
Chapter 11
Improved Controller Design for Positive
Systems and Its Application to Positive
Switched Systems

Junfeng Zhang, Linli Ma, Qian Wang, Yun Chen and Shaosheng Zhou

Abstract This chapter will address a new controller design approach for positive
systems. First, we decompose the feedback gainmatrix Km×n intom × n nonnegative
components and m × n non-positive components. For the nonnegative components,
each component contains only one positive element and the other ones are zero.
Similarly, each non-positive component contains only one negative element and
the other ones are zero. Then, a simple but effective controller design of positive
systems is proposed by incorporating the decomposed feedback gain matrix into
the resulting closed-loop systems. The present approach is thus applied to positive
switched systems. It is shown that the designed controller for positive switched
systems is less conservative than those ones in the literature.
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11.1 Introduction

Positive systems are a special class of control systems [1]. Over past two decades,
positive systems have gained increasing interests due to their extensive applications
in practice and theoretical complexes in control theory [2–9]. Compared with general
systems, positive systems do not receive much attention until this century. This leads
to that many issues of positive systems are open.

As general systems, stabilization is also a fundamental issue of positive systems.
There have been some significant results on the stabilization of positive systems. A
linear programming approach to controller design of positive systems was proposed
in [10, 11]. The output-feedback controller of positive systems [12] was proposed by
using the approach in [10, 11]. The problem of �1-induced state-feedback controller
design for positive systems was investigated by using a linear copositive Lyapunov
function in [13]. In [14], a static output-feedback controller design was presented,
where an iterative linear matrix inequality algorithm was provided to compute the
feedback gain matrix. In [15], the output-feedback controller was designed by virtue
of an iterative convex optimization algorithm. More results on positive systems can
refer to [16–23].

As far as the stabilization of positive systems is concerned, it is clear that there is
stillmuch room for improvements in the abovementionedworks. Thismotivates us to
carry out the present work. This chapter will further provide a new controller design
approach to remove some restrictions in the heavy computational burden, the con-
troller gain matrix, and the unreliability algorithms in the literature. By decomposing
the feedback gain matrix into parts, the new approach removes those restrictions in
the literature. Our developed design approach is very efficient in solving the control
synthesis problems of positive systems. An application to positive switched systems
is also given to show the efficiency of the proposed approach. The rest of the chapter
is organized as follows: Sect. 11.2 provides the problem statements; Sect. 11.3 gives
main results; Sect. 11.4 concludes the chapter.

NotationsLet�,�n,�n×n be the sets of real numbers, n-dimensional vectors and
n × n matrices, respectively. Denote by N,N+ the sets of nonnegative and positive
integers. For a vector x = (x1, . . . , xn)T , x � 0 (� 0) means that xi ≥ 0 (xi > 0)
∀i = 1, . . . , n. Similarly, x � 0 (≺ 0) means that xi ≤ 0 (xi < 0) ∀i = 1, . . . , n.
For a matrix A = [ai j ] ∈ �n×n , A � 0 (� 0) means that ai j ≥ 0 (ai j > 0) ∀i, j =
1, . . . , n. Similarly, A � 0 (≺ 0) means that ai j ≤ 0 (ai j < 0) ∀i, j = 1, . . . , n.
A matrix A is called as Metzler if all its non-diagonal elements are nonnega-
tive. I is the identical matrix with proper dimension. �n+ � {x |x ∈ �n, x � 0}. Let
1n = (1, . . . , 1

︸ ︷︷ ︸

n

)T and 1(i)
n = (0, . . . , 0

︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

n−i

)T . Throughout the chapter, the

dimensions of vectors and matrices are assumed to be compatible if not stated.
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11.2 Problem Formulation

Consider the following system:

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(11.1)

where x(t) ∈ �n, u(t) ∈ �m and y(t) ∈ �r are system state, control input, and out-
put, respectively. Assume that A ∈ �n×n is a Metzler matrix, B � 0 with B ∈ �n×m ,
and C � 0 with C ∈ �r×n .

The following preliminaries are first introduced for later use.

Definition 11.1 [3, 6] System (11.1) is positive if its state and output are nonneg-
ative for all time t whenever the initial condition x(t0) and control input u(t) are
nonnegative.

Lemma 11.1 [3, 6] System (11.1) is positive if and only if A is a Metzler matrix,
B � 0 and C � 0.

Noting the assumptions for system (11.1), it follows that system (11.1) is positive
by Lemma 11.1.

Lemma 11.2 A matrix M is Metzler if and only if there exists a positive constant ς
such that M + ς I � 0.

11.3 Main Results

In this section, we will address the stabilization of positive systems and positive
switched systems (PSSs). The objective of the stabilization is to design a controller
such that the resulting closed-loop system is positive and stable.

11.3.1 Stabilization of Positive Systems

We first consider the stabilization of system (11.1).

Theorem 11.1 If there exist constants ς > 0, k+
i j > 0, k+ > 0, k−

i j < 0, k− < 0 and
vectors v � 0 with v ∈ �n such that

AT v + ζ+ + ζ− ≺ 0, (11.2a)

A1Tm B
T v + B

∑m
i=1

∑r
j=1 1

(i)
m (ζ+

i j

+ ζ−
i j )

T + ς I � 0,
(11.2b)
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k+
i j < k+, (11.2c)

k−
i j < k−, (11.2d)

hold for i = 1, . . . ,m, j = 1, . . . , n, where ζ±
i j = (0, . . . , 0

︸ ︷︷ ︸

j−1

, k±
i j , 0, . . . , 0

︸ ︷︷ ︸

n− j

)T ∈ �n

and ζ± = (k±, . . . , k±)T ∈ �n, then under the state-feedback control law

u(t) = Kx(t)

= Σm
i=1Σ

n
j=11

(i)
m (ζ+

i j + ζ−
i j )

T

1Tm BT v
x(t)

(11.3)

the resulting closed-loop system (11.1) is positive and asymptotically stable.

Proof By 1m � 0 with 1m ∈ �m , B � 0 with B ∈ �n×m , and v � 0 with v ∈ �n , we
have 1Tr B

T v > 0. This together with (11.2b) gives that

A + B
Σm

i=1Σ
n
j=11

(i)
m (ζ+

i j + ζ−
i j )

T

1Tm BT v

+ ς

1Tm BT v
I � 0.

(11.4)

Using (11.3), it follows that

A + BK + ς

1Tm BT v
I � 0 (11.5)

By Lemma 11.2, A + BK is a Metzler matrix. Then, the closed-loop system (11.1)
is positive by Lemma 11.1, that is, x(t) � 0 ∀t ≥ 0.

Choose a linear copositive Lyapunov function candidate V (x(t)) = x(t)T v. Then

V̇ (x(t)) = x(t)T (AT v + KT BT v). (11.6)

By (11.2c) and (11.2d), we get

∑m
i=1

∑n
j=1 1

(i)
m (ζ+

i j + ζ−
i j )

T

= ∑m
i=1 1

(i)
m

∑n
j=1(ζ

+
i j + ζ−

i j )
T

� ∑m
i=1 1

(i)
m (ζ+ + ζ−)T

= 1m(ζ+ + ζ−)T .

(11.7)
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Furthermore,
KT BT v

= Σm
i=1Σ

n
j=1(ζ

+
i j + ζ−

i j )1
(i)T
m BT v

1Tm BT v

� (ζ+ + ζ−)1Tm B
T v

1Tm BT v

= ζ+ + ζ−.

(11.8)

With the fact x(t) � 0 in mind, one can obtain from (11.6) that

V̇ (x(t)) ≤ x(t)T (AT v + ζ+ + ζ−). (11.9)

By (11.2a), we have V̇ (x(t)) < 0. This completes the proof. �

Remark 11.1 In Theorem 11.1, the gain matrix K is decomposed into

K = 1

1Tm BT v

⎛

⎜

⎜

⎜

⎝

k+
11 k+

12 · · · k+
1n

k+
21 k+

22 · · · k+
2n

...
...

. . .
...

k+
m1 k

+
m2 · · · k+

mn

⎞

⎟

⎟

⎟

⎠

+ 1

1Tm BT v

⎛

⎜

⎜

⎜

⎝

k−
11 k−

12 · · · k−
1n

k−
21 k−

22 · · · k−
2n

...
...

. . .
...

k−
m1 k

−
m2 · · · k−

mn

⎞

⎟

⎟

⎟

⎠

=
∑m

i=1

∑n
j=1 1

(i)
m (ζ+

i j + ζ−
i j )

T

1Tm BT v
.

(11.10)

Thus, the term KT BT v is transformed into the linear programming form. It should
be pointed out that the rank of the gain matrix K is general without any restrictions.
The condition (2) is solvable by using the linear programming technique.

Remark 11.2 (i) Theorem 11.1 gives the sufficient condition for the existence of
feedback controller of positive systems whereas in the literature [10–15] some
necessary and sufficient conditions were established. Then, Theorem 11.1 is
more conservative than those results in the literature.

(ii) In [13–15], some iterative algorithms were addressed to compute the controller
gain matrix. These algorithms contain some complexities and unreliability such
as the introduction of some additional parameters and an initial controller gain.
The design in [10–12] is nice if one only considers the stabilization of positive
systems. In our opinion, the design in [10–12] seems to be restricted if applying
it to hybrid positive systems.
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(iii) Aiming to these restrictions in those literature, Theorem 11.1 is presented.
The advantages of Theorem 11.1 lie in: (a) the implemental algorithm is easy,
(b) the restriction in the gain matrix is removed, and (c) it can be easily applied
to other control issues of hybrid positive systems.

The following corollary gives the output-feedback controller design of positive
systems and its proof is omitted.

Corollary 11.1 If there exist constantsς > 0, k+
i j > 0, k+ > 0, k−

i j < 0, k− < 0and
vectors v � 0 with v ∈ �n such that

AT v + CT ζ+ + CT ζ− ≺ 0,
A1Tm B

T v + B
∑m

i=1

∑r
j=1 1

(i)
m (ζ+

i j

+ ζ−
i j )

TC + ς I � 0,
k+
i j < k+,

k−
i j < k−,

(11.11)

hold for i = 1, . . . ,m, j = 1, . . . , r, where ζ±
i j = (0, . . . , 0

︸ ︷︷ ︸

j−1

, k±
i j , 0, . . . , 0

︸ ︷︷ ︸

r− j

)T ∈ �r

and ζ± = (k±, . . . , k±)T ∈ �r , then under the output-feedback control law

u(t) = Ky(t)

= Σm
i=1Σ

r
j=11

(i)
m (ζ+

i j + ζ−
i j )

T

1Tm BT v
y(t)

(11.12)

the resulting closed-loop system (11.1) is positive and asymptotically stable.

11.3.2 Stabilization of PSSs

In this subsection, we propose the feedback controller design of PSSs by applying
the present approach in Theorem 11.1. Consider the switched system:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t),
y(t) = Cσ(t)x(t),

(11.13)

where x(t) ∈ �n, u(t) ∈ �m, and y(t) ∈ �r are system state, control input, and out-
put, respectively. The function σ(t) represents the switching law, which is right
continuous takes values in a finite set S = {1, 2, . . . , J }, J ∈ N

+. The σ(ti )th sub-
system is active for t ∈ [ti , ti+1), i ∈ N, where ti and ti+1 are the switching time
instants. The states of system (11.1) are continuous and do not jump in the switching
time instants. For system (11.1), assume that Ap ∈ �n×n is a Metzler matrix and
Bp � 0 with Bp ∈ �n×m , Cp � 0 with Cp ∈ �r×n for each p ∈ S.
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Theorem 11.2 If there exist constants ςp > 0, k+
pi j > 0, k+

p > 0, k−
pi j < 0, k−

p < 0
and vectors vp � 0 with vp ∈ �n such that

AT
pvp + ζ+

p + ζ−
p + μvp ≺ 0, (11.14a)

Ap1Tm B
T
p vp + Bp

∑m
i=1

∑n
j=1 1

(i)
m (ζ+

pi j

+ ζ−
pi j )

T + ςp I � 0,
(11.14b)

k+
pi j < k+

p , (11.14c)

k−
pi j < k−

p , (11.14d)

vp ≺ λvq , (11.14e)

hold for i = 1, . . . ,m, j = 1, . . . , n,where ζ±
pi j = (0, . . . , 0

︸ ︷︷ ︸

j−1

, k±
pi j , 0, . . . , 0

︸ ︷︷ ︸

n− j

)T ∈ Rn

and ζ±
p = (k±

p , . . . , k±
p )T ∈ Rn, then under the state-feedback control law

u(t) = Kpx(t)

= Σm
i=1Σ

n
j=11

(i)
m (ζ+

pi j + ζ−
pi j )

T

1Tm BT
p vp

x(t)
(11.15)

the resulting closed-loop system (11.13) is positive and asymptotically stable with
the average dwell time satisfying

τ > ln λ
μ

. (11.16)

Sketch of Proof From the proof of Theorem 11.1, we can get that, for each p ∈ S,
the subsystem is positive and asymptotically stable under the state-feedback con-
trol law (11.15). Choose multiple linear copositive Lyapunov functions V (x(t)) =
x(t)T vσ(t), then

V̇ (x(t)) = x(t)T
(

AT
σ(tı )

v(σ (tı ))

+ KT
σ(tı )

BT
σ(tı )

v(σ (tı ))
) (11.17)

for t ∈ [tı , tı+1). From (11.14c), (11.14d), and (11.15), we can have

KT
σ(tı )

BT
σ(tı )

v(σ (tı )) � ζ+
σ(tı )

+ ζ−
σ(tı )

. (11.18)

With x(t) � 0 in mind, substituting (11.18) into (11.17) gives

V̇ (x(t)) ≤ x(t)T
(

AT
σ(tı )

v(σ (tı ))

+ ζ+
σ(tı )

+ ζ−
σ(tı )

)

.
(11.19)
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This together with (11.14a) yields

V̇ (x(t)) ≤ −μV (x(t)) (11.20)

for t ∈ [tı , tı+1). Then,
V (x(t)) ≤ e−μ(t−tı )V (x(tı )) (11.21)

for t ∈ [tı , tı+1). By (11.14e), it follows that

V (x(t)) ≤ λe−μ(t−tı )V (x(t−ı )). (11.22)

By recursive deduction, we get

V (x(t)) ≤ λ2e−μ(t−tı−1)V (x(tı−2))

≤ · · ·
≤ λNσ(t0 ,t)e−μ(t−t0)V (x(t0)),

(11.23)

where Nσ(t0,t) is the number of the switching in [t0, t]. Noting λ > 1, (11.23) is
transformed into

V (x(t)) ≤ λN0+ t−t0
τ e−μ(t−t0)V (x(t0))

= λN0e( ln λ
τ

−μ)(t−t0)V (x(t0)),
(11.24)

where N0 is the chatter bound. Then

||x(t)||1 ≤ 	2λ
N0

	1
e( ln λ

τ
−μ)(t−t0)||x(t0)||1, (11.25)

where 	1 and 	2 are the minimal and maximal elements of vp ∀p ∈ S. By (11.15),
ln λ
τ

− μ < 0. In addition, 	2λ
N0

	1
> 0 is obvious. So, the resulting closed-loop system

(11.13) is positive and exponentially stable. �

Remark 11.3 In [24, 25], the state-feedback controllers of PSSs and nonlinear PSSs
were proposed. In should be pointed out that the controller gain matrices contain the
restriction on the rank. In [26], we remove the restriction in [24, 25]. However, the
method in [26] contain a new restriction on average dwell time. Theorem 11.2 has
removed the restrictions in [24–26].

Remark 11.4 It is also worthy noting that the approach in Theorem 11.2 can be
applied to positive time-delay systems [27] and thus the restriction in [27] can be
removed. Up to now, there have been many interesting results on hybrid positive sys-
tems referring to positive Markovian jump systems and positive T-S fuzzy systems.
We notice that, when considering the issues of hybrid positive systems, a common
restriction is just the one stated in Remark 11.3. Therefore, Theorem 11.2 can be
further extended for those issues.
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Corollary 11.2 If there exist constants ςp > 0, k+
pi j > 0, k+

p > 0, k−
pi j < 0, k−

p < 0
and vectors vp � 0 with vp ∈ �n such that

AT
pvp + CT

p ζ+
p + CT

p ζ−
p + μvp ≺ 0,

Ap1Tm B
T
p vp + Bp

∑m
i=1

∑r
j=1 1

(i)
m (ζ+

pi j

+ ζ−
pi j )

TCp + ςp I � 0,
k+
pi j < k+

p ,

k−
pi j < k−

p ,

vp ≺ λvq ,

(11.26)

hold for i = 1, . . . ,m, j = 1, . . . , r, where ζ±
pi j = (0, . . . , 0

︸ ︷︷ ︸

j−1

, k±
pi j , 0, . . . , 0

︸ ︷︷ ︸

n− j

)T ∈ �r

and ζ±
p = (k±

p , . . . , k±
p )T ∈ �r , then under the output-feedback control law

u(t) = Kpy(t)

= Σm
i=1Σ

r
j=11

(i)
m (ζ+

pi j + ζ−
pi j )

T

1Tm BT
p vp

y(t)
(11.27)

the resulting closed-loop system (11.13) is positive and asymptotically stable with
the average dwell time satisfying (11.15).

11.4 Conclusions and Future Work

This chapter has addressed a new approach to control synthesis of positive systems.
Sufficient conditions for the feedback controller of positive systems are established
by using a linear copositive Lyapunov function associated with linear programming
technique. Then, the approach is applied to the controller design of PSSs. It is shown
that the restrictions in the literature are removed.

Furtherwork refers to two aspects.On one hand, some extension of the approach in
the chapter can be proceeded. On the other hand, necessary and sufficient conditions
for the approach are expected.
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