
Chapter 19
Positive Consensus Problem: The Case
of Complete Communication

Maria Elena Valcher and Irene Zorzan

Abstract In this chapter the positive consensus problem for homogeneous multi-
agent systems is investigated, by assuming that agents are described by positive
single-input and continuous-time systems, and that each agent communicates with
all the other agents. Under certain conditions on the Laplacian of the communica-
tion graph, that arise only when the graph is complete, some of the main necessary
conditions for the problem solvability derived in [17–19] do not hold, and this makes
the problem solution more complex. In this chapter we investigate this specific prob-
lem, by providing either necessary or sufficient conditions for its solvability and by
analysing some special cases.

Keywords Multi agent system · Continuous time positive system · Consensus ·
Complete communication graph

19.1 Introduction

Research on multi-agent systems and consensus problems has been flourishing in
the last decades [2, 7, 9, 11, 13, 14, 16], strongly stimulated by the large num-
ber of different applications areas where practical problems that can be formalized
as consensus problems among autonomous agents/units arise. Just to mention the
most popular ones, flocking and swarming in animal groups, dynamics of opinion
forming, coordination in sensor networks, clock synchronization, distributed tasks
among mobile robots/vehicles. These apparently different set-ups share some com-
mon features: in each of them there is a group of individuals/units (the agents), whose
behavior can be regarded as homogeneous. Each agent performs tasks and updates
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a vector of describing parameters (its state) based on the information received from
neighbouring agents, with the final goal of agreeing on a common value for such a
vector.

In a number of contexts, the information vector that the agents update (based on
communication exchange with their neighbours), aiming to achieve consensus, is
the value of variables that are intrinsically nonnegative. For instance, wireless sensor
networks in greenhouses [1] exchange information regarding physical parameters
as temperature, humidity, and CO2 concentration, and the sensors must converge
to some common values for these parameters, based on which ventilation/heating
systems will be activated, shading or artificial lights will be controlled, CO2 will be
injected, and so on.

Another interesting problem, that is formalized as a consensus problem with
positivity constraint, is the emissions control for a fleet of Plugin Hybrid Vehicles
[8]. Each vehicle has a parallel power-train configuration that allows for any arbitrary
combination of the power generated by the combustion engine and the electric motor.
Moreover, the vehicles can communicate. Under these assumptions, an algorithm is
proposed to regulate in a cooperative way the CO2 emissions, so that no vehicle has
a higher emission level than the others.

In a series of recent papers [17–19] we have investigated the consensus problem
for homogeneous multi-agent systems, whose agents are modelled as continuous-
time, single-input, positive state-space models. We assumed that interactions among
agents are cooperative and the communication graph regulating the agents’ mutual
interactions is weighted, undirected and connected but not complete, namely not
every agent directly exchanges information with all the other agents. As the agents’
states are intrinsically nonnegative, a natural requirement to introduce, in addition to
consensus, is the positivity of the overall controlled multi-agent system and hence
that the state feedback law adopted to achieve consensus constrains all the state
trajectories to remain in the positive orthant. A rather complete characterization of
the problem solvability has been provided, and special cases, arising under special
conditions either on the agents’ description or on the communication graph, have
been discussed.

The simple assumption that the communication graph is connected but not com-
plete allowed to exclude the rather peculiar situation when the maximum weighted
degree of an agent, namely the largest of the diagonal entries of the Laplacian associ-
ated with the communication graph, is smaller than all the positive eigenvalues of the
Laplacian. By ruling out this case, we were able to derive some powerful necessary
conditions for the solvability of the positive consensus problem that provided the
backbone of the analysis carried on in [17–19]. This chapter addresses the critical
case, namely the situation when the communication among the agents is described
by a complete graph and all the positive eigenvalues of its Laplacian are greater than
its diagonal entries. As we will see, the necessary conditions derived in this context
are weaker, and conditions that in the previous investigation turned out to be nec-
essary and sufficient for the problem solvability under the current assumptions are
only sufficient.
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In detail, Sect. 19.2 provides some background material. In Sect. 19.3 the positive
consensus problem is formalized. A set of necessary or sufficient conditions for the
problem solvability is provided in Sect. 19.4. The case when the input to state matrix
involved in the agents’ description is monomial is investigated in Sect. 19.5. Finally,
in Sect. 19.6, we address the case of two-dimensional agents.

19.2 Background Material

Given a positive integer N , we let [1, N ] denote the set {1, 2, . . . , N }. ei is the i th
canonical vector (whose size is always clear from the context). The (i, j)th entry
of a matrix A will be denoted either by ai j or by [A]i j , the i th entry of a vector
v by vi or [v]i .A vector v = viei , vi > 0, is called i th monomial vector. 1N is the
N -dimensional vector whose entries are all unitary. The Kronecker product of two
matrices A ∈ R

m×n and B ∈ R
p×q is the matrix

C = [A ⊗ B] :=

⎡
⎢⎢⎢⎣

a11B a12B . . . a1n B
a21B a22B . . . a2n B

...
...

. . .
...

am1B am2B . . . amn B

⎤
⎥⎥⎥⎦ ∈ R

pm×qn .

Given a matrix A ∈ R
n×n , we denote by σ(A) its spectrum. A is Hurwitz if all its

eigenvalues lie in the open left complex halfplane, i.e. λ ∈ σ(A) implies �(λ) < 0.
R+ is the set of nonnegative real numbers. A matrix (in particular, a vector) A+ with
entries in R+ is a nonnegative matrix (A+ ≥ 0); if A+ ≥ 0 and at least one entry
is positive, A+ is a positive matrix (A+ > 0), while if all its entries are positive it
is a strictly positive matrix (A+ � 0). A matrix A ∈ R

n×n is a Metzler matrix if its
off-diagonal entries are nonnegative.

Given A ∈ R
n×n , we define the spectral abscissa of A as

λmax(A) := max{�(λ), λ ∈ σ(A)}. (19.1)

For a Metzler matrix, the spectral abscissa is always an eigenvalue (namely the
eigenvaluewithmaximal real part is always real) and it is calledFrobenius eigenvalue.
Also, Metzler matrices exhibit a monotonicity property [15]: if A and Ā ∈ R

n×n are
Metzler matrices and A ≤ Ā, then λmax(A) ≤ λmax( Ā).

An undirected, weighted graph is a triple [10, 12] G = (V ,E ,A ), where
V = {1, . . . , N } is the set of vertices, E ⊆ V × V is the set of arcs. (i, j) ∈ E
if and only if ( j, i) ∈ E . Finally, A ∈ R

N×N
+ is the (positive and symmetric) adja-

cency matrix of the weighted graph G . We assume that the graph G has no self-
loops, i.e. [A ]i i = 0 for every index i ∈ [1, N ]. IfA is irreducible, the graph is con-
nected. If [A ]i j > 0 for every i, j ∈ V , i 	= j, the graphG is complete. If [A ]i j > 0
implies [A ]i j = 1 the graph is called unweighted. We define the Laplacian matrix
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L ∈ R
N×N associated with the graph G as L := C − A , where C ∈ R

N×N
+ is a

diagonal matrix with [C ]i i := ∑N
j=1[A ]i j ,∀ i ∈ [1, N ].Accordingly, the Laplacian

matrixL = L � takes the following form:

L =

⎡
⎢⎢⎢⎣

�11 �12 . . . �1N
�12 �22 . . . �2N
...

...
. . .

...

�1N �2N . . . �NN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

∑N
j=1[A ]1 j −[A ]12 . . . −[A ]1N

−[A ]12
∑N

j=1[A ]2 j . . . −[A ]2N
...

...
. . .

...

−[A ]1N −[A ]2N . . .
∑N

j=1[A ]N j

⎤
⎥⎥⎥⎥⎦

.

If G is connected then �i i > 0 for every i ∈ [1, N ], and hence �∗ := maxi∈[1,N ] �i i
> 0. Notice that all rows ofL sum up to 0, and hence 1N is always a right eigenvector
of L corresponding to the null eigenvalue [3].

Lemma 19.1 [3, 13, 20] If the undirected, weighted graph G is connected, thenL
is a symmetric positive semidefinite matrix, and 0 is a simple eigenvalue of L .

Therefore, if we denote by {λ1, λ2, . . . , λN } the spectrum σ(L ), then λi ∈ R+ for
every i ∈ [1, N ], andwe can always assume that the λi ’s are sorted in non-decreasing
order, namely

0 = λ1 ≤ λ2 ≤ · · · ≤ λN . (19.2)

It is well-known that if the eigenvalues of L are sorted as in (19.2), then [4, 5]
�∗ ≤ λN . In addition, ifL is irreducible, then �∗ < λN (see Theorem 3 in [4]).

Lemma 19.2 (1) LetG be an undirected,weighted graphwith N vertices. If �∗ < λ2,
then [12] G is complete.

(2) If G is the undirected, unweighted graph with N vertices, then [3, 5, 10] �∗ < λ2

if and only if G is complete. Moreover, in this case �∗ = N − 1 and λ2 = · · · =
λN = N.

Notice that, differently from the unweighted case, completeness of a weighted
graph G does not imply �∗ < λ2. Consider, e.g., the weighted Laplacian matrix

L =
⎡
⎣

3 −1 −2
−1 2 −1
−2 −1 3

⎤
⎦ ,

and notice that λ2 = 3 and hence λ2 = �∗ = 3 even if G is complete. In the following
the complete, undirected and unweighted graph will be denoted by GN . Clearly, its
Laplacian can be expressed asL = N IN − 1N1�

N and its eigenvalues are λ2 = · · · =
λN = N , while �∗ = N − 1.
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19.3 Problem Statement

We consider a homogeneous multi-agent system consisting of N identical agents
whose dynamics is described by the continuous-time positive single-input system:

ẋi (t) = Axi (t) + Bui (t), t ∈ R+,

where xi ∈ R
n and ui ∈ R are the state vector and the (scalar) input, respectively, of

the i th agent. A = [
ai j

] ∈ R
n×n is a non-HurwitzMetzlermatrix, and B = [

bi
] ∈ R

n+
is a positive vector. The mutual interactions among agents are described by a
(connected, undirected, weighted) communication graph G = (V ,E ,A ), where
V = {1, . . . , N } andA = A � ∈ R

N×N
+ . Note that we assume that the mutual inter-

actions are cooperative and henceA is a nonnegative matrix. Differently from what
we did in [17–19], we assume that the graph G is complete, namely each agent com-
municates with all the other agents, and that �∗ < λ2. As we will see, this apparently
more restrictive situation makes the problem solution more difficult. In this scenario,
A ∈ R

N×N
+ is irreducible (in fact, primitive if N > 2), and if we sort the eigenvalues

of L as in (19.2), then

0 = λ1 < �∗ < λ2 ≤ · · · ≤ λN .

Let K ∈ R
1×n be a state-feedback matrix (to be designed) and assume that each

i th agent adopts the following DeGroot type control law [20]:

ui (t) = K
N∑
j=1

[A ]i j [x j (t) − xi (t)].

Define x(t) ∈ R
Nn and u(t) ∈ R

N as

x(t) := [
x�
1 (t) . . . x�

N (t)
]�

u(t) := [
u1(t) . . . uN (t)

]�

respectively. The state-space description of the overall system becomes:

ẋ(t) = (IN ⊗ A)x(t) + (IN ⊗ B)u(t)

u(t) = −(L ⊗ K )x(t)

and the resulting autonomous closed-loop system is described by

ẋ(t) = [(IN ⊗ A) − (IN ⊗ B)(L ⊗ K )]x(t). (19.3)

The positive consensus problem is naturally posed as follows: determine, if possible,
a state-feedback matrix K = [

ki
] ∈ R

1×n such that the (closed-loop multi-agent)
system (19.3) satisfies the following conditions:
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(I) positivity: A := (IN ⊗ A) − (IN ⊗ B)(L ⊗ K ) is a Metzler matrix;
(II) consensus: meaning that

lim
t→+∞ xi (t) − x j (t) = 0, ∀i, j ∈ [1, N ].

As well-known in the literature [2, 20], a necessary and sufficient condition for the
homogeneous agents to reach consensus is that all matrices A − λi BK , i ∈ [2, N ],
are Hurwitz. A necessary condition for this to happen is that the pair (A, B) is
stabilizable, a steady assumption from now onward.

As far as condition (I) is concerned, once we explicitly write the expression of
the overall state matrix A:

A =

⎡
⎢⎢⎢⎣

A − �11BK −�12BK . . . −�1N BK
−�12BK A − �22BK . . . −�2N BK

...
...

. . .
...

−�1N BK −�2N BK . . . A − �NN BK

⎤
⎥⎥⎥⎦

it is easy to see [17–19] that A is Metzler if and only if (a) the off-diagonal blocks
−�i j BK , i, j ∈ [1, N ], i 	= j , are non-negative; and (b) the diagonal blocks A −
�i i BK , i ∈ [1, N ], are Metzler. So, keeping in mind the assumptions on A and B,
once we define the vector K ∗ = [k∗

i ] ∈ R
1×n
+ as:

k∗
i :=

⎧⎨
⎩
min j=1,...,n

j 	=i

a ji

b j

1

�∗ , if ∃ j 	= i s.t. b j 	= 0;
+∞, otherwise,

it is immediate to prove that condition (I) holds if and only if 0 ≤ K ≤ K ∗. Note that
in the special case when B is a monomial vector, say B = biei , for some i ∈ [1, n]
and bi > 0, the i th entry of K ∗ is infinite. In all the other cases (namely if B has at
least two non-zero entries) K ∗ is always finite.

To summarize, the positive consensus problem can be equivalently posed as fol-
lows:

Positive consensus problem:determine, if possible, K ∈ R
1×n
+ , 0 ≤ K ≤ K ∗, such

that all matrices A − λi BK , i ∈ [2, N ], are Hurwitz.

19.4 Necessary and/or Sufficient Conditions

Amajor consequence of the apparentlymore restrictive assumption that all the agents
communicate with each other and �∗ < λi , i ∈ [2, N ], is that one of the main nec-
essary conditions for the positive consensus problem solvability we exploited in the
previous analysis, namely the fact that the matrix A − λ2BK ∗ is Metzler and Hur-
witz, does not hold anymore. As �∗ is smaller than λ2, by the way K ∗ is defined the
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matrix A − λ2BK ∗ (and hence all matrices A − λi BK ∗, i ∈ [2, N ]) is not Metzler,
and the case may occur that A − λ2BK is Hurwitz even if A − λ2BK ∗ is not.

Some necessary conditions for the problem solvability, however, can be deter-
mined, as they are independent of the relationship between �∗ and λ2.

Proposition 19.1 Assume that A is an n × n Metzler non-Hurwitz matrix, B ∈ R
n+

is a positive vector and 0 < �∗ < λi , i ∈ [2, N ]. If the positive consensus problem
is solvable, then

(i) λmax(A) is a simple nonnegative eigenvalue;
(ii) K ∗B > tr(A)/λ2.

Proof (i) The fact that λmax(A) is a simple eigenvalue follows from Proposition 1
and Remark 1 in [18], since those results are independent of the relationship between
�∗ and λ2. The fact that it is real and nonnegative follows from the assumption that
A is a Metzler non-Hurwitz matrix.
(ii) As the trace of amatrix equals the sumof its eigenvalues, a necessary condition for
thematrices A − λi BK , i ∈ [2, N ], to beHurwitz is that their traces are negative, i.e.,
tr(A − λi BK ) = tr(A) − λi K B < 0,∀ i ∈ [2, N ].However, since both B and K are
positive vectors, if there exists a matrix K such that 0 ≤ K ≤ K ∗ and A − λi BK is
Hurwitz, then K ∗B ≥ K B > tr(A)

λi
,∀ i ∈ [2, N ]. Finally, note that if tr(A) < 0 the

previous condition is trivial. If tr(A) ≥ 0 then

tr(A)

λ2
≥ tr(A)

λi

for every i ∈ [2, N ]. So, in both cases, condition K ∗B > tr(A)

λi
holds for every i ∈

[2, N ] if and only if K ∗B > tr(A)

λ2
.

Conditions (i) and (ii) of the above proposition are not sufficient, not even when
dealing with N = 2 agents described by a two-dimensional (n = 2) model, as the
following elementary example shows.

Example 19.1 Consider the positive single-input agent

ẋi (t) = Axi (t) + Bui (t) =
[
3 1
1 −1

]
xi (t) +

[
1
1

]
ui (t)

A is aMetzler and non-Hurwitz matrix and the pair (A, B) is stabilizable. Thematrix
A has a simple positive eigenvalue and a negative one. Assume that there are N = 2
agents and assume that the interconnection topology is described by the complete,
undirected and unweighted graph G2, namely

L =
[
1 −1

−1 1

]
.
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Then (see Lemma 19.2) 0 = λ1 < �∗ = 1 < λ2 = 2. The matrix K ∗ is easily proved
to be K ∗ = [

1 1
]
, and hence condition 2 = K ∗B > tr(A)/λ2 = 1 holds. Yet, for

every K = [
k1 k2

]
, with 0 ≤ ki ≤ 1, i ∈ [1, 2], A − λ2BK is not Hurwitz. So, the

positive consensus problem is not solvable. ♣
Example 19.2 Consider the positive single-input agent

ẋi (t) = Axi (t) + Bui (t) =
⎡
⎣

−1 1 1
1 −1 0
1 1 6

⎤
⎦ xi (t) +

⎡
⎣
1
1
0

⎤
⎦ ui (t)

Notice that A is a Metzler and non-Hurwitz matrix and that the pair (A, B) is sta-
bilizable. Consider N = 3 agents and assume that the interconnection topology is
described by the complete, undirected and unweighted graph G3. In this case (see
Lemma 19.2) �∗ = 2 and the eigenvalues of L are λ1 = 0 and λ2 = λ3 = 3. The
matrix K ∗ is easily proved to be K ∗ = [

1
2

1
2 0

]
. As K ∗B = 1 < 4

3 = tr(A)

λ2
, we con-

clude that the positive consensus problem is not solvable. ♣
In order to investigate the problem solvability, let us define the set of solutions of

the positive consensus problem as

K H := {K : 0 ≤ K ≤ K ∗, A − λi BK Hurwitz, i ∈ [2, N ]}.

A sufficient condition for the solvability of the positive consensus problem is rep-
resented by the case when there is a matrix K , satisfying the given bounds, that
makes all matrices A − λi BK , i ∈ [2, N ], Metzler and Hurwitz. To investigate this
situation, we define

K MH := {K ∈ K H : A − λi BK Metzler, i ∈ [2, N ]}.

The following result provides, in the case when �∗ < λ2, an analysis that parallels
the one carried on in Sect. 6 of [18]. In the case we are currently investigating
the matrix A − λ2BK ∗ is no longer Metzler and Hurwitz. However, A − �∗BK ∗
is necessarily Metzler and hence we can ensure that all matrices taking the form
K = αK ∗, with α ∈ [0, 1], make A − �∗BK Metzler. So, we focus on this class of
state feedback matrices to determine whether some of them belong to K MH .

Proposition 19.2 Assume that A is an n × n Metzler non-Hurwitz matrix, B ∈ R
n+

is a positive vector and 0 < �∗ < λi , i ∈ [2, N ]. The following conditions are equiv-
alent:

(i) K MH 	= ∅;
(ii) �∗

λN
K ∗ ∈ K MH;

(iii) the set {α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz} is not empty and

α̃ := inf{α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz} (19.4)
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satisfies α̃ < λ2
λN
.

Proof (i) ⇒ (ii) Suppose that K MH 	= ∅ and let K ∈ K MH . As K ∈ K MH then
A − λN BK is Metzler (and Hurwitz) and this implies that λN K ≤ �∗K ∗, namely
K ≤ �∗

λN
K ∗. On the other hand, theMetzlermatrix A − �∗BK ∗ ≤ A − λN BK , being

upper bounded by a Metzler and Hurwitz matrix, is Hurwitz in turn. Therefore, for
every k ∈ [2, N ], A − λk BK ≥ A − λk

�∗
λN

BK ∗ ≥ A − �∗BK ∗. Since A − �∗BK ∗

isMetzler, then A − λk
�∗
λN

BK ∗ isMetzler, too, and being upper-boundedby aMetzler

Hurwitz matrix, it is Hurwitz, in turn. This proves that A − λk
�∗
λN

BK ∗ is Metzler and

Hurwitz for every k ∈ [2, N ], namely �∗
λN

K ∗ ∈ K MH .

(ii)⇒ (iii) If �∗
λN

K ∗ ∈ K MH , then A − λ2
�∗
λN

BK ∗ isMetzler and Hurwitz, and hence
λ2
λN

∈ {α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz}. This also implies that α̃ < λ2
λN
.

(iii) ⇒ (i) Observe, first, that if {α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz} is not empty
and α̃ is the infimum value of the set, then for every α ∈ (α̃, 1] the matrix A −
α�∗BK ∗ satisfies A − �∗BK ∗ ≤ A − α�∗BK ∗ < A − α̃�∗BK ∗ and hence it isMet-
zler Hurwitz. Set K = �∗

λN
K ∗. By assumption, α̃ < λ2

λN
, and hence A − λ2BK is Hur-

witz. On the other hand, A − λN BK = A − �∗BK ∗ is Metzler. This implies that
A − λ2BK ≥ A − λ3BK ≥ · · · ≥ A − λN BK are all Metzler matrices, and since
the largest one is Hurwitz, by the monotonicity property of the spectral abscissa we
can claim that they are all Hurwitz. So, K ∈ K MH .

Remark 19.1 It is easy to see that since A − �∗BK ∗ is Metzler, then the set {α ∈
(0, 1] : A − α�∗BK ∗ is Hurwitz} coincides with the set {α ∈ (0, 1] : A − α�∗BK ∗ is
Metzler and Hurwitz }. Moreover, if the set is not empty then theMetzler matrix A −
�∗BK ∗ satisfies A − �∗BK ∗ ≤ A − α̃�∗BK ∗ and hence it is necessarily Hurwitz.
So, Proposition 19.2 above, essentially states that the setK MH is not empty, namely
there exists a state feedback matrix K , satisfying the usual bounding conditions,
that makes all matrices A − λi BK , i ∈ [2, N ], Metzler and Hurwitz, if and only if
such a solution can be found in the set of matrices {αK ∗ : α ∈ (0, 1]}. Note that not
only the set {α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz} must be not empty, and hence
the parameter α̃ well defined, but the interval (α̃, 1] must be sufficiently “large" to

include the interval
[

λ2
λN

, 1
]
. Only in this way we can determine a matrix of the form

K = αK ∗ that makes A − λi BK Metzler and Hurwitz for every λ ∈ [λ2, λN ].

19.5 B Is a Monomial Vector

Weconsider now the casewhen B is amonomial vector.Without loss of generalitywe
assume that B = e1, since we can always reduce ourselves to this case by resorting
to a permutation and a rescaling that do not influence the problem solvability, only
the value of the specific solution.

Proposition 19.3 Assume that B = e1 and denote by A22 the principal submatrix
obtained from A by deleting its first row and column.
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(i) If the positive consensus problem is solvable then every eigenvalue of A22 with
nonnegative real part has geometric multiplicity equal to 1;

(ii) If A22 is Hurwitz, then the positive consensus problem is solvable.

Proof (i) Assume that the positive consensus problem is solvable and suppose by
contradiction that there existsμ ∈ σ(A22)with�{μ} ≥ 0 and geometric multiplicity
d > 1. Partition the matrix A as:

A =
[
a11 r�
c A22

]
,

where a11 ∈ R, r, c ∈ R
n−1
+ are nonnegative vectors, and A22 ∈ R

(n−1)×(n−1) is a
Metzler matrix. Partition the feedback matrix K ∈ R

1×n
+ , 0 ≤ K ≤ K ∗, in a consis-

tent way, namely as K = [
k1 k2

]
, where k2 ∈ R

1×(n−1)
+ . Now, notice that for every

i ∈ [2, N ] the characteristic polynomial of A − λi BK can be written as

det(s In − A + λi BK ) = det(s In − A) + λi K adj(s In − A)B

= det(s In−1 − A22)
[
s − a11 − r�(s In−1 − A22)

−1c
]

+ λi
[
k1 k2

] [
det(s In−1 − A22)

adj(s In−1 − A22)c

]

= (s − a11 + λi k1) det(s In−1 − A22)

+ (
λik2 − r�)

adj(s In−1 − A22)c.

Ifμ ∈ σ(A22), then det(μIn−1 − A22) = 0 and, since the geometric multiplicity ofμ
as an eigenvalue of A22 is d > 1, it also holds that adj(μIn−1 − A22) = 0, and hence
det(μIn − A + λi BK ) = 0 for every K ∈ R

1×n
+ , which contradicts the assumption

of the solvability of the positive consensus problem.
(ii) It is the same as the proof of the sufficiency part of Proposition 7 in [18].

Differently from the case λ2 ≤ �∗, the Hurwitz condition on the submatrix A22 is
sufficient for the problem solvability, but it is not necessary, as shown in Example
19.3 below.

Example 19.3 Consider the positive single-input agent

ẋi (t) = Axi (t) + Bui (t) =
⎡
⎣

−1 1 0
0 0 1
0 2 −1

⎤
⎦ xi (t) +

⎡
⎣
0
0
1

⎤
⎦ ui (t)

Notice that A is a Metzler and non-Hurwitz matrix and that the pair (A, B) is stabi-
lizable. Consider N = 3 agents and the same adjacency matrix as in Example 19.2,
so that �∗ = 2 and λ2 = λ3 = 3. B = e3 and the matrix A11, obtained from A by
deleting the third row and the third column, is non-Hurwitz, however this does not
preclude the problem solvability. If we consider
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A − �∗BK =
⎡
⎣

−1 1 0
0 0 1

−2k1 2 − 2k2 −1 − 2k3

⎤
⎦

we notice that K ∗ = [
0 1 +∞]

. It is easy to verify that the positive consensus prob-
lem is solvable since for K = [

0 1 0
] ∈ R

1×3, with 0 ≤ K ≤ K ∗, we get

A − λ2BK = A − λ3BK =
⎡
⎣

−1 1 0
0 0 1
0 −1 −1

⎤
⎦

which is Hurwitz. ♣

19.6 Second-Order Agents

We investigate now the case when the agents are modelled by a second-order (posi-
tive) linear system, i.e.

ẋi (t) = Axi (t) + Bui (t) =
[
a11 a12
a21 a22

]
xi (t) +

[
b1
b2

]
ui (t), (19.5)

with a12, a21, b1 and b2 nonnegative real numbers. Recalling that any matrix M ∈
R

2×2 is Hurwitz if and only if tr(M) < 0 and det(M) > 0, after elementary manip-
ulations it can be seen that for every A ∈ R

2×2, B ∈ R
2 and K ∈ R

1×2, the matrix
M := A − λBK is Hurwitz if and only if

{
λK B > tr(A);

λK adj(A)B < det(A).
(19.6)

This simple observation leads to the following Lemma.

Lemma 19.3 [18] Given A ∈ R
2×2 and B ∈ R

2 and K ∈ R
1×2, for every choice of

the N − 1 positive real numbers 0 < λ2 ≤ λ3 ≤ · · · ≤ λN , the following facts are
equivalent:

(i) A − λBK is Hurwitz for every λ ∈ [λ2, λN ];
(ii) A − λi BK is Hurwitz for every i ∈ [2, N ];
(iii) A − λi BK is Hurwitz for i = 2, N.

As a straightforward consequence of Lemma 19.3 and of the fact that K B ≥ 0
(and hence λN K B ≥ λ2K B), it follows that for two-dimensional agents the set of
feedback matrices that solve the positive consensus problem is the set of matrices
K ∈ R

1×2 that satisfy the following LMIs:

K ∗ ≥ K ≥ 0;
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λ2K B > tr(A);
det(A) > λi K adj(A)B, i = 2,N.

This ensures that the set of solutions is necessarily convex.
When the agents are described by second-order state-space models the case of B

monomial can be completely solved. To this aim recall that fromProposition 19.3 part
(ii) it follows that condition a22 < 0 ensures the solvability of the positive consensus
problem, but as we have shown this is not a necessary condition. So, in the following
we assume a22 ≥ 0, �∗ < λ2, and investigate under which additional conditions on
the matrix A and on the interconnection topology the positive consensus problem is
solvable.

Proposition 19.4 Assume that B = e1, A22 = a22 ≥ 0 and �∗ < λ2. Then, the pos-
itive consensus problem for second-order agents is solvable if and only if a21 > 0
and the following condition holds:

max

{
0,

tr(A)a22
λ2

}
<

a12a21
�∗ + min

{
det(A)

λ2
,
det(A)

λN

}
. (19.7)

When so, there is always a solution of the form K =
[
max

{
0, tr(A)a22

λ2

}
+ ε a12

�∗

]
,

with ε > 0 and arbitrarily small.

Proof Note first that as B = e1 and a22 ≥ 0, if the positive consensus problem is
solvable, then a21 must be positive, otherwise a22 would be an eigenvalue of every
matrix A − λi BK , i ∈ [2, N ]. Conversely, it is easy to see that condition (19.7)
implies a21 > 0. So, in the following we will assume a21 > 0. Set K = [

k1 k2
]
.

Then K B = k1, K ∗ = [+∞ a12
�∗

]
, and the previous LMIs become

k1 ≥ 0, k1 >
tr(A)

λ2
,

a12
�∗ ≥ k2 ≥ 0, (19.8)

[
k1 k2

] [
a22

−a21

]
< min

{
det(A)

λ2
,
det(A)

λN

}
. (19.9)

It is clear that, as a21 > 0, inequality (19.9) holds if and only if it holds for k2 =
k∗
2 = a12

�∗ . So, inequality (19.9) becomes

k1a22 <
a12a21

�∗ + min

{
det(A)

λ2
,
det(A)

λN

}
. (19.10)

If tr(A) < 0 then the only constraint on k1 is the nonnegativity and condition (19.10)
holds if and only if it holds for k1 = 0. And if this is the case it also holds for k1 = ε,
with ε > 0 and arbitrarily small. On the other hand, if tr(A) ≥ 0, then the problem is
solvable if and only if it is solvable by assuming k1 = tr(A)

λ2
+ ε, with ε > 0 arbitrarily

small, and this happens if and only if



19 Positive Consensus Problem: The Case of Complete Communication 251

tr(A)

λ2
a22 <

a12a21
�∗ + min

{
det(A)

λ2
,
det(A)

λN

}
.

When the N agents are described by a second-order state-space model, B = e1,
A22 = a22 > 0, and the communication among them is described by GN , Proposition
19.4 allows us to draw the following conclusion concerning the number of agents.

Corollary 19.1 Assume that B = e1, A22 = a22 > 0 and the communication graph
is described by the complete undirected and unweighted graph GN (and hence �∗ <

λ2). Then, there exists N̄ such that for every N ≥ N̄ positive consensus cannot be
reached.

Proof The Laplacian of GN has �∗ = N − 1 and eigenvalues λ2 = · · · = λN = N .
So, condition (19.7) becomes

max

{
0,

tr(A)a22
N

}
<

a12a21
N − 1

+ det(A)

N
,

and it implies a222 < 1
N−1a12a21. Clearly, the term on the right goes to 0 as N tends to

+∞, while a222 > 0. So, there exists N̄ such for every N ≥ N̄ the previous inequality
and hence condition (19.7) do not hold, i.e. positive consensus cannot be reached.

Example 19.4 Consider the positive single-input agent

ẋi (t) = Axi (t) + Bui (t) =
[−1 1
3 1

]
xi (t) +

[
1
0

]
ui (t)

Assume that the communication among the agents is described byGN : it follows from
(19.7) that for every N ≥ N̄ = 4 the positive consensus problem is not solvable.
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