
Chapter 14
Positive Stabilization of a Diffusion System
by Nonnegative Boundary Control

Jonathan N. Dehaye and Joseph J. Winkin

Abstract This chapter deals with the issue of considering nonnegative inputs in the
positive stabilization problem. It is shown in two different ways why one cannot
expect to positively stabilize a positive system by use of a nonnegative input, first
by a classical approach with a formal proof, then by working on an extended system
for which the new input corresponds to the time derivative of the nominal one, thus
circumventing the sign restriction. However, it is shown via a classical example of
positive system—the pure diffusion system—that positively stabilizing a positive
system with a nonnegative input is in some way possible: using a boundary control,
the input sign depends on whether the boundary control appears in the boundary
conditions or in the dynamics. The chapter then provides a parameterization of all
positively stabilizing feedbacks for a discretized model of the pure diffusion system,
some numerical simulations and a convergence discussion which allows to extend
the results to the infinite-dimensional case, where the system is described again by
a parabolic partial differential equation and the input acts either in the dynamics or
in the boundary conditions.

Keywords Positive systems · Nonnegative input · Diffusion equation · Positive
stabilization · Feedback parameterization · Partial differential equations

14.1 Introduction

Positive linear systems are linear systems whose state variables are nonnegative at all
timewhenever so are the initial state and the input. Studying this kind of systems is of
great importance as the nonnegativity property can be found frequently in numerous

J.N. Dehaye (B) · J.J. Winkin
Department of Mathematics and naXys, University of Namur,
Rempart de la Vierge 8, 5000 Namur, Belgium
e-mail: jonathan.dehaye@unamur.be

J.J. Winkin
e-mail: joseph.winkin@unamur.be

© Springer International Publishing AG 2017
F. Cacace et al. (eds.), Positive Systems, Lecture Notes in Control
and Information Sciences 471, DOI 10.1007/978-3-319-54211-9_14

179



180 J.N. Dehaye and J.J. Winkin

fields like biology, chemistry, physics, ecology, economy or sociology (see e.g. [1,
4, 10, 11, 19] for particular examples).

It is known that positively stabilizing an unstable (lumped parameter) positive
system by means of a nonnegative input is impossible [6]. This has to be taken into
account while studying the positive stabilization problem. In this chapter, we show in
two different ways that a positive linear system is exponentially positively stabiliz-
able by a nonnegative input if and only if the system is already exponentially stable.
Then we introduce a classical and relevant example—the pure diffusion (distributed
parameter) system—for which the input nonnegativity issue is considered in two
different ways, depending on whether the boundary control appears in the boundary
conditions or in the dynamics [9]. The system is discretized and all positively stabi-
lizing feedbacks are parameterized [7] by use of classical positive control theory [11,
15]. Finally, the discretized system is positively stabilized with a suitable feedback,
and convergence issues are discussed.

14.2 Preliminaries

In the following subsections, we provide the reader with the notations, definitions
and main concepts used in the chapter.

14.2.1 Terminology

In the sequel, we will use the sets R+ := {x ∈ R | x ≥ 0}, R0,+ := {x ∈ R | x > 0},
R

n+ := {(x1, . . . , xn) ∈ R
n | xi ∈ R+,∀i = 1, . . . , n} and R

n
0,+ := {(x1, . . . , xn) ∈

R
n | xi ∈ R0,+,∀i = 1, . . . , n}. Similarly, R−, R0,−, Rn− and R

n
0,− denote the sets

{x ∈ R | x ≤ 0}, {x ∈ R | x < 0}, {(x1, . . . , xn) ∈ R
n | xi ∈ R−,∀i = 1, . . . , n} and

{(x1, . . . , xn) ∈ R
n | xi ∈ R0,−,∀i = 1, . . . , n} respectively. For convenience, we

use the notations v ≥ 0 if v ∈ R
n+, v > 0 if v ∈ R

n+ and v �= 0, v � 0 if v ∈ R
n
0,+.

The real part of a complex number z ∈ C will be denoted by R(z). A nonnegative
vector v has all its components greater or equal to zero (i.e. vi ∈ R+, for all i). The
transpose of a matrix A will be denoted by AT . The i j th entry of a matrix A will
be denoted by ai j . The spectrum of a matrix A is the set of its eigenvalues and will
be denoted by σ(A). A nonnegative matrix A (denoted by A ≥ 0) has all its entries
greater or equal to zero (i.e. ai j ∈ R+, for all i, j). AMetzlermatrix A has all its off-
diagonal entries greater or equal to zero (i.e. ai j ∈ R+, for all i �= j). A stablematrix
A has all its eigenvalues with negative real parts (i.e. R(λ) < 0, ∀λ ∈ σ(A)). For
convenience, lower-case letters when used in an appropriate context will represent
scalars or vectors, while upper-case letters will represent matrices.
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14.2.2 Main Concepts

Consider a linear time-invariant system

{
ẋ = Ax + Bu
y = Cx + Du

where A ∈ R
n×n , B ∈ R

n×m , C ∈ R
p×n and D ∈ R

p×m . We first recall the concept
of positive linear system [10, 11, 13, 15].

Definition 14.1 A linear system R = [A, B,C, D] is positive if for every nonneg-
ative initial state x0 ∈ R

n+ and for every admissible nonnegative input u (i.e. every
piecewise continuous function u : R+ → R

m+) the state trajectory x of the system and
the ouput trajectory y are nonnegative (i.e. for all t ≥ 0, x(t) ∈ R

n+ and y(t) ∈ R
p
+).

It is possible to express the positivity of a system by use of the matrices A, B, C
and D only [10, 11].

Theorem 14.1 A linear system R = [A, B,C, D] is positive if and only if A is a
Metzler matrix and B, C and D are nonnegative matrices.

Now we define the positive stabilizability of positive systems. For convenience,
throughout the chapter the notion of stability will refer to asymptotic stability, which
is equivalent to exponential stability as we deal with LTI systems.

Definition 14.2 A positive linear system R = [A, B,C, D] is positively (exponen-
tially) stabilizable if there exists a state feedbackmatrix K ∈ R

m×n such that A + BK
is a stable Metzler matrix, i.e. such that there exist positive constants M and σ such
that for all t ≥ 0 ∥∥e(A+BK )t

∥∥ ≤ Me−σ t

and for all t ≥ 0, e(A+BK )t ≥ 0. Such a feedback matrix K is called a positively
stabilizing feedback for the system R.

The positive stabilization problem is concerned with existence conditions and the
computation of such a matrix K . Finally, we introduce an important result from [4,
11, 15] which provides a necessary and sufficient condition for the stability of a
Metzler matrix.

Lemma 14.1 A Metzler matrix A ∈ R
n×n is stable if and only if there exists v � 0

in Rn such that Av 	 0.

Remark 14.1 The sufficiency of the condition can be shown by considering the
Lyapunov function V (x) = vT x which leads to V̇ (x) = vT Ax < 0. The necessity
follows from the fact that the opposite of the inverse of a stable Metzler matrix is
nonnegative: it suffices to define v = −A−1τ with τ � 0. See [11, Lemma 2.2] or
[16, Lemma 1.1].
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14.3 Positive Stabilization by Nonnegative Input

One obvious way to ensure the nonnegativity of the state trajectory of a positive sys-
tem is to force the input to remain nonnegative. However, it is impossible to positively
stabilize an unstable positive systemwith such an input. The first subsection provides
a classical approach of the problem, while the second one provides an alternative as
we work on an extended system.

14.3.1 A Classical Approach

First, let us recall the Perron-Frobenius theorem for Metzler matrices [2, 12]:

Theorem 14.2 If A is aMetzler matrix, there exist a real number λ and a real vector
v > 0 such that Av = λv and for every eigenvalue μ of A,R(μ) ≤ λ.

Remark 14.2 The result in [12] is actually shown for nonnegativematrices.However,
a Metzler matrix is a nonnegative matrix up to a diagonal shift. It is easy to see that
a diagonal shift just shifts the eigenvalues and leaves the eigenvectors unchanged,
making the result valid for Metzler matrices.

In [6] it is stated without proof that, in view of [17], if the dominant eigenvalue of
A is nonnegative one cannot stabilize the system with a nonnegative input. Then one
can conclude that if a positive system is not already stable, it cannot be stabilized by
use of a nonnegative input. For the sake of self-containedness, let us briefly formulate
and prove that assertion.

Theorem 14.3 Consider the positive linear system ẋ = Ax + bu. The system is
(exponentially) positively stabilizable by a state feedback u = Kx such that u ∈ R+
if and only if it is already (exponentially) stable.

Proof The sufficiency of the condition is trivial: it suffices to take K = 0, hence
u = 0. Let us prove the necessity. Suppose that the system is unstable, then the
dominant eigenvalue λ of AT is nonnegative (see Theorem 14.2). By [10, 12] there
exists an eigenvector v > 0 such that AT v = λv. Now let us define ρ = vT x and
focus on the unstable part of the system relative to λ. We then have

ρ̇ = vT ẋ = vT Ax + vT bu = (AT v)T x + vT bu = λρ + (vT b)u

where vT b ≥ 0. If u = Kx was a state feedback such that u ∈ R+, then

ρ(t) = eλtρ0 +
∫ t

0
eλ(t−τ)(vT b)u(τ )dτ

would not tend to zero as t → ∞, since λ, eλt , ρ0, (vT b) and u are all nonnegative
(or positive), thus showing that the system cannot be positively stabilized in this
way. �
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14.3.2 An Extended System

As we showed the issue of considering a nonnegative input, we try to circumvent the
problem by working on an extended system. Consider

{
ẋ = Ax + Bu
u̇ = v

where A is a Metzler matrix, B is nonnegative and v is the new input. This leads to
the positive extended system

˙[
x
u

]
=

[
A B
0 0

] [
x
u

]
+

[
0
I

]
v

that we will denote by ˙̃x = Ãx̃ + B̃v with initial condition

x̃0 =
[
x(0)
u(0)

]
=

[
x0
u0

]
≥ 0

and with state feedback control

v = K̃ x̃ = [Kx Ku]
[
x
u

]
= Kx x + Kuu

where the new input v has no sign restriction as it represents the variation of u,
which allows us to get rid of the input positivity problem. The resulting closed-loop
extended system is therefore described by

˙[
x
u

]
=

[
A B
0 0

] [
x
u

]
+

[
0
I

]
[Kx Ku]

[
x
u

]
=

[
A B
Kx Ku

] [
x
u

]
.

Note that if one considers a static feedback v = K̃ x̃ for the extended system, it
actually corresponds to a dynamic feedback controller u̇ = Kuu + Kxx for the initial
system. The extended system is positively stabilizable if and only if there exists a
state feedback K̃ = [Kx Ku] such that

1. the matrix

[
A B
Kx Ku

]
is Metzler, i.e. Ku is Metzler and Kx ≥ 0, and

2. the matrix

[
A B
Kx Ku

]
is exponentially stable.

As a consequence of these conditions, the pair ( Ã, B̃) should be exponentially
stabilizable. Now, [3, Sect. 10.3] provides necessary and sufficient conditions for the
positive stabilizability of a positive system, using LMIs and a Lyapunov equation.
We adapt this result to the extended system, leading to the following theorem.
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Theorem 14.4 Consider a linear time-invariant system ẋ = Ax + Bu and his
extended system ˙̃x = Ãx̃ + B̃v as defined above. The extended system is positively
stabilizable if and only if there exist a positive-definite diagonal matrix Q =

[
Q1 0
0 Q2

]

and a feedback K̃ such that, with Y = [Y1 Y2] = K̃ Q, the matrix

[
Q1AT + AQ1 Y T

1 + BQ2

Q2BT + Y1 Y T
2 + Y2

]

is negative-definite, Y1 is nonnegative and Y2 is Metzler.

Proof By [3] the extended system is positively stabilizable if and only if there exist
a positive-definite diagonal matrix Q and a feedback K̃ such that, with Y = K̃ Q,
( ÃQ + B̃Y ) is Metzler and Q ÃT + Y T B̃T + ÃQ + B̃Y is negative-definite. One
easily sees that ( ÃQ + B̃Y ) is Metzler if and only if the matrix

[
A B
Kx Ku

]

is Metzler, which means (as stated previously) that Kx has to be nonnegative and Ku

has to be Metzler. Moreover, as Y = K̃ Q,

[Y1 Y2] = [Kx Ku]
[
Q1 0
0 Q2

]

and then {
Kx = Y1Q

−1
1

Ku = Y2Q
−1
2

which implies that Y1 has to be nonnegative and Y2 has to be Metzler. Now, we can
rewrite Q ÃT + Y T B̃T + ÃQ + B̃Y as

[
Q1 0
0 Q2

] [
AT 0
BT 0

]
+

[
Y T
1

Y T
2

]
[0 I ] +

[
A B
0 0

] [
Q1 0
0 Q2

]
+

[
0
I

]
[Y1 Y2]

which is equal to [
Q1AT + AQ1 Y T

1 + BQ2

Q2BT + Y1 Y T
2 + Y2

]
.

�

Remark 14.3 By the previous theorem, the matrix

[
Q1AT + AQ1 Y T

1 + BQ2

Q2BT + Y1 Y T
2 + Y2

]
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has to be negative-definite in order to positively stabilize the extended system by
means of a feedback v = K̃ x̃ . However, it is known that every principal submatrix
of a negative-definite matrix is negative-definite. This means that Q1AT + AQ1 is
negative-definite and thus the initial system should be stable already. Thus the use of
an extended system does not allow to circumvent the obstacle of using a nonnegative
input as described in Sect. 14.3.1.

14.4 A Pure Diffusion System

Now we show that one can actually positively stabilize a pure diffusion system—
which is a distributed parameter positive system—by use of a nonnegative boundary
control, as long as the input appears in the boundary conditions.

14.4.1 Modelization

Consider a standard example of unstable positive distributed parameter system,
namely the pure diffusion system described by the partial differential equation (PDE)

∂x

∂t
= Da

∂2x

∂z2
(14.1)

with Neumann boundary conditions

{
∂x
∂z (t, 0) = v(t)
∂x
∂z (t, L) = 0

(14.2)

where v is the input, Da is the diffusion parameter and L is the domain length. By
[9, Example 2.1], this boundary control system is equivalent to the system described
by the PDE

∂x

∂t
= Da

∂2x

∂z2
+ δ0u(t) (14.3)

with the Dirac delta distribution δ0 as control operator and with homogeneous
Neumann boundary conditions

{
∂x
∂z (t, 0) = 0
∂x
∂z (t, L) = 0

(14.4)

where the input u(t) = −v(t). This implies that considering a positive input v(t) in
the boundary conditions leads to a negative input u(t) in the dynamics, and thus to
a potential stabilization of the system.
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14.4.2 Discretization

In order to stabilize the system, we discretize it by the finite difference method
and we obtain the finite-dimensional system (considering n discretization points zi ,
i = 1, . . . , n, with z1 = 0, zn = L and Δz = L/(n − 1) the discretization step)

ẋ (n) = A(n)x (n) + b(n)u (14.5)

where

A(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−p2 p2 0 · · · 0

p2 −2p2 p2
...

0
. . .

. . .
. . . 0

... p2 −2p2 p2
0 · · · 0 p2 −p2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n,

b(n) = [p1 0 · · · 0]T ∈ R
n

and
x (n) = [x(z1) · · · x(zn)]T ∈ R

n

where

p1 = 1

Δz
and p2 = Da

Δz2
.

Clearly, this finite-dimensional system is positive (see Theorem 14.1). Moreover,
the infinite-dimensional system (14.1)–(14.2) is not exponentially stable [1, 5] as zero
is in the spectrum of its generator. Discretizing the system will perturb the spectrum
though one easily sees that the finite-dimensional system (14.5) is not exponentially
stable as zero is still in the spectrum of A(n). Also note that all eigenvalues are real,
A(n) being symmetric.

14.4.3 Positive Stabilization of the System

Now we can provide the reader with a parameterization of all positively stabilizing
feedbacks for the distributed pure diffusion system (14.5), using Lemma 14.1 and
developing the resulting set of inequalities [7].

Theorem 14.5 A feedback k = [k1 · · · kn] is positively stabilizing for the dis-
cretized pure diffusion system (14.5) if and only if it is such that

k1 = Dav1 − Dav2 − k2v2Δz − · · · − knvnΔz − Δz2ω

v1Δz
,
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k2 ≥ −Da

Δz
and ki ≥ 0 i = 3, . . . , n,

with ω > 0 (free parameter) and such that v � 0 is a positive solution of the strict
inequalities set

−v1 + 2v2 − v3 > 0
...

−vn−2 + vn−1 − vn > 0
−vn−1 + vn > 0.

(14.6)

It is actually possible to parameterize all the solutions of the inequalities set (14.6),
leading to a full parameterization of all the positively stabilizing feedbacks for the
pure diffusion system (see [7]). In order to illustrate the theoretical results, let us
design a particular feedback that falls in the class defined in Theorem 14.5. Let us
set

k(n)
1 = − 1

Δz
κ and k(n)

i = 0 (i = 2, . . . , n) (14.7)

with κ > 0. Considering L = 1, Da = 1, κ = 0.2 and n = 11 and choosing the initial
condition x0 = 2z3 − 3z2 + 1 (this polynomial respects the boundary conditions and
the all-ones eigenvector corresponds to the Frobenius unstable eigenvalue λ = 0, so
the initial condition excites the unstable mode) yields the open-loop state trajectory
shown in Fig. 14.1, and the closed-loop state trajectory shown in Fig. 14.2. This
illustrates that the closed-loop system is positive and that it is stable unlike the open-
loop system. Figure14.3 shows the nonnegative input trajectory v(t).

Fig. 14.1 Open-loop state
trajectory x (n)(t) (n = 11). It
converges to a constant
non-null value
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Fig. 14.2 Closed-loop state trajectory x (n)(t) (n = 11). It stabilizes to zero while staying nonneg-
ative at all time

Fig. 14.3 Input trajectory v(t) = −k(n)x (n)(t) (n = 11). The input—as it appears in the boundary
conditions—is nonnegative at all time and decreases to zero

14.4.4 Convergence Analysis

Now we focus on convergence issues, whenever the finite difference step tends to
zero. Let us introduce the following result (see [7]).

Theorem 14.6 Applying the feedback k(n) given by (14.7) to the approximate system
(14.5) leads to the convergence of the resulting closed-loop system
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ẋ (n) = (A(n) + b(n)k(n))x (n), (14.8)

as Δz tends to zero, to the system described by the PDE

∂x

∂t
= Da

∂2x

∂z2
(14.9)

with Neumann boundary conditions

{
∂x
∂z (0, t) = κx(0, t)

∂x
∂z (L , t) = 0.

(14.10)

Moreover, the approximate closed-loop system (14.8) is positive and (exponentially)
stable for n sufficiently large, and the system (14.9)–(14.10) is positive and (expo-
nentially) stable.

One can show the convergence of the system operators by a state space approach,
setting the discretized operators in the appropriate spaces and using the related norms
[9, Example 2.1]. Positivity of system (14.9)–(14.10) can be proved by standard
arguments (positivity of the resolvent operator as in [14] or the maximum principle
as in [18]). Also, as it is of Sturm-Liouville type, system (14.9)–(14.10) is a Riesz-
spectral system [8]. Its spectrum is thus real and discrete: it is easy to compute all
eigenvalues and to show that they are negative, implying the stability of the system.
For a complete proof, refer to [7].

14.5 Conclusion

In this chapter, we have studied the issue of considering a nonnegative input while
positively stabilizing a positive system, using a classical approach and working on
an extended system. Then we have shown via a classical example that the boundary
input sign may vary depending on whether it acts in the dynamics or in the boundary
conditions, implying that it is technically possible to positively stabilize the system
with a nonnegative input. Finally we have provided a convenient way to parameterize
all the positively stabilizing feedbacks for a discretized model of the pure diffusion
system, we have discussed the convergence of the results and we have produced
some numerical simulations. Next steps in this work are—among others—to extend
Theorem 14.3 and its proof to infinite-dimensional systems, to find conditions over
any discretized feedback so that it converges to a positively stabilizing feedback for
the nominal PDE system, to optimize the choice of a positively stabilizing feedback
with respect to some given criterion, to design observer based compensators and to
extend the results to a specific interesting application in biochemical engineering.
These questions are currently under investigation.
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