purpose, we
weight instances of a-motifs such that the weights of the set of instances that has the
original edge sum to one. That weight is computed in the following manner: from
an instance that has a weight w, if that instance is extended to generate k instances
of bigger size, each of these instances has a w/k weight.

For instance, if an edge creates k1 instances of size two, each of them has weight
1/k1. If the first of these instances generates k2 instances of size three, each of them
has weight 1/(k1 · k2). If the second of these instances generates k ′

2 instances of size
three, each of them has a 1/(k1 · k ′

2)weight, and so on. Eachmeasure that is presented
in following experiments is weighted accordingly.

4 Experiments

In this section, we present our study of the properties of a-motifs.
These experiments were implemented in Python. They were run in parallel on 40

AMD Opteron CPUs (2.6 GHz). Due to the size of the dataset and the number of
null-model instances, the full run takes about a day.

4.1 Datasets

In order to carry out our experiments, we collected a dataset that includes messages
between individuals and three ground-truth community partitions. This dataset is
original since, to the best of our knowledge, no openly available dataset features
both types of data.

4.1.1 Caen University Dataset

We obtained metadata for all emails transferring through servers of Caen University,
France, for a period of 3 months. Available information include source, destina-
tion and timestamp. Individuals in this network are students and employees of the
university.
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Table 1 Konect’s networks

Name n m Nodes Edges

Enron [9] 86978 1134990 Employees E-mails

Facebook [17] 45813 855542 Users Wall posts

UC Irvine [13] 1899 59835 Students Messages

Radoslaw [11] 167 82876 Employees E-mails

Debian [6] 34648 316569 Users Answers

Digg [5] 30360 86203 Users Answers

Linux Kernel
mailing list
(LKML)a

26885 1028233 Users Answers

Slashdot [7] 51083 139789 Users Answers
ahttp://www.konect.uni-koblenz.de/networks/lkml-reply

Three kinds of partitions can be extracted from available data:

• For researchers, we know the research laboratory they belong to.
• For students and researchers, we also know their CNU section (CNU stands
for Universities National Council), which indicates to which scientific field they
belong to.

• For all users, we know to which administrative entity they belong to, typically
their school.

This dataset includes 45 research laboratories, 146CNUsections and 57 admin-
istrative entities.

The network has the following properties:

• It contains 7 688 665 messages sent between 210 085 addresses.
• 168 507 messages sent between 918 addresses with a research laboratory.
• 378 721 messages sent between 17 275 addresses with a CNU section.
• 1 275 662 messages sent between 26 177 addresses with a administrative entity.

We created three link streams, one for each partition, that includes only nodes
corresponding to individuals present in the corresponding partition, and that includes
communication between these nodes.

4.1.2 Other Datasets

Besides the Caen university dataset, we analysed a set of communication networks
available on theKonect1 website (see Table1). After filtering out self loops and nodes
with no links, we considered them as link streams.

Because these datasets do not have a known ground truth partition, we used
Louvain [3] and Infomap [15] community detection algorithms on the aggregated

1http://www.konect.uni-koblenz.de.

http://www.konect.uni-koblenz.de/networks/lkml-reply
http://www.konect.uni-koblenz.de
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network to generate two reference partitions. The aggregated network contains an
edge between a pair of nodes if there is at least one interaction at any point in time
between these two nodes in the link stream. Since the results on the partitions of both
algorithms are similar, we will only present the results on the partitions obtained
with the Louvain algorithm.

4.2 Comparing with the Correlation-Mixing Model

For each measure on the motifs, we compare the value on the original graph and
the same value on graphs generated by the correlation-mixing model. We consider
statistically significant differences to be a consequence of causality, as described by
Tabourier et al. [16].

In practice, we observe that these measures are normally distributed. In such a
case, we can use the “66-95-99.7 rule” [14], that states that about 66% of normally
distributed values are within one standard deviation of the mean, about 95% of
them are within two standard deviations and about 99.7% of them are within three
standard deviations. Therefore, a value that is further from the mean than three times
the standard deviation would have less than 0.3% chance to be generated by the
normal distribution. For each measure s on the data, we obtain the average μs and
the standard deviation σs of s on the graphs generated by the null model. We then
evaluate the difference between the data and the null model using the z-score:

z-score(s) = s − μs

σs
(1)

If the z-score is more than three in absolute value, we conclude that the null
model does not explain the value of the measure in the data. Since we use the
correlation-mixing model, a significant difference would be caused by the removal
of the correlation between messages in the null model.

4.3 Experimental Properties of A-motifs

We start by studying the differences between motifs and a-motifs. In order to have
enough messages during activity periods, we takeμ = 2. Indeed, μ = 1 implies that
half of edges finish an activity period since half of the edges are separated by more
than the inter-edge time median. In the datasets, μ = 1 implies that these periods
include a small amount of edges.

Zhao et al. [19] observed that star and chain motifs are the most common ones.
Analysis of the corresponding a-motifs on our datasets confirm this observation in
average (Fig. 3), despite a few exceptions for some datasets. Overall, the chain motif
represents 16% of all motifs, stars represent 6%, while ping-pong comes third at 3%.



88 J. Creusefond and R. Cazabet

Fig. 3 A-motif frequencies for different networks

Fig. 4 Z-score of a-motif frequency for different networks. Scores above 3 in absolute value are
considered significant. Values beyond 20 are truncated

We also study the z-score of the frequency of each motif Fig. 4. We can observe
significant tendencies at least for 4 of the 5 studied motifs: in most networks, stars
and chains are less common in observed data than in the null model, while spam and
ping-pong are more common.
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In [16], a similar analysis was conduced on a phone call dataset, only for stars
and chains. While their conclusion for stars was the same than ours, their conclusion
for chains was the opposite. This difference might be due to the difference in nature
of datasets, or to a difference in the method of analysis: they segmented time using
fixed temporal windows, while we used activity periods.

4.4 A-motifs and Communities

In this section,we study the relation between a-motifs and communities. In particular,
we are interested to know if some a-motifs are more common inside or in-between
communities.

We define the normalised internal weights of a-motifs of type m as:

wnorm
in (m) = win(m)∑

m′∈M win(m′)
with win(m) the sum of weights of a-motifs of type m that have at least an edge
inside a community. We similarly define the normalised external weights.

We now compute a normalised cross-community score for a-motifs of type m:

ccscore(m) = wnorm
ext (m) − wnorm

in (m)

max(wnorm
ext (m), wnorm

in (m))

4.4.1 Interpretation of ccscore

This score can vary between−1 and 1, with positive score indicating a higher relative
prevalence of cross-community instances, while negative values indicate a-motifs
more commonly found inside communities. Results are presented Fig. 5.

We observe that three a-motifs have negative scores inmost datasets: spams, ping-
pong and triangles. This means that, comparatively to others, these a-motifs tend to
occur more inside communities than outside.

The two other a-motifs (star and chain) have less clear tendencies, but seem to
occur slightly more often in-between communities.

It is nevertheless important to note that there are notable exceptions to these
tendencies, in particular the Caen CNU dataset for spam and chains, or a divergent
result for triangles on Digg.

4.4.2 z-Score of ccscore

As previously, we compute the z-score of the ccscore in order to evaluate how sig-
nificant are the tendencies (see Fig. 6). We observe that most values are significantly
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Fig. 5 Ratio between external and internal proportions of a-motifs

Fig. 6 z-Score of ccscores

higher than those in the null-model, therefore that ccscores observed in the dataset
are higher than those in the null model. We conclude that studied a-motifs appear
more frequently between communities with respect to the the null-model.
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4.5 Discussion

In previous sections, we have observed that some a-motifs are more likely to occur
inside or outside communities, and that these patterns are significant. As a conse-
quence, we propose that a-motifs could be used, given a temporal network dataset,
to distinguish internal and external edges. Identifying such edges could be used to
later identify communities.

Another observation is that a-motifs occurring more frequently inside commu-
nities seem to be different in nature from those occurring outside. On one hand,
inter-community edges are marked by patterns of diffusion of information, includ-
ing various, different actors: chains and stars. On the other hand, motifs observed
inside communities are characterised by an information travelling inside a same set
of actors, either several times the same pair of actors (spam, ping-pong), or a cycle
coming back to its origin (triangle).

Finally, it is interesting to observe that results are coherent between datasets with
ground truth communities (Caen-university) and those in which topological commu-
nities have been discovered using the Louvain algorithm. It implies that observed
temporal properties are characteristics of structural communities.

5 Conclusion

In this paper, we present an alternate definition of temporal motifs that takes into
account the activity periods in communication networks. We measure a large differ-
ence of the frequency of these motifs between the empirical data and a null model
that ignores causality. This result suggests that our definition captures causally-linked
communications.

We also studied the relationship between temporal motifs and community struc-
ture.We observed that the conversationalmotifs such as spam, ping-pong and triangle
are generally more frequent inside communities than outside. The star motif, on the
other hand, appears more frequently outside communities. The comparison with the
nullmodel shows that causally-linkedmotifs happen frequently outside communities.

These results open the way for future works: on the one hand, it could be possible
to detect communities in link streams based on the frequency of a-motifs, taking
advantage of our observations. On the other hand, a more detailed analysis of the
nature of interactions occurring inside a-motifs could help us to understand better
why some of them occur more often inside or outside communities, hence improving
the global understanding of the structure of communications.
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Modeling the Impact of Privacy
on Information Diffusion in Social Networks

Livio Bioglio and Ruggero G. Pensa

Abstract Humans like to disseminate ideas and news, as proved by the huge success
of online social networking platforms such as Facebook or Twitter. On the other
hand, these platforms have emphasized the dark side of information spreading, such
as the diffusion of private facts and rumors in the society. Fortunately, in some cases,
online social network users can set a level of privacy and decide towhom to show their
information.However, they cannot control how their friendswill use this information.
The behavior of each user depends on her attitude toward privacy, that has a crucial
role in the way information propagates across the network.With the aim of providing
a mathematical tool for measuring the exposure of networks to privacy leakage risks,
we extend the classic Susceptible-Infectious-Recovered (SIR) epidemic model in
order to take the privacy attitude of users into account. We leverage such model to
measure the contribution of the privacy attitude of each individual to the robustness of
the whole network to the spread of personal information, depending on its structure
and degree distribution. We study experimentally our model by means of stochastic
simulations on four synthetic networks generated with classical algorithms.

Keywords Complex networks · Modeling · Information diffusion · Privacy

1 Introduction

Humans are social animals that love to disseminate ideas and news, as proved by
the huge success of social networking websites such as Facebook or Twitter. On the
other hand, these platforms have emphasized the dark side of information spreading
such as the diffusion of private facts and rumors that may additionally foster slander
and cyberbullying acts [21]. As a consequence, the users of online social networks
are acquiring a new awareness of the importance of their own privacy on the Web.
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However, althoughmost users do not disclose very sensitive facts (private life events,
diseases, political ideas, sexual preferences, and so on), they are simply not aware of
the risks due to the disclosure of less sensitive information, such as GPS tags, photos
taken during a vacation period, page likes, or comments on news. Some social media
provide advanced tools for controlling the privacy settings of the user’s profile [26].
However, yet a large part of Facebook content is shared with the default privacy
settings and exposed to more users than expected [17]. According to Facebook CTO
Bret Taylor, even though most people have modified their privacy settings,1 in 2012,
still “13 million users (in the United States) said they had never set, or didn’t know
about, Facebook’s privacy tools2”. Moreover, even though the users of these social
networks can usually set a level of privacy, and specify which of their contacts
are allowed to see their notifications, they do not have any control on how these
contacts will use the information: friends could spread the rumor through other social
networks, blogs, websites, medias or simply with face-to-face communication.

The behavior of an individual in these situations highly depends on her level
of privacy awareness: an aware user tends not to share her private information, or
the private information of her friends on social networks, while an unaware user
could not recognize an information as private, and could share it without care to
her contacts, even to untrusted ones, putting at risk her privacy or the privacy of her
friends. Users’ privacy awareness then turns into the so-called “privacy attitude”,
i.e., the users’ willingness to disclose their own personal data to other users, that can
be measured by leveraging the way users customize their privacy settings in social
networking platforms [16, 24].

The privacy attitude of each actor in a social network heavily influences the effects
of information propagation, not only for posts that are clearly private [30]. In fact, it
is a well-known fact that by leveraging Facebook user’s activity (such as “Likes” to
posts or fan pages) it is possible to “guess” some very private traits of the user’s per-
sonality [15]. For instance, a public comment on news posts may reveal the political
ideas of the individual. However, the privacy attitude alone is not a good measure of
the user’s objective privacy leakage, since the latter depends also on other users’ atti-
tude to privacy and the way they contribute in the information propagation process.
With the aim of providing a mathematical tool for measuring the exposure of net-
works to privacy leakage risks, in this paper we study the effects of privacy attitude on
information propagation by extending the classic Susceptible-Infectious-Recovered
(SIR) epidemic model. In this model, an individual may be susceptible, infectious
or recovered: a susceptible individual in contact with an infectious one can become
infectious with a transmission probability, while an infectious individual naturally
recovers from infection with a recovery rate, turning into a recovered individual. The
SIRmodel can be adopted for modeling the spread of information in a social network
[12]: susceptible individuals do not know the information, then are susceptible to be
informed; infectious individuals know and spread the information, while recovered
individuals already know the information but do not spread it anymore. We extend

1http://www.zdnet.com/article/facebook-cto-most-people-have-modified-their-privacy-settings/.
2http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy/index.htm.

http://www.zdnet.com/article/facebook-cto-most-people-have-modified-their-privacy-settings/
http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy/index.htm
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this compartmental model in order to represent privacy attitude. In our model, each
individual belongs to a privacy attitude class that tunes the parameters of the model.
The privacy attitude of users has an influence on the way information spreads across
the network that additionally unveil its realistic robustness to information leakage
as the effects of information propagation within this model. We use our model, by
means of stochastic simulations, for studying the role of privacy on the informa-
tion diffusion in several synthetic networks, generated from classic algorithms, with
different distributions of attitude on privacy of their nodes.

The remainder of the paper is organized as follows: we briefly review the related
literature in Sect. 2; the privacy-aware propagation model is presented in Sect. 3;
Sect. 4 provides the report of our experimental research; Sect. 5 shows how to infer
the privacy attitude of a social network user from her profile settings; finally, we
draw some conclusions in Sect. 6.

2 Related Work

In epidemiology, the Susceptible-Infectious-Recovered (SIR) epidemic model [13]
is employed for modeling infectious diseases that confer lifelong (or long-term)
immunity, such as measles, rubella or chickenpox. In this model a susceptible node
can become infected, because of the presence of infectious nodes, and an infectious
node can naturally recover after few time, gaining immunity to the disease.

The SIR model has been applied to information spreading since early years, even
if these applications slightly differ from the common model: in [9] when a spreader
meets another infectious node, that already knows the rumor, both lose interest in
spreading it any further, and become recovered, while in [18] when two infectious
nodesmeet, only one node turns into recovered, and the other one remains unchanged.
This last version of SIR model for rumor spreading has been widely studied: in [22]
the author found that in a complete random network, i.e., a homogeneous network,
a rumor can only spread to around the 80% of the total population; more recently
in [27] it has been calculated that such percentage is lower than 80% in small-world
networks. In [29] the authors found that the number of nodes reached by the rumor
depends on the topological structure of the network, decreasingwhen it changes from
random to scale-free network, and on the mean degree of the network, increasing
when the mean degree increases; the same happens for the probability of a single
node to be informed, that increases when the degree of node increases. Such behavior
happens because large hubs are rapidly reached by the rumor, but they easily turn into
recovered, preventing the spreading of the rumor to their huge neighborhood. This is
confirmed by the observation, in [19], that the density of susceptible nodes at the end
of the process decays exponentially with the value of their degree. An extension of
this model also allows spontaneous recovery, justified as forgetting mechanism: an
infectious node should also turn into recovered spontaneously after a random time.
In this case, the model behave more similarly to the classical SIR model, as observed
in [20].
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In our work, we focus on rumor spreading in presence of a sort of “immunization
parameter” that models the privacy attitude of users, i.e., their willingness to disclose
their own personal data to other users directly or indirectly. At the best of our knowl-
edge, this is the first attempt of modeling and measuring the robustness of networks
to privacy leakage risks by means of a classic epidemic models in social networks.
Indeed, a large part of research works on privacy issues in online social networks
focus on the anonymization of networked data [28]. Differently from those studies,
our work can be positioned in another branch of research that focuses on modeling,
measuring and preventing privacy leakage in online social networks. In this regard,
one of the most prominent work is [16] where Liu and Terzi propose a framework to
compute a privacy score measuring the users’ potential risk caused by their participa-
tion in the network. This score takes into account the sensitivity and the visibility of
the disclosed information and leverages the item response theory as theoretical basis
for the mathematical formulation of the score. In [24], the authors define a privacy
index that leverages the privacy settings of users to measure their privacy exposure in
an online social network according to predefined sensitivity values for users’ items.
Becker and Chen [7] presents a tool to detect unintended information loss in online
social networks by quantifying the privacy risk attributed to friend relationships in
Facebook. The authors show that a majority of users’ personal attributes can be
inferred from social circles. In [23] the authors measure the inference probability of
sensitive attributes from friendship links. In [2, 3], the authors define a measure of
how much it might be risky to have interactions with them, in terms of disclosure
of private information. Among all these research contributions, [16] is the only one
that also consider the privacy attitude of users in disclosing their personal data and
provide a mathematical formulation for it. This formal definition can be used to tune
our information-propagation model according to the attitude towards privacy of the
users involved in the social network.

3 A Privacy-Aware Model for Information Spreading

In this section, we introduce the Susceptible-Infectious-Recovered (SIR) epidemic
model for modeling the contribution of privacy on information spreading in a social
network. Before providing the details of our privacy-aware information-propagation
model, we introduce the notation required to formalize the problem.

We consider a social graph G involving a set of n vertices {v1, . . . , vn} that are
the users participating in G. In this work, the social network is then a represented as
a directed graph G(V, E), where V is a set of n vertices and E is a set of directed
edges E = {(vi , v j )}. Given a pair of vertices vi , v j ∈ U , (vi , v j ) ∈ E iif there exists
a link from vi to v j (e.g., users vi is in the friend list/circle of v j or v j follows vi ).
For any given vertex vi ∈ V we define the neighborhoodN (vi ) as the set of vertices
vk which vertex vi is directly connected to, i.e., N (vi ) = {vk ∈ V | (vi , vk) ∈ E}.
Conversationally speaking,N (vi ) is the set of followers of user vi . Furthermore, we
assume that each user vi belongs to a privacy class p ∈ P , which is defined as the
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Fig. 1 Transmission model.
Each index of compartments
S and I represents a privacy
class

propensity of an user of the class to disclose her own or other’s personal information,
directly or indirectly. In practical terms, in online social networks (such as Facebook,
Twitter, Instagram or Google+) the privacy class may be unveiled by the way users
configure their privacy settings, or the way they post or share/comment other users’
posts.

3.1 Information Spreading Model

In the SIR model, at any time step an individual vi belongs to one compartment
among susceptible (S), infectious (I) and recovered (R). An infectious (I) individual
vi may spontaneously recovers from infection with a probability μ, called recovery
probability, entering the recovered (R) compartment, or it may spread the disease to
a susceptible (S) individual with which it is in contact with a probability λ, called
infection probability: the infected susceptible (S) individual immediately becomes
infectious (I). We denote with c(vi , t) ∈ {S, I, R} the compartment of user vi at
time t .

The SIR model can be also applied for the spread of information in a population:
susceptible individuals are those who not already know the information, and then
they are susceptible to be informed; infectious individuals know the information
and actively spread it; finally, recovered individuals are the ones who know the
information but do not spread it anymore. The recovery process models a mechanism
of aging of the information, that after few time loses its interest or its novelty for an
individual and stops to be spread by him. In our formulation, the population is the
set of n users V = {v1, . . . , vn}, while the information may only spread from a user
vi to a user v j if there exists an edge (vi , v j ) connecting vi to v j .3

Here we propose an extension of this model that takes into account the explicit
or implicit privacy policies of individuals during the spread of information. A set
of privacy classes P = {p0, p1, . . . , pN } is assigned to Susceptible and Infectious
compartments, representing the privacy class of an individual belonging to the com-
partment, and consequently her behavior on information spreading, from less aware
(p0) to more aware (pN ). A graphic representation of our model is given in Fig. 1.

3Thus, in our model, the edges are directed from the source of the information to its target.
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Moreover we insert a novel parameter βp ∈ [0, 1] to the SIR transmissionmodel, that
is the interest of users in privacy class p in information. Each privacy class differs for
the values assigned to the three parameters (β, λ and μ) of the transmission model.
Hence, given the privacy class p, parameters βp, λp and μp are completely defined.

The evolution of the spread follows the Reed-Frost chain-binomial model [1]:
it consists in a stochastic approach, where time is measured in discrete units and
infection occurs because of direct contacts. The evolution probabilities are obtained
as follows. Let p(vi ) = p ∈ P be the privacy class of an individual vi . If it belongs
to the susceptible compartment, it may be infected at time t + 1 with probability:

Pin f (vi , t + 1) = βp · (1 −
∏

p′∈P

(1 − λp′)nI (v j ,t)) (1)

where nI (v j , t) = |{v j ∈ N (vi ) | c(v j , t) = I ∧ p(v j ) = p′}| is the number of
individuals in compartment I (infectious) and privacy class p′ at time t among the
neighbors of individual vi . Otherwise, if the individual vi of privacy class p belongs
to the infectious compartment I at time t , it may recover with probability μp at time
t + 1.

4 Experiments and Results

In this section we provide the results of our experiments performed over several
types of synthetic networks. In a nutshell, we generate four networks, each one with
a different structure and degree distribution. On each one, we observe the number of
nodes reached by the information for three different assignments of privacy classes
to the nodes, representing the global attitude on privacy of the network.

4.1 Contact Networks

The information spreads on a contact network, in which nodes represent individ-
uals, and edges between nodes represent contacts between two individuals. Since
our objective is to study and characterize the dynamic behavior of the model, here
we employ four types of networks, generated with standard algorithms. In all net-
works, the links between nodes are always considered as reciprocal, i.e., all the graph
considered in these experiments are undirected.

The four synthetic networks have approximately the same number of nodes,
75,000, and the same number of edges, around 2,700,000. The first synthetic network
is a random graph, also known as an Erdös-Rényi graph [10], generated by means
of the fast algorithm in [6]. The second one is a scale-free graph generated with
the Barabasi-Albert algorithm [4] where new nodes are attached with 36 edges to
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Fig. 2 Degree distribution for each synthetic network

existing nodes with high degree. The third one is a small-world network generated
through the Watts-Strogatz mechanism [25] where each node is joined with its 72
nearest neighbors in a ring topology, and each edge has a probability of rewiring
equal to 0.15. The fourth one is a Facebook-like network generated using LDBC–
SNB Data Generator4 which produces graphs that mimic the characteristics of real
Facebook networks [11]: in particular, we generate a network with 80,000 nodes,
but here we consider only the greatest connected component of such network. The
degree distributions of these networks are given in Fig. 2.

4https://github.com/ldbc/ldbc_snb_datagen.

https://github.com/ldbc/ldbc_snb_datagen
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Table 1 Values of the parameters for the three privacy classes

Parameter Classes

0 1 2

β 0.9 0.5 0.1

μ 0.1 0.3 0.5

λ 0.9 0.5 0.1

4.2 Privacy Class Distributions

In our experiments, we select three privacy classes, numbered from 0 to 2, repre-
senting users from unaware (class 0) to more aware on privacy (class 2), in order
to provide a few grades of awareness. The values assigned to the parameters of the
information spreading model for each class are reported in Table1. Users in class
0 have a high probability of being interested in information and spreading it over
the network for a long period of time (1/μ is the average duration of the infection).
On the contrary, users in class 2 have a very low probability of being interested in
information: even if they are reached by information, they spread it only for few time
steps. Consequently, the probability of diffusing the information is very low for such
users. Finally, class 1 represents average users, then its parameters have been tuned
accordingly.

For each network in Sect. 4.1, we randomly assign to each node a privacy class,
according to three probability distributions: a safer assignment, where the majority
of nodes are in class 2, themost aware one; amedium assignment, where themajority
of nodes are in class 1; an unsafer assignment, where the majority of nodes are in
the less aware class 0. The number of nodes in each privacy class of these three class
distributions are graphically summarized in Fig. 3.

Fig. 3 Class distribution in the three kinds of class assignments
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4.3 Experimental Settings

Our experiments are conducted as follows. For each contact network in Sect. 4.1,
and for each class distribution in Sect. 4.2, we perform 100 stochastic simulations
of information spreading on a completely susceptible population, except for one
infectious node. These simulations are repeated for 9 different initial spreaders,
randomly chosen among all the nodes, 3 for each privacy class. For each set of
simulations we observe the number of informed individuals over time, that is the
number of nodes in compartments infectious or recovered, and we calculate the
proportion of cases at each time step (prevalence) and the proportion of new cases
at each time step (incidence). The results on the same network and class distribution
are aggregated.

4.4 Results

We study the impact of the distribution of individuals having different awareness
on privacy on the spread of an information in all the synthetic networks described
in Sect. 4.1. Figure4 shows our results for the scale-free network. From the curves
of prevalence in Fig. 4a we can notice that the number of informed individuals over
time greatly depends on the distribution of privacy classes of the network: where the
majority of node is unaware, the information immediately spreads over almost the
entire population,whilewhere the network is full of aware individuals the information
spreads slowly, and reaches a smaller part of the population. The speed of diffusion is
more evident in the curves of incidences, in Fig. 4b, which depicts the proportion of
new cases of informed individuals in each time step: under the least safe distribution,
the information immediately reaches more than half of population, while for safer
distributions this peak is lower, and it is reached few steps later.

Fig. 4 Prevalence and incidence of informed individuals (ratio) in the scale-free network for each
class distribution
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Fig. 5 Prevalence and incidence of informed individuals (ratio) in each network model and class
distribution

In order to compare the behavior of all networks in Sect. 4.1, we collect some
key features of the prevalence and the incidence curves: for the prevalence ones, we
collect the proportion of informed individuals at the end of simulations, that is when
there are no more infectious individuals who can spread information, and the step
where simulation ends, in order to obtain the duration of the spread and its diffusion
among the population; for the incidence curves, we collect the information on the
peak of new cases of informed individuals, and the step where the peak is reached,
for obtaining a snapshot of the speed of the diffusion of information. These data for
all the networks are graphically summarized in Fig. 5.

We can notice that the behavior observed for random graph network happens sim-
ilarly for all the other networks. Under the safest class distribution, the information
reaches a smaller proportion of the population. Furthermore, it stops to be diffused
much later than in less safer distributions. Interestingly, even in case of safer distrib-
ution an information reaches a huge portion of the population, and such proportion is
always smaller for the Facebook-like network: apparently such kind of network is the
worst one for spreading an information, especially in case of safer class distribution.
As regards the diffusion speed, the small-world network is the last one reaching the
peak, while on the other side the Facebook-like network is the faster one. However,
even if the peak value is really different among the distributions, the steps where peak
is reached are not so far: in any case an information reaches almost immediately the
maximum number of uninformed individuals. It is worth noting that the contribution
of privacy attitude on incidence is significant: this means that this parameter should
be taken into account in viral campaigns where the goal is to maximize the number
of informed nodes in the shortest possible time. On the other hand, the substantial
differences given by the network structure and their degree distribution cannot be
ignored when measuring the privacy leakage risk of users.
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5 Privacy Attitude Estimation

In Sect. 3 we have created privacy classes, tuning the characteristic parameters of
propagationmodel, according to the privacy attitude of users. Such attitude, however,
involves several psychological, cultural and contextual factors, and it may be indeed
difficult to model in real cybersocial systems. In this section we briefly show how
to infer it for generic users using some information about their profile settings or
disclosing behavior.5 Our attitude estimation, inspired by the framework defined by
Liu and Terzi [16], measures the user’s potential risk caused by her participation
in the network by assigning to each user a privacy score according to her privacy
settings. A n × m response matrix R is associated to the set of n users and a set of m
profile items (e.g., age, gender, education, political views, and so on). Each element
ri j of R contains a privacy level that determines the willingness of user i to disclose
information associated with profile item j . In [16], the Item Response Theory (IRT)
model is adopted to measure the privacy attitude of the users, the sensitivity of the
questions, and the probability of a user deciding a given level of visibility to a given
profile property. In a binomial case, the probability that a user i sets item j visible
to everyone is computed as:

Pi j = Prob{ri j = 1} = 1

1 + e−α j (θi−σ j )
(2)

where α j is the discrimination power of item j , σ j is the sensitivity of j and θi is the
privacy attitude of user i . In [16], the authors provide an Expectation-Maximization
algorithm to estimate parametersα j and σ j by only leveraging the responsematrix R.

When parameters σ j and α j (∀ j ∈ {1 . . .m}) are known, each θi can be computed
by maximizing the following log-likelihood function:

L =
m∑

j=1

[
ri j log Pi j + (1 − ri j ) log (1 − Pi j )

]
(3)

derived from the likelihood
∏m

k=1 P
ri j
i j (1 − Pi j )1−ri j . The solutions can be computed

using the Newton-Raphson method, an iterative algorithm that estimates the value
of θi at iteration t starting from the value of θi at iteration t − 1 [16].

6 Conclusions

In this paper we have proposed an information propagation model that considers
the role of privacy awareness on information spreading inspired by the classical
SIR epidemic model. We have assigned different privacy classes to the nodes of

5Such information is known by social network providers.
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networks, depending on their attitude on privacy, in order to model populations more
or less interested on diffusing an information. Through stochastic simulations we
have studied the impact of the attitude on privacy of a connected population on the
proportion of individuals reached by an information diffused by an unique spreader
on a random, a scale-free, a small-world and Facebook-like network.

Our results show that the attitude on privacy can really have an impact on the
diffusion of an information, by reducing or increasing the portion of population
which receives the information according to safer or less aware attitude on privacy
of the individuals on the network. The same behavior happens in all the structures
under study, but theFacebook-like network seems to be themost robust to information
diffusion.

Our study shows the importance of considering privacy attitude of users in model-
ing the spreading of rumors, with direct and indirect implications on all applications
that involve the dynamics of information spreading, such as influence maximization
[14] and community detection [5], as well as on privacy enforcement models and
techniques for online social networks, thus inspiring the design of privacy-preserving
social networking components for Privacy by Design compliant software [8].
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Evolution Similarity for Dynamic Link
Prediction in Longitudinal Networks

Nazim Choudhury and Shahadat Uddin

Abstract Link prediction problem in network science has spawned not only over
myriad applications but also experienced extensive methodological improvements.
Different link predictionmethods perform feature engineering to build different topo-
logical or nodal attribute based metrics measuring the similarity/proximity between
non-connected actor pairs to deal with the inference of future associations among
them. On the contrary, dynamic link prediction methods have catered the evolution-
ary process and network dynamics of longitudinal networks. Evolution similarity
between node pairs (e.g., similarity between rates of acquiring neighbours by actor
pairs over time) can be considered to generate dynamic metrics for the purpose
of dynamic link prediction in longitudinal networks. In this study, we attempt to
build dynamic similarity metrics by considering the similarity between temporal
evolutions of non-connected actor pairs. For this purpose, this study utilises time
series forecasting methods to model the temporal evolution of actors’ network posi-
tions/importance and then it utilizes a dynamic programming method to determine
the similarity between these evolutions of actor pairs to quantify the likelihood of
future associations among them. Supervised link prediction models exploiting these
dynamic similaritymetricswere built and performanceswere compared against some
baseline staticmetrics (i.e., common neighbours). High performance scores achieved
by these features, examined in this study, represent them as prospective candidates
not only for dynamic link prediction task but also in various applications like security
and recommender systems.
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1 Introduction

Network science provides variousmethods supporting the study andmodellingof net-
work evolution process that governs network dynamics [1]. Among them, link predic-
tion is the basic and fundamental computational problem that models the underlying
growth mechanism of evolving networks [2]. Although link prediction is considered
as a time-evolving network analysis model; however, traditional methods generally
overlook to take the evolutionary dynamics of the network into account. Abundance
of network intrinsic applications and longitudinal network data have triggered the
research proliferation in dynamic link predictions. Temporal patterns of longitudinal
networks have led scholars to reconsider the evolutionary process in the network
over time and utilise these dynamic information in the link prediction task. Recently,
researchers have attempted the issue of dynamic link prediction. Temporal link pre-
diction in dynamic networks using time series of topological similarity metrics [3]
takes account of the time-aware evolutionary history of topological similarity and
employs different forecasting methods. Although different methods of link predic-
tion in temporal networks [4, 5] have generated improved performances in regards
to successfully predict future links and/or hidden links, however, some of them are
subject to their inherent limitations. For example, probabilistic models involve the
prior definition of link occurrences’ distribution which is problematic for temporal
networks. Further, the exponential random graph model is only suitable for small
networks with few hundred nodes. Similarly, matrix or tensor-based methods are not
feasible for real-time link predictions in large networks due to the computational
complexity and time requirements [6].

Traditional similarity based methods ignored the perception of temporal similar-
ity between actor-based evolutionary information over time for dynamic link pre-
dictions. Despite the usage of the temporal pattern of topological similarity metrics,
scholars have overlooked the notion of temporal similarity between actor-specific
network structural attributes (e.g., network position, network importance) repre-
sented by different network measures (e.g., centrality measures). The evolutionary
information of these measures can be modelled using time series. Therefore, in this
study, we attempt to define a new framework to generate dynamic similarity metrics
for link prediction in longitudinal network. These metrics will measure the sim-
ilarity/proximity between non-connected actor pairs by considering the similarity
between their temporal evolutions. Since a longitudinal network can be split into
different smaller network snap-shots known as short interval network (SIN), the
temporal evolution of an actor can be modelled by using time series of different
network measures incident to individual actors in each SIN. The distance between
such two temporal sequences, associated with a pair of non-connected actors, is cal-
culated using a dynamic programming method. The resultant distance will define
the similarity between the actor pair as like other topological similarity metrics. The
research questions we address in this study are: (i) whether the likelihood of future
links among non-connected actor pairs depends on their evolution similarity; and
(ii) either similar or dissimilar actors, in regards to their evolution, participate in
emerging links.
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2 Time Series Forecasting Method

In this study, we considered time series of actor-specific network measures to emu-
late the evolution of actors’ positions or behaviours in evolving network. Therefore,
we also utilised time series forecasting method to predict their positions in emerging
networks in future. In time series forecasting, past observations of a time variable are
analysed to develop a model that describes the underlying relationship and extrap-
olation can be used to predict the future values of the variable. In this study, a
well-known forecasting model, known as ExponenTial Smoothing (ETS), was used
to predict the future centrality measures for every actor under consideration. In this
method, forecasts are theweighted averages of previous observations and theweights
of the observations decay exponentially with time. Single Exponential Smoothing
(SES) with a weight of α is the simplest exponential smoothing method. The forecast
equation can be defined as:

ŷt = αyt−1 + (1 − α) ŷt−1

where ŷt i.e., the forecasted value, depends on both the previous observations and
previous forecasts. Linear Exponential Smoothing (LES) refines SES with a β com-
ponent and considers any short trends in the series. Notably, there are 15 variations
of the exponential smoothing process as identified by [7].

3 Dynamic Similarity Metrics

Measuring the degree to which one time series resembles another is a core issue
in many mining, retrieval, classification and clustering tasks; however, determin-
ing more generic measures reflecting intuitive similarity between pairs of tempo-
ral sequences is not straightforward due to its multi-dimensionality [8]. In time
series mining, dynamic time warping (DTW) technique [9], a dynamic programming
method, is widely used to overcome the limitation of traditional distance measures
providing unintuitive distance for two time series where they have approximately the
same overall component shapes, but do not align in the time axis.

In this study, a longitudinal network is defined as a time series of network snap-
shots where each snapshot represents the corresponding network state at a particular
time. Each snap-shot is also known as a short interval network. Actors may/may
not change their link structures, neighbourhoods and network positions in every
SIN over time that can be measured using different network measures utilised in
social network analysis [10]. It has been observed that actor based individual net-
work attributes (e.g., network centrality measures) can provide useful information
to support link predictions [11]. Therefore, in this study, we utilised time series of
degree centrality and .itcloseness centrality measures to emulate an actor’s network
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dynamicity. Further extension of this study can be achieved by introducing other
actor-based network measures (e.g., betweenness centrality).

Considering total N number of SINs, let Xu and Yv be the time series of length
|m| and |n| considering network measure c for actor u and v of a link (u, v), where
m, n ≤ N . Thus, two time series associated with actor u and v can be written as:

Xu (c) = x1, x2, x3, x4 . . . . . . . . . xm, Yv (c) = y1, y2, y3, y4 . . . . . . . . . yn

Here xi and yi denote the value of c for actor u and v in SIN Gt where t =
1, 2, 3 . . . . . . N . A local cost/distance measure d (xi , yi ), usually from one of the
traditional well-defined distance measures (e.g., Euclidean, Minkowski), is defined
to compare two different points in Xu and Xv. Typically, the cost/distance provided
by this measure is small if the corresponding point xi in Xu and yi in Yv is similar to
each other and large otherwise.

Our goal here is to find an alignment between Xu and Yv, having minimal overall
cost. The notion of this alignment depends on the definition of an (m, n)-warping path
which is a sequence p = p1, p2, p3, . . . pl with pl = (ml, nl) ∈ [1 : m] × [1 : n] for
l ∈ [1 : L]. The optimal warping path between Xu and Yv is defined as a warping
path p∗ with the minimal cost among all possible warping paths. Therefore, the value
of our dynamic similarity metric for node pair u and v is defined as:

dp∗
(
xi , y j

) = min {
L∑

l=1

d (xml , ynl) |p is an (m, n)warping path}

In Fig. 1, we depict the visual representation of our framework to generate dynamic
similarity metrics. In this figure, the solid green and red lines represent the network
measures at each SIN during training period and the dotted lines represent the fore-
casted networkmeasure. The black arrowed lines represent the mapping path utilised
tomeasure the similarity between actor u and v using dynamic programmingmethod.
The final proximity or similarity score calculated by dynamic similarity metrics is
generated by the accumulated distance cost of this optimal mapping path.

4 Longitudinal Datasets

For longitudinal network data, this study considers three datasets from the ‘Network
Repository’ [12] which is the first and the largest interactive repository of network
dataset. From the dynamic dataset category, we extracted three datasets tagged as
‘manufacturing-email’, ‘facebook-messages’ and ‘facebook friendship graph’ where
links between node pairs are time-stamped. The first dataset contains internal email
communications among employees of a mid-sized manufacturing company. The
second dataset contains network data from a Facebook-like social network origi-
nated from an online community for students at University of California, Irvine,
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Fig. 1 A visual representation of the framework to generate dynamic similarity metrics. The solid
green and red lines represent network measures (e.g., degree centrality) of node u and v in short
interval networks during the training phase. The dotted lines represent the forecasted network
measures during the test phase. The black lines represent the mapping path considering similar
points of two time series using dynamic time warping technique

where actors represent students within the community and links represent messages
communicated among them. The final dataset is comprised of a real world Face-
book friendship network in which Facebook users are actors and friendship relations
among users are links.

For the sake of brevity, in the rest of the study,we name our three datasets as ‘Email
Network’, ‘UCI Network’ and ‘Facebook Network’ for three datasets respectively.
For the purpose of the supervised link prediction, the range of temporal networks was
divided into two non-overlapping sub-ranges; i.e., the training phase and test phase.
We also split our training network dataset into smaller temporal graphs considering
time window size of 1 day, 2 days, 7 days and 30days to generate our SINs. Table1
describes the basic statistics of our datasets including total number of actors and
links, the duration of the training and test phases in dates and the number of SINs in
the training phase using four different time granularity (e.g., 30days).

5 Supervised Link Prediction

Supervised methods for link prediction problems can predict possible future links
by successfully discriminating between the links with positive and negative labels
within a classification dataset. For modelling supervised link prediction, we followed
the model described in [11] including the workload ratio of links with positive and
negative labels to 1:10. Loops and duplicate links were ignored. In this study, we
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utilised dynamic similarity metrics considering network dynamics, as described in
Sect. 5, to describe instances in classification datasets. For the validation purpose
and comparisons sake, we utilised two baseline static metrics ignoring the network
dynamics and considering only a static network constructed by the aggregation of all
temporal networks within the training phase. These two baseline static features are
Common Neighbours [13] and AdamicAdar [14]. The feature values were normal-
ized with zero mean and one standard deviation. This study also used simple logistic
regression, Naïve Bayes, and Random Forest algorithms for classification purposes.
Performances of these classifiers were then compared using different performance
metrics including a 10-fold cross-validation and the mean score as accuracy percent-
age, AUCROC (Area under Receiver Operating Characteristics Curve) and AUCPR
(Area under Precision-Recall Curve).

6 Results

In Table2, we present the performance displayed by our four classifiers in classifying
edges with positive and negative labels using both dynamic and static features. In
this table, we considered the short interval networks generated using split duration of
seven days (see Table1) during the training period. In regards to three performance
measurement metrics, we found that our dynamic metrics performed as good as the
baseline metrics and in some cases outweighed them (e.g., UCI network). Despite
their underperformances in regards to AUCROC in the Facebook dataset, scores
are better in comparison to a random algorithm having highest AUCROC score

Table 2 Performance measurements of different classifiers using dynamic and static features.
Different classifiers are LR = Logistic Regression, NB = Naive Bayes and RF = Random Forest

Dynamic metrics Static metrics

Classifier Accuracy
(%)

AUC ROC AUC PR Accuracy
(%)

AUC ROC AUC PR

Email
network

LR 86.3 0.87 0.43 91.2 0.92 0.74

NB 86.2 0.83 0.39 89.9 0.92 0.73

RF 87.2 0.89 0.52 92.3 0.94 0.79

UCI
network

LR 91.8 0.83 0.39 91.4 0.60 0.21

NB 91.3 0.77 0.36 90.7 0.60 0.21

RF 92.0 0.84 0.43 91.3 0.61 0.19

Facebook
network

LR 91.2 0.60 0.12 92.2 0.66 0.51

NB 91.2 0.56 0.12 91.8 0.66 0.50

RF 91.3 0.66 0.16 93.1 0.66 0.52
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Fig. 2 Performance measures by Random Forest classifier considering short interval networks of
different time granularity in three network datasets

of 0.50. Notably, in this dataset, low AUCROC scores were observed using static
metrics too. The authors in [15] proposed a method to determine the minimum
value of AUCPR as AUCPRmin = 1 + (1−π) ln (1−π)

π
with skew π = posi tive samples

n
where n = total number of samples in the classification dataset. According to this
equation, with skew π = 0.091 (since the ratio of positive and negative samples is
1 : 10 in this study), the minimum value of AUCPR should be 0.04. In Table2, we
also observed that most of the classifiers outweigh this minimum value utilising our
dynamic features. In Fig. 2, we represent the performance scores by Random Forest
classifier considering network snap-shots of different time granularity (i.e., one day,
two days and 30days).We also observe high performance scores across three dataset.
These results answer our first research question, described in the introduction section,
that temporal evolution similarity between actor pairs can be a potential candidate
for link prediction in dynamic networks.

In order to answer our second research question, we analysed the distance between
the time series of network measures, incident to non-connected actor pairs of true
links in the test phase, calculated by the DTW method in this study. Alternatively,
the values of our dynamic feature for the positively labelled links in the classification
datasets were examined. In Fig. 3, we visualize the distribution of dynamic feature
values of the actual links in the test phase. From this figure, it is observable that
actors with minimum distance between their evolutionary measures participated in
the actual links those occurred in the test phase. Alternatively, similar actors, in
regards to their dynamics, have higher likelihood in forming emergent links.

Fig. 3 Distance measured by DTW method between the temporal evolutions of true links in the
test phases of three datasets
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7 Discussion and Conclusion

In this study, we have observed that dynamic network topology along with associ-
ated evolutionary information resulting from the temporal and structural changes of
individual actors, can be exploited in dynamic link predictions. Further, since most
networks inherently evolve over time, scholars delved into temporal networks and
network dynamics to resolve issues with link prediction problem in dynamic net-
works [16]. In this regard, we demonstrated in the result section that our dynamic
features perform as high as the static features those are widely used in traditional
link predictions. In some cases, they outweighed the static features to predict future
links in longitudinal networks. We validated our assumption and results of link pre-
diction by considering well-known performance metrics utilised in supervised link
prediction. Our empirical analysis found that actors, with similarity in their dynam-
icity, have the most likelihood of forming links in future. This study can further be
extended considering various aspects. For example, different other network mea-
sures and well-known forecasting methods like ARIMA can be exploited to boost
the performance of link prediction. Considering high performances, as described in
the result section, the dynamic features, built in this study, can be applied to model
security network or network-based recommender system. For example, the buying
behaviour of consumers can be explored over time to predict the future associated
purchases. Measuring the temporal similarity of associated buying patterns may help
determining new patterns of associated purchases.
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Stochastic Modeling of the Decay Dynamics
of Online Social Networks

Mohammed Abufouda and Katharina A. Zweig

Abstract The dynamics of online social networks (OSNs) involves a complicated
mixture of growth and decay. In the last decade, many online social networks, like
MySpace and Orkut, suffered from decay until they were too small to sustain them-
selves. Thus, understanding this decay process is crucial for many scenarios that
include: (1) Engineering a resilient network, (2) Accelerating the disruption of mali-
cious network structures, and (3) Predicting users leave dynamics. In this work we
are interested in modeling and understanding the decay dynamics in OSNs to han-
dle the aforementioned three scenarios. Here, we present a probabilistic model that
captures the dynamics of the social decay due to the inactivity of the members in
a social network. The model is proved to have submodularity property. We provide
preliminary results and analyse some properties of real networks under decay process
and compare it to the model’s results. The results show, at the macro level of the net-
works, that there is a match between the properties of the decaying real networks
and the model.

1 Introduction

Today’s online social networks represent a main source of communication and infor-
mation exchange among people all over the world. Many online social networks
have proven their usefulness, like Facebook, Twitter, and Linkedin, in connecting
people and facilitating an exquisite new medium for sharing news, forming groups
of people of the same interests, and eliciting knowledge. The growth of these net-
works in terms of user activity shows that these online social networks have become
a vital part in today’s human activities. One well studied aspect of online social
networks dynamics is the growth phenomenon of a network. The work by Barabási
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et al. [6] presented a simple model for understanding the growth dynamics of a
network, namely the Preferential Attachment Model (PAM), which is a rich-get-
richer-model. Jin et al. [15] noticed that the model by Barabási et al. [6] and other
similar models, like the work by Dorogovtsev et al. [11] for modeling the growth
of random networks, are not suitable to understand the growth dynamics of social
networks. Thus, they provided a model that considers the specialty of social net-
works without a power law distribution and with large clustering coefficient [15].
With the availability of the online datasets, Newman [25] studied empirically the
growth of social networks using the scientific collaboration networks against the
PAM model [6]. Bala et al. [5] provided a non-cooperative game based model for
the network formation. Later, Jackson [14] surveyed the models and methods that
were used to capture the network formation process and compared them in terms
of stability and efficiency. Leskovec et al. [21] first showed on dynamic network
data, that networks densify over time and that their diameter is shrinking. They also
provided another growth dynamics model that was able to produce networks with
these properties. The previous work and the availability of rich datasets pushed the
research to an in-depth investigation of the properties of the networks over time.
Kumar et al. [20] studied the growth of a large social network in terms of network
component analysis, Kossinets et al. [18] studied the tie formation process within the
social networks that is affected by internal and external factors, and Capocci et al. [9]
studied the statistical properties of the growth characteristics ofWikipedia collabora-
tion social networks. Likewise, Backstrom et al. [4] studied empirically how groups
are formed and evolve over time in MySpace social networks and Mislove et al. [23]
provided a study for the growth of Flicker social network. Even though there are
many successful social networks, the evolution of a social network also incorporates
decay. In the last decade, some of the online social networks were closed after a huge
loss or inactivity of their members. Online social networks, like Friendsfeed, Friend-
ster, MySpace, Orkut, and many websites of the Stack Exchange platform, are now
out of service, despite the fact that some of them, e.g., Orkut and Myspace, showed
a tremendous growth [2] just a decade ago. The decay of these networks poses many
questions about the reasons behind their fall down. Garcia et al. [12] and Chhabra
et al. [10] studied the static properties of Friendster and MySpace, respectively, in
order to understand the network-related properties of these networks as an exam-
ple of a decayed network. Recent studies by Malliaros et al. [22] and Bhawalkar
et al. [8] provided theoretical models for understanding the social engagement in
online social networks with a potential to predict social inactivity. Torkjazi et al. [28]
provided an experimental analysis of Myspace online social network and examined
the activity and inactivity of its users with some insights about the reasons behind the
fall of MySpace. Similarly, Ribeiro [26] studied activity and inactivity of the users
by providing a model that uses the number of daily active users as a proxy of the
dynamics in the membership based websites. Kairam et al. [16] provided machine
learning prediction models to predict community longevity: how long a community
in an online social network will survive. Another related work done by Asur et al. [3]
discussed the persistence and decay of Twitter tweets. While investigating the rea-
sons behind the inactivity of members of an online social networks is not in the scope



Stochastic Modeling of the Decay Dynamics … 121

of this work, some recent studies proposed some answers [17, 27], suggesting that
themain reason behind this decay is the inactivity of themembers of the online social
networks.

Building a sound understanding of the decay dynamics of networks requires not
only studying the static properties of these networks, but also requires investigating
their dynamics and properties over time, and this is what we are interested in here.
We consider the Stack Exchange websites that were closed after some period of time
due to the lack of enough activity required to keep the website alive. The closed
websites are an example of the social network decay, where we model the members
of a website as the nodes of the network and an edge exists between any two nodes
if they post, comment, or answer to the same question in the websites.

While we cannot answer why a person starts losing interest in a social network,
we can try to analyze and model the effect of this behavior on other people. Such a
model might in turn hint at the causes of social decay or at least explain some part
of it.

In this work, we provide a probabilistic model for understanding the social decay
phenomenon in online social networks. The model presented here can provide
insights regarding the effect of node leave on the neighborhood nodes. Our con-
tribution in this work is split the following: (1) A longitudinal network analysis of
the stack exchange sites showing their decay. (2) A probabilistic model for social
network decay which is a step by step mechanistic model for a node leave and the
effect of its leave. (3) Theoretical proof of the submodularity of the model that leads
to viable optimization, e.g., determining the minimal set of nodes to leave the net-
work for accelerating/decelerating the decay process. Being submodular renders the
maximization problem of the model to be viable.

2 Model and Notations

A network G = (V,E) is a tuple of two sets V and E, where V is the set of nodes
and E is the set of edges such that an undirected edge e is defined as e = {u, v} ∈ E,
where u, v ∈ V . As we consider a dynamic system, the notation Gt is a network
at time t. We assume that every node w ∈ V has an initial Leave Probability π t=0

w
which denotes the probability of node w leaving the network at time 1, and generally
at t + 1. If a node w did not leave at t + 1, i.e., w ∈ V (Gt+1), then its current leave
probability, π t

w, will be increased depending on its neighbors who left at t − 1. The
tie strength at time t − 1, representing some possibly dynamic measure of closeness
of a relationship, is denoted by δt−1

v,w and assumed to be ∈ (0, 1]. The details of this
process are described in the following sections.

Definition 1 A dynamic network G is called a “Decaying Network” if |E(G)t−1| ≥
|E(G)t|, |V (G)t−1| ≥ |V (G)t|, and V (G)t ⊆ V (G)t−1,∀t > 0.
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Fig. 1 An illustration of the model. The color of the nodes represents how likely a node will leave
in the future, where white nodes are very unlikely to leave and the level of grayness correlates with
the probability to leave. Whenever a node leaves the network it is marked as black, all its edges are
removed, and all of its neighbors get affected by its leave by increasing their leave probability. The
dotted edges are the removed edges

We assume the model starts with a Decaying Network, i.e., no further nodes or
edges are added to the network. The main idea of the model is shown in Fig. 1.

2.1 Probability Gain

At any point of time t where t > 0, the node’s leave probability changes from π t−1
w

to π t
w, by adding Probability Gain Δπ t

w, that never exceeds the value of 1. Thus, a
node w will leave at time t + 1 with probability π t+1

w such that:

π t+1
w = min{1, π t−1

w + Δπ t
w} (1)

If a node w did not leave the network at time t, then we have two sets: Γ
t−1
w and

Γ t−1
w , which are the sets of w’s neighbors who left and did not leave the network at

t − 1, respectively.

2.1.1 Probability Gain Due to One Node Leave

We first define the probability gain due to the leave of a single neighbor v of the node
w at time point t − 1, and then generalize it to w’s neighbors that left the network:

Γ
t−1
w . Now, the probability gain that a node w will get at t + 1 due to the leave of its

neighbor node v at t − 1 is defined as:

Δπ t+1
w (v) = 1 − (1 − π t−1

v )(1 − δt−1
v,w ) (2)

where the edge e = (v,w) ∈ E(G)t−2 and e = (v,w) /∈ E(G)t−1 as v ∈ Γ
t−1
w and

w ∈ V (G)t−1. Thus, the total probability gain produced by the leave of node v to all
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t−2 t−1

t

Fig. 2 This figure shows how a node v affects all of its neighbors when it leaves. At t − 2, the node
v has a leave probability π t−2

v which was gained by v’s initial leave probability π0
v and possible

probability gains caused earlier by leaving neighbors, i.e.,π t−2
v = π0

v + ∑t=t−3
t=1 Δπ t

v. At time t − 1,
the node v leaves the network affecting its neighbors by increasing the leave probability of nodes
1, 2, 4, 5. Here we assume that the tie strength between v and the nodes 1, 2, 5 is greater than the
tie strength between v and 4. That is why the nodes 1, 2, 5 gain more leave probability than node 4,
which is represented by a darker color of nodes 1, 2, 5

t−2 t−1

t

Fig. 3 This figure shows how a node w is affected by the leave of its neighbors. At t − 2, the nodes
1, 4 have leave probabilities π t−2

1 and π t−2
4 , respectively, which were gained by the nodes’ initial

leave probabilities π0
1 and π0

4 and possible earlier probability gains. At time t − 1, the nodes 1, 4
leaves the network affecting their neighbors, here we are interested in the node w. The leave of
nodes 1, 4 left node wwith an increased leave probability at t. Note that nodes 2, 3, 5, 6 are affected
also by the leave of 1, 4, but for simplicity and for visualization traceability we concentrated on
node w
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of its neighbors which did not leave, see Fig. 2 for an illustration, is given by (Fig. 3):

Δπ t(v) =
∑

w∈Γ t−1
v

1 − (1 − π t−1
v )(1 − δt−1

v,w ) (3)

2.1.2 Probability Gain Due to Multiple Nodes Leave

We now generalize the probability gain induced by the leave of a single node to

capture the impact of all neighbors that left, i.e., Γ
t−1
w .

Δπ t
w = 1 − [(1 − ξ t−1

w )︸ ︷︷ ︸
Assures leave

(
∏

u∈Γ
t−1
w

(1 − π t−1
u ))

︸ ︷︷ ︸
Leave probabilities effect

(
∏

u∈Γ
t−1
w

(1 − δt−1
u,w ))

︸ ︷︷ ︸
Tie strength effect

]

= 1 − [(1 − ξ t−1
w )(

∏

u∈Γ
t−1
w

(1 − π t−1
u )(1 − δt−1

u,w ))]
(4)

where ξ t−1
w = |Γ t−1

w |
|Γ t−1

w | and the quantity 1 − ξ t−1
w assures that when all of the neighbors

of the node w leaves, then the node w will (be forced to) leave too as it will be
disconnected. Thus, Eq.1 becomes:

π t
w = min{1, π t−1

w + 1 − [(1 − ξ t−1
w )(

∏

u∈Γ
t−1
w

(1 − π t−1
u )(1 − δt−1

u,w ))]} (5)

3 Monotonicity and Submodularity

In this section, we show the monotonicity and submodularity properties of the
model’s equations.1

Definition 2 Let f : 2V → R≥0,whereR≥0 = {x ∈ R | x ≥ 0}, be an arbitrary func-
tion that maps the subsets S and T to a non-negative real value, where S ⊆ T ⊂ V .
Then, the function f is submodular [19] if it satisfies the following inequality:
f (S ∪ {v}) − f (S) ≥ f (T ∪ {v}) − f (T), where v ∈ V \ T .
Lemma 1 (Order preserving of the probability gain sum) Let π t = {π1, π2, · · · ,

πn}, where πi ∈ π t and πi ∈ (0, 1]. Then we have:
∑

πi∈π t

πi ≤ ∑
πi∈π t+1

πi where π t ⊆
π t+1, and the sets π t and π t+1 are defined like above.

1Detailed proofs are provided in an earlier technical paper [1].
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Lemma 2 (Order preserving of the probability gain product) Letπ t = {π1, π2, · · · ,

πn}, where πi ∈ π t and πi ∈ (0, 1]. Then we have:
∏

πi∈π t

πi ≥ ∏
πi∈π t+1

πi where π t ⊆
π t+1, and the sets π t and π t+1 are defined like above.

Theorem 1 The leave probability gain function, Eq.3, is submodular.

The interpretation of the theorem is that, the more friends a node v had before
leaving, the higher its total induced leave probability gain.

Theorem 2 The leave probability gain function, Eq.4, is monotone, i.e., for a node
w we have π t

w ≤ π t+1
w if the node w did not leave the network at t + 1.

Theorem 3 The leave probability gain function, Eq.4, is submodular.

The theorem state that the more of your friends leave, the less important the
others become. Submodulariy entails an interesting properties: the minimization
problem of submodular function can be performed in polynomial time [13], and the
maximization problem of the submodular function, which is NP-Hard problem, can
be approximated within a factor of α = (1 − 1/e) using a greedy algorithm [24].

4 Results

In this section, we provide the analysis of the decaying stack exchange websites and
the results of the model. Figure4a shows the distribution of the number of user com-
ments for alive and decayed websites. The figure shows that the decayed websites
clearly have different distribution characteristics with a low mean and low standard
deviation. A similar behavior is found in Fig. 4b, c that represents the distribution
of users’ total received Reputation and Upvotes, respectively. These two properties
reflect the level of knowledge and experience that the members of a website have.
For the decayed websites, it is clear that, on average, the members have much less
reputation and upvotes than those in the alive websites. The three figures, Fig. 4a–c
show that there is less social activity in the decayed websites, which may be used as
an indication for studying the future of the alive websites. However, understanding
the decay dynamics of the decayedwebsites requires a deeper investigation andmod-
eling for the nature of the interaction among the members. Our approach to better
understand what happens during the decay process is to make a network representa-
tion of the members’ interactions, like comments, upvotes, and posts, as networks.
Then, we build a network based model for modeling the decay process. Algorithm 2
depicts the steps we followed in our experiments. Line 4 initializes the initial leave
probability π0

v , which is a design decision and we selected values from 0.0005 to
0.045 with an 0.0005 increase step. For each of these values, the model runs and
simulates Eq.4. The update step in line 13 simulates Eq.5. The result of the algorithm
is a set of graphs that are used for the analysis. The output of this algorithm results
in a large number of graphs. For example in the case of the Startup Business website
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Fig. 4 The characteristics of the interaction decay in the decayed and alive websites of the Stack
Exchange websites. The figures show the probability distributions of different types of interactions
in these websites. Markers with bold boarders are decayed websites, μ is the mean, and σ is the
standard deviation. From the figures it is clear that the decayed networks have different distribution
properties from the other alive networks

we have analyzed more than 200k graphs with 250 runs for each probability to get
more confidence of the results. The tie strength was a normalized edge weight where
the weight is the frequency of the interaction between two nodes.

In Fig. 5we show themacro properties of the real networks of the Startup Business
website over time. The network evolution shows a clear decay that is represented as
a decrease in the number of the nodes. This decrease was associated with a decrease
in the average degrees of the nodes over time and also with a decrease of the node’s
coreness [7]. Anothermacromeasurewe used is the network density. Figure5c shows
an increase in the density over time. This increase is due to early leave of the nodes
with less degrees, i.e., the nodes that are part of dense subgraphs seem to leave
the network late. Now, we will show the results of the model simulation. Figure6a
shows the number of components in the network over simulation for different values
of π0

v . The number of components start to increase to a maximum value before it
start to decrease. The reason is that at the beginning the model starts with a one-
connected component graph and after each step some nodes are removed due to the
leave probability. The leave of some nodes results in a disconnected graph with more
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(a) (b)

(c)

Fig. 5 Macro properties of the real networks under decay for the Startup business site. a–c Show
the degrees of the nodes, the node coreness, and the network density over time

components. The number of these disconnected components increases until these
disconnected components are composed of only triples or simple edges. As a result,
a node that leaves from these triples or from these edges will not increase the number
of the components anymore. Figure6b, c show a similar behaviour for the average
degree and the average coreness over time, respectively. The more nodes are being
removed from the network, the less edges remain and thus the average degree and
the average coreness decrease uniformly over time. This behavior of the model is
similar to the real data presented in Fig. 5. The last global measure that we use is the
network density as shown in Fig. 6d. The density of the simulated networks increases
over time for the same reason stated for the real networks in Fig. 5. These results
show that the model provides a real-like behaviour of the networks under decay.
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Algorithm 2Model simulation
Input: Graph G0
Output: Graphs= {G0,G1, · · · ,Gn−1} where Gn is an empty graph
1: for v ∈ V (G0) do
2: initialize π0

v
3: end for
4: t = 0,Gt = G0, Graphs.add(Gt)
5: while Gt is not empty do
6: LeftNodest = ∅
7: t = t + 1
8: for v ∈ V (Gt) do
9: if Leave(v,π t

v) is True then
10: LeftNodest .Add(v)
11: end if
12: end for
13: for u /∈ LeftNodes & Γ

t−1
u �= ∅ do

14: update(π t
u,Γ

t−1
u )

15: end for
16: remove LeftNodest from Gt
17: Graphs.add(Gt)
18: end while

5 Discussion

There are different applications where the model can be utilized. 1. Social network
resilience: the resilience against huge disruptions in social networks is not well-
studied. We think that the model provides a first step towards engineering a resilient
social network via understanding the decay dynamics of a network. 2. Leave cascade
detection: the leave of one member is not as harmful as a cascade of leaves for the
networks that seek growth. The model captures the dynamics of leave cascades by
observing the leave probabilities of the nodes and their increase. 3. Maximizing the
leave effect: for a network where a dissolving process is required, like criminal social
networks, the model is able to provide a viable disruption maximization (thanks to
the submodularity property of the model) to the network with insights about the
influential members and the effect of the leave.

6 Conclusion

In this work, we presented an empirical analysis of the social decay dynamics of the
closed Stack Exchange websites. The closed websites showed an inactivity, which
might have caused their decay. We model these interactions between the members
of these websites as a network that enabled us to build a model to understand the
decay dynamics. Then, we have presented a model for capturing the decay dynamics
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Fig. 6 The results of multiple global measures of the model. a–d Show the number of components,
the average degree, the average coreness, and the density of the network over time for different
values of initial leave probability π0

v , respectively. The model started with G0 as the input network
and simulates the decay over it

in social networks. The model is a probabilistic model that assumes that the leave
of social network members affects the leave of their neighbors. In this work we
have also presented some mathematical properties and proved them. We proved that
the model’s main equations are submodular, which entails doing optimization of
the model in a feasible way. Also, we presented the macro network properties of
real networks under decay and compared these results with the results of the model
simulation. The results of the model and the real networks under decay showed a
similar behavior that supports the potential of the model for different usages. In the
future, we will design the optimization algorithms and study the applicability of the
model and also provide more empirical validation of its properties.
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Applications of Network Science



Complex Reaction Network in Silane Plasma
Chemistry

Yasutaka Mizui, Kyosuke Nobuto, Shigeyuki Miyagi and Osamu Sakai

Abstract Chemical reactions become significantly complex when plasma is intro-
duced in a reaction space. We study silane plasma chemistry, and centrality indices
derived from the reaction network indicate several points of information about species
in reactions as well as macroscopic topology in the entire network graph. Stable
species, unstable species and electrons play different roles as triggers or products of
reactions, and this analytical method provides several points that cannot be revealed
by rate-equation calculations, which have been popular in chemical analysis.

1 Introduction

Chemical reactions have been studied using network analysis for several decades
since their reactions are usually successive and complicated [1, 2]. It is so essential
to elucidate roles of species in reactions like products, subproducts and intermediates
that many scientific and technological approaches to their estimations have been
performed, usually bynumerical calculations using rate equations [3, 4]. In particular,
chemical reactions in low-temperature plasmas are more complicated than those in
other reactions schemes [3, 4]. Then, such chemical reactions may form a complex
network which include various statistical and/or topological properties [5].

Not to estimate precise densities of chemical species but to obtain network prop-
erties in a macroscopic point of view, we recently demonstrated network analysis
of the directed graphs for methane plasma chemistry [6]. We verified the particular
roles of electrons, which are origins of chemical activities in plasma chemistry, and
clarified a role of each species using a centrality index based on eigenvector cen-
trality measures. Further studies on other species, which may include larger number
of reactions, will open possibilities to confirm validity of analyses and create suit-
able measures as well as collect various data for accomplishing database for future
dictionary learning.
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Here we consider silane (SiH4) about its decomposition and subsequent reac-
tions such as ionization and polymerization. In Ref. [3], very complicated reactions
are analyzed numerically by solving more than 100 rate equations implicitly with
reaction rate constants. The results are quite precise to predict densities of product
species, which is a kind of visualization about outlooks of each species, although it
is not easy at a glance to recognize role(s) and/or function(s) of each species in a
reaction network, such as final products, subproducts, or intermediates.

In this report, we analyze chemical reactions of silane as a mother gas in plasma
chemistry. The numbers of reactions and species are larger than those of methane [6],
and we recognize several common and different points. Chemically stable species
play different roles due to their mother atoms. Electrons and unstable species are
also analyzed using eigenvector centrality measures.

2 Analytical Methods and Results

2.1 Analytical Methods

Figure1 displays the entire network of chemical reactions in silane plasma described
in Ref. [3]. The number of nodes is 58, and that of edges which represent reac-
tions is 222. Nodes and edges are defined as shown in Table1. In plasma chemistry
investigated here, all reactions are assumed to be irreversible.

Among the 222 reactions, we show typical examples used in this study in the
following.

e− + SiH4 −→ SiH+
3 + H + 2e−. (1)

SiH4 + H −→ SiH3 + H2. (2)

SiH+
3 + SiH4 −→ Si2H

+
5 + H2. (3)

e− + SiH+
3 −→ SiH2 + H. (4)

Reaction (1) is dissociative ionization of the mother gas SiH4 by electron impact.
Reaction (2) was already shown in Table1, and H atoms generated in Reaction (1)
induce dissociation of SiH4. Generated ions frequently yield larger ions in reactions
like Reaction (3), and electrons and ions recombine according to Reaction (4), for
instance.

We calculate values of simplified pagerank index as a centrality index. These are
elements of eigenvector centrality measures using the modified adjacency matrix
whose zero elements are changed to small non-zero values; this centrality index is
simplified from the original one proposed as PageRank [7].
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Fig. 1 Graph of reaction network analyzed in silane plasma chemistry. Reactions are listed in Ref.
[3]

Table 1 Example of reaction
and resultant nodes and edges

Reaction SiH4 + H → SiH3 + H2

Nodes Node a: SiH4, Node b: H,
Node c: SiH3, Node d: H2

Edges Edge A: from a to c

Edge B: from a to d

Edge C: from b to c

Edge D: from b to d
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The calculation procedure is as follows. The adjacency matrix A is converted
into the target matrix M via transition probability matrix A′; all of them are n × n
matrices. When we denote the entry of A on the i-th row and on the j-th column as
Ai j ,

A′
i j = Ai j∑

j Ai j
, (5)

Mi j = cA′
j i + (1 − c)

1

n
, (6)

where c is set to be 0.85 in this study. After this procedure,M represents a strongly-
connected graph, although non-zero values for non-connectivity branch remain very
small. Then, we get simplified pagerank values as elements of the eigenvector ofM.

2.2 Analytical Results

Figure2 represents values of the simplified pagerank index. The values of forward
cases with the same direction in Table1 show effects caused by other species as
products, while those of reverse cases in which the directions are reversed from

Fig. 2 Simplified pagerank index for species as nodes in network. Symbols used for species are
according to notation in Ref. [3]; ‘*’ indicates excited states, and ‘v’ denotes vibrationally-excited
states. ‘M’ is an arbitrary species which work as a collision partner for specific reactions
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those in Table1 indicate influences on other species as triggers of reactions. Among
stable species, Si-related ones (SiH4, Si2H6, and so forth) are influential on other
species, while H-related one (H2) is less influential and rather affected by other
species. Electrons are significantly influential as well, similar to the case of methane.
Except stable species, SiH3 is the most important species as an influential species
and simultaneously affected one. That is, SiH3 is a key species as a substantial
intermediate in this network web, similar to CH3 in methane plasma chemistry [6].

As described inRef. [1], chemical reactions havebeen comprehendedusinggraphs
for decades, but they are simple and usually in chain-like structures [2]. So far, since
number of nodes in such graphs are limited in usual liquid and gas chemistry (without
electrons), there have been no requirements on analysis based on complex networks
[5]. However, as we see in Fig. 1, the reaction network in plasma chemistry is so
complex, and this kind of analysis will contribute to understand unclear roles of each
species, leading to further efficient chemical processes via future optimization using
this kind of method.

3 Conclusion

We analyzed chemical reactions of silane as a mother gas in plasma chemistry.
The numbers of reactions and species are larger than those of methane [6], and we
recognized several common and different points of complex networks in plasma
chemistry. This study reveals that chemically stable species play different roles due
to their mother atoms. Electrons and unstable species are also analyzed using an
eigenvector centrality measure, and we found that SiH3 in silane plasmas plays the
similar role to CH3 in methane plasmas.
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Seeing Red: Locating People of Interest
in Networks

Pivithuru Wijegunawardana, Vatsal Ojha, Ralucca Gera
and Sucheta Soundarajan

Abstract The focus of the current research is to identify people of interest in social
networks. We are especially interested in studying dark networks, which represent
illegal or covert activity. In such networks, people are unlikely to disclose accurate
information when queried. We present RedLearn, an algorithm for sampling dark
networks with the goal of identifying as many nodes of interest as possible. We
consider two realistic lying scenarios, which describe how individuals in a dark
network may attempt to conceal their connections. We test and present our results on
several real-world multilayered networks, and show that RedLearn achieves up to
a 340% improvement over the next best strategy.

Keywords Multilayered networks · Sampling · Lying scenarios · Nodes of interest

1 Introduction and Motivation

Today’s complex environment requires decision makers to act in an overwhelmingly
rich network environment, often based on partial information of that network. It is
often desirable to locate “people of interest” (POI) residing in such networks while
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they conceal themselves or others. Our work was motivated by study of terrorist
networks, which can be modeled multilayered networks where each layer is defined
by a different relationship (e.g., relationships indicate organizations these terrorists
belong to, the schools or trainings they went to, kinship, recruiting and so on.)

In this paper, we consider the goal of sampling a ‘dark’ network (i.e., a network
representing illegal or covert activity) in such a way that we observe as many POIs
as possible. We present RedLearn, a novel learning-based algorithm for sampling
networks with the goal of finding as many POIs as possible. We show that in cases
where the POIs exhibit homophily (i.e., are likely to be connected to other POIs),
a simple strategy of choosing the node with the most POI neighbors works well.
However, in the more realistic scenario where POIs hide their connections with other
POIs, RedLearn shows outstanding performance, beating the next best strategy by
up to 340%.

ProblemDefinition: We refer to nodes representing POIs as ‘red’ nodes, and other
nodes as ‘blue’, giving us a purple network. We assume that there is an unobserved,
underlying graph G = (V,E), in which each node v ∈ V has color Cv ∈ {red, blue}.
We begin with having knowledge of only one red node in G.

To increase our observation of the network, we placemonitors on nodes. A monitor
tells us (1) the true color of the node being placed on, (2) the true neighbors of that
node, and (3) the colors of the node’s neighbors, possibly with inaccuracies. For
example, placing a monitor on a suspected terrorist could represent determining
whether that person is actually a terrorist, determining who his or her e-mail or
phone contacts are, and questioning the individual about whether those neighbors
are themselves terrorists. Naturally, some individuals may lie about the colors of
those neighbors.1

We assume that we are given a budget of b monitors, and can place those monitors
on any node that has been observed. In the first step, we must place a monitor on the
initially observed node. We then place a monitor on any node that has been observed
as a neighbor of a previously-monitored node.

RelatedWork: Our work is related to work on analyzing dark networks, a special
type of social network [4]. A dark network is network that is illegal and covert [14],
whose members are actively trying to conceal network information even at the
expense of efficiency [4], and the existing connections are used infrequently [14].
Because a dark network is deceptive by nature, we examine the lying methodologies
along with the discovery methods in looking for the POI.

There are a multitude of sampling techniques for network exploration, includ-
ing random walks [3, 11, 13], biased random walks [9], or walks combined with
reversible Markov Chains [2], Bayesian methods [8], or standard exhaustive search
algorithms like depth-first or breadth-first searches, such as [1, 5–7, 12]. However,
these methods generally do not use node attributes.

1We consider two realistic ‘lying scenarios’; these are described in Sect. 2.1.
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2 Proposed Method: RedLearn

A monitor placement strategy is an incremental sampling strategy. A monitored
node is a node with a monitor placed on it. At each step, the placement of the next
monitor is determined based on the observed topology of the graph, known colors of
nodes (observed by monitors placed directly on those nodes), and the stated colors
of monitored nodes’ neighbors (i.e., for each neighbor of a monitored node, whether
the monitored node said that neighbor was red or blue).

We now describe several natural monitor placement strategies as comparison
algorithms in our experiments.

Smart Random Sampling (SR): In each step, the Smart Random Placement
strategy places a monitor on a random unmonitored node.

Red Score (RS): If a node v reports its neighbor u as red, the score associated
with node u is increased by one, making it more suspicious. This strategy selects the
node with highest red score to place the next monitor.

Most Red Say Red (MRSR): The MRSR strategy places a monitor on the node
with the greatest number of red neighbors who report it as a red node.

Most Red Neighbors (MRN): The MRN placement strategy places a monitor on
the node with the most known red neighbors. This strategy would likely work best
in a network with high homophily.

2.1 RedLearn: A Learning Based Monitor Placement
Strategy

When determining which node v to place the next monitor on the strategies above
consider the colors of v’s neighbors and/or the color that each of v’s monitored neigh-
bors reported, the presence of homophily, and the reported color of the neighbors.

To overcome these dependencies, we propose RedLearn, a learning based mon-
itor placement strategy. Our goal is to predict the probability of a node v being red
(P(v = R)) based on the observed network structure and what v’s neighbors say about
v. We model this as a two class classification problem, but rather than looking at the
assigned label (Red or Blue), we are more interested in finding P(v = R). Once these
probabilities are determined, RedLearn places the next monitor on the node with
the highest such probability.

Features: Table 1 describes the set of features used in our learning based monitor
placement algorithm. There are two types of features: (a) Network structure-based
features (1, 2, 3), and (b) Neighbor answer-based features (4, 5, 6, 7, 8).

Inferred Probability of Being Red: We formulate four different probabilities to
measure the trustworthiness of colors given by differently colored nodes (i.e., whether
a monitored node lies or is honest about its neighbors’ colors). Consider a node v
which was discovered through a monitor placed on node u. Equation 1 shows how
to calculate P(v = R|color(u) ∧ color(u says v)) when v = R, u = R and u says v is
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Table 1 Classification features for RedLearn. Consider a node v with neighbors N(v)

Feature Description

(1) Number of Red Neighbors |{u ∈ N(v)|cu = R}|
(2) Number of Blue neighbors |{u ∈ N(v)|cu = B}|
(3) Number of Red triangles if v is red

∣∣∣∣{u, w ∈ N(v)|u ∈ N(w) ∩ w ∈ N(u) ∩ cu = cw = R}
∣∣∣∣

(4) Red score |{u ∈ N(v)|(u says R)}|
(5) Number of Red neighbors saying red |{u ∈ N(v)|(u says R) ∩ cu = R}|
(6) Number of red neighbors saying blue |{u ∈ N(v)|(u says B) ∩ cu = R}|
(7) Number of blue neighbors saying red |{u ∈ N(v)|(u says R) ∩ cu = B}|
(8) Number of blue neighbors saying blue |{u ∈ N(v)|(u says B) ∩ cu = B}|
(9) Inferred probability of being red PI (v = R)

red. Other probabilities can be calculated by changing components of this equation
as appropriate.

P(v = R|(u = R) ∧ (u Says R)) = |{(v = R) ∩ (u = R) ∩ (u says R)}|
|{(u = R) ∩ (u says R)}| (1)

Given a node v, we calculate the inferred probability, PI(v = R) using Eq. 2.

PI(v = R) =
∑

u∈N(v) P(v = R|color(u) ∧ color(u says v))

|N(v)| (2)

The training data for this classification problem comes from the monitors placed
so far and observed true colors. We predict P(v = R) for each unmonitored node.
We use logistic regression as the classification algorithm in our experiments.

Algorithm 1 Learning based monitor placement
procedure Learning(start,budget)

G ← Graph
G.add(start), G.add(N(start)) � Starting node and neighbors
while budget>0 do

Monitors ← list of monitored nodes in G
TrainingData ← feature vectors for Monitors
Train classifier using TrainingData
NotMonitors ← list of not yet monitored nodes in G
for v ∈ NotMonitors do

Get feature vector for v
P(v=R) ← predict v’s probability of Red using learning model

end for
Choose node v with maximum P(v = R) from NotMonitors
budget ← (budget − 1)
Use v as next monitor

end while
end procedure
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3 Experimental Set up

3.1 Datasets

PokeC Network: The PokeC network is part of a Slovenian online social network.2

Each node has some number of associated user attributes (e.g., age, region, gender,
interests, height etc.). We use a sample of this network containing all nodes in the
region “kosicky kraj, michalovce”. This sampled network contains 26, 220 nodes
and 241, 600 edges. We assign node colors based on two different node attributes:
age (a node with age in the range 28–32 is marked red, and blue otherwise, giving
1736 red nodes) and height (a user of height less than 160 cm is marked red, giving
1668 red nodes).

Noordin Top Network is a terrorist network with 139 nodes and 1042 edges
depicting several types of relationships between them (‘Noordin Top’ is the name
of the leader of this network) [10].3 In this network, every node is a terrorist, and
POIs are those who communicate using some particular communication medium.
We have identified five different communication mediums, and label nodes that use
them as POIs: electronic (9 red nodes), print media (5 red nodes), support materials
(9 red nodes), video (11 red nodes) and communication medium unknown (18 red
nodes).

Both networks have high homophily for red nodes (red nodes tend to be connected
to each other). However, in a dark network where red nodes are actively trying to
hide their presence, these nodes would conceal the existence of such connections
(for example, instead of using their normal cell phone to make calls to other red
nodes, a red node might use a burner phone for such calls). To account for this, we
also consider versions of our datasets where all connections between red nodes are
removed. Note that this type of network presents a much more challenging setting,
as one cannot simply rely on homophily to find red nodes.

3.2 Lying Scenarios

In absence of ground truth, we formulate lying scenarios: we assume the existence
of a hierarchy among the nodes, where nodes are more likely to lie to protect those
above them in the hierarchy. We assume that the red nodes are fully aware of the
hierarchy, blue nodes may or may not be aware, and that nodes may lie not only
about the color of red nodes (i.e., lie to protect POIs), but also about the color of blue
nodes (i.e., as a distraction).

Consider nodes u and v, where u, v ∈ Edges. The probability that u lies about v,
P(u lie v) depends on: (1) The color of u (Cu) and color of v (Cv),(2) The inherent

2Obtained from http://snap.stanford.edu/data/.
3Obtained from https://sites.google.com/site/sfeverton18/research/appendix-1.

http://snap.stanford.edu/data/
https://sites.google.com/site/sfeverton18/research/appendix-1
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Table 2 The probability that node u lies about node v’s color P(u lie v) depending on u’s and v’s
colors and lying scenarios

LS1:Blue nodes know about red nodes LS2:Blue nodes dont know about red nodes

U/V Red Blue Red Blue

Red Eq. 3 Eq. 4 Eq. 3 Eq. 4

Blue Eq. 3 Eq. 4 1.0 0.0

honesty of u (Hu), where higher H values indicate that u is more predisposed to
telling the truth and (3) The hierarchical position of u (Lu) relative to the position of
v (Lv).
The probability u will lie about a red node: where Lv

Lu
indicates how far above v is in

the hierarchy compared to u and 1 − Hu is probability that u will lie.

P(u lie v|v = Red) = min{(1 − Hu) ∗ Lv
Lu

, 1} (3)

The probability u will lie about a blue node depends on u’s honesty and is calculated
as (1 − Hu):

P(u lie v|v = Blue) = (1 − Hu) (4)

We perform 25 runs of each monitor placement strategy, varying the honesty
assignment and the colors that nodes say about neighbors between runs. In each run,
we begin with a randomly selected red node and we consider budgets up to half the
number of nodes in the network.

The honesty of each node is drawn from a normal distribution, h ∼ N (0.5, 0.125).
In the Noordin Top network, the ground truth hierarchy scores are Strategist (score
5),Commander; Religious Leader (score 4),Trainer/instructor; Bomb maker; Facili-
tator; Propagandist; Recruiter (score 3), Bomber/fighter; Suicide Bomber; Courier;
Recon/Surveillance (score 2) and unknown (score 1). In the PokeC network, we set
the hierarchy score to be the degree of the node.

Given a particular lying scenario, a monitored node u lies about a neighbor v’s
color with probability P(u lie v) as shown in Table 2.

4 Results and Analysis

As an example, Fig. 1 shows results on the NoordinComs4 network with edges
between red nodes (left two plots) and without (right two plots). When there is
homophily, the problem becomes easy, and the simple strategy of monitoring the
node with the most red neighbors (MRN) is best. However, note that in both lying
scenarios, RedLearn is close behind the MRN strategy (because it needs time to
train, it doesn’t quite match the performance of MRN). However, we see from the
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Fig. 1 Comparison of monitor placement strategies on the NoordinComs4 network. LS1:All nodes
aware of red nodes. LS2: Only red nodes aware of red nodes. The black line indicates the total
number of red nodes present in the network

right two figures that when edges between red nodes are removed, the MRN strat-
egy performs very poorly. In this setting, RedLearn performs much better than all
comparison methods: it is able to learn the patterns and structural characteristics of
red nodes, and by incorporating what neighbors say about a node, achieves strong
performance.

Due to space constraints, we summarize results by showing the percentage of red
nodes found from each monitor placement strategy for other networks in Table 3. We
see similar patterns across all networks: when there are edges between red nodes, it
is enough to select the node with the most red neighbors; but when these edges are
concealed, RedLearn is the clear winner. Even when there are edges between red
nodes, RedLearn usually achieves performance close to the MRN strategy.
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5 Conclusions and Further Directions

By nature, members of dark networks conceal information, but while deceptive and
sparse, these networks are still structured. To exploit these properties, we created
RedLearn, a learning-based method for locating People of Interest in dark networks.
RedLearn uses features from simpler methods and learns how to identify red nodes
in networks. We showed that RedLearn outperforms the other methods in cases
where one cannot rely on homophily to identify red nodes.

In our future work, one interesting direction is to consider the dynamicity of the
network (both on the edge and node rate of birth and retirement), as well as a more
sophisticated model of the concealed nodes and relationships.
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Understanding Subject-Based Emoji Usage
Using Network Science

S.M. Mahdi Seyednezhad and Ronaldo Menezes

Abstract The use of “Emoticons” and “Emojis” in social media as well as most
onlinewriting has become thede-facto standard onhow to express emotions, feelings,
etc. Although there aremore that 1,000 emojis, notmuch has been done to understand
the way in which people use these characters. The large set of emojis available brings
two questions: (i) How can usersmake full use of the emojis available? and (ii)Would
it be possible to build a recommendation system for emoji usage in text? This paper
moves towards a greater understanding of emoji usage by mapping possible relations
between these special characters in common text. We look at possible regularities
in emoji usages in written, subject-specific, text corpora. We build co-occurrence
networks of emoji based on two datasets and show that the structure of these networks
are not random and more like a truncated power-law, but more interesting, we show
that the structure has similar characteristics despite the text being subject-specific.

Keywords Emoji ·Word co-occurrence networks · Network science · Twitter data

1 Introduction

Our inability to express emotions in written language is notorious. For instance,
who has never tried to send an email with some sarcasm and found that it was
not well understood. The misunderstanding arises because the text does not convey
your facial expressions or perhaps your tone of voice; crucial for sarcasm. In 1982,
Scott Fahlman, a professor at Carnegie Mellon University (CMU) proposed what is
considered the first use of a emoticon in a message to a general CMU mailing list.

After the first use, the idea of emoticons spread quickly and many variations have
been proposed by Fahlman and others and today emoticons are still commonly used.
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Emojis were introduced in 2010 in Unicode 6.0 and today there are 1,088 emojis
defined in Unicode 9.0. These emojis are graphical version of the emoticons and

include representations such as and . With the growth in the number of
Internet users, the need for the emojis has been risen. The variety of emojis correspond
to the diversity of emotional feelings in humans [8] but it also grew to other usages
such as flags, animals, symbols, activities, etc.

Despite their popularity (e.g. emoji are used in nearly 800% more campaigns
than in 20151), there has been little movement on trying to understand how society
uses these emojis. Even though,“emojis won the battle of words” as claimed by the
New York Times,2 their use relies completely on user knowledge about a particular
instance of the characters. The popularity of emojis has lead the Oxford dictionary
to select the word of 2015 as “face with tears of joy” which is the name of an emoji
( ).

Another interesting aspect about the emoji phenomena is that they become akin to
a universal language because many are understood similarly in different locations
easing the connection of people from different cultures [6]. As amatter of fact, emojis
can be useful tools to analyze social media because first, they are widely used by
people fromdifferent countries and second, they have been adopted in different social
media, such as Facebook, Twitter, etc. Furthermore, they are employed for purposes
other than social media, such as mobile phone notification using emojis [10]. On the
other hand, some emojis are ambiguous in their meaning leading to different usages.
One of the most common cases is the “Person With Folded Hands” ( ), which in
some cultures (such as in Japan) is seen as “please” or “thank you”, while in others
(such as in Brazil) is widely used as a sign for prayer or “amem”.

2 Related Works

One of theworks to help computers understand emojis, attempts to build an inventory
of meanings for emojis in a way that is easy for machines to understand. Wijeratne
et al. [11] tried to a make connection between each emoji and its meaning in words.
The output of their work is a semantic network in BabelNet. Although they try to
have a comprehensive machine readable network of emojis and words, it could have
been better if they considered the co-occurrence of emojis in social media with other
frequent words and have an analysis on their bipartite notwork of words and emojis.
Besides, a combination of emoji sentiment analysis [7] with words may give us a
more accurate list of emoji meanings. In [1] a vector space model has been used for
Twitter data in order to connects emojis to meaningful corresponding words.

The number of emojis that are being used in Twitter can be found on emoji-
tracker.com. Furthermore, in [9], the authors discuss social aspects related to emoji
usage; they argue that Twitter users who embrace emojis tend to keep using them

1https://www.appboy.com/blog/emojis-used-in-777-more-campaigns/.
2http://www.nytimes.com/2014/07/27/fashion/emoji-have-won-the-battle-of-words.html.

https://www.appboy.com/blog/emojis-used-in-777-more-campaigns/
http://www.nytimes.com/2014/07/27/fashion/emoji-have-won-the-battle-of-words.html
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instead of emoticons, thus the number of emoticons being used is falling down. The
study on emoji usage has also been done in a geocentric way. Scholars focused on
the emoji distribution both over the world and in countries. For instance, Ljubešic
and Fišer [5], gathered information about emoji usage distribution by country and
investigated the emoji popularity for the whole world in this geocentric approach.
Then found the list of popular emojis for each region, followed by a clustering of the
countries based on emoji popularity, they found that countries could be classified into
four different group based on the “most distinctive emojis”. Finally, they discovered
a correlation between some emojis and some world development indicators of the
world bank. For example, surprisingly, countries with high life expectancy use “face
with tears of joy” ( ) less often than the countries with low life expectancy.

Aswementioned before, having a network of emojis based on their co-occurrence
may help us analyzing emojis from a different angle. Lu et al. [6] concentrated on
trying to understand human behavior in the context of culture from data gathered
from users of smartphones. Accordingly, the authors correlate the culture index with
emoji sentiments. They considered the cultural index introduced by Hofstede in [4]
that delineated the social differences with six features. For example, power distance
is one of them. This feature expresses how much people with less power accept that
power is distributed unevenly. They discovered that strong power-distance countries
use more negative emotions with emojis.

3 Data Handling and Network Extraction

This is based on the subjects of tweets, we define “subjects” as the theme used for
the collection of theses datasets. In this initial work, we selected two diametrically
different datasets in order to verify possible structural differences. Recall that our
approach argues that the structure may be linked to the subject of the conversation.
We created two emoji networks, one for each dataset. The list of emojis used here
are from https://apps.timwhitlock.info.

The datasets were named WWC and ProgLang. For WWC, the tweets were col-
lected during the 1 mon period of theWomenWorld Cup and Americas Cup (soccer)
held in the USA in June 2015. This dataset contains more than 10 million individual
tweets. The ProgLang dataset contains tweets from September the 20th to November
the 1st in 2016 related to computer programming languages. The dataset contains
approximately 2.5 million tweets.

3.1 Building an Emoji Network from Tweets

The process of creating an emoji network from tweets is quite straightforward. The
general idea consists of sifting through each tweet and looking for emojis in the
dataset. Each tweet generates a k-clique where k is the number of emojis in that

https://apps.timwhitlock.info
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 or even . Now, 

.   

 Copy and  Paste Emoji  No apps required.

I use the chicken emoji  in about 85% of my texts. I think the 

turkey  is my favorite for this week, though. #thanksgiving

Who uses this emoji ?? I miss the one that had this mouth 

 and these eyes  ... where did he go?! Why did he leave?! 
@Emojipedia @GetEmoji

poop and eggplants"  #EmojiCon

Fig. 1 Process describing the extraction of a k-clique from each individual tweets, where k is the
number of emojis in each tweet. The network is undirected

Fig. 2 Result of the
combination of all the
k-cliques in Fig. 1. This
network is undirected and
weighted

2

tweet; Fig. 1 shows the process inwhich networks are extracted from the unstructured
textual data.

Following the generation of these k-cliques, they are combined forming a larger
network. The resulting network for the example shown in Fig. 1 is depicted in Fig. 2.

Note that the network is weighted and the edge ( ) has weight 2 because it
appears in Fig. 1 in two different tweets.

4 Experimental Results

After creating the networks of emojis, we performed an analysis of their structure
using using Network Science concepts, such as degree distribution, edge-weight
distribution, network density, to name a few [3]. We start with general network
characterization but we also discuss similarities and differences between the two
networks we worked on.
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Table 1 Properties of the two networks used in this study. TheWWC network is a lot more dissor-
tative, while the programming languages is neutral

Dataset Max weight Average weight Max node
betweenness

Max edge
betweenness

Assortativity

ProgLang 510 3.73 ( ) −0.066

WWC 71,099 34.08 ( ) −0.193

4.1 Network Characteristics

There are several important characteristics that can be extracted from networks.
Table1 shows some basic network properties for both networks. It also shows the
result of three important aspects in these networks, Node Betweenness: A node has
high betweenness if it happens to frequently be in the shortest path between other
pair of nodes. Edge Betweenness: An edge has high betweenness if it happens to
frequently be in the shortest path between pair of nodes.Assortativity: It is ameasure
of how often a node with a particular degree connects to others of similar degree.
High assortativitymeans that nodes connect to others alike; themetric assumes values
between −1 and +1 for dissortativity and assortativity respectively [12].

We calculated the assortativity of the network; both networks are slightly disas-
sortative meaning that the nodes with higher degree tends to have connections with
nodes with lower degree. The WWC network is more dissortative.

For the analysis of betweenness, Table1 shows the grinning face ( ) has the
highest node betweenness in both datasets confirming the popularity of this emoji
regardless of the subject area. Another interesting result from Table1 is the fact that
the maximum edge betweeeness occurs for the edge linking the smirking face ( )
and squaredChinese-Japanese-Korean character ( ). It is amusing because smirking
face is one of the top favorite emojis in the United States [6], the squared cjk is related
to Japanese characters, and the final of the 2015 world cup was USA against Japan.
It appears then that if one knows the semantics of these emojis, it may be possible
to learn something about the subject area from which they were extracted and this
indications opens a door for possible recommendation systems.

4.2 Degree and Weight Degree Distributions

One of themost common characteristics scientistsmeasure in aweighted network are
both the degree andweighted degree distributions of nodes [2].We tried tofit common
functions found in real-world networks and used log-likelihood ratio—denoted by
L(d1, d2)—for distribution analysis. The positive values of log-likelihood tell us that
the left function d1 is a better fit to the original data, and d2 otherwise.
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Fig. 3 Fitting applied to the degree and weighted-degree distributions for WWC

Table 2 Log-likelihood ratio (logL) for degree, weighted degree and edge-weight distributions for
the WWC network

Functions Degree Weighted degree Edge weight

(d1, d2) logL p-value logL p-value logL p-value

(powerlaw, exponential) −3.96 0.015 173.35 0.000 878.31 0.000

(powerlaw, truncated power-
law)

−3.59 0.007 −2.77 0.018 −5.01 0.001

(powerlaw, stretched exponen-
tial)

−4.25 0.063 −1.98 0.243 −2.44 0.544

(truncated power-law, exponen-
tial)

−0.37 0.289 176.13 0.000 883.32 0.000

(truncated power-law, stretched
exponential)

−0.66 0.509 0.79 0.263 2.57 0.279

(exponential, stretched expo-
nential)

−0.29 0.444 −175.34 0.000 −880.74 0.000

In Fig. 3 we demonstrate several possible fitted functions for degree and weighted
degree distributions of the WWC data set. The red dotted line show the data and the
lines are the functions that could possibly fit the data distribution. A visual inspection
can immediately say that the exponential function is not a good fit for weight-degree
distribution. For a more complete analysis of the goodness of fit, we show in Table2
the log-likelihood ratio and the p-value between different functions with respect to
WWC data set. The results show us that stretched exponential is the best fit function
for degrees.

In addition to the degree analysis, another important aspect of our emoji net-
work are the weights of edges. The edge weight represents how pronounced the co-
occurrence of pairs of emojis are in the dataset. Hence it is important to characterize
this distribution to understand how the values of edges are distributed. Figure4 shows
the fitting of the edge-weight distribution for WWC network. We also preformed a
log-likelihood analysis and found that the best fitted distribution of this is a truncated
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Fig. 4 Edge-weight distribution for the WWC Network

Fig. 5 Fitting applied to the degree and weighted-degree distributions for the ProgLang network

power-law. This means that there are relatively fewer pair of emojis that are popular
and that most pairs are rare.

In this paper we also reconstructed an emoji network from another dataset related
to programming languages. Similar to what we have done for the WWC network,
we analyzed the network degree and weighted degree distributions, as well as the
edge-weight distribution. The degree distributions are depicted in Fig. 5.

Furthermore, Fig. 6 shows the best fitted function for the edge-weight distribution
as being a truncated power-law which again agrees with what was found for the
WWC network.

The fitting of the functions was done again using an approach based on the
log-likelihood ratio. In Table3 we find more details about the pairwise compari-
son between different functions for degree, weighted-degree, and edge-weight. As
one can observe, the best fitted function favors a stretched exponential for degrees,
while for weighted-degree and edge-weight, the truncated power law is clearly the
best fit.
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Fig. 6 Edge-weight
distribution for the ProgLang
Network

Table 3 Log-likelihood ratio (logL) for degree, weighted degree and edge-weight distribution for
the ProgLang network

Functions Degree Weighted degree Edge weight

(d1, d2) logL p-value logL p-value logL p-value

(powerlaw, exponential) −11.08 0.002 1.72 0.347 100.04 0.000

(powerlaw, truncated power-law) −10.30 0.000 −0.17 0.556 −0.52 0.310

(powerlaw, stretched exponential) −11.08 0.002 −0.09 0.782 1.54 0.397

(truncated power-law, exponential) −0.77 0.499 1.92 0.215 100.56 0.000

(truncated power-law, stretched
exponential)

−0.78 0.525 0.08 0.206 2.07 0.105

(exponential, stretched exponential) 0.01 0.922 −1.84 0.055 −98.48 0.000

In summary, in both data sets, we have the same type of distribution for degree,
weighted-degree and edge-weight values of the networks. This is a preliminary work
but it does seem to indicate that structure of emoji usage is not much affected by the
subject of the conversation. Note that this does not mean that the emojis used are
the same, quite the contrary, our work only argues that the networks formed from
the co-occurrence have similar structures but it is very likely that different emojis
occupy similar structural positions in the different networks. Table1 supports this
claim in our two datasets.

5 Conclusion

In this paper we constructed co-occurrence networks from emojis and analyzed their
structure to understand possible regularities. We used two datasets and showed that
although they do not seem to have a structure similar to network of words in written
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language or other common real-world networks, they do have similar structures
among the two datasets.

We are working on larger datasets. In these, wewill focus on community detection
as a way to find family of emojis and whether the families correlate to classes of
emoji (flags, professions, etc.) Furthermore, PageRank could be useful to understand
the importance of emojis to language; for this we need to have a directed version and
we are investigating if the order they appear in the text could realistically represent
a direction. For instance if one writes “I to have a ” or something such as “ is
one of the things I ” have slightly different meanings due to the order the emojis
are used but also the relation to the words in the sentence. A directed network of
usage could capture some of these nuances.
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Characterization of Written Languages
Using Structural Features from Common
Corpora

Younis Al Rozz, Harith Hamoodat and Ronaldo Menezes

Abstract Formore than 5,000years, we have been communicating using some form
of written language. For many scholars, the advent of written language contributed
to the development of societies because it enabled knowledge to be passed to future
generations without considerable loss of information or ambiguity. Today, it is esti-
mated that we use about 7,000 languages to communicate, but the majority of these
do not have a written form; in fact, there are no reliable estimates of how many
written languages exist today. There are three main families of written languages:
Afro-Asiatic, Indo-European, and Turkic. These families of languages are based on
historical family-trees. However, with the amount of data available today, one can
start looking at language classification using regularities extracted from corpora of
text. This paper focus on regularities of 10 languages from the mentioned families.
In order to find features for these languages we use (1) Heaps’ law, which models
the number of distinct words in a corpus as a function of the total number of words
in the same corpora, and (2) structural properties of networks created from word
co-occurrence in large corpora for different languages. Using clustering approaches
we show that despite differences from years of being used in separate countries, the
clustering still seem to respect some historical organization of families.
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1 Introduction

The development of society cannot be said to be caused by the advent of writing
but writing is certainly linked to modern life as it only appeared around 5,000years
ago. According to Coulmas [15], writing is the most important “sign system” ever
invented. It is quite difficult to imagine our society thriving without books, research
articles, instruction manuals, lecture notes, etc. The importance of writing is even
recognized bymany cultures and often its invention is attributed to divine intervention
such as god Ganesh in India, or the god Thoth in ancient Egypt.

Writing enables the transmission of information between many generations with-
out any loss of information; it broadens the range of communication of individu-
als. Today, it is estimated that humans use about 7,000 languages to communicate,1

although this number is in decline as languages become extinct.Moreover, themajor-
ity of these do not have a written form; in fact, there are no reliable estimates of how
many written languages exist today. Linguists have been studying languages and
how they should be organized for a long time [11], however most classifications are
based on historical or phonetic approaches. There are many families of languages,
and few are well known such as: Uralic, Afro-Asiatic, Indo-European, and Turkic.
Figure1 shows a sample of the Indo-European set of languages.

The advances in Network Science and Natural Language Processing (NLP) in
recent years hasmotivated researchers to utilize both disciplines together in language
classification.

Nowadays studies can be done quantitatively and not only qualitatively. It is
quite common to have data regarding any subject of interest. In the context of text
analysis, the studies range from discovering language structure [30], classification
of languages into families [6, 19, 23, 24], word tagging problems [10], machine
translation [2], summarization systems [3], to the improvement of search engines
and information retrieval (IR) [28]. Although we review a few of the related work in
Sect. 2, an interested reader can find a deeper analysis of the literature in [30].

The understanding of structural language similarities can lead to metrics to evalu-
ate the quality of one’s writing, translations, and even classification of literary styles.
It is quite possible that different styles present different writing structures. In this
work, we show that even without semantic analysis of the text itself, and focusing
solely on the structure built from syntax, we can reveal that characteristics of many
languages are common. More specifically, we used statistical measures of a word
co-occurrence networks as well as regularities extracted from parameters of Heaps’
law to classify 10 world languages. The classification process was performed using
two methods: K-Means, and Hierarchical Clustering.

1https://www.ethnologue.com.

https://www.ethnologue.com
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Fig. 1 Part of the family tree of Indo-European languages (adapted from [11])

2 Related Work

Many researchers have investigated the possibility of using statistical and mathe-
matical modeling to understand regularities in written languages. Choudhury and
Mukherjee [13] discuss many ways in which networks can be created from text but
they all fall into two main categories: lexical networks and word co-occurrence net-
works. The first category is concerned with cognitive systems and Psycholinguistics
studies [7] and can be further classified into phonological [4], semantic [32], and
orthographic networks [14]. Phonological networks can be a network of phonemes
[27] or syllables [29]. The second type of language network can be further categorized
into co-location [25] and syntactic dependency networks [22].

The attempt to use language structure as a classification tool is not entirely new.
In fact, Song [31] discussed the concept of linguistic typology as a field which looks
at the comparison of languages (search for similarities and differences) across all
levels of language structure such as syntax, semantics, morphology, and phonology.
Three types of linguistic typology exist [8]: qualitative, quantitative, and theoretical.



164 Y. Al Rozz et al.

Liu and Xu constructed syntactic networks for 15 languages using word and
lemma form. They analyzed seven network parameters to classify languages and
found that word-formed networks are better than lemma networks in classifying
languages [24].

Liu and Cong [23] created co-occurrence networks from a text in 14 different
languages and used complex network parameters for their classification using hier-
archical clustering. Ban et al. [6] built a co-occurrence network using text from five
books for three languages and used network measures to find the similarity and
differences between those three languages. Gao et al. [19] constructed six directed
and weighted word co-occurrence networks based on 100 reports from the United
Nations. Then they compared the network measures but they did not perform any
clustering.

3 Methodology

3.1 Data Curation and Model

The data was collected from the Leipzig Corpora Collection [20]. The languages
chosen for this work were English, Arabic, Russian, Italian, Spanish, French, Ger-
man, Turkish, Dutch, and Danish; they were chosen to represent three main language
families, namely Afro-Asiatic, Indo-European, and Turkic. The text corpus for each
language was constructed from Wikipedia and news pages to ensure some vocabu-
lary diversity and a good representation for each language. The size of the corpus
for each language is consistently made of one million sentences. The entire text was
converted to lower case, then punctuation and special characters were removed. This
work looks at language structure for meaningful words and sequences; stop words
(e.g. prepositions, articles, etc.) were removed from the text. These so-called func-
tional words can skew the statistical representation of the words in particular in the
context of network science (described later).

3.2 Feature Extraction

One of the best-known characteristics of vocabulary is the Heaps’ law (also known as
Herdan’s law) introduced in the 1960s [21] which describes the vocabulary growth
in texts [18]. The law is defined as:

VR(n) = Knβ, (1)

where VR is the number of vocabulary words in the text of size n, and K and β are
parameters determined experimentally.
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Fig. 2 Fitting of Heaps’ law for the 10 languages used in this study (and the value of K and β

respectively)

Table 1 From top to bottom and from left to right the languages in Fig. 2. The values of K and β

from Eq.1 is shown

English Arabic Russian Italian Dutch French German Turkish Danish Spanish

K 34.24 275.01 146.79 64.46 23.95 49.87 27.32 57.30 21.84 55.95

β 0.58 0.42 0.50 0.55 0.63 0.56 0.64 0.58 0.63 0.55

Heaps’ law represents the vocabulary richness of a certain language, a large text
corpus of 10 million words was used for the fitting of the Heaps’ law parameters
Fig. 2. These parameters are used as a part of the features vector that will be used to
characterize the 10 languages used in this work.

Table1 shows the values of K and β for the fitting in Fig. 2. For English, the
values of K are expected to be between 10 and 100 and the values β between 0.4
and 0.6. Our results agree with this expectation but the values of K for Arabic and
Russian is greater than 100.

After the fitting of Heaps’ law to our corpora, we set to create co-occurrence word
networks. Our networks are simple and link words in each corpus if they are adjacent
to each other in text. Hence, nodes represent unique words and edges represent the
connection between each two consecutive words. The edges’ weights represent the
frequency in which the two words appear next to each other. Table2 shows the size
of each network in terms of number of nodes n and number of edges m.

The generation of the networks gives us the structure and the values for n and
m. Note however from Table2 that for all languages the values of n and m are
very similar which indicates they are not good features to let us characterize the
languages. However, there are other structural characteristics that can be computed
from the networks.
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Table 2 Size of the word co-occurrence networks for all 10 languages

English Arabic Russian Italian Dutch French German Turkish Danish Spanish

n 18,986 29,995 37,341 31,361 30,475 30,248 39,098 34,945 30,329 29,999

m 77,989 81,046 93,587 94,494 94,427 94,611 95,774 89,385 88,985 94,919

The average degree 〈k〉 is generally provided as an information item. These net-
works tend to display a power-law degree distribution and the average degree does
not represent the distribution well. The highest average degree was 8.21 for English
and the lowest was 4.89 for German. The reason for this is because the German
language’s vocabulary is much bigger than that of English [9].

The clustering coefficient of a network (C) is given by the average clustering of
the clustering coefficients of each node (Ci ) which (informally) captures the extend
to which the neighbors of a node i are connected between themselve, this can be
calculated using the equation below:

Ci = 2Ei

ki (ki − 1)
, (2)

where, Ei is the number of links that exist between the neighbors of node i , and the
denominator number of possible links that could exist between nodes i .

Russian andArabic have the lowest clustering coefficient: 0.012 and 0.019 respec-
tively; English andDanish score the highest: 0.047 and 0.041 respectively. This is due
to the fact that Russian and Arabic are morphological languages, which means that
they have more word forms than analytic languages such as English and Danish [1].

Another vital characteristic for networks analysis is the average path length. We
know that social networks have highC and low average path length (�) computed as:

� = 1

N (N − 1)

∑

i �= j

dij, (3)

where di j is the distance between nodes i and j . Russian has the longest value for
� with 4.91 steps, while the shortest one was 3.82 for English. Again, this happens
because morphological languages like the Russian and Arabic tend to have a longer
path than analytic languages like English and Dutch [1].

Networks can be divided into consistent groups of nodes called communities [16]
whose density of edges within the community is higher than outside it. There are
many algorithms in the literature proposed to find these communities but one of the
classical ways is to calculate the modularity of the network (Q). We computed the
value of Q for all 10 networks using the approach proposed by Newman [26]. Based
on this metrics, Russian has the largest modularity value of 0.481, while the lowest
value was 0.379 scored by English.
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Fig. 3 Fitting of the degree distribution

The last two parameters, αd and αs were obtained by fitting functions to weighted
degree distribution of the network and size distribution of communities of words. As
shown later in Table3, the values of αd are quite close to what is expected for real-
world networks (2 ≤ α ≤ 3). We believe the reason for the lower exponent values
was the removal of the functional words. Figure3 shows that a power law function
(i.e. P(k) ∼ kα , where k represents the node degrees) has the best fit when compared
to other common functions of real-world networks.

Similarly, the αs value for the distribution of community size shows a good fit with
a power law function, which is expected also in real-world networks with community
structure; according to Arenas et al. [5] the distribution of community sizes in real
network appear to have a power law form P(s) ∼ sα . Both exponents have been used
as part of the feature vector representing the languages. Figure4 shows the fitting for
the community size for all 10 languages and Table3 shows the values for αs .

For each of the networks we built, we generated random networks with the same
size and using the Erdös-Rényi model. The purpose was to analyze the clustering of
our word networks in comparison with a random network. The average clustering
coefficient values for the random networks were much smaller than those in the word
networks. For example, in Italian, the average clustering coefficient for our network
is 0.022 while in the random network was 0.00019. Also, the average path length (�)
for the 10 languages was between 3.8 and 4.9 which means our networks appear to
be small-world [33].

After all the analysis we had an 8-dimension feature vector for each language as
depicted in Table3. In the next section, we will use these vectors to do a clustering of
the languages leading to a classification of them based on their structural similarities.
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Fig. 4 Fitting of the size distribution in the power law package

Table 3 Each line in this table represent 8-dimension feature vector for the language shown in the
first column

Languages β K 〈k〉 C � Q αd αs

English 0.582 34.242 8.215 0.047 3.824 0.379 1.827 2.070

Arabic 0.421 275.017 5.404 0.019 4.454 0.466 1.508 3.937

Russian 0.502 146.793 5.012 0.012 4.910 0.481 1.660 2.037

Italian 0.550 64.465 6.026 0.022 4.280 0.405 1.751 1.800

Dutch 0.631 23.950 6.197 0.026 4.194 0.388 1.725 3.186

French 0.567 49.879 6.255 0.023 4.213 0.385 1.745 2.774

German 0.647 27.322 4.899 0.023 4.471 0.464 1.689 2.194

Turkish 0.581 57.304 5.115 0.023 4.430 0.471 1.716 2.223

Danish 0.636 21.849 5.868 0.041 4.200 0.438 1.740 2.761

Spanish 0.557 55.955 6.328 0.023 4.239 0.389 1.730 1.934

4 Results and Discussion

Wehave executed clustering using two known algorithms:K-Means andHierarchical
Clustering. Recall that the purpose of this work is to classify languages according to
the features extracted from Heaps’ law and network properties.
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4.1 K-Means Clustering

K-Means is a fast and widely-used clustering algorithm that works by minimizing
the sum-of-squares distance of the data points within the cluster. The number of
clusters must be specified in advance, so two methods were used to find the optimal
number of clusters. The first one is the silhouette method; it provides a visual aid in
determining the number of clusters. The silhouette coefficient which ranged between
−1 and 1 indicates the closeness of each data point in a cluster to other points in the
neighboring clusters. After that, we used the elbow method to validate the number
of clusters found in the silhouette method.

Due the high dimensionality of the feature vectors, we run a Principle Component
Analysis (PCA) to reduce the dimensionality of the features vector to two dimensions
so that the resulting K-Means clusters can be visualized. We also wanted to indepen-
dently check whether the parameters extracted from the Heaps’ law were providing
extra information to the clustering of the feature vectors. The silhouette method was
applied with and without the two Heaps’ law parameters (K and β). In the first case,
the optimal number of clusters was three. When the Heaps’ parameters were added,
the silhouette plot suggests a number of clusters between four and five as a good
choice (Fig. 5). These results indicate the importance of the Heaps’ parameters to the
process of the language classification.

The elbow method was used to validate the optimal number of clusters found by
the silhouette method. The elbow plot suggests an optimal number of three clusters
when the two Heaps’ parameters are not considered, which agreed with the results
of the silhouette method. The result of the K-means clustering for this case was

Fig. 5 Silhouette analysis on K-Means clustering where the value of the Heaps’ law parameters
were included after the PCA. The same analysis has been done for the case without the use of the
Heaps’ law parameters which we did not include a picture due to space limitations in the paper
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(a) (b)

Fig. 6 a K-means clustering after PCA and using Heaps’ law parameters and network parameters.
b The elbow rule shows that four clusters appear to be the best choice for the K-means.

that Italian, Spanish, German, Russian, and Turkish clustered together. The second
cluster contains French, Danish, Dutch, and English, while Arabic appeared in its
own cluster.2 When adding the parameters of the Heaps’ law, the elbow of the curve
indicates an optimal number of four clusters (Fig. 6b). In this case, Italian, Spanish,
French, Danish, and Dutch were clustered together. The second cluster contains
Russian, German, and Turkish, while English and Arabic separated into their own
clusters (Fig. 6a), which also supports the results of the silhouette method indicating
the importance of Heaps’ parameters to the classification process and the fact that
the complete set of parameters offers a higher granularity for the clustering. These
results match, to a certain degree, the linguistic typology classification of languages
into genetic families as theArabic language belongs to theAfro-Asiatic family, while
the rest of the languages belong to the Indo-European Family.

An interesting finding from the clustering process is Turkish, which belongs to
the Turkic family, was clustered with the Indo-European Family. As the aim of this
work is to classify languages based on lexical rather than syntactical perspective,
the removal of the functional words (stop words) has affected the structure of the
languages networks [12]. This in turn has reduced the syntactic barriers between
languages belonging to different families. The addition of the Heaps’ law parameters
enforced the separation of the languages based on their vocabulary richness and
lexical structure represented by the network statistics.

In light of the previous assumption, the development of languages seen in the
modern age, caused by the effects of technology, globalization, andmigration among
other factors, has had on effect on languages classification. For the case of the Turkish
language, as of the year 2011, three million Turkish people were living in Germany,
representing 3.6% of the German population [17].

2We again decided to show the charts only for the case with the Heaps’ parameters due to space
restrictions.
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(a) (b)

(c)

Fig. 7 Hierarchical clustering of the 10 languages used in our study. a Shows the classification
using the network parameters as well as the Heaps’ law parameters while b shows the classification
using Heaps’ law parameters and c network parameters separately

4.2 Hierarchical Clustering

The results of K-means clustering can only classify languages from the top level of
the family tree. To find the relationships between languages in a more structured way
we applied a hierarchical clustering to the language feature vectors. In this case, we
decided to also test whether the Heaps’ law features alone would provide a similar
classification to the classification based on network features alone. Figure7b show
the classification using only the Heaps’ parameters while Fig. 7c shows the same
results using only network parameters. Although both classifications have interesting
characteristics that resemble traditional language classifications, the combination
of both features in Fig. 7a yields a classification that appears to be enhanced. For
instance, the distance between the Turkish and German languages was increased.

5 Conclusion

The understanding of languages and their characterization has again become a topic
of interest for the scientific community. Studies using large amounts of data may
be able to provide a different view of how languages relate to one another and see
possible trends or influences of one over the other.

In our study, we look at the possibility of characterizing written language solely
from the point of viewof structural features.We concentrated on two class of features:
Heaps’ law,which looks at richness of vocabulary in a language, andNetworkScience
features extracted from the construction of word co-occurrence networks. In the
process of extracting network features, we also demonstrated that these networks
exhibit both scale-free and small-world properties.
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We used K-Means and Hierarchical Clustering together with the silhouette and
elbow methods to identify the optimal number of language clusters to the dataset we
have. We showed that the hierarchical clustering distinguish relationships between
languages sub-families, while K-Means clusters languages based on their main
genetic families (Proto-Families). We also showed that the Heaps’ law parameters
enhanced the classification process by distinguishing languages based on their vocab-
ulary richness.

Following this work, we would like to go deeper in the characterization of lan-
guages by augmenting the number of languages we use from 10 to around 30 or
40 languages. The difficulty is to find good corpora that includes this number of
languages. Also, we believe structural analysis of written language could be used
in identification of literary styles or even author analysis. It would be interesting to
perform a similar analysis for several languages and understand if authors have a
structural fingerprint in their writing style that can be identified and whether this
fingerprint resist the translations of their texts.
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Optimal Information Security Investment
in Modern Social Networking

Andrey Trufanov, Nikolay Kinash, Alexei Tikhomirov,
Olga Berestneva and Alessandra Rossodivita

Abstract For further clarification of methodological issues of the social network’s
information security we stratified the systems that support human relations into three
components of different nature: computer, communication and social ones. A secu-
rity model for a network component is developed using consideration of security for
individual nodes. Modeling of attacks on networks in whole is analyzed taking into
account specification of network security level. The results for real computer, com-
munication and social entities supported that for a network attacked intentionally it is
better off allocating the investment proportionally to degree centralities of the nodes
rather than uniformely. The analysis further hints that to make investment justifiable
to protect a network, its proprietor should spend lesser than to reach approximately
0.4 of network security level.

1 Introduction

Practical social networking has been observed almost as long as societies themselves
have existed, but the fantastic possibilities of modern technologies made a new scope
on the issue to recognize and exploit pertinent links comprehensively [1] and thus to
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Fig. 1 Social network
compositions (SNC)
stratified into of S-, C-,
and P-components

reveal details of human behavior from huge amount of tangled data [2–5]. Complex
networks [6] have been successfully applied for studying not only separate networks
butmultilayer [7, 8] and interconnected entities of diversemulticomponent structures
[9, 10]: all these are covered with general term multiplex networks. In the current
study, the modern social network compositions (SNC) include social networks (S
networks) per se, systems of information sharing (communication components, C-
networks), and tool platforms providing the processes of sharing (P-networks). Gen-
erally, each component of these socio-cyber systems has non-trivial characteristics
to be in focus of many explorers [11–13]. Following the concept of [14], we suppose
that actors from each of S-, C-, and P-ensembles, integrated in triples—“bouquets”,
form so-called combined (often interdependent) stem networks (Fig. 1).

In general single actor multiple nodes belonged to different layers in multiplex
networks might form a stem. However, for this study there is no necessity to consider
more than one layer case for each of the S-, C-, and P-networks. Thus such actors as a
computer device, information resource, and individual comprise a bouquet of social
network composition. Traditionally a separate complex network is described in terms
of graph theory. Then, in graph Gq of q component of social network composition

Gq = (
Vq,Eq

)
(1)

where Vq—a set of nodes (vertices), Eq—a set of links (edges), and a set of Vq—
includes all participants of information sharing processes in the component

q = {S,C,P} (2)

As a rule for any network structure, four main topological risk problems are
claimed [15]: (a) disintegration under random or coordinated attacks on complex
networks; (b) cascading failures; (c) congestion; (d) spreading processes ofmalicious
activities.

Components of social network composition can be also a subject to all these
four troubles which involve breaches of information security and distortion of such
properties as confidentiality, integrity and availability. Gordon and Loeb [16] and
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Huang with coauthors [17] in their formal models considered economic aspects of
information security and revealed features and importance of optimal investment into
information security. Helbing in [18] stated topological measures to mitigate system
risks. Nevertheless, researchers have been faced so far by a number of the intricate
problems in information security of social networking compositions.

2 Model of Social Networking Security

Topological Risk. Probabilistic nature of the processes that bring damages allows
to define risk, R—the main security measure—as [19]: R = P × D, where P—
probability of the successful attack,D—damage caused by impact of an attack. In the
proposedmodel, similar to [20], the attacks are revealed through the detailed descrip-
tion of triplets—threats, vulnerabilities and counter-measures for separate nodes. It
should be noted that network risk, threats, vulnerabilities, counter-measures and
losses generally have structure-dependent character. As a classic attack on network
structure is focused on removal of nodes which is a result of coordinated threat, one
has for topological riskR:

R = PtN × PvN × (1 − PcN ) × LN (3)

herePtN ,PvN , 1 − PcN corresponding probabilities of structural threat, vulnerabil-
ity and overcoming of counter-measures, LN—cost of topological damage, caused
by attack on node set Na ∈ V .

Metrics of Structural Behavior in Protected Network. Within the research net-
work disintegrations—structural losses L, are estimated by calculations of a portion
g of the nodes disconnected with giant cluster after successful attacks which were
carried out against targets—nodes:L = 1 − g. In case of emerging threats, with topo-
logical features close to real, the model gives means to investigate network system
risks in more complex environment, if compare to traditional one. We will note, the
approach allows varyingPti × Pvi through the strategy of a threat source and data
errors in topology of the network. The values ofPvi = 1 − Pci, give probabilities of
overcoming counter-measures—as protection of a network node. So, if follow [16],
the probability Pvi of a successful attack on a node i is connected with the invest-
ment in line with power expressions. Contrary, in the study it was suggested that
Pvi decreases exponentially with increasing of protection “wall thickness” d. This
thickness is defined by a traditional package of security measures and is connected
with the security investment Fi. Thus di ≈ iFi, and in this case:

Pvi = exp (−di) = exp (μ × Fi) (4)

where μ - a coefficient which sets efficiency of financial means.
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Security Level of a Protected Node. Security level of a separate element i of a
network is defined by the value:

sLi = (1 − Pvi) = 1 − exp (−μ × Fi) (5)

Security Level of a Protected Network. We underline one should distinguish
security level of a separate node with that of a network in whole with security
investment sumF = ∑

n Fi, n—is power of a setV . It seems reasonable to determine
axiomatic parameter security level of a network structure- by probability that any
of elements won’t be successfully attacked. If the probability to choose an attacked
element i is 1/n then:

SL = 1 −
∑

n

Pvi = 1 −
[
∑

n

exp (−μ × Fi) /n

]
(6)

3 Findings

Analysed networks In this paper we study some networks of S-,C-, and P-character
in the field of coordinated (i.e. intentional) threats to understand their information
security investment sensitivity. For this research we concentrated our choice on the
following real networks (see Table 1):

m is number of links, 〈k〉—average connectivity of nodes, γ connectivity degree
in a power distribution of node connectivity.

The fact that the social networking components are organizationally inclined to
protect “important” nodes and links were taken into consideration. For the modeling
research two protective strategies are considered.

Protective Strategy 1. All nodes are protected (financially) equally: Fi = F1i =
Const1 = 1/n

Protective Strategy 2. In practice In practice nodes are protected unequally.
Because the strategy of security determines distribution of financial resourses

Table 1 Social networks (S), communication networks (C), and networks of computer platform (P)

Type Code Name n m 〈k〉 γ Reference

P CA CAIDA 26,475 53,381 4.0326 ∼2 [21]

P AS Route views 6,474 13,895 4.2926 ∼2 [21]

C HA Haggle 274 28,244 206.16 1.5 [22]

S FB Facebook 63,731 817,035 25.640 ∼3 [23]

S AP Astro Physics
collaboration

18,772 198,110 21.107 ∼3 [21]

S JZ Jazz musicians 198 2,742 27.697 5.3 [24]
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between nodes, we investigated reaction of networks to threats in case when invest-
ment into protection of nodes is proportional to their connectivities. The total volume
of investment into protection is the same, as for Strategy 1:

F2i (ki) = Const2 × ki/μ
|V |∑

i=1

F1i =
|V |∑

i=1

F2i (ki) = F (7)

It was supposed, as before, that the offensive party carries out the intentional
successive choice of targets-nodes with highest connectivity. Certainly, a violator
plans actions on disintegration with expectation of maximum effect at a minimum
of expenses. Anticipating these threats, the defensive party builds protection, putting
investment into its means so that not to exceed limited loss.

Comparison of Structural Loss in S-, C-, and P-networks. P-components of
social network compositions-computer networks CA and AS both have properties
of scale-free networks with power degree ∼2, and low value of average connectivity
∼4. We find that removal more than 1% of nodes causes essential damage to these
unprotected network structures. It is possible to expect that S- andC-networks, which
possess greater value of average connectivity, also have smaller structural vulnera-
bility. Dependences of structural loss L in real S-, C-, and P-networks countering to
destruction of 10% nodes are presented in Fig. 2. Values of the necessary financial
volumes of protection measures which are uniformly distributed among nodes (in
1/μ units) to provide necessary network security level SL are manifested as well.
Results of calculations confirm that intentional threats of SNCdisintegration are espe-
cially dangerous concerning a computer component (CA and AS networks). Loss as
functions of security level for social networks FB, AP and JZ has similar behavior.
Communication network HA demonstrates its intermediate character. Estimations
of topological loss and protection costs for networks with 20% of nodes—targets are
given on Fig. 3. Those have the distribution of protection investment proportional to
node degree (Strategy 2). Comparison of results shown on the figures indicates that
the strategy with protection of nodes in proportional dependence on connectivity

Fig. 2 Structural loss in
network security (L, solid
line) and security investment
(F, dashed line) at different
network security level (SL)
(case of equally protected
nodes)
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Fig. 3 Structural loss (L,
solid line) and financial
volumes (F, dashed line) for
network protection as
functions of network security
level according to Strategy 2

(i.e. Fi ∼ ki) is more effective, than the strategy with uniform distribution of invest-
ment. And it is clear as counter-measures reduce probability of inactivation of the
nodes representing the main targets for the classical strategy of coordinated threats.
Also it should be underlined that one might observe a limit of network security level
which is of sense to reach. The optimal value of the SL never exceeds 0.4 for both
strategies of network protection (see Figs. 2 and 3).

4 Conclusions

The undertaken research is concluded to consider contemporary social networking
constructions as multi-structural aggregates composing of: computers, communi-
cations and social networks. The model and the program tools are developed for
estimations of topological risks for the networks which elements nodes—are pro-
vided with protection depending on the volumes of financing. A security description
for a network is done using consideration of threats, vulnerabilities and countermea-
sures for individual nodes. The concept of network security level is designed on the
basis of security level for its separate elements. Several representatives of real net-
works of different nature that support social relations are selected to simulate their
exposition to structural threats and pertinent protections of nodes and the networks
in whole. Information security investment analysis in case of real versatile examples
of social networking compositions is made. The dependencies of losses caused by
possible structural attacks and costs of protection for these selected networks are ana-
lyzed. Two different strategies of protection financing are taken into consideration
to simulate the process. The first strategy is corresponded to a uniform distribution
of expenses among protected nodes. Another one is implied dividing the budget
proportionally to node connectivity (more connections more investment). The cal-
culations support the latter as the more effective option. We show that among social
networking components computer networks manifest their greatest sensitivities to
the most dangerous coordinated threats of disintegration. In addition, it is found that
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network security level with optimal investment does not exceed 0.4 ∼ 1/e for both
strategies of network protection. It seems tempting to compare this limit value with
the Gordon-Loeb rule that the optimal amount of investment to spend on information
security is lower than 0.37 ∼ 1/e of the expected loss following to a security breach
[16]. As a result, the proposed model and its tools will allow to cover effectively
topological problems of information security economics within the framework of
the modern network information systems.
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Emergence of Social Balance in Signed
Networks

Andreia Sofia Teixeira, Francisco C. Santos and Alexandre P. Francisco

Abstract Social media often reveals a complex interplay between positive and
negative ties. Yet, the origin of such complex patterns of interaction remains largely
elusive. In this paper we study how third parties may sway our perception of others.
Our model relies on the analysis of all triadic relations taking into account the influ-
ence and relations with common friends, through large-scale simulations. We show
that a simple peer-influence mechanism, based on balance theory of social sciences,
is able to promptly increase the degree of balance of a signed network—with bal-
ance defined as the fraction of positive cycles—irrespectively of the network we start
from. Additionally, our results indicate that the tendency towards a balanced state
also depends on the network connectivity and on the initial distribution of signs.

Keywords Balance theory · Network analysis · Social networks

1 Introduction

Signed networks are networks where the links have a sign expressing some positive
or negative tie between individuals [1–8]. It is well-known that in social networks
one can be friendly or unfriendly with others and that this can change over time.
Moreover, individuals also shape and reshape their social environment themselves
and are responsible for the specific features that characterize their social network
[9–12]. Social balance theory, a concept developed by Heider [13], and later adapted
to a graph-theoretic model by Cartwright and Harary [1], states that in a triad, the
relations of friend-enemy tend to converge to two balanced states: “the friend of my
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friend is my friend” and “the enemy of my enemy is my friend”, otherwise there will
be tension between them.

In 1946, Fritz Heider published an initial study about how affective ties—as to
like, to love, to esteem, etc., and their opposites—would influence interpersonal
relations [13]. These simple cognitive configurations between people and objects
led to the conclusion that a triad is balanced if the three links are positive, or if
two are negative and one positive, otherwise tension would emerge. This was a
primary approach to social balance. Later, Cartwright and Harary, extended this
notion of balance to a graph—structural social balance—and used the concept of
signed graphs, where the ties between the individuals have a positive or a negative
sign, to express those kind of relations [1, 2]. They extended the concept of triad
to a cycle, allowing cycles with more than three edges, and defining the sign of the
cycle as the product of the signs of its edges. A cycle is then considered balanced if
the product is positive. They also introduced the concept of degree of balance of a
signed network as the ratio of the number of positive cycles to the total number of
cycles. Let G be a signed graph, c(G) be the number of cycles of G, c+(G) be the
number of positive cycles of G, and b(G) be the degree of balance of G. Then:

b(G) = c+(G)

c(G)

In our work we use this measure applied to triads, that is, cycles of size 3.
Following the work of Cartwright and Harary, in 1967, Davis [3] studied the

relation between clustering and structural balance in graphs. The main question was
about what conditions were necessary and sufficient for the graph to be separated
into two or more subsets of nodes, where each positive edge would link two nodes of
the same subset and a negative edge would link nodes from different subsets. Those
conditions were: a signed network is clusterable if and only if the network does not
contain any cycle with exactly one negative link. This introduced the notion of weak
balance theory as it allows for cycles/triads to have all signs negative, meaning that
“the enemy of my enemy can be an enemy”, allowing more than two subsets to be
created. The main conclusion was that all balanced graphs are clusterable.

Global structural balance has also been studied. Doreian et al. [4] created an agent-
based simulation model based on two levels: a micro-level that explores Heider’s
theory at an individual level, to minimize individual tension; a macro-level that
explores Cartwright andHarary’s at a group level dynamics. This simulationmodel is
only for small groups dynamics as the designed variables have complicated impacts.
Facchetti et al. [7] implemented an algorithm for ground-state calculation in large-
scale Ising spin glasses, to compute the global level of balance in large undirected
networks. And recently Estrada and Benzi [8] published a study about structural
social balance in directed networks.

In this work, we evaluate how the relations between individuals change over
time, based on the relations with common friends, and if those changes converge to
a balanced social structure. We present a simulation model that, at each iteration,
evaluates if the sign between two individuals must change tominimize tension across
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Fig. 1 Social Balance Theory, by Cartwright and Harary [1]. The triads are considered balanced
if the product of the signs are positive. Davis introduced the weak balance structure that considers
all triads but the second to be balanced

triads. A triad is considered balanced if its edges have the signs {+, +, +} or {+, −,
−}, meaning that the product of its signs has to be positive—see Fig. 1. We consider
that the polarity of the relations is reciprocal, considering only undirected networks.
We run our simulations with the original distribution of signs of each chosen dataset,
but also with a random distribution of the signs, both in the same proportion as in the
original network and in equality proportion of positive and negative links.We observe
that the evolution of the signs between individuals involved in triads converge towards
an increase of structural balance, minimizing the tension between the individuals,
but also that the final dominant triads depend on the initial distribution of the signs.

2 Methods

Let G = (V, E) be an undirected and weighted graph (signed social network),
with n = |V | vertices (individuals) and m = |E | edges (ties), and with edges
weight between two individuals (a,b): w(a, b) = w(b, a) = 1, if it is a positive tie,
w(a, b) = w(b, a) = −1 if it is a negative tie. For each pair of individuals with
friends in common, our model will count how many of those relations contribute
with a positive or negative sign, based on balance theory.

Looking into the example illustrated in Fig. 2: given a network let us consider
individuals A and B that have C, D, E, F,G, H as friends in common. We now
evaluate if the product between w(A,C) and w(C, B) is positive or negative, and the
same for the other neighbours. Because we want to reduce tension in triads, the sign
between individuals A and B will depend on a majority count between positive and

Fig. 2 What will be the sign
between A and B? It will
depend on the majority of the
signs of the products of each
vertex A and B with each
neighbour
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negative products of the other relations in the triads related to that link. Given the sign
between individuals A and B, w(A, B), it will only be updated if the majority of the
counts of the products have an opposite sign of the present sign. Illustrating a little
bit more: if w(A,C) = −1 and w(C, B) = −1, the product is equal to 1, so if we
want the triad to be balanced we count this as a positive contribution, i.e., if the sign
only depended on this triad it would be positive. If w(A,C) = −1 and w(C, B) = 1,
the product is equal to −1, so if we want the triad to be balanced w(A, B) would
have a negative contribution in the count. If the sign only depended on this triad
w(A, B) would be negative. We remind that a triad is balanced if the product of the
signs of its edges is positive. We do this count for each neighbour in common. In
other words: w(A, B) will be the sign corresponding to the majority of positive or
negative contribution counts.

The algorithm runs in two parts, as follows:
for each user u do

for each neighbour n do
collect the friends in common

for each friend in common c do
if the product between w(u, c) and w(n, c) == 1 then

pos(u, n) ←− pos(u, n) + 1
else

neg(u, n) ←− neg(u, n) + 1
end if

end for
end for

end for
for each edge (a,b) do

if pos(a,b) == neg(a,b) then
there is no update and w(a, b) stays the same

end if
if pos(a,b) > neg(a,b) then

w(a, b) ←− 1
else

w(a, b) ←− −1
end if

end for

In the end of each iteration—an iteration corresponds to the execution of both
parts—we count the proportion of each four possible triads and calculate the degree
of balance of the network. The simulations run until there are no more changes in
the edge signs or until it reaches a given threshold on the counts changes. Note
that changes are independent, i.e., they are synchronous and do not depend on other
possible updates.We stop the simulationwhen either the average of the fraction of the
edges signs changed in the last two iterations is below 10−2, or its difference for the
last three iterations is below 10−4. These thresholds were determined experimentally.
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Table 1 Networks used in the simulations

Network # Nodes # Edges % Edges + % Edges − # Triangles

HighlandTribes 16 58 50.00 50.00 68

Epinions 131 828 708 507 83.25 16.74 4770102

Slashdot 82 144 498 532 76.41 23.59 571127

3 Results and Discussion

In these experiments we used well-known signed social networks: Highland Tribes,
the signed social network of tribes of the GahukuGama alliance structure of the
Eastern Central Highlands of New Guinea, from Kenneth Read (1954). The network
contains sixteen tribes connected by friendship and enmity1; Epinions, a who-trust-
whom online social network of a general consumer review site Epinions.com2; and
Slashdot, a website which allows users to tag each other as friends or foes.3 We also
created cliques with different sizes just to compare complete connected networks
with Epinions and Slashdot that are large-scale sparse networks. Because Epinions
and Slashdot datasets are directed networks, we performed some operations in these
networks to make them undirected. We analysed each network and if some rela-
tion had a conflict—one edge in one direction positive, and in the other direction
negative—we removed that edge, keeping only the relations that are reciprocal.

In Table1 we can find the characteristics of each network. We processed each
social network in three different ways: (1), we started by running the simulationswith
the networks as they were after removing conflicting edges; (2), for each network
we randomly distributed the signs of the edges in the same proportion as in the
original network; (3) for each network we distributed randomly and evenly positive
and negative signs, i.e., 50% of positive edges and 50% of negative.

In Fig. 3 we present the results of the simulations. It contains the initial and
final distribution of the four possible triads and of the degree balance. As we can
observe, the initial distribution of triads in the Random and in the Evenly networks
are very different when compared to the original. Even when maintaining the initial
proportion of positive and negative links, this means that there are some triads that
are overrepresented in the original network, which indicates that the way signs are
distributed initially has direct impact in the structural balance.

We can observe that having a dominant quantity of positive or negative linksmakes
a network to converge to a dominant all-positive triads: (1) if individuals like each
other and the friends in common also like each other, then there is no social reason
to change; (2) if individuals do not like each other or the friends in common, then
there are triads in tension and the update rule forces signs of all-negative triangles

1http://konect.uni-koblenz.de/networks/ucidata-gama.
2https://snap.stanford.edu/data/soc-sign-epinions.html.
3https://snap.stanford.edu/data/soc-sign-Slashdot090221.html.

http://konect.uni-koblenz.de/networks/ucidata-gama
https://snap.stanford.edu/data/soc-sign-epinions.html
https://snap.stanford.edu/data/soc-sign-Slashdot090221.html
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Fig. 3 Simulations results. Each pair of columns corresponds to the initial and final distribution
of each triad, except for the last pair which represents the initial and final degree of balanced of
the network. As seen in Fig. 1, only the first and third triads are considered balanced. Random
means that the signs were distributed randomly in the same proportion of the original network and
Evenly means that the signs were distributed randomly with 50%–50% of positive-negative signs.
HighlandTribes does not have Evenly because the distribution is already 50%–50%. We omitted
the size of the clique, but we used sizes between 8 and 64 and the results were the same

to change to positive. In all networks there is an increase of balanced triads, but
depending on the initial distribution of signs, the dominant triads are different. All
networks with 50%–50% of positive and negative signs, instead of converging to the
same initial dominant triads, converge to the two-negative one-positive triads. There
are two reasons for this to happen: we have a high initial distribution of the triad {+,
+, −} that will always change to {+, −, −}; the decrease of the distribution of the
triad {+, +, +}, when comparing to the original networks, also indicates that there
is not enough all-positive triads to compete with the new dominant {+, −, −}. This
leads to the conclusion that initial distribution of positive and negative ties has direct
impact in how signs can evolve and, again, in the degree of balance.
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Making the signs evolve based on the balance theory criteria will always force the
individuals of the network to act towards a minimization of tension. There is a strong
tendency towards balance, but not always enough to achieve 100% balance. This
happens in the non-fully connected networks, usually when the changes reach the
threshold on the number of changes. We observe that the achievement of total degree
of balancemay depend on the connectivity of the network—fully connected networks
eventually converge as can be seen in cliques. This last conclusion was already
derived theoreticly in previous works by Antal [14] and Arnout van de Rijt [15].
With different approaches, both come to conclusion that in a complete connected
networks, when updating triads with the goal of minimizing imbalance, a balanced
state is achieved.

4 Conclusions

Network Science [13, 16] has provided key insights on how individual states, from
individuals choices [17–19], epidemic states [20], strategic behaviours [9, 21–24],
and opinions [25], among other traits, are locally influenced by their social ties and
by the overall topology of interactions within a population. While the dynamics at
the level of nodes is crucial, analogous dynamics occurs at the level of states and
weights of links [5, 6, 26, 27], with particular relevance within social settings.

In this context, the study of signed networks has benefited enormously from the
quick growth of data on online social networks and more models are needed to
understand its particular dynamics. In this work we report the results of a simulation
approach to understand how the signs of the networks can evolve taking into account
the social theories of structural balance and dynamics of peer-influence.We observed
that updating a relation between two individuals based on the relations between both
and the friends in common (triads) have impact in the evolution of the structural
balance, but we also noticed that the way the signs of the network are initially
attributed to each relation is determinant. The principles outlined in the proposed
update rule for signs of links are general enough to be applied to other dynamical
processes occurring in static and dynamic networks, where the sign (or weights) of
ties plays an important role, from spreading of contagious diseases to diffusion of
information in social networks.

For future work we plan to extend this study applying other sign distributions and
update rules, including a probability approach similar to Antal [14] approach, but
with the probabilities being proportional to the positive/negative counts explained in
this work.
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Community Detection in the Network
of German Princes in 1225: A Case Study

S.R. Dahmen, A.L.C. Bazzan and R. Gramsch

Abstract In the context of historical research, clustering of different groups into
warring factions can lead to a better understanding of how conflicts arise or can
be avoided. Using a spin-glass-based community detection algorithm, we study the
crisis of 1225 between the Emperor of the Holy Roman Empire Frederick II and his
son Henry VII, which almost led to a dissolution of the empire. Our main goal is to
see how good this method is in detecting this rift when compared to the results of an
analysis performed by one of the authors (Gramsch) using standard social balance
theory applied to history.

1 Introduction

One of the main tasks in network theory is the detection of communities. The ques-
tion whether or not a network can be partitioned into clusters is not trivial and it is
contingent on the question being asked. There are many criteria on how a community
can be defined and detected (see [4] for an extensive review on the subject). In the
context of social networks in general and historical networks in particular, clustering
can have far-reaching consequences, especially when clusters are involved in con-
flicts. Under a sociological perspective, a natural way of grouping nodes is that of
social balance theory, a model of human relationships that can be traced back to the
works of F. Heider on cognitive dissonance theory [8]. It is built upon the notion that,
in a triad of nodes, the positive or negative relation between two nodes is reflected in
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their relation to the third node (see Sect. 3.1). In order to test this idea in a historical
setting, one of the authors studied the conflict that arose between the years of 1225
and 1235 in the Holy Roman Empire, a conflict which pitted the Emperor Frederick
II against his heir, Henry VII [5]. Based on Heider’s theory, Gramsch showed that
the dispute led to a rift among the prince-electors, thus threatening the stability of
the empire [5].

The main goal of this paper is to use a clustering algorithm for this event, consid-
ering the role of negative links, and compare it to the results found by Gramsch. Far
from trying to rewrite history anew, since historical events are extremely complex,
spanning years and sometimes thousands of players, our goal is rather humble: to
see if network analysis, particularly community detection, may be used as a viable
tool to help historians see patterns which otherwise could not be seen.

This paper is organized as follows: we first give a brief overview of the crisis
of 1225–1235 within the Holy Roman Empire. In Sect. 3, we present materials and
methods. We then discuss the results obtained by a traditional historical analysis and
show how a spin-glass-based community detection algorithm compares with this
analysis.1

2 Background and Related Work

In the present work we deal with particular aspects of the coalition and conflicting
forces that underlie the reign of Henry VII in the Holy Roman Empire [5, 6]. In
medieval times monarchic power was strongly restricted, and within the confines
of the Holy Roman Empire, a coalition of many sovereigns, a consensus among
rulers was extremely important for a successful rule of the elected Emperor. This
became evident during the era of emperor Frederick II (1212–1250) and his son,
King Henry VII (1220–1235). In 1235, due to the political incapacity of Henry, who
sacked some princes of their power, Frederick II had to disavow his son, lest he cause
further damage to the authority of the Staufian dynasty and lead to its demise. The
conflict involved 68 sovereigns. Notwithstanding the complexity of relationships,
Gramsch convincingly demonstrates that network analysis may provide new vistas
on the overall structure of the conflict which lead to the deposition of Henry [5].

He depicted the political system of the medieval German empire as a network of
princes, kings, counts, bishops and other sovereigns (henceforth called actors). Based
on Heider’s structural balance theory [8] (see Sect. 3.1), he was able to characterize
not only the existence of a relationship between actors A and B but also that such
relationships could be neutral, negative (hostile), or positive (friendly). The conflicts

1An extended version of this article with details on the spin-glass model can be found in http://
xxx.lanl.gov and https://www.academia.edu/30801915/Community_Detection_in_the_Network_
of_German_Princes_in_1225_a_Case_Study.

http://xxx.lanl.gov
http://xxx.lanl.gov
https://www.academia.edu/30801915/Community_Detection_in_the_Network_of_German_Princes_in_1225_a_Case_Study
https://www.academia.edu/30801915/Community_Detection_in_the_Network_of_German_Princes_in_1225_a_Case_Study
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are of various natures. The existence of negative relations is essential for the method
to work. They normally represent conflicts of various natures such as territorial or
status competition, legal or military conflicts. Positive relationships in this context
can be kinship or political alliances. The analysis was carried out over a period of
ten years of political relations and interactions among actors (from 1225 to 1235).
These form the so-called socio-matrices, which can be identified with adjacency
matrices, albeit with negative entries. Gramsch’s proposition is that within a cluster
there should be no conflict among actors.

The most important feature is the dual structure in the network, where each group
is separated by various conflicts. We recall that, previously, these conflicts were
considered in isolation.However [6] showed that therewere hidden relations between
them. For instance, in 1225, emperor Frederick II predominantly collaborated with
actors one group while Henry VII with opposing group. This then shows the origins
of the later conflict between the father and the son.

Further, this analysis was able to show what happened between the years 1232
and 1235 (see figures in [6]), namely, which actors stayed together in one cluster,
which ones changed political coalitions, and how the front line of conflicts changed
geographically. In short, one can observe that the political situation in 1232 was
characterized by an antagonism of two factions, each of which composed of two
clusters. These two factions were, each, supported by Frederick and Henry, i.e., they
favored different groups of princes. Between 1232 and 1234, Frederick decided to
depose his son in order to avoid further consequences and recover the complete
control over his empire. These two antagonistic factions then start to decay in 1233
and disappear almost completely by 1235.

3 Materials and Methods

In this section we discuss the main methods used in our approach: Heider’s structural
balance theory and the Potts Model. Following, we discuss their use for analyzing
the network of 68 actors who take part in the historical event mentioned in Sect. 2.

3.1 Heider’s Structural Balance Theory

In his seminal work of 1946 Heider asked the question about how an individual A’s
attitude towards B influences the way a third individual C relates to B. It originated
the so-called structural balance theory, which states that a society is balanced when
‘a friend’s friend (enemy) is also my friend (enemy)’. If all triads of a network of
relationships are balanced, the network is said to be balanced. The question naturally
arises whether a network of individuals with such relationships can be grouped
into separate communities or not. Harary [7] showed that if a connected network is
balanced, it can be split into two opposing clusters. This was later generalized to
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cycles with more than 3 individuals, to the idea of a k-cycle [1, 3]. A network is
k-balanced if it can be divided into k clusters where within each cluster there are
only positive relationships. In real life, however, not all clusters are balanced. There
will always be within a cluster of positive relations some nodes with negative ones.
The number of such misplaced links is called ‘frustration’, a term borrowed from
the physics of spin systems. The task is to find a configuration which minimizes
frustration. The similarity between Heider’s theory and a system of interaction spins
ledReichardt andBornholdt to introduce amethodof community detection based on a
mappingbetween agraph and aq-statePottsModel [9]. Theirmethodwasgeneralized
by Traag and Bruggeman to account for the possibility of hostile links [10]. We
describe theirmethod below andwould like to remark that other clustering algorithms
cannot be used due to the presence of negative links.

3.2 Spin-Glass-Potts Model

The Potts model is a model of interacting spins where each spin can have q different
values. The model is called spin-glass because spins are not spatially ordered (as in a
crystal). Spins tend to align (or repel) themselves if they have the same (different) q.
The attraction/repulsion is mediated by the Hamiltonian of the system, i.e. its energy
for a given configuration {σ} = {σ1, σ2, σ3, . . .} of clusters σ1, σ2 etc. Minimizing
the Hamiltonian is equivalent to minimizing Frustration [10]. Given the adjancency
matrix with elements Ai j , the Hamiltonian reads as in Eq.1, where δ is Kronecker’s
delta function. The p±i j ’s are the probabilities that links i and j are positively or
negatively connected and γ are free parameters to tune the relative weight of positive
and negative links.

H(σ ) = −
∑

i, j

[
Ai j − (γ+ p+i j − γ− p−i j )

]
δ(σi , σ j ) (1)

We refer the interested reader to [10] for more details on how to choose these prob-
abilities.

3.3 Detecting Communities Using Spin-Glass

In order to detect the community structure for the conflict between Frederick and
his son, we used the igraph implementation of the spin-glass algorithm (Python
variant) [2]. Each actor is represented by an abbreviated name. As in [5], we use one
socio-matrix (adjacency matrix) for each year (unless otherwise stated).
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We use a set of adjacency matrices (prepared by R. Gramsch), where Ai j indicates
whether or not there is a relationship between actors i and j , and, if there is, whether
it is neutral, friendly, or hostile. Based on a suggestion of R. Gramsch we excluded
all relationships involving Frederick II, Henry VII and the Pope, as these are the
main actors of the conflict and served most of the time as liaisons between opposite
groups. They introduce a bias in clustering, thus hiding important patterns. Results
reported in the next section, thus, do not include these three actors. We remark that
the same procedure was performed by Gramsch in his investigations; thus the results
are comparable.

The spin-glassmethod needs as input the number n of communities.We chose n =
2, to see whether the method would lead to a partitioning of the network comparable
to that found by Gramsch. If one gives a higher value of n, the method will produce
n communities but normally for n above a certain threshold (in some of our cases 5
or above), the routine will give always at most 5 clusters, usually less.

4 Results

Wehave run the spin-glasswith, asmentioned, the number of spins set to 2, producing
thus partitions that should separate the conflicting parties. We did this for each year.
Figures1 and 2 show, for the sake of illustration, the clusterings for years 1225 and
1235 respectively.2 Please notice the reduction of red edges (hostility) in the year
1235. Besides these edges, we have also yellow edges (neutral relationship) and black
ones (friendly relationships).

In order to compare the quality of the clustering produced originally by Gramsch
in [5, 6] with those from the spin-glass method, we use the Rand index, define in
Eq. 2. In this equation a is the number of pairs of nodes that are in the same set
in both partitions X , Y while b is the number of pairs that are in different sets in
partition X and continue to be so in X ; n is the number of nodes. A Rand index of 1
implies total agreement (clusters are identical) while a 0 implies total disagreement.

R = a + b(n
2

) (2)

Table1 shows the Rand indexes when we do a comparison, year by year, with the
original partitioning of Gramsch. We remark that, since the spin-glass method is not
deterministic, we ran spin-glass community detection 30 times for each year. Thus
the table also shows the standard deviation associated with the mean value.

2We remark that, obviously, this is the result of a single run, thus different runs can produce slightly
different partitions.
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Fig. 1 The structure of the communities (clustering)—year 1225

The values, as can be seen in the table, indicate a good agreement between the
spin-glassmethod and Gramsch’s original partitioning, based on Heider’s structural
balance. We would like to point out that, for the year 1230, the agreement is compar-
atively low. This is due to the fact that in 1230 there occurred a temporary agreement
between sovereigns. Quoting Gramsch ([5], p. 222): ‘During the first quarter of the
1230, when peace talks between the Emperor and the Pope began, the sovereigns
placed themselves in such a close [league] as it was never to be seen again: 58
joined into one coalition.’ So for this year there is only one cluster. Since the method
requires a a priori number of cluster to be created, which was set to 2, the Rand index
is smaller and is about 0.5, which corresponds to the probability of placing nodes
with a 50–50 change on each cluster.
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Fig. 2 The structure of the communities (clustering)—year 1235

Table 1 Rand indexes (mean and standard deviation), by year

Year Rand index Year Rand index

Mean St. dev. Mean Std. dev.

1225 0.78 0.06 1226 0.8 0.06

1227 0.66 0.15 1228 0.65 0.13

1229 0.73 0.05 1230 0.53 0.03

1231 0.84 0.9 1232 0.85 0.08

1233 0.87 0.09 1234 0.78 0.04

1235 0.87 0.04
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5 Conclusion

In this paper we applied a community detection algorithm to determine clusters of
opposing sovereigns in conflict in medieval Germany, which took place between
1225 and 1235 and pitted the Emperor Frederick II against his son Henry VII. We
used a spin-glass-based algorithm to create clusters and to ascertain its feasibility as
a tool in historical research, we compared the results with the partitioning previously
done by one of the authors based on Heider’s structural balance theory. For this we
calculated the Rand index to compare partitions. Our results show good agreement
with the historical method, from a minimum of 50% in the worst case, as explained
previously, to an agreement of 87%.

Acknowledgements Ana Bazzan is grateful to a CNPq grant. We thank Aline Weber for helping
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Comparative Topological Signatures
of Growing Collaboration Networks

Siddharth Pal, Terrence J. Moore, Ram Ramanathan
and Ananthram Swami

Abstract We study topological signatures in growing collaboration networks using
standard and persistent homology. Persistent homology has thus far been primarily
used for topological data analysis using a point cloud representation. In contrast, we
apply persistent homology on temporal networks, and use it as a tool to compare and
contrast between different growing networks. Specifically, we consider two collabo-
ration networks: the paper collaboration network DBLP, and the actor collaboration
network IMDB. We compare the evolution of their network properties, and of the
homology (Betti numbers) with time. We also compare their topological signatures
using persistent homology. We introduce a distance metric for comparing the topo-
logical signatures, and using it, visualize the similarity between individual segments
through multidimensional scaling. We observe that, while the DBLP network has
substantially evolved over time, the nature of collaboration in the IMDB network
has relatively remained unchanged over the period 1950–2008. Our work shows that
homology-based signatures can be effective in discriminating between real-world
networks.
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1 Introduction

Networks of collaborations have received significant attention in the network science
literature [11]. These networks are usually represented through graphs,where an edge
exists between two vertices if the individuals corresponding to those vertices were
part of a team or collaborative project. However, this approach obscures the fact
that teams are a collection of individuals, collections often of size greater than two.
Bipartite graphs (as affiliation networks), hypergraphs, and simplicial complexes are
several of the proposed structural models often used to represent group structure in
networks. Of these, we are interested in the study of collaborations modeled as a
simplicial complex, studied in the social sciences at least as far back as [1]. This
choice of structural representation enables the study of the algebraic topology of a
set of collaborations using persistent homology.

Persistent homology is the primary tool in the growing field of topological data
analysis [3, 6]. This computational topology method characterizes the homological
structure of data over the range of a proximity scale parameter, where a monotonic
sequence of parametric values creates a filtration of simplicial complexes that distin-
guishes persistent topological features of the data from noisy, or short-lived, features.
Typically, the data is a point cloud and a set of points are connected as vertices of a
simplex in a simplicial complex when the distance between pairs of points is below
a distance threshold. It has been applied in a vast array of domains such as sensor
networks [5], brain networks [8, 13], complex networks [7], etc. The topological
persistence of collaboration networks has been previously studied where the prox-
imity parameter is derived from the edge weights [4] (e.g., number of co-authored
papers) and a notion of “research distance” [2].

In thiswork,we study the growing collaboration networkwith a temporal parame-
trization, i.e., we view the network over time and characterize the temporal changes
in its topological features. The scenario is very different from the typical filtrations
using a distance measure between node pairs over a point cloud. In the point cloud
case, there exists a threshold distance above which every point in the cloud is pair-
wise connected. As was noted in the weight-based filtration [4] and is true for the
temporal filtration, many homology classes representing cycles of collaborations
persist indefinitely. This prohibits network comparison using the traditional topolog-
ical data analysis approaches, e.g.,Wasserstein and bottleneck distance. Carstens and
Horadam [4] showed that appearance of nontrivial homology classes in real networks
was unexpected compared with what would be expected in a random clique complex.
Our approach is to use the barcode information [3] to construct a probability mass
function (pmf) that models the relative homological growth of cycles and compare
the pmfs.

The rest of the paper is organized as follows. In Sect. 2, we describe the sim-
plicial complex model and temporal filtration. In Sect. 3, we detail our analysis on
two classes of collaborations, namely scientific and movie actor collaborations. We
conclude in Sect. 4 with a discussion of potential future work.
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2 Temporal Persistent Homology of Collaboration
Networks

A collaboration network is a network of individuals collaborating towards certain
shared objectives. For example, the DBLP (Digital Bibliography & Library Project)
computer science bibliography network is the network of authors who collaborated
towards publishing a paper in fields related to computer science, and the IMDB (Inter-
net Movie Database) collaboration network documents actors who worked together
on a movie. While a collaboration network can be represented as a graph, it can also
be represented as a mathematical object called simplicial complex.

Simplicial Complexes: A simplicial complex [10] is a pair K = (V, S), where
V is a finite set, and S is a set of non-empty subsets of V closed under the subset
operation, i.e., for any ρ ∈ S and τ ⊂ ρ, we must have τ ∈ S. Any set σ which
belongs to the simplicial complex is called a simplex or a face. The dimension of
a simplex is one less than the number of vertices in it, and the dimension of the
simplicial complex is the maximum dimension among all the simplices.

We use Betti numbers to capture statistical properties of the topological space.
Intuitively, the kth Betti numberβk is the number of k-dimensional surfaceswhich are
unconnected via higher dimensions. Specifically, β0 is the number of connected com-
ponents, and β1 is the number of 1-dimensional homology groups or 2-dimensional
“holes”, also referred to as cycles.

A collaboration networkN is a pair (V, S), where V is a set of nodes, and S ⊆ 2V

is the set of all collaborations in the networkN . Observe that a collaboration is closed
under the subset operation, that is, for any collaboration ρ ∈ S and τ ⊂ ρ, we have
τ ∈ S and hence a collaboration network can be captured by a simplicial complex.
We represent each person in a paper or a movie as a vertex, and each collaborative act
(and each of its subsets) as a simplex of vertices comprising it. Thus, for example, in
the DBLP complex, each vertex represents a researcher and each simplex represents
a collaboration relationship among the researchers on one or more papers.

Temporal Persistent Homology: Persistent homology is a method of obtain-
ing a summary of the homological information of a topological space. As a first
step, a filtration of simplicial complexes T needs to be constructed, where T =
{K0, K1, . . . , Kn} and Ki ⊆ K j for i < j , i.e., Vi ⊆ Vj and Si ⊆ Sj . In [4, 13], an
unweighted graph is first obtained from a static weighted graph by removing all
edges with weights lower than a threshold, which is then converted into a clique
complex where all simplices or faces are cliques. Other works have considered point
cloud data with a distance measure between node pairs [8]. For a particular thresh-
old, a clique complex is constructed out of the point cloud data, where every pair of
points in the complex is at a distance less than the threshold. A decreasing sequence
of thresholds for the weighted graphs or an increasing sequence of thresholds for
the point cloud leads to a filtration. Such filtrations are called weighted filtrations
because they are parameterized by edge weights or distance thresholds.

This is fundamentally different from our approach where we construct a filtration
from growing collaboration networks, where new collaborations are added each year.
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Note that collaborationswhich have newnodeswill lead to those nodes being added to
the network, e.g., a new author or a newmovie actor. Therefore,we have a sequence of
networks {Nt , t = 0, 1, . . . , T }, where the networkNt represents the collaborations
that occurred until time t . This sequence of collaborations constitutes a temporal
filtration, where each complex in the filtration contains the previous complexes, i.e.,
Nt ⊆ Nt+1 (Vt ⊆ Vt+1 and St ⊆ St+1). Observe that in our approach, the data being
used is inherently in the form of the relations defining the simplices and, hence,
a simplicial complex, so no intermediate step of constructing a clique complex is
required.

Once the filtration is obtained, the homology information is computed as described
in [6]. This gives the details on the homology groups, which are the representative
holes and higher dimensional voids, how long they persist, and their structure. The
birth and death of these homology groups can be visualized through barcodes or
persistence diagrams [6].

3 Experimental Results

In this section, we present experimental results on persistent homology of growing
collaboration networks as defined in the previous section. We investigate if differ-
ent types of real-world collaboration networks can be distinguished based on their
topological signatures.

We study topological signatures in two different ways. First, in Sect. 3.1 we com-
pare non-persistent homological and other properties on 10 year segments of IMDB
andDBLP, to look for trends and insights. Next, in Sect. 3.2, we use persistent homol-
ogy to compute distances between 10 year segments of DBLP and IMDB in order to
investigate and quantify similarities and dissimilarities in their signatures. JavaPlex
[14] was used to compute homology in both approaches.

3.1 Evolution of Homological Properties over Time

We consider 10 year windows in both datasets, with the median year of the windows
taken every 5 years. We study the topological properties of networks corresponding
to the 10 year windows, and investigate how they change with the median year of the
window. We denote the non-overlapping DBLP network segments as follows: D1

represents the segment 1950–59, D2 represents 1960–69, and so on, until D5 repre-
senting 1990–99 and finally D6 representing 1999–2008. Similarly, I1 represents the
IMDB segment 1900–09, I2 represents 1910–09, and so on, until I10 representing
1990–99 and finally I11 representing 1999–2008.

Our analysis indicates that the later DBLP network segments D4, D5 and D6 have
more than 99% of all holes in their largest connected component (LCC). Among
the earlier DBLP segments, D1 has only one hole which is in the LCC; D2 has 6
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Fig. 1 Temporal evolution of network properties of IMDB and DBLP

holes, 4 of which are in the LCC, and D3 has 358 holes out of which 346 (96.65%
of total holes) are in the LCC. Other than I2 which has 97.5% of all holes in the
LCC, all the IMDB network segments have more than 99% of all holes in the LCC.
Therefore, a significant percentage of holes is in the LCC for both the IMDB and
DBLP networks. This empirical observation recalls the theoretical result in [12, p.
410] for Erdős-Rényi graphs, which states that the probability of small components
being acyclic tends to one in the limit of large graph size, while noting the fact that
Erdős-Rényi graphs are not good models for the IMDB/DBLP datasets.

In Fig. 1a, we see that the number of cycles grows steeply with time for the
DBLP network especially starting from year 1990, whereas in the IMDB network
the growth is more gradual, which eventually picks up around year 1980. Similarly,
Fig. 1b indicates that the average degree has been falling in the IMDB network
since year 1940, while having increased steadily for the DBLP network during the
period 1970–2008. This indicates that authors in theDBLP network are workingwith
greater number of authors over time as compared to actors in the IMDB network.
From Fig. 1c it is evident that the number of cycles per node steadily increases with
time for the DBLP network, while being largely unchanged for the IMDB network
during the period 1930–1999. Furthermore, from Fig. 1d we observe that the number
of cycles per edge increases with time for the DBLP dataset in the period 1970–1999,
while it remains largely constant for the IMDB dataset for the period 1950–2008.
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This analysis allows us to conclude that the density of cycles, both number of cycles
per node and per edge increases with time for the DBLP dataset, while for the
IMDB dataset it fluctuates or remains largely constant. We therefore observe that the
homological properties of both networks change over time at different rates, which
leads to the question whether they can be used to distinguish temporal networks. This
thread will be taken up in the next subsection, which deals with finding distances
between growing networks.

3.2 Persistent Homology Based Distance Computation

In the literature, bottleneck distance [6, 8] has been used to compute distances
between topological signatures like persistence diagrams or barcodes. However, in
growing network datasets we have infinitely-persistent nontrivial homology cycles
as seen from the barcodes for the two networks (Fig. 2). This is different from the
standard depiction of barcodes [7, 13] because almost all of the cycles never die
out. This leads to a problem with the bottleneck distance or other similar distance
measures on the persistence diagrams or barcodes, because the bottleneck distance
is always infinity if there is a different number of infinitely-persistent cycles in each
network. This is not a problem with filtrations based on point clouds with a distance
parameter because at some distance threshold all points are connected and there is
no higher-dimensional homology in the clique complex. We can cap the length of
cycle lifetimes, to say T + 1 for a temporal filtration that ends at time T , but any
bottleneck distance will still be heavily biased toward the difference between the
number of persistent cycles in the two datasets. And that difference is influenced by
the size of the networks, and in a small way by the clustering of the networks.

(a) DBLP (b) IMDB

Fig. 2 Barcodes for 1-dimensional homology groups or holes corresponding to period 1980–89
(Horizontal axis represents time in years, and each horizontal line represents a hole starting from
its year of birth, continuing until it dies. Most of the holes persist beyond year 1990.)
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Fig. 3 Multi-dimensional scaling of the Jensen-Shannon distances

Since, bottleneck distance or other related distance measures cannot be used, we
introduce a new distance measure between growing networks. This measure captures
the difference in the rate of growth of cycles in the networks being compared.

Defining Distance Measures: For a sequence of growing networks {Nt , t =
0, 1, . . . , T }, we define a function g : {0, 1, . . . , T } → Z

+, such that g(i) represents
the number of holes newly formed at time i . These values can be obtained from
Javaplex using the information on persistence intervals. From the function g, we
define a cumulative distribution function as follows

F(x) =
∑x

t=0 g(t)∑T
s=0 g(s)

, x = 0, 1, . . . , T, (1)

and the corresponding pmf f . We shall use the Jensen-Shannon divergence [9] to
compare the cycle growth rate of two networks. We only consider the birth times
of holes because as argued previously most of the holes are infinitely-persistent.
The Jensen-Shannon divergence between network segments are visually represented
through multi-dimensional scaling in Fig. 3.

From Fig. 3 note that the IMDB segments are closely clustered together separately
from all the DBLP segments. The DBLP segments are relatively more scattered
with segments D3 through D6 clustered tighter, and the D1 and D2 segments being
outliers. This leads us to conclude that while the IMDB dataset is topologically
more self-similar over the period 1950–2008, the DBLP network changes over time,
with the later years 1970–2008 being vastly different from the early years 1950–
1969. This can be explained by going back to Sect. 3.1 which studies the evolution
of homological properties of the networks. Observe that while the average degree
(Fig. 1b), cycle per node (Fig. 1c), and cycle per edge (Fig. 1d) remain relatively
constant over time for the IMDB network over the observed period, they increase
substantially for the DBLP network especially starting from around year 1970. This
suggests that the DBLP network changes significantly during the duration 1950–
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2008 while the IMDB network does not. This could be attributed to the fact that the
movie production industry being much older, was already mature by the year 1950,
and therefore its properties did not change significantly from then onwards; whereas,
the nature of collaboration has evolved substantially in computer science as the field
has grown over time (see [15]).

4 Conclusion

We use persistent homology to study various network properties, and compare and
contrast different collaboration networks. In both IMDB and DBLP datasets, the
number of cycles growswith time, albeit at a different rate,while beingpredominantly
restricted to the largest connected component. We study and compare the growth in
cyclicity of the networks, with respect to time, and size of the LCC. We argue that
existing distance measures between persistence barcodes does not seem to apply to
temporal persistent homology, which leads us to develop a new distance metric for
comparing evolving networks. Using this measure, we compare different segments
of the DBLP and IMDB datasets, and conclude that the IMDB dataset is more
self-similar than the DBLP dataset over the observed period 1950–2008. We also
observe that the intra IMDB and intra DBLP distances are smaller than the inter
IMDB-DBLP distances (barring early DBLP segments). From our study, it appears
that topological signatures could be effective in discriminating between different
temporal collaboration structures.
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Explaining Changes in Physical Activity
Through a Computational Model of Social
Contagion
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Abstract Social processes play a key role in health behaviour. Understanding the
underlying mechanisms of such processes is important when designing health inter-
ventions with a social component. In this work, we apply a computational model of
social contagion to a data set of 2,472 users of a physical activity promotion program.
We compare this model’s predictions to the predictions of a simple linear model that
has been derived by a regression analysis. The results show that the social contagion
model performs better at describing the pattern seen in the empirical data than the
linear model, indicating that some of the dynamics of the physical activity levels in
the network can be explained by social contagion processes.
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1 Introduction

Physical inactivity is a major worldwide concern, as it can lead to many long-term
health risks [6, 7]. These risks can be reduced if an adult fulfills the requirement
(according to recommendations of the WHO and other public health organizations)
of at least 150min of moderate or 75min of vigorous intensity physical activity
per week, or a combination of both [8, 19]. An active lifestyle not only improves a
person’s physical health, but it also has positive effects on mental health [13].

If used in innovative ways, eHealth and mHealth hold great potential to steer
physical activity promotion programs in the right direction and let greater numbers
of people benefit from it. However, this requires the right choices about the way
in which technology is embedded in these programs. For example, simply using a
wearable device alone will not suffice to achieve sustainable behaviour change [14].
To maintain new behaviour for a longer period of time, other important ingredients
are needed, e.g. evidence-based techniques such as goal setting and timely feedback,
and a supportive social environment.

Social processes play a key role in health behaviour. It has been shown that people
becomemore successful in maintaining a healthy lifestyle when they function within
their social context [18, 20]. In addition, the social environment enables people
to compare their physical activity achievements with their peers or to seek social
support from them. Within online social networks, this is commonly implemented
via leader boardswith achievements, buildingon the theoryof social comparison [17].
Overall, in the context of health promotion programs, social processes can provide
a leveraging mechanism to achieve and maintain a healthy lifestyle. Understanding
these mechanisms is therefore important.

In this paper, we use a data set about health behaviour in a social context to
understand the underlying social processes. It is a continuation of earlier work on
this subject [10, 11]. In [11], a large data set of an online physical activity promotion
program was used to compare the physical activity levels of people who are part
of an online social network with those who did not opt to join the network. One
of the conclusions was that participants who are part of an online community have
significantly higher activity levels and a higher increase in activity compared to
participants who chose not to become part of the community. However, this did not
answer the question what kind of social phenomenon was causing the higher activity
levels.

In this work, we try to answer the question whether the increase in physical
activity can be explained by social contagion [5]. Our main hypothesis is that the
higher activity levels of the community users can be partially explained by social
contagion and partially by the effect of the health promotion program. The research
question is addressed by comparing the activity data of the participants with two
types of predictions: (1) based on a simple linear model that captures the effect of
participating in the program and the online community, and (2) based on a model of
social contagion combined with the linear model.
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2 Background

Because amajority of the adults in theWesternworld does notmeet the guidelines for
physical activity, public health professionals are aiming at population-wide interven-
tions. Since decades, the area of preventive medicine is investigating how people can
be stimulated to be more physically active [15]. More recently, the smartphone has
been discovered as tool for measuring and influencing physical activity [3]. Many
of these technology-mediated interventions use some kind of social influence. A
specific appearance of social influence is the phenomenon of social contagion [5]. It
has been shown that people can influence each other via their social networks up to
three degrees of distance. Although these claims have been criticized [16], one could
imagine that people transitively influence each other via social relations.

In [2, 4], a temporal-causal computational model is presented that describes how
the mutual absorption of emotions in a social network affects the emotions of the
individuals. This model was used for the study that is described in this paper. Our
assumption is that physical activity behaviour is influenced by internal states like
motivation, attitudes and goals, and that those spread in a similar way as described
in the model of emotion contagion.

Themodel [2] describes how internal stateqA of person A affects the internal states
of other persons Bi . This process is determined by the strength by which the state
is expressed (εA), the openness of the receiver (δB) and the strength of the channel
between them (αAB). Together, these factors determine the connection weight ωAB .
Thus, the impact impactAB(t) of the state of person A on the state of person B is:

impactAB(t) = ωABqA (1)

The aggregated impact aggimpactB(t) at time t of the states qAi of all con-
nected persons on state qB is modelled as a scaled sum. From this it follows that
aggimpactB(t) is calculated as a weighted average of all the impacts of the different
connections of a person:

aggimpactB(t) =
∑

Ai �=B

wABqAi (t) (2)

withwAB chosen in such away that it is proportional toωAB and the sumof all weights
is 1. The new state for each person in the network is calculated by integrating some
factor η of the aggregated impact:

contagion_effect(t) = ηA[aggimpactB(t) − qB(t)] (3)

qB(t + Δt) = qB(t) + contagion_effect(t)Δt (4)

For the purpose of this study, we assumed that all people have the same expres-
siveness and openness, and that all connections were of the same strength. This was
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done out of necessity, as our data set does not contain specific information about these
factors. The model’s parameters for openness, expressiveness and channel strength
were thus set to a default value of 0.5.

3 Methods

This section describes how the data was collected and preprocessed, as well as what
types of analyses were run.

3.1 Data Collection

The data originates from a physical activity promotion program in which participants
are asked to wear an activity monitor that measures physical activity level (PAL)
using an accelerometer. Based on the activity data that is repeatedly uploaded by the
participants, the program stimulates them towards amore active lifestyle by gradually
increasing the weekly activity targets over a 12-week activity plan. The baseline for
this activity plan is established in an initial assessmentweek. After completing a plan,
participants can choose to take another 12-week activity plan or decide to remain at
the level of their last completed plan.

After the initial assessment week, participants also get access to a dashboard with
information about energy expenditure (calories burnt) and their achievements relative
to a weekly goal. The program provides an opt-in online community that allows
participants to establish connections and to compare achievements. Each participant
in the communitywill see how their achievements rank compared to other participants
with whom they are connected. Community participants see the ranking within their
own network each time they upload data from their activity monitor. The network
structure and some social network analyses are discussed in [1].

3.2 Data Preprocessing

The original data set contains data for 52,788 users. Since the aim of this paper is
to demonstrate the influence of social contagion on people’s physical activity levels,
we are only interested in the 5,041 users who opted in for the online community of
the program.

First, any participants that joined the program for testing purposes or users with
missing information, such as gender or body mass index (BMI), were removed from
the data set, as well as participants that didn’t have a start date for their first plan.
The resulting data set contains participants for whom valid physical activity data
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is available. The network was further pruned by removing connections that were
initiated by one participant, but never confirmed by the other participant.

As the online community feature was not part of the program until April 28th
2010, all data before that date was disregarded. Community data was available until
August 6th 2010, but the PAL data was incomplete for the last couple of days. This
can be explained by the fact that some users did not upload their data for those days
yet. Therefore, only the data up to July 28th 2010 was considered, resulting in a data
selection that spanned a period of 91days.

Within this period of 91days, only active and connected participantswere included
in the current analysis. In other words, any users who entered the program, but did
not join the online community, or users that dropped out of the program before this
period started, were removed from the data set. This data cleaning process leaves us
with 2,472 relevant nodes in the period between April 28th 2010 and July 28th 2010.

Although the primary unit of physical activity in the data set is the PAL, users see
percentages of their goal achieved rather than thePAL itself on their online dashboard.
The ranking with connected users on is also based on this relative performance.
Therefore, our analyses are also based on the ratios of goals achieved, i.e. the current
PAL divided over the target PAL.

3.3 Model Simulations

Previous work has shown that the combination of participating in the program and
joining the online community is associated with a small but significant average
increase in PAL [11]. The objective of the current work was to demonstrate whether
the dynamics of users’ physical activity levels can be (partially) explained by social
contagion. Therefore, we compared the predictive performance of two differentmod-
els: (1) a simple linear model, that describes the effect of the program on community
members; and (2) a combined model, that captures the social contagion process and
incorporates the known linear increase as well.

Scenario 1: Simple linear model.

The simple linear model describes the effect of the physical activity promotion pro-
gram and the online community on the users’ physical activity levels. Previous analy-
ses have shown that this effect is an average PAL increase of 0.0005821 per day [11].
These analyses were based on a subset of users from the same data set, with all users
being in their first plan andmember of the community. The increase in PAL translates
to an increase in energy expenditure of 1.05 kCal for an average male with a basal
metabolic rate (BMR) of 1800 kCal/day [12].

To translate this increase in PAL to the unit predicted by the model (i.e., the goal
achieved), the simple linear model adds a daily increase of 0.0005821 divided by the
current target PAL to the user’s goal achieved, as shown in Eqs. 5 and 6.
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linear_effect(t) = 0.0005821

target_pal(t)
(5)

goal_achieved(t+Δt) = goal_achieved(t) + linear_effect(t) (6)

Scenario 2: Combined social contagion model.

The combined social contagionmodel describes the linear increase inPALaswell, but
combines it with the model of social contagion that captures the dynamics between
the nodes in the network, as summarized in Eq.7, where contagion_effect(t) denotes
the social contagion effect as described in Sect. 2, Eq. 3. In this case, the state q
represents the percentage of goal achieved. By enriching the social contagion model
with the daily increase in PAL (as in the simple linear model), we account for the
demonstrated stimulating effect of the program and the community, and thereby
nullify a possible disadvantage on the social contagion model.

goal_achieved(t+Δt) = goal_achieved(t) + contagion_effect(t) + linear_effect(t) (7)

As mentioned in Sect. 3.2, the analyses were based on the predictions of the goal
achieved, i.e. the proportion of the target PAL achieved by the user, rather than the
user’s current PAL. Additionally, the model predictions were done for users in their
first plan. Of the 2,472 relevant users identified in Sect. 3.2, 1,939 were participating
in their first plan for at least part of the time period under consideration. The reason
behind this choice is that users in their first plan are most comparable to the general
population: theyhave just entered the program, and therefore havenoprior knowledge
of or experience with the plans or other parts of the intervention. Also, it is likely that
people in their first plan have the highest adherence rates and interact more with the
program, which makes them a more interesting population as well. However, users
who have not yet started or already completed their first plan can still influence users
in their first plan through social contagion. Therefore, they are considered by the
social contagion model, but only as input of the contagion process towards the users
under consideration (i.e., users in their first plan).

To run the models, the initial values have to be determined. For all users for whom
a target PAL is not available (i.e., users who are in their assessment week and have
yet to start their first plan), the initial goal achieved value was based on the average
PAL of their assessment week and their first target PAL. For all users with a target
PAL, the initial goal achieved was calculated by dividing the average PAL for one
week before the start date of the simulations (i.e., April 28th 2010) by the current
target PAL. If for some reason, no data was available for that week, the initial goal
achieved was based on the average PAL in the month prior to the start date of the
simulations.

In the social contagion model, we used the initial goal achieved values of the
simulated nodes as described above, and the empirical data from the surrounding
nodes as input to the contagion process. This choice was motivated by the fact that
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we were only interested in simulating the effect of the behaviour of users on users in
their first plan, rather than simulating the behaviour of those other users as well.

3.4 Analyses

To evaluate the accuracy of the two models, we first calculated their average predic-
tions for the approximately 1,939 users in their first plan in the data set, as well as the
average goal achieved values based on the empirical data. Based on these values, we
tested whether there is a significant difference in the magnitude of the errors of the
two models with a MannWhitney U test. In addition, we determined the correlations
of both models’ predictions to the empirical data by means of Mann Kendall tests.

4 Results

As explained in Sect. 3.2, after thorough preprocessing of the data, 2,472 relevant
users remained in the period between April 28th and July 28th 2010.

Following the procedures described in Sect. 3.3, the two models were run on the
initial data. Figure1 provides an impression of the predicted goal achieved values
for the 1,939 users in their first plan by the two models. The simulation of the linear
model shows a steady increase in the goal achieved. The combined model shows the
effect of the contagion between the users, in combination with the steady increase.
Any interruptions of the lines in either plot are caused by users entering the program
or community, or by users dropping out of the program.

After averaging the model predictions, as well as the empirical data, for all users
in their first plan per day, the graph in Fig. 2 was obtained. It shows the average
predictions of the linear model (green) and the combined model (blue), and the

Fig. 1 Predictions of the simple linear model (left) and the combined model (right)
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Fig. 2 Average predictions of the two models (green linear, blue combined), and the empirical data
(red)

Table 1 Model evaluations

Absolute error Kendall’s correlation test

Mean St. Dev. Kendall’s τ Kendall’s p

Linear model 0.02212 0.01378 –0.46227 <0.001

Combined model 0.01321 0.00855 0.53895 <0.001

empirical data (red). The sharp troughs in the empirical data mark the Sundays,
when physical activity levels on average are substantially lower.

Figure2 already gives the impression that the combined model is much closer to
the empirical data than the linear model. Indeed, the mean absolute error (MAE) of
the linear model is 0.02212, whereas the mean absolute error of the combined model
is 0.01321. A Mann-Whitney U test shows that the difference between the errors of
the two models is significant, p < 0.001.

Besides comparing the size of the errors, we also investigated whether the pre-
dicted lines were correlated with the empirical data. A Mann Kendall test shows
that the linear model is significantly correlated with the empirical data, although
negatively (τ = –0.46227, p < 0.001). The combined model is also significantly
correlated, but in this case positively (τ = 0.53895, p < 0.001) (Table1).
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5 Conclusions

The results described in Sect. 4 show that the combined model, which integrates the
social contagion model with a steady linear increase in PAL, is indeed better able
to capture the dynamics of the physical activity levels in our data set than the linear
model. Its predictions show a significant positive correlation with the empirical data.
Additionally, the errors of the combinedmodel’s predictions are significantly smaller
than those of the linear model.

One of the main strengths of this work is its foundation on a large set of empirical
data covering several months. Careful and extensive preprocessing of the empirical
data was conducted to ensure data that is sensible for the simulated models. For
example, we dynamically removed connections to users who practically dropped out
of the program (but were still in the system), to prevent their (missing) data from
affecting the results.

Another strength of ourwork is thatwe compared the performance of themodelwe
were mainly interested in to an informed linear model. That way, we do not impose a
disadvantage on the baseline model, thus increasing the chances of superiority of our
more complex model. However, it is interesting to see that the empirical data shows
a development that is actually opposite to the direction of the linear increase model.
One possible explanation for this observation could be that the linear increase was
found after aligning the data by the day in the program rather than the calendar date.
The pattern in the current data set is then caused by users in different phases of the
first plan entering and leaving the program over time (e.g., because their first plan is
finished halfway the period that we selected). A second possible explanation is that
the linear model describes an increase in PAL, whereas it is transformed and applied
to the progress towards the target PAL in this work. A third possible explanation is
that the linear model was based on a different subset of the same data set, so maybe
the subset analysed in this work does not show an average increase in PAL.

One of the limitations of this work is its restricted generalizability. As all analyses
were based on data collected in the context of a physical activity promotion program
(see also Sect. 3.1), the results cannot directly be transferred to the general population.
However, by choosing to focus on people who are exposed to the program for the
first time, we have tried to minimize that discrepancy.

Another limitation is that the social contagion model only considers the online
community as the network through which the behaviour spreads, although contagion
also takes place on different levels and in different contexts. Additionally, we did
not take into account whose data is actually shown on the user’s dashboard: all
connections were treated equally, whereas the performance of friends may not be
shown on the dashboard when the difference was too big (e.g., more than 10 position
difference). Future work could reveal whether limiting the contagion model to only
the connected users who are visible on the dashboard improves the performance of
themodel. A further limitation is that we used default values of 0.5 for the parameters
(for expressiveness, channel strength and openness) in the combinedmodel. In future
work, we could investigate whether using calibrated valueswould yield better results.
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It is also possible to experiment with models that incorporate the principle of non-
linearity in behaviour change, e.g. by exploiting thresholds for effects [9].

Up to our knowledge, we present the first analysis of the ability of a computational
model of social contagion to capture the pattern of physical activity levels in a
community over time. The results show that the enriched social contagion model
performs better at describing the pattern in the empirical data than the linear model,
indicating that some of the dynamics of the physical activity levels in the network can
be explained by social contagion processes. This is vital information for designers
of health interventions with a social component, as such models can then be used to
maximize the benefits of social influence processes.

References

1. Araújo, E.F.M., Klein,M.C.A., van Halteren, A.T.: Social connection dynamics in a health pro-
motion network. In: Complex Networks 2016—The 5th International Workshop on Complex
Networks and their Applications (2016)

2. Araújo, E.F.M., Treur, J.: Analysis and Refinement of a Temporal-Causal Network Model for
Absorption of Emotions, pp. 27–39. Springer (2016)

3. Bort-Roig, J., Gilson, N.D., Puig-Ribera, A., Contreras, R.S., Trost, S.G.: Measuring and
influencing physical activity with smartphone technology: a systematic review. Sports Med.
44(5), 671–686 (2014)

4. Bosse, T., Duell, R., Memon, Z.A., Treur, J., van der Wal, C.N.: Agent-based modeling of
emotion contagion in groups. Cogn. Comput. 7(1), 111–136 (2015)

5. Christakis, N.A., Fowler, J.H.: Social contagion theory: examining dynamic social networks
and human behavior. Stat. Med. 32(4), 556–577 (2013)

6. Conn, V.S., Hafdahl, A.R., Mehr, D.R.: Interventions to increase physical activity among
healthy adults: meta-analysis of outcomes. Am. J. Public Health 101(4), 751–758 (2011)

7. Eime, R.M., Young, J.A., Harvey, J.T., Charity, M.J., Payne, W.R., et al.: A systematic review
of the psychological and social benefits of participation in sport for children and adolescents:
informing development of a conceptual model of health through sport. Int. J. Behav. Nutr. Phys.
Act. 10(98), 1 (2013)

8. Garber, C.E., Blissmer,B.,Deschenes,M.R., Franklin,B.A., Lamonte,M.J., Lee, I.M.,Nieman,
D.C., Swain, D.P.: American college of sports medicine position stand. quantity and quality of
exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor
fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc.
43(7), 1334–1359 (2011)

9. Giabbanelli, P.J., Alimadad, A., Dabbaghian, V., Finegood, D.T.: Modeling the influence of
social networks and environment on energy balance and obesity. J. Comput. Sci. 3(12), 17–27
(2012)

10. Groenewegen, M., Stoyanov, D., Deichmann, D., van Halteren, A.: Connecting with active
people matters: the influence of an online community on physical activity behavior. In: Inter-
national Conference on Social Informatics. pp. 96–109. Springer (2012)

11. Manzoor, A., Mollee, J.S., Araújo, E.F.M., Van Halteren, A.T., Klein, M.C.A.: Online sharing
of physical activity: Does it accelerate the impact of a health promotion program? In: IEEE
International Conference on Social Computing and Networking (SocialCom 2016). pp. 201–
208. IEEE (2016)

12. Mifflin,M.D., St Jeor, S.T., Hill, L.A., Scott, B.J., Daugherty, S.A., Koh, Y.O.: A new predictive
equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 51(2), 241–
247 (1990)



Explaining Changes in Physical Activity … 223

13. Pate, R.R., Pratt, M., Blair, S.N., Haskell, W.L., Macera, C.A., Bouchard, C., Buchner, D.,
Ettinger, W., Heath, G.W., King, A.C., et al.: Physical activity and public health: a recommen-
dation from the centers for disease control and prevention and the american college of sports
medicine. Jama 273(5), 402–407 (1995)

14. Patel, M.S., Asch, D.A., Volpp, K.G.: Wearable devices as facilitators, not drivers, of health
behavior change. Jama 313(5), 459–460 (2015)

15. Sallis, J.F., Owen, N.: Physical Activity and Behavioral Medicine, vol. 3. SAGE Publications
(1998)

16. Shalizi, C.R., Thomas, A.C.: Homophily and contagion are generically confounded in obser-
vational social network studies. Sociol. Methods Res. 40(2), 211–239 (2011)

17. Suls, J.E., Wills, T.A.E.: Social Comparison: Contemporary Theory and Research. Lawrence
Erlbaum Associates Inc (1991)

18. Wing, R.R., Jeffery, R.W.: Benefits of recruiting participants with friends and increasing social
support for weight loss and maintenance. J. Consul. Clin. Psychol. 67(1), 132 (1999)

19. World Health Organization: Global recommendations on physical activity for health (2010).
http://www.who.int/dietphysicalactivity/publications/9789241599979/en/

20. Zimmerman, R.S., Connor, C.: Health promotion in context: the effects of significant others
on health behavior change. Health Educ. Behav. 16(1), 57–75 (1989)

http://www.who.int/dietphysicalactivity/publications/9789241599979/en/


Everyday the Same Picture: Popularity
and Content Diversity

Alessandro Bessi, Fabiana Zollo, Michela Del Vicario, Antonio Scala,
Fabio Petroni, Bruno Gonçcalves and Walter Quattrociocchi

Abstract Facebook is flooded by diverse and heterogeneous content, from kittens
up to music and news, passing through satirical and funny stories. Each piece of
that vivid production reflects the heterogeneity of the underlying social background
and provides sometimes interesting opportunities for the study of social dynamics.
Indeed, in Facebook we found an interesting case: a page having more than 40K fol-
lowers that every day posts the same picture of a popular Italian singer. We use such
a peculiar page as a baseline for the study and modeling of the relationship between
content heterogeneity and popularity. In particular, we perform a comparative analy-
sis of information consumption patterns with respect to pages posting heterogeneous
content (science and conspiracy news). We conclude the paper by introducing a
model mimicking users selection preferences accounting for the heterogeneity of
contents.

1 Introduction

Online social networks such as Facebook foster the aggregation of people around
common interests, narratives, and worldviews. Indeed, the World Wide Web caused
a paradigm shift in the production and consumption of contents that increased both
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its volume and heterogeneity. Users can express their attitudes by producing and con-
suming heterogeneous information—e.g. conspiracists avoid mainstream news and
follow their own information sources, whereas debunkers try to inhibit the diffusion
of false claims. Images of kittens and pets, political memes, gossip, scandals spread
on Facebook. By liking, commenting, and sharing their preferred contents, users
express their passions and emotions—with sarcasm being no exception. In particu-
lar, pages promoting parody and sarcastic imitations of online social dynamics are
common occurrences—e.g.,Ebola and Kittens [1] or In favor of chem-trails [2]—An
interesting case in Facebook is a page [3] with more than 40K followers that posts
everyday the exactly alike picture of Toto Cutugno, a famous Italian pop-singer.

In this work, we use this page as a baseline with which to study the effect of
content diversity on popularity/virality. Specifically, we analyze user activity and
post consumption patterns on the baseline page for a timespan of about 4 months.
Through a comparative analysis between two sets of pages producing heterogeneous
contents, we show that there are no remarkable differences in user activity patterns,
whereas significant dissimilarities between post consumption patterns emerge. Such
a comparative analysis allows to model information consumption accounting for
the heterogeneity of contents. Hence, we show that the proposed model is able to
reproduce the phenomenon observed from empirical data. In particular, we show the
effects of different levels of contents’ heterogeneity on posts consumption patterns.

The remainder of the paper is structured as follows. Background and Related
Work reviews the literature on the study of social dynamics in online social media,
stressing the challenges raised by the economy of attention. In Data Description we
describe the Facebook dataset we used, whereas in Preliminaries and Definitions
we explain some of the statistical tools we use throughout the paper. In Results and
Discussion we show some statistical signatures concerning user activity and post
consumption patterns, and then we introduce and discuss our data-driven model of
information consumption. Finally, Concluding Remarks summarizes our findings.

2 Background and Related Works

A large body of literature addresses the study of social dynamics on socio-technical
systems from social contagion to social reinforcement [4, 9, 13–16, 20, 23–25,
30–37, 46]. Among these, one of the most defining topics of computational social
science is the understanding of the driving forces behind content popularity [44].
This challenge is typically addressed by analyzing the sentiment of comments, post,
and users’ attention [7, 19, 22, 27, 28, 38, 42, 45, 49]. However, the mechanisms
behind popularity remain largely unexplored [21, 29, 47]: Why do some pieces of
content become viral while other, seemingly identical, languish in obscurity? In [40]
the authors tackle this question experimentally by measuring the impact of content
quality and social influence on the eventual popularity or success of cultural arti-
facts. The effects of specific contents on the formation of communities of interest,
their permeability to false information, and the resistance to changes were recently
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characterized in [10–12, 39] while in [5] the authors observe that connectivity
patterns of the Facebook social network are prominently driven by homophily of
users—i.e., the tendency of individuals to associate with others that are similar to
them—towards specific kinds of contents. Microblogging platforms such as Face-
book andTwitter [43] have lowered the cost of information production and broadcast-
ing, boosting the potential reach of each idea or meme [8, 17]. Still, the abundance
of information to which we are exposed through online social networks and other
socio-technical systems is rapidly exceeding our capacity to consume it [48] causing
information dynamics to be attention driven more than it had ever been before [18,
26, 41]. We further this debate and study the interlink between content diversity and
popularity.

3 Data Description

In this work, we aim at investigating the role of content diversity on the dynamics
of information consumption in online social networks. To this end, we use a set of
Facebook pages promoting heterogeneous contents and a Facebook page promoting
always the same picture. The set of pages promoting heterogeneous contents is
composed by 73 public Facebook pages, whereof 34 are about science news and 39
are about conspiracy theories; we refer to the former as science pages and to the
latter as conspiracy pages [11]. Using two significantly different kinds of topics we
are also able to control for topical and community variety since there is little overlap
between the users of both groups of pages. To further ground this analysis we use a
page promoting homogeneous contents. This page, “La stessa foto di Toto Cutugno
ogni giorno” (“Everyday the same photo of Toto Cutugno”) publishes exclusively the
same picture of the Italian singer every day, making it the perfect baseline; we refer to
this page as the baseline page. We collected all the likes and comments to every post
in each page, as well as the number of shares. The dataset includes all activity in the
science and conspiracy pages for the period between August 22, 2013 and December
31, 2013, as well as all activity for the baseline page between August 22, 2014 (when
the page was created) and December 31, 2014. In total, we collected around 2M likes
and 190K comments, made by about 340K and 65K users, respectively. In Table1
we summarize the details of our dataset. Likes, shares, and comments have different
semantic meanings: a ’like’ is a positive feedback on the post; a ’share’ expresses
approval and the will to divulge it further; while a ’comment’ is a form to participate
in collective debate and can be both positive or negative.

4 Preliminaries and Definitions

Here we provide some of the basic definitions that we use throughout the overall
paper.
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Table 1 Dataset statistics. The number of pages, posts, likes, comments, shares, likers, and com-
menters for science pages, conspiracy pages, and the baseline page

Total Science Conspiracy Baseline

Pages 74 34 39 1

Posts 49,354 13,028 36,169 157

Likes 2,095,677 614,078 1,184,084 297,515

Comments 192,967 40,608 138,138 14,221

Shares 3,782,480 477,457 3,297,687 7,336

Likers 344,367 162,146 159,524 22,697

Commenters 64,903 18,358 41,666 4,875

Statistical Tools. The Probability Density Function (PDF) of a real–valued random
variable is a function fX that describes the probability of the random variable falling
within a given range of values, so that

Pr[a ≤ X ≤ b] =
∫ b

a
fX (x) dx .

The cumulative distribution function (CDF) of a real–valued random variable X is
defined as

FX (x) = Pr (X ≤ x) =
∫ x

−∞
fX (u) du.

Similarly, the complementary cumulative distribution function (CCDF) is defined as
one minus the CDF, so that

CX (x) = 1 − FX (x) = Pr (X > x) =
∫ ∞

x
fX (u) du.

Notice that in order to compare metrics related to pages showing different activity
and consumption volumes, we perform the unity–based normalization to bring all
values in the range [0, 1].
Bipartite Networks. In our model we consider a bipartite network having as nodes
users and posts. A like to a given post determines a link between a user and
a post. More formally, a bipartite graph is a triple G = (A, B, E) where A =
{ai | i = 1 . . . nA} and B = {

b j | j = 1 . . . nB
}
are two disjoint sets of vertices indi-

cating, respectively, users and posts, and E ⊆ A × B is the set of edges—i.e. edges
exist only between vertices of the two different sets A and B. The bipartite graph G
is described by the matrix M defined as

Mi j =
{
1 i f an edge exists between ai and b j

0 otherwise
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Fig. 1 Users’ activity
patterns. Complementary
cumulative density function
(CCDF) for the normalized
number of likes by each user
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Thus, Mi j = 1 means that a user ai ⊂ A liked a post b j ⊂ B. It follows that the
bipartite projection of users is a network of users in which a user ax ⊂ A is linked
to a user ay ⊂ A if and only if both liked a given post bz ⊂ B, i.e. if and only if

Mxz = 1 ∧ Myz = 1.

5 Results and Discussion

In this section, we first present the statistical signatures characterizing users activity
on pages with diversified content on specific topics (science and conspiracy news)
against the case of the page posting every day the same picture (baseline). Then, we
derive a model of information consumption mimicking user preferences with respect
to contents.

5.1 Content and Users Activity

Let us focus on some regularities concerning users’ activity on science pages and
conspiracy pages compared with the baseline page. Figure1 shows the complemen-
tary cumulative density function (CCDF) for the normalized1 number of likes for
each user.

In Fig. 2we show theCCDFof the users’ lifetime in terms of their liking activity—
i.e. the temporal interval between the first and the last like of the user on a given
page.

These figures show that users activity patterns are similar and present heavy–tailed
distributions despite the different nature of the contents, and we can not find any

1We rescaled the number of likes to bring all values in the range [0, 1].
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Fig. 2 Users’ lifetime.
Complementary cumulative
density function (CCDF) of
the users’ lifetime in terms of
their liking activity. The
CCDF shows a slight
difference in the lifetime of
the baseline users with
respect to science and
conspiracy users
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significant difference between the users interaction patterns induced by heteroge-
neous or homogeneous contents.

Conversely, by analyzing consumption patterns related to posts, we find a signif-
icant difference in the information consumption dynamics. Figure3 shows the PDF
for the number of likes received by posts belonging to science pages, conspiracy
pages, and the baseline page. The number of likes received by posts are heavy–tailed
distributed if the posts belong to pages promoting heterogeneous contents (science
and conspiracy pages); whereas they are approximately distributed according to a
Gaussian if the posts belong to a page promoting homogeneous content (baseline
page).
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Fig. 3 Posts’ consumption patterns. Complementary cumulative density function (CCDF) for the
normalized number of likes received by posts belonging to science pages, conspiracy pages, and
the baseline page. The CCDFs show remarkable differences between consumption patterns’ distri-
butions related to pages promoting heterogeneous contents and those related to the page promoting
homogeneous contents
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Fig. 4 Beta distribution
Be(α, β). Two parameters,
α and β, control the shape of
the distribution. In particular,
for α = 1 and β = 1 the
Beta distribution Be(α, β) is
equivalent to the Uniform
distribution U (0, 1).
Conversely, if α = 1 and
β � 20, the Beta distribution
Be(α, β) is a right
heavy–tailed distribution

5.2 Modeling Contents Consumption

Here we introduce a model of pattern consumption that exploits the Beta distribution
properties to generate different levels of posts’ attractiveness, thus varying content–
heterogeneity in the simulated collection of posts.

The Beta distribution is a family of continuous probability distributions defined
in the interval [0, 1] and characterized by two real parameters, α > 0 and β > 0,
which control the shape of the distribution. In particular, for α = 1 and β = 1 the
Beta distribution Be(α, β) is equivalent to the Uniform distribution U (0, 1). Con-
versely, if α = 1 and β � 20, the Beta distributionBe(α, β) is a right heavy–tailed
distribution. Figure4 shows the Beta probability density function with respect to the
two shape parameters α and β.

In our model, each post has a value drawn from a Beta distribution v ∼ Be (1, β),
with β ranging between 1 and 1,000,000, indicating its attractiveness. We let the
parameter β assume those extreme values in order to obtain different distributions for
posts’ attractiveness. Indeed, notice that when β = 1 the Beta distributionBe (1, β)

is equivalent to a uniform distribution U (0, 1), so that we have a collection of
homogeneous–content posts—i.e., each post has the same degree of attractiveness;
whereas when β → ∞ the Beta distributionBe (1, β) is equivalent to a right heavy–
tailed distribution, so that we have a collection of heterogeneous–content posts—i.e.,
there are few posts with a high level of attractiveness, while the vast majority of
the posts is characterized by a low level of attractiveness. Moreover, each user is
characterized by two parameters randomly drawn from power law distributions:
her volume of activity, a ∼ p(x); and her fixed–preference about the posts, b ∼
p (x), where p (x) = x−γ with γ = 1.5. Each user can not exceed her assigned
volume of activity, a, and she likes a given post if and only if her normalized2 fixed–
preference, b, is smaller than the attractiveness, v, of that post. Note that in our model
we do not take into account the users’ network: since Facebook network is very

2Note that we performed a unity–based normalization in order to bring all values of b ∼ p (x) =
x−1.5 in the range [0, 1], so that the fixed–preference of the user is comparablewith the attractiveness
of the posts.
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Fig. 5 Users activity and post consumption patterns with extremely heterogeneous–content posts.
Probability density function (PDF) of the users activity and the posts consumption patterns gen-
erated by a simulation of the model with β = 1,000,000. If the content promoted by a page is
heterogeneous, the heavy–tailed users’ activity resolves in skewed posts consumption’s patterns

dense—indeed, the diameter of Facebook social network is just 3.74 [5, 6]—the
connections between users are not likely to influence posts’ consumption dynamics.

We run simulations for β ranging between 1 and 1,000,000, with P = 10,000
(posts) and U = 20,000 (users). Results are averaged over 100 iterations.

Figure5 shows the probability density function (PDF) of the users activity
and the posts consumption patterns generated by a simulation of the model with
β = 1,000,000—i.e., in the case of extremely heterogeneous–content posts. Observe
that users’ activity is heavy–tailed, and the distribution of posts’ consumption is
skewed. Such a result is consistent with empirical data shown in the previous section:
if the content promoted by a page is heterogeneous, the heavy–tailed users’ activity
resolves in skewed posts consumption’s patterns.

Figure6 shows the probability density function (PDF) of the users activity and the
posts consumption patterns generated by a simulation of the model with β = 1—i.e.,
in the case of homogeneous–content posts. Notice that users’ activity is heavy–tailed,

Fig. 6 Users activity and post consumption patterns with homogeneous–content posts. Probability
density function (PDF) of the users activity and the posts consumption patterns generated by a
simulation of the model with β = 1. If the content promoted by a page is always the same, the
heavy–tailed users’ activity resolves in approximately Gaussian posts consumption’s patterns
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whereas posts’ consumption is approximately Gaussian. Such a result is consistent
with empirical data shown in the previous section: if the content promoted by a
page is always the same, the heavy–tailed users’ activity resolves in approximately
Gaussian posts consumption’s patterns.

6 Concluding Remarks

Facebook is full by different and heterogeneous contents, ranging from the latest
news all the way to satirical and funny stories. Each piece of content posted reflects
the heterogeneity of the underlying social background of the over 1 Billion Facebook
users. Online social networks such as Facebook and Twitter give people an outlet
within which to express their attitudes, passions, and emotions by producing, sharing
and, consuming heterogeneous information.

In Facebook, we found a fascinating case of contents’ homogeneity: a page with
more than 40K followers that every day posts the same picture of Toto Cutugno, a
popular Italian singer. In this work, we use such a page as a benchmark to investi-
gate and model the effect that intrinsic contents heterogeneity has on popularity. In
particular, we use that page for a comparative analysis of information consumption
patterns with respect to pages posting heterogeneous contents related to Science and
Conspiracy Theories, two topics with widely different audiences.

Surprisingly, we find that variations in the popularity of individual posts are due
mostly to content heterogeneity. Even though there are no remarkable differences
in user activity patterns between the Science, Conspiracy and Baseline pages, we
observe that post popularity in the baseline page is well approximated by a nor-
mal distribution while it is broad tailed in pages promoting heterogeneous content.
Finally, we show that these differences can be explained just by content heterogene-
ity by deriving a conceptually simple model that is able to reproduce our empirical
observations.
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Investigating Side Effect Modules
in the Interactome and Their Use
in Drug Adverse Effect Discovery

Emre Guney

Abstract One of the biggest challenges in drug development is increasing costs of
bringing new drugs to the market. Many candidate drugs fail during phase II and III
trials due to unexpected side effects and experimentalmethods remain cost ineffective
for large scale discovery of adverse effects. Alternatively, computational methods are
used to characterize drug side effects, but they often rely on training predictors based
on drug and side effect similarity. Moreover, these methods are typically tailored
to the underlying data set and provide little mechanistic insights on the predicted
associations. In this study, we investigate the role of network topology in explaining
observed side effects of drugs. We show that the interactome based proximity can be
used to identify side effects and we highlight a use case in which interactome-based
side effect prediction can give insights on drug side effects observed in the clinic.

1 Introduction

Drug safety is one of the major driving factors beneath the attrition of drugs, con-
tributing to more than 20% of the clinical trial failures and thus increasing costs
associated with drug development [1, 2]. Undesired side effects of drugs are also
among the leading causes of mortality in Western countries [3], prompting a clear
need for better understanding of drug side effects.

The topology of the human interactome encodes biologically relevant information
that can be used to discover novel drug-disease [4–6], and drug-side effect [7, 8]
relationships. Although, some side effects can be explained by the proteins the drug
is intended to target, many side effects likely to originate from the interactions of the
drug with off-targets or the interactions between these proteins [9]. To understand
the role of protein interactions in drug induced arrhythmias, Berger and colleagues
identified the neighborhood of disease associated genes for long-QT syndrome in
the PPI network and used this neighborhood to predict drugs likely to have risks for
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QT-interval prolongation [7]. They calculated a random-walk based score from each
protein in the PPI network to known disease genes involved in long-QT syndrome,
corresponding to the reachability of the proteins from the known disease genes. They
then used this score to define a long-QT syndrome specific interactome neighborhood
and to rank the drugs based on the targets falling in this neighborhood. Moreover,
Brouwers et al., investigated whether the side effect similarity between drugs could
be explained by the closeness of the drug targets in a functional PPI network [8].
They observed that only a minor fraction (6%) of drugs whose targets were direct
neighbors in the network shared similar side effects, emphasizing the need for taking
the global topology of the network into account.

In this study, we aim to investigate whether the global topology of the human
interactome can characterize drug side effects. We first define side effect modules as
the drug targets elucidating the side effects and check the network-based distances
between side effect modules and drug targets. We show that drug targets are closer
to the proteins associated with the known side effects of the drug in the network
compared to the proteins associated with the rest of the side effects. We then use
interactome based closeness to systematically identify side effects of the Federal
Drug Administration (FDA) approved drugs in the DrugBank database. Finally, we
demonstrate how the interactome based closeness can be used to predict side effects
of tamoxifen that are not listed in SIDER.

2 Materials and Methods

2.1 Data Sets

The drugs used in our analysis were retrieved from DrugBank v4.3 database [10].
For all FDA approved drugs, we extracted drug-protein interactions including drug
target, enzyme, transporter and carrier interactions (hereafterwe simply refer all these
proteins as drug targets). Uniprot ids fromDrugBankweremapped to ENTREZ gene
ids using Uniprot id mapping file (retrieved on October 2015). The SMILES strings
of drugs were also downloaded from DrugBank.

We obtained drug side effect information fromSIDER v4 [11], a resource contain-
ing side effects extracted from drug labels via text mining and mapped the drug ids to
DrugBank ids using the PubChem mapping provided in DrugBank. We represented
the side effects with their preferred terms reported in SIDER. To avoid including
drugs whose side effects are not well characterized, we only considered drugs with
at least five side effects in SIDER.

For validation purposes, in addition to SIDER, we used OFFSIDES [12], cat-
aloging clinically significant drug side effects from FDA adverse event reporting
system. We parsed the OFFSIDES flat file and mapped the drug ids to DrugBank ids
using the PubChem mapping provided in DrugBank as we did for SIDER. Only the
side effects with observed medical effect were included in the analysis.
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We used the human interactome curated in a recent study [13], containing physical
interactions between proteins from various large scale resources. The coverage and
confidence of this integrated interaction network has been showed to be superior to
interaction networks coming from yeast-two-hybrid or functional association data
sets [6, 13]. Following the methodology in these studies, the largest connected com-
ponent of the network, containing 141,150 interactions between 13,329 proteins, was
used in the analysis.

2.2 Defining Side Effect Modules

To identify drug targets that contribute to the side effects, we followed the procedure
presented in Kuhn et al. [14]. For each side effect and drug target we counted the
number of drugs with and without the side effect for which the drug target was a
known target versus the number of drugs with and without the side effect for which
the target was not a known target. We used Fisher’s exact test to calculate the two
sided P-value of the observed occurrence of the target with the side effect as follows:
The P-values were then corrected for multiple hypothesis testing using Benjamini
and Hochberg’s method.We selected the targets that were below 20% false discovery
rate to describe the side effect module. In our analysis, we considered the side effects
modules that had at least five targets in the interactome. We note that although the
proposed approach is applicable to side effects defined by any number of proteins,
we use the side effects with at least five proteins to ensure that the side effects in the
analysis can be fairly explained by a group of proteins. We provide the side effect
module information and the Jupyter Notebook to replicate the analysis in this study
at http://www.github.com/emreg00/proxide.

2.3 Characterizing Closeness Between Drug Targets and Side
Effect Modules

Given a networkG(V, E), we defined the following topological measures to quantify
the network based closeness between targets of a drug, T , and proteins in a side effect
module, S.

1. Shortest: The average pairwise shortest path length between each drug target and
side effect module protein.

dShortest(T, S) = 1

‖T ‖ ∗ ‖S‖
∑

s∈S

∑

t∈T
d(t, s)

where d(t, s) is the shortest path length between nodes t (a drug target) and s
(a side effect protein) in the network. To convert the average shortest path length

http://www.github.com/emreg00/proxide
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above to a side effect specific z-score for each drug, we normalized dShortest(T, S)

using themean (μdShortest(T,S)) and standard deviation (σdShortest(T,S)) of dShortest(Ti , S)

values calculated for all the drugs {T1, T2, . . . , Tn} in the data set.
We used Dijkstra’s shortest path algorithm implemented in Python networkx
package to calculate the pairwise shortest path length between pairs of proteins
in the interactome.

2. Closest: The average shortest path length to the closest protein in the side effect
module from the drug targets, given by

dClosest(T, S) = 1

‖T ‖
∑

t∈T
min
s∈S d(t, s)

We normalized these values using the mean and standard deviation of the values
calculated for all the drugs as it was done above.

3. PageRank: The average PageRank score of the drug targets when the proteins
in the side effect module were used to weight the influence of the nodes in the
network. We assigned higher priors to the proteins in the side effect module, 1,
compared to the rest of the nodes that were assigned 0.01 and calculated the
probability that a random walker in the network would end up in a certain node
based on the following formula:

PRi+1(u) = (1 − d) ∗ PR0(u) + d
∑

v∈Neighbors(u)

PRi (v)

degree(v)

where u was the current node in consideration, v was a node connected to u,
PRi (u) was the PageRank score at iteration i and d is damping factor that was
set to 0.15. The algorithm was repeated till convergence. The drug-side effect
closeness was then defined using the PageRank score of the targets T normalized
using the mean and standard deviation of the PageRank scores of all nodes for
the given side effect. We used PageRank with priors implementation in GUILD
package [15].

4. NetScore: The average NetScore score of the drug targets when the proteins in
the side effect module were used as the source of information passed among the
nodes. NetScore scored all the nodes in the network by iteratively propagating the
score of the proteins in the side effect module to the neighboring nodes through
shortest paths [15]. Unlike conventional shortest path based algorithms, NetScore
considered the alternative shortest paths in between two nodes, favoring the nodes
that were connected with more paths. We used the implementation of NetScore in
GUILD software package [15] and initialized the proteins with a score of 1 if they
belong to the side effect module and 0.01, otherwise. We limited the number of
repetitions the program used to 3 with 2 iterations in each of them. The drug-side
effect closeness was then defined as the average NetScore score of the targets T
normalized using the mean and standard deviation of the NetScore scores of all
nodes for the given side effect.
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5. Proximity: The significance of the observed average shortest path length to the
closest protein in the side effect module from the drug targets. Interactome based
proximity [6] first quantified the average shortest path length between the closest
protein in the side effect module and the drug targets (dClosest(T, S) above) and
then calculated a z-score corresponding significance of these distances using the
mean and the standard deviation of the background distribution of expected min-
imum shortest path distances between two randomly selected groups of proteins
(with the same size and degrees of the original protein sets). The background dis-
tance distribution was generated using 1,000 randomly selected protein groups
matching drug targets and side effect proteins.

2.4 Drug Side Effect Prediction Using Network-Based
Closeness

To investigate whether the network-based closeness can predict side effects, for each
known and unknown drug and side effect pair, we recorded the five topology based
closeness scores (zShortest , zClosest , zPageRank , zNet Score, zProximity). We then verified
whether these topology based scores could discriminate known drug-side effect pairs
from the rest by calculating the number of correctly and incorrectly predicted known
and unknown drug-side effect pairs at various score cutoffs and checking the area
under ROC curve (AUROC) and area under precision-recall curve (AUPRC). The
knowndrug-side effect associations inSIDERandOFFSIDESdatabaseswere used as
the gold standard positive instances and the remaining associations were assumed to
be negative instances.We employedPython scikit-learn package to calculateAUROC
and AUPRC values and R for the statistical tests.

3 Results

3.1 Side Effect Modules in the Interactome

The available experimental information on the drug targets contributing to the side
effects of drugs is often limited to a handful of drug targets [16, 17], hindering a
large scale analysis of drug targets inducing the side effects. Alternatively, over-
representation analysis of drug targets and side effects can characterize the targets
eliciting side effects [14]. Therefore, we define the side effect modules as the groups
of drug targets significantly associated with the side effects using the drug target
information in DrugBank [10] and SIDER database [11]. Using 1,530 FDA approved
drugs and their targets in DrugBank, we identify 1,177 drug target groups associated
with the side effects. To confirm that the proteins defining the side effect modules
are biologically relevant, we check the overlap between the side effect targets by
Lounkine et al. [17]. The side effect modules cover at least one protein associated
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Fig. 1 Side effect modules in the interactome and their use in drug adverse effect characterization.
a Schematic overview of the interactome based analysis of drug side effect modules. For each of
817 drugs and 537 side effects, we calculate network based closeness between the drug targets
and the proteins inducing the side effect and validate the predictions using known drug-side effect
associations. bEach point represents a side effect consisting of proteins identified to be significantly
associated to the side effect. The x-axis is the number of proteins in the side effect module and the
y-axis is the number of drugs that shows the side effect. The size of the points scales with the median
degree of the proteins in the side effect module

with the side effect for 164 of 241 side effects that are also in the Lounkine et al.
study. Furthermore, 130 out 265 of the proteins in the identified side effect modules
appear among 224 proteins given in the Lounkine data set, covering more than half
of the experimentally verified side effect targets.

To understand the interactome based relationship between drug targets and side
effectmodules, we focus on 537 side effectmodules that have at least 5 proteins in the
interactome and 817 drugs both known to exert any of these side effects and having
at least one target in the interactome. We seek whether topological characteristics
of these two groups of nodes, drug targets and side effect module proteins, can
explain observed side effects of drugs (Fig. 1a). We first turn our attention to the
side effect module proteins and ask if the number of proteins in the module or their
degree can provide insights on the side effects drugs show. The average module
size is 〈nmodule〉 = 15.8 among 537 side effects and the largest module, the one of
gynaecomastia (enlargement of a man’s breasts), contains 66 proteins. Interestingly,
the average degree of all the proteins contributing to a side effect is higher than the
average degree of the remaining proteins in the interactome (〈ksideeffect〉 = 26.5 vs.
〈knonsideeffect〉 = 21.1). If the proteins within each side effect module are considered
independently, however, the average degree of the proteins in the side effect modules
is around the average degree of the interactome (〈kmodule〉 = 20.8 vs. 〈k〉 = 21.2),
with peliosis hepatis, an uncommon vascular condition in liver, being the side effect
with the highest average degree

(〈
kpeliosishepatis

〉 = 123.6
)
.

To investigate whether the size and the average degree of the identified side effect
modules are higher for the “popular” side effects—the side effects that occur fre-
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quently in SIDER, we look at the number of drugs the side effect is observed and the
number and mean degree of the proteins in the side effect module (Fig. 1b). The sig-
nificant but low correlation between the number of drugs showing the side effects and
the module size (Spearman’s rank correlation ρ = 0.16, P = 1.8 × 10−4) suggests
that the size of the module is not strongly associated to the occurrence of the side
effects. On the other hand, the degree of the proteins within the side effect modules
is not correlated with the number of drugs the side effect is observed (Spearman’s
rank correlation ρ = 0.03, P = 0.55).

3.2 Network Based Closeness of Drugs and Side Effects

Next, for each drug and side effect pair in our analysis (817 × 537 pairs), we calculate
the network based closeness of the drug’s targets to the side effect module in the
interactome using five topological measures (see Methods). We then investigate how
well the calculated closeness scores discriminate the observed drug side effects using
theknowndrug side effect associations inSIDERandOFFSIDESdatabases (Table1).

We find that the drugs tend to be closer to the proteins inducing the side effects
known to be associated with them compared to the proteins in the rest of the side
effectmodules (Fig. 2). The difference in the closeness values of known and unknown
drug-side effect pairs is significant using both SIDER and OFFSIDES side effect
associations (one-sidedMannWhitney U test P � 0.05). We observe that NetScore,
the method that takes alternative shortest path between drug targets and side effect
module proteins and Proximity, the method that compares observed shortest path
length between drug targets and the closest side effect module protein to the distances
between randomly selected nodes in the network yield a wider range of closeness
scores than the remaining methods.

We then turn to predicting drug side effects using the network neighborhood infor-
mation of the side effect modules and quantify the closeness between drug targets
and side effect modules in the interactome. We use the drug-side effect associations
in SIDER and OFFSIDES as the gold standard data to calculate the precision, recall,
false positive rate at various closeness score cutoffs and check the area under the

Table 1 Number of drugs, side effects and known drug-side effect associations included in the
analysis according to SIDER and OFFSIDES databases

SIDER OFFSIDES

Number of drugs 817 269

Number of side effects 537 118

Number of known drug-side
effect associations

64,885 2,060

Percentage of known
associations

14.8% 6.5%



246 E. Guney

Fig. 2 Network based closeness of known and unknown drug-side effect pairs. The closeness
between drug targets and side effects calculated using five topological measures (Closest, Shortest,
PageRank, NetScore and Proximity) for each of 817 drugs and 537 side effects. Known drug-side
effect associations are taken from a SIDER and b OFFSIDES

Table 2 AUROC, AUPRC and percentage of correctly predicted highest ranked drug-side effect
pair for various network based closeness methods using SIDER and OFFSIDES associations

AUROC (%) AUPRC (%) Correct at top (%)

SIDER OFFSIDES SIDER OFFSIDES SIDER OFFSIDES

Shortest 59.8 53.9 17.8 7.1 15.9 8.2

Closest 67.9 57.7 27.6 8.5 79.6 28.6

PageRank 69.0 59.6 27.0 8.6 55.8 13.0

NetScore 71.7 61.9 28.8 9.6 52.1 14.5

Proximity 71.1 63.6 32.8 11.4 56.7 11.5

ROC curve (AUROC), the area under the precision-recall curve (AUPRC) and the
percentage of the drugs for which the highest scoring prediction is a known side
effect (Table2). We see that, overall, the best performing methods are NetScore and
Proximity, showing higher prediction accuracy on both SIDER and OFFSIDES data
sets compared to the rest of the methods.

Despite using only the network topology theAUROCs forNetScore andProximity
scores on SIDER drug-side effect associations are 71.7% and 71.1%, respectively,
suggesting that closeness of drugs to side effect modules is predictive of the drug’s
adverse effects. We also examine the area under precision-recall curve (AUPRC)
and find that NetScore and Proximity achieve AUPRC values of 28.8% and 32.8%,
respectively. Furthermore, for 52.1% and 56.7% of the drugs used in the analysis,
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the highest scoring side effect identified by NetScore and Proximity is reported in
SIDER, showing that drug-side effect module closeness can provide insights on the
side effects of drugs. On the other hand, when the drug-side effect associations in
OFFSIDES database is used, the AUROC drops to 61.9% and 63.6% for NetScore
and Proximity, still substantially higher than that would be expected from a classifier
producing random predictions (50%). Moreover, only for around 10% of the drugs,
the highest scoring side effect is in OFFSIDES, an observation we attribute to the
lower coverage of known side effects in OFFSIDES database (6.5%) compared to
the SIDER (14.8%, Table1). Accordingly, due to the higher coverage of drugs and
side effects, and better prediction accuracy, in the rest of the text, we use SIDER
drug-side effect associations as the gold standard.

3.3 Assessing the Effect of the Data Incompleteness

The current knowledge on drug-target interactions represent only a partial view of the
possibly many proteins involved in drug’s action [18]. To account for the potential
implications of incompleteness of the drug target data, we analyze the prediction
performance of each method on various subsets of drugs and side-effects categorized
with respect to the number of drug targets (m) and side effect proteins (n). Figure3
shows the AUROC and AUPRC values (i) on the original data set containing 817
drugs with at least one target and 537 side effect modules of at least five proteins
(m ≥ 1, n ≥ 5) and when we repeat the analysis using (ii) 428 drugs and 537 side
effects with at least five targets and proteins (m ≥ 5, n ≥ 5), (iii) 428 drugs with
at least five targets and 322 side effect modules with at least ten proteins (m ≥ 5,
n ≥ 10), and finally, (iv) 176 drugs and 322 side effects with at least ten proteins
(m ≥ 10, n ≥ 10).

We find that, as the drugs and side effects associated with more proteins are used,
the closeness basedpredictions improve.Nonetheless, the improvementmainly stems
from the higher number of drug targets, as the change in the accuracy is modest when
the number of proteins in the side effect modules increases. On the other hand, the
AUROC and AUPRC values increase 3–6% when the drugs with more number of
targets are used.

3.4 Case Study: Top Ranking Side Effects of Tamoxifen

Tohighlight how interactomebased closeness of drug targets can help identifying side
effects, we use Proximity, the method that show high overall accuracy according to
various performance measures (Table2). Using only the target information of a given
drug, Proximity calculates a network topology based significance of the closeness
of the drug to all side effects, allowing us to rank the likelihood of all side effects
for any drug with drug target information. Notably, among the drugs in our data set
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Fig. 3 The effect of data incompleteness on prediction performance. The area under a the ROC
curve (AUROC) and b the precision-recall curve (AUPRC) values when a subset of the drugs and
side effects are excluded from the analysis. In each panel, the drugs having less than m targets in
the network and the side effect modules that have less than n proteins in the network are excluded
from the analysis

for which the top ranking side effect is not reported in SIDER, we see tamoxifen, an
estrogen receptor modulator used for the treatment of breast cancer. Although eight
out of ten highest scoring side effects are reported in SIDER, two side effects with
very strong association scores, “muscular weakness” and “neuropathy peripheral”
are not listed in SIDER. We find out that the muscle weakness is indeed a known
side effect according to the drug information in Medlineplus (http://www.nlm.nih.
gov/medlineplus/druginfo/meds/a682414.html). Furthermore,while not indicated in
neither SIDER nor Medlineplus, the peripheral neuropathy appears to be a clinically
relevant condition reported by several patients in message boards (at http://www.
community.breastcancer.org and http://www.medhelp.org).

The Proximity score of Tamoxifine to the 14 proteins associated to peripheral
neuropathy is z = −12.1, suggesting that the drug targets are highly proximal to
the side effect proteins in the interactome as a group. This is largely due to seven
enzymes (CYP1A2, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP3A4, CYP3A7)
and two transporters (ABCB1, ABCC2) tamoxifen is known to bind are in the side
effect module. Furthermore, protein encoded by KIT gene in the side effect module,
is known to be inhibited via phosphorylation by Protein kinase C protein family, a
family of proteins targeted by tamoxifen, contributing to the observed proximity to
the peripheral neuropathy.

http://www.nlm.nih.gov/medlineplus/druginfo/meds/a682414.html
http://www.nlm.nih.gov/medlineplus/druginfo/meds/a682414.html
http://www.community.breastcancer.org
http://www.community.breastcancer.org
http://www.medhelp.org
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4 Conclusion

Most existing approaches rely on existing drug side effect associations to predict
drug side effects, hindering both the interpretability of predicted associations and
the ability to discover novel side effects. In contrast, in this study, we investigate the
network based closeness of drug targets to the proteins likely to induce the side effects
to explain the observed drug adverse effects. We use the interactome based closeness
to predict side effects associated with a drug, providing a mechanistic explanation
of the predicted association.

One drawback of network based methods is that they require that at least a drug
target known to interact with a protein in the interactome. Furthermore, they can only
be applied to side effects for which a set of proteins inducing the side effect can be
identified. Yet, we show that interactome based closeness can systematically detect
side effects of 817 FDA approved drugs in DrugBank without relying on the known
drug-disease associations. Moreover, network based closeness offers an important
advantage over widely used similarity based methods by providing interactome-
based insights on the likelihood of a drug to induce a given side effect.
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Attractor Analysis of the Asynchronous
Boolean Model of the Klotho Gene
Regulatory Network

Malvina Marku, Inva Koçiaj, Klotilda Nikaj and Margarita Ifti

Abstract When analyzing the state space attractors and their basin of attraction,
two main methods have been used: the synchronous update method and the asyn-
chronous update method. Although its simplicity, the synchronous update fails to
consider various time scales of the chemical processes between the components
within the network. To overcome this limitations, several asynchronous methods
have been developed. In this work, we use two different asynchronous methods to
study the dynamics of thewild-type and perturbedKlotho gene and carry out compar-
ative results with previously published results. Prior evidence shows that the system
develops oscillations and a fixed point. The numerical results of the both asynchro-
nous methods show that, the system’s oscillations disappear and the system undergo
in only one time-invariant fixed point, leading to an extended attractor. This work
aims to highlight different behavior of the Klotho gene under various internal and
external perturbations.

Keywords Gene-regulatory network · Klotho gene · Boolean model · Asynchro-
nous update · Fixed point

1 Introduction

In system biology, different formal presentation types are used to construct mathe-
matical models, varying from quantitative continuous models to qualitative discrete
models, each with their own strength and weakness. Continuous models (Ordinary
Differential Equations ODE of the system) are often restricted by the absence or low
availability of kinetic parameters and/or experimental data. On the other hand, dis-
crete models, such as Boolean models, give the possibility to study large networks,
but, still preventing some important properties of the system [1]. To bridge the gap
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between these two models, different models have been developed, such as hybrid
models [2], in which every node is characterized by two variables: a continuous
concentration and a discrete activity. Which model is to be selected to suit a certain
system, depends on the level of quantitative details of the available experimental data
[3, 4].

Boolean models were first introduced by Kauffman (1969) [5] and Thomas [6] for
modelling gene-regulatory networks [3, 4, 7, 8] in a total absence of kinetic details.
Since then, different applications provided adequate justifications for the use of
Booleanmodels, since the input-output curves of regulatory interactions can be well-
suited with step functions [9]. In this representation of a gene regulatory network,
each node represents a gene, protein, chemical element, enzyme, etc., while each
edge represents the chemical process between the nodes. The chemical processes
consist only in the activation or inhibition form, while the activity of each node
can take only two possible values: 1 (ON) (expressed, open gate, concentration
above threshold, active) or 0 (OFF) (not expressed, closed gate, concentration below
threshold, inactive). The future state of each node is determined by the current state of
its regulators, through a Boolean function, usually expressed via the logic operators
AND, OR and NOT.

Generating the future state of the each node, i.e., of the system, can undergo in
two possible methods: the synchronous method or the asynchronous method. The
simplest method, the synchronous updating method assumes equal time scales for all
the processes involved and is implemented by updating all the nodes simultaneously
[3, 4]. However, despite its simplicity, this method fails to consider different time
scales of molecular interactions. The need to increase the accuracy of the method
lead to the development of two different asynchronous methods, first introduced by
Thomas [6]: the stochastic update method (Random Order Asynchronous Method
and the General Order Asynchronous Method) and the deterministic update method
(Deterministic Asynchronous Method). In a stochastic update method, in every time
step, a randomnode/sequence of nodes is selected to update and the system is updated
according to this node/sequence of nodes, while in a deterministic update method
the system is updated according to a pre-determined sequence or at multiples of their
pre-selected time units [2, 3].

In the majority of studies, the dynamic analysis of a Boolean network includes
the analysis of the attractors (mainly interested on fixed points) in the state space
of the system, their corresponding basin of attraction, starting from the wild-type
condition. However, considering all the possible initial states and identifying cycles
is still an intriguing study. In this work, we study the attractors of the Klotho gene
networks by applying the RandomOrder Asynchronous (RA) and the General Order
Asynchronous (GA)methods, and compare the resultswith the Synchronousmethod,
obtained in previous studies [10].
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Klotho, first discovered by Kuro-o in 1997, is the only reported single gene muta-
tion that leads to a premature aging phenotype inmice [1, 11, 12]. From experimental
data results that over-expression of Klotho leads to life span and low-expression of it
leads to a numerous diseases, including Chronic Kidney Disease (CDK), hyperphos-
phatemia, hypercalcitrosis, vascular calcification, bone abnormalities, etc. [11–13].
Here, we focus on the role of Klotho in phosphate and calcium metabolism. Phos-
phate metabolism is regulated by several endocrine factors, involving vitamin D and
parathyroid hormone (PTH). The active form of vitamin D is synthesized in kidney
and acts on intestine to increase absorption of dietary calcium and phosphate. PTH
acts on kidney to promote both vitamin D synthesis and phosphate excretion into
urine. As a result, unlike vitamin D, PTH can selectively increase blood calcium
levels without increase in blood phosphate levels.

Recent studies have identified fibroblast growth factor 23 (FGF23) as a novel
endocrine factor that lowers blood phosphate and vitaminD levels. FGF23 is secreted
from osteocytes in response to high blood level of phosphate and vitamin D. FGF23
acts on kidney to (1) induce phosphate excretion into urine, and (2) counter regulate
vitamin D. As a result, FGF23 reduces phosphate absorption from intestine. Thus,
FGF23 induces a negative phosphate feedback by functioning as a phosphaturic
hormone, as well as a counter regulatory hormone of vitamin D.

Experiment results show that FGF23 andKlothomay function in a common signal
transduction pathway. In fact, the transmembrane Klotho protein was shown to form
a complex with several FGF receptors, e.g., Klotho functions as an obligatory co-
receptor for FGFR, allowing FGF23 to suppress PTH. As a result, Klotho functions
as both a phosphate regulatory hormone and a calcium regulatory hormone, through
a cascade of interactions [11–13]. The simplified network of interactions between
these components is given in Fig. 1 [14].

2 Methods

Let i , (i = 1, 2, . . . , N ) represent the nodes of a biological network with N nodes.
The basis of a Boolean model stands on the assumption that the state of each node i ,
at a certain time t , Xi (t) can be determined by the states of its regulators at previous
time, through aBoolean function. In order to implement time, first, we have to specify
which the previous time is and what time is requested for any interaction to occur. In
this direction, two different methods have been developed: the synchronous method
[5] and the asynchronous methods [2, 3, 7, 8]. The synchronous method assumes
similar time intervals for every interaction, i.e., all the nodes within the network are
updated simultaneously:

Xi (t + 1) = Fi (X1 (t) , X2 (t) , . . . , Xn (t)) (1)

where, Fi is the Boolean function of node i and X1, X2, . . . , Xn are the regulators
of node i . Note that, a network of N nodes, can have a finite number of 2N states.
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Fig. 1 The simplified aging network. a Elements interactions [2]. A change in the concentrations
of one component, may lead to a cascade of events, starting with hypocalcemia. b Network rep-
resentation: The nodes of this network represent proteins or ion channels, while the edges of the
network (all directed) represent interactions between nodes (protein protein interaction, chemical
reactions, and other indirect regulatory relationships between nodes). → denotes activation, while
� denotes inhibition

It is clear to see that this method is very easy to be implemented in a certain network;
even so, it does not take into account different time scales of different chemical
processes (direct/indirect reactions, translational/transcriptional regulations, etc.),
which scale from milliseconds to hours to occur. In order or add more information
about the node characteristics, different asynchronousmethods have been developed,
wherein each node is updated up to their individual time scales.

1.RandomOrderAsynchronous (RA): at each time step, a randomsequenceof nodes
from the normal distribution of the permutation space {1, 2, . . . , N } of N ! possible
permutations of N nodes, is selected to update, and all the nodes are updated in that
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order. In this case, the future state of node i can be determined according to the most
recent state of its regulators during time interval τi ∈ [t, t + 1]:

Xi (t + 1) = Fi
(
Xi1

(
τi1

)
, Xi2

(
τi2

)
, . . . , Xin

(
τin

))
(2)

If the position of regulator j is before node i , τi j = t + 1, otherwise τi j = t .
2. General Order Asynchronous (GA): at each time step, a random node is selected
to update.
3. Deterministic Asynchronous (DA): each node is characterized by a certain time
unit γi and it can be updated only if the t = k · γi :

Xi (t + 1) =
{
Fi (X1 (t) , X2 (t) , . . . , Xn (t)) if t = k · γi

Xi (t) otherwise
(3)

However the method used, dynamical analysis of a biological network is focused in
studying the stability of the system, i.e., identifying the attractors of the system,which
can be single fixed points or complex attractors, wherein the system oscillates among
a certain number of states. The stability of the system can be studied in two common
ways: (1) by solving the system of Boolean equations (note that, the fixed points are
invariant to time, so we need to solve the system of equations after removing time),
(2) from the state transition graph wherein each node represents a certain state and
each edge represents its successor. The basin of attraction represents all the states
leading to the attractor. Note that, in the synchronous updating method, each state
has only one successor, therefore the basins of attraction of different attractors do
not intersect, while in the asynchronous updating methods, the basins of attraction
of different attractors overlap [4].

The Boolean system of equations associated with the Klotho network given in
Fig. 1, is given in Table1, where the asterisk denotes the future state of each node.
Previous results obtained in [10] for the synchronousmethod show that the systemcan
undergo in two possible attractors: a fixed point (010100) with a basin of attraction
of 13% of nodes, and a limit cycle of length 4, with a basin of attraction 87% of the
possible states. The reason why we are more interested in the fixed point is that, since
it satisfies the equation x∗ = x , it is time-invariant, and, therefore, it should remain
un-affected by the updating method used.

Table 1 Boolean rules
governing the nodes states in
the 6-node network
represented in Fig. 1b

Node Boolean rule

Calcium Calcium* = VD or Klotho and PTH

FGF23 FGF23* = PTH or VD or Phosphate

Klotho Klotho* = VD

PTH PTH* = not (VD or Calcium and FGF23)

Phosphate Phosphate* = VD and not (Klotho or
FGF23) and not PTH

VD VD* = PTH and not (FGF23 or Klotho)
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Fig. 2 The state transition graph obtained by applying RA method. The digit numbers represent
the activity of each component, in the order: Calcium, FGF23, Klotho, PTH, Phosphate, VD. The
fixed point (010100) is individualized on the right

In the next step, we applied the ROA and the GA methods in the case of hypocal-
cemia (Calcium = False). Because these methods are stochastic and are based in
random selection of the nodes/sequences, the simulations are taken for a large num-
ber of time steps. The results are shown in Figs. 2 and 3. As we see, the fixed point
of the system, in both methods, remains the same [11, 15].

3 Results and Discussions

Aswe see from our results, the dynamic analysis of the Klotho gene network gives us
the same fixed point (010100), as the synchronous method did. Even that our model
is a toy model (to obtain more precise results, we need to consider more interacting
components and to detail the way the components interact with each—other through
different processes; this study will be published in future works), the biological
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Fig. 3 The state transition graph obtained by applying the GA method

analysis seems to converge with our results. The fixed point 010100 implicates a high
concentration of FGF23 and PTH and low concentration of all other components.
Theoretical and experimental results show that a low calcium level leads to PTH
activation (state 000100), which in turn activates the VD and FGF23 production
(state 010101). Increased level of VD also increases the level of Klotho, acting as a
co-receptor with FGF23 in renal calcium retention. In the next step, increased level
of FGF23 leads to several negative feedback loops (state 111000). The same result
is obtained even if we analyze the concentrations of each node, when starting from a
hypocalcitrosis state (Fig. 4). In the first time steps, the system oscillates chaotically
then finds the fixed point and remains in this state.

The obtained results show that, for small biological networks, even the synchro-
nous updating method can give acceptable results, because of the low variety of
the processes involved within the network. Even so, the developed asynchronous
updating methods can highlight a numerous characteristics of the network, includ-
ing absorption time, absorption probabilities and including additional mathematical
techniques to study its stability.
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Fig. 4 System’ dynamics starting from state 010100, for 50 time steps
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