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Preface

Electronic commerce and automatic trading have become a ubiquitous feature of
modern marketplaces. Algorithms are used to buy and sell products online, trade in
financial markets, participate in complex automated supply chains, regulate energy
acquisition in decentralized electricity markets, and bid in online auctions.

The growing reliance on automated trading agents raises many research challenges,
both at the level of the individual agent and at a higher system level. In order to design
mechanisms and strategies to tackle such challenges, researchers from AI and
multi-agent systems have used techniques from a variety of disciplines, ranging from
game theory and microeconomics to machine learning and computational intelligence
approaches.

The papers collected in this volume provide a collection of such mechanisms and
techniques, and are revised and extended versions of work that appeared at two leading
international workshops on electronic markets held in 2015 and 2016. The first of these
is the Workshop on Agent-Mediated Electronic Commerce and Trading Agent Design
and Analysis (AMEC/TADA 2015), co-located with the AAMAS 2015 conference
held in Istanbul, Turkey, and the second is the Workshop on Agent-Mediated Elec-
tronic Commerce and Trading Agent Design and Analysis (AMEC/TADA 2016),
co-located with the IJCAI 2016 conference held in New York, USA. Both workshops
aim to present a cross-section of the state of the art in automated electronic markets and
encourage theoretical and empirical work that deals with both the individual agent level
as well as the system level.

Given the breadth of research topics in this field, the range of topics addressed in
these papers is correspondingly broad. They range from papers that study theoretical
issues, related to the design of interaction protocols and marketplaces, to the design and
analysis of automated trading strategies used by individual agents – which are often,
though not exclusively, developed as part of an entry to one of the tracks of the Trading
Agents Competition (TAC).

Two of the papers study auction design. Specifically, Alkobi and Sarne discuss the
benefit an information broker can get by disclosing information to the general public
for free in the context of the Vickrey Auction, while Gujar and Faltings analyze several
auction-based matching mechanisms that take into account the worker’s preferences in
the scenario of dynamic task assignments in expert crowdsourcing. Moreover, Niu and
Parsons present a genetic algorithmic approach to automated auction mechanism
design in the context of the TAC Market Design game.

Another five papers focus on the problems related with the development of
autonomous agents for the current games of the Trading Agents Competition (TAC).

Four of them are concerned with the study of the Power TAC game, a competitive
simulation of future retail electric power markets. Specifically, Hoogland and La Poutré
describe their Power TAC 2014 agent, while Özdemir and Unland present the winning
agent of the 2014 PowerTAC competition.



Natividad et al. and Chowdhury et al. study the use of machine learning techniques
to improve the performance of their respective Power TAC agents. Specifically,
Natividad et al. focus on using learning techniques to predict energy demands of
consumers; while Chowdhury et al. investigate the feasibility of using decision trees
and neural networks to predict the clearing price in the wholesale market, and rein-
forcement learning to learn good strategies for pricing the agent’s tariffs in the tariff
market.

Finally, motivated by the Ad Exchange Competition (AdX TAC), Viqueria et al.
study a market setting in which bidders are multi-minded and there exist multiple
copies of heterogeneous goods.

Problems related to energy and electric vehicles are also considered by a further two
papers of this volume. Specifically, Hoogland et al. examine the strategies of a
risk-averse buyer who wishes to purchase a fixed quantity of a continuous good, e.g.,
energy, over a two-timeslot period; while Babic et al. analyze the ecosystem of a
parking lot with charging infrastructures that acts as both an energy retailer and a player
on an electricity market.

We hope that the papers presented in this volume offer readers a comprehensive and
informative snapshot of the current state of the art in a stimulating and timely area of
research.

We would also like to express our gratitude to those who made this collection
possible. This includes the paper authors, who presented their work at the original
workshops and subsequently revised their manuscripts, the members of the Program
Committees of both workshops, who reviewed the work to ensure a consistently high
quality, as well as the workshop participants, who contributed to lively discussions and
whose suggestions and comments were incorporated into the final papers presented
here.

October 2016 Sofia Ceppi
Esther David
Chen Hajaj

Valentin Robu
Ioannis A. Vetsikas
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Strategic Free Information Disclosure
for a Vickrey Auction

Shani Alkoby(B) and David Sarne

Bar-Ilan University, 52900 Ramat-Gan, Israel
shani.alkoby@gmail.com

Abstract. In many auction settings we find a self-interested informa-
tion broker, that can potentially disambiguate the uncertainty associated
with the common value of the auctioned item (e.g., the true condition
of an auctioned car, the sales forecast for a company offered for sale).
This paper extends prior work, that has considered mostly the infor-
mation pricing question in this archetypal three-ply bidders-auctioneer-
information broker model, by enabling the information broker a richer
strategic behavior in the form of anonymously eliminating some of the
uncertainty associated with the common value, for free. The analysis
of the augmented model enables illustrating two somehow non-intuitive
phenomena in such settings: (a) the information broker indeed may bene-
fit from disclosing for free some of the information she wishes to sell, even
though this seemingly reduces the uncertainty her service aims to dis-
ambiguate; and (b) the information broker may benefit from publishing
the free information to the general public rather than just to the auc-
tioneer, hence preventing the edge from the latter, even if she is the only
prospective customer of the service. While the extraction of the informa-
tion broker’s optimal strategy is computationally hard, we propose two
heuristics that rely on the variance between the different values, as means
for generating potential solutions that are highly efficient. The impor-
tance of the results is primarily in providing information brokers with
a new paradigm for improving their expected profit in auction settings.
The new paradigm is also demonstrated to result, in some cases, in a
greater social welfare, hence can be of much interest to market designers
as well.

1 Introduction

Information disclosure is a key strategic choice in auctions and as such vastly
researched both theoretically and empirically [8,11]. One of the main questions
in this context is the choice of the auctioneer to disclose information related to
the common value of the auctioned item [4,10,12,19,20,24]. For example, the
board of a firm offered for sale can choose the extent to which the firm’s client
list or its sales forecast will be disclosed to prospective buyers. Various other
examples are given in the literature cited throughout this paper. The disclosed
information affects bidders’ valuation of the auctioned item and consequently
the winner determination and the auctioneer’s profit.
c© Springer International Publishing AG 2017
S. Ceppi et al. (Eds.): AMEC/TADA 2015/2016, LNBIP 271, pp. 1–18, 2017.
DOI: 10.1007/978-3-319-54229-4 1



2 S. Alkoby and D. Sarne

In many cases, the information is initially not available to the auctioneer
herself, but rather needs to be purchased by her from an external information
broker. This is typically the case whenever generating the information requires
some specific expertise or special equipment that the auctioneer does not possess.
For example, in the firm selling case the information may pertain to the financial
stability of key clients of the firm, hence typically offered for sale in the form
of business analysts’ reports. The auctioneer thus needs to decide both whether
to purchase the information and whether to disclose it to bidders whenever
purchased. The problem further complicates when the information broker herself
is acting strategically, e.g., setting the price of the information offered in a way
that maximizes her profit.

Prior work that dealt with uncertain auction settings with a self-interested
information broker [33] allowed the information broker to control only the pricing
of the information offered for sale. In this paper we extend the modeling of the
information broker’s strategy, enabling her also to disclose for free some of the
information she holds. Specifically, we allow her to publicly eliminate some of
the possible outcomes, narrowing the set of possible values that the common
value may obtain. For example, prior to offering a firm the purchase of a market
prediction report, the analyst can publicly publish its preliminary version that
eliminates some of the possible outcomes. This behavior might seem intuitively
non-beneficial, because now the information service disambiguates between less
values, hence seemingly “worth” less. Nevertheless, our analysis of the augmented
model enables demonstrating, numerically, that this choice can be sometimes
beneficial. A second somehow surprising choice that we manage to illustrate is
the one where the information broker finds it more beneficial to disclose the free
information to both the auctioneer and the bidders rather than to the auctioneer
only. The latter choice strengthens the auctioneer in the adversarial auctioneer-
bidders interaction, allowing her to make a better use of the information offered
for sale, if purchased, hence potentially enabling charging more for the service.

As explained in more details in the following paragraphs, the information
brokers’ problem of deciding what information to disclose for free is computa-
tionally extensive. Therefore another contribution of the paper is in presenting
and demonstrating the effectiveness of two heuristics for ordering the exponen-
tial number of solutions that need to be evaluated, such that those associated
with the highest profit will appear first in the ordering.

In the following section we provide a formal model presentation. Then, we
present an equilibrium analysis for the case where the free information is dis-
closed to both the auctioneer and the bidders and illustrate the potential profit
for the information broker from revealing some information for free, as well as
the ordering heuristics and their evaluation. Next, we present the analysis of the
case where the free information is disclosed only to the auctioneer. Finally we
conclude with review of related work and discussion of the main findings.

2 The Model

Our basic auction model considers an auctioneer offering a single item for sale to
n bidders using a second-price sealed-bid auction (with random winner selection
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in case of a tie). The auctioned item is assumed to be characterized by some value
X (the “common value”), which is a priori unknown to both the auctioneer and
the bidders [13,14]. The only information publicly available with regard to X
is the set of possible values it can obtain, denoted X∗ = {x1, ..., xk}, and the
probability associated with each value, Pr(X = x) (

∑
x∈X∗ Pr(X = x) = 1).

Bidders are assumed to be heterogeneous in the sense that each is associated
with a type T that defines her valuation of the auctioned item (i.e., her “private
value”) for any possible value that X may obtain. We use the function Vt(x)
to denote the private value of a bidder of type T = t in case the true value of
the item is X = x. It is assumed that the probability function of types, denoted
Pr(T = t), is publicly known, however a bidder’s specific type is known only to
herself.

The model assumes the auctioneer can obtain the value of X from an outer
source, denoted “information broker” (for the rest of the paper will be called
“broker”), by paying a fee C set by the broker. Similar to prior models (e.g.,
[33]), and for the same justifications given there, it is assumed that this option
of purchasing the information is available only to the auctioneer, though the
bidders are aware of this possibility.

If purchasing the information, the auctioneer, based on the value obtained,
can decide either to disclose this information to the bidders or keep it to her-
self (hence disclosing ∅). If disclosing the information, then it is assumed that
the information received from the broker is disclosed as is (i.e., truthfully and
symmetrically to all bidders), e.g., in case the auctioneer is regulated or has to
consider her reputation. Finally, it is assumed that all players (auctioneer, bid-
ders and the broker) are self-interested, risk-neutral and fully rational agents,
and acquainted with the general setting parameters: the number of bidders in
the auction, n, the cost of purchasing the information, C, the discrete random
variables X and T , their possible values and their probability functions.

Up to this point our model resembles those found in prior literature. For
example, it generalizes the one found in [10,24] in the sense that it requires
the auctioneer to decide on purchasing the external information rather than
assuming she initially possesses it. It is also equivalent to the one found in [33]
where the broker is self-interested agent that controls C, the price of purchasing
the information. Our model, however, extends prior work in the sense that it
allows the broker also to anonymously publish some of the information for free
before the auctioneer makes her decision of whether to purchase the information.
The anonymity requirement in this case is important as discussed later on in
the analysis section. Yet, there are numerous options nowadays for publishing
such information anonymously, e.g., through an anonymous email, uploading
the information to an electronic bulletin board or anonymous file server, sending
the information to a journalist or an analyst. The typical case, which we use
for our analysis, is the one where the broker, knowing the true value x ∈ X∗,
eliminates a subset of values D ⊂ X∗ (where x /∈ D), leaving only the values
X∗ −D as applicable values the common value may obtain. Doing so, our model
distinguishes between the case where the free information is disclosed to all and
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the one where it is disclosed to the auctioneer only (allowing the latter to decide
what parts of it to disclose further to the bidders prior to starting the auction).

3 Disclosing Information for Free

Consider the case where the true common value is x. In this case, if the broker
publicly eliminates (i.e., anonymously publishes that the common value is not
part of) the subset D ⊂ X∗ then the auctioneer and bidders are now facing
the problem where the common value may receive only the subset X∗ − D and
the a priori probability of each value in the new setting is given by Pr′(X =
x) = Pr(X=x)∑

xi∈X∗−D Pr(X=xi)
. Since the auctioneer needs to decide both whether

to purchase the true value x ∈ X∗ − D and if so whether to disclose it to the
bidders, her (mixed) strategy can be characterized using Rauc = (pa, pa1 , ..., p

a
k)

where pa is the probability she purchases the information from the broker and pai
(1 ≤ i ≤ k) is the probability she discloses to the bidders the value xi if indeed
X = xi. The dominating bid of a bidder of type t, when the auctioneer discloses
that the true value is x, denoted B(t, x), is given by B(t, x) = Vt(x) [36]. If no
information is disclosed (x = ∅) then the dominating strategy for each bidder
is to bid her expected private value, based on her belief of whether information
was indeed purchased and if so, whether the value received is intentionally not
disclosed by the auctioneer [10]. The bidders’ strategy, denoted Rbidder, can thus
be compactly represented as Rbidder = (pb, pb1, ..., p

b
k), where pb is the probability

they assign to information purchase by the auctioneer and pbi is the probability
they assign to the event that the information is indeed disclosed if purchased by
the auctioneer and turned to be xi.1

The bid placed by a bidder of type t in case the auctioneer does not disclose
any value, B(t, ∅), is therefore:

B(t, ∅) =
∑

x

Vt(x) · Pr∗(X = x) (1)

where Pr∗(X = x) is the posterior probability of xi being the true common
value, based on the bidders’ belief Rbidder and is being calculated as:

Pr∗(X = xi) =
Pr(X = xi)(pb(1 − pbi ) + (1 − pb))
(1 − pb) + pb

∑
(1 − pbi )Pr(X = xi)

(2)

The term in the numerator is the probability that xi indeed will be the
true value and will not be disclosed. If indeed xi is the true value (i.e., with a
probability of Pr(X = xi)) then it will not be disclosed either if the information
is not purchased (i.e., with a probability of (1 − pb)) or if purchased but not
disclosed (i.e., with a probability of pb(1 − pbi )). The term in the denominator
is the overall probability that the information will not be disclosed. This can
happen either if the information will not be purchased (i.e., with a probability

1 Being rational, all bidders hold the same belief in equilibrium.
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of (1 − pb)) or when the information will be purchased however the value will
not be disclosed (i.e., with probability of pb

∑
(1 − pbi )Pr(X = xi)).

Consequently, the auctioneer’s expected profit when using Rauc while the
bidders use Rbidder, denoted EB(Rauc, Rbidder), is given by:

EB(Rauc, Rbidder) = pa
∑

Pr′(X = xi)pai · ERauc(xi)

+ ((1 − pa) + pa
∑

(1 − pai )Pr′(X = xi)) · ERauc(∅) − pa · C
(3)

where ERauc(xi) is the expected second highest bid if disclosing the true value
xi (xi ∈ {X∗ − D, ∅}). The broker’s expected profit is pa · C. The first row of
the equation deals with the case where the auctioneer discloses the true value to
the bidders (i.e., pa is the probability that the information was purchased and∑

Pr′(X = xi)pai · ERauc(xi) is the probability that xi is the true value multi-
plied by the auctioneer’s expected profit for this case). The second row deals with
the case where the information was not disclosed to the bidders (i.e., when the
information is not purchased by the auctioneer (with probability (1 − pa)) and
when the information is purchased but not discloses (with probability pa

∑
(1 −

pai )Pr′(X = xi))).
A stable solution in this case (for the exact same proof given in [33]) is neces-

sarily of the form Rauc = Rbidder = R = (p, p1, ..., pk) (as otherwise, if Rauc = R′

�= Rbidder, the bidders necessarily have an incentive to deviate to Rbidder = R′),
such that [33]: (a) for any 0 < pi < 1 (or 0 < p < 1): ERauc(∅, R) = ERauc(Xi)
(or ERauc(∅, Rbidder) = ERauc((1, p1, ..., pk), Rbidder)); (b) for any pi = 0 (or
p = 0): ERauc(∅, Rbidder) ≥ ERauc(Xi) (or ERauc(∅, Rbidder) ≥ ERauc((1,
p1, ..., pk), Rbidder); and (c) for any pi = 1 (or p = 1): ERauc(∅, Rbidder) ≤
ERauc(Xi) (or ERauc(∅, Rbidder) ≤ ERauc((1, p1, ..., pk), Rbidder). Therefore one
needs to evaluate all the possible solutions of the form (p, p1, ..., pk) that may hold
(where each probability is either assigned 1, 0 or a value in-between). Each mixed
solution of these 2 · 3k combinations (as only one solution where p = 0 is applica-
ble) should be first solved for the appropriate probabilities according to the above
stability conditions. Since the auctioneer is the first mover in this model (deciding
on information purchase), the equilibrium used is the stable solution for which the
auctioneer’s expected profit is maximized.

If the information is provided for free (C = 0) then information is necessarily
obtained and the resulting equilibrium is equivalent to the one given in [10] for
the pure equilibrium case and [24] for the mixed equilibrium case.

Being able to extract the equilibrium for each price C she sets, the broker
can now find the price C which maximizes her expected profit. Repeating the
process for all different sets D ⊂ X∗, enables extracting the broker’s expected-
profit maximizing strategy (D,C).

Figure 1 depicts the expected profit of the auctioneer (vertical axis) as a func-
tion of the information cost C (horizontal axis), for five of the possible D sets.
The setting used is given in the table at the bottom of the figure. It is based
on four possible values the common value may obtain: X∗ = {x1, x2, x3, x4},
where x3 is the true value. The subset D that is used for each curve is marked
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Fig. 1. Auctioneer’s expected profit as function of information purchasing cost, for
different a priori eliminated subsets.

next to it. For each set D the information provider discloses, the auctioneer
chooses whether to purchase the information and what values to disclose, if pur-
chasing, according to the auctioneer’s expected-profit-maximizing equilibrium.
For example, the lowest curve depicts the auctioneer’s expected profit when the
broker initially eliminates the values {x1, x4} and the auctioneer’s strategy is
to disclose to the bidders the value x2 in case it is the true value of the auc-
tioned item. Since equilibria in this example are all based on pure strategies, the
expected-profit-maximizing price C, and hence the expected profit, equals the
highest price at which information is still purchased (marked by circles in the
graph, as in this specific example the last segment of each curve applies to an
equilibrium by which the information is not being purchased at all). From the
figure we see that indeed in this sample setting, anonymously eliminating some
of the applicable values is highly beneficial - for example, the elimination of x1

results in a profit of 3.7, compared to a profit of 1.2 in the case no information
is being a priori eliminated (i.e., D = ∅).

As discussed in the introduction, benefiting from providing some of the infor-
mation for free may seem non-intuitive at first—seemingly the broker is giving
away some of her ability to disambiguate the auctioneer’s and bidders’ uncertainty.
Yet, since the choice of whether the information is purchased or not at any specific
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Fig. 2. An example of an improvement both in the broker’s expected profit and the
social welfare as a result of free information disclosure. The true common value of the
auctioned item in this example is x3.

price derives from equilibrium considerations, rather than merely the auctioneer’s
preference, it is possible that providing information for free becomes a preferable
choice for the broker.

The benefit in free information disclosure does not necessarily come at the
expense of social welfare. For exemplifying this we introduce Fig. 2. The setting
used for this example is given in the bottom right side of the figure. Again,
the auctioneer’s strategy is to disclose the set which will benefit her the most.
In this example the broker’s expected profit increases from 0 to 1 by publicly
eliminating the value x1 (the information is not purchased otherwise), and at
the same time the social welfare (sum of the bidders’ and auctioneer’s profit)
increases from 45 to 45.2, due to the substantial increase in the bidder’s profit
(from 4.2 to 13.1). If including the broker’s expected profit in the social welfare
calculation, the increase is even greater.

Finally, we note the importance of disclosing the information anonymously
or without leaving a trace of a strategic behavior from the broker’s side. If the
auctioneer and bidders suspect that the broker may disclose free information
strategically, then the equilibrium analysis should be extended to accommodate
the probabilistic update resulting from their reasoning of the broker’s strategy.
This latter analysis is left beyond the scope of the current paper—as discussed in
the previous section there are various ways nowadays for anonymous disclosure
of information, justifying this specific modeling choice.
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4 Sequencing Heuristics

The extraction of the broker’s expected-profit-maximizing subset D is computa-
tionally exhausting due to the exponential number of subsets for which equilibria
need to be calculated — the broker needs to iterate over all possible 2|X∗|−1 − 1
D subsets (as there are |X∗| − 1 values that can be eliminated, and eliminating
all but the true value necessarily unfolds the latter as the true one). There-
fore, in this section we present two efficient heuristics—Variance-based (V b) and
Second-Price-Variance-based (SPV b)—that enable the broker to predict with
much success what subsets D are likely to result, if eliminated for free, with
close to optimal expected profit. The heuristics can be considered sequencing
heuristics, as they aim to determine the order according to which the different
subsets should be evaluated. The idea is to evaluate early in the process those
subsets that are likely to be associated with the greatest expected profit. This
way a highly favorable solution will be obtained regardless of how many subsets
can be evaluated in total.

Variance-based (Vb). The value of the information supplied by the broker derives
from the different players’ (auctioneer and bidders) ability to distinguish the true
common value from others, i.e., to better identify the worth of the auctioned item
to different bidders. Therefore this heuristic relies on the variance between the
possible private values that the information purchased will disambiguate as the
primary indicator for its worth. Specifically, if the broker a priori eliminates the
subset D, we first update the probabilities of the remaining applicable values,
i.e., Pr∗(x ∈ X∗ − D) = Pr(X=x)∑

y∈X∗−D Pr(X=y) . The revised probabilities are then
used for calculating the variance of the private values in the bidder’s type level,
denoted V ar(T = t): V ar(T = t) =

∑
x∈X∗−D Pr∗(x)(Vt(x) − B(t, ∅))2, where

Vt(x) is the private value of a bidder of type T = t if knowing that the true
common value is x, as defined in the model section, and B(t, ∅) is calculated
according to (1), based on a setting X∗ − D. The overall weighted variance is
calculated as the weighted sum of the variance in the bidder’s type level, using
the type probabilities as weights, i.e.,

∑
t∈T Pr(T = t) · V ar(T = t). The order

according to which the different subsets D ⊂ X∗ should be evaluated is thus
based on the overall weighted variance, descending.

Figure 3(a) illustrates the performance of V b (middle curve) as a function
of the number of evaluated free disclosed subsets (horizontal axis). Since the
settings that were used for producing the graph highly varied, as detailed below,
we had to use a normalized measure of performance. Therefore we used the
ratio between the broker’s expected profit if following the sequence generated
by the heuristic and the expected profit achieved with the profit-maximizing
subset (i.e., how close we manage to get to the result of brute force) as the
primary performance measure in our evaluation. The graph depicts also the
performance of random ordering as a baseline. The set of problems used for this
graph contains 2500 randomly generated settings where the common value may
obtain six possible values, each assigned with a random probability, normalized
such that all probabilities sum to 1. Similarly, the number of bidders and the
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Fig. 3. Performance (ratio between achieved expected profit and maximal expected
profit): (a) V b and SPV b versus random ordering; and (b) all three methods as a
function of running time. All data points are the average over 2500 random settings
with 6 possible values the common value obtains.

number of bidder types in each setting were randomly set within the ranges
(2–10) and (2–6), respectively. Finally, the probability assigned to each bidder
type was generated in the same manner as with the common value probabilities.
For each setting we randomly picked one of the values the common value may
obtain, according to the common-value probability function. Each data point
in the figure thus represents the average performance over the 2500 randomly
generated settings.

As can be seen from the graph, V b dominates the random sequencing in the
sense that it produces substantially better results for any number of subsets being
evaluated. In particular, the improvement in performance with the heuristic is
most notable for relatively small number of evaluated solutions, which is the pri-
mary desirable property for such a sequencing method, as the goal is to identify
highly favorable solutions within a limited number of evaluations. As expected,
the performance of both V b and random ordering monotonically increase, con-
verging to 1 (and necessarily reaching 1 once all possible solutions have been
evaluated). This is because as the number of evaluated subsets increases the
process becomes closer to brute force.

Second-Price-Variance-based (SPVb). This heuristic is similar to V b in the sense
that it orders the different subsets according to their weighted variance, descend-
ing. It differ from V b in the sense that instead of depending on the variance in
bidders’ private values it uses the variance in the worth of information to the
auctioneer, i.e., in the expected second price bids. The variance of the expected
second price bids if disclosing D for free, denoted V ar(D), is calculated as:
V ar(D) =

∑
x∈X∗−D Pr∗(x)(ERauc(x) − ERauc(∅|D))2, where Pr∗(x) is cal-

culated as in V b, ERauc(x) is the expected second highest bid if disclosing to
the bidders that the true value is x, as given in the former section. ERauc(∅|D)
is the expected second highest bid if the auctioneer discloses no information
to the bidders however the bidders are aware of the elimination of the sub-
set D by the broker, i.e., bid according to B(t, ∅) =

∑
x∈X∗−D Vt(x)Pr(X =

x)/
∑

x∈X∗−D Pr(X = x).
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Figure 3(a) also illustrates the performance of SPV b (upper curve) as a func-
tion of the number of evaluated subsets D using a similar evaluation methodol-
ogy and the same 2500 settings that were used for evaluating V b, as described
above. As can be seen from the graph, SPV b dominates random sequencing and
produces a substantial improvement, especially when the number of evaluated
subsets is small. In fact, comparing the two upper curves in Fig. 3(a) we observe
that SPV b dominates V b in terms of performance as a function of the number of
evaluated sets. One impressive finding related to SPV b is that even if choosing
the first subset in the sequence it produces a relatively high performance can
be obtained—91% of the maximum possible expected profit, on average. This
means that even without evaluating any of the subsets (e.g., in case the broker
is incapable of carrying the equilibrium analysis) but merely by extracting the
sets ordering, the broker can come up with a relatively effective subset of values
to disclose for free.

This dominance of SPV b is explained by the fact that it relies on the variance
between the winning bids rather than the bidders’ private values. Meaning it
relates to the true worth of the information to the auctioneer and consequently
to the broker’s profit. While this is SPV b’s main advantage, compared to V b,
it is also its main weakness: from the computational aspect, the time required
for calculating the expected second-price variance of all applicable subsets D
is substantially greater than the time required for V b to calculate the variance
between the possible private values. The expected profit of the auctioneer when
disclosing the information X = x, denoted ERauc(X = x), equals the expected
second-best bid when the bidders are given x, formally calculated as:

ERauc(X = x) =
∑

w∈{B(t,x)|t∈T}
w(

n−1∑

k=1

n

(
n − 1
k

)

∑

B(t,x)>w

Pr(T = t)(
∑

B(t,x)=w

Pr(T = t))k(
∑

B(t,x)<w

Pr(T = t))n−k−1

+
n∑

k=2

(
n

k

)

(
∑

B(t,x)=w

Pr(T = t))k(
∑

B(t,x)<w

Pr(T = t))n−k)

(4)

The calculation iterates over all of the possible second-best bid values, assign-
ing for each its probability of being the second-best bid. As we consider discrete
probability functions, it is possible to have two bidders placing the same highest
bid (in which case it is also the second-best bid). For any given bid value, w, we
therefore consider the probability of having either: (i) one bidder bidding more
than w, k ∈ 1, ..., (n − 1) bidders bidding exactly w and all of the other bidders
bidding less than w; or (ii) k ∈ 2, ..., n bidders bidding exactly w and all of the
others bidding less than w. Notice that (4) also holds for the case where x = ∅
(in which case bidders use B(t, ∅) according to (1)).

The mentioned calculation results in a combinatorial (in the number of values
the common value may obtain) run time. The SPV b method thus requires more
time to run for producing the sequence according to which sets need to be
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Table 1. Average time in seconds for extracting the broker’s equilibrium profit in a
single setting as a function of |X∗|.

# of possible values 3 4 5 6 7 8

Execution time (seconds) 0.16 0.58 3.57 20.07 103.19 708.46

evaluated, however the ordering it produces is substantially better than the one
produced by V b. Similarly, random sequencing does not require any “setup” time
and the different subsets can be evaluated right away.

In order to weigh in this effect in the heuristics’ evaluation we present
Fig. 3(b). Here, the performance is depicted as a function of the actual run-time
(in seconds, over the horizontal axis) rather than the number of subsets evalu-
ated once the ordering is completed.2 Here, we can see the tradeoff between the
initial calculation required for the ordering itself and the improvement achieved
within the first few evaluated subsets. The shift of each curve over the horizon-
tal axis, till its first data point, is the time it took to generate the sequence of
subsets. From the graph we see that if the amount of time allowed for running
is relatively small then one should choose to use a random sequence for evalua-
tion. If the broker is less time-constrained, the best choice is to use V b and then
evaluate subsets according to the generated sequence. We notice that the same
typical behavior was observed for the case of five and seven possible values that
the common value may obtain. Evaluating for settings with more than six values
is impractical, as it requires solving for thousands of such settings each, as seen
from the Table 1, takes substantial time to solve.

Table 1 depicts the average time it took to extract the equilibrium solution
for a setting according to the number of values in X∗. Each data point is the
average for the 2500 problems described above. This justifies our use of six values
settings in the numerical evaluation, and generally motivates the need for the
sequencing heuristics we provide by showing that evaluating all possible sets is
in many cases impractical — indeed in many cases the total number of values
in X∗ is moderate,3 however, even with 8 values it takes more than 10 min to
extract the broker’s equilibrium profit for a single instance.

5 The Influence of Bidders’ Awareness

Next we consider the case where instead of revealing the information for free to
all, only the auctioneer receives it (e.g., using anonymous email). In this case
the auctioneer needs to decide whether to reveal this information (or part of it)

2 Our evaluation framework was built in Matlab R2011b and run on top of Windows7
on a PC with Intel(R) Xeon(R) CPU E5620 (2 processors) with 24.0 GB RAM.

3 For example, in oil drilling surveys, geologists usually specify 3–4 possible ranges for
the amount of oil or gas that is likely to be found in a given area. Similarly, when
requesting an estimate of the amount of traffic next to an advertising space, the
answer would usually be in the form of ranges rather than exact numbers.
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to the bidders. This complicates a bit the structure of the game: (a) First, the
broker needs to decide on the set D of values to be eliminated for free and the
price C of her service of disambiguating the remaining uncertainty; (b) then,
she needs to transfer D anonymously to the auctioneer; (c) next, the auctioneer
needs to decide what part D′ ⊆ D to further disclose to the bidders; (d) then, the
auctioneer needs to decide whether to purchase the true value from the broker,
and if purchasing, upon receiving the value, whether to disclose it to the bidders
or leave them uncertain concerning the true value; (e) finally, the bidders need
to bid for the auctioned item.

The analysis of this case relies heavily on the analysis given in the former
sections. The resulting adversarial setting if using D and D′ is one where bidders
bid Vt(x) whenever the information is purchased and disclosed by the auctioneer,
and otherwise B(t, ∅) according to (1), except that this time the probabilities
Pr∗(X = xi) used by bidders result from the equilibrium of a setting where
the original values are X∗ − D′. Therefore, upon receiving the information D
from the anonymous source, the auctioneer needs to calculate her expected profit
from disclosing any subset D′ ⊆ D and choose the one that maximizes it. The
auctioneer’s expected profit calculation in this case is, however, a bit different,
due to the asymmetry in information. When initially disclosing D′ to bidders,
the auctioneer needs to calculate the expected second best bid from disclosing
any value x ∈ X∗ −D, based on the bidders’ type distribution and their bidding
strategy as given above. The auctioneer should choose to disclose any value x
for which the expected second best bid if disclosed is greater than the expected
second best bid when no information is disclosed (i.e., when bidders bid B(t, ∅)
according to the equilibrium for the X∗ − D′ instance of the original problem,
as explained above). This allows the broker deciding what subset D to disclose,
such that her expected profit is maximized.

Figure 4 is an example of a case where the information broker discloses the
free information only to the auctioneer and it is to the auctioneer’s choice which
parts of the information (if at all) to disclose to the bidders prior to the start
of the auction. It relies on a setting of three bidders, two possible types and
four different values the common value may obtain (x1, ..., x4), out of which x4

is the true common value. The full setting details are given in the table in the
right hand side of the figure. The leaf nodes provide the expected profit of the
auctioneer (inside the rectangle) and the broker (below the rectangle) for each
combination of selections made by these two players (the subset D disclosed
for free and the subset D′ ⊆ D disclosed to the bidders), according to the
resulting equilibrium as analyzed above. The yellow colored leafs are therefore
those corresponding to the auctioneer’s best response given the subset D picked
by the broker, hence the expected-profit maximizing strategy for the broker is
to anonymously disclose to the auctioneer the subset {x2, x3} as in this case the
auctioneer will choose not to disclose any of these two values to the bidders,
resulting in expected profit of 0.9 (compared to 0.8,0.6,0.6,0.8,0.4 and 0.4 if
eliminating {∅}, {x1}, {x2}, {x3}, {x1, x2} and {x1, x3}, respectively).
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Fig. 4. Disclosing the free information to the auctioneer only: the broker needs to
decide on the subset D to eliminate and then the auctioneer needs to decide on the
subset D′ ⊂ D to disclose to bidders. (Color figure online)

Interestingly, if the broker chooses to anonymously disclose to both the auc-
tioneer and the bidders that x2 and x3 can be eliminated, her expected profit,
calculated based on the analysis given in former sections, is 1.4. This is substan-
tially greater than in the case where the bidders are unaware of the information
that was disclosed for free. Furthermore, eliminating x2 and x3 for free is not nec-
essarily the broker’s expected-profit-maximizing strategy for the scenario where
the free information reaches both the auctioneer and bidders. It is possible that
there is another subset which elimination results in an even greater improve-
ment in profit when compared to disclosing the elimination of x2 and x3 to the
auctioneer only. This outcome, as discussed in the introduction is quite non-
intuitive because by eliminating the asymmetry in the information disclosed to
the different players the broker seemingly reduces the auctioneer’s power against
the bidders in this adversarial setting. Indeed, when the choice is given to the
auctioneer she would rather not disclose this information to the bidders and
increase her profit. Since the auctioneer is the potential purchaser of the bro-
ker’s service information offered by the broker, it might seem that by disclosing
the free information only to her, she will have a greater flexibility in making use
of the remaining information (that is offered for sale) hence will see a greater
value in purchasing it. Yet, the improvement in the auctioneer’s competence by
disclosing the free information to her only does not translate to an improvement
in the broker’s profit—eventually the broker’s profit depends on the range of
prices and the corresponding probabilities at which her information is indeed
purchased. These latter factors result from the equilibria considerations, leading
to behaviors such as in the example above.

Even for this case, the sequencing heuristics V b and SPV b are of much
importance. Figure 5 presents the performance evaluation for these two heuris-
tics, for settings with six values, demonstrating that highly efficient solutions
can be extracted even with a small number of evaluations.
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Fig. 5. Performance (ratio between achieved expected profit and maximal expected
profit) when the information is disclosed for free only to the auctioneer and she chooses
which information to disclose to the bidders: (a) V b versus random ordering as a func-
tion of number of evaluated subsets; (b) SPV b versus random ordering as a function of
number of evaluated subsets. All data points are the average of 2500 random settings
with 6 possible values the common value obtains.

6 Related Work

Over the years auctions have focused much interest in research, mostly due to
their advantage in effectively extracting bidders’ valuations and the guarantee
of many auction protocols to result in efficient allocation [5,7,18,21,34,35]. The
case where there is some uncertainty associated with the value of the auctioned
item is quite common in auctions literature. Most commonly it is assumed that
the value of the auctioned item is unknown to the bidders at the time of the
auction and bidders may only have an estimate or some privately known signal,
such as an expert’s estimate, that is correlated with the true value [14,22]. Many
of the works using uncertain common value models assumed asymmetry in the
knowledge available to the bidders and the auctioneer regarding the auctioned
item, typically having sellers more informative than bidders [1,10]. As such,
much recent emphasis was placed on the role of information revelation [8,11,
12,19]. In particular, several works have considered the computational aspects
of such models where the auctioneer needs to decide on the subsets of non-
distinguishable values to be disclosed to the bidders [9,10,24]. Still, all these
works assume the auctioneer necessarily obtains the information and that the
division into non-distinguishable groups, whenever applicable, is always given
to the bidders a priori. Our problem, on the other hand, does not require that
the auctioneer possesses (or purchases) the information in the first place, and
allows not disclosing any value even if the information is purchased. Recent
work that does consider an auction setting with a strategic broker, and in fact
provides the underlying three-ply equilibrium analysis for this case [3,33], limits
the strategic behavior of the broker to price-setting only. In this paper we extend
that work to include an additional strategic dimension for the broker, in the
sense of anonymously disclosing some of the information for free. Furthermore,
unlike this prior work, in this paper we deal with the computational aspects of
extracting the broker’s strategy.
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Models where agents can disambiguate the uncertainty associated with the
opportunities they consider exploiting through the purchase of information have
been studied in several other multi-agent domains, e.g., in optimal stopping
domains [27–30,38]. Here, the main questions studied were how much costly
information it makes sense to acquire before making a decision [25,31], in par-
ticular when additional attributes can be revealed at certain costs along the
search path [23,37]. Relaxation of the perfect signals assumption has also been
explored in models of economic search [2,6]. Alas, mediators in such models usu-
ally take the form of matchmakers rather than information brokers. Those that
do consider a self-interested information broker in these domains, e.g., Nahum
et al. [26], focused on the way it should set the price for the information it
provides and did not consider the option of free information disclosure.

Other related work can be found in the study of platforms that bring together
different sides of the market (e.g., dating, or eCommerce platforms). Here, there
is much work on the impact on selective information disclosure [15], strategic
ordering of the disclosed information [16] and having the platform charging only
one of the two participating sides [17] and even cases where consumers are in
effect paid to use the platform were studied [32]. Our work can be viewed in
a similar vein, especially in the context of the information broker subsidizing
information provisioning, although the intuitions behind our results are quite
different and grounded in the transition between different equilibria rather than
in the profit of potentially increasing participation overall.

7 Conclusions and Future Work

Information brokers have become an integral part of many multi-agent systems.
These range from individuals with specific expertise, offering their services for a
fee (e.g., analysts), to large information services, such as Carfax.com or credit
report companies. The model and analysis given in the paper adds an important
strategic dimension to prior work in the form of influencing the auctioneer’s
and bidders’ strategic interaction through the anonymous revelation of some of
the information that is offered for sale. As discussed throughout the paper, this
behavior may seem a bit unnatural. We show, however, that this strategy can
actually be highly beneficial to the broker. In fact, as demonstrated in the paper,
it can even lead to an overall improvement in the social welfare. Furthermore,
if given the option to disclose the free information to both the bidders and the
auctioneer or to the auctioneer only, the broker may benefit from choosing the
first, despite the fact that the auctioneer is the one to decide about purchasing
the information.

The paper presents two sequencing heuristics aiming to reduce the computa-
tion time of the broker’s expected-profit maximizing strategy. The results of an
extensive evaluation of these are quite encouraging - the generated sequences,
with both heuristics, are quite effective, as the very few initial subsets placed first
in the sequence offer expected profit very close to the expected-profit-maximizing
one. Both methods use the variance as a measure for the profit in disclosing a

file:www.Carfax.com
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given set, differing in the values based on which the variance is calculated—the
bidder’s private valuations and the expected second price bids. Interestingly, we
find that while the use of the expected second-price produces a substantially
more efficient sequence, it is better to rely on the raw values (i.e., bidders’ valu-
ations) as the execution time of generating the sequence using the latter method
is substantially shorter, leading to better performance overall.

We note that, much like prior work, our model makes several assumptions
that can be relaxed in future research. For example, one can think of settings
where the information is provided to the bidders not just based on the auction-
eer’s decision to disclose it. Here, numerous variations can be considered. For
example, the bidders can purchase the information, whether symmetrically or
asymmetrically, either directly from the broker or indirectly from the auction-
eer. These of course require extending the analysis to include all the different
dynamics that will be formed. Another natural extension of our model would be
one where the auctioneer and the bidders are aware to the fact that the broker
is the one that disclosed the information for free (i.e., the free disclosure is not
anonymous anymore) as discussed in the analysis section.
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Abstract. We study a market setting in which bidders are single-valued
but size-interchangeable, and there exist multiple copies of heterogeneous
goods. Our contributions are as follows: (1) providing polynomial-time
algorithms for finding a restricted envy-free equilibrium with reserve
prices (EFEr); (2) posing the problem of finding a revenue-maximizing
EFEr, and running experiments to show that our algorithms perform
well on the metrics of revenue, efficiency, and time, without incurring
too many violations of the stronger Walrasian equilibrium with reserve
(envy-free plus market clearance) conditions.

1 Introduction

In a centralized combinatorial matching market (CCMM), a market
maker offers a set of n heterogeneous goods to m consumers (or bidders), the
latter of which are interested in acquiring certain combinations (or bundles) of
goods. In general, there are multiple copies of each good i, but the total supply
Ni of each good is finite. Bidder j’s preferences are captured by a valuation
function vj(·) that describes how bidder j values each bundle.

In general, a bidder’s valuation function can be an arbitrary function of the
set of all bundles. We study a case where bidders are only interested in specific
varieties of goods, and we model these interests as edges in a graph connecting
bidders only to their goods of interest. Furthermore, in our model, bidder’s
valuations are single-valued, and depend only on the bundle’s size, assuming
the bundle is a match for the bidder. The value then is either a positive value
Rj , if the size of the bundle is at least some threshold Ij , and 0 otherwise.

Our model is motivated by the Trading Agent Competition Ad Exchange
game (TAC AdX) [15], which in turn models online ad exchanges in which
agents face the challenge of bidding for display-ad impressions needed to ful-
fill advertisement contracts, after which they earn the amount the advertiser
budgeted. Other settings captured by this model include the problem of how to
allocate specialized workers to firms, and how to compensate the workers, where
each firm requires a certain number of workers to produce an output (a new
technology, for instance) that yields a certain revenue.
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One well-studied special case of our model is that of (single-valued) single-
minded consumers [11]. There, bidders are only interested in one particular bun-
dle. Hence their valuation function can be understood as assigning value Rj to
that bundle or any superset thereof, and 0 to all other bundles. We call our val-
uations (single-valued) size-interchangeable, because bidders can be satisfied
(i.e., achieve value Rj) by any bundle of size Ij that consists of their desired
goods. Like single-minded valuations, our interchangeable valuations model com-
plements, since a bidder is not satisfied unless it receives a bundle of sufficient size.
Furthermore, our interchangeable valuations model (perfect) substitutes, since
any bundle of sufficient size that consists of suitable goods will do.

In this paper, we assume valuations are known to the market maker. Thus,
our problem is one of equilibrium computation rather than traditional mech-
anism design (where values are private). A market outcome is an allocation-
pricing pair (X,p), where X describes the assignment of goods to bidders, and
p ascribes prices to goods. While X is a matrix, we assume p is a vector, which
precludes any form of price discrimination (all copies of the same good must
have the same price). Furthermore, we assume item pricing, not bundle pric-
ing, so that the price of a bundle is the sum of the prices of all the goods (items)
in the bundle. Both of these assumptions—no price discrimination and item
pricing—are most natural.
Example 1 (CCMM and possible outcomes). Consider the CCMM in Figure (A).
There are two goods, G and F , with 2 copies of good G and 3 copies of good F ,
and two bidders, Y and Z. Bidder Y wants two copies of good G (as indicated
by the edge from G to Y ) and values this bundle at 10, and bidder Z ascribes
the value 5 to any bundle of size 2 comprised of any combination of Gs and
F s (also indicated by edges). Possible outcomes of this markets are depicted in
Figures (B) and (C).

goods bidders

G2

F3

Y 2,$10

Z 2,$5

prices
2

2

G$5

F$1

Y

Z

prices

1

1

G$1

F$2

Y

Z

(A) (B) (C)

Outcome (B) allocates 2 copies of good G to bidder Y at a price of $5 per copy,
and 2 copies of good F to bidder Z at a price of $1 per copy. This outcome
results in the optimal social welfare ($15) and a revenue of $12.

Outcome (C) allocates to bidder Z only, 1 copy of good G at a price of $1,
and 1 copy of good F at a price of $2. This outcome results in a social welfare
of $5 and a revenue of $3.

In an important related setting, bidders have unit-demand valuations, mean-
ing they are interested in at most one good, but may have different valuations for
different goods. This is a well-studied setting [1,2,6,7], with important theoreti-
cal guarantees. In particular, there always exists a Walrasian equilibrium (WE)
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outcome [5] in which bidders are envy-free, meaning they all receive one of their
favorite bundles at the set prices, and the market clears, meaning unallocated
goods are priced at zero. It follows from this second condition, by the first wel-
fare theorem of economics, that any allocation that is part of any WE outcome
maximizes social welfare. In addition, it is possible to find a revenue-maximizing
WE among all WE outcomes in polynomial-time (assuming unit demand) [6].

Building on Myerson’s [10] intuition, Guruswami et al. [7] generalized the
problem of searching for a revenue-maximizing WE to that of searching for a
revenue-maximizing Walrasian equilibrium with reserve prices (WEr), where bid-
ders are envy-free and the market clears up to the reserve price: i.e., unallocated
goods are priced at the reserve. For bidders with unit-demand valuations a WE
always exists [5]; likewise, a WEr always exists. In addition, for a fixed reserve
price, we can find the revenue-maximizing WEr in polynomial-time (using the
same approach as in [6]). With this more general solution concept in mind,
Guruswami et al. pose the problem of finding a revenue-maximizing WEr, for
which they propose a polynomial-time approximation algorithm that picks a par-
ticular set of candidate reserve prices, generates a revenue-maximizing WEr for
each, and then returns the revenue-maximizing WEr among those considered.

For our model—single-valued, size-interchangeable bidders—we remind the
reader that WE do not exist in general; in fact, they are not guaranteed to exist
even for single-minded bidders. By relaxing the market clearance condition, we
arrive at more general solution concept—an Envy-Free Equilibirum (EFE)—
which insists only that bidders are envy-free, and which always exists. However,
the first welfare theorem does not hold for EFE, so maximal social welfare is not
guaranteed by this solution concept.

Departing from the social welfare concern, we instead tackle the competing
problem of maximizing seller revenue. Since finding revenue-maximizing WEr is
APX-hard in a CCMM assuming single-minded bidders [7], we propose a poly-
nomial time heuristic for approximately solving for revenue-maximizing EFEr
(an EFE in which unallocated goods are priced at a reserve), where we relax the
envy-free condition to a restricted envy-free condition, which we are able to
express as linear constraints. Building on the ideas of Guruswami et al., we then
search over a space of carefully chosen reserve prices to find an approximately
revenue-maximizing EFEr. In particular, whereas Guruswami et al. used this
approach to find an approximately revenue-maximizing WEr for unit-demand
bidders, we apply this same idea to the case of size-interchangeable (and hence,
single-minded) bidders.

In sum, our contributions are: (1) providing polynomial-time algorithms for
finding a restricted envy-free equilibrium with reserve prices (EFEr); (2) posing
the problem of finding a revenue-maximizing EFEr, and running experiments to
show that our algorithms perform well on the metrics of revenue, efficiency, and
time, without incurring too many violations of the WEr (envy-free plus market
clearance) conditions.
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2 Model and Solution Concepts

We define a centralized combinatorial matching market (CCMM) to be
an augmented bipartite graph (U,C,E,N , I ) with a set of n types of goods U ,
a set of m bidders C, a set of edges E from bidders to goods indicating which
goods are of interest to which bidders, a supply vector N = (N1, . . . , Nn), and a
demand vector I = (I1, . . . , Im). That is, there are Ni > 0 copies of good i ∈ U ,
and Ij > 0 total goods are demanded by bidder j ∈ C. Note, however, that
bidder j only demands copies of goods it is connected to via an edge.

In other words, in a CCMM, bidders are interested in acquiring bundles of
goods of at least some fixed size. Note that this is a more general case of the well-
studied problem of single-minded consumers [11] where bidders are interested
only in one particular bundle of goods. For this reason, we call our valuation
function size-interchangeable. Formally:

Definition 1 (Single-valued, Size-interchangeable valuations). Given a CCMM
M = (U,C,E,N, I), a bidder j is single-valued, size-interchangeable, if it
demands Ij > 0 goods among those to which it is connected, and values all
such bundles by the function: vj(Xj) = Rj > 0, if

∑
i|(i,j)∈E xij ≥ Ij, and 0

otherwise. We call Rj the reward attained by j in case its demand Ij is fulfilled.

Definition 2 (Market). We call a market M a pair consisting of a CCMM
(U,C,E,N, I) and a reward vector R = (R1, . . . , Rm).

Given a market M , an allocation A is a labeling x(i, j) ∈ Z≥0 of E that
represents the number of copies of good i allocated to bidder j. Such an allocation
can be represented by a matrix X ∈ Z

n
≥0 × Z

m
≥0 where entry xij = x(i, j). The

jth column of an allocation matrix is the bundle of goods assigned to bidder j,
which we denote by Xj ∈ B(N ), where B(N ) =

∏
i{0, 1, . . . , Ni}.

A market outcome is an allocation-pricing pair (X,p), assigning goods to
bidders and per-good prices pi ∈ R+. Given such an outcome, the cost of bundle
Xj to bidder j is given by Pj(Xj) =

∑
i xijpi.

An allocation is feasible if, for all i, the total number of goods assigned
across bidders is no more than i’s supply: i.e., for all i :

∑m
j=1 xij ≤ Ni. We use

F ≡ F (M) to denote the set of all feasible allocations. In a feasible outcome
the allocation is feasible.

The utility of bidder j is defined as follows: uj(X,p) = vj(Xj) − Pj(Xj). A
standard assumption is that all bidders are utility maximizers, and thus a bidder
prefers outcomes with higher utilities.

A fundamental market outcome studied in the literature is that of Walrasian
Equilibrium (WE) [14], which we define using our notation as follows.

Definition 3 (Walrasian Equilibrium). A feasible outcome (X,p) is a Wal-
rasian Equilibrium (WE) if the following two conditions hold:

1. Envy-freeness (EF): There is no bundle X ′
j that any bidder j prefers to its

assigned bundle Xj, i.e., for all j, Xj ∈ arg max
X′

j∈B(N)
{vj(X ′

j) − Pj(X ′
j)}.

2. Market clearance (MC): Every unallocated good is priced at zero.
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The EF condition is a fairness condition; it ensures that the outcome maxi-
mizes the utility of every bidder. Note that each bidder is individually rational
i.e., uj(X,p) ≥ 0, since the null allocation is always a feasible allocation. The
MC condition, together with EF, implies, by the first welfare theorem of eco-
nomics, that any allocation that is part of a WE is also welfare-maximizing.
However, a WE need not exist in the markets studied in this paper.

Example 2 (Non-existence of WE). Consider the market in Figure (A) with one
good and two single-minded bidders. Good u1 is supplied in N1 = 2 copies,
bidder c1 demands I1 = 1 good, and bidder c2 demands I2 = 2 goods. Rewards
are R1 = 5 and R2 = 7.

u12

c1 1,$5

c2 2,$7

2u12

c1 1,$5

c2 2,$7

1

u12

c1 1,$5

c2 2,$7

(A) (B) Not Envy-Free (C) Market doesn’t clear

There are a total of 6 feasible allocations in this market and none of them are
part of a Walrasian Equilibrium. Two such allocations are depicted in (B) and
(C). In (B), there is no price p1 for u1 at which both bidders would be envy-free.
In (C), we must have that p1 ≥ 3.5, or otherwise c2 would have preferred 2 copies
from u1. But then the market does not clear since there is an unsold copy of u1

with price greater than 0.
To address this existence problem, we drop the market clearance condition.

Definition 4 (Envy-Free Equilibrium). A feasible outcome (X,p) is an Envy-
Free Equilibrium (EFE) if envy-freeness holds.

Note that, in outcome (C) of Example 2, at any price p1 for u1 such that
3.5 ≤ p1 ≤ 5, both bidders c1 and c2 are envy-free. It follows that this outcome
is an EFE.

Unlike in the unit-demand case, where, by the first welfare theorem, a WE
implies a welfare-maximizing allocation [12], an EFE (even for unit-demand
bidders) does not guarantee a welfare-maximizing allocation. An outcome with
a null allocation and prices high enough such that no bidder can afford even a
single good is an EFE outcome with 0 welfare. But even for non-null allocations,
an EFE outcome can yield low welfare.

Example 3 (An EFE does not imply an efficient allocation). Consider a market
M with a single good that is supplied in N1 = m − 1 copies and m bidders,
where all bidders demand 1 good (i.e., Ij = 1, for all j). Rewards are defined as
follow: for 1 ≤ j < m : Rj = 1 and Rm = 2.

Consider outcome (X,p), where bidder m is allocated one good at any price
p1 such that 1 < p1 ≤ 2, and no other bidder is allocated any good. This outcome
is an EFE since all bidders are envy-free. However, the welfare of this outcome
is 2 for any m > 1, since we only satisfy bidder m.
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A welfare maximizing allocation for this market is one that satisfies bidder
m as well as many other bidders as possible, obtaining welfare 2 +

∑m−2
j=1 Rj =

2+m−2 = m. Therefore, the welfare of the EFE (X,p), relative to the optimal
welfare, approaches zero, as m approaches ∞.

Although at first glance it may seem disappointing the first welfare theo-
rem does not hold for EFE, it is not a show stopper. Even in the unit-demand
case, where the first welfare theorem does hold, there exists the competing, and
incompatible goal, of maximizing seller revenue.

In a unit-demand CCMM, if we let m(< r) = {j | Rj < r}, then |m(< r)|
is the number of bidders with reward less than the reserve r. Assuming there
exists an allocation that satisfies all bidders, by setting a reserve price r we lose
at least Rmin|m(< r)| welfare, where Rmin = minj{Rj}, while we are guaranteed
revenue of at least r|m(< r)c|. (Here Ac denotes the complement of set A.)

The following example further illustrate the tradeoff between welfare and
revenue, in the case of single-minded bidders.

Example 4 (Welfare-Revenue Tradeoff). Consider the market in Figure (A) and
the two different outcomes in Figures (B) and (C)

u11

u11

c1 1,$100

c2 1,$1

prices
1

1

u1pb1

u2pb2

c1

c2

prices
1u1pc1

u2pc2

c1

c2

(A) (B) Welfare-Max. (C) Revenue-Max.

Outcome (B)’s allocation is welfare maximizing. To support an EFE we must
have 0 ≤ pb2 ≤ 1; otherwise c2 would not be envy-free. Moreover, pb1 ≤ pb2;
otherwise c1 would have preferred a copy of u2. So prices can only be as high
as pb1 = pb2 = 1, yielding revenue of 2. Outcome (C)’s allocation is not welfare
maximizing. However, in this case, an EFE can be supported by higher prices
than those in (B). In particular, pc2 ≥ 1; otherwise c2 would have preferred a
copy of u2. Again pc1 ≤ pc2 for the same reasons as in (B). Prices could be as
high as pc1 = pc2 = 100, yielding revenue of 100.

Example 4 motivates the introduction of reserve prices as a way to increase
revenue while maintaining envy-freeness among market participants. In the pre-
vious example, we could set a reserve price of $2 for u2. Doing so would increase
revenue from a maximum possible of $2 (with no reserve price) to $100. However,
by setting reserve prices some bidders are effectively thrown out of the market,
so welfare might not be maximized, because any value these bidders bring to the
market is lost.

Motivated by this discussion, we generalize the definition of WE so that
unallocated goods are priced at some, possibly non-zero, reserve price r ∈ R+.
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Definition 5 (Walrasian Equilibrium with reserve r). A feasible outcome (X, p)
is a Walrasian Equilibrium with reserve r (WEr) if it is a WE with prices at
least r, including unallocated goods, which must be priced at exactly r.

Analogously, we augment the definition EFE to an EFE with reserve price r.

Definition 6 (Envy-Free Equilibirum with reserve r). A feasible outcome (X,p)
is an Envy-Free Equilibirum with reserve r (EFEr) if it is an EFE with prices
at least r.

3 Computation of Envy-Free Equilibria

Chen et al. [8] showed that deciding the existence of WE in a CCMM assuming
single-minded bidders is NP-hard. Consequently, we propose a natural restriction
on the envy-freeness condition, which lends itself to a polynomial-time compu-
tation. With it, we can find a restricted WE (outcomes that satisfy restricted
EF and MC) in polynomial time in single-minded CCMMs. Furthermore, in
size-interchangeable CCMMs, we can find a restricted EFE in polynomial time.

Before presenting our algorithm, we formally define restricted envy-free
prices. Let |Xj | =

∑n
i=1 xij be the size of the bundle assigned to bidder j.

Definition 7 (Restricted Envy-Free). A price vector p is called restricted
envyfree with respect to a feasible allocation X if, for all J such that |Xj | > 0:

Xj ∈ arg max
X′

j∈B(N|Xj |)
{vj(X ′

j) − Pj(X ′
j)}

where B(N|Xj |) = {0}∪{X ′
j ∈ B(N) | |X ′

j |x′ = |Xj |}, i.e., the set of all feasible
bundles of size equal to |Xj |.

This definition is “restricted” because it assumes an allocation, and then
is only concerned with bidders that are allocated (non-zero) bundles in that
allocation. Any envy felt by any other bidders is simply ignored.

Another seeming restriction is that even for a bidder j with |Xj | > 0, it
does not require envy-freeness with respect to all bundles X ′

j ∈ B(N ), but only
with respect to bundles of the same size as Xj (i.e., X ′

j ∈ B(N |Xj |)), and the
empty bundle 0. This definition might seem overly restrictive, but as we are
focused on bidders with single-valued, size-interchangeable valuations, we are
likewise concerned with all-or-none allocations, which either allocate to a bidder
in full—meaning a bundle of size Ij—or does not allocate at all. Hence, for our
purposes the size restriction is not restrictive at all.

Finally, note that restricted envy-free prices always exist. Given an allocation,
we can simply set prices equal to zero, and the condition will be satisfied. No one
who is allocated would have any envy at zero prices; and the restricted envy-free
condition ignores bidders that are unallocated.

Theorem 1. Given a market M and a feasible allocation X, the following con-
ditions are necessary and sufficient for p to be restricted envy-free.
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Individual Rationality: ∀j ∈ C : Pj(Xj) ≤ vj(Xj).
Compact Condition: ∀i ∈ U, j ∈ C : If xij > 0 then

∀k ∈ U : If (k, j) ∈ E and xkj < Nk then pi ≤ pk.

Proof (Sketch): The Individual Rationality condition ensures that bidders do
not pay more than their reward while the Compact Condition ensures that,
among all goods assigned to a bidder, she first consumes cheaper goods before
consuming more expensive ones. Equivalently, this condition states that prices
of goods that are completely consumed are cheaper than those that are only
partially consumed. �

The linear program shown in Algorithm 1, which uses seller revenue as the
objective function and the linear conditions that characterize restricted envy-
freeness as constraints, can be used to find a set of restricted envy-free prices
that maximizes seller revenue.

Algorithm 1. LP restricted EFE
Input: Market (U,C,E,N , I ,R) and allocation X
Output: A pricing p
maximize

∑
j

∑
i xijpi

subject to (1) ∀j ∈ C : If |Xj | > 0, then pj(Xj) ≤ vj(Xj)
(2) ∀i ∈ U,∀j ∈ C : If xij > 0 then

∀k ∈ U : If (k, j) ∈ E and xkj < Nk then pi ≤ pk

4 Revenue Maximizing Prices

In the remainder of this paper, we will be concerned with finding prices that
maximize seller revenue for different market outcomes. We start by defining
what a revenue-maximizing problem means for different solution concepts and
review algorithms found in the literature to compute these prices in the special
case of unit-demand bidders. We then present our algorithm for finding revenue-
maximizing EFEr in size-interchangeable CCMMs.

Definition 8. The revenue-maximizing WE problem: Given a CCMM,
find a revenue-maximizing WE.

Gul and Stachetti [6] presented a VCG-inspired [13] polynomial-time algo-
rithm that solves the revenue-maximizing WE problem in unit-demand CCMMs:
let V ∈ R

n
+ ×R

m
+ be the valuation matrix of a market with n items and m unit-

demand bidders where entry vij denotes bidder j’s valuation for good i. Let π
denote a maximum weight matching of V , and let w(V ) denote the weight of π.
Let V−i denote the same valuation matrix, but with good i removed. For each
good i, set pi = w(V ) − w(V−i). We call this algorithm, which returns (π,p),
MaxWE.

Then, building on Myerson’s [10] intuition that reserve prices can boost rev-
enue, Guruswami et al. [7] went one step further, essentially generalizing the
problem of searching for a revenue-maximizing WE to that of searching for a
revenue-maximizing WEr.
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Definition 9. The revenue-maximizing WEr problem: Given a CCMM,
find a revenue-maximizing WEr.

Recall from Example 4 that different allocations can support different levels of
seller revenue, while still maintaining the envy-freeness property. Algorithm 2 is a
high-level strategy for searching among WEr for one that is revenue maximizing.
The algorithm searches over different allocations X, computing WEr prices p
for each, and then outputs a pair (X,p) among those seen with maximal seller
revenue. The interesting choice, which governs the algorithm’s success, is which
allocations to search over. Generally speaking, based on some initial allocation,
the algorithm determines a set of reserve prices, each of which corresponds to an
alternative allocation, whose supporting envy-free prices may or may not yield
higher revenue than the others seen.

Algorithm 2. Strategy for finding a revenue-maximizing WEr
Input: Market M = (U,C,E,N , I ,R)
Output: A pricing p and an allocation X
1. Find an initial allocation X.
2. For all xij > 0:

2.0 Set a reserve price r as a function of xij .
2.1 Find a WEr (X,p).

Output a pair (X,p) among those seen with maximal seller revenue.

In the unit-demand case, Guruswami et al. [7], showed that the following
instance of Algorithm 2 finds a revenue-maximizing WEr with revenue at least
OPT/(2 ln m), where OPT is the revenue of a revenue-maximizing WEr. (Step 1.)
Find a maximum weight matching X of V . (Step 2.) For each valuation r on the
edges of X, compute a WEr as follows: for each good i augment the valuation
matrix to include two dummy bidders, each with reward r. Run MaxWE on the
new valuation matrix to obtain a WE (π,p), based on which a new matching π′

can be inferred by reallocating goods from dummy bidders to real bidders.
As shown in Example 2, a WE might not exist for a CCMM; thus, a WEr

might also not exist. But recall that an EFEr always exists. Hence, we define
the following problem:

Definition 10. The revenue-maximizing EFEr problem: Given a CCMM,
find a revenue-maximizing EFEr.

Like the algorithm of Guruswami et al. [7], our approach (Algorithm 3) to
searching for a revenue-maximizing EFEr in a size-interchangeable CCMM fol-
lows the structure of Algorithm 2. That is, for various choices of r, corresponding
to various allocations Xr, we find an EFEr, and then we output an EFEr which
is revenue-maximizing among all those considered.

More specifically, we first find an allocation X (Step 1), and then for all
xij > 0, we find a restricted EFEr (Step 2). Step 2.0 defines a reserve price, and
Step 2.1 finds an allocation that respects this reserve price (see Definition 12).
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Step 2.2 then invokes a subroutine we call restricted EFEr, which is a straightfor-
ward generalization of Algorithm 1 that finds a revenue-maximizing EFEr with
restricted envy-free prices in polynomial time. The generalization is simply that
this algorithm takes as input a reserve price r, and then includes the additional
set of constraints: ∀i ∈ U : pi ≥ r.

Algorithm 3. Revenue-Maximizing EFEr (RM-EFEr)
Input: Market M = (U,C,E,N , I ,R)
Output: A pricing p and an allocation X
1. Find an initial allocation X.
2. For all xij > 0:

2.0 Set reserve price r = Rj/xij .
2.1 Find an allocation Xr that respects reserve price r.
2.2 Run restriced EFEr on M , reserve price r, and allocation Xr.

Output the pair (X,p) with maximum seller revenue.

Allocations in Size-interchangeable CCMMs. Two steps in Algorithm 3 depend
on an allocation. The natural place to look are among those of optimal value. A
feasible allocation is optimal if it maximizes the total of all bidders’ rewards.

Definition 11 (Optimal Allocation). An optimal allocation is a solution to the
following optimization problem:

maxX

m∑

j=1

Rjyj, subject to: ∀i :
m∑

j=1

xij ≤ Ni, ∀j : yj ∈ {0, 1}

In the Appendix we present an ILP to compute optimal allocations.

Definition 12 (Optimal Allocation that respects a reserve price). An optimal
allocation that respects a reserve price is a solution to the following optimization
problem:

maxX

m∑

j=1

(Rj − rIj)yj, subject to: ∀i :
m∑

j=1

xij ≤ Ni, ∀j : yj ∈ {0, 1}

The following theorem implies that is unlikely that one can devise an Algo-
rithm that optimizes welfare in size-interchangeable CCMMs in polynomial time.

Theorem 2. Finding an optimal allocation is NP-hard. (Proof in Appendix)

Since finding an optimal allocation is NP-Hard, we present a greedy heuristic
(Algorithm 4) to find allocations. This algorithm can easily be adapted to pro-
duce an allocation that respects reserve price r as follows: given input market M ,
construct new market M ′ by removing any bidder j for which Rj − rIj < 0, and
setting the reward of the remaining bidders to be Rj −rIj . Now run Algorithm 4
on input M ′ to obtain an allocation X ′, which we lift up to create an allocation,
Xr, in the original market M that respects reserve prices.
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Algorithm 4. Greedy Approximation Algorithm
Input: Market M = (U,C,E,N , I ,R)
Output: Allocation X
For all i, j set xij = 0.
foreach j ∈ C do

Let Uj = {i | (i, j) ∈ E and
∑m

j=1 xij < Ni}.
if

∑
i∈Uj

Ni ≥ Ij then
foreach i ∈ Uj do

xij = min{Ij − ∑n
i=1 xij , Ni − ∑m

j=1 xij}.

There are two sources of non-determinism in Algorithm 4: (1) the order
in which to loop through bidders and (2) the order in which to loop through
goods. One approach is to orders bidders in descending order by rewards per
square root of goods demanded, i.e., Rj/

√
Ij , and goods in ascending order of

remaining supply. We also experiment with other combinations, e.g., ordering
goods in descending order of remaining supply.

5 Experiments

Experimental Setup. Given outcome (X,p), seller revenue ρ =
∑

j

∑
i xijpi, and

total welfare W =
∑

j Rjyj , where yj = 1 in case bidder j is a winner under
X and 0 otherwise. Let OPTW be the value of a welfare-maximizing alloca-
tion. Since we assume bidders are individually rational, seller revenue cannot
exceed OPTW . We thus report metrics of efficiency W/OPTW , and seller rev-
enue ρ/OPTW . We also report metrics based on violations of the (unrestricted)
envy-freeness and market clearing conditions. Given a market M and outcome
(X,p), we define an envy-free violation (EF) as the ratio between the number
of bidders that are not envy-free, and the total number of bidders in the market;
and define a market clearance violation (MC) as the ratio between the number
of goods completely unallocated whose price is greater than zero, and the total
number of goods in the market.

All metrics are reported over random markets M drawn from a distribution
we call Random-k-Market(n,m, p, k). Let S =

∑
i Ni be the total supply of M ,

and let D =
∑

j Ij be the total demand of M . The supply-to-demand ratio S/D,
is a measure of how much over (or under) demanded a market is. A market
is over demanded if S/D < 1 and under demanded if S/D > 1. A random
market drawn from Random-k-Market(n,m, p, k) over CCMM has n goods and
m bidders. The parameter p is the probability that an edge (i, j) is present in E,
and thus, the expected number of edges is pnm. Both Ni and Ij are randomly and
independently drawn integers between 1 and 10 such that the supply-to-demand
ratio is k. Finally, each bidder’s reward Rj is uniformly and independently drawn
uniformly on [1, 10]. From Random-k-Market(n,m, p, k) we generate markets
with n,m = 1, . . . , 20, p = 0.25, 0.5, 0.75, 1.0 and k = 0.25, 0.33, 0.5, 1, 2, 3, 4.
For each metric, we report the average across markets over 100 independent
trials. Results are shown in Table 1.
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Table 1. Results.

Efficiency Revenue Time (ms) EF MC

Under-demanded Singleton CCMM

CK 1.00 0.00 0.25 0.00 0.00

MaxWE 1.00 0.04 0.41 0.00 0.00

MaxWErApprox 0.85 0.67 12.94 0.00 0.64

LP Optimal 0.86 0.73 15.73 0.00 0.63

Over-demanded Singleton CCMM

CK 1.00 0.49 4.57 0.00 0.00

MaxWE 1.00 0.80 0.24 0.00 0.00

MaxWErApprox 0.96 0.84 5.69 0.00 0.12

LP Optimal 0.95 0.86 11.47 0.00 0.13

Under-demanded CCMM, k ∈ {2, 3, 4}
CK 0.97 0.08 4.22 0.00 0.07

LP Optimal 0.84 0.65 232.22 0.00 0.43

LP Greedy 0.84 0.65 12.87 0.00 0.49

Over-demanded CCMM, k ∈ {0.25, 0.33, 0.5}
CK 0.79 0.41 2.50 0.00 0.21

LP Optimal 0.93 0.75 199.59 0.02 0.11

LP Greedy 0.89 0.72 9.08 0.02 0.15

Algorithms. Algorithms’ names are abbreviated as follows: CK refers to the
Crawford-Knoer ascending auction [5] (see the Appendix for details). MaxWE
and MaxWErApprox refer to Guruswami et al.’s algorithms (see Sect. 4). LP
refers to our revenue-maximizing EFEr algorithm. The algorithm LP is qualified
by the type of allocation given as input: LP Optimal refers to the case when
an optimal allocation is given as input, and LP Greedy refers to the case
when the greedy allocation is given as input. We report results where the greedy
approximation orders goods by descending order of remaining supply. We also
experimented with ordering goods by ascending order of remaining supply, but
saw no qualitative differences in the results.

Results. We report on two sets of experiments: singleton CCMMs, and gen-
eral. In both cases, we take as a baseline the CK auction, which, in the case of
unit-demand markets, like MaxWE, is guaranteed to produce an efficient out-
come, but at the expense of low revenue. For singleton CCMMs, we compare our
algorithm to MaxWErApprox as well.

As expected, the efficiency of CK and MaxWE in singleton CCMMs is per-
fect. Also, these algorithms yield zero violations, as they are known to generate
Walrasian equilibria. However, their revenues are low, particularly in under-
demanded markets, because there are more unallocated goods in these markets,
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each of which must be priced at zero, thereby limiting the price of allocated
goods, in order to avoid envy. Our algorithm and MaxWErApprox both impose
a reserve, enabling them to disregard some of these overly constraining goods, but
ours obtains substantially more revenue than MaxWErApprox, with fewer (but
not significantly fewer) violations. In over-demanded markets, the performance
of our algorithm is comparable to that of MaxWErApprox, and both algorithms
outperform MaxWE, which outperforms CK. Note that our algorithm produces
unrestricted envy-free outcomes in singleton CCMMs.

In general CCMMs, CK is nearly efficient in under-demanded markets, but
much less so in the over-demanded case. But in neither case does it strike a
good balance between efficiency and revenue. In contrast, our algorithm is able
to accrue upwards of 72% revenue in over-demanded markets, while retaining an
efficiency of 89%, and it does so with hardly any EF violations, compared to CK,
which obtains an efficiency of only 79% and revenue of only 41%. As in the case of
singleton CCMMs, our algorithm does not fare as well in the harder case of under-
demanded markets, where once again there are more unallocated goods, although
it again produces nearly-unrestricted envy-free outcomes. These experiments
suggest that while not perfect, finding revenue-maximizing restricted envy-free
outcomes in polynomial time is a reasonable heuristic for maximizing revenue
among nearly-unrestricted envy-free outcomes.

6 Conclusion and Future Directions

CCMMs with unit-demand valuations have some important properties, e.g., a
WE always exists and there are polynomial-time algorithms to find such out-
comes. A WE outcome guarantees that all bidders are envy-free and that the
market clears, and thus, by the first welfare theorem of economics, yields an allo-
cation that maximizes social welfare. Guruswami et al. [7] proposed an algorithm
for the unit-demand case, sacrificing social welfare in an attempt to maximize
seller revenue, while maintaining the envy-freeness property. In this paper, we
proposed an algorithm that generalize this well-known algorithm for the unit-
demand case to the case of single valued, size-interchangeable CCMMs. In future
work, we plan to look more closely at algorithms [3,4,7,9] that have been pro-
posed for the more difficult case of single-minded bidders, and to perhaps gen-
eralize results about those algorithms to the single-valued, size-interchangeable
bidder setting studied here. We will also explore alternative solution concepts
where we combine the restricted EF condition with the objective of maximizing
the number of allocated bidders.

Appendix

Mixed ILP to Find Optimal Allocations

Given a market (U,C,E,N , I ,R), Algorithm 5 is a mixed ILP that can be used
to find an optimal allocation.
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Algorithm 5. Mixed ILP Optimal Allocation
Input: Market M = (U, C, E,N , I ,R)
Output: An optimal allocation X

maximize
m∑

j=1

Rjyj

subject to (1) ∀i :
∑m

j=1 xij ≤ Ni

(2) ∀i, j : If(i, j) /∈ E then xij = 0
(3) ∀j : yj ≤ 1

Ij

∑n
i=1 xij ≤ yj

(4) yj ∈ {0, 1}
(5) ∀i, j : xij ∈ Z

+

Constraints (1), (2) and (5) imply that a solution to the Mixed-ILP is a
feasible allocation. Constraints (3) and (4) imply that a bidder attains reward
Rj if and only if it is completely fulfilled, and together with constraint (5), imply
that if yj = 0 then xij = 0 for all i. The objective of the mixed ILP implies that
the solution maximizes bidders’ rewards over all feasible allocations and thus, it
is an optimal allocation. To obtain an allocation that respects reserve price r,
change the objective of the mixed ILP to

∑m
j=1(Rj − rIj)yj , where r ∈ R

+ is
the reserve price parameter.

Proof of Theorem 2

Finding an optimal allocation is NP-hard. To prove this, we reduce from the
following version of set packing: Given a universe U = {u1, u2, . . . , un} and a
family of subsets S = S1, S2, . . . , Sk ⊆ U , find the maximum number of pairwise
disjoint sets in S.

Consider an input (U ,S) to the set packing problem as described above. Let
us construct a market (U,C,E,N , I ,R) from (U ,S) as an input to the optimal
allocation problem. At a high level, the input market consists of n goods each
offered in exactly 1 copy and k bidders where each bidder corresponds to a
member Sj ∈ S that demand as many goods as elements in Sj and attains a
reward of exactly 1. A goods is connected to a bidder only if the index of the
good is contained in the set Sj associated with the bidder.

Formally, given (U ,S) where U = {1, 2, . . . , n} and S = {S1, S2, · · · , Sk}, con-
struct f(U ,S) = (U,C,E,N , I ,R) as follow: (1) let U = U and Ni = 1 for all
i = 1, 2, . . . , n. (2) let C = {1, 2, . . . , k}, and associate each bidder j ∈ C to Sj ∈ S
so that Ij = |Sj |. Also, Rj = 1 for all j = 1, 2, . . . , k. (3) add edge (i, j) to E only if
i ∈ Sj . Clearly the transformation f is polynomial on the size of the input (U ,S).

We now show that a set packing for (U ,S) corresponds to an optimal alloca-
tion for f(U ,S) and vice versa. Suppose that l is the maximum number of pair-
wise disjoint sets in S and that S1, S2, . . . , Sl ∈ S are these sets. By our transfor-
mation f we know that each bidder j associated with a set Sj from the previous
list is connected to as many goods as |Sj |. Since all these sets are pairwise dis-
joint, all bidders are connected to different goods. Therefore, each of these bidders
can be fulfilled which means that the value of the optimal allocation is at least l.
Moreover, we know that is not possible to fulfill more than l bidders since l is the
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maximum number of pairwise disjoint sets, and selecting more than l bidders
would imply, by our transformation f , that at least one good has a supply greater
than 1. Therefore, l is the value of the optimal allocation of f(U ,S).

Suppose that l is the value of the optimal allocation of f(U ,S). This means
that l is the maximum number of bidders that can be fulfilled. Bidder j is
fulfilled only if its allocation is at least |Sj |. By construction we know that a
bidder is connected to exactly |Sj | many goods. Therefore, each allocated bidder
j is fulfilled by exactly |Sj | goods. Moreover, none of these goods are allocated
to different bidders since there is exactly 1 copy of each good. Therefore, the sets
associated with the selected bidders must not overlap in any element, i.e., they
must be pairwise disjoint. This shows that there are at least l pairwise disjoint
sets in (U ,S). We also know that there must be at most l pairwise disjoint sets
or otherwise the value of the optimal allocation would have been more than l.
Therefore, l is the maximum number of pairwise disjoint sets in S. �

Crawford and Knoer Ascending Auction

In the unit-demand setting, it is well known that Walrasian Equilibria exist [6].
Furthermore, Crawford and Knoer [5] proposed an ascending auction mechanism
which, for price increment ε, yields an εWE.1 We describe the workings of their
mechanism in a unit-demand CCMM in Algorithm 6.2

Algorithm 6. Crawford-Knoer Ascending Auction (Unit-demand)
Input: Market M = (U, C, E,N , I ,R), where ∀i : Ni ≥ 1 and ∀j : Ij = 1
Output: A pricing p and an allocation X
For every i, set pi = 0
For every i, j, set xij = 0
while TRUE do

foreach Unallocated bidder j do
Let i∗ ∈ arg maxi∈U{Rj − (pi + ε)}.
Add (i∗, j) to B.

if B = ∅ then
Halt with current allocation X and prices p.

else
Choose (i, j) ∈ B.
xij = 1.
if
∑

l xil > Ni then
pi = pi + ε.
Completely unallocate all bidders j′ �= j such that xij′ > 0.

Output the final pair (X ,p).

1 In an εWE, envy-free-ness is satisfied up to ε.
2 The only difference between our presentation and the original one is that Ni may

exceed 1, so in the final if statement, it may be necessary to unallocate goods from
more than one bidder.
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This algorithm, as stated, generalizes to size-interchangeable CCMMs, except
that at each step of the algorithm we must query bidders for their favorite
bundles at the current prices plus ε, rather than their favorite individual goods.
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Abstract. The reduction of greenhouse gas emissions is seen as an
important step towards environmental sustainability. Perhaps not sur-
prising, many governments all around the world are providing incen-
tives for consumers to buy electric vehicles (EVs). A positive response
from consumers means that the demand for the charging infrastructure
increases as well. We investigate how an existing traditional parking lot,
upgraded with chargers, can suit the present demand for charging sta-
tions. In particular, a resulting EV-enabled parking lot is an electricity
trading agent (i.e., broker) which acts as an energy retailer and as a
player on a target electricity market. In this paper, we use agent-based
simulation to present the EV-enabled parking lot ecosystem in order to
model the underlying dynamics and uncertainties regarding parking lots
with electricity trading agent functionalities. We instantiate our agent-
based simulations using real-life data in order to perform the what-if
analysis. Several key performance indicators (KPIs), including parking
utilization, charging utilization and electricity utilization, are proposed.
We also illustrate how those KPIs can be used to choose the effective
investment strategy with respect to the number and speed of chargers.

Keywords: Trading agents · Agent-based simulation · EV-enabled
parking lot · Electric vehicles

1 Introduction

Recent years have seen a steady growth in the sales of electric vehicles (EV).
For example, a recent report by McKinsey & Company [14] estimates that the

This paper extends the paper “Extending Parking Lots with Electricity Trading
Agent Functionalities” presented at the “Workshop on Agent-Mediated Electronic
Commerce and Trading Agent Design and Analysis (AMEC/TADA 2015) @ AAMAS
2015”.
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share of EVs in new sales reached 12% in Norway, 4% in the Netherlands, and
growth rates of 50% in France, Germany, and the UK. As a consequence of the
increasing number of EVs on the road, there is a growing need for charging
stations [19] as well.

A potential solution to address the need for charging stations is to transform
traditional parking lots into EV-enabled parking lots, in a sense that EV-enabled
parking lots provide not only parking services, but also the possibility for EV
owners to charge and discharge their cars for a price [3], i.e., to take advantage of
the electricity service [2,7,18]. Within this perspective, the parking lot’s smart-
ness comes from the possibility to act as an electricity retailer and a player on
a target electricity market.

A single EV is, to a certain degree, a prosumer, in a sense that it can procure
electricity from its battery (discharge) as well as consume electricity (charge) [9].
A single EV, however, is not able to actively participate in an electricity market
on its own due to the fact that it only has a modest amount of electricity available
to buy or sell. Our proposed model tackles this issue by putting the parking lot
owner in the role of an electricity broker [17] which trades electricity between EVs
and the target electricity market, thus behaving as an “aggregator” [12].

Due to the inherently complex and dynamic environment, a potential obsta-
cle, from a business perspective, to the process of transforming parking lots into
EV-enabled parking lots is the complexity of estimating the utilization of the
electricity service and its profit [1]. The information about electricity service
utilization is valuable to the EV-enabled parking lot’s owner because it provides
guidelines on how many traditional parking spots need to be upgraded with elec-
tricity chargers, while the information about profits enables one to calculate the
amount of time required to recover the cost of the initial investment.

In this paper, we suggest an agent-based simulation approach [5,11,13] for
studying the economic benefits of EV-enabled parking lots. In particular, our
main contribution is a computational technique that allows one to estimate the
parking lot’s electricity service utilization and profitability given a period of
time. We illustrate the application of our approach using data derived from a
real-world parking lot and electricity market. To the best of our knowledge, our
work is the first to suggest a computational tool to study the economic feasibility
of EV-enabled parking lots.

The paper is organized as follows. Section 2 presents the EV-enabled parking
lot ecosystem through the definition of entities and relationships among them.
The agent-based simulation set-up, as well as simulation scenarios, are presented
in Sect. 3. Section 4 elaborates upon simulation results. Section 5 concludes the
paper and presents ideas for future work.

2 EV-enabled Parking Lot Ecosystem

Figure 1 presents the EV-enabled parking lot ecosystem, which consists of 3 enti-
ties, namely the EV-enabled Parking Lot, the Electric Vehicles, and the Electric-
ity Market, and 2 relationships, namely the “EV-enabled Parking Lot - Electric
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EV-ENABLED PARKING LOT (EVPL)
parking + electricity (dis)charging

ELECTRIC VEHICLES (EVs)ELECTRICITY MARKET (EM)

Fig. 1. Entities and relationships in an EV-enabled parking lot ecosystem

Vehicles” relationship and the “EV-enabled Parking Lot - Electricity Market”
relationship. We model entities and relationships through, respectively, agents
and markets. The EV-enabled Parking Lot acts as a broker connecting both
markets, as we detail later. Table 1 describes all the parameters and values in
the EV-enabled Parking Lot ecosystem.

2.1 EV-enabled Parking Lot Agent

As shown in Table 1, the EV-enabled Parking Lot agent (EVPL) is defined
according to the tuple:

EV PL = (EV PLspots, EV PLqs, EV PLmrg, EV PLpp,

EV PL(d)cr, EV PLcuc, EV PLic)
(1)

The EVPL agent model is shown in Fig. 2. Furthermore, the EVPL agent
implements 3 activities, which we describe next.

Calculation of free parking spots and queue size. This activity is event-
based and triggered after an Electric Vehicle agent (EV) wants to either enter
or leave the EVPL. If the EV wants to enter the EVPL, the EVPL will provide
the EV with a free parking spot from its pool of free parking spots (if the pool
is not empty) or the EV will be put in the EVPL queue (if there is space, i.e.,
if the current number of EVs in the queue EV PLq is smaller than a queue size
EV PLqs).

Calculation of electricity price. This activity is time-based and regularly
occurs with an hourly frequency. In the beginning of every time-slot (hour), the
EVPL fetches the current electricity price

(
epEM

)
from the Electricity Mar-

ket agent (EM) and uses its profit margin (EV PLmrg) to calculate its selling(
EV PLsell

ep

)
and buying

(
EV PLbuy

ep

)
electricity prices as follows:
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Table 1. EV-enabled parking lot ecosystem model parameters.

Parameter (unit) Description Notation Value

EVPL parking spots Number of parking spots EV PLspots 30, 60, 90

EVPL queue size Number of spaces in a queue EV PLqs 0

EVPL margin EVPL profit margin relative

to the electricity market price

EV PLmrg 0.1

EVPL parking price (e/h) Price EV pays for each

parking hour

EV PLpp 3

EVPL (dis)charge rate (kW) Maximum rate at which

electricity is charged or

discharged

EV PL(d)cr 5, 10, 20

EVPL charger unit cost

(e/charger)
Cost for one charger EV PLcuc 2,000, 10,000, 30,000

EVPL investment cost (e) Investment cost for chargers EV PLic EV PLps · EV PLcuc

EV home supplier margin Home supplier profit margin

relative to electricity market

price

EV mrg N{μ = 0.2, σ = 0.1, a=0,

b=1}

EV (dis)charge quantity

(kWh)

Amount of electricity an EV

is willing to charge or

discharge

EV (d)cq N{μ = 15, σ = 10, a=-30,

b=30}

EV charge sensitivity Probability an EV will be

subjected to a price matching

mechanism for a charging

service

EV cs 0.8

EV discharge sensitivity Probability an EV will be

subjected to a price matching

mechanism for a discharging

service

EV dcs 1

EV stay longer Probability an EV will stay

parked longer to fully

complete the electricity

service

EV sl 0.2

EV parked home time (h) Amount of hours potentially

spent by an EV (dis)charging

at home

EV pht U{a=1, b=12}

EV arrival rate (EV/h) Hourly arrival rates. Derived

from the work by Ferreira

et al. [6]

EV ar 2, 1, 2, 1, 1, 1, 2, 2, 24, 43,

18, 7, 15, 14, 22, 18, 14, 8,

10, 7, 6, 3, 1, 3

EV service rate (EV/h) Hourly service rates. The

mean number of hours an EV

will stay parked is given by

1/EV pr . Derived from the

work by Ferreira et al. [6]

EV pr 0.15, 0.85, 3.85, 0.35, 0.35,

0.35, 0.07, 0.18, 0.16, 0.16,

0.28, 0.30, 0.33, 0.36, 0.38,

0.45, 0.66, 0.44, 0.62, 0.45,

0.51, 4.76, 4.35, 3.85

Simulation steps (h) Simulation duration in time

slots

t 8,760

Electricity market prices

(e/kWh)

Real-world electricity prices

from the day-ahead Nord

Pool Elspot market (2014)

epEM Hourly electricity prices

during one year period

EV PLsell
ep = epEM · (1 + EV PLpm) (2)

EV PLbuy
ep = epEM · 1

(1 + EV PLpm)
(3)

Thereafter, EVs charge energy at the EVPL at a price EV PLsell
ep and they

discharge energy at a price EV PLbuy
ep .
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EVPL  margin

electricity 
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services

EVPL stops
opera ng

BEFORE
EV LEAVES EVPL

EVPL parking 
price

Fig. 2. The model of a EV-enabled parking lot agent

Payment for parking and (dis)charging services. This activity is event-
based and triggered before an EV leaves the EVPL. The EV needs to pay to the
EVPL agent for both parking and the electricity service provided. Therefore, the
EVPL revenue from an electric vehicle EV is calculated as follows:

EV PLrev = EV PLps + EV PLets (4)

where EV PLps = �timeParked(EV )� · EV PLpp is the revenue from parking
service, and EV PLets = EV (d)cq · EV PLtrade

ep is the revenue from electricity
service, where:

EV PLtrade
ep =

{
EV PLsell

ep if EV (d)cq ≥ 0
EV PLbuy

ep if EV (d)cq < 0
(5)

The timeParked(EV ) is the parking duration of the electric vehicle agent
EV . We note that the EVPL rounds up timeParked(EV ) to the nearest larger
integer to mimic real-world practices regarding parking service payment. We also
note that EV ’s (dis)charge quantity, EV (d)cq, is a positive value in case EV is
charging its battery at the EVPL, and a negative value in case EV is discharging
its battery.

2.2 Electric Vehicle Agent

As shown in Table 1, the Electric Vehicle agent (EV) is defined according to the
tuple:

EV = (EV mrg, EV (d)cq, EV cs, EV dcs, EV sl, EV pht, EV ar, EV pr) (6)
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NO

NO
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sensi vity

EV charge 
sensi vity

EV leaves EVPL

Fig. 3. The model of electric vehicle agent

The EV life cycle is described with a flowchart in Fig. 3. In particular, the EV
agent implements 5 activities, which we describe next.

Calculation of parking duration. We model arrivals and staying at the park-
ing lot using a M/M/c/0 queue with time varying parameters, allowing different
timeslots (hours) to have different arrival rates (EV ar) and service rates (EV pr).
This activity is event-based and triggered after an EV wants to enter the EVPL,
which is defined by the arrival rate EV ar. The calculation of parking duration
for a specific EV (EV ipd) is based on the service rate EV pr.

Calculation of the amount of electricity an EV is willing to (dis)charge.
This activity is event-based and triggered after an EV enters the EVPL. We
assume that the amount of electricity an EV is willing to (dis)charge, EV (d)cq,
follows a normal distribution with mean equal to 15 kWh, truncated at ±30 kWh,
the standard deviation being equal to 10. A positive value of the EV ’s (dis)charge
quantity means that EV is willing to charge its battery at the EVPL, whereas a
negative value means that it is willing to discharge, i.e., sell electricity. By setting
the mean value to 15 kWh, we mimic the real-world situation where more cars
want to charge their batteries rather than discharge. The truncation is set to
mimic the maximum capacity of today’s mid-size EVs (e.g., Nissan Leaf).

Determining whether the EV is willing to (dis)charge regardless of
price. This activity is event-based and triggered after an EV enters the EVPL
and wants to charge or discharge a certain amount of electricity. This activity
decides whether EV will take into account the electricity price when decid-
ing whether to engage in (dis)charging. The electric vehicle EV will engage in
charging, regardless of the current electricity price EV PLsell

ep , with the proba-
bility 1 − EV cs. On the other hand, EV will engage in discharging, regardless
of the current electricity price (EV PLbuy

ep ), with the probability 1 − EV dcs.
Through the probabilities EV cs and EV dcs, we mimic the real-world situa-

tion where a car arrives at a charging station and needs to charge its battery
regardless of the price, e.g., because the battery is almost empty or because there
is no other charging station nearby. In our simulation, EV dcs is always set to 1
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because it would be irrational for EV to discharge at a price lower than what
was previously paid for charging.

Calculation of the reserve price for (dis)charging. This activity is event-
based and triggered after an EV enters the EVPL, and the same wants to
(dis)charge a certain amount of electricity while taking into account the prof-
itability aspect of such a transaction. In case of charging, the electric vehicle
EV decides to proceed with the transaction only if the EV ’s reserve price,
EV buy(res), is higher than the current electricity price offered by the EVPL,
EV PLsell

ep . In case of discharging, the EV decides to proceed with the transaction
only if the EV ’s reserve price, EV sell(res), is lower than the current electricity
price offered by the EVPL, EV PLbuy

ep .
For the calculation of EV ’s reservation prices, we assume that EV has

the alternative choice of (dis)charging at home, where its home supplier forms
an electricity price analogously to the EVPL, but with different profit margin
EV mrg. We assume that EV mrg follows a normal distribution with mean equal
to 0.2, standard deviation equal to 0.1, and truncated at [0, 1]. Further, we
assume that EV was parked at home for EV pht hours before entering the EVPL
in case of discharging or, in case of charging, that EV will be parked at home
for EV pht hours after leaving the EVPL. The value EV pht follows a uniform
distribution with range [1, 12].

Determining whether the EV will stay parked longer to fully complete
the electricity service. This activity is event-based and triggered after an EV
enters the EVPL and decides to (dis)charge a certain amount of electricity. The
EVPL’s (dis)charging rate is defined by parameter EV PL(d)cr, and the EV ’s
initial parking duration, EV ipd, is defined according to the hourly service rate
EV pr.

A priori, the maximum amount of electricity an EV is able to (dis)charge
is EV PL(d)cr · EV ipd. If the amount of electricity demanded/offered by EV is
less than or equal to EV PL(d)cr · EV ipd, i.e., EV (d)cq ≤ EV PL(d)cr · EV ipd,
then there is enough time for the EV to fully (dis)charge its battery during its
parking time. On the other hand, if EV (d)cq > EV PL(d)cr ·EV ipd, then it means
that there is not enough time for the EV to fully (dis)charge its battery during
its initial parking period. In the latter situation, the EV has two options: (i) to
partially (dis)charge EV PL(d)cr ·EV ipd; or (ii) to prolong its parking time until
the full (dis)charging is complete, which means that the EV will stay parked
longer, i.e., for a total of EV (d)cq/EV PL(d)cr hours. We assume that the EV
will go for option (iii) with probability EV sl.

2.3 Electricity Market Agent

The role of the Electricity Market agent (EM) is to provide electricity for the
EVPL agent. The underlying electricity price, epEM , is available with an hourly
granularity for the whole calendar year. In our simulations, we use real-world
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Fig. 4. EV-enabled parking lot transaction model

electricity prices from the day-ahead Nord Pool Elspot market1, where the price
volatility is not as high as in real-world intra-day markets. Consequently, the
EM agent provides conservative, stable electricity prices.

2.4 EV-enabled Parking Lot B2C Market

The EV-enabled Parking Lot B2C (Business-to-Consumer) market models the
“EV-enabled Parking Lot - Electric Vehicles” relationship. Activities in this
market are defined through the EVPL transaction model shown in Fig. 4, which
has 4 major steps as we detail next.

Entering the EVPL by the EV. Every EVPL transaction begins with an
EV entering the EVPL. The occurrence of this event is modeled with the arrival
rate EV ar.

Determining whether there is a free parking space available at the
EVPL. The EV can enter the EVPL only if there is an available parking spot.
If there is no parking space available at the time of the EV ’s arrival, the EV
will be put in the EVPL queue in case there is space, i.e., current number of
EV s in the queue EV PLq is smaller than a queue size EV PLqs. If there is no
space available in the queue as well, the EV leaves the EVPL without parking
and without (dis)charging. Consequently, the EV does not pay any money to
the EVPL.

Matching EVPL electricity price with EV’s reserve price. In case of
charging, the EV will proceed with the electricity transaction only if the EV ’s

1 Available at: www.nordpoolspot.com/historical-market-data.

www.nordpoolspot.com/historical-market-data
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reserve price, EV buy(res), is higher than the current electricity price at the EVPL,
EV PLsell

ep . In case of discharging, the EV will proceed with the electricity trans-
action only if the EV ’s reserve price, EV sell(res), is lower than the current elec-
tricity price at the EVPL, EV PLbuy

ep . Nevertheless, even if the electricity price
matchmaking fails, the EV will still park at the EVPL for EV ipd hours, and
leave the EVPL after paying EV PLps = �timeParked(EV )�·EV PLpp for using
EVPL’s parking service.

Determining whether there is enough time for the EV to fully com-
plete (dis)charge service. After the EV decides to (dis)charge a certain
amount of electricity, some calculation should be made regarding whether there
is enough time for the EV to fully (dis)charge. Such a calculation must take
into account the EVPL charging rate, EV PL(d)cr, and the EV ’s initial parking
duration EV ipd.

If there is enough time for the EV to fully (dis)charge, then the EV will park
at the EVPL for EV ipd hours, (dis)charge EV (d)cq amount of electricity, and
leave the EVPL after paying EV PLrev (see Eq. (4)) for using both the EVPL’s
parking and electricity services. If there is not enough time for the EV to fully
(dis)charge, i.e., EV (d)cq > EV PL(d)cr · EV ipd, then, as mentioned before, the
EV has two options, which are determined according to the probability EV sl:

– (i) to partially (dis)charge EV PL(d)cr · EV ipd of electricity; or
– (ii) to prolong its parking time until the full (dis)charging is complete, i.e.,

the EV will stay parked for a total of EV (d)cq/EV PL(d)cr hours.

When option (i) is activated, then the EV will park at the EVPL for EV ipd

hours, (dis)charge EV PL(d)cr ·EV ipd amount of electricity, and leave the EVPL
after paying EV PLrev for using both the EVPL’s parking and electricity ser-
vices. If option (ii) is activated, the EV will park at the EVPL for a total
of EV (d)cq/EV PL(d)cr hours, (dis)charge EV (d)cq of electricity, and leave the
EVPL after paying EV PLrev for using both EVPL’s parking and electricity
services. Clearly, the EVPL’s profit is higher when option (ii) is activated.

2.5 EV-enabled Parking Lot B2B Market

The EV-enabled Parking Lot B2B (Business-to-Business) market models the
“EV-enabled Parking Lot - Electricity Market” relationship. This relationship
is an important prerequisite for the EVPL ecosystem because it procures the
necessary amount of electricity for charging services as well as it liquidates dis-
charged electricity from parked EVs to the EM. It is important to note that
our present model assumes perfect information about prices from both EVs and
EVPL’s point-of-view. Also, a transaction between the EVPL and the EM is
presumed to have perfect liquidity.

3 EV-enabled Parking Lot Simulation Set-Up

Due to the high stakes and complexity of the interactions within the EVPL
ecosystem, the real-life applicability of our proposed model needs to be first



44 J. Babic et al.

considered in a risk-free and feature-packed simulation environment. Such an
environment allows one to determine whether EVPLs can deal with uncertainties
imposed by EV owners in a profitable way.

At the core of our model is a M/M/c/0 queue with time varying arrival
and service rates. In such settings, traditional closed-form equations offered by
queueing theory are often invalid [8,16]. Hence, we opted to represent our model
as an agent-based simulation2, which allows for a rich analysis under dynamic
and highly volatile settings [10]. Table 2 shows the values of the simulation para-
meters. These values reflect three different sizes of EVPLs (small, medium, and
large) and three different types of chargers: (i) slow and cheap, (ii) moderately
fast and reasonably priced, and (iii) fast and expensive. Consequently, dif-
ferent parking lot sizes and charger infrastructures equates to the total of nine
possible scenarios that might happen in the real-world and are therefore incor-
porated in our analysis.

Table 2. Scenario-dependent parameter values and results.

Scenario
((dis)charge rate-
parking size)

EVPL
(dis)charge
rate (kW)

Charger
unit cost
(e/charger)

EVPL
parking
spots

Profits
from
electricity
trading
(e)

Profits
from
extended
parking
(e)

Aggregate
profits

EV PL
prof
agg

(e)

Mean
parking
util. (%)

Mean
charger
util. (%)

Mean
electricity
util. (%)

SLOW-SMALL 5 2,000 30 1,769.09 47,332.42 49,101.51 61.4 36.5 21.3

SLOW-MEDIUM 5 2,000 60 2,785.62 69,738.83 72,524.45 50.7 33.3 16.7

SLOW-LARGE 5 2,000 90 3,172.07 80,304.99 83,477.06 37.7 33.8 12.7

STEADY-SMALL 10 10,000 30 1,810.53 16,778.21 18,588.74 58.5 21.9 12.4

STEADY-
MEDIUM

10 10,000 60 2,825.14 23,359.06 26,184.2 48.2 19.3 9.4

STEADY-LARGE 10 10,000 90 3,104.85 25,252.31 28,357.16 35.0 19.2 6.9

FAST-SMALL 20 30,000 30 1,907.26 5,548.62 7,455.88 58.2 12.1 6.8

FAST-MEDIUM 20 30,000 60 2,920.72 7,204.47 10,125.19 48.1 10.5 5.1

FAST-LARGE 20 30,000 90 3,216.65 8,123.31 11,339.96 34.5 10.6 3.8

4 Results and Discussion

Our analysis of the EVPL ecosystem identifies potential consequences for the
EVPL business by considering different investment pathways. In particular,
under the model assumptions and parameter values, we scrutinize the 9 dif-
ferent EVPLs from the perspectives of both electricity trading and extended
parking due to the provision of electricity service. Furthermore, we discuss the
EVPL utilization, which is an important key performance indicator (KPI) that
provides insights on the usage of the parking and electricity services.

2 Our simulation is implemented using R, a free software environment for statistical
computing and graphics. It takes around three minutes to simulate one year scenario
on a system with 4-core CPU and 8 GB RAM. Please note R does not utilize multi-
threading and therefore a computer with less CPU cores will produce similar running
times.
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4.1 Benefits from Electricity Trading

The fifth column (i.e., profits from electricity trading) in Table 2 presents how
much money the EVPL earned under different scenarios. It can be noticed that
profits from electricity trading increase with parking size and charger speed.
Although this outcome is intuitive and somewhat expected, the low absolute
values, including low profit discrepancies between the nine scenarios, might make
one question about the profitability of the EVPL business. For example, given
that in the best case scenario the EVPL makes a profit of just over 3,200 e per
year, it would take decades for the parking lot’s owner to obtain the invested
money back. However, the overall benefit from the energy service is not only
measured in terms of electricity trading profits, but also from the extra time an
EV was parked in order to fully complete the (dis)charging operation, a point
that we discuss next.

4.2 Benefits from Extended Parking

The sixth column (i.e., profits from extended parking) in Table 2 presents how
much money the EVPL earned due to the prolonged parking in each scenario.
Recall that prolonged parking may occur when the (dis)charging operation can-
not be fully completed during the EV’s initial parking period. In that case,
there is the probability EV sl that an EV will prolong its parking duration to
fully (dis)charge. Otherwise, the EV will settle for the amount of electricity that
is feasible during the initial parking duration. The probability EV sl encodes
real-world examples of behavioral patterns of EV owners. For instance, an EV
owner that frequently travels to distant locations might suffer from range anxiety
[15]. Also, an EV owner may not be able to charge at home due to a lack of the
required infrastructure, thus the same has to resort to a EVPL.

Interestingly, the results show that the most profitable investment option
is to buy the slowest type of charger. The rationale behind this result is that,
in comparison to other charger types, the slowest charger increases the chance
that the requested amount of electricity EV (d)cq cannot be transferred between
the EV and the EVPL within the initial parking duration. Another interesting
point is that the results in Table 2 show that the EVPL’s main source of income
is due to the extended parking service. In our simulations, the parking service
has a fixed price EV PLpp set at 3 e/h. As for the electricity service, assuming
the discharge rate EV PL(d)cr of 5 kW, the epEM price set at reasonable 0.035
e/kWh, and the EVPL’s profit margin EV PLmrg to be 10%, then the EVPL
can expect the maximum profit of 0.0175e for a single parking space in one hour.
Hence, the parking service can bring as much as 170 times more profit than the
electricity service alone.

4.3 EV-enabled Parking Lot Utilization

We introduce three types of KPIs that explain how well a particular EVPL is
utilized:
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Charger u liza onElectricity u liza onParking u liza on

Fig. 5. Parking, charger, and electricity utilizations

– parking utilization;
– charger utilization; and
– electricity utilization.

Parking utilization measures how many EVs were parked at the EVPL. Charger
utilization is defined as the ratio between the amount of electricity EVs
(dis)charged and the maximum amount of electricity that could be (dis)charged
in case chargers from occupied parking spots ran at 100% rate while EVs were
parked. Electricity utilization is defined as the ratio between the amount of elec-
tricity EVs (dis)charged and the potential amount of electricity that could be
(dis)charged in case all chargers ran at 100% rate all the time. Figure 5 shows
the hourly mean values for the three KPIs in each scenario.

Figure 5 shows that the peak hours are between 9 AM and 5 PM, which
is in accordance with the arrival rates EV ar and service rates EV pr. Small
EVPLs have higher parking utilizations than medium and high EVPLs. Also,
large EVPLs have the lowest levels of parking utilization throughout the whole
day, which implies that the number of parking spots in large EVPLs in our
simulation is indeed too high. Although the arrival rates are lower during night
hours (at most three cars per hour), the corresponding parking utilization values



Electricity Trading Agent for EV-enabled Parking Lots 47

from Fig. 5 shows that the amount of time an EV stays parked is prolonged due
to the introduction of electricity service.

The KPI charger utilization explains how efficient the chargers of occu-
pied parking spots operate and, thus, it effectively minimizes the impact of
the EVPL’s size on our analysis. Notably, the results in Fig. 5 show that the
charger utilization is higher during off-peak hours than during on-peak hours.
The reason for this lies in the fact that parking durations, defined by EV pr,
are significantly lower during off-peak hours than during on-peak hours, thus
promoting the overall mean charger utilization for off-peak hours.

In contrast to the charger utilization, the electricity utilization KPI indicates
the overall performance regarding the EVPL’s electricity trading. Figure 5 shows
that the electricity utilization correlates with the parking utilization. It also
shows that the difference between electricity and charger utilization is lower
during on-peak hours and higher during off-peak hours.

The mean values of electricity utilizations are 16.92%, 9.59% and 5.25% for
slow, steady and fast charger scenarios, respectively. Furthermore, the maximum
values of electricity utilizations are 35.86%, 22.77%, and 12.89% for, respectively,
slow, steady, and fast chargers. These numbers can be very helpful for the EVPL
when deciding how many traditional parking spots need to be upgraded with
electricity chargers. First, from Table 2, one can conclude that the most profitable
scenarios are those with slow chargers, due to increased profits from extended
parking. Furthermore, from Table 1, one can see that the price of such a charger
is EV PLcuc

slow = 2,000e3. The payback period (PB) for transforming traditional
parking lots into EV-enabled parking lots, assuming that the transformation is
implemented by upgrading all parking spots with slow chargers, are:

PB
full(slow)
small =

EV PLps
small · EV PLcuc

slow

EV PLprof
agg

= 1.22 (7)

PB
full(slow)
medium =

EV PLps
medium · EV PLcuc

medium

EV PLprof
agg

= 1.65 (8)

PB
full(slow)
large =

EV PLps
large · EV PLcuc

medium

EV PLprof
agg

= 2.15 (9)

It is noteworthy that the above calculation is conservative due to fact that
the EVPL investment costs could be smaller in practice due to economy of
scale. Nevertheless, the payback numbers are even more impressive if the EVPL
owner decides, based on the data on electricity utilizations shown in Fig. 5, to
optimize the number of traditional parking spaces which will be upgraded with
chargers. From Fig. 5, one can conclude that only around 36% of parking spots
need to be upgraded with electricity chargers in order to maintain the EVPL
electricity service. Therefore, the PB in the case of optimal charger installation
is the following:

PB
optimal(slow)
small = 36% · PB

full(slow)
small ≈ 0.44 (10)

3 Available at: http://www.greenbiz.com/blog/2014/05/07/rmi-whats-true-cost-ev-
charging-stations.

http://www.greenbiz.com/blog/2014/05/07/rmi-whats-true-cost-ev-charging-stations
http://www.greenbiz.com/blog/2014/05/07/rmi-whats-true-cost-ev-charging-stations
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Similar calculations show that PB
optimal(slow)
medium ≈ 0.59 and PB

optimal(slow)
large ≈

0.77. In words, it would take less than one year for an investor to get the invested
money back, thus showing that the economic benefits of investing in EV-enabled
parking lots are quite significant.

5 Conclusion and Future Work

EV-enabled parking lots provide a natural solution to address the current need
for charging stations due to the increased number of electric vehicles on the road.
From a business perspective, two potential obstacles to the process of transform-
ing parking lots into EV-enabled parking lots are the complexity of estimating
the utilization of the electricity service and the profitability of the resulting
EV-enabled parking lot. In this paper, we proposed an agent-based simulation
approach that tackles the above problems. Using real-life data, we showed how
one can use our approach to study the economic benefits of EV-enabled parking
lots. In particular, we illustrated how to estimate the EV-enabled parking lot’s
profit due to the trade of electricity and extended parking service, how to esti-
mate the number of needed chargers using the electricity utilization KPI, and
how to estimate the payback period concerning the invested money.

When using our approach, one must tailor the parameter values in Table 1 to
the underlying parking lot setting. One exciting research direction is to perform
a case study where one estimates a priori the metrics previously discussed using
our approach and, then, measures a posteriori the accuracy of such estimations.
Another research direction relevant to the computational sustainability commu-
nity is on how to integrate our simulation approach with broader, energy-related
simulators, such as Power TAC [4,10]. This would allow one to use competitive
benchmarking in order to study the impact of more elaborate trading strategies
by the EVPL.
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Abstract. Crowdsourcing marketplaces link large populations of work-
ers to an even larger number of tasks. Thus, it is necessary to have
mechanisms for matching workers with interesting and suitable tasks.
Earlier work has addressed the problem of finding optimal workers for
a given set of tasks. However, workers also have preferences and will
stay with a platform only if it gives them interesting tasks. We there-
fore analyze several matching mechanisms that take into account work-
ers’ preferences as well. We propose that the workers pay premiums to
get preferred matches and auction-based models where preferences are
expressed through variations of the payment for a task. We analyze the
properties of two matching different mechanisms: Split Dynamic VCG
(SDV) and e-Auction. We compare both the mechanisms with Arrival
Priority Serial Dictatorship (APSD) empirically for efficiency.

1 Introduction

Crowdsourcing has emerged as a new paradigm in getting work done, where
human agents solve tasks that are difficult to solve by software agents. Crowd-
sourcing is used in numerous applications. For example, hand written character
recognition is easy for humans, but it is difficult for software. Real-time applica-
tions like VizWiz [3] leverage crowdsourcing to gather specific information from
an image.

In the crowdsourcing market, there are two types of users of the platform,
a requester, the one who posts and a worker, the one who seeks to work on the
tasks. Typically, the term crowdsourcing refers to settings where the requesters
post simple microtasks which can be performed quickly by human workers. With
the success in crowdsourcing, it is becoming prevalent to crowdsource complex
macro tasks which is referred to as expert crowdsourcing [22]. For example,
oDesk, topcoder are expert crowdsourcing platforms. Consider the following sce-
nario of an expert crowdsourcing as shown in Fig. 1.
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Fig. 1. An expert crowdsourcing scenario with three tasks and three workers

Example 1. On a Monday morning three requesters login to a crowdsourcing
platform with their tasks. These tasks are to develop software modules and are
having deadlines in two weeks. w1, w2 and w3 are eligible and interested workers
for these tasks. The worker w3 prefers to work on r1 then r2, r3. Similarly the
other workers have preferences over the tasks, as shown in Fig. 1. w1 is available
from Monday morning till Tuesday evening for the task assignment, where as
w2 and w3 are present only on Monday and Tuesday respectively. The goal is to
optimally assign the tasks to the dynamic workers.

The prior work for the task assignments in crowdsourcing is mainly focused
on catering to the requesters needs, i.e., addresses concerns with quality of the
workers and the answer aggregation. It takes into account the workers’ reputation
and the requesters’ requirements and budgets. However, one of the important
advantages for the workers to work on the platform is to select tasks of their
own choice. As seen from the above example, workers have preferences over the
tasks they are assigned. In this paper, we address the task assignment problem
in crowdsourcing catering to the workers’ preferences.

Task Assignments with the Workers’ Preferences. Difallah et al. [5] pro-
posed to push the tasks to the workers based on their preferences. These are only
categorical preferences and not the workers’ preferences for the requesters. The
authors do not address strategic nature of the workers. Gujar and Faltings [9]
addressed the strategic and dynamic workers. The authors model the problem
as a two sided matching without money to achieve stability. In this paper, we
consider task assignment to dynamically arriving workers. The dynamic workers
are of two types, namely exogenous and endogenous. (i) The exogenous workers
do not lie about their arrival-departure. (ii) The endogenous workers can report
late arrival or early departure if its beneficial for them.1 The goal in this paper is
to improve efficiency, the valuation that workers assign to their assigned tasks,
in task assignments to dynamic workers of an expert crowdsourcing platform.
1 The workers has to be logged into the system for his availability and hence cannot

report early arrival or late departure.
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We propose that workers pay the platform a premium to obtain a preferable
match. We refer to such task assignment with side payments as a matching
mechanism. A matching mechanism is designed to induce a truthful behaviour
among the workers and achieve efficiency.

To validate the hypothesis about side payments in task assignments, we con-
ducted a survey with crowd workers. 92.6% of the workers were positive about
the tasks assignments with side payments. Section 6 provides more details about
the survey.

With such side payments, we design auction based matching mechanisms for
the task assignment problem in an expert crowdsourcing platform. As users of
these mechanisms may not be experts in game theory/mechanism design, the
goal is to design mechanisms that are simple and avoid any complex models
such as dynamic optimization using Markov Decision Processes and prior on the
workers preferences. Secretary problem [1] based solutions are useful. However,
the difference between classical secretary problem and the settings addressed
here is, ours is a combinatorial problem with multiple recruiters interested in
the workers who have high valuation for their tasks and ensuring truthfulness of
reported preferences. Our contributions are as follows.

Contributions. We allow the workers to pay a premium to obtain a better match.
We propose two dynamic matching mechanisms for the task assignment prob-
lem. For exogenous settings, we first develop a matching mechanism generalizing
Vickrey-Clarke-Groves (VCG) mechanism, namely Split Dynamic VCG (SDV).
We prove that SDV is strategyproof and k-competitive where k is the number
of tasks. We show empirically that in SDV, the efficiency of matching improves
by 5–10% over Arrival Priority Serial Dictatorship (APSD). In endogenous set-
tings, we propose a strategyproof matching mechanism, e-Auction. It is adapted
from e-competitive, single item dynamic auction proposed in [19]. The workers
cannot manipulate their arrival departure periods in e-Auction. We prove that
it is e2-competitive for efficiency, as against SDV and Arrival Priority Serial
Dictatorship (APSD) are k-competitive. However, empirically APSD and SDV
perform better than e-Auction.

Organization. In the next section, we review the related literature. We describe
our model, notation and assumptions in Sect. 3. We explain how to design match-
ing mechanisms based on auctions in Sect. 4. With simulations, we analyze empir-
ical efficiency of all the mechanisms in Sect. 5. In Sect. 6, we compare SDV,
e-Auctionand APSD mechanisms and discuss how to relax the assumptions made
in the paper. We conclude the paper in Sect. 7.

2 Related Work

The term crowdsourcing was introduced by Howe [13]. Since then it has attracted
researchers, practitioners, entrepreneurs, industrialists etc. Currently there are
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thousands of websites available for crowdsourcing.2 It is a pull model of work
where workers decide what to work on and when to work as against the tra-
ditional push model where management distributes the work among employees
and monitors the progress. As it is an uncontrolled manner of getting work done,
there is always a concern about the quality of the work done. Lots of research
has been carried out to ensure the quality of the received answer [2,4,11,12,15–
17,20,22]. Most of them use machine learning for the task assignments. For
example, [15,20] proposed EM based algorithms for quality management in the
crowdsourcing. [22] proposed the multi-armed-bandit based algorithm to learn
the qualities of the workers and analyzed it for regret. [14] discussed how to
design the tasks so as to improve the quality of answers. Note that all this work
is focused mainly for the requesters.

Kittur et al. [18] studied worker’s perspective on crowdsourcing. The authors
conducted user studies on AMT and proposed different techniques to improve
performance of the workers on the tasks by intelligent task design. [8,16] consid-
ered bidding based task allocation, to elicit the costs incurred by the workers.
Our paper is different from all the above as focus is on the task assignments
catering to the qualified but strategic, dynamically arriving workers’ preferences
over the tasks and the bids are not for the costs incurred by the workers.

If side payments are not feasible and workers are static with ordinal prefer-
ences, the task assignment problem is same as assignment problem studied in
economics. Sönmez and Ünver [21] is a survey that summarizes the results for
the static assignment problem. For the dynamic endogenous workers with ordinal
preferences, APSD is the only strategyproof mechanism [23]. In this paper, we
use side payments to increase efficiency of the task assignment and address the
problem as a mechanism design problem in auctions. For more about mechanism
design theory, the interested readers are referred to [6,7] and the references cite
therein.

3 The Model and Notation

In this paper our focus is on the task assignments in an expert crowdsourcing
market where workers are skilled, tasks are complex and rewards are relatively
high as seen in Example (1). For designing matching mechanisms in this setting,
we make the following assumptions.3

Assumptions

– The number of tasks and the corresponding qualified workers is not so large
that the workers will have difficulty in reporting their preferences. For example,
on oDesk, on a particular day only a small portion of the tasks may be relevant
for a software professional with specific skills.

2 http://crowdsourcing.org.
3 It should be noted that, the settings of expert crowdsourcing are different than

microtasking where the workers finish the task quickly and move on to a next task
immediately.

http://crowdsourcing.org
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– All the workers satisfy pre-qualification for the tasks.
– We focus on a time window during which each worker takes up only one task.

We discuss how to relax this assumption in Sect. 6.
– The workers may strategize their preferences to get preferable tasks.

There are k tasks with ith task denoted as ri. W = {w1, . . . , wk} are eligible
aspirants for these tasks who arrive dynamically to the market. Upon arrival in
the time slot arrj , a worker wj observes the tasks in the system and reports his
preferences over the tasks and a deadline depj until when he can accept a task.
If an impatient worker needs a task immediately, he can indicate depj = arrj .
We capture the preferences of a worker by a valuation he assigns to the task
he receives. Let bij be the value that wj assigns to the matching where he is
matched with the task ri. We also interpret these numbers as a bid, maximum
premium a worker is willing to pay, for the task. If a worker does not have any
preferences over the tasks, he can set the preference to be a zero vector. The
notation used in the paper is described in Table 1. With this notation, we now
define matching mechanism and desirable properties.

Table 1. Notation

k Total number of tasks (workers)

R The set of tasks

ri ith Task

wj jth worker

arrj , depj Arrival time and departure time for wj

R(t) The tasks not assigned till t

W (t) {wj � arrj ≤ t ≤ depj andwj is not been assigned any task.}
AW (t) {wj |arrj = t}. Set of workers arriving in time slot t

DW (t) {wj |depj = t}. Set of workers departing in time slot t

bj = (bij) Preference of wj over the tasks

µ Matching algorithm

pj Payment made by worker wj to the platform for the matching

p = (pj)j∈W

Matching Mechanisms. The task assignment problem is divided into two
parts: (i) A matching algorithm(μ) - It produces (w, r) pairs, where the worker
w is assigned with the task r4. A task should be assigned to a worker before he
leaves the system. (ii) Payment : It decides a payment to be paid by the users
for receiving preferable matches. We refer to a matching algorithm along with
payments as a matching mechanism.

4 µ takes bjs, arrj , depj as inputs and produces a bipartite matching. However to
simplify notation, we just refer to µ as a bipartite matching.
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Desirable Game Theoretic Properties of Matching Mechanisms. Let
M = (μ,p) be a given mechanism.

Strategyproof. Let b−j = (b1, . . . ,bj−1,bj+1, . . . ,bk) and wj be assigned with
ri1 = μ(wj) with payment pj when he reports his preference as bj and remaining
workers report b−j . Let ri2 = μ(wj) when he reports b′

j while remaining workers
report b−j and his payment be p′

j . We say M is strategyproof, if ∀wj ,

bi1j − pj ≥ bi2j − p′
j ∀b−j .

That is, by misreporting the preferences over matching, the workers cannot gain.

Efficiency. Let V μ be the valuation that all the workers assign to their match.
I.e., V μ =

∑
j bμ(wj)j . We say μ is efficient if μ selects a matching that maximizes

V μ. If all the preferences are known before-hand, we can always find an optimal
matching. This is called as off-line optimal (OFF-OPT) solution and V OFF−OPT

is valuation of the off-line optimal solution.

Competitive Ratio. No matching mechanism can predict preferences of the
workers yet to arrive and make perfect decisions for the departing workers. Hence
in dynamic (on-line) settings, it is impossible to achieve efficiency. The Compet-
itive ratio is a widely used measure of the performance of on-line algorithms. It
measures how bad the solution found by the algorithm can be as compared to
an optimal solution. An on-line algorithm is c-competitive if,

E[V μ] ≥ 1
c
E[V OFF−OPT ] ∀(b1, . . . ,bk)

The expectation is with respect to random orderings of the workers. Instead
of expectation if we consider this ratio for each instance, in adversarial settings,
it will be arbitrarily bad. Hence we measure it under a random hypothesis where
all orders in which the workers arrive are equally likely.

We model task assignment as a dynamic auction. In the next section, we
propose two matching mechanisms having different competitive ratios. We refer
to the first matching mechanism, which is VCG based, as SDV. We also propose
a matching mechanism e-Auctionto improve efficiency. In both the mechanisms,
matching algorithms are induced by the underlying auction’s allocation rules.

4 Matching Mechanisms: Dynamic Auctions

In this section, we first describe APSD. We then propose our mechanisms.

4.1 Arrival Priority Serial Dictatorship (APSD)

Zou et al. [23] proved that in endogenous settings, APSD is the only strate-
gyproof mechanism for assignment problem when the preferences are ordinal.
In this mechanism, the workers are assigned a priority based on their arrival
time and the tasks are assigned according to the priority of the workers. It is
k-competitive for efficiency and in general, it can lead to inefficient task assign-
ments.
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4.2 SDV: Dynamic VCG AUCTION

Let the system have tick events which are a collection of time slots. We say a tick
event occurs when the system time matches with one of the time given in the
list. Whenever a tick event occurs, the matching of the unassigned and available
workers happens. At tick events, the platform solves an optimization problem
described in (1). Let {t′} be the tick events defined by the system, xij be an
indicator variable indicating whether the task ri is assigned to wj or not, and
αij = bij .

max
∑

i∈R(t′),j∈W (t′)

αijxij

s.t.
∑

i xij ≤ 1 ∀i ∈ R(t′)∑
j xij ≤ 1 ∀j ∈ W (t′)

xij ∈ {0, 1}

(1)

For the matching mechanism SDV = (μSDV , PSDV ), μSDV is defined in
Algorithm 1.

Algorithm 1. Matching Algorithm μSDV

Input: Workers’ preferences (bjs)
Output: A matching

1 t = 1, R(1) = R,W (1) = AW (1)
2 if t ∈ {t′} then
3 Solve Optimization Problem (1)
4 if xij = 1 then
5 µ(wj) = ri and µ(ri) = wj .

6 Determine pSDV
j

7 t ← t + 1
8 R(t) ← R(t − 1)\{ri : ∃j � xij = 1};

W (t) ← {W (t − 1)\{wj : ∃i � xij = 1}} ∪ AW (t)
9 if W (t) == ∅ OR R(t) == ∅ then

10 STOP.

11 else
12 Go to Step 2

Payment PSDV : At the tick event t′, let OPT t′
be the value of the above

optimization problem (1). VCG payment for wj who is matched at t′:

pSDV
j = V ∗

−j − OPT t′
−j (2)

where, V ∗
−j = OPT t′ − bi∗j . OPT t′

−j is the optimal value obtained by solving the
above optimization problem with workers W (t)\wj . ��
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Note that (i) the duration between two consecutive tick events is chosen indepen-
dent of the users’ preferences. (ii) It can be a minute or can be hours depending
upon the task complexity. While defining tick events, the system ensures that
every worker is present at least for one tick event. For example, the system can
add all the departure periods of the workers in the list of tick events.

Even though integer programs are NP-hard, this particular optimization
problem can be solved in polynomial time as this is a maximum weight bipartite
matching between the tasks and the workers having edges from each task ri to
each worker wj with weight αij = bij . We illustrate SDV mechanism with an
example.

Table 2. SDV: Example Preferences

w1 r1 	 r2 	 r3 b1 = (10, 9, 0)

w2 r2 	 r1 	 r3 b2 = (5, 12, 1)

w3 r1 	 r3 	 r2 b3 = (15, 5, 10)

Example 2. Consider the same scenario as depicted in Fig. 1 with bids as indi-
cated in Table 2. Let the tick events t′ be Monday evening 5pm (t = 1) and
Tuesday evening 5pm (t = 2). At t = 1, the platform solves a maximum weight
bipartite matching and assigns r1 to w1 and r2 to w2. VCG payments are 0 for
both of them. At t = 2, r3 is assigned to w3 and his payment is also 0. Instead
of (5, 12, 1) if w2 has preference (12, 5, 1), he is assigned to task r1 and needs to
pay 1 whereas w1 gets r2 at no cost.

From the above example, it is clear that the workers may not have to pay if their
interests are not conflicting. As our goal is not to make money out of such matching
mechanisms, low payments are acceptable. We now see the analysis of SDV.

Proposition 1. SDV is strategyproof when workers are exogenous.

Proof: We partition the workers using tick events such that in each subgroup,
all the workers are available simultaneously and treat each of the subgroups as
an independent problem. Each sub-problem is solved using VCG auction. No
worker can manipulate SDV because, his preference cannot choose which VCG
auction to be part of and each VCG auction is strategyproof. Thus, SDV is
strategyproof. ��
Proposition 2. SDV is k-competitive for efficiency of the matching.

Proof: Let V μSDV

be the total valuation of the matching in SDV. For a given
preference profile, let ri∗ be a task of a worker wj in an optimal assignment
and let ri be a task assigned to him by SDV. The expected valuation of the
matching to him be E[bij ] where expectation is with respect to orderings of the
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workers. With the random ordering hypothesis, each agent is first to arrive with
probability 1

k .

⇒ bij ≥ bi∗j with probability 1
k⇒ E[bij ] ≥ 1

k bi∗j

⇒ ∑
wj

E[bij ] ≥ ∑
wj

1
k bi∗j

⇒ E[V μSDV

] ≥ 1
kV OFF−OPT

The above holds true for any preference profile and hence SDV is k-competitive.
This bound is tight up to an additive constant 1 from the following prefer-

ence. w1 has valuation b1 = (k2, 0, . . . , 0). All the other workers have valuation
(ε, 0, . . . , 0), where is ε is very small positive real number. The optimal solution
has value k2 and SDV will achieve this with probability 1

k . For all the instances
where w1 does not arrive before the first tick event where matching happens,
SDV has valuation of ε leading to competitive ratio arbitrarily close to k. ��
This efficiency is based on the valuations that the workers assign to the matching
and not based on payments or costs incurred by workers. To improve on the high
competitive ratio of SDV, we propose e-Auctionmatching mechanism.

4.3 e-Auction

In [19], the following strategyproof auction was proposed for selling a single
item to dynamically arriving k agents. We explain this for single task, k workers
settings.

Single Task Dynamic Auction. The platform waits until it receives k
e bids.

p, q be the two highest bids received so far. If the worker with bid p is available,
allocate the task to him at price q. Otherwise, whenever a worker with bid higher
than p arrives, allocate the task to that agent at price p. It is shown that the
above auction is e-competitive for efficiency.

Multi Task Dynamic Auction. We adopt the above auction to our set-
ting which is combinatorial. We have k tasks to be assigned to the k workers
each requiring only one. We call the new matching mechanism e-Auction =
(μeA, P eA). The algorithm μeA is described in Algorithm 2. Recall that the work-
ers not having preferences for a task(s), put a bid of ‘0’ and k being the number
of workers, step 1 of the above algorithm will not wait indefinitely.

Payment P eA: Each worker who wins the task in the first k
e bids, has to pay

the second highest bid received up to the first k
e bids for the task. Other workers,

if they receive a task, pay the highest bid received up to the first k
e bids for that

task.

Proposition 3. e-Auctionis strategyproof.
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Algorithm 2. Matching Algorithm μeA

Input: Users Preferences ( bjs)
Output: A Matching

1 Wait until k
e bids for each task have been received.

2 After this, for each task, if the highest bidder is present, and not assigned any
task, allocate him the task at second highest bid received so far for the task.

3 If a worker is winner at more than one task, he is assigned with the task having
highest pay-off (his bid − payment).

4 This worker is marked as absent.
5 For all the tasks which are not assigned in the above step, the highest bid

received for the task is marked as a reserve price.
6 The first worker who submits a bid higher than the reserve price and is not

assigned to any of the other tasks is assigned the task.

Proof : In e-Auctionpayment, for all wj ∈ W , pj is independent of bj and if a
worker is winner in multiple tasks, he is assigned a task with the highest bij −pj .
Hence no worker has any incentive to misreport his bid. If an worker reports the
late arrival than true arrival, it does not increase his chance of winning on any of
the tasks. If the worker tries to report departure before k

e workers have arrived,
he will not get the task. After that, does not matter when is his departure. Thus,
no worker can gain anything by late-arrival or early departure. ��
Proposition 4. e-Auctionis at-most e2-competitive for efficiency of the
matching.

Proof : Let R′ be the set of tasks assigned to the workers by e-Auctionand W ′

be the set of workers who receive a task. Let ri = μeA(wj). V μeA

=
∑

j∈W ′ bij =∑
i∈R′ bij .
For a single task case, from the classic secretary problem analysis, with prob-

ability 1
e , each task will be assigned to the worker having highest valuation for

that task. Say μeA(ri∗) = wj∗. With probability 1
e , bi∗j∗ ≥ bi∗j , In particular,

bi∗j∗ ≥ bi∗j′ where wj′ is the OFF-OPT assignment of the task ri∗.
In our settings, each worker can take up only one task. Say for the task

ri∗, wj∗ is the highest bidder. It may happen that a worker wj∗ is the highest
bidder at multiple tasks, and this may lead to the task ri∗ being not assigned.
If a winner for ri∗ is not a winner at any other task, then definitely, the task
assigned. If the valuations of the workers are independent and are identically
distributed, each worker is equally likely to be winner at all the tasks. Hence,
probability that a worker is winner exactly at on task is (1 − 1

k )k−1 which is 1
e

for large k.

⇒ Probability that a task is assigned ≥ 1
e

E[V μeA

] =
∑

i∈R′ E[bij ]
⇒ E[V μeA

] ≥ ∑
i∈R

1
e E[bij ]

⇒ E[V μeA

] ≥ ∑
i∈R

1
e2 maxjbij

⇒ E[V μeA

] ≥ ∑
i∈R

1
e2 V OFF−OPT
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This proves the claim.5 ��
e-Auctionis an interesting auction as on worst case analysis, it has a much lower
competitive ratio as compared to SDV. The disadvantage of e-Auctionis that
some tasks may not get assigned in e-Auction.

5 Evaluation of the Mechanisms

The proposed mechanisms in this paper inherently hypothesize that workers will
participate in bidding for the tasks. To evaluate this hypothesis, we conducted
a survey with crowd workers.

5.1 Survey: Bidding Based Task Assignments

We conducted the survey on Amazon Mechanical Turk (AMT).6 To safeguard
against spammers, only workers with high acceptance over at least 5000 HITs
were allowed to participate in the survey. The survey included java questions to
ensure that the participant has java programming knowledge. We told workers
that there are java programming tasks having a reward of $2007 and we are
researching about possibility of bidding based task allocation for high paying
tasks. We asked the workers whether they had worked on crowdsourced pro-
gramming tasks and will they be willing to bid to the platform in such task
assignments and how much. The workers were paid $0.1 for participation and
bonus of $0.9 to those who did well on java questions. 56 different workers partic-
ipated. 75% of the participants claimed that they had worked on crowdsourced
programming tasks. 45% were proficient in Java. 92.8% of all the participants
and all of the java proficient responded positively for participating in the bidding
based task assignments. We observed that the workers are interested in bidding
aggressively on a task where their chance of getting the task is higher over the
task they actually prefer.

This survey supports the notion of premium to be charged in the form of bids
for the task-assignments in expert crowdsourcing environment. With this positive
feedback from the workers, we further evaluate the mechanisms for empirical
efficiency. We perform the empirical analysis by simulations.

5.2 Empirical Evaluation

We simulated the mechanisms by generating random preference profiles and
arrival-departure for the users. For arrival of the workers, we assume the workers
arrive in the system according to a Poisson process with mean λ and wait in the
system according to an exponential distribution with mean μ = 2. We used the
following three generative models for the preferences of the workers.
5 Note that this is upper bound on competitive ratio.
6 http://mturk.com.
7 Note that we are referring to expert crowdsourcing tasks and not the microtasks.

Hence, such rewards are feasible.

http://mturk.com
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– I Uniform: For each task, all the workers’ bids are generated uniformly at
random from interval [0,1].

– II Single Peaked : Each worker’s ordinal preference over the tasks is generated
using uniform distribution. His bid for the most desirable task is drawn uni-
formly at random from [1,2]. However, his bid for ith ranked tasks is 1

i of his
the most desirable task.

– III Single Peaked with Popularity In this model, we assume certain tasks are
more desirable than the others. Here, the workers ordinal preferences are
drawn according to the popularity. And these preferences are converted to
bids in the same manner as in Single Peaked case. The ordinal preferences
with popularity (φ1, φ2, . . . , φk) are generated as described below.

• R1 = {1, 2, . . . , k} A task ri is selected as the most preferred tasks from
R1 with probability φi∑

l∈R1
φl

. Let it be, rj1

• R2 = R1\{rj1}. Now the next best task is sampled from R2 with proba-
bilities proportional to φi∑

l∈R2
φl

and so on.

For each of these three generative models, with k = 30, we generated 10,000
different preference profiles and studied empirical efficiency by considering the
average valuation of the matching per worker per task by varying λ. In SDV, we

Fig. 2. Empirical Comparison of SDV, e-Auction, APSD and OFF-OPT for efficiency
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used tick events generated by workers arrival. That is, every worker is assigned
a task as soon as he arrives.

Figure 2 shows empirical efficiency SDV, APSD, e-Auctionand OFF-OPT. It
is the average valuation of a matching per work normalized to OFF-OPT = 1.
Clearly, SDV improves over APSD by 2–3% for λ ∈ (k

6 , k
4 ) when the workers

are of type I. For workers of type II and III, this improvement is 5% and 10%
respectively. This arrival rate matches on average λ workers together. Hence,
if on average all the workers are willing to wait till λ workers to arrive, they
clearly see an improvement in quality of matching by SDV. From simulations, it
is clear that, though e-Auctionhas better worst case guarantees, it is within only
2-competitive (50% of the off-line optimal) where as SDV is 1.25-competitive
(that is, within 80% of the off-line optimal).

In the next section, we provide a unified comparison of the mechanisms dis-
cussed in the paper. We also describe how to relax some of the assumptions.

6 Discussion

The crowdsourcing platform needs to propose/assign tasks to the workers. To
keep users interested in the platform, it needs to achieve efficiency in such task
assignments. Strategic workers may manipulate the task assignment by misre-
porting their preferences. So we need strategyproofness. Towards this, we focused
on expert crowdsourcing and proposed two matching mechanisms namely, SDV
and e-Auction. Table 3 compares both the proposed mechanisms for strate-
gyproofness, efficiency and empirical efficiency for type III workers described
in the previous Section.

Table 3. Comparison of mechanisms SDV, e-Auctionand APSD

SDV eA APSD

StrategyProofness Y Y Y

Endogenous N Y Y

Competitive Ratio k e2 k

Expected Competitive Ratio 1.25 1.76 1.38

Is market cleared? Y N Y

APSD does not need any side payments as well as works in endogenous set-
tings. SDV assumes exogenous settings. Both the mechanisms have same guaran-
tee on competitive ratio. However, empirically SDV performs better than APSD.

– In endogenous settings, we proposed e-Auctionwhich has better competitive
ratio. However, we observe in experiments, it performs poor for average case
efficiency.
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Thus, if we can assume exogenous settings, we propose to use SDV. If side
payments are not desired or in endogenous settings, one can use APSD pro-
posed by Zou et al. [23]. If stronger worst case guarantee on competitive ratio
is needed, we propose to use e-Auction. However, empirically, we observe that
e-Auctiondoes not perform that well.

Note that, typically to best of our knowledge there is no prior work in online
mechanism with competitive ratio guarantees when private information is multi-
dimensional.

e-Auction: Empirical Analysis. In APSD, the mechanism does not wait to
gather any information about the valuations of the workers yet to arrive, but
assigns the best possible task to the worker upon arrival. In worst case, such
mechanism can lead to a very poor performance. In SDV, the mechanism waits
certain duration defined by tick events and optimizes the sum of valuations of
the workers present in the system at tick events. This improves the efficiency,
but still on worst case, it may lead to poor performance. As opposed to these
two matching mechanisms, e-Auctionis designed to improve guarantees on the
worst performance. It waits for k

e workers to arrive and learns about valuations
of the workers and then matches workers and tasks. This improves the worst case
guarantees. However, typically it loses opportunity to assign some tasks to the
initial workers who might have left the platform before the assignments happen.
This leads to a poor performance on average case analysis, as observed in the
experiments (Table 3). To overcome this, in follow up work, we proposed Online
Ranked Competition Auction (ORCA) [10]. ORCA waits for different thresholds
for each task rather than uniform k

e that of e-Auctionbefore matching the task
to a worker. This should improve worst case performance further. Such analysis
is still open. We observed, empirically ORCA improves over e-Auction. For more
details, please refer to [10].

The Expert Crowdsourcing Model. Note that the expert crowdsourcing set-
tings in this paper are different from the widely referred crowdsourcing of micro
tasks. Hence the assumptions made in the paper, may not model the microtask-
ing environment well. We demonstrate how to relax some of the assumptions.

(a) If the workers want the tasks without waiting, all the mechanisms are valid.
Either workers can set, arrj = depj or the tick events can occur at faster
rates. As the analysis is for worst case, it is still valid. However, in the long
run, users may realize that quality of matching is better if everybody is
patient.

(b) If a worker is unable to determine preferences or is not interested in report-
ing preferences, he can indicate it by bij = 0. However, if workers indicate
a preference, they get preferable tasks as compared to not indicating pref-
erences.

(c) The tasks in expert crowdsourcing are typically complex and require more
time to finish them. We focus on a time-window during which only one such
task can be performed. Hence, we make the assumption that each worker
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takes up one task. If we relax that, all mechanisms can adopt with the
claimed properties. Say each worker takes up l tasks:
– For e-Auction, we can still set prices with the same rule and let the worker

select up to l most preferred tasks if he is winner at multiple tasks. In fact,
the competitive ratio improves with increased competition. For example,
if workers can take up to k tasks, the competitive ratio will be e.

– For, SDV, each instance being static VCG, the strategyproofness will hold
true. (The optimization problem will change accordingly).

(d) All the mechanisms are valid even of the number of tasks is not same as the
number of workers. However the competitive analysis will change.

7 Conclusion

In this paper, we addressed task assignments to dynamic workers in expert
crowdsourcing platforms through matching mechanisms. We introduced the
notion of a premium to be paid by the workers to get preferable matches.
The monetary transfers help in achieving strategyproofness and efficiency. We
proposed two dynamic matching mechanisms, SDV for exogenous workers and
e-Auctionfor endogenous workers. We proved various properties of these mech-
anisms and in the previous section we summarized our results.
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Abstract. The Power TAC is a competition-based simulation of an
electricity market. The goal of the competition is to test retailer (bro-
ker) strategies in a competitive environment. Participants create broker
agents that trade electricity. In this paper we describe our broker, which
we created as a participant of the 2014 Power TAC competition. We
describe the strategies for two main components of the game: the tariff
market and the wholesale market. We also discuss the performance of our
broker in the competition, where we were second in the final ranking.

1 Introduction

Computer simulations have often been used to examine the dynamics of elec-
tricity markets [7]. Simulations may consist of components like producers, con-
sumers, and retailers. The number of potential strategies for each component
is huge, however. Therefore, in the design of a simulation it is very difficult to
anticipate on the wide range of strategies possibly employed by these compo-
nents. The Power TAC project [3] aims to overcome this problem by providing a
competition environment based on an open platform of a smart grid electricity
market. On the other hand, participants of the competition can thus create and
test retailer agents (brokers) that trade electricity in the simulation. Retailer
agents make money by trading electricity. The winner of the competition is the
agent that makes the most money.

In the Power TAC simulation, broker agents trade electricity by interacting
with producers, consumers, and each other in three different markets: the whole-
sale market, the tariff market, and the balancing market. The wholesale market
is a double-sided sequential auction, of which the participants are brokers and
large generation companies. In this market, brokers mostly buy energy, though
they may also sell it. In the tariff market, brokers sell energy to consumers, such
as offices and households. Since the Power TAC platform simulates a smart grid
electricity market, there is also decentralized production, such as wind farms and
owners of solar panels. Brokers can buy energy from these small producers in
the tariff market. Brokers trade in this market by publishing consumption and
production tariffs, in which they set a unit price structure and other features
(see below). A feature of electricity markets is that demand and supply must be
balanced real-time. In the Power TAC, imbalances in the wholesale market and

c© Springer International Publishing AG 2017
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tariff market are resolved in the balancing market. Trading in this market is usu-
ally less favorable for brokers, so they are encouraged to balance their demand
and supply themselves [5].

In this paper we describe the broker agent that we created for the 2014
competition. The objective in the competition was to create an agent that makes
as much profit as possible. Our broker consists of two main components: a tariff
market component and a wholesale market component. For the tariff market,
we have developed an approach to determine the next retail price, based on the
market share of the broker and the competing tariffs. For the wholesale market,
we have developed a strategy that aims to acquire its entire demand in the first
round of the sequential auction, when it is expected to be the cheapest. The
broker does that by estimating the required limit price based on historical data
of past auctions. In the 2014 competition, our broker was second in the final
ranking. Based on this result, our paper provides useful insights for participants
of future Power TAC competitions.

The rest of this paper is organized as follows. In Sect. 2 we discuss related
work. Section 3 provides a description of the Power TAC game. In particular,
we describe aspects of the game that are relevant to our broker. Next, we give
an overview of our broker agent in Sect. 4. We give a detailed description of
our broker’s strategies for trading in the wholesale market (Sect. 5) and trading
in the tariff market (Sect. 6). In Sect. 7, we discuss the performance of these
strategies in the 2014 competition. Finally, we draw conclusions in Sect. 8.

2 Related Work

An extensive description of the Power TAC simulation server can be found in the
game specification [4]. An analysis of the performance of all brokers in the 2014
competition is provided in [2]. Furthermore, several participants of previous tour-
naments have published work about their own broker agents. AstonTAC, who
participated in 2012, uses a wholesale market strategy based on Markov Decision
Processes. TacTex [8], who won the competition in 2013, use reinforcement learn-
ing (RL) to find the optimal actions in the wholesale market and tariff market.
For the 2013 competition we also created a broker [6], which was the runner-
up in this competition. This broker uses a tariff publication strategy inspired
by Tit-for-Tat in the tariff market and a trading technique related to equilibria
in continuous auctions in the wholesale market. CrocodileAgent [1] uses RL to
choose among different strategies in the wholesale market. Most brokers aim to
maximize a performance measure, such as utility or cumulative reward. Our app-
roach, however, does not directly use a performance measure. Instead, we have
developed heuristics based on domain knowledge that yield successful behavior.

3 The Power TAC Game

Here we provide a description of the Power TAC game [4]. In the Power
TAC simulation, producers, consumers, and retailers interact in three different
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markets: the wholesale market, the tariff market, and the balancing market. In
the simulation, time is divided into one hour intervals, referred to as timeslots.

The wholesale market is a double-sided sequential auction. Participants in
this market are large producers of electricity and broker agents. Producers only
supply electricity, while broker agents may buy or sell electricity. Electricity is
traded in this market by submitting buy and sell orders, which specify a limit
price and a quantity. For each timeslot there are 24 separate auctions, which we
refer to as auction rounds.

In the tariff market, broker agents trade electricity with consumers (e.g.
households and offices) and small producers (e.g. owners of solar panels and wind
farms). Consumption and production is collectively referred to as prosumption.
Brokers trade energy by publishing tariffs, in which they set a structure for
the unit price and other features. Prosumers evaluate the available tariffs and
subscribe to the tariff they prefer. They trade energy with the broker according
to the conditions set by the tariff they are subscribed to.

In electricity grids, demand and supply must be balanced in real-time. In the
Power TAC this is simulated by balancing demand and supply for each timeslot.
The network operator achieves this by trading in the balancing market on behalf
of each broker. The prices in this market are usually not favorable to the broker.
Therefore, brokers are encouraged to balance supply and demand themselves,
which means their net prosumption in the tariff market and wholesale market
must be zero in each timeslot.

Agents pay a fixed fee per unit of electricity for using the electricity grid. This
fee is called the distribution fee, and is announced to brokers in the beginning
of a simulation. Also, agents pay a fixed fee for every tariff they publish.

In the 2014 competition there were 6 participants. There were three game
categories: games with two players, with four players, and with all players.

4 Our Broker Agent

Here we describe our Power TAC broker agent. Brokers can trade in three mar-
kets: the tariff market, the wholesale market, and the balancing market. Since
trading in the balancing market is usually not favorable to a broker, our bro-
ker aims to avoid this by balancing its demand and supply in each timeslot.
Therefore, our broker has to know the prosumption in the tariff market for each
timeslot. However, the quantity for a timeslot is unknown to the broker when it is
trading for that timeslot, so our broker has to predict its customers’ prosumption
ahead of time. The approach is as follows.

To estimate its customers’ prosumption, our broker uses a linear regression
model, which takes into account weather factors, such as temperature, wind
speed, and cloud coverage, all of which affect the consumption and production.
Historical prosumption data and weather data are used to train the model. The
approach is similar to the prosumption estimator of our broker in the 2013
competition. For more details on this approach, see [6].

Apart from the prosumption estimator, our broker consists of two main com-
ponents: the tariff market component and the wholesale market component. We
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describe the parts of these components that have the main contribution to the
performance of our broker.

5 Wholesale Market Strategy

In this section we discuss trading in the wholesale market. First, we describe
how a wholesale auction works. Then we describe our broker’s strategy in this
market.

5.1 The Sequential Double-Sided Auction

The wholesale market is a sequential double-sided auction. For each timeslot,
the auction is cleared 24 times, i.e. there are 24 auction rounds per timeslot.
Participants in this market can buy and sell electricity by submitting buy offers
(bids) and sell offers (asks). See Fig. 1 for examples of auction rounds. An offer
(buy or sell) consists of a limit price and a (demanded or supplied) quantity. The
limit price of a buy offer is the maximum unit price a buyer is willing to pay
for its demanded quantity. Buy offers are sorted in decreasing order according
to their limit price, which means that buy offers with a higher limit price have
a higher priority to be cleared (executed). The limit price of a sell offer is the
minimum unit price a seller is willing to accept for its supplied quantity. Sell
offers are sorted in increasing order according to their limit price, which means
that sell offers with a lower limit price have a higher priority to be cleared. Offers
are cleared, as long as the limit price of the buy order is higher than the limit
price of the sell order. Often, either a bid or an ask is cleared partially. The sum
of the cleared bids (or asks) is referred to as the clearing quantity or execution
quantity. All cleared orders result in transactions. All transactions of an auction

Fig. 1. An auction round diagram. Buy and sell orders are represented by horizontal
bars, of which the vertical position indicates the limit price, and the length of the bar
indicates the quantity. The execution price and quantity are indicated by dotted lines.
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round have the same unit price. This price is the mean of the limit prices of the
last bid and ask, and is referred to as the clearing price or execution price.

After every auction round, brokers receive the following public information on
this round: the uncleared orders, the execution price, and the execution quantity.
Brokers do not receive information on the cleared orders of past auctions rounds.
This information is private and only known to the broker that submitted the
order. Furthermore, the names of the owners of cleared orders are also private
information. This allows us to define the known and unknown auction round
data for each timeslot and auction round.

Definition 1. Let R be an auction round and let t be a timeslot. Let
obuy
1 , . . . , obuy

M be the buy orders of round R and timeslot t, of which the first
m ≤ M are cleared. Let osell

1 , . . . , osell
N be the sell orders of round R and timeslot

t, of which the first n ≤ N are cleared. In case an order is partially cleared order,
it is treated as two separate orders: a cleared one and an uncleared one. If a buy
order is partially cleared, then obuy

m is the part that is cleared and obuy
m+1 is the

part that is not cleared. Similarly, if a sell order is partially cleared, then osell
n is

the part that is cleared and osell
n+1 is the part that is not cleared. Let Qa ∈ [0, Q]

be the quantity of the broker’s bid that is (partially) cleared. Let pe be the exe-
cution price and let Qe be the execution quantity of R. Then, the unknown
auction round data XR,t of auction round R and timeslot t consists of the
buy orders obuy

1 , . . . , obuy
m and the sell orders osell

1 , . . . , osell
n , with the exception of

the broker’s own bid obuy
j if it was (partially) cleared. Furthermore, the known

auction round data YR,t of auction round R and timeslot t consists of the buy
orders obuy

m+1, . . . , o
buy
M , the sell orders osell

n+1, . . . , o
sell
N , the execution price pe, the

execution quantity Qe, the broker’s cleared quantity Qa, and its own (partially)
cleared bid obuy

j if it exists.

Thus, a broker’s unknown auction round data is the private information of all the
other brokers, and a broker’s known auction round data is the public information
and its own private information. For a more extensive description of the wholesale
market, we refer to [4].

5.2 Wholesale Trading Strategy

The participants of the wholesale market are generation companies and broker
agents. Generation companies only sell energy, while broker agents may buy or
sell. In order to avoid costly trading in the balancing market, brokers must aim
for a balance between their demand and supply in each timeslot. Since the total
consumption in the tariff market is much bigger than the total production in the
tariff market, we expect most brokers to buy energy in the wholesale market.
Indeed, our broker only buys energy, because it only publishes consumption
tariffs (see Sect. 6).

We expect that energy is the cheapest in the first auction round, and gets
more expensive in consecutive rounds. The reason is that generation companies
offer their energy in the first auction round, and keep offering their energy for the
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same limit price until their offer is cleared. Whereas generation companies are
predictable, brokers may submit sell orders in a less predictable way. However,
we expect their impact to be negligible, since brokers are more likely to submit
buy offers. Thus, in order to acquire its demand for the lowest possible price, our
broker aims to acquire its demand as quick as possible. Therefore, our broker
bids its entire estimated demand (see Sect. 4) in the first auction round. In the
remaining auction rounds it bids the estimated demand it has not yet acquired
in the previous auction rounds.

Having determined the quantity to bid for, we now focus on choosing the
limit price. Ideally, our broker bids the lowest limit price such that its bid will
be cleared. However, this depends on the orders from all other players in the
market, and the broker does not have this information at the time of bidding.
Instead, for each auction round R and each timeslot t, the broker computes a
limit price from the known auction round data YR,s of past timeslots s < t.
For the unknown auction round data XR,s, the broker assumes the worst case
scenario of all potential values of XR,s given YR,s (see Definition 2 below).

Definition 2. Let YR,t be the known auction data of auction round R and times-
lot t. Given YR,t, we call XR,t a potential value of the unknown auction data
if and only if XR,t and YR,t are compatible, i.e. the limit prices of the buy orders
of XR,t are higher than the limit prices of the buy orders of YR,t, the limit prices
of the sell orders of XR,t are lower than the limit prices of the sell orders of
YR,t, and the orders of XR,t and YR,t together result in execution price pe and
execution quantity Qe.

One cannot infer the actual value XR,t of the unknown auction round data
given the known data YR,t of an auction round, but it is possible to infer some
properties. For example, both the sum of the quantities of the buy orders in
XR,t and the sum of the quantities of the sell orders in XR,t are equal to the
execution quantity Qe. Furthermore, the limit prices of the buy orders in XR,t

are higher than or equal to the execution price pe, while the limit prices of the
sell orders in XR,t are lower than or equal to pe. Given the known data YR,t, we
now define the worst case limit price that would have resulted in the acquisition
of a quantity in a past auction round. We write o = 〈p,Q〉 to denote a (buy or
sell) order with limit price p and quantity Q.

Definition 3. Let obuy = 〈p,Q〉 be the bid of the broker for timeslot t in auction
round R, and let YR,t be the known data of t and R. The worst case limit price
pw

R,t to have acquired quantity Q for timeslot t in round R given YR,t is the lowest
limit price p′ that would have resulted in an fully cleared bid obuy

w = 〈p′, Q〉 for
all potential values XR,t of unknown data given YR,t, if it had bid obuy

w instead
of obuy in auction round R.

Note that the worst case limit price applies to the hypothetical situation
where a broker’s actual bid is replaced by a new bid in that past auction round.
The value of the worst case limit price depends on whether the broker’s actual
bid was (partially) cleared, as we will see. We now show how to compute the
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worst case limit price for the situation where the broker’s actual bid was not
fully cleared (Lemma 1), and then we do the same for the situation where it was
fully cleared (Lemma 2). Later, we show how the broker computes its limit price
for future auction rounds, based on the worst case limit prices of past auction
rounds. First we define the sell order book price.

Definition 4. Let YR,t be the known auction data of an auction round R and
timeslot t, of which osell

n+1, . . . , o
sell
N are the uncleared sell orders, osell

i = 〈pi, Qi〉.
Let Q <

∑N
i=n+1 Qi be an energy quantity. Then, the sell order book price

pYR,t
(Q) of quantity Q for sell orders osell

n+1, . . . , o
sell
N is defined as the limit price

pk of the unique sell order ok such that
∑k−1

i=n+1 Qi < Q ≤ ∑k
i=n+1 Qi.

The following lemma specifies the worst case limit price for the case where the
broker’s actual bid was not fully cleared.

Lemma 1. Let obuy = 〈p,Q〉 be a broker’s bid for timeslot t in auction round
R. Let Qa be the quantity acquired by the broker. Let YR,t be the known auction
information after R. If the broker did not acquire its entire demand (Qa < Q),
then the worst case limit price to have acquired Q given YR,t is the sell order
book price p′ = sYR,t

(Q − Qa) of the remaining demand Q − Qa.

Proof. Let osell
c be the cleared sell orders and let osell

u be the uncleared sell orders
in the actual auction. The broker’s actual bid obuy resulted in the acquisition
of Qa (though Qa may be zero), so limit price p was high enough to match Qa

of its bid to osell
c . Since p′ > p, this would also have been the case if it had bid

〈p′, Q〉 instead of obuy. Moreover, bidding p′ would have been enough to match
the remaining demand Q−Qa to osell

u . Thus, if the broker had bid 〈p′, Q〉 instead
of obuy, the bid would have been fully cleared. A bid 〈p′′, Q〉 with a limit price
p′′ < p′, however, may not have been enough for some potential values of X.
Limit price p′′ is not high enough to match all of Q − Qa to osell

u . This means
that a quantity Q′ that is larger than Qa, has to be matched to osell

c . It may
be that the quantity Qbuy

m of the last cleared buy order is less than Q′, and the
limit price pbuym−1 of the second last cleared buy order is greater than p′′. In that
case, a bid 〈p′′, Q〉 would not have been fully cleared, so p′ = sYR,t

(Q − Qa) is
the worst case limit price to have acquired Q. ��
We now examine the case where the broker’s actual bid was fully cleared. First,
we define p∗(YR,t).

Definition 5. Let YR,t be the known auction round data for timeslot t and auc-
tion round R. Then

p∗(YR,t) =

⎧
⎪⎨

⎪⎩

pbuy
m+1 if pe ≤ pbuy

m+1

pe if pbuy
m+1 ≤ pe ≤ psell

n+1

psell
n+1 if psell

n+1 ≤ pe

(1)

Lemma 2. Let obuy = 〈p,Q〉 be the broker’s bid for timeslot t in auction round
R. Let Qa be the quantity acquired by the broker. Let YR,t be the known auction
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data of R and t. If the broker acquired its entire demand (Qa = Q), then p′ =
p∗(YR,t) is the worst case limit price to have acquired Q given YR,t, assuming
that ties are decided in the broker’s advantage.

Proof. To prove this lemma, we reason about the hypothetical situation where
the broker’s actual bid obuy = 〈p,Q〉 is replaced by bid 〈p′, Q〉 in R. Due to this
replacement, p′ does not have to be higher than the limit prices of any of the
other cleared bids in order to be fully cleared, as long as it is not lower than the
limit prices of the uncleared bids (Condition I). Note that ties are decided in
the broker’s advantage, so p′ = pbuym+1 is sufficient. Furthermore, the limit price
of the new bid has to be higher than the limit prices of the cleared sell orders
(Condition II). Condition I holds by Definition 5 and the property that bids
are sorted in descending order. We now show that Condition II holds for cases
pselln+1 ≥ pe and pselln+1 ≤ pe separately. If pselln+1 ≥ pe, then p′ ≥ pe and pe in turn
is higher than or equal to all of the cleared sell orders. Condition II also holds
if pselln+1 ≤ pe. In that case p′ = pselln+1, which is higher than all of the cleared
sell orders. Thus, Conditions I and II both hold, so bid 〈p′, Q〉 would have been
fully cleared in R. Bidding a limit price p′′ < p′, however, may not have been
enough for some potential values of XR,t. We show this for cases pbuym+1 ≥ pe

and pe ≥ pbuym+1 separately. If pbuym+1 ≥ pe, then p′ = pbuym+1. In that case obuym+1

would have been cleared before 〈p′′, Q〉. Therefore, in order for 〈p′′, Q〉 to be
fully cleared, it has to be matched with the uncleared sell orders. However, their
limit prices are higher than p′′, so it will not be fully cleared. If pe ≥ pbuym+1, then
p′ ≤ pe and consequently p′′ < pe. In that case there would have been potential
XR,t such that p′′ < psell1 , . . . , pselln . This is the case, for example, if n = 1 and
psell1 = p′. Thus, p′ = p∗(YR,t) is the worst case limit price to have acquired Q.��
Lemmas 1 and 2 provide in hindsight the worst case limit price that would have
been sufficient to acquire the broker’s demand, given the known auction round
data. This is expressed by the following theorem.

Theorem 1. Let YR,t be the known auction data of timeslot t and auction round
R. Let Qa be the broker’s acquired energy of its demand Q. Then the worst case
limit price pw

R,t for timeslot t in round R is

pw
R,t =

{
sYR,t

(Q − Qa) if Qa < Q

p∗(YR,t) if Qa = Q
(2)

Proof. This follows from Lemmas 1 and 2

Based on this analysis, we now give our broker’s heuristic to compute its limit
price in the wholesale market. For each auction round R, the limit price pR,t+1

for the next timeslot t + 1 is computed from the worst case limit price pw
R,t in

the most recent timeslot t using the following update rule:

pR,t+1 ← (1 − λ)pR,t + λpw
R,t (3)
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where λ is some manually chosen λ ∈ (0, 1). Note that the best bid may depend
on the time of the day or the day of the week, where consecutive timeslots
are likely to be similar. The weighted update rule implicitly incorporates this
dependency by assigning higher weights to more recent timeslots. λ is chosen
such that the limit price is mostly determined by the most recent timeslots. The
update rule also allows the broker to adapt to strategy changes of other brokers.

6 Tariff Market Strategy

In this section we describe our broker’s strategy in the tariff market. First we
describe the tariff market itself. Then we introduce the concept of competition
price, which captures relevant information on the opponent’s tariffs in a single
value. Finally, we describe how the competition price is used to compute the
next tariff price.

6.1 Tariff Market

In the tariff market, broker agents trade electricity with consumers (e.g. house-
holds and offices) and small producers (e.g. owners of solar panels and wind
farms). Broker agents sell energy to consumers by publishing consumption tar-
iffs, which are structures that specify the unit price and other features. From the
set of available tariffs published by all brokers, the consumers choose to which
tariff they subscribe. Consumers buy energy under the conditions set by the
tariff they are subscribed to.

Since the Power TAC simulates a smart grid electricity market, there is also
decentralized production, such as wind farms and solar panels. Broker agents can
buy electricity from them in the tariff market by publishing production tariffs.
Production tariffs are similar to consumption tariffs, except that the directions
of the cash flow and the electricity flow are reversed. Even though decentralized
production may offer potentially cheap supply, our broker agent does not publish
any production tariffs. The decentralized production supplied in the tariff market
is significantly smaller than both the consumption in the tariff market and the
centralized production in the wholesale market. Therefore, the most important
aspects of a broker agent are a consumption strategy for the tariff market and a
buying strategy for the wholesale market. The implementation of a production
tariff strategy is not a main priority. From now on, in this section we focus on
consumption tariffs only.

A tariff is a complex structure that contains one or more rates (i.e. unit
prices). A rate specifies the unit price of energy per kWh under a set of condi-
tions. Conditions may specify the time to which a rate applies: A tariff can have
different rates for different times of the day or different days of the week. Fur-
thermore, tariffs may specify tiered rates, which means the unit price of energy
depends on the quantity consumed by the customer in a single day. Also, rates
may be fixed or dynamic. In the latter case the tariff specifies a minimum and
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maximum value. The broker announces the actual value to its customers a prede-
termined number of timeslots ahead. Furthermore, tariffs may specify the option
of interruptible consumption.

Given a tariff τ a timeslot t and the quantity Q, we use pt(τ,Q) to denote
the unit price of energy specified by tariff τ in timeslot t, if Q is the quantity
consumed in a day. In addition to one or more rates, tariffs can also have other
features. One of these features is a periodic fee, which allows brokers to specify
two-part tariffs. Given a tariff τ , we denote the periodic fee by pperiodic(τ). Fur-
thermore, tariffs may specify a sign up fee or bonus, and/or an early-exit fee.
Brokers can publish as many tariffs as they want, but they pay a fixed publica-
tion fee for every tariff they publish. This fee is announced to the brokers in the
beginning of every simulation. Brokers can also revoke tariffs or supersede old
tariffs with new tariffs. The tariff structures (including rates, and periodic fees,
etc.) published by a broker are public information and hence known to all other
brokers. The number of subscriptions to a tariff, though, is private information
and only known to the owner of the tariff. In the simulation there are multiple
types of customers, including several types of households, offices, hospitals, etc.
Brokers know the number of subscriptions to their tariffs for each customer type.

6.2 The Competition Price

In the tariff market, brokers have to compete with each other for customers.
Therefore, the best choice of tariffs to publish depends on the tariffs published
by the other brokers. Due to the complexity of tariff structures and the unre-
stricted number of competitors’ tariffs, it is difficult to determine the best set of
tariffs to publish. In order to reduce the information of all available tariffs, we
define the competition price, which captures relevant information on the tariffs
of all brokers. First, we define the integral unit price for a tariff τ , which is an
estimation of the cost per kWh given the estimated behavior of the consumers
in the simulation. The integral unit price is a measure of how expensive a tariff
is, and takes into account multiple features of a tariff, such as different rates and
the periodic fee. The reduction of a tariff to a single score allows comparison of
complex tariff structures.

Definition 6. Let C be the set of customer types. Let Q̂c
t be the estimated con-

sumption per customer of type c ∈ C in timeslot t. Let d(t) be the set of timeslots
on the same day as timeslot t. Let Nc be the number of customers of type c ∈ C
in the simulation. Let pt(τ,Q) be the unit price of tariff τ for a consumer in
timeslot t if quantity Q is the consumption of the consumer on the day of times-
lot t up to and including timeslot t itself. Let pperiodic(τ) be the fixed daily fee of
tariff τ . Then, the integral unit price p(τ) of tariff τ is

p(τ) =
7 · pperiodic(τ) +

∑168
t=1

∑
c∈C pt(τ,

∑
s∈d(t) Q̂c

s)NcQ̂
c
t

∑168
t=1

∑
c∈C NcQ̂c

t

The integral unit price is the revenue of this tariff divided by the consumption if
all customers in the simulation were subscribed to this tariff. It is an estimation of
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the actual revenue per kWh for the tariff, which depends on the number of tariff
subscriptions for each customer type, and their actual consumption. However,
this is private information and therefore only known to the owner of the tariff.
The integral unit price, on the other hand, is computed from public information
available to the broker. This includes the customer types C as well as the number
of customers Nc of every type c ∈ C, an estimation Q̂c

t of customer consumption
based on the bootstrap data of every simulation, and tariff features such as rates
and periodic fees. The tariff unit price pt(τ,Q) incorporates time-of-use tariffs
and tiered rates tariffs. If the rate is fixed, then its actual value is used, in case
it is dynamic, then an estimation of its value is used based on past prices.

Whereas the integral unit price deals with the complexity of tariff structures,
the competition price deals with the potentially large number of published tariffs.
Since customers prefer cheap tariffs, the most relevant competitor’s tariff is the
cheapest one. Therefore, we define the competition price to be the minimum of
the integral unit price of all published tariffs.

Definition 7. Let Tariffs be set of the tariffs published by all brokers. Then, the
competition price is

pcomp(Tariffs) = min
τ∈Tariffs

p(τ)

Defined as the estimated unit price of the cheapest tariff in the game, the com-
petition price is a measure of the competitiveness in the tariff market. If the
competition price is high, then our broker can publish expensive tariffs and still
attract customers, but if the competition price is low, then it must also publish
tariffs in order to get customers.

6.3 The Tariff Strategy

Our agent’s tariff policy is competitive. This means our agent publishes tariffs
with an energy unit price lower than the competition price, provided that the unit
price is higher than an estimation of the cost price. Apart from the competition
price and the estimated cost price, the broker’s tariff prices also depend on its
market share, which is the consumption of the broker’s customers divided by the
consumption of all consumers in the simulation.

Definition 8. Let Qbroker be the consumption of all consumers subscribed to
one of our broker’s tariffs and let Qtotal be the consumption of all consumers in
the simulation. The market share MS of our broker is defined as

MS =
Qbroker

Qtotal

If the broker’s market share is close to one, then it has almost all the customers,
so there is less need to compete for more. This would only cause the tariff price
to decrease unnecessarily, which reduces the broker’s profit. If the market share
is close to zero, on the other hand, then the broker hardly makes any profit, so
it decreases its tariff price faster, in order to get more customers.
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Since our broker mostly decreases its tariff price, there is no need to revoke or
supersede old tariffs. Our broker has a higher profit if customers stay with more
expensive tariffs as long as possible. Our broker publishes only simple tariffs,
i.e. its tariffs have no periodic payments, sign-up fees or bonuses, or early-exit
fees. Although brokers may benefit from these additional features, we did not
expect it to be a main priority. In the 2013 competition, the two best brokers
(TacTex [8] and cwiBroker [6]) only published simple tariffs. Our broker publishes
multiple new tariffs during a simulation. In several tournaments including the
2013 competition, the most successful brokers published a large number of tariffs.

A new tariff price is computed in the following way. First it computes p0
from the competition price pcomp and the estimated energy cost price p̂cost.

p0 = max(r · pcomp, p̂cost + ε)

where r ∈ (0, 1] and ε > 0 are manually chosen parameters. The estimated
energy cost price estimation p̂cost is based on the distribution fee and historical
data of the wholesale market. Our broker takes it into account, because it is
never favorable to a broker to publish tariffs lower than the cost price. The
parameter ε sets the minimal marginal profit that our broker aims for. The
parameter r ∈ (0, 1] ensures p0 is less than the competition price, provided p0
is not less than p̂cost + ε; It controls the speed by which our broker decreases
its tariff price. Given our broker’s previous tariff price p′, the new tariff price p
is computed as a weighted average of p0 and p′. The weights of p0 and p′ are
respectively (1 − MS) and MS. Thus, the new tariff price p is given by

p = (1 − MS) · p0 + MS · p′

As the market share is lower, it will be closer to p0, so the tariff price decreases
faster. In this case our broker needs to compete harder in order to get more
customers. On the other hand, if the market share is high, then it will be closer
to the current tariff price p′. In this case our broker does not decrease its tariff
price unnecessarily, because it already has a lot of customers.

7 Results of the 2014 Competition

Here we discuss our agent’s performance in the Power TAC 2014. We analyze
the wholesale market and the tariff market separately.

7.1 Wholesale Market

Here we discuss our agent’s performance in the wholesale market in the compe-
tition. In the wholesale market we expected that the wholesale unit price is the
lowest in the first auction round, and increases in consecutive auction rounds.
Figure 2 shows the average clearing price for each auction round of all games
in the competition. Indeed, we see that the average price per MWh is lower in
the first auction round (21.0 e/MWh) than in the other rounds. Furthermore,
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Fig. 3. Percentage of the demand that
brokers acquired in the first auction
round.

in the second auction round the average price per MWh is 26.8 e/MWh, which
makes it the second cheapest auction round. The hypothesis that energy gets
more expensive in consecutive auctions is not entirely correct, due to the peak
between rounds 3 and 7. However, if our broker has already acquired its demand
by then, then the remaining auction rounds are no longer relevant.

Based on our confirmed expectation that energy is the cheapest in the first
auction round, our broker attempted to acquire its demand as quick as possible.
Here, we evaluate the percentage of its demand that our broker acquired in the
first auction round, and we compare this to the other brokers. The results are
shown in Fig. 3. Our broker acquired 92% of its demand in the first auction
round, which is the highest percentage together with Maxon. Note that other
brokers do not necessarily aim to acquire their demand in the first round, but
based on the results shown here, we argue that they should.

We now compare the performances of all brokers in the wholesale market.
The goal of each broker in the wholesale market is to acquire its demand as
cheap as possible. However, each broker has a different demand, so we cannot
simply compare their wholesale costs. Instead, for each broker we computed the
mean and standard deviation over the wholesale costs divided by the purchased
quantities in the wholesale market. We only considered timeslots for a broker
for which its net quantity was positive, because we measure buying performance
rather than selling performance. The net quantity is the total quantity bought
by a broker in all auction rounds for a timeslot. Transactions for an individual
auction round can be negative, because it may be part of a broker’s buying policy
to buy more than its demand in early rounds, and sell excess energy in the later
rounds [6]. The scores of all brokers are shown in Fig. 4. On average, our broker
had the best performance of all brokers in the wholesale market.
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Agent Avg. price

cwiBroker 21.0 ± 3.0
AgentUDE 22.0 ± 2.3
CrocodileAgent 50.9 ± 7.6
Maxon 22.2 ± 2.2
Mertacor 25.4 ± 2.4
coldbroker 24.4 ± 5.8

Fig. 4. The average unit prices that
agents paid for energy in the wholesale
market and their standard deviations.
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7.2 Tariff Market

In the tariff market, the broker computes the competition price, which captures
relevant information on the competitors’ tariffs. From the competition price and
the broker’s market share, the broker computes its next tariff price. If the market
share is lower, the broker decreases its tariff price faster in order to attract more
customers. On the other hand, if the market share is higher, then it decreases
its tariff price slower in order to keep the tariff price high. Figure 5 shows the
average market share of all agents in the 6 player games. Due to our broker’s
competitive strategy, it had the highest market share (39%) in these games, only
followed by AgentUDE with a slightly lower market share (38%).

8 Conclusions

In this paper, we presented our broker, which participated in the Power TAC
competition of 2014. We described its strategies in the wholesale market and
tariff market. In the wholesale market, we showed that energy is the cheapest in
the first auction rounds of each timeslot, and gets more expensive in consecutive
rounds. We have developed an estimator of the limit price that a broker must bid
in order to acquire its demand as quick as possible for each timeslot. Our broker
performed better than any other broker in acquiring its demand in the first
auction round, and it had the lowest costs per MWh in the wholesale market. In
the tariff market, our broker had the highest market share, though this was at
the expense of a lower integral unit price. Out of six participants, our broker was
second in the final ranking. Based on this result, we conclude that our broker’s
strategies were based on correct assumptions and approaches.
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6. Liefers, B., Hoogland, J., La Poutré, H.: A successful broker agent for power tac. In:
Proceedings of the Workshop on Agent-Mediated Electronic Commerce and Trading
Agent Design and Analysis (AMEC/TADA 2014) @AAMAS 2014, pp. 1–14. Inter-
national Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS),
Paris, France (2014)

7. Somani, A., Tesfatsion, L.: An agent-based test bed study of wholesale power market
performance measures. IEEE Comput. Intell. Mag. 3(4), 56–72 (2008)

8. Urieli, D., Stone, P.: TacTex’13: a champion adaptive power trading agent. In: Pro-
ceedings of the 2014 International Conference on Autonomous Agents and Multi-
agent Systems (2014)

http://dx.doi.org/10.1007/978-3-319-13218-1_1


Now, Later, or Both: A Closed-Form Optimal
Decision for a Risk-Averse Buyer

Jasper Hoogland1(B), Mathijs de Weerdt2, and Han La Poutré1,2
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Abstract. Motivated by the energy domain, we examine a risk-averse
buyer that has to purchase a fixed quantity of a continuous good. The
buyer has two opportunities to buy: now or later. The buyer can spread
the quantity over the two timeslots in any way, as long as the total quan-
tity remains the same. The current price is known, but the future price
is not. It is well known that risk neutral buyers purchase in whichever
timeslot they expect to be the cheapest, regardless of the uncertainty of
the future price. Research suggests, however, that most people may in
fact be risk-averse. If the future price is expected to be lower than the
current price, but very uncertain, then they may prefer to purchase in
the present, or spread the quantity over both timeslots. We describe a
formal model with a uniform price distribution and a piecewise linear risk
aversion function. We provide a theorem that states the optimal behavior
as a closed-form expression, and we give a proof of this theorem.

1 Introduction

Sometimes a continuous good can be bought in two different timeslots, where
the price in one timeslot is known while the price in the other timeslot is not.
This paper analyses a buyer that must acquire a fixed quantity in this setting.

An example of such a case is the trading of electricity in a day ahead market
and a balancing market (e.g. [7]). The price in the day ahead market is more
certain than the price in the balancing market. Another example is the charging
of electric vehicles (EVs). Owners may have several options where to charge their
EV. For example, an owner may be able to charge his vehicle at home or at a
local charging station. The price at home is known to the owner, but the current
price at the charging station is not.

In these settings, the way a buyer spreads his consumption over the two
timeslots depends on his preferences. For risk-neutral buyers this problem is well
understood. They aim to minimize their expected cost, and do not care about
the risk of bad outcomes. They buy the entire quantity either in the present or
the future, depending on which timeslot they expect to be the cheapest.

However, in reality buyers are likely to care not only about expected cost
minimization, but also about reducing the risk of bad outcomes. If the expected
c© Springer International Publishing AG 2017
S. Ceppi et al. (Eds.): AMEC/TADA 2015/2016, LNBIP 271, pp. 81–95, 2017.
DOI: 10.1007/978-3-319-54229-4 6
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future price is slightly lower than the current price, but very uncertain (i.e. it
has a high standard deviation), then most buyers would still prefer to buy in
the present. Even though their expected cost is higher this way, the uncertainty
of the cost is lower. This type of behavior is called risk-aversion [1]. Unlike risk-
neutral buyers, risk-averse buyers may spread their demanded quantity over both
timeslots.

A sufficient property for risk aversion is concavity of the buyer’s utility func-
tion. In the literature there is a large variation among types of utility functions.
The choice for a specific form is often made based on mathematical convenience,
rather than empirical evidence. In this paper we examine the case of a risk-averse
buyer who has to buy a fixed quantity of a continuous good in two timeslots.
To our knowledge no closed-form solution to this problem has been given for
any concave utility function until now. We derive a closed-form solution for a
two-segment piecewise linear utility function. We show that if the current price
is slightly higher than the expected future price, then a risk-averse buyer may
spread his consumption over both timeslots. This gives insight into risk averse
buying with two timeslots. Moreover, our solution may open further research and
development in finding closed-form solutions for other classes of this problem.

The remainder of this paper is as follows. In the next section we discuss
previous work related to this topic. We then analyze the problem and give a
formal problem description. Furthermore, we state a theorem that expresses
the solution to this problem, and we provide a proof of this theorem. Also, we
describe how the two-segment piecewise linear utility function can be extended
to a multi-segment piecewise linear utility function. Finally, we conclude and
discuss future work.

2 Related Work

Risk aversion has been considered an important research topic since the work of
Arrow and Pratt [1]. This is supported by evidence for risk averse behavior in
humans [13]. Risk aversion has been studied in economics [9]. Risk aversion has
also been studied in the agent literature, and has been applied to task scheduling
[2], multi-unit sealed-bid auctions [15], continuous double-sided auctions [16],
and sequential auctions [14]. Liu et al. [10] provide a closed-form expression for
the optimal bidding function of a risk averse agent in a one-shot auction.

Risk-aversion can be modeled by any concave utility function. Various util-
ity functions are found in the literature, such as exponential functions [10,14],
polynomial functions [17] and piecewise linear functions. The latter have been
used in e.g. Prospect Theory [9] to model loss-aversion [3,6]. Thus, the variation
on different forms of utility functions is large, and the choice of a specific form
is often based on mathematical convenience, rather than empirical evidence.
We use two-segment piecewise linear utility functions. This gives insight into
risk averse buying with two timeslots. Moreover, our solution may open further
research towards finding closed-form solutions for other classes of this problem.

An other line of research is the risk-sensitive Markov Decision Process (MDP)
[4,8,11,12]. Most of this research, however, concerns discrete state and action
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spaces. In [5] the existence of closed-form solutions is shown for a class of risk-
averse MDPs with continuous state and action spaces. However, no closed-form
solution is provided for instances of this class.

3 Problem Description

We examine a buyer that must purchase a fixed quantity Q of a continuous
good. There are two timeslots to buy this good: in the present or in the future,
respectively at unit price p1 or p2. Buyers have to decide how to spread the total
quantity Q over the two timeslots. This decision is expressed as the quantity
Q1 ∈ [0, Q] purchased in the present. The quantity Q2 = Q−Q1 to be purchased
in the future is then simply the remaining quantity. The buyer can choose to
buy the entire quantity in the present (Q1 = Q), to buy the entire quantity in to
the future (Q1 = 0), or to spread the quantity over both timeslots (Q1 ∈ (0, Q)).

We assume the buyer does not prefer one timeslot over the other, except for
the difference in cost. Thus, the most important variable to be evaluated is the
total cost made in both timeslots. The following definition expresses the total
cost made by the buyer in terms of the decision variable Q1.

Definition 1. Let Q be the total quantity to be purchased, let p1, p2 respectively
be the prices in the present and the future, and let Q1 ∈ [0, Q] be the quantity
purchased in the present. Then, the cost function Z(Q1) is defined as

Z(Q1) = p1Q1 + p2(Q − Q1).

The cost function expresses a preference order over the set of possible decisions
[0, Q]. If the buyer knew both prices p1, p2, then according to this preference
order he would buy the entire quantity in whichever timeslot is the cheapest.

However, at the time of the decision, the buyer does not know the future
price p2. Fortunately, the buyer may have some information on what p2 may be.
To incorporate this knowledge, we model p2 as a stochastic variable, of which the
buyer knows the distribution. Due to the stochasticity of p2, the cost function
yields a probability distribution over the cost, rather than a deterministic value.
This means the optimal decision now depends on his attitude towards risk.

The most common attitude towards risk in the literature is risk neutral
behavior. Risk-neutral buyers minimize their expected total cost. They are indif-
ferent towards the variance of the cost. For the setting above, the decision of
a risk neutral buyer is trivial. He simply buys the entire quantity in whichever
timeslot has the lowest expected price. Thus, this situation is the same as the
deterministic case, except that p2 is replaced by Ep2. For risk neutral consumers,
spreading the purchase over two timeslots is never strictly better than buying
the entire quantity in the cheapest timeslot.

Though risk neutral buyers are common in the literature, there is evidence
that buyers are in fact risk averse [1,14] rather than risk neutral. Risk averse
buyers do not only prefer low costs, but they also want to reduce the risk of bad
outcomes. In case of two actions that yield equal expected costs, the buyer prefers
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the one with the least uncertain cost. Furthermore, a risk averse buyer may prefer
an action that yields a higher expected cost, if the cost is less uncertain.

Risk aversion is usually modeled as maximization of the expected utility.
The utility is a monotonic, concave transformation of the pay-off. Our problem,
though, is formulated in terms of the cost rather than pay-off. Therefore, we
would like to express risk aversion in terms of the cost. We do this by introduc-
ing the notion of disutility. The disutility is a monotonic, convex transformation
of the cost. If the cost is equal to minus the pay-off, then expected utility maxi-
mization is equivalent to expected disutility minimization.

For any decision Q1 the disutility is obtained by applying the disutility func-
tion u(Z) to the total cost Z(Q1). Risk averse behavior is then characterized as
minimization of the expected disutility E[u(Z(Q1))]. The buyer’s preference for
low costs follows from the monotonicity of the disutility function. His risk aver-
sion follows from the convexity of the disutility function. The optimal decision
will be denoted by Q∗

1 and is defined as follows.

Definition 2. The optimal consumption Q∗
1 in timeslot 1 is given by

Q∗
1 = argmin

Q1∈[0,Q]

E[u(Z(Q1))].

The minimization of expected disutility results in risk averse behavior, for
any disutility function, provided that it is monotonic and convex. The exact spec-
ification of the (dis)utility function differs per application. Common examples
are exponential utility functions [14] and the piecewise linear utility functions
[3]. The theoretical analysis in this paper is done for buyers with piecewise linear
disutility functions. These are defined as follows:

Definition 3. The piecewise linear disutility function u(Z) is defined as

u(Z) =

{
Z if Z ≤ α

α + β(Z − α) if Z ≥ α

where α > 0 and β > 1 are the parameters of the disutility function.

A possible application of a piecewise linear disutility function is to describe the
preferences of a buyer with a certain budget, who has to pay interest over the
portion of the cost that exceeds this budget. All outcomes up to threshold α
yield a disutility equal to the total cost, while all outcomes beyond α yield a
disutility higher than the cost. Hence, outcomes exceeding α are penalized more
than they would have been if the buyer were risk neutral.

In our analysis, we use a uniform distribution to model the uncertain price:

p2 ∼ U [a, b]

where 0 < a < b. The buyer knows the values of the parameters a and b, which
respectively specify the minimum and maximum values of p2.

The choices for a piecewise linear disutility function and a uniform distrib-
ution for the uncertain price are sufficient to show how risk aversion influences
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the decision of a buyer under uncertainty, and how an optimal decision can
be derived. In the next section we derive expressions for E[u(Z(Q1))] and Q∗

1.
Furthermore, for both expressions we give formal proofs.

4 The Solution

In this section we give a closed-form expression for the optimal action Q∗
1. We

show that if the current price p1 is lower than the expected future price Ep2, then
the optimal action is to buy the entire load immediately at price p1. Furthermore,
if p1 is sufficiently higher than Ep2, then the optimal action is to delay the
purchase of the entire load. If p1 is only slightly higher than Ep2, though, then the
optimal action may be to spread the quantity over both timeslots. A necessary
condition for spreading to be optimal is that delaying the purchase leads to
uncertainty on whether the total cost Z(Q1) will be less or greater than the
risk aversion threshold α. In this section we give an exact specification on when
the buyer will purchase right away, delay, or spread the quantity over the two
timeslots. In case of spreading, we specify exactly how much will be purchased
immediately (and thus how much will be delayed).

For this purpose we first derive an expression for the expected disutility
E[u(Z(Q1))]. The form of the disutility u(Z(Q1)) depends on whether the total
cost Z(Q1) is less then risk aversion threshold α (by Definitions 1 and 3). The
expected disutility E[u(Z(Q1))] consequently has three different forms or seg-
ments, corresponding to the probability of Z(Q1) ≤ α being one, zero, or other-
wise. We refer to them as segment I, II, and III respectively.

For actions Q1 in segment I or II (i.e. Pp2(Z(Q1) ≤ α) is zero or one), the
expected disutility is linear with respect to Q1. For actions Q1 in segment III
(i.e. Pp2(Z(Q1) ≤ α) is neither zero nor one), though, the expected disutility is
non-linear. This segment of the expected disutility function may or may not have
a local minimum. If a local minimum exists, then it also minimizes E[u(Z(Q1))]
for any Q1 ∈ [0, Q], because E[u(Z(Q1))] is continuous and differentiable (as we
show later) and the other segments are linear. If a local minimum does not exist,
then E[u(Z(Q1))] is minimized by one of the extreme values: Q1 = 0 or Q1 = Q.
Examples of the expected disutility are shown in Fig. 1.

The theorem below that states an expression for the expected disutility for all
cases Pp2(Z(Q1) ≤ α) = 1, Pp2(Z(Q1) ≤ α) = 0 and Pp2(Z(Q1) ≤ α) ∈ (0, Q).
First we define the risk aversion threshold price π(Q1), which expresses the future
price p2 for which the costs Z(Q1) are lower than threshold α for some Q1 < Q:

Z(Q1) ≤ α ⇐⇒ p2 ≤ π(Q1).

If the entire quantity is purchased in the present (Q1 = Q), then the risk aversion
threshold is not defined, because in that case the cost does not depend on the
future price p2.

Definition 4. For Q1 ∈ [0, Q), the risk aversion threshold price π(Q1) is

π(Q1) =
α − p1Q1

Q − Q1
.
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Fig. 1. Expected disutility with α = 15, β = 4, p2 ∼ U [1.0, 2.0], Q = 10 for low,
medium, and high current prices p1 = 1.5, 1.6, 1.7.

The following theorem specifies the expected disutility.

Theorem 1. Let Q1 ∈ [0, Q] be an arbitrary action. Pp2(Z(Q1) ≤ α) = 1 if and
only if

p1Q1 + b(Q − Q1) ≤ α. (1)

We call this segment I, and in this case the expected disutility has the form

E[u(Z(Q1))] = p1Q1 +
a + b

2
(Q − Q1). (2)

Furthermore, Pp2(Z(Q1) ≤ α) = 0 if and only if

p1Q1 + a(Q − Q1) ≥ α. (3)

We call this segment II, and in this case the expected disutility has the form

E[u(Z(Q1))] = α + β(p1Q1 +
a + b

2
(Q − Q1) − α). (4)

Finally, Pp2(Z(Q1) ≤ α) ∈ (0, 1) if and only if

p1Q1 + a(Q − Q1) < α < p1Q1 + b(Q − Q1). (5)

We call this segment III, and in this case the expected disutility has the form

E[u(Z(Q1))]

=α +
(Q − Q1)
2(b − a)

[

β(b − π(Q1))2 − (π(Q1) − a)2
]

.
(6)

Later in this paper we give a proof of this theorem. First we provide a the-
orem that gives a closed-form expression for Q∗

1, which minimizes the expected
disutility E[u(Z(Q1))] for Q1. If the current price p1 is lower than the expected
future price Ep2, then buying the entire quantity Q in the present minimizes
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the expected cost. Moreover, since p1 is known while p2 is uncertain, this also
minimizes the expected disutility. Thus, if p1 < Ep2, then a risk-averse buyer
buys Q in the present, as there are no advantages to delaying.

If the current price p1 is higher than the expected future price Ep2, then
buying the entire quantity Q in the future minimizes the expected cost. However,
since p1 is known while p2 is uncertain, this also yields a higher uncertainty than
buying in the present. If p1 is sufficiently high, though, then the benefit of a lower
expected cost outweighs the drawback of a higher uncertainty. We show that for
all current prices p1 ≥ σ this is the case, where σ is defined as follows (Fig. 2):

Definition 5. The delay threshold price, denoted σ, is defined as

σ =
a +

√
βb

1 +
√

β
.

Thus, if p1 > σ, then a risk-averse buyer delays the purchase of the entire
quantity Q. Note that if β approaches 1, then σ approaches Ep2. Furthermore,
if β approaches ∞, then σ approaches b.

The most interesting case arises if Ep2 < p1 < σ. In this case, a risk averse
buyer may spread the purchase over both timeslots. This is a trade-off between
expected cost reduction and uncertainty reduction. We give an exact specifica-
tion on how the purchase is spread.

The following theorem states the optimal action of a risk-averse buyer in all
situations described above.

Theorem 2. The optimal quantity to buy in the present (denoted Q∗
1) is

Q∗
1 =

⎧
⎪⎨

⎪⎩

Q p1 < a+b
2

0 p1 > σ

max(0, Q − |α−p1Q|√
ρ ) a+b

2 < p1 < σ

.

5
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25
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Q∗
1 = Q

Q∗
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Q∗
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α
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Fig. 2. Optimal quantity to buy in the first timeslot. The dotted line shows α = p1Q.
For points on this line within interval p1 ∈ [a+b

2
, σ), it holds that Q∗

1 = Q. For α = p1Q
and p1 = σ all Q1 are optimal.
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The variable ρ depends on the current price p1 and the distribution over the
future price U [a, b] and is defined below. Some special cases are excluded in this
equation. If p1 = a+b

2 , then all any Q1 in segment I or II is optimal. If p1 = σ
and p1Q 
= α, then Q∗

1 = 0. If p1 = σ and p1Q = α, then any Q1 ∈ [0, Q] is
optimal.

Definition 6.

ρ =
β(b − p1)2 − (p1 − a)2

β − 1
.

In the following subsections we prove Theorems 1 and 2.

4.1 Expected Disutility

Here we prove Theorem 1, which expresses the expected disutility in terms of
the quantity Q1 purchased in the present.

Proof. By Definitions 1 and 3, Eqs. (2) and (4) for segments I and II are obtained
by computing E[u(Z(Q1))] = E[Z(Q1)] and E[u(Z(Q1))] = α + β(E[Z(Q1)] −
α) respectively. By Definition 3, the expression for segment III is obtained by
splitting E[u(Z(Q1))] into the following terms:

E[u(Z(Q1))]
=E[u(Z(Q1))|Z(Q1) ≤ α] · P(Z(Q1) ≤ α)

+ E[u(Z(Q1))|Z(Q1) > α] · P(Z(Q1) > α)
=E[Z(Q1)|Z(Q1) ≤ α] · P(Z(Q1) ≤ α)

+ (α + β(E[Z(Q1)|Z(Q1) > α] − α)) · P(Z(Q1) > α)

.

By Definitions 1 and 4, Eq. (6) for segment III is obtained by computing the
probabilities and conditional expectations and by rewriting the expression using
calculus.

4.2 Optimal Risk-Averse Consumption

Here we prove Theorem 2. First we state a number of useful properties.

Property 1. Q1 ∈ [0, Q) is in segment III (i.e. Eq. (5) is true) if and only if

a < π(Q1) < b. (7)

Proof. This follows from Definition 4.

Property 2. The derivative of π(Q1) can be expressed in two ways:

∂π

∂Q1
=

π(Q1) − p1
Q − Q1

=
α − p1Q

(Q − Q1)2
.

Proof. Both expressions follow from Definition 4.
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Property 3. The function π(Q1) is monotonic for Q1 ∈ [0, Q).

Proof. This follows from the second expression for the derivative of π(Q1) in
Property 2. The denominator of this fraction is larger than zero for all Q1 ∈
[0, Q). The numerator does not depend on Q1 and is therefore either positive or
negative for all Q1. Thus, π(Q1) is monotonic.

Property 4. If Q1 is in segment III, then the derivative of E[u(Z(Q1))] is

∂E[u(Z(Q1))]
∂Q1

=
1
2

β − 1
b − a

[

(π(Q1) − p1)2 − ρ

]

. (8)

Proof. Assume Q1 is in segment III. The derivative of E[u(Z(Q1))] follows from
Theorem 1, Definition 6, and the derivative of π(Q1) (Property 2).

Property 5. The expected disutility E[u(Z(Q1))] is continuous and differentiable
within its domain [0, Q].

Proof. By Eqs. (2), (4), and (6) in Theorem 1 the function E[u(Z(Q1))] is con-
tinuous and differentiable within each segment I, II, and III. The segments I and
III touch at

p1Q1 + b(Q − Q1) = α

and the segments II and III touch at

p1Q1 + a(Q − Q1) = α.

E[u(Z(Q1))] is continuous at the boundaries of the segments, because the expres-
sions of E[u(Z(Q1))] for different segments yield the same values in these points.
Similarly, E[u(Z(Q1))] is differentiable at the boundaries, because the derivatives
of E[u(Z(Q1))] for different segments yield the same values in these points. For
segments I and II, the derivatives of E[u(Z(Q1))] can be easily obtained from
Theorem 1. For segment III it is given by Property 4.

We use these properties to prove Theorem 2. We distinguish between a low, high,
and medium current price: p1 ≤ Ep2, p1 ≥ σ, p1 ∈ [Ep2, σ] respectively. We also
briefly discuss the special cases p1 = a+b

2 and p1 = σ.

4.3 Low Current Price

Here we prove that, if the current price p1 is lower than the expected future
price, then risk-averse buyers (just like risk-neutral buyers) purchase the entire
quantity Q in the present, at price p1. This is formalized in the following lemma.

Lemma 1. If p1 < a+b
2 , then Q∗

1 = Q.
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Proof. Assume p1 < a+b
2 . We will prove that E[u(Z(Q1))] decreases monotoni-

cally with respect to Q1, from which it follows that Q∗
1 = Q. If Q1 is in segment

I or II, then E[u(Z(Q1))] is given by Eqs. (2) and (4) respectively. Since p1 < a+b
2 ,

E[u(Z(Q1))] decreases monotonically within these segments. We also show that
E[u(Z(Q1))] decreases monotonically within the segment for which Eq. (5) holds.
First note that

(b − p1)2 > (p1 − a)2 (9)

holds by rewriting assumption p1 < a+b
2 . By this Equation and by Property 1,

it holds that
(b − p1)2 > (π(Q1) − p1)2. (10)

Furthermore, by Definition 6 and Eq (9) it holds that ρ > (b−p1)2, and therefore

ρ > (π(Q1) − p1)2.

By this equation and by Property 4, the expected disutility E[u(Z(Q1))] has
a negative derivative, and therefore decreases monotonically within segment
III. Thus, within each segment, E[u(Z(Q1))] decreases monotonically. Since
E[u(Z(Q1))] is continuous (by Property 5), E[u(Z(Q1))] also decreases monoton-
ically within its entire domain Q1 ∈ [0, Q]. Therefore, the highest value in this
domain minimizes the expected disutility: Q∗

1 = Q.

4.4 High Current Price

Here we prove that, if the current price p1 is higher than σ, then risk-averse
consumers delay the purchase of the entire quantity Q. This is formalized in the
following lemma.

Lemma 2. If p1 > σ, then Q∗
1 = 0.

Proof. Assume p1 > σ. We will prove that E[u(Z(Q1))] increases monotonically,
from which it follows that Q∗

1 = 0. If Q1 is in segment I or II, then E[u(Z(Q1))]
is given by Eqs. (2) and (4) respectively (segments I and II). Since p1 > σ > a+b

2 ,
E[u(Z(Q1))] increases monotonically with respect to Q1 within these segments.
We also show that E[u(Z(Q1))] increases monotonically within the segment III.
First note that

β(b − p1)2 < (p1 − a)2

holds by rewriting assumption p1 > σ. This and Definition 6 imply that ρ < 0.
Therefore, by Property 4, the expected disutility E[u(Z(Q1))] has a positive
derivative, and therefore increases monotonically within segment III. Thus,
within each segment, E[u(Z(Q1))] increases monotonically. Since E[u(Z(Q1))]
is continuous (by Property 5), it also increases monotonically within its entire
domain Q1[0, Q]. Therefore, the lowest value in this domain minimizes the
expected disutility: Q∗

1 = 0.
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4.5 Medium Current Price

We now show the optimal behavior if the current price is between a+b
2 and σ.

First, we consider the case in which there is a high certainty on Z(Q1) ≤ α.

Lemma 3. If a+b
2 < p1 < σ and |α − p1Q| ≥ √

ρQ, then Q∗
1 = 0.

Proof. Assume a+b
2 < p1 < σ and |α − p1Q| ≥ √

ρQ. We will prove that
E[u(Z(Q1))] increases monotonically, from which it follows that Q∗

1 = 0.
If Q1 is in segment I or II, then E[u(Z(Q1))] is given by Eqs. (2) and (4)

respectively. Since p1 > a+b
2 , E[u(Z(Q1))] increases monotonically within these

segments. We also show that E[u(Z(Q1))] increases monotonically within the
segment III. Note that by Definition 4 it holds that

(π(Q1) − p1)2 =
(p1Q − α)2

(Q − Q1)2
. (11)

Furthermore, by assumption |α − p1Q| ≥ √
ρQ it holds that

(p1Q − α)2

(Q − Q1)2
≥ ρQ2

(Q − Q1)2
. (12)

By Eqs. (11) and (12) it holds that

(π(Q1) − p1)2 ≥ ρQ2

(Q − Q1)2
.

Since Q2

(Q−Q1)2
> 1 it also holds that (π(Q1) − p1)2 > ρ. Hence, by Prop-

erty 4 the expected disutility E[u(Z(Q1))] has a positive derivative and there-
fore increases monotonically within segment III. Thus, within each segment,
E[u(Z(Q1))] increases monotonically. Since E[u(Z(Q1))] is continuous (by Prop-
erty 5), it also increases monotonically within its entire domain Q1 ∈ [0, Q].
Therefore, the lowest value in this domain minimizes the expected disutility:
Q∗

1 = 0.

So far the optimal behavior was to buy the entire load either in the present
or in the future. We now prove the optimal behavior for a+b

2 < p1 < σ and
|α−p1Q| ≤ √

ρQ, for which the optimal behavior may be to spread the purchase
over the present and the future.

Lemma 4. If a+b
2 < p1 < σ and |α − p1Q| <

√
ρQ, then

Q∗
1 = Q − |α − p1Q|√

ρ
.

Proof. Assume a+b
2 < p1 < σ and |α−p1Q| <

√
ρQ. Note that the first assump-

tion implies ρ > 0, so
√

ρ and therefore the second assumption are well-defined.
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We first show the unique solution of ∂E[u(Z(Q1))]
∂Q1

= 0 for Q1 ∈ [0, Q) in
segment III. By Property 4 a necessary condition for such a solution is

(π(Q1) − p1)2 = ρ. (13)

Moreover, this condition is sufficient if we also show that Q1 is in domain [0, Q]
and in segment III. From assumption a+b

2 < p1 < σ it follows that Eq. (13)
implies a < π(Q1) < b, so by Property 1 any Q1 that satisfies this equation lies in
segment III. Furthermore, Eq. (13) has to be satisfied by either π(Q1) = p1 −√

ρ
or π(Q1) = p1 +

√
ρ. Since π(Q1) is monotonic (Property 3) this means there

are at most two solutions of ∂E[u(Z(Q1))]
∂Q1

= 0 for Q1. In fact, by Definition 4 and

assumption |α − p1Q| <
√

ρQ it holds that the only solution of ∂E[u(Z(Q1))]
∂Q1

= 0
in domain [0, Q) in segment III is

Q1 = Q − |α − p1Q|√
ρ

which consequently is also the only extremum of E[u(Z(Q1))] in segment III.
Moreover, since the second derivative of E[u(Z(Q1))] with respect to Q1,

∂2
E[u(Z(Q1))]

∂Q2
1

=
β − 1
b − a

(π(Q1) − p1)2

Q − Q1
,

is greater than 0, this extremum is the unique minimum within segment III. By the
monotonicity of the other segments I and II and since E[u(Z(Q1))] is continuous
and differentiable for all Q1 ∈ [0, Q) (by Property 5), the minimum ofE[u(Z(Q1))]
in segment III is also the unique minimum of E[u(Z(Q1))] for Q1 ∈ [0, Q].

4.6 Special Cases

We now give a proof for the special cases p1 = a+b
2 , p1 = σ.

Lemma 5. If p1 = a+b
2 , then all any Q1 in segment I or II is optimal. If p1 = σ

and p1Q 
= α, then Q∗
1 = 0. If p1 = σ and p1Q = α, then any Q1 ∈ [0, Q] is

optimal.

Proof. If p1 = a+b
2 , then by Theorem1 the expected disutility E[u(Z(Qq))] for

segments I and II is constant. The expected disutility for segment III is higher,
because there is uncertainty regarding Z(Q1) ≤ α. Therefore, any Q1 in segment
I or II minimizes the expected disutility. If p1 = σ, then the same reasoning as
in Lemma 2 can be applied, provided that p1Q 
= α. The only difference is
that ρ = 0 and the expected disutility has a stationary point for Q1 such that
π(Q1) = p1, but this has no impact on the minimum value, since the expected
disutility increases monotonically before and after this point. Thus, Q∗

1 = 0.
However, if p1Q 
= α, then for all Q1 ∈ [0, Q] it holds that π(Q1) = p1, and by
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Property 1 it holds that all Q1 are in segment III. By Theorem 1 it now holds
that for all Q1 the expected disutility equals α.

5 Multiple Segments Piecewise Linear Disutility

So far we have assumed that the piecewise linear disutility function has two
segments, separated by a single risk aversion threshold α. One can also consider
piecewise linear disutility functions with an arbitrary number of segments. These
functions have the useful property that they can be used as approximations
of any arbitrary function. Here, we give an expression for the expected multi-
segment piecewise linear disutility function, and show it has a form that is very
similar to the two-segment piecewise linear disutility function. This may open
further research towards a closed-form solution to this optimization problem.

Definition 7. Let n be the number of segments. Let β1, . . . , βn−1 be the parame-
ters that specify the slope of the segments separated by parameters α1, . . . , αn−1.
Convexity is enforced by satisfying 1 < β1 < · · · < βn−1. Furthermore, let
α0 = 0, αn = ∞, and β0 = 1. For any i ∈ {0, . . . , n−1}, if αi ≤ Z ≤ αi+1, then
the multi-segment piecewise linear disutility function is given by

u(Z) = γi + βi(Z − αi)

where

γi =
i∑

j=1

βj(αi − αi−1).

The risk-neutral utility function (n = 1) and the two-segment piecewise linear
disutility function (n = 2), which is used elsewhere in this paper (Definition 3),
are special cases of the multi-segment piecewise linear disutility function.

The expected disutility for stochastic cost Z has different cases, depending on
the probability distribution over the segment αi ≤ Z ≤ αi+1 in which Z may be.
If n = 1, then there is only one case, so the expected disutility also has one case:
E[u(Z)] = E[Z]. If n = 2, then the expected disutility is given by Theorem1.
This function has three cases: P(Z ≤ α) = 0,P(Z ≤ α) = 1,P(Z ≤ α) ∈ (0, 1).

For n > 2 this can be generalized. Let k be the lowest integer such that
P(Z ≤ αk) > 0 and let m be the highest integer such that P(Z ≥ αm−1) > 0.
Since 1 ≤ k ≤ m ≤ n, there are N = n(n+1)

2 different combinations of 〈k,m〉,
and therefore N different cases of the expected disutility. For arbitrary k,m the
corresponding form is given by

E[u(Z)] =
m∑

i=k

E[u(Z)|αi−1 ≤ Z ≤ αi]P(αi−1 ≤ Z ≤ αi). (14)

In the worst case k and m can be far apart, and moreover, as said, the number
of such cases is quadratic. On the one hand, these are all efficiently computable,
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but for future work we suggest an automatic procedure to construct the cases
automatically, based on the analysis in this paper.

6 Conclusion

We have given a closed-form expression for the optimal behavior of a risk-averse
buyer with a piecewise linear utility function and a uniformly distributed future
price distribution (Theorem2). If the current price p1 is lower than the expected
future price a+b

2 , then the optimal behavior is to purchase the entire quantity
in the present (Lemma 1). Furthermore, if p1 is higher than σ, then the optimal
behavior is to purchase the entire quantity in the future (Lemma2). If p1 ∈
[a+b

2 , σ], then the optimal behavior depends on the condition |α−p1Q| ≥ √
ρQ. If

this condition holds, then there is sufficient certainty on whether the cost exceed
risk aversion threshold α. The buyer is either certain enough that the cost will
be lower than α or the buyer thinks the costs will exceed α anyway. Either way,
the optimal behavior is to delay the entire purchase, because the expected future
price is lower than the current price (Lemma 3). If |α − p1Q| <

√
ρQ, however,

there is high uncertainty on whether or not the cost will exceed the risk aversion
threshold α. In this case the optimal behavior is to spread the purchase over both
timeslots (Lemma 4). Thus, we have derived the first closed-form solution for a
two-segment piecewise linear utility function. This gives insight into risk averse
buying with two timeslots. Moreover, our solution may open further research and
development in finding closed-form solutions for other classes of this problem.

7 Future Work

An interesting line of research is to derive a closed-form solution to the opti-
mization of the expected multi-segment piecewise linear utility function, which
we have defined in Sect. 5. Multi-segment (n > 2) piecewise linear utility func-
tions are particularly useful, because they can be used as an approximation of
any utility function. For such functions, closed-form expressions could be found
using approaches very similar to the ones presented in the current work, where
closeness of segment borders may obfuscate the results. Similarly, the results can
be extended to other price distributions by modeling and approximating those
by piece-wise uniform distributions and following the same line of reasoning.

Another interesting case is the situation when more details are known about
the future. Instead of one timeslot with an unknown price, there could be an
arbitrary number of timeslots, each with their own price distribution. Since a
decision must be made in each timeslot, this problem can be modeled as a
Markov Decision Process. Our analysis provides an important first step towards
a closed-form analytical solution to this problem.
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Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012. LNCS (LNAI), vol. 7629,
pp. 371–382. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37807-2 32

13. Rabin, M., Thaler, R.H.: Anomalies: risk aversion. J. Econ. Perspect. 15(1), 219–
232 (2001)

14. Robu, V., La Poutré, H.: Designing bidding strategies in sequential auctions for
risk averse agents. Multiagent Grid Syst. 6(5), 437–457 (2010)

15. Vetsikas, I.A., Jennings, N.R.: Bidding strategies for realistic multi-unit sealed-bid
auctions. Auton. Agents Multi Agent Syst. 21(2), 265–291 (2010)

16. Vytelingum, P., Dash, R.K., David, E., Jennings, N.R.: A risk-based bidding strat-
egy for continuous double auctions. In: ECAI, vol. 16, p. 79 (2004)

17. Wakker, P.P.: Explaining the characteristics of the power (CRRA) utility family.
Health Econ. 17(12), 1329–1344 (2008)

http://dx.doi.org/10.1007/978-3-642-37807-2_32


Investigation of Learning Strategies
for the SPOT Broker in Power TAC

Moinul Morshed Porag Chowdhury1(B), Russell Y. Folk2,
Ferdinando Fioretto3, Christopher Kiekintveld1, and William Yeoh2

1 Department of Computer Science,
The University of Texas at El Paso, El Paso, USA

mchowdhury4@miners.utep.edu, cdkiekintveld@utep.edu
2 Department of Computer Science, New Mexico State University, Las Cruces, USA

{rfolk,wyeoh}@cs.nmsu.edu
3 Department of Industrial and Operations Engineering,

University of Michigan, Ann Arbor, USA
fioretto@umich.edu

Abstract. The Power TAC simulation emphasizes the strategic prob-
lems that broker agents face in managing the economics of a smart grid.
The brokers must make trades in multiple markets and, to be successful,
brokers must make many good predictions about future supply, demand,
and prices in the wholesale and tariff markets. In this paper, we inves-
tigate the feasibility of using learning strategies to improve the per-
formance of our broker, SPOT. Specifically, we investigate the use of
decision trees and neural networks to predict the clearing price in the
wholesale market and the use of reinforcement learning to learn good
strategies for pricing our tariffs in the tariff market. Our preliminary
results show that our learning strategies are promising ways to improve
the performance of the agent for future competitions.

Keywords: Smart grid · Artificial Intelligence · Game theory · Multi
agent system · Machine learning

1 Introduction

The traditional energy grid lacks several important features such as effective use
of pricing and demand response of energy, customer participation, and proper
distribution management for variable-output renewable energy sources [1]. The
smart grid has the potential to address many of these issues by providing a more
intelligent energy infrastructure [2]. Researchers rely on rich simulations such as
the Power Trading Agent Competition (Power TAC) [1] to explore the charac-
teristics of future smart grids. In the Power TAC smart grid simulation, brokers
participate in several markets including the wholesale market, the tariff market,
and the load balancing market to purchase energy and sell it to customers. This
game was designed as a scenario for the annual Trading Agent Competition, a
research competition with over a decade of history [3].
c© Springer International Publishing AG 2017
S. Ceppi et al. (Eds.): AMEC/TADA 2015/2016, LNBIP 271, pp. 96–111, 2017.
DOI: 10.1007/978-3-319-54229-4 7
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The wholesale and tariff markets attempt to simulate existing energy markets
such as the European or North American wholesale energy markets. The whole-
sale market is a “day ahead market,” where the energy is a perishable good and
it allows brokers to buy and sell quantities of energy for future delivery. Market
structures like this exist across many different types of perishable goods. So,
finding effective, robust, automated bidding strategies for these markets is an
important research challenge.

The tariff market is where the major portion of energy purchased from the
wholesale market is sold to consumers (e.g., households, offices, etc.). Energy is
sold through tariffs offered by the brokers and a goal for the broker is to offer
competitive tariffs that attract a large pool of consumers. The overall goal of
each broker is to maximize its profit (e.g., by selling energy in the tariff market
at a higher price than the purchase price of the energy in the wholesale market).

In this paper, we investigate the feasibility of using learning strategies to
improve the performance of our broker, called Southwest Portfolio Optimizing
Trader (SPOT), in Power TAC. We present our initial work on using decision
trees to predict the clearing prices in the wholesale market and the use of an
unsupervised reinforcement learning algorithm to learn good strategies for pric-
ing our tariffs in the tariff market. Preliminary results show that these learning
strategies hold promise, though we plan to investigate additional improvements
to increase the competitiveness of the agent further.

2 Background: Power TAC

Power TAC models a competitive retail power market where the simulation
runs for approximately 60 simulated days, and takes about two hours. Broker
agents compete with each other by acting in three markets: wholesale market,
tariff market and balancing market. It also includes a regulated distribution util-
ity and a real location based population of energy customers during a specific
period. Customer models include several entities such as households, electric
vehicles, and various commercial and industrial models. Brokers participating in
the simulation try to make profit by balancing the energy supply and demand
as accurately as possible. By efficiently managing stochastic customer behav-
iors, weather-dependent renewable energy sources, the broker with highest bank
balance wins the competition [4]. SPOT participated in the 2015 Power TAC
competition. The Table 1 shows results of the 11 participating agents in 2015
across games with varying numbers of competing brokers.

We only had a couple of months of development before the 2015 tournament,
so the main goal was to participate competently without major errors. Overall,
our agent achieved this objective, but was not yet competitive with the top agents
in the competition. The 2015 agent had preliminary implementation of some of
the ideas we describe here, but we have since worked to improve the performance
of the agent by updating the learning strategies and decision-making components
of the agent.
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Table 1. Power TAC 2015 final round results

Name 3 brokers 9 brokers 11 brokers Total Total (normalized)

Maxon15 (1st) 186159 3667524 80687243 84540925 3.402

TacTex15 (2nd) 488341 5196258 38755591 44440191 2.221

CUHKTac (3rd) 556792 4000749 35070699 39628240 1.927

AgentUDE –14748 1162481 52098550 53246283 1.597

Sharpy –6459 2586534 45130820 47710895 1.564

COLDPower 307197 1334765 14309076 15951038 0.371

cwiBroker –461511 –1650580 41663592 41663592 0.343

Mertacor –23099 –139344 32199 –130244 –0.786

NTUTacAgent –1533793 –10416019 43469971 31520159 –2.202

SPOT –1570860 –2361785 7521196 3588551 –2.327

CrocodileAgent –2981460 –13915197 –3318695 –20215352 –6.111

2.1 Wholesale Market

The wholesale market functions as a short-term spot market for buying and
selling energy commitments in specific timeslots, where each timeslot represents
a simulated hour. At any point in the simulation, agents can participate in
auctions to trade energy for the next 24 h, so there are always 24 active auctions.
These auctions are periodic double auctions, similar to those used in European
or North American wholesale energy markets [5]. Each simulation begins with
14 days pregame data (bootstrap data), which includes data on customers, the
wholesale market, and weather data based on the default broker. Brokers can
submit bids (orders to buy energy) and asks (orders to sell energy), represented
by a quantity and an optional limit price. In addition to the bids of the brokers,
several large gencos also sell energy on the wholesale market. The simulation
clears the bids by matching buy and sell orders, and determines the clearing
price for each auction every day. If the minimum ask price has a higher value
than the maximum bid price, then the market does not clear.

The main problem we consider here is learning to predict the clearing prices
of these auctions, which can be used by the agent to implement an effective
bidding strategy. Previous agents in both Power TAC and earlier TAC compe-
titions have considered similar price prediction problems. AstonTAC is a Power
TAC agent that uses a Non-Homogeneous Hidden Markov Model (NHHMM) to
forecast energy demand and price [6]. This was the only agent in that compe-
tition that was able to buy energy at a low price in the wholesale market and
keep energy imbalance low. TacTex13, winner of 2013 Power TAC competition,
uses a modified version of Tesauro’s bidding algorithm, where they modeled the
sequential bidding process as a Markov Decision Process (MDP) for the whole-
sale market [7]. In the TAC/SCM game, Deep Maize used a Bayesian model of
the stochastic demand process to estimate the underlying demand and trend.
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It employs a k-Nearest-Neighbors technique to predict the effective demand
curves from historical data, self-play games data, and the current game data [8].

2.2 Tariff Market

The Power TAC environment offers the ability for brokers to issue several differ-
ent types of tariffs three times per simulation day. Each tariff may be as complex
or simple as the broker desires though each tariff can only target a single power
type such as consumption or production. The most simple type of tariff one
may issue is a flat rate tariff that offers a single price per kWh to subscribers.
From there, the tariff may be augmented with signup bonuses, or a minimum
subscription duration and early termination fee. Tariffs may also be customized
to offer tiered usage pricing, time of use pricing, or a daily fee in addition to
usage pricing. Tariffs may be issued, revoked, or modified at any time, though
the new tariffs will only become available for subscription at the designated 6 h
intervals. A tariff is modified by publishing a new tariff with the superseding
flag set to the old tariff and then revoking the old tariff. For the purpose of the
experiments outlined in this paper, our broker issued a single, simplified flat rate
tariff at the beginning of the game and modified it throughout the simulation
by superseding the past tariff and revoking the past tariff.

In order to publish the optimal tariff so that we gain both the most sub-
scribers, henceforth referred to as market-share, and the greatest net balance, we
utilized an unsupervised reinforced learning technique. This technique is chosen
because we want the agent to be able to learn to react in such a way that gains
the best possible reward with little interaction from the researchers. To achieve
this goal we modeled this problem as a Markov Decision Process (MDP) [9] and
utilize the Q-Learning algorithm [10] to discover the optimal policy. Q-Learning
involves an iterative process whereby the SPOT agent plays many simulations
constantly updating the Q-Value for a given state, action pair. Q-Learning will
continue to improve the Q-Values until a convergence is obtained where the
Q-Values for each state, action pair change very little per iteration. In order
to expedite the convergence of the Q-Learning algorithm, we implemented a
distributed system that allowed many simulations to be run simultaneously.

3 Learning in the Wholesale Market

Our baseline broker used a moving average price prediction based on the price
history of the agent. To predict a new price for a week ahead specific hour price,
the baseline agent uses a weighted sum of the current hour’s clearing price, yes-
terday’s predicted clearing price for that specific hour and 6 day ahead same
hour predicted price. We have experimented with three different machine learn-
ing methods to predict clearing prices in the wholesale market: (i) REPTree
(a type of decision tree) [11], (ii) Linear Regression, and (iii) Multilayer Percep-
tron (a type of neural network). We have also investigated a variety of different
features for training the predictors. These include 8 price features that capture
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information about the recent trading history, such as the clearing price for the
previous hour and the prices for the equivalent time slot in the previous day
and week. We also include the weather forecast and time of day because the
energy production of renewable energy producers (e.g., solar) depends on these
factors. The number of participants in the game is included because the amount
of competition affects the market clearing price. Finally, we include a moving
average of the prices as a convenient way to capture an aggregate price history.

To generate training data, we use simulations with a variety of agent binaries
from previous tournaments, as well as a variety of different bootstrap initializa-
tion files. We train our models using Weka [12], and evaluate their ability to
predict market clearing prices based on the mean absolute prediction error only
for auctions that clear (we do not include auctions that do not clear in the error
calculations). In the following experiments, we investigate the performance of
the models in several areas, including how well they generalize to new agents,
different numbers of agents, and how important the different features are to the
performance of the predictors.

3.1 Prediction Accuracy Comparisons

We begin with a basic evaluation of the prediction accuracy of the learned mod-
els. One of the most significant factors we discovered that influences the accuracy
of the models is how we handle auctions that do not clear. In many cases, an
auction will have no clearing price due to a spread between the bid and ask
prices, which results in the simulation returning null values for these prices.
This causes significant problems with the price features we use, as well as the
final error calculations. To improve this, we calculate an estimated clearing price
for auctions that do not clear by taking the average of lowest ask price and the
highest bid price. Figure 1 shows the prediction errors during the course of a sin-
gle simulation for two different REPTree models trained on 20 games, one with
estimated clearing prices and the other without. We also include the errors for a
simple moving average price predictor as a baseline for comparison. Each data
point shows the average error for all auctions in a window of five timeslots. The
data show that both REPTree models outperform the moving average predictor,
but the version with estimated clearing prices is dramatically better, and pro-
duces much more consistent predictions throughout the entire game. Next, we
compare the performance of the three different learning methods with different
amounts of training data ranging from 5 to 20 games. We evaluated a variety
of different configurations of hidden layers for the Multilayer Perceptron model;
only the best one is shown here (MP-20-20, i.e., 2 layer neural network with 20
nodes in each layer). Figure 2 shows the average mean absolute error for the dif-
ferent models based on 5 games of test data. The results show that the decision
tree model makes good predictions compared to other models. The decision tree
model slowly improves according to the number of games while other models do
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Fig. 1. Effect of clearing price estimation

Fig. 2. Comparison of several prediction models by number of games

not show this trend. The default Multilayer Perceptron (1 layer with 18 nodes)
with estimated prices shows some improvement in the initial number of games
than REPTree but finally looses to REPTree in the 20 game model. In all cases,
the models with estimated clearing prices are much better than models without
estimated prices.
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Fig. 3. Comparison of several prediction models

3.2 Evaluation with Different Agents

In the Power TAC competition, broker agents play many games against differ-
ent opponents with varying strategies. Here, we test how well our predictors
generalize to playing new agents that are not in the training data. We test our
models on games of the same size, but varying one of the agents in the game
between AgentUDE15, cwiBroker15 and TacTex14. All the predictor model are
generated from the training dataset where AgentUDE is used. Figure 3 shows the
average results for each of the learning methods in the three different agent envi-
ronments. The REPTree predictor consistently does better than others, though
there are differences depending on the pool of opponents. We can also see that
the models do best against AgentUDE (which was in the training set), and there
is a significant decrease in accuracy when playing either cwiBroker or TacTex.
Further work is needed to help the models generalize better to new opponents.

3.3 Evaluation with Different Numbers of Agents

In the competition, broker agents must play in games with varying numbers
of opponents. We experiment with different number of brokers in the games,
ranging from 3 to 7 brokers. We focus here on the REPTree predictor since
it performs better than the others consistently in previous experiments. The 5
agent predictor models trained on data generated from SPOT(Baseline), Agen-
tUDE15, cwiBroker15, SampleBroker, Maxon14 and the 7 agent predictor mod-
els use data from SPOT(Baseline), AgentUDE15, cwiBroker15, SampleBroker,
Maxon14, Maxon15, COLDPower and CrocodileAgent15. The test data uses the
same agents. We also trained a predictor based on a mixed dataset that included
the same number of training games, but with a combination of 3, 5, and 7 agent
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Fig. 4. Comparison for different number of agents

Table 2. Average error for the various agent models

7 agent 5 agent 3 agent Mixed agent

13.406 13.714 13.958 13.225

games. The data in Fig. 4 shows that, in each case, the model trained on the
correct number of agents has the best performance. However, we also note that
the mixed model performs very well in all three cases. Table 2 shows the average
error of the predictor models over the 3 different test game data, and demon-
strates that the average error for the mixed model is better than any of the other
three models.

3.4 Using Price Predictions for Bidding

We took the best performing predictor from our experiments (REPTree) and
tested whether using these predictions could improve performance for a basic
bidding strategy. This strategy attempts to target auctions where the clearing
price is predicted to be low, and to buy a higher volume of the needed energy
in those specific auctions. Figure 5 shows that using the new predictions and
bidding strategy the agent is able to buy a high volume of the needed energy
when the average clearing price is lowest against the champion agent Maxon15.
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Fig. 5. Comparison for wholesale bidding strategies

3.5 Feature Evaluation

To evaluate which features are the most important for the predictions we used
ReliefFAttributeEvaluation [13] and the Ranker method in Weka to rank our
18 features. We also used the ClassifierSubsetEval method and best-first search
to get the best subset of features from all the features. Table 3 shows the top
7 features using the ranker algorithm and the best subset of features using the
ClassifierSubsetEval method. We ran the subset evaluation on 5, 10, 15, and 20
games and, for all cases, we found a consistent subset of seven features. The
features such as temperature, day of a month, month of a year, number of par-

Table 3. Feature evaluation

Ranked features Subset evaluation

PreviousHourN 1Price YesterdayClrPrice

PrevHourClrPrice PreviousHourN 1Price

PredictedClrPrice PredictedClrPrice

YesterdayClrPrice PrevHourClrPrice

AWeekAgoN 1Price Day

YesterdayN 1Price HourAhead

PrevOneWeekClrPrice CloudCoverage
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ticipants are ranked low and also out of the best subset. We could potentially
discard these types of features while training a predictor model. From the ranked
feature column, we see that price features are very important for the REP-
Tree predictor model. So, adding additional features of this type may improve
performance.

4 Learning in the Tariff Market

We describe how we formulate our problem in the tariff market as a Markov
Decision Process (MDP) [9] and use Q-learning [10] to learn the optimal policy.

4.1 Formulating the Problem as an MDP

Recall that in the tariff market, the goal is to design tariffs that will result in
the largest profit for the broker agent. In this paper, we investigate a restricted
version of the problem, where we assume that the broker can only offer flat-
rate tariffs, i.e., the price per kWh is uniform across all time steps. However,
the broker can vary the price of the flat-rate tariff and the objective is still to
maximize the profit of the broker. This problem can be formulated as a Markov
Decision Process (MDP) [9], defined by the tuple 〈S, s0,A,T,R〉:
• A set of states S. In our problem, we define the set of states to be all possible

pairs of 〈MS,Bal〉, where MS is the percentage of market share controlled by
our agent (i.e., the percentage of customers that are subscribing to our agent)
and Bal is the overall profit or loss since the start of the simulation (i.e., the
amount of money in the “bank”). We discretized MS from 0% to 100% in
increments of 5% and Bal from −e2,000,000 to e8,000,000 in increments of
e20,000.

• A start state s0 ∈ S. In our problem, the start state is always 〈0%, e0〉 since
the agent does not have any subscribers to its tariff and starts with no initial
profit or loss.

• A set of actions A. In our problem, the first action of the agent is to publish a
new flat-rate tariff at e15 per kWh. Subsequent actions are from the following
set of actions:
↑: Increase the price of the tariff by e2.00 per kWh. This is implemented

by publishing a new tariff at the higher price and revoking the previous
lower-priced tariff.

↔: Keep the price of the tariff. This is implemented by not publishing or
revoking any tariffs.

↓: Decrease the price of the tariff by e2.25 per kWh. This is implemented
by publishing a new tariff at the lower price and revoking the previous
higher-priced tariff.
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• A transition function T : S × A × S → [0, 1] that gives the probability
T (s, a, s′) of transitioning from state s to s′ when action a is executed. In our
problem, the transition function is not explicitly defined and transitions are
executed by the Power TAC simulator.

• A reward function R : S × A × S → R
+ that gives the reward R(s, a, s′)

of executing action a in state s and arriving in state s′. In our problem, the
reward is the gain or loss in profits of the agent, determined by the Power
TAC simulator.

A “solution” to an MDP is a policy π, which maps states to actions. Solving
an MDP is to find an optimal policy, that is, a policy with the largest expected
reward.

4.2 Learning Optimal Tariff Prices

We now describe how to learn the optimal policy of the MDP using
Q-learning [10]. We initialize the Q-values of all state-action pairs Q(s, a) to
1,000,000 in order to better encourage exploration [10] and use the following
update rule to update the Q-values after executing action a from state s and
transitioning to state s′:

Q(s, a) ← α

{

R(s, a, s′) + γ · max
a′∈A

Q′(s′, a′)
}

(1)

where α = 0.9 is the learning rate and γ = 1.0 is the discount factor.

Parallelizing the Learning Process: In order to increase the robustness of the
resulting learned policy, we executed the learning algorithm with 10 different
simulation bootstrap files [14]. The different bootstrap files may contain differ-
ent combinations of types of users, with different energy consumption profiles,
energy generation capabilities, etc. In order to speed up the learning process, we
parallelize the Q-learning algorithm by running multiple instances of the sim-
ulation. We run the simulations in groups of 10 instances, where each instance
in the group uses one of the 10 unique bootstrap files. Instead of using and
updating their local Q-values, all these instances will use and update the same
set of Q-values stored on a central database. Once the simulation of one of the
instances ends (the Power TAC simulation can end any time between 1440 to
1800 simulated hours), it will restart with the same bootstrap file from the first
time step again.

4.3 Experimental Results

In our experiments, we learn policies against two opposing agents; this scenario
corresponds to the 3-agent scenario in the previous Power TAC competition. We
characterized possible opposing agents according to their relative competitive-
ness in the previous years’ Power TAC competitions. We learned four different
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(a) Against Inferior Agents (b) Against Similar Agents

(c) Against Superior Agents (d) Against Random Agents

Fig. 6. Convergence rates

sets of Q-values and, equivalently, four different sets of policies against four dif-
ferent types (in terms of their competitive level) of opposing agents:

• Superior agents: AgentUDE15 and Maxon15.
• Similar agents: Mertacor and COLDPower.
• Inferior agents: TacTex14 and CWIBroker14.
• Random agents: Two randomly chosen agents from the set of 6 agents

above.

Figure 6 shows the convergence rates for all of the scenarios, where the
y-axis shows the final balance at the last time step for each iteration. SPOT is
able to learn better policies and improve its final balance with more iterations.
To reach convergence, SPOT takes various numbers of iterations according to
opponents. SPOT sees the most variance in games where the opponents are
randomized. Against a set list of opponents, policy convergence is reached in
a limited number of iterations. For example, after approximately 200 iterations
convergence is reached against superior brokers.
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(a) Against Inferior Agents (b) Against Similar Agents

(c) Against Superior Agents (d) Against Random Agents

Fig. 7. Explored states

Figure 7 illustrates the explored states in the same scenarios. The color of each
state represents the number of times the actions for each state were explored,
ranging from black, where all three actions were explored the most, to white,
where no actions were explored. The figure shows that more states and actions
were explored against inferior agents than against superior agents. Additionally,
these results also explain the performance of the agent; against superior agents,
our agent was very limited in the states it was able to explore, most times
being unable to gain more than 5% of the market share, and when it did get
a significant amount it was often at a loss. Thus, it took its best actions and
maintained a balance of approximately e50,000.

We evaluated the learned policies against the same set of opposing agents.
Figure 8 shows the profit in the tariff market alone of each agent over the various
time steps. These results are averaged over 5 different bootstrap files (different
from those used in the learning process) and 3 runs per bootstrap file. These
results are consistent with the final converged results shown in Fig. 6, where our
agent does better against inferior agents than against superior agents.
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(a) Against Inferior Agents (b) Against Similar Agents

(c) Against Superior Agents (d) Against Random Agents

Fig. 8. Comparison against opposing agents

Fig. 9. Profit in the tariff market per timeslot
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Figure 9 plots the performance of our agent with each of the four learned
policies in addition to an agent with no learned strategy against each pair of
opposing agents. Not surprisingly, the results show that the agent with the policy
learned through playing against a specific pair of opponents does best when play-
ing against the same pair of opponents (e.g., the agent with the policy learned
through playing against superior agents does better than other policies when
playing against superior agents). The policy learned through playing against
random agents is more robust towards different opponent types, especially com-
pared against the policy learned through playing against superior agents.

5 Conclusions and Future Work

A forward-looking policy is needed between the tariff and wholesale strategy to
make consistent profit. The preliminary results in this paper show that the appli-
cation of learning strategies to broker agents within Power TAC have immediate
benefits in both the wholesale and tariff markets separately. However, a more
comprehensive study is needed to better harness the strength of these learning
approaches. Currently, the evaluations in the wholesale and tariff markets are
conducted independently of each other. Therefore, future work includes learning
good bidding strategies such as Monte Carlo Tree Search in the wholesale mar-
ket by taking into account the predicted clearing prices as well as empirically
evaluating the coupling effects of the learning strategies between the wholesale
and tariff markets.
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Abstract. The Power Trading Agent Competition (Power TAC) is a
feature-rich simulation that simulates an energy market in a smart grid,
where software brokers can buy energy in wholesale markets and sell
energy in tariff markets to consumers. Successful brokers can maximize
their profits by buying energy at low prices in the wholesale market and
selling them at high prices to the consumers. However, this requires that
the brokers have accurate predictions of the energy consumption of con-
sumers so that they do not end up having excess energy or insufficient
energy in the marketplace. In this paper, we conduct a preliminary inves-
tigation that uses standard off-the-shelf machine learning techniques to
cluster and predict the consumption of a restricted set of consumers. Our
results show that a combination of the popular k-means, k-medoids, and
DBSCAN clustering algorithm together with an autoregressive lag model
can predict, reasonably accurately, the consumption of consumers.

Keywords: Smart grid · Artificial Intelligence · Multi-agent System ·
Machine learning

1 Introduction

With the rise in the production of renewable energy in the residential market
as well as the proliferation of electric vehicles, there is a concerted effort to
transform the conventional power grid into a “smart grid”. A feature of this smart
grid is an energy market, where software agents can buy and sell energy. In this
energy market, transactions can occur with all players in the current energy grid
from conventional energy producers with power plants to conventional energy
consumers in the residential market.

Rich simulations such as the Power Trading Agent Competition (Power
TAC) [1] provide an efficient way for researchers to test different possible char-
acteristics of this market before deployment in the real world. In the Power TAC
smart grid simulation, a software agent acts as a broker to buy energy in bulk
from a wholesale market and sells energy to consumers in a tariff market. The
aim of the broker is to maximize its profits through intelligent bidding strategies
c© Springer International Publishing AG 2017
S. Ceppi et al. (Eds.): AMEC/TADA 2015/2016, LNBIP 271, pp. 112–126, 2017.
DOI: 10.1007/978-3-319-54229-4 8
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in the wholesale market and intelligent tariff designs in the tariff market. This
game was developed as a scenario for the annual Trading Agent Competition, a
research competition with over a decade of history [2].

For brokers to do well in this competition, one of the key requirements is that
they need to be able to predict the energy demands of consumers in the tariff
market accurately. An accurate prediction will allow the broker to identify the
amount of energy accurately that it needs to purchase in the wholesale market,
which can then translate to effective wholesale bidding strategies to purchase
energy at the low prices, resulting in larger profits when the energy is sold to
the consumers.

In this paper, we report results of our preliminary study, where we use stan-
dard off-the-shelf machine learning techniques to identify classes of consumers
that have predictable energy requirements. The identification of such classes will
allow a broker to design tariffs that specifically target those classes of consumers
and exploit their highly predictable energy demands to maximize overall profits.
Our results show that a combination of the popular k-means, k-medoids, and
DBSCAN clustering algorithm together with an autoregressive lag model can
predict, reasonably accurately, the consumption of consumers.

2 Background: Power TAC

Power Trading Agent Competition (Power TAC) [1] is a feature-rich simulation
suite available to researchers interested in working on the smart grid problem.
Power TAC offers researchers the chance to explore many characteristics of future
smart grids by allowing the creation of agents that operate in several different
energy markets including the wholesale, the tariff, and the load-balancing mar-
kets. The goal of each agent is to acquire energy and sell it at a profit to its
customers. This game was designed as a scenario for the annual Trading Agent
Competition, a research competition with over a decade of history [2].

The wholesale market attempts to simulate existing energy markets such as
the European or North American large energy producer. In Power TAC, the
wholesale market is structured as a “day-ahead market,” where the energy is a
perishable good, which allows brokers to buy and sell quantities of energy for
future delivery. Market structures like this exist across many different types of
perishable goods, so finding effective, robust, automated bidding strategies for
these markets is a significant research challenge.

The tariff market is where the major portion of energy purchased from the
wholesale market is sold. Energy is sold to consumers (e.g., households, offices,
etc.) through tariffs offered by the brokers. The overall goal of each broker is
to maximize its profit (e.g., by selling energy in the tariff market at a higher
price than the purchase price of the energy in the wholesale market). Because
of this, the broker wishes to offer competitive tariffs that attract a large pool of
consumers.

There are a variety of tariff options available for a broker to publish that
allows for consumer and prosumer (e.g., consumers that have access to renewable
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energy such as solar panels) customers. For example, brokers may structure
tariffs that are tiered where energy kept below a given threshold is priced low
but the price increases when more is required. Another option is to price energy
according to the time of the day or day of the week allowing brokers to sell energy
at a higher price during peak hours. Power TAC also models customers with
electric vehicles and allows brokers to issue specific tariffs that are specialized
to their needs or controllable tariffs that can be interrupted if the energy cost is
too great.

Simulated consumers can be broken down into two categories: elemental mod-
els and factored models. Elemental models define a consumer profile using gran-
ular characteristics such as the number of members in the household, the number
of working days of the members, and the number of appliances in the household.
However, defining elemental models in a simulation might not be efficient in mod-
eling large-population consumers. To alleviate this limitation, factored models are
introduced. Factored models can represent profiles of large consumer populations
such as hospitals, campuses, apartment complexes, office buildings, etc.

The third major market is the load-balancing market, which functions as an
energy equalizer in the Power TAC simulation. The current constraints of the
simulation allow for an infinite supply of energy; that is, brokers will never be
short on the energy promised to their customers. However, this requires that a
broker that is unable to meet energy demands in other markets purchase the
remaining energy in the load-balancing market at much higher than average
prices. Because of this, it is in a broker’s best interest to accurately predict the
demand that it is required to fulfill.

3 Power TAC Consumer Demand Prediction

We now describe our approach to better understand if consumers have highly
predictable consumption rates that can be exploited in a Power TAC agent. The
high-level idea of our approach is as follows:

(1) We generated data for two sets of experiments. In the first smaller con-
trolled experiment, we focused on household elemental models and vary the
number of members in the household and the number of working days of
the members. In the second larger uncontrolled experiment, we generated
data for both factored and elemental models with their default Power TAC
configurations.

(2) We used dimensionality reduction techniques to reduce the dimensions of
the data points in order to reduce the training time.

(3) We clustered the data using three off-the-shelf clustering algorithms:
k-means++ [3], k-medoids [4], and DBSCAN [5].

(4) We predicted the demand of the clusters using two off-the-shelf prediction
methods [6]: an autoregressive lag model and a 2-week moving average pre-
dictor.
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3.1 Data Generation

In Power TAC, a bootstrap file containing bootstrap data is generated as a
unique seed for a new game. The bootstrap data is used as the beginning set of
consumption patterns per consumer that a broker is allowed to analyze before
the start of a game. The bootstrap file contains game parameters and about
two weeks or 360 h of historical information (e.g., consumer data, weather data,
etc.). Once the game begins, a simulation file containing game data is generated
using a bootstrap file that began the game.

In this paper, we analyzed power consumption patterns using two experi-
ments – a smaller controlled experiment with customized Power TAC configu-
rations and a larger uncontrolled experiment with default Power TAC configu-
rations. The first smaller and controlled experiment used 35 different configura-
tions by manipulating two characteristics of a household consumer; the ranges of
members in a household and working days were set between 1 and 5 and between
1 and 7, respectively. Note that a household consumer is represented virtually
by two loads (a base load and controllable load) with four different tariff shift-
ing properties (non-shifting, smart-shifting, regularly-shifting, and randomly-
shifting). This resulted in eight different types of virtual consumers. For each of
the 8 types of virtual consumers, there were 35 configurations with 100 distinct
bootstrap files generated per configuration. Each game had about 58 days, or
1,399 h, of energy consumption. In total, this experiment generated 28,000 data
points of consumption information. The second larger and uncontrolled exper-
iment included all consumers in a default Power TAC game. A typical Power
TAC game includes 28 elemental and factored consumers. This experiment pro-
duced 100 distinct default bootstrap files and associated game data for a total
of 2,800 data points.

Once the data had been generated by the Power TAC games, both the boot-
strap and simulation files were prepared for our clustering and prediction algo-
rithms. A modified version of the Power TAC Log Tool1 was used to perform
the extraction of data into a comma separated format (CSV).

The CSV files were transformed into a matrix for bootstrap data B and
game data G. B contains about two weeks or 360 h of historical consumption
data points per consumer:

B =

⎡

⎢
⎣

c1,0 . . . c1,359
...

...
...

cN,0 . . . cN,359

⎤

⎥
⎦ (bootstrap consumption for N consumers)

where ci,j is the energy consumption of consumer i at time step j. Also, the
bootstrap data for consumer i is indexed by Bi.

1 https://github.com/powertac/powertac-tools.

https://github.com/powertac/powertac-tools
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For each bootstrap file, there is an associated simulation file with game data
G, where the game data for consumer i is indexed by Gi.

G =

⎡

⎢
⎣

c1,360 . . . c1,1758
...

...
...

cN,360 . . . cN,1758

⎤

⎥
⎦ (simulation consumption for N consumers)

All bootstrap and game data are paired and represented by matrix D.

D =

⎡

⎢
⎣

B1 G1

...
...

BN GN

⎤

⎥
⎦ (paired consumption data)

The rows in matrix D are then shuffled and split in half into a training
dataset and a test dataset. Training bootstrap data is represented by Btrain and
training game data is represented by Gtrain. Similarly, test bootstrap data is
represented by Btest and test game data is represented by Gtest.

3.2 Dimensionality Reduction

Principal Component Analysis (PCA) is a technique that is widely used for
applications such as dimensionality reduction, lossy data compression, feature
extraction, and data visualization [7]. PCA can be defined as the orthogonal pro-
jection of a dataset onto a lower dimensional linear space, known as the principal
subspace, such that the variance of the projected data is maximized [8]. Principal
components were calculated using Singular Value Decomposition (SVD) on the
covariance matrix of a training bootstrap dataset. SVD creates three matrices:
left singular vectors represented as a matrix U, where each column is a unit vec-
tor representing a principal component; a singular values matrix V that has the
variance represented by each principal component; and a right singular matrix,
which was ignored. Using the singular values V, one can select P principal com-
ponents from M dimensions to retain a certain percentage of the total variance
R using the following equation:

R =
∑P

i=1 Vi
∑M

i=1 Vi

(1)

Before applying PCA, the training bootstrap dataset Btrain should be stan-
dardized. In other words, the training bootstrap dataset should be rescaled to
have zero mean and unit variance using the z-score normalization in Eq. (2).
Calculating the z-score requires the mean E[Btrain] and standard deviation
σBtrain [9].

z-score =
Btrain − E[Btrain]

σBtrain

(2)

Once Btrain is standardized, SVD was applied to generate the principal com-
ponents. The principal components were selected by solving Eq. (1) with R ≥ 0.9,
representing ninety-percent retained variance. Then, Btrain was projected onto
a lower dimensional subspace defined by the selected principal components.
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3.3 Clustering

We now describe how we clustered the training bootstrap dataset Btrain. We used
the following off-the-shelf clustering algorithms: k-means++, k-medoids, and
DBSCAN. k-means++ is based on a well known partitioning based algorithm
called k-means [3]. k-means++ adds a heuristic when initializing the cluster
centroids used in k-means, then uses the original k-means algorithm. A known
problem with the k-means algorithm is its weakness with the presence of noise,
which can cause it to fail to converge [9]. Algorithm 1 presents the pseudocode
of k-means++. In the k-means pseudocode, D(x) denotes the shortest distance
from a data point to the closest center we have already chosen [3].

Algorithm 1. k-means++ algorithm
1: procedure k-means++(X, k)
2: arbitrarily choose a data point from X as centroid C1.

3: for each i ∈ {2, . . . , k}, choose a data point from X with probability D(x)2
∑

x∈X D(x)2

as centroid Ci.
4: repeat
5: For each i ∈ {1, . . . , k}, set the clusters Ci to be the set of points in X that

are closer to ci than those points that are to cj for all j �= i.
6: For each i ∈ {1, . . . , k}, set ci to be the center of mass of all points in

Ci : ci = 1
|Ci|
∑

x∈Ci
x.

7: until C no longer changes
8: end procedure

We also explored the partitioning-based algorithm Partitioning Around
Medoids (PAM), a popular approximation algorithm of k-medoids designed by
Kaufman et al. [4]. PAM uses two phases: a build phase, where initial k medoids
are selected arbitrarily, and a swap phase, where the algorithm attempts to find
a substitution for a current medoid with a non-medoid that reduces the within-
cluster distance. PAM is shown in Algorithm 2 and in this paper is referred to
as k-medoids.

Algorithm 2. k-medoids PAM algorithm
1: procedure k-medoids(X, k)
2: arbitrarily choose k data points from X as the initial medoids.
3: repeat
4: for each non-medoid data point, (re)assign it to the cluster with the nearest

medoid.
5: select a non-medoid data point, swap with a current medoid that reduces

the total within-cluster distance.
6: until no change
7: end procedure



118 F. Natividad et al.

0
10

0
20

0
30

0
40

0
50

0
60

0

Data Points

D
is

ta
nc

e

Fig. 1. Dendrogram of our dataset

To define the number of clusters k for k-means and k-medoids, we used two
methods. The first is through hierarchical clustering, which creates a hierarchy
that can be presented as a dendrogram. Figure 1 shows an example of a den-
drogram. The dendrogram represents related data, and each successive relation
creates the hierarchy. Therefore, it provides a visual tradeoff between the num-
ber of clusters and the size of each cluster. The larger the distance value for
which a cut is made, the fewer the number of clusters and the larger the size
of the clusters. For example, if we chose to cut at distance = 100, we will have
k = 9 clusters, which are about equal size.

The second method to choose k is the elbow method, which is based on
increasing the number of clusters to help reduce the sum of within-cluster dis-
tances of each data point to its cluster representative. We first select a small k

and then slowly increment it until
√

N
2 [9], where N is the number of data points

in the dataset. Figure 2 shows an example of the total within-cluster distance as
a function of the number of clusters k for the k-means algorithm. The goal is to
choose k at the “elbow,” which is when increasing k does not significantly reduce
the within-cluster distances. A reasonable “elbow” for our figure is at k = 12,
which is indicated by an arrow.
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Algorithm 3. DBSCAN algorithm
1: procedure DBSCAN(X, ε, δ)
2: mark all data points in X as unvisited
3: repeat
4: randomly select an unvisited object x;
5: mark x as visited;
6: if the ε-neighborhood of x has at least δ points then
7: create a new cluster C and add x to C;
8: set Π as the set of points in the ε-neighborhood of x;
9: for each point x′ in Π do

10: if x′ is unvisited then
11: mark x′ as visited
12: if ε-neighborhood of x′ has at least δ points then
13: add those points to Π
14: end if
15: end if
16: if x′ is not yet a member of any cluster then
17: add x′ to C
18: end if
19: end for
20: output C
21: else
22: mark x as noise
23: end if
24: until no object is unvisited
25: end procedure

Finally, Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) is a density-based clustering algorithm that uses a similarity
heuristic to find groups that contain a defined minimum number of data points
δ within a defined ε-distance. The algorithm selects a data point at random and



120 F. Natividad et al.

greedily adds data points that reside within ε of the start data point. Once the
minimum number of data points is obtained, it will attempt to expand the clus-
ter by continuously clustering more data points within ε from any data point in
the cluster. Algorithm 3 shows the pseudocode of DBSCAN.

DBSCAN is different from k-means and k-medoids in that it requires a min-
imum number of data points δ to define a cluster and a maximum distance ε
to associate dense neighbors. These parameters can be estimated using methods
devised by Ester et al. [5]. For example, in Fig. 3, δ = 4 and ε = 22.49.

3.4 Prediction

We now describe how we learn the parameters of prediction methods using the
game training datasets Gtrain. We used two off-the-shelf methods to predict the
energy consumption of consumers. The first is a moving average with a two week
or 336 h window defined by:

xt = E[xt−336 + · · · + xt−1] (3)

which takes two weeks of the known consumption in the past and averaging for
an estimated next consumption value, xt, at consumption hour t.

The second is a variant of the classical autoregressive model (AR) [6]
defined as:

xt = w1 · xt−h + w0 (4)

where xt is the predicted future energy consumption; w1 and w0 are weights and
the model uses the value from a fixed “lag” in the past xt−h; where h is the lag
value. This variant equation is used because it performed well with the periodic
consumption behavior of the household consumers. To determine the best lag
value, we attempted to find consumption patterns that may exist in the time
series data. Using the equation:

γ̂(h) =
1
m

m−h∑

i=1

(xi+h − x̄)(xi − x̄) (5)

we found the sample autocovariance of the time series data [6], where h is the lag
and m is the number of time steps in the time series. Then, using the equation
below:

ρ̂(h) =
γ̂(h)
γ̂(0)

(6)

we can compute the sample autocorrelation with the sample autocovariance of
the original time series shifted by h hours γ̂(h) over the sample autocovariance
of the original time series γ̂(0). Figure 4 plots an example sample autocorrelation
and one can visualize that there is a peak correlation at 24-hour intervals.
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Fig. 4. Sample autocorrelation as a function of the lag

Therefore, the variant autoregression lag model in Eq. (4) uses the lag value
of 24 simulated hours in the past.

4 Experimental Results

Recall that we have controlled and uncontrolled experiments. We ran our exper-
iments with the three clustering algorithms described in Sect. 3.3 and used the
two prediction algorithms described in Sect. 3.4 to understand the advantages
of clustering. To evaluate our algorithms on the test datasets, we associate the
test bootstrap data for each consumer to the most similar cluster and used the
prediction model of that cluster to predict the consumption in the test game
data associated to that test bootstrap data.

We used k = {6, 10} for the controlled experiments of base and controllable
loads defined by the hierarchical clustering and elbow methods for the k-means
and k-medoids clustering algorithms, and we set δ = 4 and ε = {11.77, 16.34} for
base and controllable loads, respectively, for the DBSCAN algorithm. Similarly,
we used k = 2 for the uncontrolled experiments of mixed both load types, and
we set δ = 4 and ε = 0.75 for the mixed load types. We also used the lower and
upper limits of k being 1 cluster and N clusters, a cluster per training bootstrap
data point. This provided us an idea of a possible lower and upper bound for
predictive error using partitioning based algorithms k-means and k-medoids.

Note, in our experiments we found k-means++ and k-medoids to have very
similar results during prediction. Hence, we only discuss k-means++ because it
had a slightly better result than k-medoids. We used the Mean Squared Error
(MSE) to analyze the prediction error of both prediction methods. The MSE
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was computed using:

MSE =
1

n · m

n∑

i=1

m∑

j=1

(ĉi,j − ci,j)2 (7)

where ĉi,j is predicted energy consumption of consumer i during hour j, ci,j is
the actual energy consumption of consumer i during hour j, n is the number of
consumers in the test dataset, and m is the number of time steps in the time
series.

In the smaller controlled experiments, Tables 1 and 2 tabulate the prediction
MSE for k-means and DBSCAN, respectively. For both clustering algorithms, the
autoregressive lag model outperformed the moving average for base loads. The
reason is that it has a more predictable consumption pattern. On the other hand,
the autoregressive lag model and the moving average model performed similarly
for controllable loads. The reason is that the consumption of controllable loads
is more erratic. A more granular view of per-cluster MSE is presented in Figs. 5,
6, 7 and 8.

Table 1. Controlled experiment prediction MSE with k-means++

k Load type Moving average Autoregressive lag model

1 Base 1.4148e−05 kWh 5.8561e−06 kWh

6 Base 1.4148e−05 kWh 5.8545e−06 kWh

10 Base 1.4148e−05 kWh 5.8425e−06 kWh

7000 Base 1.4148e−05 kWh 5.9506e−06 kWh

1 Controllable 1.8476e−05 kWh 1.8691e−05 kWh

6 Controllable 1.8476e−05 kWh 1.8229e−05 kWh

10 Controllable 1.8476e−05 kWh 1.8201e−05 kWh

7000 Controllable 1.8476e−05 kWh 1.7819e−05 kWh

Table 2. Controlled experiment prediction MSE with DBSCAN

ε Load type Moving average Autoregressive lag model

11.77 Base 1.4148e−05 kWh 5.8536e−06 kWh

16.34 Controllable 1.8476e−05 kWh 1.8685e−05 kWh

Table 3. Uncontrolled experiment prediction MSE with k-means++

k Load type Moving average Autoregressive lag model

1 Both 1.9750 kWh 0.5161 kWh

2 Both 1.9750 kWh 0.4999 kWh

1400 Both 1.9750 kWh 0.4928 kWh
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Table 4. Uncontrolled experiment prediction MSE with DBSCAN

ε Load type Moving average Autoregressive lag model

0.75 Both 1.9750 kWh 0.4925 kWh
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Fig. 8. Prediction MSE: Controllable
load in controlled experiment with
DBSCAN

In the larger uncontrolled experiments, Tables 3 and 4 tabulate the prediction
MSE for k-means and DBSCAN, respectively. In both clustering algorithms, the
autoregressive model also outperformed the moving average. The per-cluster
view is presented in Figs. 9 and 10, where the y-axis is in log scale.
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5 Related Work

While there is a large number of Power TAC brokers that have competed in the
past Power TAC competitions including AgentUDE152, Maxon153, Mertacor4,
COLDPower [10], TacTex14 [11], and CWIBroker14 [12], many of the approaches
used by the brokers are not published publicly. As such, it is difficult to accurately
identify the types of learning approaches taken by the agents. We describe below
a sample of brokers that do publish their approaches and describe how we differ
from them in our learning methods.

Parra Jr. and Kiekitveld [13] investigated the use of a large number of algo-
rithms including linear regressions, decision trees, and k-nearest neighbors, all
implemented on WEKA, to predict customer energy usage patterns in Power
TAC. Their analysis used weather and energy consumption to perform analysis
on different types of consumers in a Power TAC simulation. The main difference
between their work and ours is that we used dimensionality reduction techniques
as well as clustering prior to using prediction algorithms. Unfortunately, their
results show that their techniques were not successful in finding a good model
without a high error.

Urieli and Stone [11] also use learning algorithms in their TacTex14 broker,
where they cluster consumers not by their energy usage but by their type. For
example, office complex consumers are all clustered together independent of the
number of occupants in the office complex, which is not known to the broker.
They then use a locally weighted linear regression model to predict the energy
consumption of those clustered consumers.

2 http://www.powertac.org/wiki/index.php/AgentUDE15.
3 http://www.powertac.org/wiki/index.php/Maxon15.
4 http://www.powertac.org/wiki/index.php/Mertacor2015.

http://www.powertac.org/wiki/index.php/AgentUDE15
http://www.powertac.org/wiki/index.php/Maxon15
http://www.powertac.org/wiki/index.php/Mertacor2015
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Finally, the approach taken by Wang et al. [14] is the most similar to ours,
where they too cluster customers according to their energy usage using the k-
means algorithm. However, their prediction methods are different, where they
propose two methods. The first predicts the future consumption based on a
weighted sum of the current consumption and the historical consumption and
the second uses logistic regression based on historical usage data and weather
data. As they also discussed the strategies of their broker for the other parts of
the competition (i.e., the wholesale, imbalance, and tariff markets), they show
empirical results on how their broker performed overall. As such, it is not known
how effective their prediction algorithms are. In contrast, we show that our
autoregressive lag model, which is significantly simpler and computationally effi-
cient, has a small error and illustrate the underlying reason for this behavior,
which is the high correlation in energy consumption in 24-hour intervals.

6 Conclusions and Future Work

In this preliminary study, we show that off-the-shelf clustering and predic-
tion algorithms can be effectively used to classify consumers based on the pre-
dictability of their energy consumptions. We show that the k-means, k-medoids,
and DBSCAN clustering algorithms coupled with an autoregressive lag model
can predict energy consumption of consumers with reasonable accuracy. These
results show that there is a strong temporal structure to the energy consump-
tions. Finally, we also plan to exploit the strong temporal correlations and inte-
grate the clustering and prediction algorithms into an actual Power TAC broker
agent for the competition.
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Abstract. In this paper, we present a genetic algorithmic approach to
automated auction mechanism design in the context of cat games. This
is a follow-up to one piece of our prior work in the domain, the reinforce-
ment learning-based grey-box approach [14]. Our experiments show that
given the same search space the grey-box approach is able to produce
better auction mechanisms than the genetic algorithmic approach. The
comparison can also shed light on the design and evaluation of similar
search solutions to other domain problems.

Keywords: Genetic algorithms · Auction mechanism design · Double
auctions · jcat

1 Introduction

Auction mechanisms play an essential role in electronic commerce and in market-
based control and resource allocation in computer systems. A major challenge
in these domains is to design auction mechanisms that exhibit desired prop-
erties. Automated mechanism design aims to solve the problem of mechanism
design in an automated fashion, typically by searching some space of possible
mechanisms [3,5,20].

One piece of our prior work in this area is [14], in which we presented a
what we called grey-box approach to automated design of double auctions in the
context of TAC Market Design Competition (or the cat Game) [15]. In the grey-
box method, we use a tree model to represent the search space and associate
an n-armed bandit problem solver [23, Chap. 2] to each node where multiple
partial solutions to the same part of the problem exist. The n-armed bandit
problem solvers select building blocks so that complete auction mechanisms can
be constructed and evaluated in cat games. The performance of each sampled
auction mechanism in cat games is then used as feedback for those building
blocks in the mechanism. Our experiments showed that the grey-box search
was able to produce better auction mechanisms than those manually crafted by
participants in the first cat Game.

As the tree model is independent of search methods, one follow-up question
that arises naturally is: How would the grey-box method perform compared to
c© Springer International Publishing AG 2017
S. Ceppi et al. (Eds.): AMEC/TADA 2015/2016, LNBIP 271, pp. 127–142, 2017.
DOI: 10.1007/978-3-319-54229-4 9
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other search methods? Indeed, other search methods have been used in auto-
mated auction mechanism design, though focusing on some particular aspects
of an auction mechanism. For instance, Cliff [3] used a simple genetic algorithm
(ga) to explore a continuum of probabilities of the next shout in an auction
coming from a seller (or a buyer) and Phelps et al. [20] used genetic program-
ming (gp) in acquiring pricing rules for double auctions. In this paper, aiming
to answer the question raised above, we investigate how effective simple gas are
in automated auction mechanism design based on the same tree model (search
space) as used in the grey-box search.

We first briefly review the grey-box method as well as the search space of dou-
ble auctions in the domain of cat games in Sect. 2. Due to the space constraint,
detailed descriptions of these and other background information are not included
here but can be found in [14].1 Then Sect. 3 introduces the ga search method and
Sect. 4 describes the ga experiments we carried out and interprets the experi-
mental results. Section 5 further draws contrasts and makes connections between
the grey-box method and various evolutionary computational solution concepts
and techniques, and finally concludes.

2 A Brief Review of the Grey-Box Method

The grey-box method aimed to search for auction mechanisms in the domain of
the cat game, an annual event held from 2007 through 2011 to foster research
in electronic market mechanism design [15]. In a cat game, participants each
operate an electronic double-auction marketplace and the marketplaces compete
against each other for market share and profit. Traders are software agents pro-
vided by the game organizers. Each trader is armed with a marketplace selection
strategy as well as a bidding strategy so that the trader can choose a marketplace
to bid and trade in. A cat game lasts a certain number of trading days. Each
trader has a chance before the start of each day to select a marketplace to trade
during that day and the marketplace can impose various charges on traders,
admission, transaction fee, etc. At the end of the day, each marketplace receives
a daily score between 0.0 and 1.0, a combination of three components with equal
weights: share of trader population attracted, share of profit, and percentage
of successful trade offers. The marketplace, or indeed the auction mechanism
designed for the marketplace, that receives the highest cumulative score wins
the game. The execution of cat games is supported by jcat [16], the open
source software package that we also used to run the grey-box experiments [14]
and the ga experiments in this paper.

In the grey-box method, the search space is modeled as a tree, which is
depicted in Fig. 1, an abbreviated version of Fig. 1 in [14]. The tree model illus-
trates how building blocks are selected and assembled level by level. There are
and nodes, or nodes, and leaf nodes in the tree. An and node combines a set
of building blocks, each represented by one of its child nodes, to form a compound
building block. The root node, for example, is an and node assembling policies,
1 [14] is available at http://www.sci.brooklyn.cuny.edu/∼jniu/research/publications/.

http://www.sci.brooklyn.cuny.edu/~jniu/research/publications/
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Fig. 1. The search space of double auctions modeled as a tree.

one on each major aspect of an auction mechanism (M for matching policy, Q

for quoting policy, A for shout accepting policy, C for clearing condition, P for
pricing policy, and G for charging policy),2 to construct an auction mechanism.
An or node represents the decision making of selecting a building block from
the candidates represented by the child nodes of the or node. This selection
occurs not only for those major aspects of an auction mechanism, i.e. M, Q, A, C,
and P, but also for minor components, for example, a learning component for an
adaptive policy (in a similar way to that in which Phelps et al. learned a trading
strategy [19]), and for determining optimal values of parameters in a policy, like
θ in MT and k in PD. A leaf node represents an atomic block that can either be
for selection at its or parent node or be further assembled into a bigger block
by its and parent node. A special type of leaf node in Fig. 1 is that with a
label in the format of [x, y]. Such a [x, y] node is a convenient representation
of a set of leaf nodes that have a common parent—the parent of this special
leaf node—and take values evenly distributed between x and y for the parame-
ter labeled at the parent node. Note that both the grey-box search and the ga
search to be introduced below consider only mechanisms using a fixed charging
policy, denoted as GF0.1. This simplification aims to avoid the slow exploration
in the particular corner of the search space for charging policy, which involves
significantly more parameters and variations than those for other policies.

The grey-box method combines techniques from reinforcement learning, e.g.,
solutions to n-armed bandit problem [23], and evolutionary computation, e.g.,
the use of a Hall of Fame [21]. The general idea of this algorithm is to use n-
armed bandit learners to choose building blocks when needed so as to construct
auction mechanisms based on the tree model in Fig. 1, to run cat games to
evaluate the constructed mechanisms, and to keep good mechanisms in a Hall
of Fame.

In the tree model, or nodes contribute to the variety of auction mecha-
nisms in the search space and are where exploitation and exploration occur.
We model each or node as an n-armed bandit learner that chooses among

2 A taxonomy of policies in this domain of auction mechanisms is described in detail
in [17].
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candidate blocks, and we use the simple softmax method [23, Sect. 2.3] to solve
this learning problem.3 Solving all the n-armed bandit learners in the tree will
uniquely determine a configuration of an auction mechanism, which is exactly
how an auction mechanism is sampled in the search space. The sampled mech-
anisms can then be put into a cat game for evaluation. The game score of a
sampled mechanism not only suggests how good the mechanism itself is, but
is also an indicator of the performance of the building blocks that are used in
the mechanism. If a building block is due to the selection of an n-armed bandit
learner among the child nodes of the corresponding or node, the game score
can be readily used as the feedback for the building block. All such feedback to
a building block cumulatively serves as the expected return, or what we call the
quality score, of the building block. Thus, after a game completes, the quality
scores of building blocks that are children of an or node are updated, and so
are the way how an auction mechanism is sampled in the space in later steps.

In each cat game that is run to evaluate sampled mechanisms, we include
four fixed, well known, mechanisms plus selected mechanisms that performed
well at previous steps and are from the Hall of Fame. The fixed set of four
mechanisms in every cat game includes two clearing house (ch) mechanisms—
chl and chh—and two continuous double auction (cda) mechanisms—cdal and
cdah—with one of each adopting the GF0.1 policy, charging a low 10% fee on
trader profit and the other charging a high 100% fee on trader profit. The ch
and cda mechanisms have been used in the real world for many years and were
found competitive in the context of cat games as well. The selection of Hall of
Famers to compete in the cat game is based on the same softmax method as
used in choosing building blocks at each or node. More details on how the Hall
of Fame is maintained and Hall of Famers are selected can be found in [14].

3 The Genetic Algorithmic Approach

To compare the effectiveness of the grey-box approach with other search meth-
ods, we carried out a new set of experiments, searching the same solution space
as used in the grey-box experiments based on the classic ga [6,11].

Encoding Individual Mechanisms. In these ga experiments, each individual auc-
tion mechanism is not represented by a binary string as in a typical ga, but
by a tree structure, since each individual auction mechanism can be viewed as
the result of making selections at the or nodes in the tree model in Fig. 1 (it is
exactly the case in the grey-box experiments), and thus be conveniently repre-
sented by the tree structure after the unselected branches of the or nodes are cut
off from the tree model. For example, the tree on the left side in Fig. 2 represents
the auction mechanism ME + QS + ADw=3 + CPp=0.4 + PUk=0.7 + GF0.1.
3 The same solution was adopted in designing marketplace selection strategies for

trading agents in cat games. However the two scenarios may need different para-
meter values. The market selection scenario should favor choices that give a good
profit—a cumulative measure—while here we require effective exploration to find a
good mechanism in the foreseeable future—a one-time concern.
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Fig. 2. An illustration of mutation in the ga, before mutation on the left side and after
mutation on the right side. The replaced and replacing subtrees are both enclosed by
dotted lines.

Mutation and Crossover. The tree-based encoding of an individual requires spe-
cialized mutation and crossover operators, due to the hierarchical construction
and the different types of node in the tree. The diversity of auction mechanism
individuals in the space originates from the or nodes, so mutation and crossover
occur only at or nodes. To apply mutation to an individual, it is decided proba-
bilistically, based on the mutation rate, at each or node in its tree-based encod-
ing whether the node selects a different child node from the tree model. If yes,
the original child (and its children if any) is replaced by the new child, which is
uniformly selected from all the possible choices other than the original one. If the
new child requires its own descendants, the whole subtree is added. Descendants
that are or nodes make their selections randomly, in contrast to the way in the
grey-box experiments where selections are made based on the quality scores of
different choices. Figure 2 demonstrates an example of mutation on the auction
mechanism given above, with the encoding before mutation on the left side and
the encoding after mutation on the right side. The node C is the only place
where mutation occurs and as a result the branch CPp=0.4 is replaced by CR,
both enclosed by dotted lines.

Crossover occurs between two auction mechanism individuals in the ga
experiments, and only at or nodes similar to what happens with mutation. To
perform crossover, indeed single-point crossover, between two individuals, the
or nodes that appear in both trees and have different children respectively in
the two trees are collected; then one of these collected nodes is selected randomly
as the place to possibly perform the crossover; and finally it is decided probabilis-
tically, based on the crossover rate, whether or not to perform the crossover, and
if yes, the two appearances of the selected node in the two trees switch their chil-
dren. Figure 3 demonstrates the crossover between two individuals—identified as
a and b in the figure respectively. In Fig. 3, the or nodes at which crossover can
be performed are marked with •, including M, Q, P, and p. A and C are excluded
because their children in the two trees respectively are also identical, while θ
and p in individual a and n in individual b are excluded because they appear in
only one of the two trees. Random selection among the eligible nodes picks P.
After a probabilistic test based on the crossover rate is taken and turns out to
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Fig. 3. An illustration of crossover in the ga between two individuals. The or nodes
at which crossover can be performed are marked with • in the original encodings. P is
selected to be the place where crossover is actually performed. The two subtrees with
P as the root in the two trees are swapped and enclosed by dotted lines.

Algorithm 1. The ga-amd algorithm.
Input: B, FM

Output: HOF

1 begin
2 HOF ← ∅

3 for g ← 1 to num of generations do
4 if g = 1 then
5 P ← Init-Population(B)

6 else
7 P ← Select-Population(P)
8 P ← Crossover-Population(B, P, rco)
9 P ← Mutate-Population(B, P, rm)

10 P ← Randomize(P)
11 for i ← 1 to |P|/num of samples do
12 G ← Create-Game()
13 SM ← ∅

14 for m ← 1 to num of samples do
15 SM ← SM ∪ {P[(i − 1) ∗ num of samples + m]}
16 EM ← Select(HOF, num of hof samples)
17 Run-Game(G, FM ∪ EM ∪ SM)
18 foreach M ∈ EM ∪ SM do
19 Update-Market-Score(M, Score(G, M))
20 if M /∈ HOF then
21 HOF ← HOF ∪ {M}
22 if capacity of hof < |HOF| then
23 HOF ← HOF − {Worst-Market(HOF)}

be positive, the subtrees PUk=0.2 in a and PNn=7 in b, both enclosed by dotted
lines in the figure, are swapped, producing two new individuals.

The GA Algorithm. The skeleton of the ga algorithm that is used in our ga
experiments is given in Algorithm 1. These ga experiments adopt the same
search space of auction mechanisms, the same set of fixed auction mechanisms to
evaluate the fitnesses of the mechanisms sampled from the space, and the same
idea of using a Hall of Fame to produce output as in the grey-box experiments.
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Function. Init-Population.

Input: B

Output: P

1 begin
2 P ← ∅

3 for i ← 1 to size of population do
4 M ← Create-Market()

5 for t ← 1 to num of policytypes do
6 B ← Select(Bt, 1)
7 Add-Block(M , B)

8 P ← P ∪ {M}

The initial generation of auction mechanism individuals in each ga exper-
iment is created by randomly sampling the search space in exactly the
same way as at the beginning of the grey-box search until a certain num-
ber (size of population) of individuals are obtained (see Function Init-
Population). Each of the subsequent generations is created through steps of selec-
tion, crossover, and mutation from the previous generation. The selection step,
shown in Function Select-Population, is a combination of elitism and roulette
wheel selection. Elitism selection keeps a certain number of fitter individuals in
the next generation based on the elitism rate, which determines the size of the
portion of the population to be considered as elite individuals. Roulette wheel
selection fills the rest of the population by probabilistically selecting among
all the individuals in the previous generation. The probability of an individual
being selected each time is proportional to its fitness, which is its average daily
score in the game that it participated in during the evaluation of the previous
generation. This type of selection has a known problem that individuals with
low fitnesses have little chance to get selected when the fitnesses of individu-
als differ dramatically. Due to the scoring scheme of the cat game, the typical
daily score of an auction mechanism ranges from 0.1 to 0.5, so the usual draw-
back of roulette wheel selection does not have big impact in this ga algorithm.
The individuals that are picked in roulette wheel selection then go through the
crossover and mutation steps. In the crossover step, shown in Function Crossover-
Population, individuals are paired up and each pair is probabilistically recom-
bined (Crossover-Individuals() in Line 7) as we described above and illus-
trated in Fig. 3. In the mutation step, shown in Function Mutate-Population,
individuals are each probabilistically mutated (Mutate-Individual() in Line 7)
as we described above and illustrated in Fig. 2.

To evaluate a generation of auction mechanism individuals, all the mecha-
nisms are randomly divided into groups. For each group, a cat game is created,
and, similar to those games in the grey-box experiments, this cat game also
includes a set of fixed market mechanisms and a certain number of mechanisms
sampled from the Hall of Fame. After the game, the Hall of Fame is updated
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Function. Select-Population.

Input: P

Output: P
′

1 begin
2 P

′ ← ∅

3 Descending-Sort(P)

4 ne ← size of population ∗ re
5 for i ← 1 to ne do
6 P

′ ← P
′ ∪ {P[i]}

7 s ← 0
8 for i ← 1 to size of population do
9 s ← s + Score(P[i])

10 for i ← ne to size of population do
11 k ← size of population

12 r ← Uniform(0,s)
13 for j ← 1 to size of population do
14 r ← r − Score(P[i])
15 if r <= 0 then
16 k ← j
17 break

18 P
′ ← P

′ ∪ {P[k]}

Function. Crossover-Population.

Input: B, P

Output: P
′

1 begin
2 P

′ ← ∅

3 ne ← size of population ∗ re
4 for i ← 1 to ne do
5 P

′ ← P
′ ∪ {P[i]}

6 for i ← 1 to (size of population − ne)/2 do
7 P

′ ← P
′ ∪ {Crossover-Individuals(B, P[ne + i ∗ 2 − 1],

P[ne + i ∗ 2],rco)}

to incorporate the scores of the participating Hall of Famers and include new
individuals from the generation that performed well. The way in which the Hall
of Fame is manipulated is exactly the same as in the grey-box experiments. As
mentioned above, the average daily scores of the individuals are used as their
fitnesses in the selection step.
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Function. Mutate-Population.

Input: B, P

Output: P
′

1 begin
2 P

′ ← ∅

3 ne ← size of population ∗ re
4 for i ← 1 to ne do
5 P

′ ← P
′ ∪ {P[i]}

6 for i ← ne to size of population do
7 P

′ ← P
′ ∪ {Mutate-Individual(B, P[i], rm)}

4 Experimental Setup and Results

In the ga experiments, each game is configured to evaluate two individuals from
the population as in the grey-box experiments. To compare the performances of
the two approaches, the population consists of 20 individual auction mechanisms
at each generation and evolves over 20 generations so that each ga experiment
makes use of approximately the same number of cat games in total (200) as
in a grey-box experiment.4 Some experiments based on the ga may have a
population of thousands of individuals or even more. Our experiment cannot
support a population of this size due to the high computational cost of running
cat games. The 20 generations and the population of 20 individuals are the result
of balancing the two parameters under the constraint of the total number of cat
games to run. The elitism rate, re, the crossover rate, rco, and the mutation rate,
rm, are set to be 0.1, 0.7, and 0.05, which are typical in the ga experiments
reported in the literature [7,10]. Table 1 summarizes the values of parameters
and inputs of Algorithm1 in our ga experiments.

To provide a better comparison, we ran two sets of ga experiments, one
without crossover and the other with it. Figures 4 and 5 show the daily scores of
the four fixed auction mechanisms and the top Hall of Famers over time in two
sets of ga experiments together with those from the grey-box experiments. All
the results are averaged over 40 runs. Note that the x axes in the subfigures are
step (as in the grey-box experiments), or equivalently the number of games that
have been run, rather than generation that is common in plotting results from

4 As the Hall of Fame is empty at the beginning of each ga experiment, the first cat
game includes four individuals from the population, so the total number of games
to evaluate the 20 generations is actually 199. But the difference of one game can be
negligible. In theory, it is possible to design the experiments to run exactly the same
number of cat games as long as num of generations × size of population = 402
and size of population%2 = 0, however the integer solutions—201 and 2, or 67
and 6—to this equation are not practical for the ga as size of population is too
small.
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Table 1. The values of parameters and inputs of the ga experiments.

Parameter Value Parameter Value

num of generations 20 re 0.1

size of population 20 rco 0.7

num of samples 2 rm 0.05

num of hof samples 2 τa 0.3

capacity of hof 10 αa 1

num of policytypes 5 FM {chl, chh, cdal, cdah}
aτ and α are parameters in the softmax solver used by the
Select(HOF, num of hof samples) function, which is exactly the
same in the grey-box search in [14].
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Fig. 4. Scores of the four fixed auction mechanisms in the two sets of ga experiments,
one without crossover and the other with crossover, and those in the first set of grey-box
experiments, each averaged over 40 runs. (c) is originally Fig. 2(a) in [14].
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Fig. 5. Scores of the Hall of Famers in the two sets of ga experiments, one without
crossover and the other with crossover, and those in the first set of grey-box experi-
ments, each averaged over 40 runs. (c) is originally Fig. 2(b) in [14].

ga experiments. This presentation makes it easier to compare the results of the
ga experiments with those from the grey-box experiments.

Plots in Fig. 4a and b, from the two sets of ga experiments respectively, exhibit
the similar pattern as those in Fig. 4c, which are from the grey-box experiments.
The scores of the four fixed auction mechanisms are at approximately the same
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Table 2. The average daily scores of the best fixed auction mechanism and the best Hall
of Famers in the cat games at the end of the ga experiments, and those at the end
of the first set of grey-box experiments. In parentheses are the standard deviations.
The scores in the second row are significantly different from each other at the 95%
confidence level and so are those in the third row.

Auction mechanism ga without crossover ga with crossover Greyboxa

Best fixed mechanism (cdal) 0.3260 (0.0224) 0.3203 (0.0230) 0.3101 (0.0659)

Best Hall of Famers 0.4275 (0.0233) 0.4496 (0.0340) 0.4652 (0.0210)

Worst Hall of Famers 0.3389 (0.0255) 0.3554 (0.0192) 0.3790 (0.0219)
aThe values in this column are originally from [14].

positions across the three cases and then all descend until they settle down around
certain values. These auction mechanisms ended up with the same relative rank-
ing positions in these different cases. The difference is that in the end each of the
four auction mechanisms settles down with different scores in different cases, the
highest in the ga without crossover and the lowest in the grey-box search. This
suggests that the auction mechanisms explored in the grey-box experiments are
overall the most competitive while those explored in the ga experiments without
crossover are the least competitive. This further indicates that the grey-box search
is more effective than both versions of the ga search and as expected crossover
plays an important role in the ga. Figure 5 indicates exactly the same. Figure 5a
and b, from the two sets of ga experiments respectively, show that the scores of
the Hall of Famers increase dramatically at the beginning of the experiments and
flatten out at the end around certain positions that are lower than those in Fig. 5c.

Table 2 lists respectively the average scores of the best fixed auction mecha-
nism, and the best and worst Hall of Famers at the end of the two versions of
ga experiments and the grey-box experiments. At the 95% confidence level, any
two values in the second row or any two values in the third row are significantly
different from each other. That is to say that the Hall of Famers produced by
the grey-box experiments are significantly better than those produced by the ga
experiments. The scores of the best fixed auction mechanism in the three cases
agree to this finding, but they are not significantly different. This less significance
is possibly due to the fact that the cat game is not a zero-sum game, since the
transaction success rate of a mechanism in a cat game is relatively independent
from the performance of its opponents, which counts for one third of its total
score. Thus the gain of a stronger auction mechanism does not necessarily mean
the same amount of loss of the losing mechanism given that all the rest of the
configuration remains the same.5

To further investigate the effectiveness of the grey-box search in comparison
with the ga search, we ran additional experiments to let the Hall of Famers pro-
duced by the grey-box experiments and the two sets of ga experiments compete
against each other directly. Each of the three sets of experiments produced dozens

5 One example is that the scores of cdah and chh flatten out much earlier during the
experiments than the scores of cdal and chl in all the three cases in Fig. 4.
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Table 3. The average daily scores of the Hall of Famers produced by the ga exper-
iments and the first set of grey-box experiments in direct competition in cat games.
In parentheses are the standard deviations. The scores are significantly different from
each other at the 95% confidence level.

ga without crossover ga with crossover Greybox

0.3481 (0.0201) 0.3643 (0.0188) 0.4155 (0.0291)

of the Hall of Famers (69 from the grey-box experiments, 45 from the ga exper-
iments without crossover, and 71 from the ga experiments with crossover).6 We
ran 100 cat games with eight auction mechanisms in each game, which includes
two of the fixed auction mechanisms, cdal and chl, and two randomly selected
auction mechanisms from each of the three set of Hall of Famers. Other than
this, the cat games are configured exactly the same as we did in the grey-box
experiments and the ga experiments. Table 3 lists the average daily scores of
the three set of auction mechanisms. At the 95% confidence level, the scores of
the Hall of Famers from the grey-box experiments are significantly higher than
those from either set of the ga experiments. We showed in [14] that the grey-box
search was able to find mechanisms that are stronger than well known double
auction mechanisms when competing directly in cat games and are better than
mechanisms that were reported in the literature in term of various economic
properties and confirmed that the grey-box search can consistently produce sim-
ilar results when, for example, the capacity of the Hall of Fame varies. This work
provides one more piece of evidence for the superiority of the grey-box approach
by comparing the results of the grey-box experiments and those of experiments
based on different versions of the classic ga.7

5 Discussions, Future Work, and Summary

In this section, we draw contrasts and make connections between the grey-box
approach and evolutionary computational approaches including gas, gps, and
their variants. First, we can compare our grey-box approach to prior work on
automated auction mechanism and trading strategy acquisition based on simple
gas, including Cliff et al. [4] and Phelps et al. [19] as well as ours reported
here. A simple ga, or sga, evolves genomes, or binary strings, using selection,
crossover, and mutation operators, while the grey-box approach evolves a vector
of quality scores, each for a pre-defined building block, and explores the solution
space by biasing those building blocks that lead to better solutions. A sga

6 A Hall of Famer may come from more than one run of the same experiment.
7 We actually ran additional sets of ga experiments with crossover, each with a dif-

ferent crossover rate, 0.1, 0.4, or 1.0, in contrast to 0.7 that was used in the ga
experiments described in the text. It turned out that the ga experiments using 0.7
produced the best results and hence only the results of this set of experiments were
included in the text in the comparison against those of the grey-box experiments.
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maintains a set of sampling points in the solution space and tries to arrive at
points of higher fitness that are accessible by applying the operators, while the
grey-box approach tends to view the solution space along multiple dimensions
simultaneously, maintain a hyperplane that divides the solution space into slices,
adjust the sizes of the slices, and identify and explore more in those of high
fitness.

A popular theory that intends to explain the effectiveness of sgas in many
optimization domains is the building block hypothesis, or bbh [11,13]. The bbh
argues that certain building blocks of low order and low defining length, called
schemata,8 in the genome play a substantial role in constructing genomes of
high fitness. The operators of sgas enable the process to concentrate sampling
in subspaces that are identified by these schemata and further in the common
areas of these subspaces that have increasing fitness through mixing different
schemata. Based on this argument, Thierens and Goldberg [24] indicated that
computational expense grows exponentially with the difficulty of the problem, in
terms of the number of schemata and the orders of schemata. Efforts have been
made to address this issue with sgas and improvements to sgas were proposed
by either explicitly exploring to identify schemata or implicitly using special
operators to avoid breaking possible schemata in the sampled solutions [2,12].
The grey-box approach has similarities to these advanced gas9 since the grey-
box approach explicitly considers the building blocks for auction mechanisms
and biases its search towards the corners in the search space that correspond to
high quality blocks.

The idea of the grey-box approach is in particular similar to that of the
compact ga , or cga, which was introduced by Harik et al. [9]. A cga represents
the population as a probability vector, rather than as a set of binary strings,
where the ith component of the probability vector gives the probability that
the ith bit of an individual’s genome is 1. Compared with sgas, cgas have
compact representations and work well in practice. The view of evolving a vector
of real-valued quality scores in our grey-box approach (and the use of a real-
valued array of probabilities in the cga) should be distinguished from real-coded
genetic algorithms [8]. In the former case, the vector of real numbers maintains
a global view of the conceived fitness landscape of the problem domain or can
be considered as a summary of the whole population of individuals if such a
population exists, while in the latter case, a vector of real-coded values uniquely
determines an individual in the solution domain and one only sees a global view
of the fitness landscape when considering all the individuals and their fitness
values.

The tree-based model of auction mechanisms in our work bears similarities
on the surface to the tree structures in gp, though the tree structure in the

8 A schemata is typically represented in the form, for example, ****01*1***, where *

can match 0 or 1. The defining length of a schemata is the maximal distance between
bits with deterministic values, and the order of a schemata is the number of bits with
deterministic values.

9 These are sometimes called competent genetic algorithms.



140 J. Niu and S. Parsons

former case represents the whole search space and quality scores of building
blocks reflect the fitness landscape of the space while tree structures in the latter
each represent one individual in the search space and contains no information
themselves about how fit they are.

Another topic in evolutionary computation that is related to grey-box search
is the problem of early convergence to suboptimal solutions. In the grey-box
experiments, parameters of the softmax exploration method in the n-armed
bandit problem solvers were carefully set up so that sampling in the search
space starts with near randomness and gradually biases modestly towards areas
that are fitter than others. Techniques employed in evolutionary computation to
address the problem of premature convergence, including fitness sharing, crowd-
ing, and mutation with high rate, are based on similar considerations [11,22]. For
example, fitness sharing lowers the fitness of an individual by a certain amount,
which basically reflects the number of similar individuals in the population, so
that similar individuals with high fitness will not be able to prevail in the next
generation. In so doing, the whole population could remain diverse, approaching
multiple optima in the space in parallel if applicable. In fact, as a piece of future
work, these techniques can be incorporated into our ga experiments to see if
the experiments can produce similar or even better results than the grey-box
experiments.

Finally, our grey-box approach should be distinguished from Ronald A.
Fisher’s work in population genetics [1]. Fisher, in his research on Mendelian
inheritance, assumed that—as paraphrased by Sewall Wright10—

. . . each gene is assigned a constant value, measuring its contribution to
the character of the individual (here fitness) in such a way that the sum
of the contributions of all genes will equal as closely as possible the actual
measures of the character in the individuals of the population.

Wright disagreed with the view of the linear additive contribution of genes and
insisted that, based on his experimental work, genes favorable in one combination
are extremely likely to be unfavorable in another. Our grey-box approach is not
based on Fisher’s argument, although the vector of quality scores undoubtedly
converges and better auction policies would obtain higher scores if the argument
holds in the case of auction mechanisms. When the argument does not hold,
which we believe is the case based on our experience with the experiments using
cat games, our grey-box approach may help to obtain insights on which auction
policies can make better or bad combinations, and on how to design new, better
policies that work better with others.

To summarize, the main contribution of this work is that we apply two dif-
ferent search methods in the same solution space and make a fair comparison
between the two approaches, the first piece as we are aware of in the context
of experimental auction mechanism design. As the search methods are domain
independent, considerations in designing our algorithms and experiments and

10 A co-founder of the field with Fisher and a critic of Fisher’s approach.



A Genetic Algorithmic Approach to Automated Auction Mechanism Design 141

the discussions above can shed light on the design and evaluation of similar
search solutions to other domain problems.11
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Abstract. The future smart grid will bring new actors such as local producers,
storage capacities and interruptible consumers to the existing electricity grid along
with the challenge of sustainability. Intermediary power actors, i.e., brokers, will take
the burden of financial management, during the integration of these customers. This
paper describes the mathematical modelling, formalization and the design of decision
making systems of a winner broker agent, AgentUDE14, which competed in Power
Trading Agent Competition 2014 Final (Power TAC). In this work, we divide the
main trading problem into sub problems and then formalize and solve them individ‐
ually to reduce the mathematical complexity. In the wholesale market, we propose a
dynamic programming approach whereas our retailer algorithm uses an aggressive
tariff publication policy, which exploits tariff fees, such as early withdrawal penalty
and bonus payment. We show the results that AgentUDE14 is a successful agent in
many metrics, analyzing the tournament data from Power TAC 2014 Finals.

Keywords: Autonomous trading · Learning agents · Smart grid · Multi-agent

1 Introduction

Smart grids have turned into an exciting area for researchers and business. New power
actors with exciting concepts and ideas constantly join the market and reshape its struc‐
ture and course of actions. Besides, some governments have already declared their
energy transition policies, e.g. Germany with its Energiewende concept. Within Ener‐
giewende, Germany will permanently shut down all its 17 nuclear power plants by the
end of 2022 [9]. Meanwhile, fossil fuel based electricity production is likely to be
replaced by massive renewable energy production capabilities [5, 16].

Power TAC is an open source, smart grid simulation platform, which extends agent-
based computational economics and brings competitive electricity markets and broker-
centric smart grid design into a unique multi-agent simulation platform. In Power TAC,
agents act as retail brokers in a local power distribution region, purchasing power from
a wholesale market as well as from local sources, such as homes and businesses with
solar panels, and selling power to local customers and into the wholesale market. Retail
brokers must solve a supply-chain problem in which the product is infinitely perishable,
and supply and demand must be exactly balanced always [1, 2].

We take the broker’s trading problem as individual trading problems for each of the
electricity market that AgentUDE involves. In the wholesale market, we design a responsive
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hybrid model for price forecasting, using dynamic programming techniques and Markov
Decision Process. We use a belief function to adjust predicted values, derived from expo‐
nentially smoothed values of market clearing prices (MCP). In the retail market, AgentUDE
focuses on the manipulation of tariff parameters to earn more from customers’ penalties.
This was a quite new strategy for the Power TAC 2014 Final games and resulted in decent
amount of profit. Detailed investigations into the effects of the AgentUDE14 business strat‐
egies showed that AgentUDE14 achieved a serious portion of its profit through Early With‐
drawal Penalties (EWP) and Bonus Payments (BP).

Thanks to its overall business strategy and, especially, its aggressive tariff strategy,
AgentUDE14 won the Power TAC 2014 finals despite being the newest kid on the
competition. This paper discusses and analyzes the trading performance of AgentUDE,
using the data from an international competition.

2 Related Work

Smart grid multi-agent systems were applied in many complex applications, using open-
source agent platforms, such as JADE [17], Agent.GUI [18], ZEUS [19] and JACK [14].
The leading application area is micro grids [16], especially in resource scheduling and
cost optimizations.

In the field of competitive markets, Power TAC is one of the leading frameworks,
which enables competitive benchmarking in many dimensions (see Sect. 3). One of the
most cited paper was published by the TacTex team, the winner of the Power TAC 2013
competition. TacTex formalizes broker’s trading problem as Markov Decision Process
to abstract the mathematical modelling of the problem. On the other side, it optimizes
its customer tariffs through an algorithm, called “Lookahead-policy for Autonomous
Time- constrained Trading of Electricity” [3].

Another publication is from the AstonTAC team. It focuses on the trading in the
wholesale market using Markov Decision Processes for the formalization and Non-
Homogeneous Hidden Markov Models to deal with future trends [4].

The last broker related paper was published by the cwiBroker team. They took the
second place in Power TAC 2014 and 2015 competitions, utilizing a trading technique
that uses the equilibrium in continuous markets [8].

One of the most comprehensive research papers is published by [13]. The paper
reviews reinforcement learning approaches from the decision-support perspective in
smart electricity markets. Besides this work, many existing papers have confirmed that
MDP is one of the proven ways of handling time-sequential problems [3, 4, 10].

In our wholesale market module, we use a hybrid electricity price forecasting
approach, using several reinforcement learning methods [6, 7] and MDP, which is a
modified version of MDP design, introduced by [3]. We use an exponential smoothing
operator along with a belief function which is proposed by [10].
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3 The Power Trading Agent Competition

Smart grid simulation platforms have become more and more popular as liberalized
electricity markets and decentralized power generation challenge the volatile balance of
electricity demand and supply. Simulations aim to address these challenges to create a
vision of sustainable smart grid ecosystems. Power TAC is a data driven platform that
brings electricity brokers and smart market concepts together. Figure 1 depicts the high-
level structure of Power TAC.

Fig. 1. Major elements of the Power TAC scenario.

In this Power TAC scenario, broker agents remotely trade in simulated electricity
markets to increase their profits. Brokers are challenged to match their supply and
demand by means of trading in retail and wholesale electricity markets. The broker that
achieves the highest overall profit over all runs of the finals is the winner of the compe‐
tition. The 2014 version of Power TAC is best described in [1, 2].

The platform integrates various smart grid actors such as customer models, retail
markets, wholesale markets, a distribution utility (DU), and autonomous electricity
brokers within a single distribution area, currently a city. The main actors within Power
TAC are now described in more detail:

– Electricity Brokers are business entities that trade as intermediaries to attain good
results for their own accounts. They try to attract customers by publishing electricity
tariffs in the retail market, i.e. tariff market. The so-called DU closely monitors all
brokers in order to evaluate their demand and supply behavior. Imbalanced energy
is subject to penalties, which may result in a profit loss. Therefore, brokers must trade
in the Wholesale Market in order to cover their net demand.

– Customers are small and medium sized consumers and producers such as households
or small companies but also electric vehicles. They interact with the environment
through electricity tariffs. An aggregator may act on behalf of a group of customers,
e.g. parking lots. They can buy or sell electricity, subscribing to appropriate tariffs
which are defined in power type, time and money domains.
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– Generator Companies (GenCo) represent the large power generators or consumers.
These actors trade in the Wholesale Market and manage their commitments for the
next few hours up to several weeks.

– The Distribution Utility (DU) operates the grid and manages the imbalances in real-
time. It is assumed that the distribution utility owns the physical infrastructure. It
charges brokers for their net distributed energy per kWh, known as distribution fee.
It also manages imbalances and charges brokers for their imbalanced energy, called
balancing fee.

A Power TAC tournament consists of a set of games, grouped in different game sizes,
e.g. with three, five and seven players. The game size indicates the number of competing
broker agents. In addition to competing teams, a built-in default broker is always
included in games, i.e. it means two brokers and the default broker compete in a three-
player game. The default broker is the only retailer for all customers at the beginning of
each game, during the so-called bootstrap period. During this period, activity logs are
stored to give first relevant, necessary information to the competing brokers. Once all
brokers are permitted to join in, they are meant to compete for customers.

After all games have ended, profits are summed up and normalized on the basis of
each individual game size. The broker with the highest aggregated profit is the winner.

A Power TAC game takes up to a random time slot count, starting from one, cf.
Fig. 2 for the activities in a time slot. In the paper, we refer to the current time slot t and
time distance 𝛿 to future auction hour (see Table 1 to read more about the notation):

1. Brokers receive signals at every timeslot, like current cash balance, cleared prices
of timeslots cpt, cpt+1,… , cpt+23, and published tariffs by all brokers.

2. Brokers ought to submit orders to the Wholesale Market in order to procure an energy
amount Ef , which must be predicted prior to delivery hours.

3. At the end of a timeslot, a broker’s cash account is updated based on the profit
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P is
debited from the broker’s cash account, using the balancing fee of P (per unit).

4. In addition to the tariff value, tariff activities like customer subscriptions or with‐
drawals are subject to payment due to bonuses or early withdrawal penalty param‐
eters of the according tariffs.

5. Brokers pay a distribution fee for each energy unit if power is to be distributed/
transferred or if local power is traded in the Wholesale Market. The fee is exempted
in case of market brokerage. Another exemption applies if local production (energy
from customers) is consumed in the same area (by customers).

6. At the end of the timeslot, all brokers get all necessary information, like information
about net distribution, imbalance volumes, as well as tariff transactions.
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7. Customers initially subscribed to the tariff of the default broker. After all other
brokers joined in they evaluate at each timeslot the existing tariffs based on their
energy profile. For more details, [11] presents a comprehensive explanation of the
consumption model.

Fig. 2. Timeslot sequence diagram from a brokers’ point of view.

Table 1. Summary of all relevant notations.

Symbol Definition
t Current time slot t, i.e., order hour
𝛿 Time slot proximity. Time slot distance

of t to the power delivery hour
cpt,𝛿 MCP of the wholesale market ordered at

t with 𝛿
c̃pt,𝛿 Price-driven forecasted price at t with 𝛿
EWP Early withdrawal penalty, which is paid

from customers to brokers
BP Bonus payment is paid to customers, in

case of a successful tariff subscription
C Number of customers with respected

attribute, e.g. subscriber, total customers
Dt Distribution volume at timeslot t
Nt,f Needed power, calculated at timeslot t.

for the procurement at future timeslot f

Apart from the modules mentioned above, the simulation platform acts as a top-level
coordinator for customers, brokers and the DU. It especially also provides necessary
real-world data, such as weather forecasts, and manages the tariff market.
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4 AgentUDE14 at a Glance

In the Power TAC 2014 Finals, 72 games were played. Out of these, 16 games were
with 8 players, 35 games were with 5 players and 21 games were with 3 players. Agen‐
tUDE and cwiBroker dominated the games by realizing the best profits. AgentUDE took
the first place in game sizes 5 and 8 and third place in game size 3.

The broker abilities of AgentUDE can be divided into three groups: Wholesale, retail
and balancing market activities. Each module has its own predictive model and data
structure to create and transmit messages to the Power TAC core.

The wholesale trading module of AgentUDE uses a hybrid dynamic programming
approach, which tracks historical market data. This enables the broker to predict market
trends regardless of weather conditions. Statistics revealed that wholesale market costs
of brokers do not vary much from each other [20]. Therefore, retail activities are better
understood by interpreting the diversity of the individual tariff publication policies of
the brokers. On the other side, AgentUDE deploys an aggressive tariff strategy. Espe‐
cially in the beginning of a game, it is trying to offer the cheapest tariff. The idea is to
speculate on contract length, EWP and BP. There are two main goals in the retail
strategy: To provoke other brokers to publish cheaper tariffs and in order to persuade
customers to change their tariffs. This triggers tariff penalties which are accounted as
profit for the losing broker. The results of this strategy are presented in the next subsec‐
tions.

Table 1 defines the key parameters that are used in the paper. Here, time slot prox‐
imity refers to the time between order hour and delivery hour. For example, bidding at
18:00 for the power delivery at 20:00 means that the proximity is two.

4.1 Wholesale Market Activities

Wholesale trading is a vital issue for all brokers to minimize their imbalanced energy.
Additionally, brokers are challenged to buy the cheapest possible energy to be more
flexible in the retail market. For profitability reasons, customers tend to switch to the
cheapest tariff available according to their knowledge.

Figure 3 shows the cleared bidding and asking prices of AgentUDE. Apparently,
these cost prices make sense if the balance of the market is not important. The cost can
be decreased by a stingy bidding policy. However, it eventually results in a poor market
balance performance. Therefore, the broker developers are encouraged to deploy tactical
and strategical decision-support models so that the net imbalance can be avoided. Then,
the overall wholesale costs decrease.

Figure 4 illustrates the prediction performance of AgentUDE under different game
sizes. In 8 player games, the success rate is higher than with smaller game sizes since
the market is more stable due to the large number of participants.
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Fig. 4. The average cleared wholesale prices and the trading performance of AgentUDE in Power
TAC 2014 Finals.

Table 2 lists the number of tariffs and the wholesale bidding and selling costs of
brokers. “Ntariffs” is the total number of published tariffs. Frequency expresses the publi‐
cation cycle in terms of time slots. “Pbids” and “Pasks” stand for the average bidding and
asking prices. The energy consumption share of AgentUDE of the total energy consump‐
tion is 22.9%. Furthermore, after cwiBroker AgentUDE is the second-best broker when
it comes to lowest market costs.

AgentUDE’s bidding process takes place in two steps: Electricity price forecasting
and strategic bidding. In the first step, future prices are predicted, using a number of
machine learning techniques. In the final step, these forecasted prices are transformed
into strategic prices, taking balancing cost into account.

 

Fig. 3. Cleared bids and asks of AgentUDE and other brokers in Power TAC 2014 Finals.
Negative prices show the payments from brokers for a certain amount of bought energy. In the
same way, a positive price refers to a received payment for a certain amount of sold energy. Grey
tones indicate the time proximity. The light grey color indicates a time slot in the far future of the
game. The latter can mean up to 24 h. Likewise, the black color indicates the near future; i.e., a
sooner delivery.
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Table 2. The number of tariffs and wholesale trading averages of the brokers in Power TAC 2014
Finals.

Broker Ntariffs Frequency Pbids (€/MWh) Pasks (€/MWh)
AgentUDE 3791 27 22.70 28.90
cwiBroker 1071 97 22.49 27.60
CrocodileAg
ent

1106 94 43.11 13.08

Maxon 1426 73 23.15 53.30
Mertacor 2732 38 26.36 –
coldbroker 607 171 27.87 27.49
default 144 725 29.10 26.49
TacTex 1670 62 22.94 19.81

Electricity Price Forecasting. In this section, we outline the design of our MCP-based
forecasting model and compare our wholesale bidding performance with other broker
agents, using the data from Power TAC 2014 Finals.

Price forecasting is one of the most established area in the time-series analysis [12].
However, due to reasons given in the abstract and introduction of the paper, energy
markets are getting closer to a non-stationary position. Daily price spikes, rapidly
changing trends require a hybrid forecasting solution.

Analyzing the Power TAC games, we see that the price signals are usually stationary
and seasonal. Therefore, we can pick a simple seasonal autoregressive integrated moving
average (SARIMA) model. In the auto- and partial-autocorrelations, we see a strong
seasonality at lag 24 as well as a non-seasonal spike at lag 1. For simplicity, we ignore
the moving averages and take SARIMA(1, 0, 0)x(0, 1, 0)24 model to describe the fore‐
casting problem. Therefore, the formula can be rewritten as:

Ŷt+1 =
(
Yt − Yt−24

)
+ Yt−23 (1)

where Ŷt+1 is the prediction of the next time slot at current time slot t whereas Y  values
denote historical prices. The problem in the formula is the age of some regression terms
such as Yt−23 and Yt−24. Motivating from the strong correlation in partial autocorrelation
of seasonal difference, we replace those aged regression terms with a robust model, using
dynamic programming technique so that our forecasting model can avoid price spikes
caused by outlier historical prices.

In this section, we outline the design of our forecasting model. On the background,
we use a dynamic programming technique to implement the similar-hour concept [10].
The similar-hour concept is based on searching past data for hours with characteristics
similar to the predicted hour. For example, the trader agent has the same historical
patterns at 02:00 on different days of the week. In other words, the agent uses the same
data, while submitting bids to 03:00, 04:00, …, 02:00 (next day). Therefore, we use
MDPs to handle our time-sequential decisions, as formally described by [6]. Each hour
of day (24) is represented by a Markov Process. It means that at each time slot, there are
24 concurrent bidding processes. Each process has 25 states. One of those states is

150 S. Özdemir and R. Unland



terminal state {completed}. The rest of the states denote the timeslot proximity between
order hour and delivery hour. Let P14 be the process of delivery hour 14:00. Then P2 is
in the state 6 and 1 at the order hours 08:00 and 13:00, respectively. Our MDP is defined
as follows:

– States: S ∈ {1, … , 24, completed}

– Terminal state: {completed}

– Reward: R(s′, a) =

{
1: s′ = {completed}

0: otherwise
– Actions: as ∈ ℤ

– Transitions: State s transitions to ′completed′, if a bid clears. Otherwise, it transitions
to s − 1.

Here, action values are limit prices, provided by a value function V * (s). The value
function basically maximizes the expected sum of rewards, and theoretically replaces
the term (Yt−23 − Yt−24), given in Formula 1. The model of the environment is represented
by a belief function f (s, a), which is a modified version of a work by [3] and influenced
by Q-learning concept [7]. However, Tesauro keeps the probability of a given price by
harvesting historical data. In our case, we only keep the weights of changes of two
sequential MCP’s as the problem defined in Formula 1. Therefore, the belief function
f (s, a) points to weights of a ∈ 𝜉a, given a state s, where higher values mean higher
probability of reward occurrence where 𝜉a is the set of actions,
{a ∈ ℤ| − 500 ≤ a ≤ 500}. Since our reward function is a kind of counting process, we
are interested in the reward occurrence in the belief function. The action with highest
probability ought to result in transition to {completed}.

As time proceeds to t + 1, the belief functions f (s, a) is updated for ∀a ∈ 𝜉a, as MCPs
broadcasted to brokers. In brief, MCP’s are supervising and reforming the belief function
based on the market results. Therefore, the agent does not need to act to learn and update
its model. Following formula updates the belief function, using a learning rate 𝛼 and a
reward function. Note that only MCP’s are positively rewarded whereas other actions
are rewarded with a zero value. This way, in turn, provides a normalization process on
the action-state vector:

ft+1
(
st, at

)
= ft

(
st, at

)
∗ 𝛼 + R

(
st+1, at

)
∗ (1 − 𝛼) (2)

st+1 =

{
′completed′:MCP = at

st − 1:otherwise
(3)

where (2) and (3) are subject to 0 ≤ 𝛼 ≤ 1.
To solve this MDP, we use value iteration method to find the expected sum of

rewards. The value function V * (s) takes a probability density function (pdf), Fs(a) where
μ and σ parameters of the normal distribution are obtained from the values of f (s, a),
given a state s for ∀a ∈ ℤ. Following value function, V∗(s) solves our MDP and creates
a bid value, using an exponential smoothing operator. Here, the exponential smoothing
operator refers to the non-seasonal auto regression term in Formula 1.
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V∗(s) =

{
cp′

s
:s = 24

cp′

s+1 + arg max
a

Fs(s):otherwise (4)

where exponential smoothing operator is defined as cp′

s
= cps(𝛽) + cp′

s
(1 − 𝛽) and

subject to 0 ≤ 𝛽 ≤ 1. Since there is no seasonal difference available at state s = 24.
Therefore, we only use an exponential smoothing value. If s < 24, then smoothed value
is summed with seasonal difference, which implemented within a belief function.

Strategic Bidding. Forecasted prices usually known as truthful information. However,
these predictions are not directly submitted to markets by brokers. In order to make the
model comparable, forecasted prices must be transformed into strategic prices. Fore‐
casted prices constitute 24 price distributions where 𝜇hour and 𝜎hour are mean and standard
deviation of an hour. We finalize the transformation in two steps:

– Strategic prices [1, 2,… , 24] = [balancingPrice,… ,
(
𝜇t+24 − 𝜎t+24

)
]

– Strategic prices [1, 2,… , 24] * = [1 + pt+1,𝛿=1,… , 1 + pt+24,𝛿=24]

where probability of pt,𝛿 is defined as:

pt,𝛿 =

∑clearingProximity=proximity
trading volumet

∑
trading volumet

(5)

In the first step of the transformation, we assign prices to enabled auctions, starting
from the first standard deviation before the mean up to the balancing price. The balancing
price is a dynamic variable which is recalculated at every time slot, based on the
balancing market reports. Higher proximities are likely to get lower prices. In the second
step, we take trading volume into the account. To do that, we scan historical trading
volumes, tracking the same bidding proximities. Higher volume probability means
higher strategic price for the given proximity.

4.2 Retail Market Activities

AgentUDE applied a unique strategy on the retail side in the competition, which
substantially differentiated it from the other brokers: It first published aggressive tariffs,
usually the lowest tariff values, complemented by customer binding measures such as
EWP and BP. Due to the competition, this strategy provoked other brokers to publish
lower tariffs. This lower prices smoothly convinced customers of AgentUDE to switch
their tariffs. This triggered the payment of EWPs, which resulted in additional profit.
This strategy provided a 20% contribution to the overall profit of AgentUDE.

All the games start with several uncertainties such as market status (production and
consumption capacities) and the number of competitors. Broker agents are not aware of
their competitors’ trading strategies. Thus, initial tariffs are set based on experimental
values per game size.

As a part of the retailer strategy, AgentUDE always sets an EWP value if the tariff
value to be published is the currently lowest in the market. Otherwise, EWP is not set
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since it would harm the attractiveness of the tariff. The tariff value (i.e. unit price of
electricity in EUR/kWh) is determined, analyzing the brokers’ procurement costs and
competitors’ activities. Our cost predictor takes the most recent cleared wholesale
market prices and the distribution fee into account, tracking the last n days where n is
an experimental value. Another variable, called “minimum of competitor’s”, scans the
tariff repository to find the most competitive tariff. AgentUDE assigns market costs and
adds a profit margin (experimental value) to the tariff value, if the tariff value is greater
than other tariff values in the tariff repository. Otherwise, “minimum of competitor’s”
is assigned to the tariff value, multiplying the value with a competition factor (experi‐
mental value). More details can be found in our previous publication [15].

Table 3 compares the tariff fee performances of all brokers. Surprisingly, only Agen‐
tUDE and TacTex benefitted from tariff fees. Here, the profit increases with the increase
of the number of players.

Table 3. Overall average profits of brokers from tariff fees in Power TAC 2014 Finals.

Broker Game size 3 (EUR/
game)

Game size 5 (EUR/
game)

Game size 8 (EUR/
game)

AgentUDE 410.893 (6 games) 277.335 (20 games) 698.067 (14 games)
CrocodileAgent 13.583 (5 games) 12.835 (17 games) 8.537 (14 games)
Mertacor 4.615 (4 games) 3.168 (17 games) 987 (8 games)
TacTex 811.864 (2 games) 599.021 (6 games) 508.912 (14 games)

To gain even more profit from this strategy, some requirements must be met: Active
customer and a tough competitor. First, customers have to see some profitable tariffs on
the desk before leaving their current retailer. If not, customers tend to ignore the existing
tariffs and stay in their tariff. In this case, the strategy offered by AgentUDE does not
work well. Second, a broker has to offer competitive tariffs so that customers can see
them and change their tariffs if it is really profitable for them. As a proof of this claim,
competitive and non-competitive brokers were monitored in 3 player games below.

Fig. 5. Cumulative tariff fee earnings of AgentUDE that are collected through 3 player games.
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Figure 5 reflects the tariff fee earnings of AgentUDE in the 3 player games between
AgentUDE and the other competing broker (other than the default broker). Apparently,
TacTex, CrocodileAgent and cwiBroker allowed AgentUDE to gain more profit while
Mertacor, Maxon permitted less. In the same fashion, this symbiotic relationship is
proportional to the official results given in previous sections. Another result is that
TacTex, cwiBroker and AgentUDE offer the most profitable tariffs to the customers and
convince them to change their tariffs.

4.3 Balancing Market Activities

Brokers must meet their demand and supply. If not, they might lose a serious portion of
their profits for paying a huge imbalance fee. The most challenging issue at this point
is to predict future consumptions. AgentUDE uses the consumption data of customers
to make predictions. However, this method does not always provide reasonable results
since it does not consider changing conditions such as the weather. The balancing market
tool signals brokers to pay attention to their imbalance status. However, brokers are
challenged to predict their future demand. AgentUDE predicts its customer demand,
through:

Nt,f = Nt−1,f * 𝜔 +

(

Dt *
DT−24

Dt−24

)

* (1 − 𝜔) (6)

where N is the needed energy and D is distribution volume at the current time slot t for
the future time slot f . The weight is 0 < 𝜔 < 1. Consequently, needed energy is adjusted
with imbalance signal and the final amount of needed energy is submitted to the whole‐
sale market.

Figure 6 illustrates the magnitude of cumulative imbalance volumes and net
payments to DU from brokers. In this figure, negative and positive volumes are regarded
as absolute values, thus, summed up regardless of their signs. On the left figure, it can
be seen that AgentUDE, TacTex and cwiBroker ended up almost with the same imbal‐
ance. However, the net payment amounts of TacTex and cwiBroker are greater than the
amount that AgentUDE paid (right figure). This indicator shows that, unit benefit (net
imbalance/net payment) of AgentUDE is higher than others.

Fig. 6. The cumulative volume of negative and positive imbalances.
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5 Future Work and Conclusion

AgentUDE seems to be a successful broker in terms of profitability. However, there are
still pending issues to be improved prior to next Power TAC competitions. One of the
more important issues is to improve efficiency in the wholesale trading business. Even
though AgentUDE has a decent performance in comparison with other brokers, it still
requires more accuracy to increase its competitiveness over other brokers. One chance
for improvement is to better integrate weather forecasts in the price predictions for the
wholesale market.

Another improvement is the utilization of unused power actors. In the Power TAC
environment there are a number of new generation power actors such as storage units
or controllable customers. However, most of the brokers as AgentUDE do not benefit
from them. On the other side, the DU encourages brokers to publish producer tariffs by
means of waiving distribution fee if the produced energy is consumed in the same local
area. Despite this attractive offer, only AgentUDE and CrocodileAgent benefitted from
this opportunity. However, it is officially announced at the Power TAC developer
website that the number of producers and electric vehicles will be increased dramati‐
cally. It means that another improvement is needed to balance local production and
consumption. No doubt, utilizing these components improves the overall efficiency and
profitability of the broker.

This paper presented the trading strategies of AgentUDE. Based on the statistics
which were discussed in this paper three significant outcomes for the retail, wholesale
and balancing market activities can be identified:

Firstly, the wholesale market performances of the given brokers do not differ much.
It can clearly be seen that all the brokers deliver a decent market performance based on
their demand profiles. Thus, the first outcome is wholesale activities do not contribute
much to the overall profit outcome of brokers.

Secondly, the retail strategies of the brokers reveal a great deal of variety. What
allows AgentUDE to be one step ahead of its competitors is its aggressive tariff strategy.
The results show that AgentUDE earns a serious portion of its profit by tariff fee spec‐
ulations. This strategy leaves Agent-UDE in a more comfortable and flexible position
against other brokers.

It is noteworthy to remark that all the data and results presented in the paper are valid
for the specific releases of the brokers and Power TAC during the 2014 competition.
The simulation environments as well as the brokers get stronger and stronger with time
and growing experience. Additionally, new teams bring nice fresh wind to the compe‐
tition. The Power TAC core modules have also been updated. At this point, success
remains a relative term, especially in such a dynamic and progressive simulation envi‐
ronment. AgentUDE team will continue to update its broker as part of the smart grid
studies at the University of Duisburg-Essen.
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