
Chapter 12
Polyhedral Invariance for Convolution
Systems over the Callier-Desoer Class

Jean Jacques Loiseau

Abstract BIBO stability is a central concept for convolution systems, introduced
in control theory by Callier, Desoer and Vidyasagar, in the seventies. It means that
a bounded input leads to a bounded output, and is characterized by the fact that the
kernel of the system is integrable. We generalize this result in this chapter, giving
conditions for the output of a convolution system to evolve in a given polyhedron,
for any input evolving in another given convex polyhedron. The conditions are for-
mulated in terms of integrals deduced from the kernel of the considered system and
the given polyhedra. The condition is exact. It permits to construct exact inner and
outer polyhedral approximations of the reachable set of a linear system. The result is
compared to various known results, and illustrated on the example of a system with
two delays.

Keywords Convolution systems · Callier-Desoer class · Invariance · Reachable
set · Polyhedra · Approximations

12.1 Introduction

The evaluation of the reachable space of a dynamical system is important for the
verification of properties [4], planification of trajectories and design of control laws
to achieve closed-loop specifications [7]. Exact formulae can not always be deter-
mined, so that various methods have been developed to compute approximations
of the reachable set. The case of linear finite dimensional systems has been deeply
investigated [19, 24]. The basic approach consists in reformulating the problem in
terms of optimal control, which can be extended to the case of nonlinear systems
[11] and hybrid systems [4, 9]. The effect of uncertainties or disturbances can also
be handled using similar ideas and interval analysis [15].

The case of distributed systems has also been addressed. Systemswith state delays
are considered in [8], where a bounding ellipsoid of the reachable state is derived
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using Linear Matrix Inequalities. This idea gave rise to many generalizations, to
distributed delays and variable delays, see e.g. [2] and the references therein. The
question is generalized in [18] to that of the determination of invariant sets, for a
class of discrete systems with delays.

Adifferent approachwas recently introduced. The question is formulated in [16] in
an input-output setting. This is the basis of the present work. It concerns a large class
of convolution systems, that includes localized or distributed time delay systems,
ordinary or neutral time-delay systems, fractional systems andmany other distributed
systems. The basic idea is to observe that the input-output gain of a convolution
system is bounded by the L1 norm of its kernel. This can be reinterpreted in terms
of reachability: the output of a system with input in the unit ball is included into the
ball which radius is the L1 norm of the kernel. When the underlying topology is the
infinite norm, this observation comes down to a polytopic bound of the reachable
set of a constrained system. The aim of this communication is to develop this idea,
and to provide basic tools for the determination of polytopic approximations of the
reachable set for a large class of convolution systems. For amultivariable convolution
system, which input is constrained in a given polyhedron, we formulate conditions
for the output of the system to evolve in another given polyhedron. The conditions
are formulated in terms of integrals deduced from the kernel of the considered system
and the given polyhedra. The conditions are necessary and sufficient, which shows
that the bounds are in some sense exact.

The article is organized as follows. In Sect. 12.2, we recall the basic concepts that
are used, in particular the definition of the Wiener algebra, and of a polytope. We
identify bounds for the output of a given constrained system over theWiener algebra
in Sect. 12.3. These bounds are used to design overapproximations and underapprox-
imations of the reachable set of the system at a given time horizon. In Sect. 12.4, the
result is discussed, and illustrated on examples. Section12.5 is a short conclusion.

12.2 Background Concepts

12.2.1 Convolution Kernels

An input-output linear system given in the form of a convolution,

y = h � u , (12.1)

is BIBO-stable if its kernel h belongs to the class A of generalized functions of the
form

h(t) = ha(t) +
∑

i∈N
hiδ(t − ti ) , (12.2)
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where ha is in L1, hi ∈ R, ti ∈ R+, ti < ti+1 for i ≥ 0, and
∑

i∈N |hi | < ∞. The set
A endowed with the convolution product forms a Banach commutative algebra for
the norm

||h||A =
∫ +∞

0
|ha(t)|dt +

∑

i∈N
|hi | . (12.3)

This norm was shown to be the induced norm when h is seen as an operator over
L∞. We indeed have

sup
u �=0

||h � u||∞
||u||∞ = ||h||A , (12.4)

for every h inA . Here, as usually, || · ||∞ denotes the sup-norm on L∞, say ||u||∞ =
ess supt≥0 |u(t)|, ||y||∞ = ess supt≥0 |y(t)|. This shows that every bounded input
leads to a bounded output, and that ||h||A gives an exact bound on the output y(t).

The setA is sometimes calledWiener algebra (see, e.g. [20]). Many properties of
the setA are exposed in [10], and its use in control theory was gradually introduced
by various authors, among them Desoer [1, 5, 6], Callier [1, 5] and Vidyasagar
[6]. The set of fractions of elements of A (σ ) = e−σ tA is called the Callier-Desoer
class and is a key concept to describe robust stabilization methods for a large class
of distributed systems. The matter continues to generate interesting results, see for
instance Quadrat [20], or Lakkonen [13] for a recent survey.

The transfer of a system of the form (12.1) is the Laplace transform ĥ(s) of the
kernel h(t). For instance, the class A includes:

• the class of linear finite dimensional systems with rational transfer, e.g.

ĥ(s) = (s I − A)−1 , h(t) = eAt ,

• the class of time-delay systems, e.g.

ĥ(s) = e−θs

1 + sT
, h(t) =

{
0 , for t < θ ,

et−θ , for t ≥ θ ,
,

that are important models in many applications,

• the class of systems with distributed delays, e.g.

ĥ(s) = 1 − eθae−θs

s − a
, h(t) =

{
eat , for t ≤ θ ,

0 , for t > θ ,
,

that are important for the stabilization of time-delay systems,

• BIBO stable diffusive systems, e.g.
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ĥ(s) = 1 − e−α
√
s

√
s

, h(t) = 1 − erfc

(
α

2
√
t

)
.

This short list is not exhaustive. The class also includes many other linear distributed
systems, and covers many application fields [3, 22].

The system (12.2) is said to be regular if h(t) = ha(t), or equivalently if the
singular part is absent, say hi = 0 for i ∈ N. Notice that the class of regular systems
is also very large, for instance the four examples of transfer functions mentioned
above belong to this family.

Finally notice that in the present work, we basically consider systems with kernels
of the form (12.2) that are well defined, in the sense that the kernel h(t) is integrable
over every finite interval [0, t]. This includes the Callier-Desoer class, which justifies
the use of this expression in the title of the chapter. In Sect. 12.3.3, we shall assume
that the kernel of the system is defined over A .

12.2.2 Reachable Sets

We now consider a multivariable convolution system, defined by a kernel H , say

y = H � u , (12.5)

where u(t) ∈ U ⊂ R
m , for t ≥ 0. Recall that the convolution product � is defined as

yi (t) =
∫ t

0

∑

j

Hi j (t − τ)u j (τ )dτ . (12.6)

We consider a system with entries of the form (12.2), so that Hi j (t) = hai j (t) +∑
k∈N hki j (t − tk), for i = 1 to p and j = 1 to m. We hence have, for i = 1 to p:

yi (t) =
∑

j

⎛

⎝
∫ t

0
hai j (t − τ)u j (τ )dτ +

∑

k|tk≤t

hki j u j (t − tk)

⎞

⎠ .

We are interested into the characterization of the range of system (12.5). The basic
concept is that of reachable set.

Definition 12.1 System (12.5) and a subset U of Rm being given, we say that an
input function u is admissible, if u(t) ∈ U , for t ≥ 0. The reachable set R(U ) is
then defined as the set of vectors x ∈ R

p for which there exists an admissible control
u such that the output y(t) defined by (12.5) satisfies y(t) = x for some t ≥ 0. We
also define the set R(U , t) of vectors x that are reachable at t , so that x = y(t) for
some admissible input u, and the set Rt (U ) of the vectors x reachable within t , so
that x = y(τ ), for some instant τ satisfying 0 ≤ τ ≤ t .
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These definitions are taken from [24], a seminal paper on the computation of reach-
able sets for systems without memory. We remark that

Rt (U ) =
⋃

τ∈[0,t]
R(U , τ ) ,

and
R(U ) =

⋃

t>0

R(U , t) =
⋃

t>0

Rt (U ) .

One can see that R(U , t) is convex, if U is convex. In Sect. 12.3, we shall in
particular study the case whereU is given in the form of a polytope C (M). The sets
Rt (U ) and R(U ) are not convex, in general. Let us discuss these aspects.

The setsRt (U ) andR(U ) are not connected, in general. This is due to the singu-
lar part of the kernels of the form (12.2), that may cause discontinuity of the solution
y(t). Consider for instance the kernel h(t) = δ(t − θ), where θ is any positive num-
ber, and U = {1}. We have in this example R(U ) = {0, 1}, that is not connected.
One can find conditions under which the sets are connected, or convex.

Proposition 12.1 System (12.5) being given, together with a subset U of Rm, and
a real number t ≥ 0, the following claims are true.

(i) The setR(U , t) is convex if U is convex.
(ii) The setsRt (U ) andR(U ) are connected ifU is convex and the kernel of the

system is regular.
(iii) The sets Rt (U ) are growing with t if 0 ∈ U .
(iv) The setsRt (U ) and R(U ) are convex if U is convex, and 0 ∈ U .

Proof Notice first that ifU is convex, and y and y′ are reached using the admissible
input trajectories u(t) and u′(t), respectively, thenαu(t) + (1 − α)u′(t) is admissible
too, and permits to reach αy + (1 − α)y′. This shows thatR(U , t) is convex ifU is
convex. Further, the trajectories y(t) of the system are continuous when the kernel is
regular. Consider now two points y and y′ inR(U ). There exist admissible inputs u
and u′, and two instants t, t ′ ≥ 0 such that y = (H � u)(t) and y′ = (H � u′)(t ′). We
can assume, without any limitation, that t ′ < t . Defining y′′ = (H � u)(t ′), one can
see that there is a path from y′ to y′′ in R(U , t ′), since this set is convex. There is
also a path from y′′ to y inRt (U ), since y(τ ) is continuous, and takes its values into
Rt (U ), by definition of this set. Therefore, since R(U , t ′) is a subset of Rt (U ),
one deduces that there exists in the latter set a path from y′ to y, which shows
the second assertion of the proposition. The third assertion is obtained remarking
that if y ∈ R(U , t) and 0 ∈ U , then there exists an admissible function u, and
an instant t , such that y = (H � u)(t). One can see that y = (H � u′)(t ′), taking
u′(τ ) = 0, for τ ∈ [0, t ′ − t[, and u′(τ ) = u(t + τ − t ′), for τ ≥ t ′ − t . This shows
that y ∈ R(U , t ′), for every t ′ greater than t , and establishes the third assertion. The
last assertion is a consequence of (i) and (iii). �
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As a consequence to this remark, the hypotheses that U is convex and 0 ∈ U are
often formulated in the literature, even in the case of localized systems. Of course,
these assumptions are limitative. The identification ofmore accurate conditionsmight
be useful in certain applications with discontinuous behaviors.

12.2.3 Elements of Convex Analysis

Wenowrecall the definitionof a polytope and somebasic concepts of convex analysis.
These concepts are taken from [21] (see in particular Sects. 6 and 13), and will be
useful to analyse the reachability of constrained convolution systems.

A convex set C ⊂ R
n is such that, for every x, y ∈ C , and every λ ∈ [0, 1], the

vector z = λx + (1 − λ)y lies in C . The support function of C is fC : Rn → R
n ,

defined by
fC (v) = sup

x∈C
vT x ,

for v ∈ R
n . Notice that fC (v) takes only finite values if C is bounded. The ball of

radius ε centered on x ∈ R
n is denoted B(x, ε), as usually. A convex set C is open

if there exists ε > 0 such that the ball B(x, ε) is included into C. It is closed if its
complement is open. The least closed set containing C is called its closure, denoted
C . The greatest open set included into C is called the interior of C .

The concept of relative interior, that we now recall, is specific to the convex sets.
The affine hull of a convex set C is denoted aff C and is defined as the set

aff C = {z ∈ R
n | ∃x, y ∈ C , α ∈ R, z = x + α(y − x)} .

An affine set can also be written as aff C = x + linC , for any element x ∈ C , where
linC is the vector space generated by the differences y − x , with y ∈ C . The relative
interior of C , denoted riC , is the interior of C when it is considered as a subset of
aff C , say

riC = {x ∈ R
n | ∃ε > 0, B(x, ε) ∩ aff C ⊂ C } .

One says that C is relatively open if it equals its relative interior. If C is reduced to
a unique point, then linC = 0 and riC = C = C . In general, the three sets C , riC ,
and C are different, and we have the following.

Theorem 12.1 Two convex sets C1 and C2 being given, the following claims are
equivalent.

(i) fC1(v) = fC2(v), for every vector v ∈ R
n,

(ii) C1 = C2,
(iii) riC1 = riC2.

For a convex set C , and a vector v ∈ R
n , we have the inclusion {vT x | x ∈ C } ⊂

[− fC (−v), fC (v)], because inf x∈C {vT x} = − supx∈C {−vT x}. Thebounds are exact,
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and they belong or not to the set, depending on its topological property. The following
theorem precises this aspect (this is Theorem 13.1 of [21]).

Theorem 12.2 A nonempty convex set C being given, the following claims hold
true.

(i) C is closed if and only if ∀v ∈ R
n, {vT x | x ∈ C } = [− fC (−v), fC (v)].

(ii) C is open if and only if ∀v ∈ R
n, {vT x | x ∈ C } =] − fC (−v), fC (v)[.

(iii) C is relatively open if and only if {vT x | x ∈ C } =] − fC (−v), fC (v)[,
∀v ∈ R

n such that − fC (−v) < fC (v).

We finally recall basic facts and definitions concerning polytopes.

Definition 12.2 A matrix M ∈ R
m×n being given, the convex polytope of Rm gen-

erated by the columns of M is the set denoted C (M), and defined by

C (M) =
{
x ∈ R

m | ∃v ∈ R
n, v ≥ 0,

n∑

i=1

vi = 1, x = Mv

}
.

The relatively open polytope generated by M is defined by

Cro(M) =
{
x ∈ R

m | ∃v ∈ R
n, vi > 0,

n∑

i=1

vi = 1, x = Mv

}
.

In other words, introducing the notationΓ = {v ∈ R
n, v ≥ 0,

∑n
i=1 vi = 1}, we have

C (M) = MΓ , and Cro(M) = MriΓ = riMΓ . The following result is then clear
(see Theorems 6.6 and 6.9 from [21]).

Proposition 12.2 For every matrix M, we have the equality

riC (M) = Cro(M) .

Definition 12.3 A matrix P ∈ R
q×p and a vector π ∈ R

q being given, the polyhe-
dron denoted P(P, π) is the set defined as

P(P, π) = {
z ∈ R

p | Pz ≤ π
}

.

The relatively open polyhedron Pro(P, π) is defined by

Pro(P, π) =
⎧
⎨

⎩z ∈ P(P, π) |
p∑

j=1

Pi j z j < πi , for i ∈ J (P, π)

⎫
⎬

⎭ ,

with J (P, π) = {i | ∃z ∈ P(P, π),
∑p

j=1 Pi j z j < πi }.
In other words, some of the constraints corresponding to the rows of the matrix
P and the vector π actually define the affine hull of P(P, π). The other ones,
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corresponding to the set J (P, π), define a subset of affP(P, π), with a nonempty
interior that equals riP(P, π). We hence have the following result.

Proposition 12.3 Amatrix P ∈ R
p×m and a vector π ∈ R

p being given, the follow-
ing equality holds true

riP(P, π) = Pro(P, π) .

We are now ready to study the reachable set of convolution systems.

12.3 Polyhedral Bounds of the Reachable Set

12.3.1 Elementary Bounds

Abasic question consists in determining the range of the output y(t) of system (12.5).
We are precisely interested in verifying whether or not the output y(t) belongs to a
given polyhedron, provided that the input u(t) evolves in another given polyhedron.
The following elementary remark will be useful in the sequel.

Lemma 12.1 Let be given a vector x ∈ R
n and a vector v in the convex set Γ =

{v ∈ R
n, v ≥ 0,

∑n
i=1 vi = 1} defined as in Definition 12.2. Then, we have

max
v∈Γ

⎧
⎨

⎩

n∑

j=1

x j v j

⎫
⎬

⎭ = max
j

x j .

Proof Since x j ≤ max j x j , it is clear that
∑n

j=1 x j v j ≤ (max j x j )(
∑n

j=1 v j ). By

definition of Γ , it appears that
∑n

j=1 x j v j ≤ max j x j , so that maxv∈Γ

{∑n
j=1 x j v j

}

≤ max j x j . This is an exact bound, which follows considering the vector v defined
by vk = 1 and v j = 0, for j �= k, with k = arg max j x j . This ends the proof. �

We are now able to formulate the basic result on polyhedral bounds of system (12.5).

Theorem 12.3 System (12.5) being given, together with matrices M ∈ R
m×n, P ∈

R
q×p, a vector π ∈ R

q , and t > 0, then y(t) belongs to P(p, π) for every input
satisfying u(τ ) ∈ C (M), for τ ≥ 0, if and only if the following condition holds true
for i = 1 to q: ∫ t

0
max

j

{
(PH(τ )M)i j

}
dτ ≤ πi .
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Proof To begin with the proof, we proceed by equivalences:

y(t) ∈ P(P, π) ⇐⇒ Py(t) ≤ π , by definition of P(P, π),

⇐⇒ ∫ t
0 PH(τ )u(t − τ)dτ ≤ π , by definition of the system,

⇐⇒ ∫ t
0 PH(τ )Mv(t − τ)dτ ≤ π , by definition of C (M),

⇐⇒ ∫ t
0 max j

{
(PH(τ )M)i j

}
dτ ≤ πi , by Lemma 12.1.

Assuming that H is a matrix with inputs that are integrable over [0, t], we observe
that the integrals in these equivalences are well defined. They are indeed bounded
by the product p · m · maxk{|Pik |} · B · maxl |{Mlj |}, if B is a bound of the integrals
of the entries of H , for instance B = maxk,l ||Hkl ||A , if H is a matrix over A . In
these statements, the vector v(t − τ) lies in Γ , by hypothesis, which permits to apply
Lemma 12.1. The fact that this lemma gives exact bounds is essential to obtain the
last equivalence, from which the theorem is deduced. �

A preliminary version of this result was obtained in [16]. We first remark that upper
bounds and lower bounds of the behavior of the given system can be derived from
Theorem 12.3. For this purpose, one defines

λi (t) =
∫ t

0
min

j

{
(H(τ )M)i j

}
dτ , (12.7)

and

μi (t) =
∫ t

0
max

j

{
(H(τ )M)i j

}
dτ . (12.8)

Corollary 12.1 Thematrix M and the system (12.5) being given as in Theorem 12.3,
and λi (t), μi (t) being defined as in (12.7), (12.8), we have

λi (t) ≤ yi (t) ≤ μi (t) ,

for i = 1 to p. In addition, the bounds are reached, so that the range of yi (t), when the
input satisfies u(τ ) ∈ C (M), for τ ≥ 0, is exactly the closed interval [λi (t), μi (t)].
Proof Theupper boundofCorollary 12.1 is obtained taking P = Ip inTheorem12.3.
The lower bound is obtained with P = −Ip, since min j {x j } = −max j {−x j }, and
−maxv∈Γ {−x j v j } = minv∈Γ x j v j , with Γ defined as in Lemma 12.1.

To complete the proof, we remark that the upper bound μi (t) is indeed reached
using the control defined by uk(τ ) = Mkj (t−τ), for k = 1 to m and τ ∈ [0, t], with

j (τ ) = arg max
j

{
(H(τ )M)i j

}
.

Similarly, the lower bound is reached using the control that maximizes −yi (t), that
is defined in terms of an argument of max j

{−(H(τ )M)i j
}
. �

We can finally remark the following fact, that will be useful in Sect. 12.3.3.
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Corollary 12.2 Under the conditions of Corollary 12.1, the range of yi (t) when
u(τ ) ∈ Cro(M) equals the open interval ]λi (t), μi (t)[, if λi (t) < μi (t), and is
reduced to {μi (t)}, if λi (t) = μi (t).

Proof If the equalityλi (t) = μi (t) is satisfied, one can see thatmin j
{
(H(τ )M)i j

} =
max j

{
(H(τ )M)i j

}
almost everywhere in the interval [0, t], and therefore the kernels

(H(τ )M)i j , for j = 1 to n, are equal almost everywhere in this interval. In this case,
y(t) takes a unique value, say

∫ t
0 (H(τ )M)i1dτ . If λi (t) < μi (t), then the different

kernels (H(τ )M)i j , for j = 1 to n, are not equal on a subset of [0, t] having a nonzero
measure. Taking an instant t from this set, we observe that min j

{
(H(τ )M)i j

}
<

H(τ )u(t − τ) < max j
{
(H(τ )M)i j

}
holds true, for every input u(t − τ) ∈ Cro(M),

from which one deduces that λi (t) < yi (t) < μi (t). The conclusion is obtained
remarking that the bounds can be approached with an arbitrary precision. To this
aim, define K = ∫ t

0

∑
k

(
max j

{
(H(τ )M)i j

} − (H(τ )M)ik
)
dτ . We can see that

K is positive, and has a finite value if the kernel is integrable over [0, t]. Tak-
ing u(t − τ) = Mν(t − τ), with v j (t − τ) = 1 − (n − 1)ε/K , and vk = ε/K , for
k �= j (t − τ), we obtain yi (t) = μi (t) − ε. The lower bound λi (t) is approached
in the same way, using an argument j (τ ) of max j

{−(H(τ )M)i j
}
and defining

now K = ∫ t
0

∑
k

(
(H(τ )M)ik − min j

{
(H(τ )M)i j

})
. One checks that the input

defined by u(t − τ) = Mν(t − τ), with v j (t − τ) = 1 − (n − 1)ε/K , and vk =
ε/K , for k �= j (t − τ) leads to an output verifying yi (t) = λi (t) + ε, which ends the
proof. �

12.3.2 Polyhedral Approximations of the Reachable Set

The previous results can be interpreted in terms of reachability.
Remark that the difference between the left and right members of the con-

dition of Theorem 12.3 is the distance between the reachable set and the plan
{y ∈ R

p | ∑
j Pi j y j = πi }. The left member of the condition, say

ρi (t) =
∫ t

0
max

j

{
(PH(τ )M)i j

}
dτ , (12.9)

is therefore so that the plan {y ∈ R
p | ∑

j Pi j y j = ρi (t)} is tangent to the reachable
space at t , sayR(C (M), t), of the system constrained byU = C (M). If the matrix
P is given, the polyhedron P(P, ρ(t)) is the least polyhedron whose faces are
oriented according to P , and that contains the reachable set. One can also compute
a point of the intersection between the face and the reachable set. We first define the
integers

jk(τ ) = arg max
j

{
(PH(τ )M)k j

}
,
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for k = 1 to q, and the output vectors

νi (k, t) =
∫ t

0
(H(τ )M)i jk (τ )dτ ,

for k = 1 to q, and i = 1 to p. Then, N is defined as the matrix which columns are
the vectors ν(k, t), say

Ni j = νi ( j, t) ,

for i = 1 to p, j = 1 to q. The following definitions are inspired by [24].

Definition 12.4 A compact convex set R being given, we say that a polyhedron is
an exact outer approximation ofR if its faces are tangent toR, and that it is an exact
inner approximation of R, if its vertices are on the boundary ofR.

Theorem 12.4 The system (12.1) being given, together with an integer q and two
matrices P ∈ R

q×p and M ∈ R
m×q , and taking N and ρ defined as above, the convex

polytope C (N ) is an exact inner approximation, and the polyhedron P(P, ρ(t)) is
an exact outer approximation, of R(C (M), t).

Proof For k = 1 to q, the control defined by u(k)(t − τ) = Mv(k)(τ ), with v(k)
j (τ ) =

1, if j = jk(τ ), and v(k)
j (τ ) = 0, if j �= jk(τ ), satisfies (Py)k(t) = ρk(t). This shows

that the faces of P(P, ρ(t)) are tangent to R(C (M), t), and the vertices of C (N )

are on the boundary of R(C (M), t), which ends the proof. �

In otherwords,wehave the chainof inclusionsC (N ) ⊂ R(C (M), t) ⊂ P(P, ρ(t)),
and the distance between the three sets is null:

inf{d(x, y) | x ∈ C (N ), y ∈ R(C (M), t)} = 0 ,

and
inf{d(y, z) | y ∈ R(C (M), t), z ∈ P(P, ρ(t))} = 0.

The precision of the approximation can be defined as the Hausdorff distance between
the upper and lower approximations, defined, since C (N )) ⊂ P(P, ρ(t)), as:

max{d(z,C (N )) | z ∈ P(P, ρ(t))} .

This distance is decreasingwhen rows are added to thematrix P . This permits to reach
an arbitrary precision choosing amatrix P that corresponds to plans inmany different
directions. In practice, the number of rows is rapidly growing with the dimension of
the system. For this reason, one may prefer rough approximations in high dimension.
Anyway, this formulation is well fitted for numerical computations. The integrals can
be easily approximated using Matlab or Scilab, for instance, provided that the kernel
H(t) is explicitly known, or can be numerically computed. We shall give a simple
example in Sect. 12.4.
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We complete this study with remarks concerning the topological structure and the
approximation of Rt (U ) and R(U ).

12.3.3 Additional Comments on the Structure
of the Reachable Set

We first complete the previous results in terms of the reachable set at a given instant.

Proposition 12.4 The matrix M ∈ R
m×n, an instant t ≥ 0 and the system (12.5)

being given, then the following claims are true.

(i) The setR(C (M), t) is closed.

(ii) The setR(Cro(M), t) is relatively open.

(iii) We have the equalities R(Cro(M), t) = riR(C (M), t).

Proof The proof uses Theorem 12.2 (that is Theorem 13.1 of [21]), and a variant of
Theorem 12.3 and Corollary 12.2. According to claim (i) of Proposition 12.1, the
setR(C (M), t) is convex. We then remark that the support function ofR(C (M), t)
is defined, in any direction v ∈ R

p, by fR(C (M),t)(v) = ∫ t
0 max j {(vT H(τ )M) j }dτ .

Applying Corollary 12.2, one obtains that vTR(C (M), t) is either reduced to a
single element, if fR(C (M),t)(v) = − fR(C (M),t)(−v), or equal to the open interval
] − fR(C (M),t)(−v), fR(C (M),t)(v)[, if − fR(C (M),t)(−v) < fR(C (M),t)(v). The sec-
ond claim is therefore deduced from claim (iii) of Theorem 12.2. In a similar way,
one can see that for every v ∈ R

p, the set vTR(C (M), t) is a closed interval. The
claim (i) is then deduced from claim (i) of Theorem 12.2. From Corollaries 12.1
and 12.2, we conclude that actually R(C (M), t) is the closure of R(Cro(M), t).
We further obtain from Theorem 12.2 that the open interior of both sets are equal,
and the conclusion follows since R(Cro(M), t) is equal to its relative interior, from
claim (i). �
In other words, the set R(C (M), t) is closed if the kernel H(t) is integrable over
[0, t], because the limits are reached in the inequalities presented in Sect. 12.3.1, and
its relative interior coincides with the set of points that are reachable using inputs
in the relative interior of the polyhedron U = C (M). When t tends to the infinity,
the upper bound found for y(t) when the system is subject to a bounded input u(t)
converges to a bounded limit (assuming that system (12.5) is overA ), but this limit
may be reachable, or not, depending on H(t), and the choosen direction v. As a
consequence,R(C (M)) is not closed, in general. In the same way, when the kernels
include delayed diracs, the function μi (t) may be discontinuous, so that the set of
points that are reachable within a finite time, Rt (C (M)), is not always closed.

Consider for instance the system y = h ∗ u, with h(τ ) = fa(τ ) − δ(1 − τ), with
fa(τ ) = 1, for τ ∈ [0, 1], and fa(τ ) = 0, for τ > 0. We have
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y(t) =
{∫ t

0 fa(τ )u(t − τ)dτ , for t < 1,∫ t
0 fa(τ )u(t − τ)dτ − u(t − 1) , for t ≥ 1.

(12.10)

One can verify that taking u(τ ) = 1 on this example, we obtain y(t) = t , for t ∈
[0, 1[, and y(t) = 0, for t ≥ 1. The point y = 1 is not reachable within t = 1, if
U = {1}. We have in this case M = (1), C (M) = {1}, andRt (C (M)) = [0, t], for
t ∈ [0, 1[, and Rt (C (M)) = [0, 1[, for t ≥ 1.

A singular kernel may also cause that Rt (C (M)) and R(C (M)) are not con-
nected set. The consequences of these remarks are different in terms of outer or inner
approximations.

Remark 12.1 We can adapt Theorem 12.3 and Corollary 12.1 to have the constraint
y(τ ) ∈ P(P, π) satisfied within a finite time interval, say [0, t], or respectively for
t ≥ 0. For this purpose, one now defines

ρi (t) = sup
0≤θ≤t

∫ θ

0
max

j

{
(PH(τ )M)i j

}
dτ , (12.11)

or, respectively,

ρi = sup
t≥0

∫ t

0
max

j

{
(PH(τ )M)i j

}
dτ . (12.12)

We then obtain the following bounds within t :

yi (θ) ≤ ρi (t) ,

for θ ∈ [0, t], or, respectively
yi (t) ≤ ρi

for t ≥ 0.

Going on in this direction, we remark that the polyhedra P(P, ρ(t)), or P(P, ρ),
respectively, are outer approximations of Rt (C (M)) and R(C (M)), respectively.
As introduced in Proposition 12.1, additional hypotheses can be introduced to be
able to calculate inner approximations of the reachable sets.

Remark 12.2 The integral that appears in (12.12) is an increasing function of the
time t , when its integrand is non-negative. This is always the case when 0 lies in
C (M), or when the kernel H(t) and the matrix M are non-negative. In this case, the
bound (12.12) is equal to

ρi =
∫ ∞

0
max

j

{
(PH(τ )M)i j

}
dτ ,

that is well-defined if H(t) is defined over A .
Under the same hypothesis, that 0 ∈ C (M), we observe that ρi (t) is actually given

by (12.9), and Rt (C (M)) = R(C (M), t). In this case, the procedure presented in
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Sect. 12.3.2 can be used to calculate a matrix N that corresponds to a lower approxi-
mation of the reachable setRt (C (M)). We can also adapt this procedure to the case
of an indefinite integral. For k = 1 to q, we define N as in Sect. 12.3.2, with t = ∞.
According to Definition 12.4, we have obtained an exact approximation of the clo-
sure of the reachable set. We may remark that C (N ) is not included intoR(C (M)),
in general, but we have the inclusion Cro(N ) ⊂ R(Cro(M)) ⊂ Pro(P, ρ). In this
sense, the matrices P , N , and the vector ρ also define exact approximations of the
relatively open reachable set.

Remark 12.3 Inmany applications, onewants to compute approximations of the tube
(R(C (M), t), t) ⊂ R

p × R+. As suggested in claim (ii) of Proposition 12.1, this
tube is well defined if the kernel of system (12.4) is regular. The tube is then approx-
imated using polyhedral approximations ofR(C (M), ti ) at successive instants ti .

12.4 Remarks and Examples

12.4.1 Positive Kernels

The classical characterization of the positivity of a system in terms of the positivity
of its kernel can also be seen as a consequence of Theorem 12.3.

Definition 12.5 The system (12.1) is said to be non-negative if every non-negative
input u(t) leads to a non-negative output y(t). The multivariable system (12.5) is
non-negative if its entries are all non-negative.

Corollary 12.3 The system (12.1) is non-negative if and only if its kernel (12.2) is
non-negative almost everywhere. The system (12.5) is non-negative if and only if all
the entries of its kernel H(t) are non-negative almost everywhere.

Proof By definition, the system (12.1) is non-negative if R(C (M)) ⊂ P(P, π),
with M = (0, 1), P = (−1), and π = (0). Applying Theorem 12.3, we conclude
that

∫ t
0 max{0,−h(τ )}dτ ≤ 0, for t ≥ 0, from which we deduce that h(τ ) takes

non-negative values almost everywhere. �

If the system (12.2) is positive, and u(t) lies in [α, β], we have the following inequal-
ities, for t ≥ 0

α

∫ t

0
h(τ )dτ ≤ y(t) ≤ β

∫ t

0
h(τ )dτ .

In addition, these bounds are exact, in the sense that they are reached. If in addition
the kernel h(t) is an element of A , then we have y(t) ∈ [α‖h‖A , β‖h‖A ]. The
limits of this interval may be reached or not, but they are exact in the sense of the
discussion of Sect. 12.3.3, for instance we have R(Cro(M)) =]α‖h‖A , β‖h‖A [.

This first result can be generalized to kernels that are not necessarily positive.
Every measure h inA can be uniquely decomposed into a difference h = h+ − h−,
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where h+ and h− are two positive measures in A with disjoint supports. Then if
α ≤ u(t) ≤ β, the range of y(t) is given by

α

∫ t

0
h+(τ )dτ − β

∫ t

0
h−(τ )dτ ≤ y(t) ≤ β

∫ t

0
h+(τ )dτ − α

∫ t

0
h−(τ )dτ ,

for any positive t , that can be rewritten as

∫ t

0
min {αh(τ ), βh(τ )} dτ ≤ y(t) ≤

∫ t

0
max {αh(τ ), βh(τ )} dτ ,

that in turns appears to be a consequence of Theorem 12.3. The latter formulation
is well fitted for numerical computations, since it avoids the computation of h+ and
h−. Indeed the infinite integral can be easily approximated using Matlab or Scilab,
provided that h(t) is explicitly known, or can be numerically computed. We also
remark that this formula gives the way to calculate a control law umax that maximizes
the output. This control law is given by

umax(t − τ) =
{

α , if max {αh(τ ), βh(τ )} = αh(τ ) ,

β , else ,
(12.13)

for any positive t . In the same way, the control given by

umin(t − τ) =
{

α , if min {αh(τ ), βh(τ )} = αh(τ ) ,

β , else ,

permits to reach the lower value of the output. When t goes to infinity, we obtain
the results that follow. They are well-known and often used (or rediscovered) in the
literature.
(i) If u(t) ∈] − umax,+umax[, then y(t) ∈] − ymax,+ymax[, with ymax = ‖h‖umax.
(ii) If h(t) is positive, and u(t) ∈ [0,+umax[, then y(t) ∈ [0, ymax[.
(iii) If h(t) = h+(t) − h−(t) with h+ and h− positive, and u(t) ∈] − umin,+umax[,
then y(t) ∈] − ymin,+ymax[, with ymin = ‖h+‖umin + ‖h−‖umax, and ymax = ‖h+
‖umax + ‖h−‖umin.

12.4.2 Constrained Control and D-Invariance

We give here a simple example of the explicit computation of the bounds of input-
output systems. It illustrates that these techniques may be useful to design control
laws for constrained systems.
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We consider the following model, which was introduced by Simon some years
ago [23]. The inventory level y(t) of a simple logistic system follows the law

ẏ(t) = u(t − θ) − d(t) ,

where u(t) is the production rate order and d(t)is the instantaneous demand. We
assume that for t < θ , we have ẏ(t) = φ(t) − d(t), where φ(t) corresponds to some
initial condition. We choose the control law in the form

u(t) = K (yc − z(t)) ,

with

z(t) =
{
y(t) + ∫ t

t−θ
u(τ )dτ for t ≥ θ ,

y(t) + ∫ θ

t φ(τ)dτ + ∫ t
0 u(τ )dτ for t < θ .

One can show that the solution is written

ŷ(s) = 1 + K 1−e−sθ

s

s + K

(
y0 + φ̂(s) − d̂(s)

)
+ K e−sθ

s + K
.
( yc
s

+ φ̂
)

.

We therefore introduce the notations

ĥ1(s) =
(
1 + K 1−e−sθ

s

)

s + K
ĥ2(s) = K e−sθ

s + K

that are the Laplace transform of the kernels

h1(t) =
{
1 , for t ∈ [0, θ [ ,

e−K (t−θ) , for t ≥ θ ,
h2(t) =

{
0 , for t ∈ [0, θ [ ,

e−K (t−θ) , for t ≥ θ ,

and we notice that ‖h1‖A = θ + 1/K , and ‖h2‖A = 1. Assuming that the range of
the external demand d(t) is [0, dmax], we deduce the bounds

−dmax‖h1‖A + yc ‖h2‖A ≤ y(t) ≤ yc ‖h2‖A
that lead to explicit bounds on y(t)

yc − dmax

(
θ + 1

K

)
≤ y(t) ≤ yc ,

for t ≥ θ , and on the admissible initial conditions

y0 + wi p0 − θ ≤ y(t) ≤ y0 + wi p0 .
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over the initial period t ∈ [0, θ [, with wi p0 = ∫ θ

0 φ(τ)dτ . From these bounds, one
can easily deduce conditions to meet the constraints on the production and inventory
capacity, that are given as u(t) ∈ [0, umax] and y(t) ∈ [0, ymax], for every demand in
the range d(t) ∈ [0, dmax]. The admissible values of the control parameters are:

yc ∈ [θdmax, ymax] , K ≥ dmax

yc
− θ ,

and the admissible values of the sizing parameters are:

umax ≥ dmax , θdmax < ymax .

These results were obtained using other methods in [17]. The samemodel can also be
used to study the congestion control in communication networks, and similar results
have been expounded in [12].

12.4.3 Example of Approximation of the Reachable Set

Let us consider the following time delay system

ẋ(t) =
[−2 0
0 −1

]
x(t) +

[
1 0

−1 1

]
x(t − 1) +

[
0 1
0.5 0

]
x(t − π) +

[−0.5
1

]
u(t) ,

where the initial state of the system is taken as x(t) = 0 for t ∈ [−π, 0], and u(t) ver-
ifies u(t) ∈ U = {0 ≤ u(t) ≤ 1}, for t ≥ 0. Formally, this system can be rewritten
in the form

x(t) = (H � u)(t) ,

where H ∈ A 2×1. The first step of the design is to numerically compute the kernels
H11(t) and H21(t) using the solver dde23 of MATLAB. The result is plotted in
Fig. 12.1. The second step of the design consists in the computation of the outer
and inner approximations of the reachable set of the system. For this purpose, we
consider thematrix P that is obtained by the concatenation of row vectors of the form
(cos 2kπ

K , sin 2kπ
K ), for k = 1 to K , and apply the procedure indicated in Sect. 12.3.2

to compute the vector ν and the matrix N , so that the outer and inner approximations
of the reachable set are respectively P(P, ν) and C (N ). The polyhedra obtained
for K = 5 are shown in Fig. 12.2. We also represent on the figure the reachable set,
that was finely approximated using K = 360.
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Fig. 12.1 Graphs of the kernels H11(t) and H21(t)
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Fig. 12.2 Approximation of the reachable set

12.5 Conclusions

We have characterized bounds for a class of input-output systems defined by a con-
volution. They are derived from the concept of BIBO stability, and are given in
terms of integrals that are easy to compute numerically. A method for the approx-
imation of reachable sets of convolution systems was obtained from these bounds.
We shortly commented the topological structure of the reachable set and the case
of positive systems. The method was illustrated on a simple regulation problem of
inventory level in a logistic system, and on an academic example of system with two
non-commensurable delays.
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