
Chapter 13
On the Connection Between the Stability of
Multidimensional Positive Systems and the
Stability of Switched Positive Systems

Hugo Alonso and Paula Rocha

Abstract In this work, we study the connection of the stability of multidimen-
sional positive systems with the stability of switched positive systems. In a previous
work, we showed that the stability of a multidimensional positive system implies the
stability of a related switched positive system. Here, we investigate the reciprocal
implication.

Keywords Stability · Switched positive systems · Multidimensional positive
systems

13.1 Introduction

The study of stability conditions for switched positive systems has attracted the
attention of several researchers (see, for instance, [4, 5, 8]). By relating a switched
positive systemwith a multidimensional positive system, in [1] we provided a simple
sufficient condition, that could be stated in terms of the spectral radius of a single
matrix. However, it turns out that this sufficient condition is not necessary. In order
to understand how far sufficiency is from necessity, here we search for additional
conditions underwhich the stability of a switched positive system implies the stability
of the related multidimensional positive system.

The remainder of this chapter is organized as follows. In the next section, we
make a brief introduction to multidimensional positive systems and their stability.
The connection between the stability of these systems and the stability of switched
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positive systems is studied in Sect. 13.3. Finally, the chapter endswith the conclusions
in Sect. 13.4.

13.2 Multidimensional Positive Systems and Their Stability

The k-dimensional (kD) positive linear discrete systems of order n considered here
are of the form

ΣkD
A1,...,Ak

: ω(i) =
k∑

j=1

A jω(i − e j ), (13.1)

where ω(i) ∈ R
n represents the non-negative local state at i = (i1, . . . , ik) ∈ Z

k ,
A1, . . . , Ak ∈ R

n×n are non-negative matrices, e j ∈ Z
k is the j-th unit vector and

so i − e j = (i1, . . . , i j−1, i j − 1, i j+1, . . . , ik). Furthermore, letting ī = ∑k
j=1 ik ,

the global state of ΣkD
A1,...,Ak

at time � ∈ Z
+
0 is defined as the set of local states

Ω� = {ω(i) : ī = �}. Note that the notions of local and global state only coin-
cide in the particular case of k = 1, when (13.1) describes a 1D system ΣA such
that ω(�) = Aω(� − 1). Now, it is obvious that, given a non-negative initial state
Ω0, a sequence Ω1,Ω2, . . . is uniquely determined by (13.1). The behavior of the
global state sequences determines the stability properties of the system. In particular,
ΣkD

A1,...,Ak
is said to be asymptotically stable if for every non-negative Ω0 such that

||Ω0|| < ∞, one has lim�→+∞ ||Ω�|| = 0, where ||Ω�|| = sup {||ω(i)||2 : ī = �}
and || · ||2 denotes the usual Euclidean norm. In the area of multidimensional sys-
tems, it is well known that the following condition (which does not explore the fact
that the system is positive) is necessary and sufficient for the asymptotic stability of
ΣkD

A1,...,Ak
[2]:

det(In −
k∑

j=1

z j A j ) �= 0 ∀(z1, . . . , zk) ∈ D
k,

whereD
k = {(z1, . . . , zk) ∈ C

k : |z j | ≤ 1, j = 1, . . . , k} is the closed unit polydisc
in C

k . This condition is unpractical and is not in general easy to check. However, if
we use the fact that the kD system is positive, then we get a simpler condition stated
in the proposition below. The result was presented for k = 2 in [10]. We presented
it for k ≥ 2 in [1], but without a proof. We now prove it.

Proposition 13.1 The kD positive system ΣkD
A1,...,Ak

is asymptotically stable if and
only if the 1D positive system ΣA with A = A1 + · · · + Ak is asymptotically stable.

Proof Let us assume that the kD positive system ΣkD
A1,...,Ak

is asymptotically sta-
ble. Suppose that the local states in Ω0 are all equal to a non-negative ω0 ∈ R

n ,
arbitrarily chosen. Then, it can be seen that the local states in Ω� are all equal to
(A1 + · · · + Ak)

�ω0 and hence that ||Ω�|| = ||(A1 + · · · + Ak)
�ω0||2 for all � ∈ Z

+
0 .
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The asymptotic stability of the kD positive system implies that lim�→+∞ ||Ω�|| = 0
and, therefore, lim�→+∞ ||(A1 + · · · + Ak)

�ω0||2 = 0. Given that ω0 is arbitrary, it
follows that the 1D positive system ΣA with A = A1 + · · · + Ak is asymptotically
stable.

Now, let us assume that the 1D positive system ΣA with A = A1 + · · · + Ak is
asymptotically stable. Suppose that the global state Ω0 of the kD positive system
ΣkD

A1,...,Ak
is non-negative and such that ||Ω0|| < ∞. Then, there exists L ∈ R

+ such
that, if ω(i) with ī = 0 is a local state in Ω0, then 0n ≤ ω(i) ≤ Ln , where 0n and Ln

are vectors of length n with all components equal to 0 and L , respectively, and where
the inequalities should be understood component-wise. Now, letΨ : (Z+

0 )k 	→ R
n×n

be the map whose value Ψ (i) = Ψ (i1, . . . , ik) corresponds to the matrix resulting
from the sum of all products in {A1, . . . , Ak} where A j appears i j times for j =
1, . . . , k, usually known as the Hurwitz product of A1, . . . , Ak associated with i . For
instance, if k = 2, then Ψ (0, 0) = In , Ψ (i1, 0) = Ai1

1 when i1 > 0, Ψ (0, i2) = Ai2
2

when i2 > 0 andΨ (i1, i2) = A1Ψ (i1 − 1, i2) + A2Ψ (i1, i2 − 1)when i1, i2 > 0 [3].
With this notation, if ω(i) with ī = � is a local state in Ω�, we have

||ω(i)||2 = ||
∑

j̄=�
Ψ ( j)ω(i − j)||2

≤ ||
∑

j̄=�
Ψ ( j)Ln||2

= ||(
∑

j̄=�
Ψ ( j))Ln||2

= ||(A1 + · · · + Ak)
�Ln||2

and so ||Ω�|| ≤ ||(A1 + · · · + Ak)
�Ln||2 for all � ∈ Z

+
0 . The asymptotic stability of

the 1D positive system ΣA with A = A1 + · · · + Ak implies that lim�→+∞ ||(A1 +
· · · + Ak)

�Ln||2 = 0 and, therefore, lim�→+∞ ||Ω�|| = 0. Finally, minding that Ω0

is arbitrary, it follows that the kD positive system ΣkD
A1,...,Ak

is asymptotically stable.

�

Remark 13.1 According to the proposition, checking the asymptotic stability of the
kD positive system ΣkD

A1,...,Ak
amounts to check the asymptotic stability of the 1D

positive system ΣA with A = A1 + · · · + Ak , but this is very easy, because ΣA is
asymptotically stable if and only if the spectral radius of A is less than one, that is,
ρ(A) < 1.

13.3 On the Connection Between the Stability
of Multidimensional Positive Systems and the Stability
of Switched Positive Systems

A switched positive linear discrete-time system of order n composed of k subsystems
can be described by
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ΣA1,...,Ak : x(�) = Aσ(�−1)x(� − 1), Aσ(�−1) ∈ {A1, . . . , Ak}, (13.2)

where x(�) ∈ R
n represents the non-negative state vector at time � ∈ Z

+
0 , A1, . . . , Ak

∈ R
n×n are non-negative matrices associated with the k subsystems and σ : Z

+
0 	→

{1, . . . , k} is the switching signal. It is clear that, given a non-negative initial state

x(0) = x0 (13.3)

and a switching signal σ , a sequence x(1), x(2), . . . is uniquely determined by (13.2).
The behavior of the state sequences determines the stability properties of the system.
In particular, ΣA1,...,Ak is said to be uniformly asymptotically stable if it is uniformly
stable (u.s.) and globally uniformly attractive (g.u.a.), i.e.:

• ∀ε > 0, ∃δ > 0: ||x(0)||2 < δ ⇒ ||x(�)||2 < ε ∀� ∈ Z
+
0 , σ (u.s.);

• ∀r, ε > 0, ∃�� ∈ Z
+: ||x(0)||2 < r ⇒ ||x(�)||2 < ε ∀� ≥ ��, σ (g.u.a.).

As is known, ΣA1,...,Ak is uniformly asymptotically stable if there exists a common
quadratic Lyapunov function (CQLF) V (x) = xT Px such that

P � 0 ∧ P − AT
j
P A j � 0 j = 1, . . . , k, (13.4)

where T denotes transposition and P � 0 means that P is positive definite [9].
Now, consider the kD positive system ΣkD

A1,...,Ak
described by (13.1) and whose

global state Ω0 = {ω(i) : ī = 0} is determined by

ω(0) = x0, ω(i) = 0 ī = 0 ∧ i �= 0. (13.5)

Note that, in ΣA1,...,Ak , the state is updated in each step in a single direction, corre-
sponding to the variable �. Moreover, ΣA1,...,Ak has k operation modes, and when the
j-th mode is active, the state update is made according to x(�) = A j x(� − 1). On
the other hand, in ΣkD

A1,...,Ak
, the local state is updated in each step in k directions,

corresponding to the variables i1, . . . , ik in i . In addition, the contribution of the j-th
update direction to the overall update, given by

ω(i1, . . . , i j , . . . , ik) = A1ω(i1 − 1, . . . , i j , . . . , ik) + · · ·+
A jω(i1, . . . , i j − 1, . . . , ik) + · · ·+
Akω(i1, . . . , i j , . . . , ik − 1),

is represented by A jω(i1, . . . , i j − 1, . . . , ik). Therefore, we can think of an update
direction in ΣkD

A1,...,Ak
as being associated with an operation mode in ΣA1,...,Ak . Fur-

thermore, it is easy to see that the local state ω(i) = ω(i1, . . . , ik) ofΣkD
A1,...,Ak

equals
the sum of all possibilities for the state x(�) of the switching system ΣA1,...,Ak after
� = ī stepswhere the value of the switching signal is j for i j timeswith j = 1, . . . , k.
Hence, the two systemshave state evolutions that are closely related.This is illustrated
in Fig. 13.1 for k = 2.Note for instance that the value ofω(i) = ω(i1, i2) along the i j -
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Fig. 13.1 State evolution of
the 2D system Σ2D

A1,A2
associated with the switching
system ΣA1,A2

axis evolves in the samemanner as the value of x(�)when the switching signal is such
that σ(�) = j for all �. Also remark that the value of ω(1, 1) = (A1A2 + A2A1)x0
results from the sum of the possible values for x(2) after two steps where the value
of the switching signal is 1 in one step and 2 in the other. Given the close relation
between the state evolutions of both systems, it is not surprising that their stability
properties are also related. This is clarified in the next proposition.

Proposition 13.2 The switched positive systemΣA1,...,Ak described by (13.2), (13.3)
is uniformly asymptotically stable if the associated kD positive system ΣkD

A1,...,Ak

described by (13.1), (13.5) is asymptotically stable.

We presented this result in [1]. In the following, we study the reciprocal implication
and identify conditions under which the uniform asymptotic stability of the switched
positive systemΣA1,...,Ak implies the asymptotic stability of the associated kDpositive
system ΣkD

A1,...,Ak
.

Start by noting that, as explained in Remark 13.1, a kD positive system ΣkD
A1,...,Ak

is asymptotically stable if and only if ρ(A1 + · · · + Ak) < 1. In [1], we showed
that, if ρ(A1 + · · · + Ak) < 1, then it is possible to find a CQLF for the switched
positive system ΣA1,...,Ak . Unfortunately, the converse is not true, as shown in the
next example.

Example 13.1 Consider the switched positive system ΣA1,A2 described by (13.2),
(13.3) with k = 2 and

A1 =
(
0.7 0
0 0.1

)
A2 =

(
0.4 0
0 0.1

)
.

It is obvious that A1 and A2 are such that ρ(A1), ρ(A2) < 1 and commute. Therefore,
it is possible to find a CQLF for ΣA1,A2 [7]. Moreover, it can be seen that ρ(A1 +
A2) = 1.1 ≮ 1.

At this point, a natural question arises: is there a relation between the existence of a
CQLF for a switched positive system ΣA1,...,Ak and the value of ρ(A1 + · · · + Ak)?
If the CQLF has no special form, then the answer is given by the following:

Proposition 13.3 If the switched positive system ΣA1,...,Ak described by (13.2),
(13.3) has a CQLF, then ρ(A1 + · · · + Ak) < k.
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Proof Let us assume that V (x) = xT Px is a CQLF for ΣA1,...,Ak such that P � 0
and

P − AT
1 PA1 � 0

...

P − AT
k P Ak � 0.

Then, (
P − AT

1 PA1
) + · · · + (

P − AT
k P Ak

) � 0 ⇔

kP −
k∑

j=1

AT
j P A j � 0 ⇔

k2
(
kP−1

)−1 −
k∑

j=1

AT
j P A j � 0 ⇔

(
kP−1

)−1 −
k∑

j=1

(
1

k
A j

)T

P

(
1

k
A j

)
� 0.

According to [6], the latter condition implies that the kD positive system ΣkD
1
k A1,...,

1
k Ak

is asymptotically stable. This in turn implies that ρ( 1k A1 + · · · + 1
k Ak) < 1 and so

ρ(A1 + · · · + Ak) < k. 
�
In the proposition just presented, no special form was assumed for the CQLF. How-
ever, if the CQLF for the switched positive system ΣA1,...,Ak is of a certain type, then
the bound on ρ(A1 + · · · + Ak) can be tightened. This is clarified in the next result,
which is the main contribution of this chapter. It identifies conditions under which
the uniform asymptotic stability of the switched positive system ΣA1,...,Ak implies
the asymptotic stability of the associated kD positive system ΣkD

A1,...,Ak
. The proof is

omitted because it is based on arguments similar to those previously used.

Proposition 13.4 If the switched positive system ΣA1,...,Ak described by (13.2),
(13.3) is uniformly asymptotically stable and has a CQLF V (x) = xT Px such that
P � 0 and

1

k2
P − AT

1 PA1 � 0

...

1

k2
P − AT

k P Ak � 0,
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thenρ(A1 + · · · + Ak) < 1and theassociated kDpositive systemΣkD
A1,...,Ak

described
by (13.1), (13.5) is asymptotically stable.

Remark 13.2 It is easy to see that a matrix P in the conditions above also satisfies
P − AT

j
P A j � 0 for j = 1, . . . , k. This means that in the previous proposition we

are indeed asking for the existence of a CQLF for ΣA1,...,Ak of a special form.

The next example illustrates the application of Proposition 13.4.

Example 13.2 Consider the switched positive system ΣA1,...,Ak described by (13.2),
(13.3) with non-negative diagonal matrices

A j = diag
(
α j1, . . . , α jn

)
j = 1, . . . , k.

Assume that ΣA1,...,Ak is uniformly asymptotically stable. Given that ρ(A1), . . . ,

ρ(Ak) < 1, since the system is stable only if each subsystem is stable, and A1, . . . , Ak

commute, ΣA1,...,Ak has a CQLF V (x) = xT Px with P of diagonal form [7]:

P = diag (p1, . . . , pn) ,

where p1, . . . , pn > 0. Assume that 1
k2 P − AT

j
P A j � 0 for j = 1, . . . , k, that is,

that the CQLF is in the conditions of the previous proposition. Then,

1

k2
P − AT

j
P A j � 0 ⇔

diag

(
p1

(
1

k2
− α2

j1

)
, . . . , pn

(
1

k2
− α2

jn

))
� 0 ⇔

0 ≤ α j1, . . . , α jn <
1

k

for j = 1, . . . , k. It is now simple to check that ρ(A1 + · · · + Ak) < 1 and hence the
associated kD positive systemΣkD

A1,...,Ak
described by (13.1), (13.5) is asymptotically

stable.

13.4 Conclusions

In this chapter we studied the relation between the stability of multidimensional
positive systems and the stability of switched positive systems. Motivated by the fact
that the stability of the former implies the stability of the latter [1], but not vice-
versa, we searched for additional conditions under which the stability of a switched
positive system implies the stability of a related multidimensional positive system.
As a preliminary result, we showed that if the switched positive system has a common
quadratic Lyapunov function of a certain type, then the associated multidimensional
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positive system is stable. In our opinion, this might be a step forward to obtain
necessary and sufficient conditions for the stability of a new class of switched positive
systems.
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