
Chapter 9
Analysis of the Positivity and Stability
of Fractional Discrete-Time Nonlinear
Systems

Tadeusz Kaczorek

Abstract The positivity and asymptotic stability of the discrete-time nonlinear sys-
tems are addressed. Necessary and sufficient conditions for the positivity and suffi-
cient conditions for the asymptotic stability of the nonlinear systems are established.
The proposed stability tests are based on an extension of the Lyapunov method
to the positive nonlinear systems. The effectiveness of the tests are demonstrated
on examples.
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9.1 Introduction

A dynamical system is called positive if its trajectory starting from any nonnegative
initial condition state remains forever in thepositive orthant for all nonnegative inputs.
An overview of state of the art in positive system theory is given in the monographs
[8, 11] and in the papers [10, 12, 18, 21]. Models having positive behavior can be
found in engineering, economics, social sciences, biology and medicine, etc.

The Lyapunov, Bohl and Perron exponents and stability of time-varying discrete-
time linear systems have been investigated in [1–7]. The positive standard and
descriptor systems and their stability have been analyzed in [10–12, 18, 21].
The positive linear systems with different fractional orders have been addressed
in [12, 13] and the descriptor discrete-time linear systems in [9, 10]. Descriptor
positive discrete-time and continuous-time nonlinear systems have been analyzed
in [14, 19, 20] and the positivity and linearization of nonlinear discrete-time systems
by state-feedbacks in [18]. The minimum energy control of positive linear systems
has been addressed in [15–17]. The stability and robust stabilization of discrete-time
switched systems have been analyzed in [23, 24].
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In this chapter the positivity and asymptotic stability of the fractional discrete-time
nonlinear systems will be investigated.

The chapter is organized as follows. In Sect. 9.2 the definitions and theorems
concerning the positivity and stability of positive discrete-time and continuous-
time linear systems are recalled. Necessary and sufficient conditions for the pos-
itivity of the fractional discrete-time nonlinear systems are established in Sect. 9.3.
The asymptotic stability of the positive nonlinear systems is addressed in Sect. 9.4,
where the sufficient conditions for the stability are proposed. Concluding remarks
are given in Sect. 9.5.

The following notation will be used: R—the set of real numbers, Rn×m—the set
of n × m real matrices, Rn×m

+ —the set of n × m matrices with nonnegative entries
andRn+ = R

n×1
+ , Z+—the set of nonnegative integers,Mn—the set of n × n Metzler

matrices (with nonnegative off-diagonal entries), In—the n × n identity matrix.

9.2 Positive Discrete-Time and Continuous-Time Linear
Systems and Their Stability

Consider the discrete-time linear system

xi+1 = Axi + Bui , i ∈ Z+ = {0, 1, . . .}, (9.1a)

yi = Cxi + Dui , (9.1b)

where xi ∈ R
n , ui ∈ R

m , yi ∈ R
p are the state, input and output vectors and A ∈

R
n×n , B ∈ R

n×m , C ∈ R
p×n , D ∈ R

p×m .

Definition 9.1 [8, 11] The discrete-time linear system (9.1) is called (internally)
positive if xi ∈ R

n+, yi ∈ R
p
+, i ∈ Z+ for any initial conditions x0 ∈ R

n+ and all inputs
ui ∈ R

m+, i ∈ Z+.

Theorem 9.1 [8, 11] The discrete-time linear system (9.1) is positive if and only if

A ∈ R
n×n
+ , B ∈ R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

Definition 9.2 [8, 11] The positive discrete-time linear system (9.1) is called asymp-
totically stable if

lim
i→∞ xi = 0 for any x0 ∈ R

n
+.

Theorem 9.2 The positive discrete-time linear system (9.1) is asymptotically stable
if and only if one of the following equivalent conditions is satisfied:

1. all coefficients of the polynomial

pn(z) = det[In(z + 1) − A] = zn + an−1z
n−1 + · · · + a1z + a0
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are positive, i.e. ai > 0 for i = 0, 1, . . . , n − 1.
2. all principal minors of the matrix A = In − A = [ai j ] are positive, i.e.

M1 = ∣
∣a11

∣
∣ > 0, M2 =

∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
> 0, . . . , Mn = detA > 0.

Proof The proof is given in [11].

Consider the continuous-time linear system

ẋ = Ax + Bu, (9.2a)

y = Cx + Du, (9.2b)

where x = x(t) ∈ R
n , u = u(t) ∈ R

m , y = y(t) ∈ R
p are the state, input and output

vectors and A ∈ R
n×n , B ∈ R

n×m , C ∈ R
p×n , D ∈ R

p×m .

Definition 9.3 [8, 11] The continuous-time linear system (9.2) is called (internally)
positive if x ∈ R

n+, y ∈ R
p
+, t ≥ 0 for any initial conditions x0 ∈ R

n+ and all inputs
u ∈ R

m+, t ≥ 0.

Theorem 9.3 [8, 11]The continuous-time linear system (9.2) is positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ ,

Definition 9.4 [8, 11] The positive continuous-time linear system (9.2) is called
asymptotically stable if

lim
t→∞ x(t) = 0 for all x0 ∈ R

n
+.

Theorem 9.4 The positive continuous-time linear system (9.2) is asymptotically
stable if and only if one of the following equivalent conditions is satisfied:

1. all coefficients of the polynomial

pn(s) = det[Ins − A] = sn + ân−1s
n−1 + · · · + â1s + â0

are positive, i.e. âk > 0 for k = 0, 1, . . . , n − 1.
2. all principal minors of the matrix Â = −A = [âi j ] are positive, i.e.

M̂1 = ∣
∣â11

∣
∣ > 0, M̂2 =

∣
∣
∣
∣

â11 â12
â21 â22

∣
∣
∣
∣
> 0, . . . , M̂n = det Â > 0.

Proof The proof is given in [11].
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Theorem 9.5 The matrix A ∈ Mn satisfies the condition

−A−1 ∈ R
n×n
+

if and only if the positive system (9.2) is asymptotically stable.

Proof The proof is given in [11].

9.3 Positivity of the Fractional Nonlinear Systems

Consider the fractional discrete-time nonlinear system

Δαxi = Axi + f (xi−1, ui ), (9.3a)

yi = g(xi , ui ) (9.3b)

and 0 < α ≤ 1, i ∈ Z+ = {0, 1, . . .}, where

Δαxi =
i

∑

j=0

aα
j xi− j (9.4a)

with

aα
j = (−1) j

(
α

j

)

,

(
α

j

)

=
{
1 for k = 0
α(α−1)···(α− j+1)

j ! for k = 1, 2, 3, . . .
(9.4b)

is the α-order difference of xi , xi ∈ R
n , ui ∈ R

m , yi ∈ R
p are the state, input and out-

put vectors, A ∈ R
n×n and f (xi−1, ui ) ∈ R

n , g(xi , ui ) ∈ R
p are vector functions

continuous in xi and ui .
Note that the fractional difference (9.4a) is defined in the point “i” not as usually

in the point “i + 1” [13, 22].
Substituting (9.4a) into (9.3a) we obtain

i
∑

j=0

aα
j xi− j = Axi + f (xi−1, ui )

and

xi =
i

∑

j=1

A1c
α
j xi− j + f1(xi−1, ui ), i ∈ Z+, (9.5)
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where

cα
j = −aα

j , j =1, . . . , i; A1 = [In − A]−1 ∈ R
n×n,

f1(xi−1, ui ) =A1 f (xi−1, ui ).

Assuming xi = 0, i = 1, 2, . . . from (9.5) for i = 0 we have

x0 = f1(0, u0). (9.6)

Therefore, the initial condition x0 is related with u0 by (9.6).

Lemma 9.1 The matrix
A1 = [In − A]−1 ∈ R

n×n
+ (9.7)

if and only if the positive linear system

xi+1 = Axi , A ∈ R
n×n
+ (9.8)

is asymptotically stable.

Proof ByTheorem9.2 thepositive discrete-time linear system (9.8) is asymptotically
stable if and only if the matrix A − In ∈ Mn is asymptotically stable (is Hurwitz)
andbyTheorem9.5 the condition (9.7) is satisfied if the system (9.8) is asymptotically
stable. �

Theorem 9.6 The solution xi of the Eq. (9.5) for given initial condition x0 ∈ R
n and

input ui ∈ R
m, i ∈ Z+ has the form

xi = Φi x0 +
i

∑

j=1

Φi− j f1(x j−1, u j ), (9.9a)

where

Φ j =
j

∑

k=1

cα
k A1Φ j−k, j = 1, 2, . . . , i; Φ0 = In . (9.9b)

Proof The proof can be accomplished by induction or by checking that (9.9) satisfies
the Eq. (9.5). �

In particular case for linear system

xi =
i

∑

j=1

A1c
α
j xi− j + B1ui , i ∈ Z+, B1 ∈ R

n×m (9.10a)
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the solution xi has the form

xi = Φi x0 +
i

∑

j=1

Φi− j B1u j (9.10b)

and the matrix Φ j is given by (9.9b).

Remark 9.1 The solution xi of theEq. (9.5) can be computed using the formulae (9.9)
iteratively for i = 1, 2, . . . and substituting x j−1 given by (9.9a) into the vector
function f1(x j−1, u j ) for i = 1, 2, . . ..

Definition 9.5 The discrete-time nonlinear system (9.3) is called (internally) pos-
itive if xi ∈ R

n+, yi ∈ R
p
+, i ∈ Z+ for any initial conditions x0 ∈ R

n+ and all inputs
ui ∈ R

m+, i ∈ Z+.

Theorem 9.7 The discrete-time nonlinear system (9.3) is positive if and only if
0 < α ≤ 1, the matrix A ∈ R

n×n+ is asymptotically stable and

f (xi−1, ui ) ∈ R
n
+ for xi ∈ R

n
+ and ui ∈ R

m
+, i ∈ Z+, (9.11)

g(xi , ui ) ∈ R
p
+ for xi ∈ R

n
+ and ui ∈ R

m
+, i ∈ Z+. (9.12)

Proof Sufficiency. By Lemma 9.1 if A ∈ R
n×n
+ is asymptotically stable

then A1 ∈ R
n×n
+ . It iswell-known [13] that if 0 < α ≤ 1 then cα

j > 0 for j = 1, 2, . . ..
Therefore, from (9.9b) we have Φ j ∈ R

n×n
+ for j = 0, 1, 2, . . . and from (9.9a) xi ∈

R
n+ for i = 1, 2, . . ., since by assumption (9.11) f1(xi−1, ui ) = A1 f (xi−1, ui ) ∈ R

n+
for xi ∈ R

n+ and ui ∈ R
m+, i ∈ Z+. If (9.12) holds then from (9.3b) we have yi ∈ R

p
+

for i ∈ Z+.

Necessity. If f (xi−1, ui ) = 0 then xi ∈ R
n+, i ∈ Z+ only if A1 ∈ R

n×n
+ and by Lemma

9.1 implies the asymptotic stability of thematrix A ∈ R
n×n
+ . Note that xi ∈ R

n+ for i ∈
Z+ implies the condition (9.11). Similarly, yi ∈ R

p
+ for i ∈ Z+ implies the condition

(9.12). �

9.4 Stability of the Positive Nonlinear Systems

Consider the fractional nonlinear system for zero inputs (ui = 0 and f (xi−1, 0) =
f̄2(xi−1) in the form

Δαxi = Axi + f̄2(xi−1), i ∈ Z+, 0 < α ≤ 1 (9.13)

or

xi =
i

∑

j=1

A1c
α
j xi− j + f2(xi−1), i ∈ Z+, 0 < α ≤ 1, (9.14a)
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where
f2(xi−1) = A1 f̄2(xi−1), i ∈ Z+ (9.14b)

and A1 is defined by (9.7).

Definition 9.6 The fractional positive nonlinear system (9.13) is called asymptoti-
cally stable in the region D ∈ R

n+ if xi ∈ R
n+, i ∈ Z+ and

lim
i→∞ xi = 0 for x0 ∈ D ∈ R

n
+.

To test the asymptotic stability of the system the Lyapunov method will be used.
As a candidate of the Lyapunov function we choose

V (xi ) = cT xi > 0 for xi ∈ R
n
+, i ∈ Z+, (9.15)

where c ∈ R
n+ is a vector with strictly positive components ci > 0 for i = 1, . . . , n.

Using (9.14) and (9.15) we obtain

ΔV (xi ) = V (xi+1) − V (xi ) = cT xi+1 − cT xi

= cT
[
i+1∑

j=1
A1cα

j xi− j+1 + f2(xi ) −
(

i∑

j=1
A1cα

j xi− j + f2(xi−1)

)]

= cT
[

i∑

j=1
A1cα

j (xi− j+1 − xi− j ) + A1cα
i+1x0 + f2(xi ) − f2(xi−1)

]

< 0

and

i
∑

j=1

A1c
α
j (xi− j+1 − xi− j ) + A1c

α
i+1x0 + f2(xi ) − f2(xi−1) < 0, xi ∈ D ∈ R

n
+

(9.16)
i ∈ Z+, since c ∈ R

n+ is strictly positive.
Therefore, the following theorem has been proved.

Theorem 9.8 The positive discrete-time nonlinear system (9.13) is asymptotically
stable in the region D ∈ R

n+ if the condition (9.16) is satisfied.

Example 9.1 Consider the discrete-time nonlinear system (9.13) with

xi =
[

x1,i
x2,i

]

, A =
[

0.3 0.1
0.2 0.4

]

, f2(xi ) =
[

x1,i x2,i
x22,i

]

.

In this case

A1 = [I2 − A]−1 =
[

0.7 −0.1
−0.2 0.6

]−1

= 1

0.4

[

0.6 0.1
0.2 0.7

]

= 1

4

[

6 1
2 7

]

∈ R
2×2
+ .
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Fig. 9.1 Stability region (inside the curved line)

The nonlinear system is positive, since the matrix A ∈ R
2×2
+ is asymptotically

stable and f2(xi ) ∈ R
2+ for all xi ∈ R

2+, i ∈ Z+.
The region D ∈ R

2+ is defined by

D := {x1,i , x2,i } =
i∑

j=1
A1c

α
j xi− j+1 + A1c

α
i+1x0 − xi + f2(xi )

=

⎡

⎢
⎢
⎢
⎢
⎣

1.5

(
i∑

j=1
cαj x1,i− j+1 + cαi+1x10

)

+ 0.25

(
i∑

j=1
cαj x2,i− j+1 + cαi+1x20

)

− x1,i + x1,i x2,i

0.5

(
i∑

j=1
cαj x1,i− j+1 + cαi+1x10

)

+ 1.75

(
i∑

j=1
cαj x2,i− j+1 + cαi+1x20

)

− x2,i + x22,i

⎤

⎥
⎥
⎥
⎥
⎦

(9.17)

Let us assume

x10 = 0.1, x20 = 0.2, α = 0.5, i = 4. (9.18)

The region defined by (9.17) with (9.18) is shown in Fig. 9.1.

9.5 Concluding Remarks

The positivity and asymptotic stability of the discrete-time nonlinear systems
have been addressed. Necessary and sufficient conditions for the positivity
of the discrete-time nonlinear systems have been established (Theorem 9.7). Using
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the Lyapunov direct method the sufficient conditions for asymptotic stability of the
discrete-time nonlinear systems have been proposed (Theorem 9.8). The effective-
ness of the conditions has been demonstrated on Example 9.1. The considerations
can be extended to fractional continuous-time nonlinear systems.

An open problem is an extension of the conditions to the descriptor fractional
discrete-time and continuous-time nonlinear systems.
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