
Chapter 5
On Feedback Transformation and Integral
Input-to-State Stability in Designing Robust
Interval Observers for Control Systems

Thach Ngoc Dinh and Hiroshi Ito

Abstract The problem of designing interval observers is addressed for output feed-
back control of a class of nonlinear systems in this chapter. The framework of integral
input-to-state stability is exploited to drive the estimated intervals and the state vari-
ables to the origin asymptotically when disturbances converge to zero. Moreover
interval observers are tuned with feedback gain. A reduced-order interval observer is
proposed, and the flexibility offered by gains in designing observer is related to the
existence of reduced-order interval observers. Comparative simulations are given to
illustrate the theoretical results.

Keywords Interval observers ·Reduced-order observers ·Nonlinear systems ·Out-
put feedback control · Guaranteed state estimation.

5.1 Introduction

Interval observers generate upper bounds and lower bounds of state variables of
dynamical systems at each time instant based on given information about bounds of
unknown disturbances and of unknown initial conditions [6]. The bounds give inter-
vals where the state variables are sure to stay during transient periods in which clas-
sical observers do not provide any guarantee. The usefulness of interval estimates is
evident for monitoring purposes when large disturbances or uncertainties are present
[1]. A typical mechanism to allow the construction of such interval observers is to let
the estimation errors be governed by positive systems. Some examples of extensive
studies on design of interval observers have been reported in [4, 5, 8–14] (see also
references therein).
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Recently, an interval observer was proposed in [3] for nonlinear control systems
which are affine in unmeasured state variables, and it was investigated further in [7]
to provide design guidelines for guaranteeing the length of estimated intervals to
converge to zero for converging disturbances and guaranteeing (integral) input-to-
state stability ((i)ISS) of the entire controlled system. The iISS approach developed
in [7] has allowed one to deal with a larger class of nonlinearities than the original
approach [3]. This chapter continues investigating the iISS framework and introduces
a modification by incorporating feedback gain into the observer for control systems.
The modification, in addition to state transformation of the error systems, offers
flexibility in obtaining positive systems leading to tighter interval estimates and
swifter convergence of the interval length and state variables of the plant to zero. This
chapter also proposes a reduced-order interval observer aiming at swifter behavior
of the estimates and the plant state with less control effort. It also discusses how the
positivity of error systems allows the existence of a full-order observer to imply the
existence of a reduced-order observer. Comparative simulations are given to illustrate
these ideas.

In this chapter, the set of real numbers is denoted by R. The set of non-negative
real numbers is denoted byR≥0. The symbol | · | denotes Euclidean norm of vectors.
Inequalities must be understood component-wise, i.e., for a = [a1, ..., an]� ∈ R

n

and b = [b1, ..., bn]� ∈ R
n , a ≤ b if and only if, for all i ∈ {1, ..., n}, ai ≤ bi . For a

square matrix Q ∈ R
n×n , let Q+ ∈ R

n×n denote Q+ = (
max{qi, j , 0}

)n,n

i, j=1,1, where

Q = (
qi, j

)n,n

i, j=1,1. Let Q
− = Q+ − Q. This notation is limited to square matrices,

and the superscripts+ and− for other purposes are defined appropriately when they
appear. A square matrix Q ∈ R

n×n is said to be Metzler if each off-diagonal entry of
this matrix is nonnegative. The symbol I denotes the identity matrix of appropriate
dimension. For α, β : R≥0 → R

n , by α(s) ≡ β(s) we mean α(s) = β(s) for all s ∈
R≥0. A function α : R≥0 → R≥0 is said to be positive definite and written as α ∈ P
if α is continuous and satisfies α(0) = 0 and α(s) > 0 for all s ∈ (0,∞). A function
α ∈ P is said to be of classK if α is strictly increasing. A classK function is said
to be of classK∞ if it is unbounded. A continuous function β : R≥0 × R≥0 → R≥0

is said to be of class K L if, for each fixed t ∈ R≥0, β(·, t) is of class K and, for
each fixed s > 0, β(s, ·) is strictly decreasing and limt→∞ β(s, t) = 0. Logical sum
and logical product are denoted by ∨ and ∧, respectively.

5.2 Setups and Objectives

Consider the system

ẋ(t) = A(y(t))x(t) + B(y(t))u(y(t), x̂+(t)) + δ(t) (5.1a)

y(t) = Cx(t) (5.1b)

with time t ∈ R≥0, the state x(t) ∈ R
n , themeasurement output y(t) ∈ R

p and the ini-
tial condition x(0) = x0, where the functions A : Rp → R

n×n and B : Rp → R
n×q
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are supposed to be locally Lipschitz, and C ∈ R
p×n is a constant matrix. The term

u(y(t), x̂+(t)) ∈ R
q is the control input indicating output feedback, and the func-

tion u : Rp × R
n → R

q is supposed to be locally Lipschitz. The signal x̂+(t) ∈ R
n

denotes an estimate of x(t), which has yet to be defined. The disturbance vec-
tor δ : R≥0 → R

n is supposed to be piecewise continuous. It is stressed that x(t)
is not measured. Instead, the output y(t) is available as a measurement for all
t ∈ R≥0. Assume that the vectors x−

0 , x+
0 ∈ R

n and piecewise continuous functions
δ+, δ− : R≥0 → R

n satisfying

x−
0 ≤ x0 ≤ x+

0 (5.2)

δ−(t) ≤ δ(t) ≤ δ+(t), ∀t ∈ R≥0 (5.3)

are known, while x(0) = x0 and δ(t) are not known. The design problem to be
addressed in this chapter is mainly to achieve two objectives simultaneously. One is
to drive x(t) to the origin asymptotically for an arbitrary initial condition satisfying
(5.2) by output feedback control when δ(t) converges to zero. The other is to estimate
an envelope x−(t), x+(t) ∈ R≥0 such that the framer property

x−(t) ≤ x(t) ≤ x+(t), ∀t ∈ R≥0 (5.4)

holds in the presence of any piecewise continuous disturbance δ(t) satisfying (5.3).
The former is for the purpose of control, and the latter is for monitoring. Other
important features of the simultaneous control andmonitoring problem are described
mathematically in Sect. 5.4.

5.3 Observer Candidates

5.3.1 Full-Order Interval Observer

Divide the control input u into a direct output feedback term and the remainder as

u(y, x̂+) = K (y)y + ua(y, x̂
+). (5.5)

The locally Lipschitz function function K : Rp → R
q×p can be given arbitrarily

since K (y)y can be absorbed by the locally Lipschitz function ua : Rp × R
n → R

q .
Define an observer candidate as

˙̂x+ =(A(y) + B(y)K (y)C)x̂+ + B(y)ua + H(y)[Cx̂+ − y] + S[R+δ+ − R−δ−]
(5.6a)

˙̂x− =(A(y) + B(y)K (y)C)x̂− + B(y)ua + H(y)[Cx̂− − y] + S[R+δ− − R−δ+]
(5.6b)
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with the initial condition defined by

x̂+(0) =x̂+
0 := S[R+x+

0 − R−x−
0 ] (5.7a)

x̂−(0) =x̂−
0 := S[R+x−

0 − R−x+
0 ] (5.7b)

and the output equation

x+ = S+Rx̂+ − S−Rx̂−, x− = S+Rx̂− − S−Rx̂+, (5.8)

where S = R−1. The invertible matrix R ∈ R
n×n , the locally Lipschitz functions

H : Rp → R
n×p and K : Rp → R

q×p are design parameters. The observer can-
didate (5.6) includes the one proposed in [3] as a special case given by K = 0.
For K = 0, sufficient conditions for achieving (5.4) and the nominal convergence
(x(t), x+(t), x−(t) → 0 as t → ∞ for δ(t) ≡ 0) are given in [3]. The convergence
by the observer with K = 0 was made robust to allow δ(t) �≡ 0 in [7]. Inspired by
the result in [7], this chapter introduces the following two assumptions as guidelines
for selecting K and H for (5.6).

Assumption 5.1 The matrix

Γ (y) = R[A(y) + B(y)K (y)C + H(y)C]R−1 (5.9)

is Metzler for each fixed y ∈ R
p.

Assumption 5.2 There exist a C1 function V : Rn → R≥0, continuous functions ν,
ν ∈ K∞, ω ∈ P and η+, η− ∈ K such that ν(|ξ |) ≤ V (ξ) ≤ ν(|ξ |) and

∂V

∂ξ
(ξ)

{[A(y) + B(y)K (y)C + H(y)C]ξ + S[R+ρ+ +R−ρ−]}

≤ −ω(|ξ |) + η+(|ρ+|) + η−(|ρ−|) (5.10)

hold for all ξ ∈ R
n , y ∈ R

p, ρ+ ∈ R
n and ρ− ∈ R

n .

The former assumption aims at securing the framer property (5.4). The latter
assumption guarantees the convergence of x+(t) − x−(t) to zero even in the presence
of disturbance δ(t) �≡ 0 by requiring the error systems of x̂+ − x and x̂− − x corre-
sponding to (5.6a) and (5.6b) to be integral input-to-state stable (iISS) with respect
to ρ+ := δ+ − δ and ρ− := δ − δ−, respectively. Based on the idea of separating
feedback design from the observer design, the following assumption is introduced
as guidelines for selecting the feedback input u.

Assumption 5.3 There exist a positive definite radially unbounded C1 functionU :
R

n → R≥0, continuous functions μ ∈ P and γ, ζ ∈ K such that

∂U

∂x
(x)[A(Cx)x + B(Cx)u(Cx, x + d) + δ] ≤ −μ(|x |) + γ (|d|) + ζ(|δ|) (5.11)

holds for all x ∈ R
n , d ∈ R

n and δ ∈ R
n .
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This assumption requires the closed-loop systemwith the fictitious state feedback
u using x instead of x̂+ to be iISS with respect to the estimation error d = x̂+ − x
and the disturbance δ.

5.3.2 Reduced-Order Interval Observer

Consider the following partition of the state vector x :

x =
[
xm
xm

] } p components
} n − p components.

(5.12)

Accordingly, A, B, δ and x0 are partitioned as

A(y) =
[
Am,m(y) Am,m(y)
Am,m(y) Am,m(y)

]
, B(y) =

[
Bm(y)
Bm(y)

]
, δ =

[
δm
δm

]
, x0 =

[
xm,0

xm,0

]

(5.13)

and it is assumed that

C = [I 0] ∈ R
p×n (5.14)

holds. Since the component vector xm(t) ∈ R
p is measured, one needs to estimate

the remainder xm(t) ∈ R
n−p. Let ŵm(t) denote such an estimate which has yet to

be defined. Then the output feedback control law based on the estimation can be
represented by u(y, ŵm) instead of u(y, x̂+). For a constant matrix G ∈ R

(n−p)×p to
be chosen later, let ŵm be called an estimate of xm by defining ŵm = x̂+

m − Gy and
generating x̂+

m (t) appropriately. Then we have

u(y, ŵm) = u(y, x̂+
m − Gy). (5.15)

To construct a reduced-order observer, we replace (5.3) with

x−
m,0 ≤ xm,0 ≤ x+

m,0, (5.16)

δ−
m (t) ≤ Gδm(t) ≤ δ+

m (t), ∀t ∈ R≥0, (5.17)

δ−
m (t) ≤ δm(t) ≤ δ+

m (t), ∀t ∈ R≥0, (5.18)

where the vectors x−
m,0, x

+
m,0 ∈ R

n−p and piecewise continuous functions δ+
m , δ−

m :
R≥0 → R

p, δ+
m , δ−

m : R≥0 → R
n−p are assumed to be known and satisfy

G = 0 ⇒ δ−
m (t) ≡ δ+

m (t) ≡ 0. (5.19)

The bounds δ−
m and δ+

m are meaningless unless (5.19) holds.
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Define a reduced-order observer candidate as

˙̂x+
m = [

Am,m (y) + GAm,m (y)
]
x̂+
m + [

Am,m (y) − Am,m (y)G − GAm,m (y)G +GAm,m (y)
]
y

+ [
Bm (y) + GBm (y)

]
u + Sm [R+

m δ+
m − R−

m δ−
m ] + Sm [R+

m δ+
m − R−

m δ−
m ] (5.20a)

˙̂x−
m = [

Am,m (y) + GAm,m (y)
]
x̂−
m + [

Am,m (y) − Am,m (y)G − GAm,m (y)G +GAm,m (y)
]
y

+ [
Bm (y) + GBm (y)

]
u + Sm [R+

m δ−
m − R−

m δ+
m ] + Sm [R+

m δ−
m − R−

m δ+
m ] (5.20b)

with

x̂+
m (0) =x̂+

m,0 := Sm[R+
m x

+
m,0 − R−

m x
−
m,0] + Gy(0) (5.21a)

x̂−
m (0) =x̂−

m,0 := Sm[R+
m x

−
m,0 − R−

m x
+
m,0] + Gy(0) (5.21b)

and

x+
m =S+

m Rm x̂
+
m − S−

m Rm x̂
−
m − Gy (5.22a)

x−
m =S+

m Rm x̂
−
m − S−

m Rm x̂
+
m − Gy (5.22b)

x+ =
[
y
x+
m

]
, x− =

[
y
x−
m

]
. (5.22c)

Here, Sm = R−1
m . The invertible matrix Rm ∈ R

(n−p)×(n−p) is a design parameter.
For the reduced-order observer, this chapter proposes the following assumptions as
guidelines to select the gain G and the control input u.

Assumption 5.4 The matrix

Γm(y) = Rm
[
Am,m(y) + GAm,m(y)

]
R−1
m (5.23)

is Metzler for each fixed y ∈ R
p.

Assumption 5.5 There exist a C1 function V : Rn−p → R≥0, continuous functions
ν, ν ∈ K∞, ω ∈ P and η+, η− ∈ K such that ν(|ξ |) ≤ V (ξ) ≤ ν(|ξ |) and
∂V

∂ξ
(ξ)

{[
Am,m(y) + GAm,m(y)

]
ξ +Sm[R+

mρ+
m + R−

mρ−
m ] + Sm[R+

mρ+
m + R−

mρ−
m ]}

≤ −ω(|ξ |) + η+(|ρ+|) + η−(|ρ−|) (5.24)

hold for all ξ ∈ R
n−p, y ∈ R

p, ρ+ = [ρ+�
m , ρ+�

m ]� ∈ R
p+(n−p) and ρ− = [ρ−�

m ,

ρ−�
m ]� ∈ R

p+(n−p).

Assumption 5.6 There exist a positive definite radially unbounded C1 functionU :
R

n → R≥0, continuous functions μ ∈ P and γ, ζ ∈ K such that
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∂U

∂x
(x)[A(xm)x + B(xm)u(xm, xm + dm) + δ] ≤ −μ(|x |) + γ (|dm |) + ζ(|δ|)

(5.25)

holds with (5.12) for all x ∈ R
n , dm ∈ R

n−p and δ ∈ R
n .

5.4 Guarantees

Define the following vectors:

η = η+ + η−,

δ± = δ+ − δ−,
X =

⎡

⎣
x
x̂+
x̂−

⎤

⎦ , Δ =
⎡

⎣
δ

δ+
δ−

⎤

⎦ , ẑ =
[
x̂+ − x
x+ − x−

]
, ρ̂ =

[
δ+ − δ

δ− − δ

]
.

Since the assumptions in Sect. 5.3 are imposed separately on the observermechanism
(5.6) and the feedback mechanism u(·, ·), the following two theorems provide con-
ditions under which their coupling results in desired boundedness and convergence
for control and monitoring.

Theorem 5.1 Suppose that Assumptions 5.1, 5.2 and 5.3 are satisfied with μ ∈ K .
Then in the case of δ(t) ≡ δ+(t) ≡ δ−(t) ≡ 0, for any x0 satisfying (5.2), the unique
solution X (t) to (5.1) and (5.6) satisfies (5.4) and limt→∞ |x+(t) − x−(t)| = 0, and
moreover, X = 0 is globally asymptotically stable. If

ω ∈ K∞ ∨
[
ω ∈ K ∧

{
γ /∈ K∞ ∨ lim

s→∞ ω(s) > sup
t∈R≥0

η(
√
2|δ±(t)|)

}]
(5.26)

holds, there exist θ̂ ∈ K L , ψ̂ ∈ K and χ̂ ∈ K∞ such that

χ̂
(|ẑ(t)|) ≤ θ̂ (|ẑ(0)|, t) +

∫ t

0
ψ̂(|ρ̂(τ )|)dτ, ∀t ∈ R≥0. (5.27)

∫ ∞

0
ψ̂(|ρ̂(τ )|)dτ < ∞ ⇒ lim

t→∞ |ẑ(t)| = 0 (5.28)

hold for any x0 and δ satisfying (5.2) and (5.3), and moreover, the closed-loop system
consisting of (5.1) and (5.6) is iISS with respect to the input Δ and the state X. If

μ ∈ K∞ ∧ ω ∈ K∞ (5.29)

holds, there exist θ̂ ∈ K L and φ̂ ∈ K such that
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|ẑ(t)| ≤ θ̂ (|ẑ(0)|, t) + φ̂

(
sup

τ∈[0,t]
|ρ̂(τ )|

)
, ∀t ∈ R≥0 (5.30)

lim
t→∞ |ρ̂(t)| = 0 ⇒ lim

t→∞ |ẑ(t)| = 0 (5.31)

hold for any x0 and δ satisfying (5.2) and (5.3), and moreover, the closed-loop system
is ISS with respect to Δ and X.

Theorem 5.2 The claims in Theorem 5.1 hold true even if μ ∈ K and (5.26) are
replaced by

∫ 1

0

γ ◦ ν−1(s)

ω ◦ ν−1(s)
ds < ∞ (5.32)

ω ∈ K ∧
{
∃c > 0, ∃k ≥ 1, ∀s ∈ R≥0, cγ ◦ ν−1(s) ≤ [ω ◦ ν−1(s)]k

}
, (5.33)

respectively.

The proofs are omitted due to the space limitation. The above theorems can be
verified by following the arguments developed in [7]. Modification of the arguments
also proves that Theorems 5.1 and 5.2 hold true for the reduced-order observer
candidate (5.20) by replacing Assumptions 5.1, 5.2 and 5.3 with Assumptions 5.4,
5.5 and 5.6, respectively, and redefining

X =
⎡

⎣
x

x̂+
m − Gy
x̂−
m − Gy

⎤

⎦ , ẑ =
[
x̂+
m − xm − Gy
x+
m − x−

m

]
.

5.5 Difference Between Observers

5.5.1 Utility of H and K, and Difference

Property (5.11) is independent of the state transformation R and the gains H(y) and
K (y). The state transformation R contributes to only (5.9), while the gain H(y)
contributes to (5.9) and (5.10) and has the same effect as B(y)K (y). The observer
(5.6) varies with the choice of K (y) for a given and fixed u. Thus, K (y) offers
freedom to change the behavior of the interval estimates x+(t) and x−(t) within
the aforementioned guarantees. This change in estimates influences the behavior of
x(t) of the plant. The standard Luenberger observer also admits K (y) influencing
the closed-loop response. However, the freedom is not much appreciated since the
standard observer aims at only closed-loop stability and convergence and it is not
built for monitoring. In contrast, interval observers provide estimates in the transient
phase and the freedom of K (y) matters. Notice that for a given and fixed feedback
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control law u, the choice of H(y) does not influence ua in the observer (5.6), while
the choice of K (y) does. This flexibility of K (y) in addition to H(y) can be utilized
to construct a bundle of interval observers for generating a tighter estimate, as done
for instance in [2].

5.5.2 Benefits of Reduced-Order Design

In the case of partial measurement (5.14), the reduced-order interval observer (5.20)
lets the exact measurement xm be used instead of estimating intervals for xm . Since
the reduced-order observer is free from dynamics estimating the measured part xm ,
its closed loop can be expected to have relatively swifter response with less control
effort than the control loop based on the full-order estimates.

To illustrate another advantage of the reduced-order observer, consider the sim-
plest choice G = 0 in (5.20). Suppose that Assumption 5.1 is achieved with

R =
[
Rm 0
0 Rm

]
, Rm ∈ R

p×p. (5.34)

Then we have

R(BKC + HC)R−1 = [R(BK + H)R−1
m 0] (5.35)

Thus, to render Γ (y) Metzler, the observer gain H(y) and the feedback gain K (y)
modify the first p columns which correspond to the measurable part xm of x , There-
fore,

R[A(y) + B(y)K (y)C + H(y)C]R−1 is Metzler ⇒ Rm Amm(y)R−1
m is Metzler.

(5.36)

holds for each fixed y ∈ R
p since every principal minor of a Metzler matrix is Met-

zler. The modification of A within the limited freedom of (5.35) is unnecessary if
a reduced-order interval observer is constructed. The reduced-order design is con-
cerned with only the part Rm Amm(y)R−1

m which can be influenced by neither K (y)
nor H(y) of the full-order observer design. In this way, the reduced-order design
allows us to get rid of the unnecessarily “Metzlerization” in the partial measurement
case (5.14). In addition, the matrix G in the reduced-order design provides another
degree of freedom to modify Rm Amm(y)R−1

m for the “Metzlerization”.
Now, we pay attention to Assumption 5.2. The next proposition demonstrates that

in many cases, attainability of (5.9) and (5.10) for the full-order interval observer
(5.6) implies the existence of a reduced-order interval observer unless the state trans-
formation R is fully exploited.
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Proposition 5.1 Suppose that (5.14) holds and Amm(y) is independent of y. If
Assumptions 5.1 and 5.2 are satisfied with a non-singular matrix R ∈ R

n×n of the
form (5.34) and a quadratic function V : Rn → R≥0. then Assumptions 5.4 and 5.5
hold with G = 0.

Exploiting G �= 0 can yield a better (larger) ω in (5.24). Furthermore, Amm(y) is
allowed to depend on y in Proposition 5.1 if the quadratic function V : Rn → R≥0

is chosen as a quadratic form of a block-diagonal matrix. In the partial measurement
case (5.14), producing a Metzler matrix Γ within the freedom of (5.35) imposes
severe constraints on the choice of H and K in obtaining a better (larger) ω in (5.10)
for the full-order observer (5.6).

Finally, it should be stressed that the above discussions on benefits of the reduced-
order observer are not precise when R is not block diagonal. The use of non-diagonal
R is crucial for allowing H(y) and K (y) to offer more flexibility than the reduced-
order design.

5.6 Comparative Simulations

To illustrate the design flexibility introduced in this chapter, we borrow the following
plant from [7]:

[
ẋ1
ẋ2

]
=

[
0 −x21 − 1

2
0 −2x21 − 1

2

] [
x1
x2

]
+

[ x2
2 + u1 + δ1

− x2
2 + u2 + δ2

]
(5.37a)

y = x1. (5.37b)

Fix the feedback control input as

u(y, x̂2) = 1

2

[−4y3 + x̂2
−x̂2

]
, (5.38)

where x̂2 denotes an estimate of x2. The full-order interval observer in Sect. 5.3.1
employs x̂2 = x̂+

2 , while the reduced-order interval observer in Sect. 5.3.2 employs
x̂2 = ŵ+

2 . Let U (x) = x�x . As verified in [7], (5.11) and (5.25) are satisfied with

μ(s) = 1
4 min{s4, s2}, γ (s) = max

{
3
2 s

4
3 , s2

}
, ζ(s) = max

{
3s

4
3 , 2s2

}
. Let

H(y) =
[−2y2 − 3/4

−1/2

]
. (5.39)

For the choice K = 0, (5.10) is satisfied for V (ξ) = ξ�ξ with ω(s) = s2/60,
η+(s) = 10s2 and η−(s) = 13s2. For
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K (y) =
[−2y2 − 1

0

]
(5.40)

property (5.10) is achieved by lettingω(s) = 2s2/5. ThematrixΓ (y) for both K = 0
and (5.40) is Metzler with (5.34) and Rm = 1, Rm = −1/2. Thus, Assumptions 5.1,
5.2, 5.3 and (5.29) in Theorem 5.1 are satisfied. Since the diagonal matrix R and the
quadratic function V (ξ) = ξ�ξ led to the above two full-order observers (5.6) with
K = 0, and (5.6) with (5.40), the discussion in Sect. 5.5.2 indicates that a reduced-
order observer can be constructed. Define the reduced-order interval observer as
(5.20). For any G ≥ 0, Assumptions 5.4, 5.5, 5.6 and (5.29) are satisfied. For simu-
lations, we use x0 = [5,−5]�, x+

0 = [10, 0]�, x−
0 = [0,−10]� and

δ(t) =
[
sgn(sin(t))min

{| sin(t)|, 5/t2}
sgn(cos(t))min

{| cos(t)|, 5/t2}
]

. (5.41)

Pick δ+ by replacing sin(t) and cos(t) in (5.41) with 1. Use −1 instead for δ−. The
simulation results shown in Figs. 5.1, 5.2 and 5.3 verify that in all the three designs,
the framer property (5.4) is achieved, and the estimated intervals and the plant state
converge to the origin. Figures5.1 and 5.2 show that the choice (5.40) in the observer
(5.6) provides a tighter estimate than K = 0. Since the control law (5.38) uses the
measured component y = x1 instead of its estimate in the full-order designs, the
behavior of x with the reduced-order observer (5.20) for G = 0 is almost identical
with that of the full-order observers (The plots are omitted). For the reduced order
observer (5.20) with G = 2, Fig. 5.3 not only verifies the achievement of the framer
property and the convergence of the estimates and the plant state, but also shows that
the change from G = 0 to G = 2 resulted in the slightly swifter convergence of the
interval estimate and x to zero in Fig. 5.3.

(a) x−1 (t),x1(t),x
+
1 (t) (b) x−2 (t),x2(t),x

+
2 (t)

Fig. 5.1 Closed-loop response for (5.6) with K = 0 in the presence of (5.41)



64 T.N. Dinh and H. Ito

(a) x−1 (t),x1(t),x
+
1 (t) (b) x−2 (t),x2(t),x

+
2 (t)

Fig. 5.2 Closed-loop response for (5.6) with K as in (5.40) in the presence of (5.41)

(a) x1(t) (b) x−2 (t),x2(t),x
+
2 (t)

Fig. 5.3 Closed-loop response for (5.20) with G = 2 in the presence of (5.41)

5.7 Conclusions

This chapter has presented an iISS approach to interval observer design for output
feedback control of nonlinear systems to guarantee the convergence of the estimated
interval length to zero in the presence of converging disturbances. Amodification has
been proposed by incorporating feedback gain into the interval observer presented
in the preceding study [7]. The simple modification offers flexibility to obtain better
transient behavior of estimated intervals without altering the observer gain and the
control law. For possible improvement of performance for control and estimation,
this chapter has also proposed a reduced-order interval observer to avoid estimating
measured variables. As a unique consequence of the interval observer design based
on Metzler matrices, it has been shown that the existence of a full-order observer
implies the existence of a reduced-order observer unless state transformation is fully
exploited.
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