
Chapter 7
Internally Positive Representations
and Stability Analysis of Linear Delay
Systems with Multiple Time-Varying Delays

Francesco Conte, Vittorio De Iuliis and Costanzo Manes

Abstract This chapter introduces the Internally Positive Representation of linear
systems with multiple time-varying state delays. The technique, previously intro-
duced for the undelayed case, aims at building a positive representation of systems
whose dynamics is, in general, indefinite in sign. As a consequence, stability criteria
for positive time-delay systems can be exploited to analyze the stability of the original
system. As a result, an easy-to-check sufficient condition for the delay-independent
stability is provided, that is compared with some well known conditions available in
the literature.

Keywords Positive delay systems · Time-varying delays · Internally positive
representation (IPR) · Stability analysis

7.1 Introduction

Positive linear systems have been extensively studied in the last decades due to their
well known properties and applications [6, 18]. More recently, several works on
positive linear time-delay systems appeared in the literature, some of them provid-
ing insightful stability results [1, 12, 15–17, 19, 23]. To exploit the properties of
positive systems also for not necessarily positive systems, an useful tool has recently
been developed in the linear undelayed case: the Internally Positive Representation
(IPR). The technique, introduced in the discrete-time framework in [4, 8, 9] and in
the continuous-time one in [2, 3], aims at constructing internally positive represen-
tations of systems whose dynamics is indefinite in sign. The method presented in
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[2], although very easy and straightforward, can produce in some cases an unstable
positive system even if the original system is stable. Later works on the IPR focused
on this issue, showing how to construct IPRswhose stability properties are equivalent
to those of the original system [3].

As is typical in Systems andControl, one usually tries to extend to themore general
case what is well known in the particular one: to this end, the main part of this chapter
focuses on the extension of the IPR construction method to linear continuous time-
delay systems, in the general case of multiple time-varying delays. Then, a stability
analysis follows, leading to the conclusion that only delay systems that are stable for
any set of delays, constant or time-varying, can admit a stable IPR. As a result, an
easy-to-check sufficient condition for the delay-independent stability of the original
system is provided, whose efficacy with respect to other similar sufficient conditions
available in the literature is tested by numerical examples.

This chapter is organized as follows: in Sect. 7.2, the Internally Positive Represen-
tation for linear systems with multiple time-varying delays is introduced. Section7.3
reports a discussion on the stability properties of IPRs and presents the new stability
condition. In Sect. 7.4 the condition is compared with similar existing results, and in
Sect. 7.5 an illustrative example is reported. Conclusions follow.

Notations. R+ is the set of nonnegative real numbers. C− and C+ are the open left-
half and right-half complex planes, respectively. Rn+ is the nonnegative orthant of
R

n . Rm×n
+ is the cone of positive m × n matrices. In is the n × n identity matrix.

�(z) and �(z) are the real and imaginary parts of a complex number z, respectively.
C ([a, b],Rn) denotes the Banach space of all continuous functions on [a, b] with
values inRn , endowedwith the uniformconvergence norm‖ · ‖∞. A ∈ R

n×n is said to
beMetzler if all its off-diagonal elements are nonnegative. d(A) denotes the diagonal
matrix extracted from A.σ(A) andα(A)denote the spectrumand the spectral abscissa
of A, respectively. A is said to be stable or Hurwitz if σ(A) ⊂ C

− or, equivalently,
if α(A) < 0.L p

1 andL p
1,+ are the sets of locally integrable functions with values in

R
p and R

p
+, respectively. Finally, m = {1, 2, . . . ,m} and m0 = {0, 1, . . . ,m}.

7.2 Internally Positive Representation of Delay Systems

7.2.1 Internally Positive Delay Systems

Let S = {{Ak}m0 , B,C, D
}
n,p,q denote a continuous-timedelay system,with possibly

time-varying delays, having the following form

ẋ(t) = A0x(t) +
m∑

k=1

Akx(t − δk(t)) + Bu(t),

y(t) = Cx(t) + Du(t),

t ≥ t0,

x(t) = φ(t − t0), t ∈ [t0 − δ, t0],

(7.1)
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where u(t) ∈ R
p is the input, with u ∈ L p

1 , y(t) ∈ R
q is the output, x(t) ∈ R

n is
the system variable and φ ∈ C ([−δ, 0],Rn) is a pre-shape function (initial state).
δk : R → R+ are time-delays, which are bounded continuous functions

0 ≤ δk(t) ≤ δ, ∀t ≥ t0. (7.2)

B ∈ R
n×p, C ∈ R

q×n , D ∈ R
q×p, and Ak ∈ R

n×n , for k ∈ m0. It is well known that
the delay differential equation in (7.1) admits a unique solution satisfying a given
initial condition φ (see e.g. [13]). Throughout the chapter, the solution x(t) and the
corresponding output trajectory y(t) associated to a system S will be denoted as

(
x(t), y(t)

) = ΦS
(
t, t0, φ, u

)
. (7.3)

Following [14, 17], an internally positive linear delay system is defined as follows.

Definition 7.1 A delay system S = {{Ak}m0 , B,C, D
}
n,p,q is said to be internally

positive if

{
φ ∈ C ([−δ, 0],Rn+)

u ∈ L p
1,+

}
⇒

{
x(t) ∈ R

n+,

y(t) ∈ R
q
+,

∀t ≥ t0

}
. (7.4)

Stated informally, S is internally positive if nonnegative initial states and input
functions produce nonnegative state and output trajectories. The following result
gives necessary and sufficient conditions to fulfill Definition 7.1 (see [12, 23]).

Lemma 7.1 A delay system S = {{Ak}m0 , B,C, D}n,p,q is internally positive if and
only if A0 is Metzler and B, C, D and Ak, for k ∈ m, are nonnegative.

7.2.2 Positive Representation of Vectors and Matrices

Given a matrix (or vector) M ∈ R
m×n , the symbols M+, M− denote the compo-

nentwise positive and negative parts of M , while |M | stands for its componentwise
absolute value. It follows that M = M+ − M− and |M | = M+ + M−.

Let Δn = [In − In] ∈ R
n×2n . The definitions reported below are taken from

[4, 9].

Definition 7.2 A positive representation of a vector x ∈ R
n is any vector x̃ ∈ R

2n+
such that

x = Δn x̃ . (7.5)

The min-positive representation of a vector x ∈ R
n is the positive vector π(x) ∈ R

2n+
defined as

π(x) =
[
x+
x−

]
. (7.6)
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Themin-positive representationof amatrixM ∈ R
m×n is the positivematrixΠ(M) ∈

R
2m×2n
+ defined as

Π(M) =
[
M+ M−
M− M+

]
(7.7)

while the min-Metzler representation of a matrix A ∈ R
n×n is the Metzler matrix

Γ (A) ∈ R
2n×2n defined as

Γ (A) =
[
d(A) + (A − d(A))+ (A − d(A))−

(A − d(A))− d(A) + (A − d(A))+

]
. (7.8)

Of course, if d(A) ∈ R
n×n
+ then Γ (A) = Π(A). Moreover, for any x ∈ R

n and
matrices M ∈ R

m×n , A ∈ R
n×n the following properties hold true:

(a) x = Δnπ(x);
(b) ΔmΠ(M) = MΔn , so that ΔmΠ(M)π(x) = Mx ;
(c) ΔnΓ (A) = AΔn , so that ΔnΓ (A)π(x) = Ax .

7.2.3 Internally Positive Representations

The concept of Internally Positive Representation (IPR) of an arbitrary system has
been introduced in [4, 8, 9], for discrete-time systems, and in [2, 3] for continuous-
time systems. The IPR construction presented in [2] can be extended to the case of
time-varying delays systems by the following definition.

Definition 7.3 An Internally Positive Representation (IPR) of a delay system S ={{Ak}m0 , B,C, D
}
n,p,q is an internally positive system S̃ = {{ Ãk}m0 , B̃, C̃, D̃

}
ñ, p̃,q̃

together with four transformations {T f
X , T b

X , TU , TY },

T f
X : R

n → R
ñ
+, T b

X : R
ñ
+ → R

n, TU : R
p → R

p̃
+, TY : R

q̃
+ → R

q ,

(7.9)

such that∀t0 ∈ R,∀(
φ, u

) ∈ C ([−δ, 0],Rn) × L p
1 , the following implication holds:

{
φ̃(τ ) = T f

X

(
φ(τ)

)
, ∀τ ∈ [−δ, 0]

ũ(t) = TU
(
u(t)

)
, ∀t ≥ t0

}

=⇒
{
x(t) = T b

X

(
x̃(t)

)
,

y(t) = TY
(
ỹ(t)

)
,

∀t ≥ t0

}

(7.10)

where

(
x(t), y(t)

) = ΦS
(
t, t0, φ, u

)
,

(
x̃(t), ỹ(t)

) = ΦS̃

(
t, t0, φ̃, ũ

)
.
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T f
X and T b

X in (7.9) are the forward and backward state transformations of the IPR,
respectively, while TU and TY are the input and output transformations, respectively.
The implication (7.10) means that if the (nonnegative) pre-shape function φ̃ of the
IPR is computed as the forward state transformation T f

X of the pre-shape function
φ of the original system, and the (nonnegative) input ũ to the IPR is computed as
the input transformation TU of the input u to the original system, then the state
trajectory of the original system is given by the backward transformation T b

X of the
(nonnegative) state x̃ of the IPR, and the output trajectory y of the original system is
given by the output transformation TY of the (nonnegative) output ỹ of the IPR. For
consistency, the backwardmap T b

X must be a left-inverse of the forwardmap T f
X , i.e.

x = T b
X

(
T f
X (x)

)
, ∀x ∈ R

n .
The following theorem provides a method for the IPR construction of arbitrary

time-varying delays systems.

Theorem 7.1 Consider adelay system S as in (7.1), with S = {{Ak}m0 , B,C, D
}
n,p,q .

An internally positive system S̄ = {{Ak}m0 , B,C, D
}
2n,2p,2q , with

A0 = Γ (A0), B = Π(B), C = Π(C), D = Π(D), Ak = Π(Ak), k ∈ m,

(7.11)
together with the four transformations

x̄ = T f
X (x) = π(x), x = T b

X (x̄) = Δn x̄, (7.12)

ū = TU (u) = π(u), y = TY (ȳ) = Δq ȳ, (7.13)

is an IPR of S.

Proof First of all, since A0 isMetzler and B,C , D, and Ak , k ∈ m, are all nonnegative,
from Lemma 7.1 it follows that system S is internally positive. For any pre-shape
functionφ ∈ C ([−δ, 0],Rn), let x̄(t) and ȳ(t) denote the state and output trajectories

(
x̄(t), ȳ(t)

) = ΦS̄

(
t, t0, φ̄, ū

)
(7.14)

where φ̄(τ ) = T f
X (φ(τ)) = π(φ(τ)), ∀τ ∈ [−δ, 0] and ū(t) = TU (u(t)) = π(u(t)),

∀t ≥ t0. Thus, (7.14) solves the system

˙̄x(t) = A0 x̄(t) +
m∑

k=1

Ak x̄(t − δk(t)) + Bū(t),

ȳ(t) = Cx̄(t) + Dū(t),

t ≥ t0

x̄(t) = φ̄(t − t0), t ∈ [t0 − δ, t0]. (7.15)

Consider now the vectors

z(t) = T b
X (x̄(t)) = Δn x̄(t), (7.16)

v(t) = TY (ȳ(t)) = Δq ȳ(t). (7.17)
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The theorem is proved by showing that x(t) = z(t) and y(t) = v(t) for all t ≥ t0.
Using properties (b) and (c), given in Sect. 7.2.2, and (7.16), it results that, for t ≥ t0,

ż(t) = Δn ˙̄x(t) = Δn A0 x̄(t) +
m∑

k=1

Δn Ak x̄(t − δk(t)) + Δn Bπ
(
u(t)

)

= A0z(t) +
m∑

k=1

Akz(t − δk(t)) + Bu(t). (7.18)

and for t ∈ [t0 − δ, t0]

z(t) = Δn x̄(t) = Δnφ̄(t − t0) = Δnπ
(
φ(t − t0)

) = φ(t − t0), (7.19)

and

v(t) = Δq ȳ(t) = ΔqC x̄(t) + Δq Dπ
(
u(t)

) = Cz(t) + Du(t), t ≥ t0. (7.20)

Note that
(
z(t), v(t)

)
obey the same equations of (7.1), with the same initial condi-

tion. From the uniqueness of the solution we get
(
z(t), v(t)

) = (
x(t), y(t)

)
, and this

concludes the proof. �

Remark 7.1 If Ak = 0 for all k ∈ m the IPR proposed in Theorem 7.1 coincides with
the normal-form IPR proposed in [2] (Theorem7.4) for the delay-free case.

7.3 Stability Analysis

In this section we investigate the relationships between the stability of a delay sys-
tem and of its IPR. A quite obvious consequence of the boundedness of the state
transformations T f

X (·) and T b
X (·) in (7.12) is that if an IPR of a system is stable, then

the original system is stable as well. As we will see, the converse is not always true.
Throughout this chapter we will use a standard nomenclature about stability. The

trivial solution x(t) ≡ 0 of a delay system of the type (7.1) is said to be stable if any
solution x(t) for all t ≥ t0 satisfies a bound of the type ‖x(t)‖ ≤ k‖φ‖∞, for some
k > 0. If in addition limt→∞ ‖x(t)‖ = 0, the trivial solution is asymptotically stable.
If there exist k > 0 and η > 0 such that ‖x(t)‖ ≤ k e−η t‖φ‖∞, the trivial solution is
said to be exponentially stable.

A delay system as in (7.1) is said to be stable if the trivial solution is asymptotically
stable. It isworth recalling that the stability of a delay systemof the type (7.1) depends
on the nature of delays (see e.g. [7, 11]): one can have stability for a given set or
for any set of constant delays, for commensurate constant delays, for time-varying
delays, within a given bound or without a specific bound, fast or slowly varying, etc.
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For reasons that will soon be clear, in this chapter we are mainly concerned with
stability for any set of constant or time-varying delays without a specific bound
(delay-independent stability).

7.3.1 Stable IPRs of Delay-Free Systems

For the case of delay-free systems (Ak = 0, k ∈ m) in [2] it has been shown that the
IPR construction method there presented when applied to stable systems in some
cases may produce unstable IPRs. Indeed, the spectrum of A0 = Γ (A0) properly
contains the spectrumof A0, and the additional eigenvalues can be unstable.However,
a change of coordinates on the original system can generally affect the stability of the
IPR, and this fact can be exploited to obtain stable IPRs. In [2] it has been proved that
such a change of coordinates exists if σ(A0) belongs to the sector ofC− characterized
by �(z) + |�(z)| < 0. In [3], the IPR construction method of [2] has been suitably
extended so that stable IPRs can be constructed for any stable system, without any
limitation on the location of the eigenvalues of A0 within C−.

7.3.2 Stability of Positive Delay-Systems

The IPR produced by the method in Theorem 7.1 is by construction a linear positive
delay system. For this reason we recall below the stability conditions for such a class
of systems. Consider a system of the type (7.1) which is internally positive (i.e., A0

is Metzler and Ak , k ∈ m, are nonnegative, Lemma 7.1). In [12] it has been proved
that, when the delays δk are constant, a necessary and sufficient stability condition
is that there exist p and r in Rn such that

( m∑

k=0

Ak

)T
p + r = 0 p > 0, r > 0. (7.21)

Note that, being
∑m

k=0 Ak aMetzlermatrix, condition (7.21) is equivalent to
∑m

k=0 Ak

Hurwitz, i.e.

α

( m∑

k=0

Ak

)
< 0. (7.22)

Another interesting equivalent condition (see [6]), that does not require the explicit
computation of eigenvalues (condition (7.22)) or solving a linear problem (condition
(7.21)) is that all the leading principal minors of the matrix

M = −
m∑

k=0

Ak
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are positive, i.e. Mi > 0 for i = 1, ..., n, where Mi is the determinant of the matrix
obtained removing the last n − i rows and columns from M . Note that all these
equivalent conditions do not depend on the size of the delays. In [1] and in [17] it
has been proved that (7.22) is necessary and sufficient for stability even in the case
of time-varying delays δk(t), without limitation on the size of the delays and of their
derivatives. Ngoc in [23] proved a similar condition also for the case of distributed
delays.

Remark 7.2 It should be remarked that condition (7.22) is necessary and sufficient
for the delay-independent stability of a positive delay-system, while it is only nec-
essary for the stability of general (not necessarily positive) systems, being required
for the stability of the associated delay-free system.

To summarize, we have the following:

Proposition 7.1 If a system S as in (7.1), with A0 Metzler and B, C, D, Ak, for
k ∈ m, nonnegative, is stable for a given set of constant delays δk , then it is also
delay-independent stable, i.e. stable for any arbitrary set of constant or time-varying
delays.

Liu and Lam [16] showed that if a positive delay system is stable for all continuous
and bounded delays, then the trivial solution is exponentially stable for all continuous
and bounded delays. On the other hand, if the delays are continuous but unbounded,
the trivial solution may be asymptotically stable but not exponentially stable.

7.3.3 Stable IPRs of Delay Systems

Consider the equations (7.15) of the IPRgiven inTheorem7.1.Wehave the following:

Theorem 7.4 If a delay system S as in (7.1) admits a stable IPR, then necessarily
S is delay-independent stable.

Proof As discussed in the previous paragraph, since the IPR is a positive delay
system, a necessary and sufficient condition for its stability is that the Metzler matrix∑m

k=0 Ak is Hurwitz, and this in turn implies that the IPR is delay-independent
stable. The boundedness of the state transformations T f

X (·) and T b
X (·) defined in

(7.12) trivially implies the delay-independent stability of the original system. �

Stated in another way, Theorem 7.4 claims that only delay systems that are delay-
independent stable admit stable Internally Positive Representations.
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Theorem 7.4 suggests the following sufficient condition of delay-independent
stability for not necessarily positive delay systems.

Theorem 7.5 Consider a delay system S as in (7.1). If

α

(
Γ (A0) +

m∑

k=1

Π(Ak)

)
< 0, (7.23)

then S is delay-independent stable.

Proof Note first that the Metzler matrix in (7.23) coincides with
∑m

k=0 Ak , where
Ak are the matrices of the IPR of Theorem 7.1. Thus, if condition (7.23) is satisfied,
then the IPR of S is stable, and thanks to Theorem 7.4 the original system S is
delay-independent stable. �

Remark 7.3 As pointed out in Sect. 7.3.2, checking condition (7.23) does not
require the explicit computation of the eigenvalues of the Metzler matrix Γ (A0) +∑m

k=1 Π(Ak). Indeed, an easy equivalent condition only requires to check that all
the leading principal minors of M = −(

Γ (A0) + ∑m
k=1 Π(Ak)

)
are positive.

7.4 Comparison with Similar Conditions
of Delay-Independent Stability

Many stability conditions exist for delay systems with multiple delays, based on
different techniques: frequency sweeping [5], spectral analysis [20], Linear Matrix
Inequalities [7, 10] and others (see [11]). These results refer to different cases such as
commensurate or incommensurate delays, constant or time-varying delays, slowly
or fast varying delays. Many stability tests rely on numerical computations and
some have a not negligible computational complexity (particularly the necessary and
sufficient ones). Coming to delay-independent stability, in [21] and [22], for the case
of single and constant delay, the following sufficient condition for delay-independent
stability has been given

μp(A0) + ‖A1‖p < 0 (7.24)

where μp(A) is the logarithmic norm (or measure) of matrix A induced by the
operator norm ‖A‖p, defined as:

μp(A) = lim
ε→0

‖I + εA‖p − 1

ε
.
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The expression of μp(·) can easily be computed for p = 1, 2,∞:

μ1(A) = max
j=1...n

(
aii +

n∑

i=1, i �= j

|ai j |
)

,

μ2(A) = 1

2
λmax (A

T + A),

μ∞(A) = max
i=1...n

(
aii +

n∑

j=1, j �=i

|ai j |
)

.

The extended condition:

μp(A0) +
m∑

k=1

‖Ak‖p < 0 (7.25)

has been shown [26] to be sufficient for the stability of systems with multiple com-
mensurate delays, although only for the case of p = 2. In [25] and [24] the same
condition has been proven sufficient, for any p, also in the case of non commensu-
rate and time-varying delays of any size, and therefore is a sufficient condition of
delay-independent stability of the system.

As amatter of fact, it is rather easy to find delay-independent stable systemswhich
satisfy condition (7.23) given in Theorem 7.5 and do not satisfy condition (7.25):
an example is reported in Sect. 7.5. Further investigations are needed to compare the
conservativeness of the new condition with respect to the classical one.

7.5 Example

Consider the problem of verifying the delay-independent asymptotic stability of a
system S = {{A0, A1, A2}, B,C, D

}
3,p,q with:

A0 =
⎡

⎣
−25 −5 −14
0 −19 0.1
0.7 1.2 −16

⎤

⎦ , A1 =
⎡

⎣
−1.5 −0.4 0
0.5 −2.9 1

−1.5 0.5 −3.4

⎤

⎦ , A2 =
⎡

⎣
−7 2 6.8
1.8 −1.6 −2.1
0.5 1.6 −3.3

⎤

⎦

Since S is not an internally positive system, (7.22) is only a necessary condition for
its delay-independent stability (see Remark 7.2). We have that:

α

( m∑

k=0

Ak

)
= −23.131 < 0

and therefore condition (7.22) is satisfied.Hencewe can check the proposed sufficient
condition (7.23), verifying that all the leading principal minors of the matrix
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M = −(
Γ (A0) + Π(A1) + Π(A2)

)

are positive (Remark 7.3). We get:

M1 = 25, M2 = 470.4, M3 = 7.2 · 103, M4 = 1.4 · 105,
M5 = 2.3 · 106, M6 = det(M) = 1.5 · 107

and this is sufficient to conclude that the system is delay-independent stable.
Actually, the exact value of condition (7.23) is:

α

(
Γ (A0) + Π(A1) + Π(A2)

)
= −2.436.

It is not possible to achieve the same conclusion on the stability of the systemapplying
the classical sufficient condition (7.25), since:

μ1(A0) + ‖A1‖1 + ‖A2‖1 = 14.700 > 0,

μ2(A0) + ‖A1‖2 + ‖A2‖2 = 2.896 > 0,

μ∞(A0) + ‖A1‖∞ + ‖A2‖∞ = 15.200 > 0,

and therefore the condition is not satisfied at least for p = 1, 2,∞.
To sum up, for the system in this example the criterion (7.25) fails to assess the

stability, which has been proved using the proposed condition (7.23).
Figure7.1 depicts some examples of time evolution of log(‖x(t)‖) obtained with

u(t) = 0 for t ∈ [0, 200] and different constant values of the two delays. In all cases,
the plotted quantity decreases linearly, thus confirming the asymptotic stability,which
in the case of constant delays is also exponential.

Fig. 7.1 Plot of log(‖x(t)‖) with different constant delays values
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7.6 Conclusions and Future Work

In this chapter the Internally Positive Representation of linear delay systems with
multiple delays, possibly time-varying, has been introduced, and its consequences
on the study of the stability of the original system have been investigated, leading
to an easy-to-check sufficient condition whose efficacy with respect to the delay-
independent stability tests provided in [21, 24, 25] has been tested by means of
numerical examples. Future work will be devoted to further stability analysis and to
the extension of the IPR technique to other classes of delay systems.

Acknowledgements Wewould like to thankAlfredo Germani and Filippo Cacace for their encour-
agement and helpful suggestions in doing this work.
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