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Preface

Positive systems are dynamical systems whose state variables are positive (or at
least nonnegative) in value at all times. Such exceedingly simple definition is
nevertheless full of far-reaching consequences both on theory and applications of
dynamical systems. Moreover, positivity of variables is readily available informa-
tion, stemming directly from the intrinsic nature of the phenomenon of interest. It is
therefore not surprising that many researchers, coming from very different areas of
dynamical systems and control, joined together in Rome, for the second time from
2003, to give rise to the fifth edition of the POSTA conference (Positive Systems
Theory and Applications) in September 14–16, 2016. As a matter of fact, the most
intriguing feature of the positive systems “community” is that it is not a commu-
nity! If we look at it clearly, we see an intrinsically open group of people where
members are not recruited on a permanent but on an occasional basis. In fact, a
researcher may face a problem whose solution require to exploit “positivity” to be
solved effectively (and often elegantly). This is an absolutely fascinating aspect of
positive systems theory: a field of research fueled by contribution from any other
field and, as such, and ever-expanding one. If we look at the titles of the talks
presented, we will find a large heterogeneity of topics, ranging from epidemiology
to anesthesia, from switched or fractional systems to communication systems and
also a variety of deep theoretical problems such as the construction robust observers
or stability analysis in the presence of time delays. As such, the POSTA conference
offered a wonderful opportunity to establish research networks among scholars
having similar interests related to positivity.

We all look forward to the next edition of the conference, to be held in
Hangzhou (China) in 2018. Over the last two decades Chinese researchers have
become very important contributor to positive systems research. We are excited by
such historical initiative which will boost research in the field on both quality and
quantity.

We wish to thank the International Program Committee for the outstanding work
in reviewing the papers thus providing a substantial contribution to the improve-
ment of the quality of the Symposium. Furthermore, we wish to thank the support
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from Università Campus Bio-Medico di Roma who hosted the conference and
especially all the participants to POSTA 2016 for making this meeting a success.

The final remark is dedicated to Profs. Maria Elena Valcher and Jean-Luc Gouzè
for their availability, support to the initiative and for enriching the Symposium with
their inspired lectures.

Rome, Italy Filippo Cacace
December 2016 Lorenzo Farina

Roberto Setola
Alfredo Germani
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Chapter 1
Persistence, Periodicity and Privacy
for Positive Systems in Epidemiology
and Elsewhere

Oliver Mason, Aisling McGlinchey and Fabian Wirth

Abstract We first recall and describe some recently published results giving suffi-
cient conditions for persistence and the existence of periodic solutions for switched
SIS epidemiological models. We extend the result on the existence of persistent
switching signals in two ways. We establish uniform strong persistence where pre-
vious work only guaranteed weak persistence; we replace the hypothesis that there
exists an unstable matrix in the convex hull of the linearized systems with the weaker
assumption that the JLE is positive. In the final section of the chapter, the issue of
data privacy for positive systems is addressed.

Keywords Switched systems · SIS models · Persistence · Joint Lyapunov expo-
nent · Differential privacy

1.1 Introduction and Outline

Mathematical models based on differential equations have long played an impor-
tant role in epidemiology and population biology, dating back to the early, seminal
work of Kermack, McKendrick and others. The point has been well made before that
mathematical models are of particular importance in epidemiology as they allow
researchers to investigate the feasibility and effectiveness of containment strategies
through simulation and theoretical analysis; experimental investigation is neither
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4 O. Mason et al.

feasible nor ethical in this setting. Since the early work in mathematical epidemiol-
ogy, certain questions have occupied a central role in the development of the subject.
It is arguable that the two most central issues concern the existence and stability of
disease free equilibria and determining conditions for the disease becoming endemic
in the population [1]. These questions are addressed using techniques fromdynamical
systems theory and, as the models studied have become more realistic and sophisti-
cated, new approaches have been brought to bear on the problems. In particular, it
is necessary to develop methods of analysis that can be applied to models incorpo-
rating uncertainty and stochastic effects, heterogeneous contact patterns, as well as
time-variation in parameters and delay. Much of the work described in this chapter
is motivated by this overall programme.

In [2], a simple SIS model for disease propagation in a population with multiple
groups was described. The population is first stratified into groups and then each
group is further divided into two epidemiological classes: susceptibles and infec-
tives. New infectives can be generated by contacts between different groups and
the infection rates as well as curing and birth/death rates can vary between classes.
The authors of [2] showed that the spectral abscissa of the matrix of the linearized
system can be used as a threshold parameter for the onset of endemic behaviour
under a combinatorial irreducibility assumption on the matrix. Recently, this work
was extended in the paper [3] in which a switched SIS model was studied.

The model considered in [3] incorporated both time variation and uncertainty and
showed that the Joint Lyapunov Exponent (JLE) of the linearized inclusion can be
used to determine the stability of the disease free equilibrium DFE. Moreover, it was
shown that provided the convex hull of the linearized system matrices contains an
unstable matrix, there exists a switching signal with respect to which the disease
persists in every group. This work left two questions open: (i) can the condition on
the convex hull of the system matrices be replaced with the (weaker) assumption
that the JLE is positive? (ii) is the persistence uniform? A major contribution of this
chapter is to provide answers to these questions.

The signals in applications such as epidemiology often contain sensitive personal
information and it is important to develop analysis techniques that respect the privacy
of individuals. A number of recent papers within the field of control have begun to
address the interplay between control and privacy. In the final section of the chapter,
we will focus on the work described in [4] in which the design of differentially
private observers was considered: a motivating example in that paper was a simple
epidemiological model. Many systems in which privacy arises as a concern are
positive systems, so it seems entirely natural to ask whether or not a differentially
private positive observer can be constructed. Our aim is to describe some novel
questions for the positive systems community arising from the interplay between
privacy and positivity.
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1.2 Notation, Definitions and Preliminary Results

Throughout this chapter, we denote by R
n the vector space of all n-tuples of real

numbers and by R
n × n the space of all n × n matrices with real entries. For two

vectors x, y in R
n , the notation x ≥ y means that xi ≥ yi for 1 ≤ i ≤ n; x > y

means that x ≥ y, x �= y; finally x � y means that xi > yi for 1 ≤ i ≤ n. Similar
notation is used for matrices. We denote by Rn+ the nonnegative orthant of Rn:

R
n
+ := {x ∈ R

n | x ≥ 0}.

For a matrix A ∈ R
n × n , σ(A) denotes the spectrum of A and we denote by μ(A)

the spectral abscissa of A, μ(A) := max{Re(λ) | λ ∈ σ(A)}. For a set S in R
n × n ,

conv(S) denotes the convex hull of S.
For an autonomous nonlinear system whose right hand side is Lipschitz,

ẋ = f (x), x(0) = x0, (1.1)

we denote by x(t, x0) the unique solution with x(0, x0) = x0. In the case where f is
C1 on a neighbourhood of Rn+ (as will be the case throughout here), it is well known
that the system (1.1) is order preserving if the Jacobian of f is Metzler in R

n+. For
background on monotone or order-preserving systems, we refer the reader to [5].

1.2.1 An Autonomous Multi-group SIS Model

We briefly recall the core SIS model of [2] which motivates our work. We consider a
population that is divided into n groups; each group is then sub-divided into suscep-
tibles and infectives and we denote the number of susceptibles in group i by Si (t)
and the number of infectives in group i by Ii (t). The rate at which susceptibles in
group i are infected by infectives from group j is βi j ; the curing rate for infectives in
group i is γi and the birth and death rates for group i are both given by μi . Following
standard mass-action kinetics, the core model takes the form:

Ṡi (t) = μi Ni − μi Si (t) −
n∑

j=1

βi j
Si (t)I j (t)

Ni
+ γi Ii (t)

İi (t) =
n∑

j=1

βi j
Si (t)I j (t)

Ni
− (γi + μi )Ii (t).

The population of each group, Ni , is constant and if we focus on the dynamics of
the fraction xi (t) = Ii (t)

Ni
of infectives in each group the system simplifies to the

compact form
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ẋ(t) = (−D + B)x(t) + diag(x(t))Bx(t). (1.2)

Here the matrix D is diagonal with entries αi = γi + μi along the main diagonal and
B has entries bi j = βi j N j

Ni
. It is assumed throughout that αi > 0 for all i . It is easy

to see that the origin is always an equilibrium for (1.2) corresponding to the disease
free equilibrium (DFE). Moreover, the compact set

�n := {x ∈ R
n
+ | x ≤ 1}

is invariant under (1.2) and for every initial condition x0 ∈ �n , there exists a unique
solution x(t, x0) of (1.2) defined for all t ≥ 0 with x(0, x0) = x0.

The two key results from [2] concerning stability of the DFE and endemic behav-
iour for (1.2) are recalled below.

Theorem 1.1 Let B be an irreducible matrix. Then the DFE of (1.2) is globally
asymptotically stable if and only if μ(−D + B) ≤ 0.

The next result characterises possible endemic behaviour of (1.2).

Theorem 1.2 Let B be irreducible. There exists an endemic equilibrium x̄ in int(Rn+)

if and only if μ(−D + B) > 0. Furthermore, in this case x̄ is asymptotically stable
and has region of attraction containing �n\{0}.

1.2.2 Persistence

Our later results will be concerned with persistence for a switched version of the
model (1.2). Persistence for a semiflow on a state space X is usually defined with
respect to a function η : X → R+. We next recall the definitions of weak and strong
persistence and the uniform versions of both [6].

Definition 1.1 A semiflow φ : X × R+ × X is weakly persistent if

lim sup
t→∞

η(φ(t, x)) > 0 ∀x ∈ X with η(x) > 0.

The semiflow φ : X × R+ × X is uniformly weakly persistent if there is some ε > 0
such that:

lim sup
t→∞

η(φ(t, x)) > ε ∀x ∈ X with η(x) > 0.

The corresponding definitions of strong and uniform strong persistence replace the
lim sup with lim inf.
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1.2.3 Extension to Switched/Differential Inclusion Model

The major focus of [3] was to extend the study of the model described above to
allow for switching and uncertainty in the system parameters. Before recalling the
relevant results, we introduce appropriate concepts of weak and strong persistence
for switched systems.

Consider a switched system

ẋ(t) = fσ(t)(x), x(0) = x0 (1.3)

defined on a state space X ⊆ R
n+ where { f1, . . . , fm} is a given set of functions,

assumed to be sufficiently smooth so that unique solutions of (1.3) exist on [0,∞)

for every fixed σ and x0 is a measurable switching signal. For our purposes, X will
denote the box �n defined earlier.

We only give the precise formulation for uniform strong persistence here due to
space limitations. The corresponding definitions for strong and non-uniform persis-
tence are easy to see.

If there is some ε > 0 and a switching signal σ such that η(x0) > 0 implies
lim inf t→∞ η(x(t, x0, σ )) > ε, we refer to σ as a uniformly strongly persistent
switching signal.

We now briefly recall the most relevant results of [3] to our current presentation.
We start with a finite set of diagonalmatrices {D1, . . . , Dm}with positive diagonal

entries and a set B1, . . . , Bm of nonnegative matrices. Each pair Di , Bi corresponds
to one SIS system of the form (1.2). The switched model is then given by

ẋ(t) = (−Dσ(t) + Bσ(t))x(t) − diag(x(t))Bσ(t)x(t). (1.4)

We denote by M the set of matrices

M := {−Di + Bi | 1 ≤ i ≤ m}.

The key idea in [3] was to replace the spectral abscissa of the linearized matrix
−D + B with the corresponding joint Lyapunov exponent of the linearized switched
system/inclusion. We now briefly recall the definition of this concept.

Let Ai = −Di + Bi for i = 1, . . . ,m.
For each switching signal σ and t ≥ 0, the evolution operator Φσ(t) is given by

the solution of the matrix differential equation:

.

Φσ (t) = Aσ(t)Φσ (t), Φ(0) = I.

We let Ht denote the set of all time evolution operators for time t and then define
the operator semigroup

H :=
⋃

t≥0

Ht ,
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setting H0 = {I }. The growth rate of the switched system at time t is defined by

ρt (M ) := sup
φσ ∈Ht

1

t
log ‖Φσ(t)‖.

Finally, the joint Lyapunov exponent (JLE) of the linearized system is:

ρ(M ) = lim
t→∞ ρt (M ).

Essentially, the JLE defined here represents a natural generalisation of the spectral
abscissa of a single matrix to the context of switched linear systems.

In order to properly set context for our results here, we need to recall two of the
main facts established in [3] for the switched epidemic model. The first of these
establishes a sufficient condition for the DFE to be globally asymptotically stable
with respect to arbitrary switching signals.

Theorem 1.3 Consider the switched system (1.4) and the associated setM ofmatri-
ces. Assume that conv(M ) contains an irreducible matrix. The DFE of (1.4) is uni-
formly globally asymptotically stable if and only if ρ(M ) ≤ 0.

While the previous theorem establishes a condition for the DFE of the switched
model to be globally asymptotically stable, the next result from [3] provides a con-
dition for the existence of a persistent switching signal for (1.4).

Proposition 1.1 Consider the switched SIS model (1.4) and assume that every Bi is
irreducible. Assume that there exists some R ∈ conv(M )withμ(R) > 0. Then there
exists a switching signal σ such that for all x0 > 0, 1 ≤ i ≤ n

lim inf
t→∞ xi (t, x

0, σ ) > 0.

We may summarise what the previous two results establish in the following way:

• if conv(M ) contains an irreducible matrix and the JLE ρ(M ) ≤ 0 the DFE is
GAS and the disease dies out.

• if all the matrices Bi are irreducible andμ(M) > 0 for some M ∈ conv(M ), there
exists a switching signal which is strongly persistent with respect to every function
η(x) = |xi |, 1 ≤ i ≤ n.

Several questions arise naturally here. A first question is whether the switching signal
above can be chosen so as to ensure uniform strong persistence. It is well known that
while the existence of an unstable matrix in conv(M ) ensures that ρ(M ) > 0, there
is in general a gap between the two conditions [7]. This raises the question of whether
persistence can be established under the weaker assumption that ρ(M ) > 0. In the
next section of the chapter we shall present a number of results addressing these
issues.



1 Persistence, Periodicity and Privacy for Positive Systems … 9

1.3 Uniform Persistence and the JLE

In this section, we present some novel results and observations that address some of
the issues mentioned at the close of the previous section. We first consider the case
where the system (1.4) is 2-dimensional, corresponding to a population with two
groups.

1.3.1 The 2-Group Case

To begin, we recall the following fact from [8].

Proposition 1.2 Consider a switched linear system

ẋ(t) = Aσ(t)x(t), (1.5)

where σ : [0,∞) → M ⊆ R
2×2 for a finite setM of Metzler matrices. Then (1.5) is

globally uniformly asymptotically stable if and only if conv(M ) consists of Hurwitz
matrices.

Consider now the system (1.4) and suppose that all of the matrices Bi are irreducible.
If ρ(M ) > 0, then this will still be true if we replace each matrix −Di + Bi by
−Di + Bi − ε I for ε > 0 sufficiently small, by continuity of the JLE. It now follows
from Proposition 1.2 that there exists some matrix M in conv{−Di + Bi − ε I | 1 ≤
i ≤ m} with μ(M) ≥ 0. It is easy to see that M̂ = M + ε I is in conv(M ) and
μ(M̂) > 0. Putting these simple observations together, we get the following result.

Proposition 1.3 Consider the switched system (1.4) and suppose that n = 2 and
that each matrix Bi is irreducible. Then:

(i) if ρ(M ) ≤ 0, the DFE is globally asymptically stable;
(ii) if ρ(M ) > 0, there exists switching signal σ that is strongly persistent with

respect to ηi (x) = |xi | for 1 ≤ i ≤ 2.

1.3.2 Uniform Strong Persistence

In the next result, we show that under the same hypotheses as in Proposition 1.1 we
can conclude the existence of a uniformly strongly persistent switching signal.

Proposition 1.4 Consider the switched SIS model (1.4) and assume that each Bi is
irreducible. Assume that there exists some R ∈ conv(M )withμ(R) > 0. Then there
exists some ε > 0 and a switching signal σ such that for all x0 > 0, 1 ≤ i ≤ n

lim inf
t→∞ xi (t, x

0, σ ) > ε.
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Proof In the proof of Proposition 1.1 in [3] (where it appears as Proposition 6.1), it
is shown that there exists a periodic switching signal σ with period T = 1

N0
for some

N0 ∈ N with the following properties.

(i) There exists some v � 0 and δ > 0 such that x(1, v, σ ) � v and xi (t, v, σ ) ≥ δ

for all t ≥ 0.
(ii) For any λ with 0 < λ < 1 and t ≥ 0, x(t, λv, σ ) ≥ λx(t, v, σ ).
(iii) As each constituent vector field is irreducible, standard results from [5] show

that x(t, x0, σ ) � 0 for all t > 0 and x0 > 0. In particular for all x0 > 0,
x(1, x0, σ ) � 0.

It is a simple rephrasing of (i) to say that there is some α > 1 such that x(1, v, σ ) ≥
αv. Let x0 � 0 be given. We claim that there is some time T such that x(T, x0, σ ) ≥
v.

As in the proof of Proposition 6.1 in [3], we can find some 0 < λ < 1 such
that x0 ≥ λv. Then, using (ii), x(1, λv, σ ) ≥ λx(1, v, σ ) ≥ αλv. If αλ ≥ 1, then
x(1, λv, σ ) ≥ v and we are done. Otherwise, αλ < 1 and again using (ii), combined
with our choice of σ and the monotonicity of the constituent systems, we have

x(2, x0, σ ) = x(1, x(1, x0, σ ), σ )

≥ x(1, αλv, σ )

≥ αλx(1, v, σ )

≥ α2λv.

Iterating and using the periodicity of σ together with the order-preserving prop-
erty of each constituent vector field, we find that eventually there is some T such
that αTλ ≥ 1 and hence x(T, x0, σ ) ≥ v. It now follows from the monotonicity of
the constituent systems that x(T + t, x0, σ ) ≥ x(t, v, σ ) for t ≥ 0 and hence that
lim inf t→∞ xi (t, x0, σ ) ≥ δ for 1 ≤ i ≤ n.

It only remains to consider the case of x0 > 0 but x0 �� 0. It follows from (iii) and
the above argument that in this case also, lim inf t→∞ xi (t, x0, σ ) ≥ δ for 1 ≤ i ≤ n.
This completes the proof.

1.3.3 Uniform Weak Persistence and the JLE

The results of the previous subsections show that there will exist persistent switching
signals when the convex hull of the linearized system matrices contains an unstable
matrix. However, there is a gap in general between the two conditions:

(A) ∃M ∈ conv(M ) with μ(M) > 0;
(B) ρ(M ) > 0.

We now ask what can be said about persistence when we make the weaker assump-
tion (B).
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Theorem 1.4 Consider the switched SIS model (1.4). Assume that ρ(M ) > 0 and
that each Bi is irreducible. Then there exists a switching signal σ that is uniformly
weakly persistent with respect to η(x) = maxi |xi |.
Remark Combining this result with Theorem 1.3, we see that for switched SIS
models with irreducible Bi :

• ρ(M ) ≤ 0 implies DFE is globally asymptotically stable;
• ρ(M ) > 0 implies there exists a uniformly weakly persistent switching signal.

Outline of Proof :

We argue by contradiction. So, suppose that no uniformlyweakly persistent switching
signal exists. This would mean that for all ε > 0, and all switching signals σ , there
would exist a solution x(t, x0, σ ) with η(x0) > 0 and

lim sup
t→∞

η(x(t, x0, σ )) < ε.

Choose ε > 0 so that the JLE of the matrices

M̂ := {−D1 + (1 − ε)B1,−D2 + (1 − ε)B2, . . . ,−Dn + (1 − ε)Bn}

is still positive. This can be done as the JLE is continuouswith respect to theHausdorff
metric on compact sets of Metzler matrices by [9].

Next,wewriteΦσ for the evolution operators corresponding toM̂ . Asρ(M̂ ) > 0,
there is some T > 0 and some σ such that ‖Φσ(T )‖ = eαT where α > 0. Consider
the periodic switching signal σ1 constructed from this σ by setting σ1(t) = σ(t) for
0 ≤ t < T and σ(t + T ) = σ(t) for all t ≥ 0.

By assumption there is some solution of theSISmodel for this switching signal and
some T1 > 0 such that η(x(t, x0, σ )) < ε for all t ≥ T1. Choose a positive integral
multiple kT of T such that kT > T1. Then for all t ≥ kT ,

ẋ(t) ≥ (−Dσ(t) + (1 − ε)Bσ(t))x(t). (1.6)

As the matrices Bi are irreducible, it follows from [5] that x(kT ) � 0. Moreover,
as the evolution operator is nonnegative, we can choose some vector v > 0 such that
‖Φσ(kT )v‖ = ekαT ‖v‖ with v ≤ x(kT ). It now follows that for p = 1, 2, . . .,

η(x(pkT, x0, σ )) ≥ epkαT ‖v‖

which clearly contradicts η(x(t, x0, σ )) < ε. We conclude that there is a uniformly
weakly persistent switching signal as claimed.
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1.4 Privacy and Positive Systems

Monitoring population variables in order to determine whether or not a disease out-
break is likely to become an epidemic is a key aspect of epidemiological modelling
in real world situations. In a recent paper [4], an interesting application of observer
design motivated by syndromic surveillance methods for public health was consid-
ered. Specifically, a simple SIR model with output was considered, whose output
consists of variables being used to monitor the level of disease in the population.
This could be the number of tweets or blog posts about the disease for instance and
the core idea is to design observers that can track the actual epidemiological variables
based on the measured output.

It is important to address the privacy concerns of individuals who are contributing
the data being measured in such a system. While many frameworks for privacy
protection have been proposed in the data science and computing communities in the
recent past, those based on information theoretic foundations and differential privacy
[10, 11] appear the most suitable for dynamic situations and control applications.
With this in mind, Le Ny introduced the problem of constructing a Luenberger
observer that is differentially private in [4]. In the remainder of this section, our
purpose is to describe the core idea behind the design of such observers and to
highlight some novel and interesting questions for the field of positive systems that
arise here.

Focussing on the essential details, the core question considered in [4] can be
described as follows. We have a discrete time system with measured outputs of
the form:

xk+1 = fk(xk) (1.7)

yk = gk(xk),

and we wish to construct a simple Luenberger observer L of the form:

z(k+1) = fk(zk) + Lk(yk − g(zk))

to asymptotically track the state xk of (1.7). This is of course not a new problem. The
novelty arises when some of the signals contain sensitive information in application
areas such as epidemiology, population dynamics and social networks. In such a
scenario, the problem is to construct observers that also guarantee that the mapping
from a sensitive signal to the eventual (released) output of the observer satisfies an
appropriate differential privacy constraint.

The original formulation of differential privacy for databases considered records
belonging to a set D and modeled databases as vectors d in Dn . Two such vectors
satisfy the adjacency relation d ∼ d′ if they differ in exactly one component (the
hamming distance between them is exactly 1). A query is a mapping Q from Dn to
some output space E . Differential privacy aims to protect the privacy of individuals
by supplying randomised answers to a query so that the distribution of answers
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differs little when any one user changes their entry. Formally, for a query Q, an
ε differentially private mechanism is a set of random variables XQ,d ∈ Dn taking
values in E such that

P(XQ,d′ ∈ A) ≤ eε
P(XQ,d ∈ A)

for any d ∼ d′ and any measurable subset A of E . In a system theoretic setting, we
replace the database space with a set of sensitive signals, and a query corresponds to
the mapping between signal spaces defined by a system.When dealing with dynamic
scenarios, hamming distance is often not an appropriate notion of adjacency.

In [4], the following definition of adjacency was adopted. K > 0 and 0 < α < 1
are given real constants; two sequences ofmeasured values y, y′ are adjacent, y ∼ y′,
if there is some k0 such that

{
yk = y′

k ∀k ≤ k0
‖yk − y′

k‖ ≤ Kαk−k0 ∀k > k0.

Each entry yk , y′
k lies in R

p and ‖ · ‖ can be any norm on Rp. For simplicity, we will
consider the l1 norm. The output signal is considered sensitive (it may concern online
activity of individuals for instance) and the aim is to release a differentially private
perturbation of the observer state, z(k), of the form ẑ(k) = z(k) + δ(k) where δ(k) is an
appropriate noise signal, chosen so that themechanismmapping y to ẑ is differentially
private. Based on earlier work in [12], it is shown that this can be achieved by
taking δ(k) to be appropriate Laplacian or Gaussian random variables/vectors, whose
variance depends on the sensitivity of the system mapping y to z. If y ∼ y′ and we
denote the corresponding states of the observer by z, z′, then the l1 sensitivity of the
system is given by

sup
y∼y′

‖z − z′‖1, (1.8)

where, in a slight abuse of notation, ‖z − z′‖1 = ∑∞
k=0 ‖zk − z′

k‖1.
The work of [4] and similar papers raises many very interesting questions for

systems theory in general, and positive systems in particular. First, many of the
motivating applications arise in area such as social networks and epidemiology, both
of which naturally fall within the realm of positive systems. The question of how to
designobservers that preserve the positivity of the signals in the systemand the impact
that this might have on the accuracy of the outputs has not yet been addressed. Of
course, positive systems possessmany special properties that give a particular flavour
tomany fundamental questions, including that of observer design [13].While realistic
models will require an analysis for nonlinear models, the remainder of our discussion
will focus on the linear case in the interest of highlighting some significant questions
without muddying the waters with technical detail.
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So consider a linear system with output of the form:

xk+1 = Axk (1.9)

yk = Cxk,

where both A ∈ R
n×n
+ andC ∈ R

p×n
+ are nonnegative. A Luenberger observer would

take the form

zk+1 = Azk + L(yk − Czk) = (A − LC)zk + Lyk .

Even in the simple linear case, certain questions/challenges naturally suggest them-
selves.

• Characterise theminimal possible l1 sensitivity of the systemL where the observer
system is required to be itself positive.

• Characterise the minimal l1 sensitivity (for positive systems) without imposing the
positivity constraint on the observer.

• Can we design a positive differentially private observer; here we are requiring
that the noise added to z is truncated so as to ensure that the noisy signal remains
positive.

• In reducing sensitivity, we can achieve ε differential privacy with less noise. Can
we characterise explicitly the impact this has, on the speed of convergence of the
observer?

The above questions represent early steps in a programme to develop a foundation
for differentially private observer design for positive systems. Extensions to time-
varying and nonlinear systems will certainly be necessary. However, we feel that this
is a topic of sufficient practical importance and theoretical interest to merit being
brought to the attention of the positive systems community.
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Chapter 2
Control of Anesthesia Based on Singularly
Perturbed Model

Sophie Tarbouriech, Isabelle Queinnec, Germain Garcia
and Michel Mazerolles

Abstract This chapter deals with the control of anesthesia taking into account the
positivity together with the upper limitation constraints of the variables and the target
interval tolerated for the depth of anesthesia during a surgery. Due to the presence
of multiple time scale dynamics in the anesthesia model, the system is re-expressed
through a singularly perturbed system allowing to decouple the fast dynamics from
the slow ones. Differently from general approaches for singularly perturbed systems,
the control objective is then to control and accelerate the fast subsystem without
interest in modifying the slow dynamics. Thus, a structured state feedback control is
proposed through quasi-LMI (linear matrix inequalities) conditions. The characteri-
zation of domains of stability and invariance for the system is provided. Associated
convex optimization issues are then discussed. Finally, the theoretical conditions are
evaluated on a simulated patient case.

Keywords Control of anesthesia · BIS · Positive constraints · Singularly perturbed
system · State feedback · LMI

2.1 Introduction

The principle of general anesthesia and drug delivery control during surgery corre-
sponds to the suspensionof consciousness (hypnosis), pain (analgesia) andmovement
(immobility). Indeed, to address these three main actions, a combination of drugs is
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used. In this chapter we focus on the hypnosis problem only, with Propofol used as
hypnotic drug. Even if this is an old problem (notion of closed-loop control appeared
in the fifties), it remains largely open. Actually, medical practices remain yet in open
loop and several researchers from the control community have been concerned with
such applications and suggested advanced control techniques to move from open-
loop control by the anesthesiologist to closed-loop control [1]. Hence, the control of
the anesthetic state of a patient consists in adjusting the perfusion of hypnotics based
on clinical indicators such as heart rate, blood pressure and BIS (Bispectral index).
The control of anesthetic drugs injection for maintaining an adequate anesthetic state
during surgery has been studied through several approaches. Among them, one can,
for example, cite the use of PID controllers [2], adaptive control [3], model predictive
control [4], LPV modeling and control [5], bifurcation analysis [6] and set-theoretic
tools [7].

As for many biological systems, the design of an adequate control law should
take into account some physical aspects such as patient variability, positivity con-
straints, output measurement availability, the presence of multiple time scales in the
dynamics. Indeed, the dynamics of the drug evolution in the patient’s body is usually
described by a pharmacokinetic positive model with multiple time scales. In this
chapter, we use to represent this difference the framework of singularly perturbed
systems [8]. Hence, the compartmental system describing the anesthesia model is
re-expressed through a singularly perturbed system allowing to decouple the fast
dynamics (blood, effect site) from the slow ones (muscles, fat). Differently from
general approaches for singularly perturbed systems, the control objective is then
to control and accelerate the fast subsystem without interest in modifying the slow
dynamics. Furthermore, the control design has to take into account the positivity
together with the upper limitation constraints of the variables during a surgery. Thus,
based on the results in [9, 10], a structured state feedback control is proposed through
theoreticalmatrix inequalities, which constitutes themain contribution of the chapter.
The characterization of domains of stability and invariance for the system is provided
by using some relaxation schemes in order to obtain linear matrix inequalities (LMI)
conditions. Associated convex optimization issues are then discussed.

The chapter is organized as follows. Section2.2.1 presents the compartment-based
model, for which the presence of multiple time scale dynamics is pointed out. Then,
the system is re-expressed through a singularly perturbed systemallowing to decouple
the fast dynamics from the slow ones. The general problem formulation is summa-
rized in Sect. 2.2.2 and the theoretical conditions allowing to design the structured
state feedback controller are provided in Sect. 2.3.1. Associated algorithms are then
proposed in Sect. 2.3.2 in order to exhibit numerical solutions. Section2.4 presents
the patient case considered in order to illustrate the effectiveness, the drawback and
the trade-off of the proposed solution. Finally, some concluding remarks in Sect. 2.5
end the chapter.

Notation. For a matrix P in R
n× n, the notation P > 0 (P ≥ 0) means that P is

symmetric positive (semi) definite. For a vector x ∈ R
n, the notation x ≥ 0 means

that all the components of the vector are nonnegative. The superscript ‘T ’ stands for
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matrix transposition, and the notation He(P) stands for P + PT . The symbols I and
0 represent the identity and the zero matrices of appropriate dimensions.

2.2 Patient Model and Problem Formulation

2.2.1 Patient Model

It is well accepted that the model used to describe the evolution of drugs in a patient’s
body is a Pharmacokinetic/Pharmacodynamic (PK/PD) model, which is based on a
three-compartmentmodel [11]. Such a PK/PDmodel describes the distribution of the
drugs between three compartments (blood, muscles and fat). Furthermore, the effect
of drugs on the patient is expressed throughout the effect site, which represents
the action of drugs on the brain and is related to the concentration in the central
compartment through a first order dynamics [5, 12].

Hence, the compartmental model representing the circulation of the drug in the
body can be written as follows1:

ẋan = A0xan + B0uan (2.1)

with

A0 =

⎡

⎢⎢⎣

−(a10 + a12 + a13) a21 a31 0
a12 −a21 0 0
a13 0 −a31 0

ae0/V1 0 0 −ae0

⎤

⎥⎥⎦ ;B0 =

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦ (2.2)

In the vector xan = [x1 x2 x3 x4]′, x1, x2, x3 are the masses in grams of the drug in the
different compartments (blood, fat, muscle), x4 is the effect site concentration and uan
is the infusion rate in g/min of the anesthetic. The parameters aij ≥ 0, ∀i �= j, i, j =
1, 2, 3, are the transfer rates of the drug between compartments. The parameter a10
represents the rate of elimination from the central compartment. These parameters
are functions of the patient characteristics (weight, age, height,…). Several empirical
models give the relation between those parameters and patient’s characteristics [13].
One can cite, for example, the models of [14] or [15] related to Propofol (hypnotic
drug) and Remifentanil (analgesic drug), respectively, to define a typical patient and
to build uncertain models to represent the inter-patient variability.

Moreover, the depth of anesthesia indicator widely used by clinicians is the BIS
(the bispectral index), which is a signal derived from the EEG analysis.BIS quantifies
the level of consciousness of a patient from 0 (no cerebral activity) to around 100
(fully awake patient). The relationship between the concentration at the effect site x4
and the BIS can be described empirically by a decreasing sigmoid function [16]:

1The time dependence is omitted for simplicity of the notation.
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BIS(x4) = BIS0(1 − xγ

4

xγ

4 + ECγ

50

), (2.3)

BIS0 is the BIS value of an awake patient typically set to 100, EC50 corresponds to
drug concentration associated with 50% of the maximum effect and γ is a parameter
modeling the degree of non-linearity. Typical values for these parameters are EC50 =
3.4µg/ml and γ = 3. Let us stress that the chosen three-compartment model (2.1) is
one of the possible compartment models. Its simplicity and its good representativity
have motived our choice even if there exist other models of different complexity for
the Propofol—BIS relationship [1].

Finally, it is important to note that the state and the input of system (2.1) have to
be positive, that is to respect the following constraints:

xan ≥ 0
uan ≥ 0

(2.4)

It is then important to observe that the system (2.1) and (2.4) enters in the class of
positive systems. Furthermore, note that matrix A0 is a Metzler matrix [17].

2.2.2 Problem Formulation

One important fact regarding model (2.1) resides in the difference of dynamics:
indeed, the dynamics of metabolism and circulation of Propofol in the central com-
partment and the site effect is ten times faster than in muscles, and even a hundred
times faster than in fat. A classical way to address this kind of problem is to describe
the system as a singularly perturbed system [8]. Hence, based on a singularly per-
turbed description [10], the blood and the effect site parts are gathered in the fast
subsystem and the muscle and the fat parts in the slow subsystem. Then, system (2.1)
can be rewritten as follows:

[ ˙̄x
ε ˙̄z

]
=

[
A11 A12

A21 A22

] [
x̄
z̄

]
+

[
B1

B2

]
uan (2.5)

with

A11 =
[−a21 0

0 −a31

]
;A12 =

[
a12 0
a13 0

]
,B1 =

[
0
0

]

A21 =
[

εa21 εa31
0 0

]
= εA0

21;A22 =
[−ε(a10 + a12 + a13) 0

εae0/V1 −εae0

]
= εA0

22

B2 =
[

ε

0

]
= εB0

2

(2.6)
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where ε > 0, x̄ corresponds to the slow state and z̄ corresponds to the fast state. ε

takes small values and corresponds to the perturbation parameter. Furthermore, the
BIS is rewritten in this case as:

BIS(z̄2) = BIS0(1 − z̄γ2
z̄γ2 + ECγ

50

), (2.7)

where z̄i, i = 1, 2 are the components of vector z̄.
The following assumption holds.

Assumption 1 Matrix A0
22 is non singular. Matrix A22 is non singular for any ε > 0.

In most of studies addressing the control design for singularly perturbed systems,
the goal is to control the slow dynamics as the crucial problem [8]. In the case of the
depth of anesthesia, the most important objective is the control of the fast dynamics
because the regulation of the BIS is a direct function of the concentration at the effect
site and thus of the fast dynamics on which the administered drug directly acts.

Moreover, during a surgery, the BIS must be brought then maintained close to
50, or at least in an interval between 40 and 60. Due to relation (2.7) describing the
relation between the BIS and the effect site concentration, it follows that for the BIS
equal to 50% of BIS0 the effect site concentration must be equal to EC50. Then, the
computation of the associated equilibrium point x̄e, z̄e satisfying ˙̄xe = 0 and ˙̄ze = 0
gives:

z̄e1 = V1z̄e2
z̄e2 = EC50(

BIS0
BISe

− 1)1/γ

x̄e1 = a12
a21

z̄e1
x̄e2 = a13

a31
z̄e1

ūe = a10z̄e1

(2.8)

where BISe denotes the desired value of the BIS at the equilibrium and x̄i, i = 1, 2
are the components of vector x̄.

Hence, we can define the error model around the equilibrium with x = x̄ − x̄e,
z = z̄ − z̄e and u = uan − ūe:

[
ẋ
εż

]
=

[
A11 A12

A21 A22

] [
x
z

]
+

[
B1

B2

]
u (2.9)

with matrices defined in (2.6).
The problem we intend to solve can be summarized as follows.

Problem 2.1 Find a structured control gain K :

K = [
0 Kf

]
,Kf ∈ R

2×2 (2.10)

such that:
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1. The system (2.6)–(2.9) controlled through the control law u = Kf z is asymptot-
ically stable;

2. The positivity of xan and uan is ensured, or equivalently due to the change of

variables around the equilibrium point

[
x
z

]
≥ −

[
x̄e
z̄e

]
and u ≥ −ūe.

Note that to address Problem 2.1, the state of the fast subsystem is assumed to be
available.

2.3 Main Conditions

In order to solve Problem 2.1, we consider in the sequel a procedure in two main
steps: (1) we design the structured control gain to ensure the closed-loop asymptotic
stability; and (2) we provide an analysis of the solution to ensure the constraints
satisfaction.

2.3.1 Theoretical Conditions

Let us introduce the following notation:

As = A11 − A12A
−1
22 A21 = A11 − A12(A0

22)
−1A0

21
Bs = B1 − A12A

−1
22 B2 = B1 − A12(A0

22)
−1B0

2
(2.11)

From (2.9), the slow subsystem can be derived by considering ε = 0 and expressing
z as a function of x and u, which are denoted by xs and us, that is from Assumption 1:

zs = −A−1
22 (A21xs + B2us) = −(A0

22)
−1(A0

21xs + B0
2us) (2.12)

In (2.12), zs can be interpreted as the slow part of z. By replacing zs in the original
system, the slow dynamics reads:

ẋs = Asxs + Bsus (2.13)

with As and Bs defined in (2.11). Similarly to define the fast dynamics, the vector x
is considered as constant (that is x = xs and żs = 0) and we denote by zf = z − zs
and uf = u − us the fast part of the state and the control, respectively. Then, the fast
dynamics reads:

żf = A0
22xf + B0

2uf (2.14)

If the slow control us and the fast one uf are determined, the complete control law is
given by u = us + uf .
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Then by using a Lyapunov-based approach and adapting the results of [9] and
[10], we can state the following conditions to solve item 1 of Problem 2.1.

Theorem 2.1 If there exist two symmetric positive definite matrices Ws ∈ R
2×2,

Wf ∈ R
2×2 and a matrix Sf ∈ R

1×2 satisfying the following inequalities:

He(A0
22Wf + B0

2Sf ) < 0 (2.15)

He(AsWs − Bs(I + Sf W
−1
f (A0

22)
−1B0

2)
−1Sf W

−1
f (A0

22)
−1A0

21Ws) < 0 (2.16)

then the control gain as defined in (2.10) with Kf = Sf W
−1
f solves item 1 of

Problem 2.1.

Proof This result is based on the use ofTheorem4 in [9] adapted to our case. Thus,we
want to find a symmetric positive definite matrixW0 ∈ R

4×4 and a matrix S0 ∈ R
1×4

such that
AεW0 + W0A

T
ε + BεS0 + ST0 B

T
ε < 0 (2.17)

where from (2.6)

Aε =
[
A11 A12
A21
ε

A22
ε

]
=

[
A11 A12

A0
21 A

0
22

]
;Bε =

[
B1
B2
ε

]
=

[
B1

B0
2

]
(2.18)

By developing each terms of the matrix at the right-hand side of relation (2.17) and
by using arguments as in [9], matrices W0 and S0 can be described as follows:

W0 =
[
Ws −(A0

21Ws + B0
2Ss)

T (A0
22)

−T

� Wf + (A0
22)

−1(A0
21Ws + B0

2Ss)W
−1
s (A0

21Ws + B0
2Ss)

T (A0
22)

−T

]

S0 = [
Ss Sf − SsW−1

s (A0
21Ws + B0

2Ss)
T (A0

22)
−T

]

(2.19)
where Wf , Sf are solutions to relation (2.15) and Ws, Ss solutions to

He(AsWs + BsSs) < 0 (2.20)

That corresponds to characterize a gain K = S0W
−1
0 such that Aε + BεK is Hurwitz.

From (2.19), one gets the following expression of K :

K = [
Ss Sf

] [
W−1

s 0
W−1

f (A0
22)

−1(A0
21Ws + B0

2Ss)W
−1
s W−1

f

]

=
[
SsW−1

s + Sf W
−1
f (A0

22)
−1(A0

21Ws + B0
2Ss)W

−1
s Sf W

−1
f

] (2.21)

In order to obtain a gain K structured as in (2.10), one has to satisfy:

SsW
−1
s + Sf W

−1
f (A0

22)
−1(A0

21Ws + B0
2Ss)W

−1
s = 0
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or equivalently
Ss + Sf W

−1
f (A0

22)
−1(A0

21Ws + B0
2Ss) = 0

which corresponds to

(I + Sf W
−1
f (A0

22)
−1B0

2)Ss + Sf W
−1
f (A0

22)
−1A0

21Ws = 0 (2.22)

By denoting Kf = Sf W
−1
f , one can remark that relation (2.15) is equivalent to verify

He((A0
22 + B0

2Kf )Wf ) < 0

that is matrix (A0
22 + B0

2Kf ) is Hurwitz and therefore non singular. Then, one can
observe that matrix (I + Sf W

−1
f (A0

22)
−1B0

2) is also non singular by using the inverse
matrix definition of (A0

22 + B0
2Kf )

−1. Hence, relation (2.22) reads

Ss = −(I + Sf W
−1
f (A0

22)
−1B0

2)
−1Sf W

−1
f (A0

22)
−1A0

21Ws (2.23)

From (2.23), if relation (2.16) holds then relation (2.20) is verified. �

As mentioned before, we need at this stage to ensure the satisfaction of item 2
of Problem 2.1. Actually, considering the controller issued from Theorem 2.1, we
have to provide a stability analysis of the original system (2.1)–(2.2) by considering
that the input can saturate as follows: uan = sat(Kxan)). Rather than addressing the
problem in a linear framework (saturation not allowed), it is preferable to consider the
problem in the saturated allowed framework. Depending on the controller designed
the global asymptotic stability (GAS) or the local asymptotic stability (LAS) of the
closed-loop system is achevied [18]. This is detailed in the following section.

2.3.2 Computational Issues

Themain drawback of Theorem 2.1 resides in the fact that relation (2.16) is nonlinear
in the decision variables due to the presence of products between some variables,
relation (2.15) being linear. Hence, the lack of linearity of this condition makes it not
computationally tractable to obtain a solution to Problem 2.1 [19]. However, some
relaxation steps can be proposed. Note that the first inequality (2.15) is linear in the
decision variables Wf , Sf . The second inequality (2.16) is nonlinear in the decision
variablesWs,Wf , Sf but becomes linear inWs ifWf and Sf are fixed. Hence, one can
consider the following first algorithm regarding the controller design procedure.

Algorithm 1

1. Select a desired decay rate for the fast subsystem with parameter μf > 0.
2. Compute Kf = Sf W

−1
f stabilizing and improving the decay rate of the fast sub-

system by solving
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He(A0
22Wf + B0

2Sf + μf Wf ) < 0 (2.24)

3. Feasibility problem. Find Ws solution to

He(AsWs − Bs(I + Kf (A
0
22)

−1B0
2)

−1Kf (A
0
22)

−1A0
21Ws) < 0 (2.25)

4. If (2.25) is feasible, thenK = [
0 Kf

]
stabilizes the closed-loop system by acting

on fast dynamics.
If not, then decrease the decay rate parameter μf and go back to step 2.

Remark 2.1 System (2.1) being open-loop stable, there always exists a solution to
the feasibility linear problem (2.24)–(2.25) with Kf = 0. Then, there always exists a
μf small enough such that, for a controller issued from step 2, the LMI condition in
step 3 is feasible.

From Algorithm 1, we have in hand the stabilizing controller, and we can now
manage the constraints. A first direction could be to adapt the conditions provided
in [10] to our current problem. Due to the difficulties encountered to deal with the
nonlinearities appearing in the conditions, we decided here to propose an alternative
route by providing analysis conditions based on tools issued from [18, 20], by using
the toolbox SATAW-Tool.2

Algorithm 2

1. Given the value of Kf (and therefore of K) resulting from Algorithm 1.
2. Global asymptotically stability (GAS) case. Find a symmetric positive definite

matrix W ∈ R
4×4 and a diagonal positive definite matrix S ∈ R

1×1 solution to
the feasibility problem:

[
W (Aε + BεK)T + (Aε + BεK)W BεS − WKT

SBT
ε − KW −2S

]
< 0 (2.26)

3. Local asymptotic stability (LAS) case. If the global case is unfeasible, given
u0 = ūe, find a symmetric positive definite matrixW ∈ R

4×4, a diagonal positive
definite matrix S ∈ R

1×1, a matrix Z ∈ R
1×4 and a positive scalar γ solution to

the optimization problem:

min − trace(W ) + γ

s.t.[
W (Aε + BεK)T + (Aε + BεK)W BεS − WKT − ZT

SBT
ε − KW − Z −2S

]
< 0

[
W ZT

Z γ u20

]
≥ 0

(2.27)

2http://homepages.laas.fr/queinnec/satawtool.html.

http://homepages.laas.fr/queinnec/satawtool.html
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The objective of the optimization criterion considered in step 3 of Algorithm 2 is to
maximize the region

E (W, γ ) =
{[

x
z

]
∈ R

4;
[
x
z

]T

W−1

[
x
z

]
≤ γ −1

}
(2.28)

which is a region of invariance and asymptotic stability for the closed-loop system.

Remark 2.2 The global condition does not depend on any bound u0 and formally
allows that non-symmetric bounds may be applied in practice. It also means that any
initial conditionmaybe applied, and, typically, formally guarantees that the controller
may be applied from the patient awake state. On the other hand, the local condition
is directly related to the bound u0 = ūe, which means that, formally, 0 ≤ uan ≤ 2ūe.
Moreover, only initial states belonging to the set E (W, γ ) should be considered.

Remark 2.3 One could also be interested in guaranteeing that, once the BIS enters
the interval [40, 60], it remains inside this interval. Such a constraint could be added
in the problems (2.26) and (2.27) through the additional condition:

EWE′ ≤ γ z22M (2.29)

with E = [
0 0 0 1

]
and z2M = max(z2min, z2max) corresponding to the bounds on

the effect site concentration−z2min ≤ z2 ≤ z2max issued from the change of variables
around the equilibrium point. However, this would result in drastically reducing the
size of the region of invariance and asymptotic stability for the closed-loop system
and would prevent to consider the patient awake state as initial state.

2.4 Simulations

To illustrate the approach let us consider a patient with the following characteristics:
woman, 49 years old, 68kg and 172cm. It corresponds to the systemmatrices defined
with:

[
A11 A12

Ao
21 Ao

22

]
=

⎡

⎢⎢⎣

−0.068 0
0 −0.004

0.138 0
0.077 0

0.068 0.003
0 0

−0.389 0
0.042 −0.456

⎤

⎥⎥⎦ ,

[
B1

Bo
2

]
=

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦

For a target BIS of 50, the equilibrium point and associated input are given by

x̄e = [
69.5776 809.2000

]
, z̄e = [

36.7608 3.4000
]
, ūe = 6.7519

and the open-loop spectrum of system (2.1) is equal to
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Fig. 2.1 Time simulation of the open-loop and saturated closed-loop systems with controllers K2,
K3 and K4

λbo = {−0.002, − 0.043, − 0.415, − 0.456}

First, Algorithm 1 allows to provide solution to the first objective of Problem 2.1.
Considering various pole-placement constraints, the problem is feasible and one
obtains:

K1 : μf = 1.2 Kf = [−3.3124 − 73.3247
]

λbf = {−0.003, − 0.067, −2.079 ± 0.672i}
K2 : μf = 1.3 Kf = [−3.9172 −102.4763

]

λbf = {−0.003, − 0.067, −2.382 ± 0.780i}
K3 : μf = 1.5 Kf = [−3.6796 −118.7038

]

λbf = {−0.003, − 0.067, −2.263 ± 1.317i}
K4 : μf = 1.7 Kf = [−4.3694 −167.6553

]

λbf = {−0.003, − 0.067, −2.608 ± 1.560i}

where λbf denotes the closed-loop spectrum. Then Algorithm 2 is used to check if
the closed-loop saturated system is globally asymptotically stable or, if not, if the
system may be initialized from the patient awake state. It results that the saturated
closed-loop system is GAS with controller K1, but only LAS with controllers K2,
K3 and K4. With the controller K2, −xane belongs to the associated set E (W, γ ) and
the controller may be safely applied with the patient initially awake. On the other
hand, with the controllers K3 and K4, −x̄e belongs to the associated set E (W, γ ) but
only a percentage of −z̄e belongs to the set (40% with K3, and 7% with K4).

Numerical simulations are plotted inFig. 2.1. InFig. 2.1a, one can see the evolution
of BIS from the patient awake state to the reference 50, in open-loop (green) and
in closed-loop with controllers K2 (blue), K3 (red) and K4 (black). The overshoot
with controller K4 in not desirable as the BIS goes temporarily below the bound 40.
Figure2.1b presents the associated input.



28 S. Tarbouriech et al.

2.5 Conclusion

Taking benefit from the singularly perturbed systems framework, the fast and slow
dynamics present in the compartmental system have been separated. With the aim at
accelerating the fast dynamics, the design of a structured state feedback controller
has been first proposed. Second, some relaxation schemes associated to convex opti-
mization problems allowed to guarantee the satisfaction of the constraints.

This work lets some questions open. In particular, one would be interested with
more complete conditions not only to dealwith the fast dynamics but also to guarantee
that the constraints are satisfied and to initialize the system to the patient awake
conditions, in order to mathematically validate the medical strategy from induction
to maintenance. This will be the subject of future works.
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Chapter 3
Interval Observers for SIR Epidemic
Models Subject to Uncertain Seasonality

Pierre-Alexandre Bliman and Bettina D’Avila Barros

Abstract Epidemic models describe the establishment and spread of infectious dis-
eases. Among them, the SIR model is one of the simplest, involving exchanges
between three compartments in the population, that represent respectively the num-
ber of susceptible, infective and recovered individuals. The issue of state estimation
is considered here for such a model, subject to seasonal variations and uncertainties
in the transmission rate. Assuming continuous measurement of the number of new
infectives per unit time, a class of interval observers with estimate-dependent gain is
constructed and analyzed, providing lower and upper bounds for each state variable at
eachmoment in time. The dynamical systems that describe the evolution of the errors
are monotonous. Asymptotic stability is ensured by appropriate choice of the gain
components as a function of the state estimate, through the use of a common linear
Lyapunov function. Numerical experiments are presented to illustrate the method.

Keywords Interval observer · Uncertain systems · Monotone systems · Linear
Lyapunov functions · SIR model · Mathematical epidemiology

3.1 Introduction, Presentation of the SIR Model

The SIR model with vital dynamics, see e.g. [4, 11], is one of the most elementary
compartmental models of epidemics. It describes the evolution of the relative pro-
portions of three classes of a population of constant size, namely the susceptibles S,
capable of contracting the disease and becoming infective; the infectives I , capable
of transmitting the disease to susceptibles; and the recovered R, permanently immune
after healing. This model is as follows:
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Ṡ = μ − μS − βSI (3.1a)

İ = βSI − (μ + γ )I (3.1b)

The natural birth and mortality rate is μ (the disease is supposed not to induce
supplementary death rate), γ is the recovery rate, while β represents the transmission
rate per infective. All these parameters are positive. We consider here proportions of
the population, and more precisely that S + I + R ≡ 1. Notice that the dynamics of
R (given by Ṙ = γ I − μR, that guarantees that Ṡ + İ + Ṙ ≡ 0) may be omitted, as
the total population size is constant.

When the parameters are constant, the evolution of the solutions of system (3.1)
depends closely upon the ratio R0 := β

μ+γ
[4, 11]. The disease-free equilibrium

(S = 1, I = R = 0) always exists. WhenR0 < 1, it is the only equilibrium and it is
globally asymptotically stable. It becomes unstable whenR0 > 1, and an asymptot-
ically stable endemic equilibrium then appears.

On the contrary, when the parameters are time-varying, complicated dynamics
may occur [12]. We are interested here in estimating the value of the three popula-
tions, a first step paving theway for epidemic outbreak forecasting.Weuse techniques
of interval observers, including output injection, in the spirit e.g. of [7, 8, 14]. The
dynamics of the obtained error equation is seen as a linear uncertain time-varying
positive system, whose asymptotic stability is ensured through the search of a com-
mon linear Lyapunov function and adequate choice of the gain as function of the
state estimate.

The hypotheses on the model and some qualitative results are presented in
Sect. 3.2. The considered class of observers is given in Sect. 3.3, with some a priori
estimates and technical results. The main result is provided in Sect. 3.4, where the
asymptotic error corresponding to certain gain choice is quantified. Last, illustrative
numerical experiments are shown in Sect. 3.5.

3.2 Hypotheses on the Model and Preliminaries

We consider in the sequel that the transmission rate is subject to uncertain seasonal
variations. It is known that relatively modest variations of this type have the capacity
to induce large amplitude fluctuations in the observed disease incidence. This seems
due to harmonic resonance, the seasonal forcing exciting frequencies close to the
natural near-equilibrium oscillatory frequency [6].

One assumes that the transmission rateβ is boundedby two functionsβ±, available
in real-time (all functions are supposed locally integrable):

β−(t) ≤ β(t) ≤ β+(t) for a.e. t ≥ 0 (3.2)

(typically with 0 < lim inf
t→+∞ β−(t) ≤ lim sup

t→+∞
β+(t) < +∞).
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Our goal is to estimate lower and upper bounds for the three subpopulations.
The unique available measurement is supposed to be the incidence rate y = βSI ,
i.e. the number of new infectives per time unit (accessible through epidemiological
surveillance). With representation (3.1), y is not a state component, contrary e.g.
to [3, 5]. One sees easily that with this output, the system is detectable, but not
observable at the disease-free equilibrium (where I = 0).

The following result provides qualitative estimates of its solutions.

Lemma 3.1 Assume S(0) ≥ 0, I (0) ≥ 0 and S(0) + I (0) ≤ 1. Then the same prop-
erties hold for any t ≥ 0. The same is true with strict inequalities.

Proof Integrating (3.1a), (3.1b) yields

I (t) = I (0)e
∫ t
0 (β(τ )S(τ )−(μ+γ )).dτ

S(t) = S(0)e− ∫ t
0 (μ+β(τ)I (τ )).dτ + μ

∫ t

0
e− ∫ t

τ
(μ+β I ).dτ

which show that S(t), I (t) ≥ 0 for any t ≥ 0; while integrating the differential
inequality Ṡ + İ ≤ μ(1 − S − I ) shows that 1 − (S(t) + I (t)) ≥ 0 for any t ≥ 0.
The same formulas provide the demonstration in the strict inequality case. ��

3.3 A Class of Nonlinear Observer Models

As preparation for the upcoming study, we explore now the following class of
observers for system (3.1):

˙̂S = μ − μŜ − y + kS(t)(y − βS Ŝ Î ) (3.3a)

˙̂I = y − (μ + γ )h Î + kI (t)(y − βI Ŝ Î ) (3.3b)

where the time-varying gain components kS(t), kI (t) are yet to be defined.

Lemma 3.2 Suppose that for some ε > 0,

kS(t) ≥ 1 whenever Ŝ(t) ≤ ε, kI (t) ≥ −1 whenever Î (t) ≤ ε. (3.4)

Assume Ŝ(0) ≥ 0, resp. Î (0) ≥ 0. Then, for any t ≥ 0, Ŝ(t) ≥ 0, resp. Î (t) ≥ 0.

Proof Verify directly that, under assumption (3.4), ˙̂S ≥ 0, resp. ˙̂I ≥ 0, in the
neighborhood of a point where Ŝ = 0, resp. Î = 0. This proves the result. ��

Last, the following technical result will be needed.
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Lemma 3.3 Define eS := S − Ŝ, eI := I − Î . Then,

(
ėS

−ėI

)
=

(−(μ + kSβSh Î ) kSβS S
kIβI h Î −(μ + γ + kIβI S)

) (
eS

−eI

)
+ SI

(
kS(βS − β)

kI (β − βI )

)

(3.5)

Proof One has ėS = −μeS + kS(βS Ŝ Î − y) and ėI = −(μ + γ )eI + kI (βI Ŝ Î −
y). On the other hand, βS Ŝ Î − y = (βS − β)SI + βS S( Î − I ) + βS Î (Ŝ − S) =
−SI (β − βS) − βS SeI − βS Î eS , and similarly for βI Ŝ Î − y. One deduces

(
ėS
ėI

)
= −

(
μ + kSβS Î kSβS S
kIβI Î kIβI S + μ + γ

)(
eS
eI

)
− SI

(
kS(β − βS)

kI (β − βI )

)
(3.6)

and finally (3.5) when using −eI instead of eI . ��
Observe that system (3.6) appears monotone for nonpositive gains, which is detri-
mental to its stability. This is not the case with system (3.5), which is used in the
sequel to construct interval observers.

3.4 Error Estimates for Interval Observers

Notice first that system (3.1) is not evidently, or transformable into, a monotone
system. The instances of (3.3) presented in the next result provide a class of interval
observers with guaranteed speed of convergence.

Theorem 3.1 Consider the two independent systems

Ṡ+ = μ − μS+ − y + kS+(t)(y − β−(t)S+ I−) (3.7a)

İ− = y − (μ + γ )I− + kI−(t)(y − β+(t)S+ I−) (3.7b)

Ṡ− = μ − μS− − y + kS−(t)(y − β+(t)S− I+) (3.8a)

İ+ = y − (μ + γ )I+ + kI+(t)(y − β−(t)S− I+) (3.8b)

i. Assume that the gains are nonnegative functions of S±, I±, that fulfill (3.4) for
some ε > 0. If 0 ≤ S−(t) ≤ S(t) ≤ S+(t) and 0 ≤ I−(t) ≤ I (t) ≤ I+(t) for t = 0,
then the same holds for any t ≥ 0.

ii. If in addition the gain components kS±(t), kI∓(t) are chosen such that

β−(t)kS+(t) − ρ+β+(t)kI−(t) = ρ+γ

ρ+ I−(t) + S+(t)
(3.9a)

β+(t)kS−(t) − ρ−β−(t)kI+(t) = ρ−γ

ρ− I+(t) + S+(t)
(3.9b)
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for fixed ρ± > 0, then, writing V+(t) := (S+(t) − S(t)) + ρ+(I (t) − I−(t)),
V−(t) := (S(t) − S−(t)) + ρ−(I+(t) − I (t)), the state functions V± are positive def-
inite when the trajectories are initialized according to point i., and1

∀t ≥ 0, V±(t) ≤
∫ t

0
e− ∫ t

τ
δ± max{kS±(τ ), ρ±kI∓(τ )}S(τ )I (τ )(β+(τ ) − β−(τ )) dτ

+e− ∫ t
0 δ±(τ ).dτV±(0), with δ±(t) := μ + γ

ρ± I∓(t)

ρ± I∓(t) + S+(t)

(3.10)

The proposed observers guarantee that the errors converge exponentially, with speeds
δ±(t) that smoothly vary fromμ (in absenceof infectives: I±(t) = 0) to atmostμ + γ

(in case of outbreak, if ρ± I∓(t) � S+(t)). Recall that a positive linear time-invariant
system is asymptotically stable iff it admits a linear Lyapunov function of the type
V± [1, 10, 13]. With this in mind, it may indeed be deduced from the proof (see in
particular (3.11)) that the convergence speed of observer of type (3.7)–(3.8) is bound
to be at most equal to μ + γ in presence of epidemics, and cannot be larger than μ

in absence of infectives.2 Recall that μ is the inverse of the mean life duration, while
γ is the inverse of the mean recovery time: typically μ � γ . Therefore, the observer
takes advantage of epidemic bursts to reduce faster the estimation error. Notice that
these convergence speeds do not depend upon the values of β±.

The trade-off between stability and precision is clear from formula (3.10): an
intrinsic limitation is evident from the fact that the integral therein is at least equal to∫ t
0 e

−(μ+γ )(t−τ) max{kS±(τ ), ρ±kI∓(τ )}S(τ )I (τ )(β+(τ ) − β−(τ ))dτ which is guar-
anteed to vanish only when both gains are zero. On the other hand, for zero gains,
the error equation for the susceptibles is ėS± + μeS± = 0 which converges slowly
to zero.

Last, observe that, with the estimate-dependent choice of the gain defined in (3.9),
the error equations may be non monotone. However they fulfill the positivity and
stability properties mentioned in the statement.

Proof of Theorem 3.1. We show the results for system (3.7) only, system (3.8) is
treated similarly.

• Introduce the error terms eS+ := S+ − S and eI− := I − I−. Applying Lemma
3.3 to system (3.7) with Ŝ = S+, Î = I−, kS = kS+, βS = β−, kI = kI−, βI = β+
(and therefore eS = −eS+, eI = eI−) yields

1In accordance with the usual convention, in the following formula the signs ±,∓ should be
interpreted either everywhere with the upper symbols, or everywhere with the lower ones.
2We constrain the closed-loop system to be monotone, so not any closed-loop spectrum can be
realized.
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(
ėS+
ėI−

)
= −

(
ėS

−ėI

)

= −
(−(μ + kS+β− I−) kS+β−S

kI−β+ I− −(μ + γ + kI−β+S)

) (
eS

−eI

)
− SI

(
kS+(β− − β)

kI−(β − β+)

)

=
(−(μ + kS+β− I−) kS+β−S

kI−β+ I− −(μ + γ + kI−β+S)

) (
eS+
eI−

)
+ SI

(
kS+(β − β−)

kI−(β+ − β)

)
.

The previous system may thus be written Ẋ = f (t, X), for X := (
eS+ eI−

)T
and

where the dependence with respect to time comes indirectly through the presence
of the other time-varying term. The off-diagonal terms of the Jacobian matrix are
respectively kS+(t)β−(t)S+(t) and kI−(t)β+(t)I−(t), clearly nonnegative for a.e.
t ≥ 0 due to the hypotheses on the gain components (see Lemma 3.2). The corre-
sponding system is therefore monotone [9, 15], and any solution of (3.7) departing
with eS+(0), eI−(0) ≥ 0 verifies eS+(t), eI−(t) ≥ 0 for any t ≥ 0. This proves i.

• Writing X := (
eS+ eI−

)T
, notice that V+(X) := uTX , for u := (

1 ρ+
)
, and

V+ and ρ+ > 0 as in the statement. When X is initialized with nonnegative values,
then this property is conserved (see point i.), so V+ is positive definite and may be
considered as a candidate Lyapunov function.

Along the trajectories of (3.7), one has, using δ+ defined in (3.10),

V̇+(X) + δ+V+(X)

= uT(Ẋ + δ+X)

= uT
(

δ+ − (μ + kS+β− I−) kS+β−S
kI−β+ I− δ+ − (μ + γ + kI−β+S)

)
X + SIuT

(
kS+(β − β−)

kI−(β+ − β)

)

= (
δ+ − μ + (ρ+kI−β+ − kS+β−)I− ρ+(δ+ − μ − γ ) − (ρ+kI−β+ − kS+β−)S

)
X

+ SI (kS+(β − β−) + ρ+kI−(β+ − β)) . (3.11)

Choosing the gain as in (3.9a) gives

δ+ − μ + (ρ+kI−β+ − kS+β−)I− = γ I−
I− + S+

ρ+

− γ I−
I− + S+

ρ+

= 0

and

ρ+(δ+ − μ − γ ) − (ρ+kI−β+ − kS+β−)S = − γ S+
I− + S+

ρ+

+ γ S

I− + S+
ρ+

≤ 0.

Formula (3.11) then yields V̇+(X) + δ+V+(X) ≤ SI (kS+(β − β−) + ρ+kI−(β+ −
β)) ≤ max{kS+, ρ+kI−}SI (β+ − β−),whichgives (3.10) by integration.This proves
point ii. and achieves the proof of Theorem 3.1. ��
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3.5 Numerical Experiments

We consider in the sequel the following parameter values. One takes μ = 0.02/year,
γ = 1

20 /day = 365
20 /year. The transmission rate β(t) is taken as β∗(1 + η cos(ωt)),

with nominal value β∗ such that R0 = β∗
μ+γ

= 17, η = 0.4 and ω = 2.4 rad/year,
close to the pulsation of the near-equilibrium natural oscillations. Last, S and I are
initialized at 0.06 and 0.001, close to the perturbation-free equilibrium (η = 0), and
the observer initial conditions as 0 and 1 (lower and upper values).

The gains were chosen as follows

kS+ = γ

I− + S+
ρ+

1

β−
, kI− = 0

kS− = max

⎛

⎝ γ

I+ + S+
ρ−

1

β+
,

1

1 + S−
ε

⎞

⎠ with ε = 5 × 10−3, kI+ = 1

ρ−β−

⎛

⎝β+kS− − γ

I+ + S+
ρ−

⎞

⎠

in accordance with (3.9). The small parameter ε is introduced in order to ensure that
S− remains positive, according to Lemma 3.2.

• First, essays were realized in the absence of uncertainty on the transmission
rate, that is taking β = β− = β+. Figure3.1 shows, for ρ± = 100, the logarithm of
the errors of S±, i.e., log10(eS+) = log10(S+ − S) and log10(eS−) = log10(S − S−).
We see that it decays with a high speed, whose instantaneous values are between μ

and μ + γ , as proved in Theorem 3.1.
• We now introduce uncertainty in the transmission rate. We use quite impre-

cise estimates, namely β±(t) = (1 ± 0.6)β(t). Figure3.2 shows results for ρ± =
102, 103, 104.

The convergence of I± towards I is fast, with small residual errors. On the other
hand, errors remain present in the estimates of S, illustrating the phenomenon men-
tioned right after Theorem 3.1.

Fig. 3.1 Decimal logarithm of the eS− (left) and eS+ (right) as a function of time (in years)
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Fig. 3.2 Actual value (blue), lower estimates (green) and upper estimates (red) of S (left) and I
(right) as functions of time (in years). The values at unperturbed equilibrium appear as dashed lines
(color figure online)

3.6 Conclusion

A family of SIR model with time-varying transmission rate has been considered.
For these models, a class of interval observers has been proposed, assuming that
the rate of new infectives is continuously measured and that the transmission rate is
uncertain and limited by (time-varying) known lower and upper bounds. It has been
shown that these observers ensure fast convergence to the exact values in absence of
uncertainty. For uncertain transmission rates, analytical bounds have been provided
for the estimation errors.

To improve these results, we plan to consider in the future higher-order observers,
and to apply the techniques of bundles of interval observers introduced in [2]. Also,
processing real experimental data should allow to assess the interest of the proposed
method.
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Chapter 4
Analysis of a Reaction-Diffusion
Epidemic Model

B. Cantó, C. Coll, S. Romero-Vivó and E. Sánchez

Abstract Amodel of an epidemic is introduced to describe an indirect transmission
of the disease through the density of pathogens in the environment. The scenario of
an emerging disease in a contaminated environment is assumed and the possibility
that an initial infection can spread in the population living in that environment is
analyzed.

Keywords Epidemic model · Stability · Equilibrium points · Basic reproduction
number · Discrete-time system

4.1 Introduction

Over the years a large number of models to describe the dynamics of an infection are
available in the literature, see e.g. [9] and the references given there. Most of them
are models that analyze the temporal behavior of a disease which is not extended in
space. However, it is important to examine the consequences of including the spatial
effect in the study of the evolution of a disease since the behavior of an epidemic
in two dimensions can lead to different results from those in one dimension. The
study of how the epidemic evolves according to the position of the individuals is
even as important as the analysis of temporal evolution, especially in cases where
individuals are confined in enclosed spaces. In particular, in the case of animals that
can be confined in cages or pens.
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Our aim is to design a mathematical model that analyzes diseases whose trans-
mission occurs through a contaminated environment. Thus, we assume the existence
of an emerging disease in a contaminated environment and the possibility that the
initial infection can spread in the population living in that environment. Furthermore,
it is assumed that the pathogens disperse by the enclosure via a diffusion process.
In reality, we do not think that the pathogens are diffusing. We can imagine them as
fixed in a grid, with contacts to their nearest neighbors, through which the disease
spreads. We assume that the disease spreads due to a certain pathogen found in the
environment or in food. The disease agent could persist without a host by absorbing
and metabolizing dissolved decomposed organic matter. Sometimes, the infectious
agent can infect a host by opportunity on contact or ingestion, and it can multiply
within the host. An example of this type of transmission is the zoonotic diseases that
have indirect mechanisms of transmission. The route of infection from animals to
humans is usually through contaminated food. For example: by ingestion of contami-
nated water or food (e.g. salmonellosis), by inhalation of contaminated fluids such as
feces, urine, milk, etc. (e.g. brucellosis, Hanta virus) or by exposure to contaminated
soil or water (e.g. schistosomiasis, leptospirosis). In particular, people usually get
salmonellosis by eating contaminated food, such as undercooked chicken or eggs.
Some models and results on Salmonella in industrial house hens can be found in
[1, 12].

Our model supposes that the population flux at a point x of a spatial domain Ω is
function of the density variation in the immediate vecinity of x. For simplicity, we
limit ourselves to a one-dimensional habitat Ω = (0,L). In this case, the population
is formed by susceptible individuals and infective individuals, denoted by S(x, t)
and I(x, t), respectively, which are functions of a time variable t as well as of spatial
variable x, with t ∈ Z, t ≥ 0 and the x ∈ Z, 0 ≤ x ≤ L, where L is the width of our
environmentΩ . In particular, variables S(x, t) and I(x, t) represent population spatial
densities rather of susceptible and infected individuals at point x ∈ Ω and at time
t > 0, respectively. The variable C(x, t) represents the environmental contamination
spatial density at point x ∈ Ω and at time t > 0. We also assume the following basic
assumptions for these models: each individual has the same probability of catching
the disease and the total population S(x, t) + I(x, t) remains constant equal to N .

Furthermore, the parameters 0 < p, q, s < 1 represent the survival rate of
S(x, t), I(x, t) and C(x, t), respectively. And we denote

S̄(t) =
∫

Ω

S(x, t)dx, Ī(t) =
∫

Ω

I(x, t)dx, C̄(t) =
∫

Ω

C(x, t)dx.

The death removal rate is μ(x, t). The parameter σ denotes the exposition rate
and the transmission via contact with the contaminated environment is given by
σC(x, t)S(x, t). For different values of this parameter we can get different types of
infections.

Moreover, we denote by
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g(t) = σ

∫

Ω

C(x, t)S(x, t)dx.

From definition, note that g(t) ≥ 0. In the next system, the term βI(x, t), 0 <

β < 1, represents the density of pathogen produced by infected individuals and α2

denotes the diffusion coefficient. So, a first mathematical description of the model is
given by

∂S

∂t
= (p − 1)S − σCS + μ

∂I

∂t
= (q − 1)I + σCS (4.1)

∂C

∂t
= (s − 1)C + βI + α2 ∂2C

∂x2
,

together with nonflux boundary conditions (no individuals cross the boundary)
∂ηz(x, t) = 0, in ∂Ω × R

+, being z(x, t) = col(S(x, t), I(x, t), C(x, t)) =
col(z1, z2, z3), and giving appropriate initial conditions z(x, 0) = f (x) =
col(f1(x), f2(x), f3(x)) in Ω , where f1(x) and f2(x) are continuous nonnegative func-
tions and f3(x) is a continuous positive function. Here, Ω is a bounded domain with
smooth boundary ∂Ω and ∂η denotes the outward normal derivative on ∂Ω . Finally,
by the initial model description μ = (1 − p)S + (1 − q)(N − S).

At this point we rewrite the previous system as follows

∂z

∂t
− A

∂2z

∂x2
− F(x, t, z) = 0

where z = z(x, t),A =
⎛

⎝
0 0 0
0 0 0
0 0 α2

⎞

⎠ andF(x, t, z) = F1z + σ z1z3v + (1 − q)Nu1 with

F1 =
⎛

⎝
−(1 − q) 0 0

0 −(1 − q) 0
0 β −(1 − s)

⎞

⎠ , v =
⎛

⎝
−1
1
0

⎞

⎠ , u1 =
⎛

⎝
1
0
0

⎞

⎠ .

It is clear that our system does not possess a positive definite diffusion matrix. This
occurs because there is no diffusion in the z1 and z2 directions. All the same, a
diffusion matrix is acceptable if it is positive semidefinite. Throughout the literature,
there are many works that prove the existence and uniqueness of solutions of similar
problems related to system (4.1) subject to suitable boundary and initial conditions,
see [3, 4] and the references given there. To establish sufficient conditions for the
existence of a nonnegative solution to system (4.1) we use its associated ODE system
given by



44 B. Cantó et al.

dz̄

dt
− F1z̄ = g(t)v + (1 − q)NLu1, (4.2)

with the initial conditions z̄(0) = z0. We seek conditions to the existence of non-
negative solutions to (4.2) satisfying z̄(t) ≥ 0, t ≥ 0. Since the total population size
remains constant we have

∫

Ω

S(x, t)dx +
∫

Ω

I(x, t)dx = S̄(t) + Ī(t) = LN

then
dS̄

dt
= −dĪ

dt
. Using this equality in system (4.2), we have

dz̄

dt
− F2z̄ = g(t)v, (4.3)

with

F2 =
⎛

⎝
0 1 − q 0
0 −(1 − q) 0
0 β −(1 − s)

⎞

⎠ .

Note that, all entries of matrix F2 are nonnegative except for those on the main
diagonal. The real matrices satisfying this property are called Metzler matrices or
essentially nonnegative matrices. It is known that, a matrixM is Metzler if and only
if eMt is nonnegative for all t ≥ 0, and eMt is strictly positive if and only if M is
irreducible, see [2, 14]. Additionally, given a matrix M, we denote by ρ(M) and by
s(M) the spectral radius and the spectral abscissa of M, respectively. Recall that,
ρ(M) and s(M) are the maximummodulus and the maximun real part of eigenvalues
ofM, respectively. FromPerron-Frobenius theorem forMetzlermatriceswe have that
ifM is an irreducible Metzler matrix then s(M) is an algebraically simple eigenvalue
ofM with the unique strictly positive eigenvector vs, [6]. Moreover, a matrixM is a
Hurwitz matrix if s(M) < 0 and the asymptotic stability of a system is followed if
its coefficient matrix is Hurwitz. Since matrix F2 is a Hurwitz matrix, system (4.3) is
asymptotically stable. On the other hand, a characterization to ensure that a matrix is
Hurwitz is given in [2]. So, s(M) < 0 if and only if −M is a non-singularM-matrix,
that is, M = νI − A where A is a nonnegative matrix with ρ(M) < ν.

To obtain the solution of system (4.3), first, we consider the linear part, so the
solution of z̄′ − F2z̄ = 0 is given by z̄h(t) = eF2tz0 for every admissible z0, that leads
us to the theory of semigroups, see [11]. Now, let us consider z̄′ − F2z̄ = g(t)vwhere
g(t) is continuously differentiable then, it follows by a standard perturbation result
(see [11]) that there exists a unique mild solution to this equation for every z0 and for
sufficiently short time intervals. This solution z̄(t) is a continuous function solution
of the integral equation

z̄(t) = T(t)z0 +
∫ t

0
T(t − τ)g(τ )vdτ
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where T(t), t ≥ 0 is the semigroup generated by F2. It is easy to prove that in our
case T(t) = eF2t and the solution given by

z̄(t) = eF2tz0 +
∫ t

0
eF2(t−τ)g(τ )vdτ

is nonnegative if z0 ≥ 0.

4.2 Linear Model

Our main aim is to study the ability of a spatially localized initial infection to prop-
agate into the susceptible population, and the behavior of the solution in a neighbor-
hood of a point of equilibrium, i.e., stability or not, which allow us to deduce whether
the disease will disappear, will be endemic or will grow creating a pandemic. So, we
shall limit the analysis of the steady states of system (4.1) to classical solutions of
the stationary problem

A
∂2z

∂x2
+ F(x, t, z) = 0

for x ∈ Ω , subject to boundary conditions ∂ηz(x, t) = 0, in ∂Ω × R
+.

Assuming that (Sf (x), If (x),Cf (x)) is a disease-free equilibrium point (where the
variables do not change with time) then, If (x) = 0,∀x ∈ Ω . Hence, system (4.2) can
be reduced to the differential equation 0 = −(1 − s)Cf (x) + α2C′′

f (x) whose solu-
tion, using the boundary conditions, is Cf (x) = 0. On the other hand, the total pop-
ulation size remains constant N , then Sf (x) = N . Let us assume that Pf = (Sf , 0, 0)
is an equilibrium point. To study the system behavior around the equilibrium point,
we linearize the initial system at Pf .

So we would like to find the linear system when (S, I,C) is close to (Sf , 0, 0). To
get this S(x, t)C(x, t) � Sf Cf + Sf C(x, t) + S(x, t)Cf � Sf C(x, t). We denote X̂ =
X − Xf , then the new variables are ẑ = (Ŝ, I,C) and a system close to the original
nonlinear system is

∂ ẑ

∂t
− A

∂2ẑ

∂x2
= Bẑ (4.4)

with

B =
⎛

⎝
(q − 1) 0 −σSf

0 (q − 1) σSf
0 β (s − 1)

⎞

⎠ ,

and nonflux boundary conditions ∂η ẑ(x, t) = 0, in ∂Ω × R
+, and ẑ(x, 0) = f̂ (x).

Now, we consider the subsystem involving only I and C. In this case, the diffusion
matrix Ar , the infection matrix F and the evolution matrix V are given by
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Ar =
(
0 0
0 α2

)
, F =

(
0 σSf
β 0

)
, V =

(
(1 − q) 0

0 (1 − s)

)
.

The new subsystem is given by

∂ z̃

∂t
− Ar

∂2z̃

∂x2
= (F − V )z̃. (4.5)

Note that the matrixM = F − V is an irreducible Metzler matrix, with s(−V ) < 0.
To study the large time behavior of the population modeled by system (4.5), we
analyze the existence of a unique positive stationary solution using functions of
the form z̃(x, t) = eMtϕ(x, t), which transforms the initial system into the system,
∂ϕ

∂t = Ar
∂2ϕ

∂x2 . Now, consider ϕ(x, t) = T(t)w(x), we just have to find the principal
eigenvalue of the elliptic eigenvalue problem

w′′(x) + γ 2w(x) = 0 (4.6)

w′(x)
∣∣
δΩ

= 0.

In [15] provides the existence of the principal eigenvalue of an elliptic eigenvalue
problem in a bounded smooth domain, under Newmann boundary condition, where
some diffusion coefficients may be zero. This eigenvalue is simple and the associated
eigenfunction is positive in the smooth domain. In a similarwaywe solve the problem
(4.6) being μ∗ = −γ ∗2 this principal eigenvalue. From the comparation principle
[13] the solution z̃∗(x, t) = e(M+μ∗Ar)tvμ∗w∗(x) determines the behavior of the system
around the disease-free equilibrium point. Then to study the asymptotically stability
of system (4.5) we need studied the spectrum of matrix M + μ∗Ar , that is, system
(4.5) is asymptotically stable if and only is s(M + μ∗Ar) < 0.

The conditions that must meet the parameters of the model to ensure its stability
around the disease-free equilibrium point are set out in the following result.

Proposition 4.1 Given system (4.5) the following statements are equivalent:

(i) s(M + μ∗Ar) < 0.
(ii) σβN

(1−q)(1−s+(γ ∗α)2)
< 1.

Proof From the Routh-Hurwitz stability test, see [7], s(M + μ∗Ar) < 0 if and only if
all the coefficients of the polynomial given by |λI − (M + μ∗Ar)| = 0 are positives.
By a simple calculation it is easy to check that all the coefficients are positives if
and only if (1 − q)(1 − s + (γ ∗α)2) − σβN > 0 and taking into account the inter-
pretation of the parameters involved in this expression, (1 − q) > 0, (1 − s) > 0
then 1 − s + (γ ∗α)2) > 0. Thus, all the coefficients are positives if and only if

σβSf
(1−q)(1−s+(γ ∗α)2)

< 1. �

On the other hand, it is known that the basic reproductive number of the epi-
demiological process, R0, is a measure or indicator to know whether the disease
will disappear. Recall that this parameter is the expected number of secondary cases
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produced by a infective individual, see [5, 10]. If R0 < 1 the disease tends to dis-
appear around the disease-free equilibrium point and otherwise it remains. In the
next section, we propose an expression of this parameter for the considered reaction-
diffusion epidemic model.

4.3 The Basic Reproduction Number

Consider system (4.5) rewritten as

∂ z̃

∂t
− Ar

∂2z̃

∂x2
= (−V )z̃ + Fz̃,

with s(−V + μ∗Ar) < 0, that is, system (4.5) is asymptotically stable in absence of
infection. From definition of the basic reproduction number we analyze the accumu-
lated secondary infective individuals from a primary infective individual. Hence, we
observe that

(V − μ∗Ar)
−1 =

∫ ∞

0
e(−V+μ∗Ar)tdt.

Thus, given an initial state, this matrix (V − μ∗A)−1 represents its expected tran-
sition throughout his life. When we consider the infection problem given by system
(4.5), the matrix F(V − μ∗A)−1 generates the secondary infected individuals and
secondary contaminants from the primary state. So, the basic reproduction number
is the spectral radius of the matrix F(V − μ∗A)−1. That is,

RD
0 = ρ(F(V − μ∗Ar)

−1).

In [15] R0 is established for reaction-diffusion epidemic models where some
diffusion coefficients may be zero. Applying the results given in [15] to our case it
follows that R0 = RD

0 .

Proposition 4.2 Given system (4.5) the following statements are equivalent:

(i) s(F − (V − μ∗Ar)) < 0.
(ii) RD

0 < 1.

Proof It is easy to check that F − (V − μ∗Ar) is a Metzler matrix and (V − μ∗Ar)

is nonsingular with (V − μ∗Ar)
−1 ≥ 0, then F(V − μ∗Ar)

−1 ≥ 0. Let A = −F +
(V − μ∗Ar) be then

(i)→ (ii). If F − (V − μ∗Ar) is also Hurwitz then A is a nonsingular M-
matrix, [2]. Moreover A = (V − μ∗Ar) − F where (V − μ∗Ar) and F are non-
negative matrices with (V − μ∗Ar)

−1 ≥ 0, then F(V − μ∗Ar)
−1 ≥ 0. This implies

that ρ(F(V − μ∗Ar)
−1) < 1, [2].

(ii)→ (i). If ρ(F(V − μ∗Ar)
−1) < 1 then matrix (I − F(V − μ∗Ar)

−1) is a
nonsingular M-matrix, and, since A = (I − F(V − μ∗Ar)

−1)(V − μ∗Ar), A −1 =
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(V − μ∗Ar)
−1(I − F(V − μ∗Ar)

−1)−1 ≥ 0.Therefore,A is a nonsingularM-matrix
what implies that s(−A ) < 0, [2]. �

Remark 4.1 For the model represented by system (4.5) the basic reproduction num-
ber is given by

RD
0 =

√
σβN

(1 − q)(1 − s + (γ ∗α)2)
.

From Propositions 4.1 and 4.2, the following result is directly obtained.

Corollary 4.1 The system (4.5) is asymptotically stable to Pf if and only if RD
0 < 1.

Remark 4.2 Given the model represented by system (4.5) if α = 0 we can obtain
the basic reproduction number using the next-generation matrix [5]. So,

R0 =
√

σβN

(1 − q)(1 − s)
.

Note that RD
0 < R0 since (RD

0 )2 = ϑR2
0 with

ϑ = 1

1 + (γ ∗α)2

1−s

< 1.

From the above it follows that, if the system is asymptotically stable without diffu-
sion also is asymptotically stable with diffusion. Furthermore, if the system without
diffusion is not asymptotically stable it could find a diffusion coefficient such that
the new diffusion system is asymptotically stable.

4.4 A Discrete-Time Model

The main aim of this section is to obtain a discrete-model associated with sys-
tem (4.4). For discretizing the partial differential equation we replace the partial
derivatives in (4.4) by difference quotients. For that, we consider both time and
space discretizations on a uniform grid with grid parameter h = Δx, where h is
the distance between two neighboured nodes of the grid and we discretize the
interval (0,T) by an one dimensional grid with step size k = Δt. We denote by
ẑi,j = ẑ(iΔx, jΔt), i = 1, . . . ,M, j > 0.

In this case,we use the forward-looking difference operator in time to approximate
the first-order derivative in the following way,

∂ ẑ

∂t
≈ ẑi,j+1 − ẑi,j

k
,
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and the Euler scheme backward in space should be used in our model to obtain a
discrete-model associated to system (4.4), so the second-order derivative is approx-
imated by

∂2ẑ

∂x2
≈ ẑi+1,j+1 − 2ẑi,j+1 + ẑi−1,j+1

h2
,

with initial condition ẑi,0 = f (xi), i = 1, . . . ,M.
The discretized problem can be written as

ẑi,j+1 − ẑi,j
k

− A
ẑi+1,j+1 − 2ẑi,j+1 + ẑi−1,j+1

h2
= Bẑi,j+1, (4.7)

After some algebraic manipulations, we obtain

Eẑi+1,j+1 = (I + 2E − kB)ẑi,j+1 − ẑi,j − Eẑi−1,j+1,

where E = k
h2A.

As in the previous section we focus on the subsystem involving infected individ-
uals and the contaminant. That is

Erz̃i+1,j+1 = (I + 2Er − kM)z̃i,j+1 − z̃i,j − Erz̃i−1,j+1,

where Er = k
h2Ar . So, we focus on the solutions of the polynomial

∣∣w1w2Er − w2(I + 2Er − kM) + Erw
−1
1 w2 + I

∣∣ = 0,

in particular we analyze the solutions of

∣∣Er(1 − w−1
1 )2 − w−1

1 (I(1 − w−1
2 ) − kM)

∣∣ = 0. (4.8)

Changing λi = 1 − w−1
i , i = 1, 2, we have

∣∣Erλ
2
1 − (1 − λ1)(Iλ2 − kM)

∣∣ = 0.
Note that,we are interested in the property of stability, thenweneed informationofλ2.

So, we analyze the solutions of
∣∣∣Iλ2 − (Er

λ2
1

(1−λ1)
+ kM)

∣∣∣ = 0, that is the eigenvalues

of the matrix Λ = Er
λ2
1

(1−λ1)
+ kM. Note that, if the spectral bound s(Λ) < 0 then

|w2| < 1 for all w2 solution of (4.8).

Proposition 4.3 Consider the matrix Λ = Er
λ2
1

(1−λ1)
+ kM, being λ1 a real number.

Then all its eigenvalues are real. Moreover, denoting by κ = α2 λ2
1

(1−λ1)h2
and Rκ =√

σβN
(1−q)(1−s−κ)

the following statements hold

(i) if κ + s + q < 2 and Rκ < 1 then its eigenvalues are less than zero.
(ii) if κ + s + q > 2 or Rκ ≥ 1 then at least one of its eigenvalues is positive.

Proof The eigenvalues of Λ are the solutions of
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P(λ) =
∣∣∣∣

(
λ − k(q − 1) −kσSf

−kβ λ − k(s − 1 + κ)

)∣∣∣∣ = 0.

Note that, if λ1 > 1 then κ < 0 and if λ1 < 1 then κ > 0. The discriminant of
both roots can be written as (κ + (s − q))2 + 4σβSf > 0 so both are real numbers.
From Routh-Hurwitz stability criterion, to study the sign of the roots must analyze
the sign of the coefficients of P(λ). So, κ + s + q − 2 < 0 and (q − 1)(κ + s − 1) −
σβN > 0. Thus, if κ + s + q > 2 and σβN

(1−q)(1−s−κ)
< 1 all roots of P(λ) have part

real negative. Otherwise at least one of its roots will be positive. �
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Chapter 5
On Feedback Transformation and Integral
Input-to-State Stability in Designing Robust
Interval Observers for Control Systems

Thach Ngoc Dinh and Hiroshi Ito

Abstract The problem of designing interval observers is addressed for output feed-
back control of a class of nonlinear systems in this chapter. The framework of integral
input-to-state stability is exploited to drive the estimated intervals and the state vari-
ables to the origin asymptotically when disturbances converge to zero. Moreover
interval observers are tuned with feedback gain. A reduced-order interval observer is
proposed, and the flexibility offered by gains in designing observer is related to the
existence of reduced-order interval observers. Comparative simulations are given to
illustrate the theoretical results.

Keywords Interval observers ·Reduced-order observers ·Nonlinear systems ·Out-
put feedback control · Guaranteed state estimation.

5.1 Introduction

Interval observers generate upper bounds and lower bounds of state variables of
dynamical systems at each time instant based on given information about bounds of
unknown disturbances and of unknown initial conditions [6]. The bounds give inter-
vals where the state variables are sure to stay during transient periods in which clas-
sical observers do not provide any guarantee. The usefulness of interval estimates is
evident for monitoring purposes when large disturbances or uncertainties are present
[1]. A typical mechanism to allow the construction of such interval observers is to let
the estimation errors be governed by positive systems. Some examples of extensive
studies on design of interval observers have been reported in [4, 5, 8–14] (see also
references therein).
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Recently, an interval observer was proposed in [3] for nonlinear control systems
which are affine in unmeasured state variables, and it was investigated further in [7]
to provide design guidelines for guaranteeing the length of estimated intervals to
converge to zero for converging disturbances and guaranteeing (integral) input-to-
state stability ((i)ISS) of the entire controlled system. The iISS approach developed
in [7] has allowed one to deal with a larger class of nonlinearities than the original
approach [3]. This chapter continues investigating the iISS framework and introduces
a modification by incorporating feedback gain into the observer for control systems.
The modification, in addition to state transformation of the error systems, offers
flexibility in obtaining positive systems leading to tighter interval estimates and
swifter convergence of the interval length and state variables of the plant to zero. This
chapter also proposes a reduced-order interval observer aiming at swifter behavior
of the estimates and the plant state with less control effort. It also discusses how the
positivity of error systems allows the existence of a full-order observer to imply the
existence of a reduced-order observer. Comparative simulations are given to illustrate
these ideas.

In this chapter, the set of real numbers is denoted by R. The set of non-negative
real numbers is denoted byR≥0. The symbol | · | denotes Euclidean norm of vectors.
Inequalities must be understood component-wise, i.e., for a = [a1, ..., an]� ∈ R

n

and b = [b1, ..., bn]� ∈ R
n , a ≤ b if and only if, for all i ∈ {1, ..., n}, ai ≤ bi . For a

square matrix Q ∈ R
n×n , let Q+ ∈ R

n×n denote Q+ = (
max{qi, j , 0}

)n,n

i, j=1,1, where

Q = (
qi, j

)n,n

i, j=1,1. Let Q
− = Q+ − Q. This notation is limited to square matrices,

and the superscripts+ and− for other purposes are defined appropriately when they
appear. A square matrix Q ∈ R

n×n is said to be Metzler if each off-diagonal entry of
this matrix is nonnegative. The symbol I denotes the identity matrix of appropriate
dimension. For α, β : R≥0 → R

n , by α(s) ≡ β(s) we mean α(s) = β(s) for all s ∈
R≥0. A function α : R≥0 → R≥0 is said to be positive definite and written as α ∈ P
if α is continuous and satisfies α(0) = 0 and α(s) > 0 for all s ∈ (0,∞). A function
α ∈ P is said to be of classK if α is strictly increasing. A classK function is said
to be of classK∞ if it is unbounded. A continuous function β : R≥0 × R≥0 → R≥0

is said to be of class K L if, for each fixed t ∈ R≥0, β(·, t) is of class K and, for
each fixed s > 0, β(s, ·) is strictly decreasing and limt→∞ β(s, t) = 0. Logical sum
and logical product are denoted by ∨ and ∧, respectively.

5.2 Setups and Objectives

Consider the system

ẋ(t) = A(y(t))x(t) + B(y(t))u(y(t), x̂+(t)) + δ(t) (5.1a)

y(t) = Cx(t) (5.1b)

with time t ∈ R≥0, the state x(t) ∈ R
n , themeasurement output y(t) ∈ R

p and the ini-
tial condition x(0) = x0, where the functions A : Rp → R

n×n and B : Rp → R
n×q
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are supposed to be locally Lipschitz, and C ∈ R
p×n is a constant matrix. The term

u(y(t), x̂+(t)) ∈ R
q is the control input indicating output feedback, and the func-

tion u : Rp × R
n → R

q is supposed to be locally Lipschitz. The signal x̂+(t) ∈ R
n

denotes an estimate of x(t), which has yet to be defined. The disturbance vec-
tor δ : R≥0 → R

n is supposed to be piecewise continuous. It is stressed that x(t)
is not measured. Instead, the output y(t) is available as a measurement for all
t ∈ R≥0. Assume that the vectors x−

0 , x+
0 ∈ R

n and piecewise continuous functions
δ+, δ− : R≥0 → R

n satisfying

x−
0 ≤ x0 ≤ x+

0 (5.2)

δ−(t) ≤ δ(t) ≤ δ+(t), ∀t ∈ R≥0 (5.3)

are known, while x(0) = x0 and δ(t) are not known. The design problem to be
addressed in this chapter is mainly to achieve two objectives simultaneously. One is
to drive x(t) to the origin asymptotically for an arbitrary initial condition satisfying
(5.2) by output feedback control when δ(t) converges to zero. The other is to estimate
an envelope x−(t), x+(t) ∈ R≥0 such that the framer property

x−(t) ≤ x(t) ≤ x+(t), ∀t ∈ R≥0 (5.4)

holds in the presence of any piecewise continuous disturbance δ(t) satisfying (5.3).
The former is for the purpose of control, and the latter is for monitoring. Other
important features of the simultaneous control andmonitoring problem are described
mathematically in Sect. 5.4.

5.3 Observer Candidates

5.3.1 Full-Order Interval Observer

Divide the control input u into a direct output feedback term and the remainder as

u(y, x̂+) = K (y)y + ua(y, x̂
+). (5.5)

The locally Lipschitz function function K : Rp → R
q×p can be given arbitrarily

since K (y)y can be absorbed by the locally Lipschitz function ua : Rp × R
n → R

q .
Define an observer candidate as

˙̂x+ =(A(y) + B(y)K (y)C)x̂+ + B(y)ua + H(y)[Cx̂+ − y] + S[R+δ+ − R−δ−]
(5.6a)

˙̂x− =(A(y) + B(y)K (y)C)x̂− + B(y)ua + H(y)[Cx̂− − y] + S[R+δ− − R−δ+]
(5.6b)
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with the initial condition defined by

x̂+(0) =x̂+
0 := S[R+x+

0 − R−x−
0 ] (5.7a)

x̂−(0) =x̂−
0 := S[R+x−

0 − R−x+
0 ] (5.7b)

and the output equation

x+ = S+Rx̂+ − S−Rx̂−, x− = S+Rx̂− − S−Rx̂+, (5.8)

where S = R−1. The invertible matrix R ∈ R
n×n , the locally Lipschitz functions

H : Rp → R
n×p and K : Rp → R

q×p are design parameters. The observer can-
didate (5.6) includes the one proposed in [3] as a special case given by K = 0.
For K = 0, sufficient conditions for achieving (5.4) and the nominal convergence
(x(t), x+(t), x−(t) → 0 as t → ∞ for δ(t) ≡ 0) are given in [3]. The convergence
by the observer with K = 0 was made robust to allow δ(t) �≡ 0 in [7]. Inspired by
the result in [7], this chapter introduces the following two assumptions as guidelines
for selecting K and H for (5.6).

Assumption 5.1 The matrix

Γ (y) = R[A(y) + B(y)K (y)C + H(y)C]R−1 (5.9)

is Metzler for each fixed y ∈ R
p.

Assumption 5.2 There exist a C1 function V : Rn → R≥0, continuous functions ν,
ν ∈ K∞, ω ∈ P and η+, η− ∈ K such that ν(|ξ |) ≤ V (ξ) ≤ ν(|ξ |) and

∂V

∂ξ
(ξ)

{[A(y) + B(y)K (y)C + H(y)C]ξ + S[R+ρ+ +R−ρ−]}

≤ −ω(|ξ |) + η+(|ρ+|) + η−(|ρ−|) (5.10)

hold for all ξ ∈ R
n , y ∈ R

p, ρ+ ∈ R
n and ρ− ∈ R

n .

The former assumption aims at securing the framer property (5.4). The latter
assumption guarantees the convergence of x+(t) − x−(t) to zero even in the presence
of disturbance δ(t) �≡ 0 by requiring the error systems of x̂+ − x and x̂− − x corre-
sponding to (5.6a) and (5.6b) to be integral input-to-state stable (iISS) with respect
to ρ+ := δ+ − δ and ρ− := δ − δ−, respectively. Based on the idea of separating
feedback design from the observer design, the following assumption is introduced
as guidelines for selecting the feedback input u.

Assumption 5.3 There exist a positive definite radially unbounded C1 functionU :
R

n → R≥0, continuous functions μ ∈ P and γ, ζ ∈ K such that

∂U

∂x
(x)[A(Cx)x + B(Cx)u(Cx, x + d) + δ] ≤ −μ(|x |) + γ (|d|) + ζ(|δ|) (5.11)

holds for all x ∈ R
n , d ∈ R

n and δ ∈ R
n .
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This assumption requires the closed-loop systemwith the fictitious state feedback
u using x instead of x̂+ to be iISS with respect to the estimation error d = x̂+ − x
and the disturbance δ.

5.3.2 Reduced-Order Interval Observer

Consider the following partition of the state vector x :

x =
[
xm
xm

] } p components
} n − p components.

(5.12)

Accordingly, A, B, δ and x0 are partitioned as

A(y) =
[
Am,m(y) Am,m(y)
Am,m(y) Am,m(y)

]
, B(y) =

[
Bm(y)
Bm(y)

]
, δ =

[
δm
δm

]
, x0 =

[
xm,0

xm,0

]

(5.13)

and it is assumed that

C = [I 0] ∈ R
p×n (5.14)

holds. Since the component vector xm(t) ∈ R
p is measured, one needs to estimate

the remainder xm(t) ∈ R
n−p. Let ŵm(t) denote such an estimate which has yet to

be defined. Then the output feedback control law based on the estimation can be
represented by u(y, ŵm) instead of u(y, x̂+). For a constant matrix G ∈ R

(n−p)×p to
be chosen later, let ŵm be called an estimate of xm by defining ŵm = x̂+

m − Gy and
generating x̂+

m (t) appropriately. Then we have

u(y, ŵm) = u(y, x̂+
m − Gy). (5.15)

To construct a reduced-order observer, we replace (5.3) with

x−
m,0 ≤ xm,0 ≤ x+

m,0, (5.16)

δ−
m (t) ≤ Gδm(t) ≤ δ+

m (t), ∀t ∈ R≥0, (5.17)

δ−
m (t) ≤ δm(t) ≤ δ+

m (t), ∀t ∈ R≥0, (5.18)

where the vectors x−
m,0, x

+
m,0 ∈ R

n−p and piecewise continuous functions δ+
m , δ−

m :
R≥0 → R

p, δ+
m , δ−

m : R≥0 → R
n−p are assumed to be known and satisfy

G = 0 ⇒ δ−
m (t) ≡ δ+

m (t) ≡ 0. (5.19)

The bounds δ−
m and δ+

m are meaningless unless (5.19) holds.



58 T.N. Dinh and H. Ito

Define a reduced-order observer candidate as

˙̂x+
m = [

Am,m (y) + GAm,m (y)
]
x̂+
m + [

Am,m (y) − Am,m (y)G − GAm,m (y)G +GAm,m (y)
]
y

+ [
Bm (y) + GBm (y)

]
u + Sm [R+

m δ+
m − R−

m δ−
m ] + Sm [R+

m δ+
m − R−

m δ−
m ] (5.20a)

˙̂x−
m = [

Am,m (y) + GAm,m (y)
]
x̂−
m + [

Am,m (y) − Am,m (y)G − GAm,m (y)G +GAm,m (y)
]
y

+ [
Bm (y) + GBm (y)

]
u + Sm [R+

m δ−
m − R−

m δ+
m ] + Sm [R+

m δ−
m − R−

m δ+
m ] (5.20b)

with

x̂+
m (0) =x̂+

m,0 := Sm[R+
m x

+
m,0 − R−

m x
−
m,0] + Gy(0) (5.21a)

x̂−
m (0) =x̂−

m,0 := Sm[R+
m x

−
m,0 − R−

m x
+
m,0] + Gy(0) (5.21b)

and

x+
m =S+

m Rm x̂
+
m − S−

m Rm x̂
−
m − Gy (5.22a)

x−
m =S+

m Rm x̂
−
m − S−

m Rm x̂
+
m − Gy (5.22b)

x+ =
[
y
x+
m

]
, x− =

[
y
x−
m

]
. (5.22c)

Here, Sm = R−1
m . The invertible matrix Rm ∈ R

(n−p)×(n−p) is a design parameter.
For the reduced-order observer, this chapter proposes the following assumptions as
guidelines to select the gain G and the control input u.

Assumption 5.4 The matrix

Γm(y) = Rm
[
Am,m(y) + GAm,m(y)

]
R−1
m (5.23)

is Metzler for each fixed y ∈ R
p.

Assumption 5.5 There exist a C1 function V : Rn−p → R≥0, continuous functions
ν, ν ∈ K∞, ω ∈ P and η+, η− ∈ K such that ν(|ξ |) ≤ V (ξ) ≤ ν(|ξ |) and
∂V

∂ξ
(ξ)

{[
Am,m(y) + GAm,m(y)

]
ξ +Sm[R+

mρ+
m + R−

mρ−
m ] + Sm[R+

mρ+
m + R−

mρ−
m ]}

≤ −ω(|ξ |) + η+(|ρ+|) + η−(|ρ−|) (5.24)

hold for all ξ ∈ R
n−p, y ∈ R

p, ρ+ = [ρ+�
m , ρ+�

m ]� ∈ R
p+(n−p) and ρ− = [ρ−�

m ,

ρ−�
m ]� ∈ R

p+(n−p).

Assumption 5.6 There exist a positive definite radially unbounded C1 functionU :
R

n → R≥0, continuous functions μ ∈ P and γ, ζ ∈ K such that
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∂U

∂x
(x)[A(xm)x + B(xm)u(xm, xm + dm) + δ] ≤ −μ(|x |) + γ (|dm |) + ζ(|δ|)

(5.25)

holds with (5.12) for all x ∈ R
n , dm ∈ R

n−p and δ ∈ R
n .

5.4 Guarantees

Define the following vectors:

η = η+ + η−,

δ± = δ+ − δ−,
X =

⎡

⎣
x
x̂+
x̂−

⎤

⎦ , Δ =
⎡

⎣
δ

δ+
δ−

⎤

⎦ , ẑ =
[
x̂+ − x
x+ − x−

]
, ρ̂ =

[
δ+ − δ

δ− − δ

]
.

Since the assumptions in Sect. 5.3 are imposed separately on the observermechanism
(5.6) and the feedback mechanism u(·, ·), the following two theorems provide con-
ditions under which their coupling results in desired boundedness and convergence
for control and monitoring.

Theorem 5.1 Suppose that Assumptions 5.1, 5.2 and 5.3 are satisfied with μ ∈ K .
Then in the case of δ(t) ≡ δ+(t) ≡ δ−(t) ≡ 0, for any x0 satisfying (5.2), the unique
solution X (t) to (5.1) and (5.6) satisfies (5.4) and limt→∞ |x+(t) − x−(t)| = 0, and
moreover, X = 0 is globally asymptotically stable. If

ω ∈ K∞ ∨
[
ω ∈ K ∧

{
γ /∈ K∞ ∨ lim

s→∞ ω(s) > sup
t∈R≥0

η(
√
2|δ±(t)|)

}]
(5.26)

holds, there exist θ̂ ∈ K L , ψ̂ ∈ K and χ̂ ∈ K∞ such that

χ̂
(|ẑ(t)|) ≤ θ̂ (|ẑ(0)|, t) +

∫ t

0
ψ̂(|ρ̂(τ )|)dτ, ∀t ∈ R≥0. (5.27)

∫ ∞

0
ψ̂(|ρ̂(τ )|)dτ < ∞ ⇒ lim

t→∞ |ẑ(t)| = 0 (5.28)

hold for any x0 and δ satisfying (5.2) and (5.3), and moreover, the closed-loop system
consisting of (5.1) and (5.6) is iISS with respect to the input Δ and the state X. If

μ ∈ K∞ ∧ ω ∈ K∞ (5.29)

holds, there exist θ̂ ∈ K L and φ̂ ∈ K such that
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|ẑ(t)| ≤ θ̂ (|ẑ(0)|, t) + φ̂

(
sup

τ∈[0,t]
|ρ̂(τ )|

)
, ∀t ∈ R≥0 (5.30)

lim
t→∞ |ρ̂(t)| = 0 ⇒ lim

t→∞ |ẑ(t)| = 0 (5.31)

hold for any x0 and δ satisfying (5.2) and (5.3), and moreover, the closed-loop system
is ISS with respect to Δ and X.

Theorem 5.2 The claims in Theorem 5.1 hold true even if μ ∈ K and (5.26) are
replaced by

∫ 1

0

γ ◦ ν−1(s)

ω ◦ ν−1(s)
ds < ∞ (5.32)

ω ∈ K ∧
{
∃c > 0, ∃k ≥ 1, ∀s ∈ R≥0, cγ ◦ ν−1(s) ≤ [ω ◦ ν−1(s)]k

}
, (5.33)

respectively.

The proofs are omitted due to the space limitation. The above theorems can be
verified by following the arguments developed in [7]. Modification of the arguments
also proves that Theorems 5.1 and 5.2 hold true for the reduced-order observer
candidate (5.20) by replacing Assumptions 5.1, 5.2 and 5.3 with Assumptions 5.4,
5.5 and 5.6, respectively, and redefining

X =
⎡

⎣
x

x̂+
m − Gy
x̂−
m − Gy

⎤

⎦ , ẑ =
[
x̂+
m − xm − Gy
x+
m − x−

m

]
.

5.5 Difference Between Observers

5.5.1 Utility of H and K, and Difference

Property (5.11) is independent of the state transformation R and the gains H(y) and
K (y). The state transformation R contributes to only (5.9), while the gain H(y)
contributes to (5.9) and (5.10) and has the same effect as B(y)K (y). The observer
(5.6) varies with the choice of K (y) for a given and fixed u. Thus, K (y) offers
freedom to change the behavior of the interval estimates x+(t) and x−(t) within
the aforementioned guarantees. This change in estimates influences the behavior of
x(t) of the plant. The standard Luenberger observer also admits K (y) influencing
the closed-loop response. However, the freedom is not much appreciated since the
standard observer aims at only closed-loop stability and convergence and it is not
built for monitoring. In contrast, interval observers provide estimates in the transient
phase and the freedom of K (y) matters. Notice that for a given and fixed feedback
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control law u, the choice of H(y) does not influence ua in the observer (5.6), while
the choice of K (y) does. This flexibility of K (y) in addition to H(y) can be utilized
to construct a bundle of interval observers for generating a tighter estimate, as done
for instance in [2].

5.5.2 Benefits of Reduced-Order Design

In the case of partial measurement (5.14), the reduced-order interval observer (5.20)
lets the exact measurement xm be used instead of estimating intervals for xm . Since
the reduced-order observer is free from dynamics estimating the measured part xm ,
its closed loop can be expected to have relatively swifter response with less control
effort than the control loop based on the full-order estimates.

To illustrate another advantage of the reduced-order observer, consider the sim-
plest choice G = 0 in (5.20). Suppose that Assumption 5.1 is achieved with

R =
[
Rm 0
0 Rm

]
, Rm ∈ R

p×p. (5.34)

Then we have

R(BKC + HC)R−1 = [R(BK + H)R−1
m 0] (5.35)

Thus, to render Γ (y) Metzler, the observer gain H(y) and the feedback gain K (y)
modify the first p columns which correspond to the measurable part xm of x , There-
fore,

R[A(y) + B(y)K (y)C + H(y)C]R−1 is Metzler ⇒ Rm Amm(y)R−1
m is Metzler.

(5.36)

holds for each fixed y ∈ R
p since every principal minor of a Metzler matrix is Met-

zler. The modification of A within the limited freedom of (5.35) is unnecessary if
a reduced-order interval observer is constructed. The reduced-order design is con-
cerned with only the part Rm Amm(y)R−1

m which can be influenced by neither K (y)
nor H(y) of the full-order observer design. In this way, the reduced-order design
allows us to get rid of the unnecessarily “Metzlerization” in the partial measurement
case (5.14). In addition, the matrix G in the reduced-order design provides another
degree of freedom to modify Rm Amm(y)R−1

m for the “Metzlerization”.
Now, we pay attention to Assumption 5.2. The next proposition demonstrates that

in many cases, attainability of (5.9) and (5.10) for the full-order interval observer
(5.6) implies the existence of a reduced-order interval observer unless the state trans-
formation R is fully exploited.
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Proposition 5.1 Suppose that (5.14) holds and Amm(y) is independent of y. If
Assumptions 5.1 and 5.2 are satisfied with a non-singular matrix R ∈ R

n×n of the
form (5.34) and a quadratic function V : Rn → R≥0. then Assumptions 5.4 and 5.5
hold with G = 0.

Exploiting G �= 0 can yield a better (larger) ω in (5.24). Furthermore, Amm(y) is
allowed to depend on y in Proposition 5.1 if the quadratic function V : Rn → R≥0

is chosen as a quadratic form of a block-diagonal matrix. In the partial measurement
case (5.14), producing a Metzler matrix Γ within the freedom of (5.35) imposes
severe constraints on the choice of H and K in obtaining a better (larger) ω in (5.10)
for the full-order observer (5.6).

Finally, it should be stressed that the above discussions on benefits of the reduced-
order observer are not precise when R is not block diagonal. The use of non-diagonal
R is crucial for allowing H(y) and K (y) to offer more flexibility than the reduced-
order design.

5.6 Comparative Simulations

To illustrate the design flexibility introduced in this chapter, we borrow the following
plant from [7]:

[
ẋ1
ẋ2

]
=

[
0 −x21 − 1

2
0 −2x21 − 1

2

] [
x1
x2

]
+

[ x2
2 + u1 + δ1

− x2
2 + u2 + δ2

]
(5.37a)

y = x1. (5.37b)

Fix the feedback control input as

u(y, x̂2) = 1

2

[−4y3 + x̂2
−x̂2

]
, (5.38)

where x̂2 denotes an estimate of x2. The full-order interval observer in Sect. 5.3.1
employs x̂2 = x̂+

2 , while the reduced-order interval observer in Sect. 5.3.2 employs
x̂2 = ŵ+

2 . Let U (x) = x�x . As verified in [7], (5.11) and (5.25) are satisfied with

μ(s) = 1
4 min{s4, s2}, γ (s) = max

{
3
2 s

4
3 , s2

}
, ζ(s) = max

{
3s

4
3 , 2s2

}
. Let

H(y) =
[−2y2 − 3/4

−1/2

]
. (5.39)

For the choice K = 0, (5.10) is satisfied for V (ξ) = ξ�ξ with ω(s) = s2/60,
η+(s) = 10s2 and η−(s) = 13s2. For
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K (y) =
[−2y2 − 1

0

]
(5.40)

property (5.10) is achieved by lettingω(s) = 2s2/5. ThematrixΓ (y) for both K = 0
and (5.40) is Metzler with (5.34) and Rm = 1, Rm = −1/2. Thus, Assumptions 5.1,
5.2, 5.3 and (5.29) in Theorem 5.1 are satisfied. Since the diagonal matrix R and the
quadratic function V (ξ) = ξ�ξ led to the above two full-order observers (5.6) with
K = 0, and (5.6) with (5.40), the discussion in Sect. 5.5.2 indicates that a reduced-
order observer can be constructed. Define the reduced-order interval observer as
(5.20). For any G ≥ 0, Assumptions 5.4, 5.5, 5.6 and (5.29) are satisfied. For simu-
lations, we use x0 = [5,−5]�, x+

0 = [10, 0]�, x−
0 = [0,−10]� and

δ(t) =
[
sgn(sin(t))min

{| sin(t)|, 5/t2}
sgn(cos(t))min

{| cos(t)|, 5/t2}
]

. (5.41)

Pick δ+ by replacing sin(t) and cos(t) in (5.41) with 1. Use −1 instead for δ−. The
simulation results shown in Figs. 5.1, 5.2 and 5.3 verify that in all the three designs,
the framer property (5.4) is achieved, and the estimated intervals and the plant state
converge to the origin. Figures5.1 and 5.2 show that the choice (5.40) in the observer
(5.6) provides a tighter estimate than K = 0. Since the control law (5.38) uses the
measured component y = x1 instead of its estimate in the full-order designs, the
behavior of x with the reduced-order observer (5.20) for G = 0 is almost identical
with that of the full-order observers (The plots are omitted). For the reduced order
observer (5.20) with G = 2, Fig. 5.3 not only verifies the achievement of the framer
property and the convergence of the estimates and the plant state, but also shows that
the change from G = 0 to G = 2 resulted in the slightly swifter convergence of the
interval estimate and x to zero in Fig. 5.3.

(a) x−1 (t),x1(t),x
+
1 (t) (b) x−2 (t),x2(t),x

+
2 (t)

Fig. 5.1 Closed-loop response for (5.6) with K = 0 in the presence of (5.41)
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(a) x−1 (t),x1(t),x
+
1 (t) (b) x−2 (t),x2(t),x

+
2 (t)

Fig. 5.2 Closed-loop response for (5.6) with K as in (5.40) in the presence of (5.41)

(a) x1(t) (b) x−2 (t),x2(t),x
+
2 (t)

Fig. 5.3 Closed-loop response for (5.20) with G = 2 in the presence of (5.41)

5.7 Conclusions

This chapter has presented an iISS approach to interval observer design for output
feedback control of nonlinear systems to guarantee the convergence of the estimated
interval length to zero in the presence of converging disturbances. Amodification has
been proposed by incorporating feedback gain into the interval observer presented
in the preceding study [7]. The simple modification offers flexibility to obtain better
transient behavior of estimated intervals without altering the observer gain and the
control law. For possible improvement of performance for control and estimation,
this chapter has also proposed a reduced-order interval observer to avoid estimating
measured variables. As a unique consequence of the interval observer design based
on Metzler matrices, it has been shown that the existence of a full-order observer
implies the existence of a reduced-order observer unless state transformation is fully
exploited.
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Chapter 6
Stability Analysis of Neutral Type
Time-Delay Positive Systems

Yoshio Ebihara, Naoya Nishio and Tomomichi Hagiwara

Abstract This chapter is concernedwith asymptotic stability analysis of neutral type
time-delay positive systems (TDPSs). We focus on a neutral type TDPS represented
by a feedback system constructed from a finite-dimensional LTI positive system and
the pure delay, and give a necessary and sufficient condition for the stability. In
the case where we deal with a retarded type TDPS, i.e., if the direct-feedthrough
term of the finite-dimensional LTI positive system is zero, it is well known that
the retarded type TDPS is stable if and only if its delay-free finite-dimensional
counterpart is stable. In the case of neutral type TDPS, i.e., if the direct-feedthrough
term is nonzero, however, we clarify that the neutral type TDPS is stable if and only
if its delay-free finite-dimensional counterpart is stable and the direct-feedthrough
term is Schur stable. Namely, we need additional condition on the direct-feedthrough
term.

Keywords Asymptotic stability · Time-delay positive systems · Neutral type

6.1 Introduction

The theory of finite-dimensional linear time-invariant positive systems (FDLTIPSs)
is deeply rooted in the theory of nonnegative matrices [3, 13], and celebrated Perron-
Frobenius theorem [13] has played a central role in analysis and synthesis. Recently,
positive system theory has gained renewed interest from the viewpoint of convex
optimization, and excellent papers have been published along this direction, see,
e.g., those by Rantzer [18, 19], Shorten et al. [9, 16, 21], Tanaka and Langbort [22],
Blanchini et al. [4], Briat [5], and Najison [17]. We also emphasize that the study on
consensus problems ofmulti-agent positive systems is a promising direction, and this
issue is treated actively by Valcher andMisra [23] and Ebihara et al. [7]. On the other
hand, study on the analysis and synthesis of time-delay positive systems (TDPSs)
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F. Cacace et al. (eds.), Positive Systems, Lecture Notes in Control
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has also been active, and fruitful results have been obtained, e.g., by Haddad and
Chellaboina [10], Ait Rami et al. [1], and Shen and Lam [20]. In particular, Haddad
and Chellaboina [10] showed a prominent result verifying that a retarded type TDPS
is stable if and only if its delay-free finite-dimensional counterpart is stable. However,
to the best of the author’s knowledge, existing studies on TDPSs are restricted to
retarded type TDPSs, and those for neutral type TDPSs are surprisingly scarce. This
is probably due to the fact that the definition of solutions for neutral type TDSs is
rather difficult [2] irrespective of positivity.

Even though the delay-differential equations (DDEs) of the form q̇(t) = Jq(t) +
Kq̇(t − h) + Lq(t − h) together with the description of the initial condition as in
q(t) = φ(t) (−h ≤ t < 0) andq(0) = ξ arewidely accepted in representingTDSsof
constant delay length h > 0 [2, 12], in this studywe focus on the time-delay feedback
system (TDFS) representation shown in Fig. 6.1. In this figure,G is an FDLTI system
described by ẋ(t) = Ax(t) + Bw(t) and z(t) = Cx(t) + Dw(t), while H is the pure
delay of delay length h > 0 and thus w(t) = z(t − h) (t ≥ h). In the following
we denote by G � H the TDFS shown in Fig. 6.1. If K �= 0 then the DDE shown
above represents a neutral type TDS [2], and as already noted, the definition of
solutions for neutral type TDSs is involved. This issue is deeply studied by Hagiwara
and Kobayashi [11], and the authors provided proper definitions of the solutions
(depending upon the discontinuity of the initial functionφ) and proved their existence
and uniqueness by way of conversion techniques fromDDE form to TDFS form. The
results there suggest that the ability of TDFS form in describing TDSs is higher than
the conventional DDE form, in the sense that the properly defined solutions in DDE
form can always be represented by signals in TDFS form provided that the FDLTI
system G is properly constructed and the initial condition (i.e., w(t) (0 ≤ t < h)

and x(0)) is suitably determined. Among several solutions defined there, we adopt
the continuous concatenated solution (CCS) as a solution for the neutral type DDE
since this solution has the natural continuity property. To summarize, in this chapter,
we consider the stability of CCSs of neutral type TDPSs based on the TDFS form.
In particular, if we follow the conversion from DDE to TDFS shown in [11], we
see that the direct-feedthrough term D of the FDLTI system G coincides with the
coefficient K in the DDE form. Therefore, we justifiably focus on TDSs given by
TDFS form with D �= 0. On the basis of this preliminary result, we next provide
a proper definition for the positivity of TDSs given by TDFS form. This definition
leads us to the sound conclusion that a TDS is positive if and only if the FDLTI
system G is positive (in the sense of FD systems). Then, we move on to the main

Fig. 6.1 Time-Delay
Feedback System

w
G

z

H
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issue of this study, i.e., asymptotic stability analysis of neutral type TDPSs. We
first provide an explicit definition of the asymptotic stability in terms of 1 norm
of xt = x(t) and L1[0, h) norm of wt = wt (θ) = w(t + θ) (0 ≤ θ < h). Then, as
the main result of this study, we show that TDPS G � H is stable if and only if D is
Schur stable and A + B(I − D)−1C is Hurwitz stable. This result implies that (i) the
stability ofG � H does not depend on the length of the delay h; (ii)G � H is unstable
whenever D is not Schur stable. We provide a rigorous proof for this main result,
and in particular, we prove the sufficiency part by concretely constructing a linear
Lyapunov functional with respect to xt = x(t) and wt (θ) = w(t + θ) (0 ≤ θ < h).

We use the following notation. We denote by R, R+, and R++ the set of real,
nonnegative, and strictly positive numbers, respectively. The set of natural numbers
is denoted by N. For given two matrices A and B of the same size, we write A > B
(A ≥ B) if Ai j > Bi j (Ai j ≥ Bi j ) holds for all (i, j), where Ai j stands for the (i, j)-
entry of A. We define Rn+ := {x ∈ R

n : x ≥ 0} and R
n++ := {x ∈ R

n : x > 0}. We
also define Rn×m

+ and R
n×m
++ with obvious modifications. For x ∈ R

n , we denote its
1-norm by ‖x‖, i.e., ‖x‖ := ∑n

i=1 ‖xi‖. Finally, in relation to the definition of CCS
and positivity for TDSs in TDFS form, we introduce the following function spaces

C m
[0,h) := { f : f (θ) ∈ R

m, f is continuous over [0, h)} ,

K m
h :=

{
f ∈ C m

[0,h) : lim
θ→h−0

f (θ) exists

}
,

K m
h+ := {

f ∈ K m
h : f (θ) ≥ 0 (∀θ ∈ [0, h))

}
.

(6.1)

The L1[0, h) norm for f ∈ K m
h is well-defined by ‖ f ‖ :=

∫ h

0
‖ f (θ)‖dθ .

6.2 Representation of Linear Time-Invariant (LTI)
Time-Delay Systems (TDSs)

6.2.1 Delay-Differential Equations (DDEs)

In the literature, linear time-invariant (LTI) time-delay systems (TDSs) represented
by the following delay-differential equation (DDE) are studied extensively [2, 12].

q̇(t) = Jq(t) + Kq̇(t − h) + Lq(t − h), J, K , L ∈ R
n×n . (6.2)

Here, h > 0 stands for the delay length. TDSs represented by the DDE (6.2) with
K = 0 are historically referred to as retarded type TDSs, while TDSs represented
by the DDE (6.2) with K �= 0 are referred to as neutral type TDSs [2, 12].

The “solution” of (6.2) is determined under the initial condition

q(t) = φ(t) (t ∈ [−h, 0)), q(0) = ξ (6.3)
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where φ(t) is usually assumed to be (continuous and) continuously differentiable
on the closed interval [−h, 0]. However, it is rather difficult to define the concept of
solutions due to the appearance of indifferentiability (or even discontinuity) espe-
cially in the neutral case. This issue is deeply studied by Hagiwara and Kobayashi
[11], and proper definitions of solutions are given. Among them, in this chapter, we
adopt the continuous concatenated solution (CCS) defined there.

6.2.2 Continuous Concatenated Solutions (CCSs)

Let us introduce the definition of CCSs for the DDE (6.2) equipped with the initial
condition (6.3).

Definition 6.1 [11] Supposeφ(t) in (6.3) is bounded, continuously differentiable on
[−h, 0), and has the limit lim

t→0−0
φ(t). Then, q(t) (t ≥ −h) is said to be a continuous

concatenated solution (CCS) of the DDE (6.2) under the initial condition (6.3) if
(i) it is continuous for t ≥ 0 and (ii) it is differentiable and satisfies (6.2) for t ≥ 0
except possibly for time instants t = kh (k ∈ N).

As the definition says, a CCS is continuous over t ≥ 0 but not necessarily dif-
ferentiable at t = kh (k ∈ N). On the other hand, a stronger solution that is differ-
entiable over t ≥ −h is referred to as a regular solution in [11]. However, for the
existence of such a regular solution, it is obviously necessary that φ(0) = ξ and
φ̇(−0) = Jφ(0) + K φ̇(−h) + Lφ(−h). The latter requirement is rather stringent,
and hence it is reasonable to introduce somehow relaxed solutions. Among them
the CCS is believed to be a natural one since it possesses continuity property that is
essentially required in describing the behavior of physical (real-world) systems.

6.2.3 Time-Delay Feedback Systems (TDFSs)

In the community of control theory, it is common to describe LTITDSs in time-delay
feedback system (TDFS) form shown in Fig. 6.1. In Fig. 6.1, G stands for an FDLTI
system described by

G :
{
ẋ(t) = Ax(t) + Bw(t),
z(t) = Cx(t) + Dw(t),

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, D ∈ R

m×m .

(6.4)
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On the other hand, H is the pure delay of constant delay length h > 0 and thus

H : w(t) = z(t − h). (6.5)

The behavior of TDS G � H can be determined by the initial condition given for

w(t) (t ∈ [0, h)), x(0). (6.6)

Once we can describe a given TDS in TDFS form, we can apply fully matured
control-oriented techniques such as (scaled) small-gain theorem for its stability analy-
sis.Moreover, recently, amore advanced and rigorousmonodromyoperator approach
has been build for the stability analysis of TDSs in TDFS form, see [15] and refer-
ences cited there in. This is the motivation of [11] to seek for a conversion technique
fromDDE form to TDFS form so that the monodromy operator approach can also be
applied to TDSs in DDE form. More precisely, the issue in [11] is how to determine
the FDLTI system G (or say, the matrices A, B, C , and D) and the initial condition
(6.6) from given DDE (or say, the matrices J , K , and L) and given initial condition
(6.3) so that the (continuous concatenated) solution of the DDE can be represented
as a signal in TDSG � H . The results in [11] that are relevant to this issue are quickly
reviewed in the next subsection.

6.2.4 Conversion from DDE to TDFS

The next result shows that the CCS of the DDE (6.2) can always be represented by
the state x of the FDLTI system G in the TDS G � H . In the following we write

wt = wt (θ) = w(t + θ) (θ ∈ [0, h)), zt = zt (θ) = z(t + θ) (θ ∈ [0, h)). (6.7)

Proposition 6.1 [11] Suppose φ(t) in (6.3) is bounded, continuously differentiable
on [−h, 0), and has the limit lim

t→0−0
φ(t). Then, the DDE (6.2) has a unique CCS

q(t), and it coincides, over t ≥ 0, with x(t) resulting from G � H with A, B, C, and
D given by

A = J, B = I, C = L + K J, D = K (6.8)

and with the initial condition

w0(θ) = K φ̇(θ − h) + Lφ(θ − h) (θ ∈ [0, h)), x(0) = ξ. (6.9)
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As clearly shown in (6.8), the direct-feedthrough term D of the FDLTI system G
coincides with the coefficient K in the DDE form. Since we are mainly interested in
the neutral type TDSs and hence K �= 0 in (6.2), we justifiably focus on TDSs given
by TDFS form with D �= 0 in the following.

Since from now on we focus on TDSs in TDFS form, it is of great benefit in
removing ambiguity if we clarify the behavior of the solution x(t) we employ in
Proposition 6.1. To this end, we note that the initial function w0 in (6.9) satisfies
w0 ∈ K m

h , which is confirmed by the assumption imposed on φ. With this in mind,
we assume w0 ∈ K m

h in the initial condition (6.6) and first focus on the behavior
of TDS G � H over t ∈ [0, h). Then, from the variation of constant formula, we see
that

x(t) = eAt x(0) +
∫ t

0
eA(t−τ)Bw(τ )dτ (0 ≤ t < h) (6.10)

holds and hence x(t) is uniquely determined and continuous over t ∈ [0, h). In par-
ticular, sincew0 ∈ K m

h (or more precisely since limt→h−0 w(t) exists from the defin-
ition ofK m

h ), we see that limt→h−0 x(t) exists, and from the continuity requirement
on x we can let x(h) := limt→h−0 x(t). On the other hand, from

z(t) = Cx(t) + Dw(t) (0 ≤ t < h), (6.11)

we see that the important property z0 ∈ K m
h holds. To summarize, for the next

time interval t ∈ [h, 2h), we know that x(h) is determined and wh has exactly the
same property with w0 ∈ K m

h since w(t) = z(t − h) (h ≤ t < 2h) and z0 ∈ K m
h .

Therefore by repeating the same arguments, we see that continuous solution x(t)
exists over t ∈ [0, 2h), and by repeating the same arguments recursively (or say,
by concatenating the solutions determined over [kh, (k + 1)h) repeatedly), we
can conclude that continuous solution x(t) exists over t ≥ 0. We note that x(t)
thus constructed is continuous but might not be differentiable for time instants
t = kh (k ∈ N). This is the continuous solution we employ for TDS G � H given
in TDFS form. To ensure the existence of such continuous solutions, we assume
w0 ∈ K m

h throughout the rest of the chapter.

6.3 Neutral Type Time-Delay Positive Systems (TDPSs)

The goal of this section is to provide a proper definition of positivity of neutral-type
TDS in TDFS form. To this end, we first quickly review basic results for FDLTI
positive systems.
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6.3.1 Basics for Finite-Dimensional LTI Positive
Systems (FDLTIPSs)

In this subsection, we gather basic definitions and fundamental results for FDLTI
positive systems.

Definition 6.2 (Metzler Matrix)[8] A matrix A ∈ R
n×n is said to be Metzler if its

off-diagonal entries are all nonnegative, i.e., Ai j ≥ 0 (i �= j).

In the following, we denote by M
n×n (Hn×n) the set of the Metzler (Hurwitz

stable) matrices of size n. Under these notations, the next lemmas hold.

Lemma 6.1 [8, 14, 16] For given A ∈ M
n×n, the following conditions are equiva-

lent.

(i) The matrix A is Hurwitz stable, i.e., A ∈ H
n×n.

(ii) The matrix A is nonsingular and A−1 ≤ 0.
(iii) There exists h ∈ R

n++ such that hT A < 0.
(iv) For any g ∈ R

n+ \ {0}, the vector Ag has at least one strictly negative entry.

Lemma 6.2 [6, 7] For given P ∈ M
n1×n1 , Q ∈ R

n1×n2+ , R ∈ R
n2×n1+ , and S ∈

M
n2×n2 , the following conditions are equivalent.

(i) Π :=
[
P Q
R S

]
∈ H

(n1+n2)×(n1+n2).

(ii) P ∈ H
n1×n1 , S − RP−1Q ∈ H

n2×n2 .

(iii) S ∈ H
n2×n2 , P − QS−1R ∈ H

n1×n1 .

To recall the definition of FDLTI positive systems, let us consider the FDLTI
system G given by (6.4) (note that there is no need for G to be square for the
definition of positivity). The definition of positivity and a basic result are given in
the following.

Definition 6.3 [8] The FDLTI system (6.4) is said to be positive if its state and
output are both nonnegative for any nonnegative initial state and nonnegative input.

Proposition 6.2 [8] The FDLTI system (6.4) is positive if and only if

A ∈ M
n×n, B ∈ R

n×m
+ , C ∈ R

m×n
+ , D ∈ R

m×m
+ . (6.12)

6.3.2 Positivity of TDSs in TDFS Form

We are now ready to give the definition of positivity for TDSs in TDFS form. Note
that, for the definition of positivity, we naturally replace the initial condition w0 ∈
K m

h with w0 ∈ K m
h+.
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Definition 6.4 A TDS in TDFS form G � H constructed from (6.4) and (6.5) is
said to be positive if x(t) ≥ 0 and w(t) ≥ 0 (∀t ≥ 0) hold for any x(0) ∈ R

n+ and
w0 ∈ Kh+.

We then give a necessary and sufficient condition for a TDS G � H to be positive.

Theorem 6.1 A TDS in TDFS form G � H constructed from (6.4) and (6.5) is pos-
itive in the sense of Definition 6.4 if and only if FDLTI system G is positive.

Proof of Theorem 6.1 The proof for the necessity of the positivity of G is exactly
the same as that of Proposition 6.2 [8] and hence omitted here. To prove the suf-
ficiency, suppose x(0) ∈ R

n+ and w0 ∈ Kh+. Then, from the positivity of G and
(6.10) and (6.11), we see that for the first time interval t ∈ [0, h) the positivity
x(t) ≥ 0 (∀t ∈ [0, h)) and z0 ∈ Kh+ hold. In particular, from the discussion around
(6.10), limt→h−0 x(t) exists and hence x(h) = limt→h−0 x(t) ≥ 0 holds. To summa-
rize, for the next time interval t ∈ [h, 2h), we know that x(h) ∈ R

n+ is determined and
wh has exactly the samepropertywithw0 ∈ K m

h+ sincew(t) = z(t − h) (h ≤ t < 2h)

and z0 ∈ K m
h+. Therefore by repeating the same arguments recursively, we can con-

clude that x(t) ≥ 0 and w(t) ≥ 0 (∀t ≥ 0) hold. �

6.4 Stability Analysis of TDPSs

We now move on to the main issue of this study, i.e., asymptotic stability analysis
of TDPS G � H in TDFS form. We fist provide the definition of asymptotic stability
for general (not necessarily positive) TDSs in TDFS form. For the consistency with
the notation given by (6.7), we define xt := x(t) in the FDLTI system G given by
(6.4).

Definition 6.5 A TDS in TDFS form G � H constructed from (6.4) and (6.5) is
said to be asymptotically stable if ‖xt‖ + ‖wt‖ → 0 (t → ∞) for any x0 ∈ R

n and
w0 ∈ Kh .

In the following, “asymptotic stability” is abbreviated as “stability” just for brevity.
The next theorem,which provides a necessary and sufficient condition for the stability
of TDPSs in TDFS form, is the main result of this chapter.

Theorem 6.2 A TDPS in TDFS form G � H constructed from FDLTIPS G given
by (6.4) and (6.12) and the pure delay H given by (6.5) is stable if and only if
D − I ∈ H

m×m and Acl = A + B(I − D)−1C ∈ H
n×n.

An immediate fact that follows this theorem is that the stability of G � H is
independent of the delay length h > 0. Other important implications of Theorem 6.2
will be given after its detailed and rigorous proof.

Remark 6.1 Since TDS G � H is linear, we can rephrase Definition 6.5 in the way
that G � H is said to be stable if ‖xt‖ + ‖wt‖ → 0 (t → ∞) for any x0 ∈ R

n+ and
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w0 ∈ K m
h+. Namely, we can restrict the initial condition to be “positive orthant.” In

particular, as long as TDPS G � H is concerned, x0 ∈ R
n+ and w0 ∈ K m

h+ ensures
x(t) ≥ 0 and w(t) ≥ 0 for all t ≥ 0 from the definition of TDPS (see Definition 6.4).
This positivity property is the key to validate Theorem 6.2 as we see in the following.

Proof of Theorem 6.2 In the proof we assume that x0 ∈ R
n+ and w0 ∈ Kh+ on the

basis of the reasoning given in Remark 6.1.

Sufficiency: Suppose D − I ∈ H
m×m and Acl = A + B(I − D)−1C ∈ H

n×n . Then
it is clear that D − I ∈ M

m×m ∩ H
m×m and therefore from (ii) of Lemma 6.1 we

see (D − I )−1 ≤ 0. It follows that B(I − D)−1C ∈ R
n×n
+ and hence Acl ∈ M

n×n ∩
H

n×n . Since D − I ∈ M
m×m ∩ H

m×m and Acl ∈ M
n×n ∩ H

n×n as just proved, we
see from Lemma 6.2 that

[
A B
C D − I

]
∈ H

(n+m)×(n+m).

Then, again from Lemma 6.2, we have A ∈ M
n×n ∩ H

n×n and Ψ − I ∈ M
m×m ∩

H
m×m hold where

Ψ := −CA−1B + D. (6.13)

Since Acl ∈ M
n×n ∩ H

n×n and Ψ − I ∈ M
m×m ∩ H

m×m , we see from (iii) of
Lemma 6.1 that there exist p1 ∈ R

n++ and p2 ∈ R
m++ such that

pT1 Acl < 0, pT2 (Ψ − I ) < 0. (6.14)

By using such p1 ∈ R
n++ and p2 ∈ R

m++, define

rx := p1 − A−TCT p2 ∈ R
n, rw := p2 − (D − I )−T BT p1 ∈ R

m . (6.15)

Then, we readily see that rx ∈ R
n++ and rw ∈ R

m++. By using rx ∈ R
n++ and rw ∈ R

m++
given above, let us define the Lyapunov functional as in

V (xt ,wt ) := r Tx xt + r Tw

∫ h

0
wt (θ)dθ. (6.16)

Here, since rx ∈ R
n++ and rw ∈ R

m++, and since both x(t) and w(t) are nonnegative
for any t ≥ 0 for any x0 ∈ R

n+ and w0 ∈ Kh+, we see that the following relationship
holds: V (xt ,wt ) = 0 ⇐⇒ ‖xt‖ + ‖wt‖ = 0. Therefore to prove the stability of
G � H it suffices to show V (xt ,wt ) → 0 (t → ∞) for each fixed x0 ∈ R

n+ and w0 ∈
Kh+.

To this end, let us consider the time-derivative of V (xt ,wt ) along the trajectory
of G � H . Then, we readily obtain
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dV (xt ,wt )

dt
= rTx ẋ(t) + rTw (w(t + h) − w(t)) = rTx (Ax(t) + Bw(t)) + rTw (z(t) − w(t))

= rTx (Ax(t) + Bw(t)) + rTw {Cx(t) + (D − I )w(t)}
= (rTx A + rTw C)x(t) + {rTx B + rTw (D − I )}w(t)

= {pT1 A − pT2 C + pT2 C − pT1 B(D − I )−1C}x(t)
+ {pT1 B − pT2 CA−1B + pT2 (D − I ) − pT1 B}w(t)

= pT1 Aclx(t) + pT2 (Ψ − I )w(t) (kh < t < (k + 1)h, k = 0, 1, . . .) (6.17)

wherewe used (6.15) and (6.13). In the above calculationwe do not evaluate the time-
derivative of V (xt ,wt ) at t = kh (k = 0, 1, . . .) since, as we have alreadymentioned,
xt = x(t) is not differentiable at these time instants in general.

In (6.17), since both x(t) and w(t) are nonnegative for any t ≥ 0, and since (6.14)
holds, we see that dV (xt ,wt )/dt ≤ 0 holds except for t = kh (k = 0, 1, . . .). With
this fact and the fact that V (xt ,wt ) is continuous for any t ≥ 0, we can conclude that
V (xt ,wt ) is non-increasing over t ≥ 0. It follows that V (xt ,wt ) ≤ V (x0,w0) (∀t ≥
0). In addition, since V (xt ,wt ) ≥ 0 (∀t ≥ 0) from the definition of V (xt ,wt ) given
by (6.16), there exists V∞ ≥ 0 such that V∞ = lim

t→∞ V (xt ,wt ). To summarize the

above arguments, it remains to prove that V∞ = 0.
To prove V∞ = 0 by contradiction, suppose V∞ > 0. We first note from (6.16)

that

V (xt ,wt ) ≤ α(‖xt‖ + ‖wt‖) (∀t ≥ 0) (6.18)

holds where α := max{‖rx‖, ‖rw‖} > 0. Since V (xt ,wt ) is non-increasing as just
proved, we see from (6.18) that

V∞
α

≤ ‖xt‖ + ‖wt‖ (∀t ≥ 0) (6.19)

On the other hand, if we take the (improper) integral of the left-hand side of (6.17)
over [kh, (k + 1)h] (k = 0, 1, 2, . . .), we have

V (x(k+1)h,w(k+1)h) − V (xkh,wkh)

= pT1 Acl

∫ h

0
x(kh + θ)dθ + pT2 (Ψ − I )

∫ h

0
w(kh + θ)dθ. (6.20)

From the first equation of (6.4), the term x(kh + θ) satisfies

x(kh + θ) = eAθ x(kh) +
∫ θ

0
eA(θ−τ)Bw(kh + τ)dτ ≥ eAθ x(kh) (0 ≤ θ ≤ h)

(6.21)
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where we used the fact that w(t) ≥ 0 (∀t ≥ 0) and eAt ∈ R
n+ (∀t ≥ 0) to verify the

above inequality. It follows that

∫ h

0
x(kh + θ)dθ ≥

∫ h

0
eAθ x(kh)dθ = −A−1(I − eAh)x(kh) ≥ 0. (6.22)

From this inequality and (6.20) and noting pT1 Acl < 0, we obtain

V (x(k+1)h,w(k+1)h) − V (xkh,wkh)

≤ pT1 Acl{−A−1(I − eAh)}x(kh) + pT2 (Ψ − I )
∫ h

0
w(kh + θ)dθ

= −vT
x x(kh) − vT

w

∫ h

0
w(kh + θ)dθ (6.23)

where

vx := − (−A−1(I − eAh)
)T

AT
cl p1 ∈ R

n
++, vw := −(Ψ − I )T p2 ∈ R

m
++. (6.24)

The fact that vw ∈ R
m++ readily follows from (6.14). The proof for vx ∈ R

n++ is given
in the appendix section. From (6.23), we obtain

V (x(k+1)h,w(k+1)h) − V (xkh,wkh) ≤ −β(‖xkh‖ + ‖wkh‖) (6.25)

where β := min{min(vx ),min(vw)} > 0. It follows from the two inequalities (6.19)
and (6.25) that V (x(k+1)h,w(k+1)h) − V (xkh,wkh) ≤ −βV∞/α. By applying this
inequality recursively, we have V (x(k+1)h,w(k+1)h) − V (x0,w0) ≤ −kβV∞/α. In
this inequality, since V (x0,w0) takes a finite value depending upon the initial con-
dition x0 ∈ R

n+ and w0 ∈ K m
h+, since α > 0, β > 0, and since V∞ > 0 from the

underlying assumption for contradiction, we arrive at the conclusion that V (x(k+1)h,

w(k+1)h) < 0 for k large enough. This contradicts V (xt ,wt ) ≥ 0 (∀t ≥ 0). Therefore
V∞ = 0 and the proof is completed.

Necessity: To prove the necessity by contradiction, we consider the following two
cases: (A1) D − I /∈ H

m ; (A2) D − I ∈ H
m and Acl /∈ H

m . By showing that G � H
is not stable for both cases, we can complete the proof. To this end, we first consider
the case (A1). Then, it is apparent that ρ(D) ≥ 1. In addition, since D ∈ R

m+, we
see from Perron-Frobenius Theorem [13] that there exists v ∈ R

m+ \ {0} such that
Dv = ρ(D)v. On the other hand, as for the signal w in G � H , we readily obtain

w(kh + θ) = z((k − 1)h + θ) = {Cx((k − 1)h + θ) + Dw((k − 1)h + θ)}
≥ Dw((k − 1)h + θ) · · · ≥ Dkw0(θ) (0 ≤ θ < h) (6.26)
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where we used the fact that both x(t) and w(t) are nonnegative for any t ≥ 0 and
C ≥ 0, D ≥ 0. If we let w0(θ) = v (0 ≤ θ < h), we have w(kh + θ) ≥ (D)kv =
ρ(D)kv (0 ≤ θ < h). Since ρ(D) ≥ 1 as above, this inequality implies ‖wkh‖ ≥
ρ(D)kh‖v‖ ≥ h‖v‖ > 0. From the definition of stability of G � H given in Defini-
tion 6.5, this clearly show that G � H is not stable.

We next consider the case (A2). Then, we see from (the transposed version of)
(iv) of Lemma 6.1 that there exists p1 ∈ R

n+ \ {0} such that pT1 Acl ≥ 0. With such
p1 and p2 = 0 ∈ R

m , let us define the linear functional V (xt ,wt ) by (6.16). Then,
for each fixed x0 ∈ R

n+ and w0 ∈ Kh+, we have from (6.17) that dV (xt ,wt )/dt =
pT1 Aclx(t) ≥ 0 (kh < t < (k + 1)h, k = 0, 1, . . .). From this inequality and again
from the continuity of V (xt ,wt ), we can conclude that V (xt ,wt ) is non-decreasing
over t ≥ 0. It follows that V (xt ,wt ) ≥ V (x0,w0) (∀t ≥ 0). Here if we let x(0) =
p1 and w0(θ) = 0 (0 ≤ θ < h), it is clear that V (xt ,wt ) ≥ V (x0,w0) = pT1 p1 >

0 (∀t ≥ 0). This clearly show that G � H is not stable and hence the proof is com-
pleted. �

We conclude this section by providing several important remarks about the impli-
cation of the main result, Theorem 6.2.

Remark 6.2 (i) As we have shown at the beginning of the proof for sufficiency,
D − I ∈ H

m and Acl ∈ H
n×n requires A ∈ H

n×n . It follows thatG � H is stable
only if the finite-dimensional part G is (internally) stable.

(ii) Since D ∈ R
m×m
+ , the condition D − I ∈ H

m can be restated equivalently as
ρ(D) < 1. It follows that G � H is stable only if the direct-feedthrough term
D of the finite-dimensional part G is Schur stable.

(iii) For the retarded type TDPS, i.e., if D = 0, it is obvious that the stability con-
dition in Theorem 6.2 reduces to the well-known condition A − BC ∈ H

n×n

shown in [10]. In other words, Theorem 6.2 includes this well-known result as
a special case.

6.5 Conclusion

In this chapter we dealt with asymptotic stability analysis of neutral-type time-delay
positive systems given in feedback system form between a finite-dimensional LTI
positive system G and the pure delay. We first introduce the continuous concate-
nated solution as a proper solution of neutral-type time-delay systems, and on the
basis of this preliminary result, we define positivity and asymptotic stability. As the
main result, we showed a solid result verifying that a neutral type time-delay pos-
itive system is asymptotically stable if and only if its delay-free finite-dimensional
counterpart is asymptotically stable and the direct-feedthrough term of G is Schur
stable.
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Appendix

6.5.1 Proof of (6.24)

Let us define S : R+ → R
n×n by S(t) = −A−1(I − eAt ). Then, vx can be rewritten as

vx = −S(h)T AT
cl p1. Since −AT

cl p1 ∈ R
n++ from (6.14), it suffices to prove S(h) ≥ 0

and S(h)i i > 0 (i = 1, . . . , n). The first inequality obviously holds since S(0) = 0
and dS(t)/dt = eAt ≥ 0 (∀t ≥ 0). In particular, from the Taylor series expan-
sion dS(t)/dt = eAt = I + At + 1

2 (At)
2 · · · , it is obvious that there exists t ′ > 0

such that (dS(t)/dt)i i > 0 (∀t ∈ [0, t ′], i = 1, . . . , n). Since S(0) = 0, dS(t)/dt ≥
0 (∀t ≥ 0), and (dS(t)/dt)i i > 0 (∀t ∈ [0, t ′], i = 1, . . . , n), we can conclude that
S(h)i i > 0 (i = 1, . . . , n). This completes the proof.
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Chapter 7
Internally Positive Representations
and Stability Analysis of Linear Delay
Systems with Multiple Time-Varying Delays

Francesco Conte, Vittorio De Iuliis and Costanzo Manes

Abstract This chapter introduces the Internally Positive Representation of linear
systems with multiple time-varying state delays. The technique, previously intro-
duced for the undelayed case, aims at building a positive representation of systems
whose dynamics is, in general, indefinite in sign. As a consequence, stability criteria
for positive time-delay systems can be exploited to analyze the stability of the original
system. As a result, an easy-to-check sufficient condition for the delay-independent
stability is provided, that is compared with some well known conditions available in
the literature.

Keywords Positive delay systems · Time-varying delays · Internally positive
representation (IPR) · Stability analysis

7.1 Introduction

Positive linear systems have been extensively studied in the last decades due to their
well known properties and applications [6, 18]. More recently, several works on
positive linear time-delay systems appeared in the literature, some of them provid-
ing insightful stability results [1, 12, 15–17, 19, 23]. To exploit the properties of
positive systems also for not necessarily positive systems, an useful tool has recently
been developed in the linear undelayed case: the Internally Positive Representation
(IPR). The technique, introduced in the discrete-time framework in [4, 8, 9] and in
the continuous-time one in [2, 3], aims at constructing internally positive represen-
tations of systems whose dynamics is indefinite in sign. The method presented in
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[2], although very easy and straightforward, can produce in some cases an unstable
positive system even if the original system is stable. Later works on the IPR focused
on this issue, showing how to construct IPRswhose stability properties are equivalent
to those of the original system [3].

As is typical in Systems andControl, one usually tries to extend to themore general
case what is well known in the particular one: to this end, the main part of this chapter
focuses on the extension of the IPR construction method to linear continuous time-
delay systems, in the general case of multiple time-varying delays. Then, a stability
analysis follows, leading to the conclusion that only delay systems that are stable for
any set of delays, constant or time-varying, can admit a stable IPR. As a result, an
easy-to-check sufficient condition for the delay-independent stability of the original
system is provided, whose efficacy with respect to other similar sufficient conditions
available in the literature is tested by numerical examples.

This chapter is organized as follows: in Sect. 7.2, the Internally Positive Represen-
tation for linear systems with multiple time-varying delays is introduced. Section7.3
reports a discussion on the stability properties of IPRs and presents the new stability
condition. In Sect. 7.4 the condition is compared with similar existing results, and in
Sect. 7.5 an illustrative example is reported. Conclusions follow.

Notations. R+ is the set of nonnegative real numbers. C− and C+ are the open left-
half and right-half complex planes, respectively. Rn+ is the nonnegative orthant of
R

n . Rm×n
+ is the cone of positive m × n matrices. In is the n × n identity matrix.

�(z) and �(z) are the real and imaginary parts of a complex number z, respectively.
C ([a, b],Rn) denotes the Banach space of all continuous functions on [a, b] with
values inRn , endowedwith the uniformconvergence norm‖ · ‖∞. A ∈ R

n×n is said to
beMetzler if all its off-diagonal elements are nonnegative. d(A) denotes the diagonal
matrix extracted from A.σ(A) andα(A)denote the spectrumand the spectral abscissa
of A, respectively. A is said to be stable or Hurwitz if σ(A) ⊂ C

− or, equivalently,
if α(A) < 0.L p

1 andL p
1,+ are the sets of locally integrable functions with values in

R
p and R

p
+, respectively. Finally, m = {1, 2, . . . ,m} and m0 = {0, 1, . . . ,m}.

7.2 Internally Positive Representation of Delay Systems

7.2.1 Internally Positive Delay Systems

Let S = {{Ak}m0 , B,C, D
}
n,p,q denote a continuous-timedelay system,with possibly

time-varying delays, having the following form

ẋ(t) = A0x(t) +
m∑

k=1

Akx(t − δk(t)) + Bu(t),

y(t) = Cx(t) + Du(t),

t ≥ t0,

x(t) = φ(t − t0), t ∈ [t0 − δ, t0],

(7.1)
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where u(t) ∈ R
p is the input, with u ∈ L p

1 , y(t) ∈ R
q is the output, x(t) ∈ R

n is
the system variable and φ ∈ C ([−δ, 0],Rn) is a pre-shape function (initial state).
δk : R → R+ are time-delays, which are bounded continuous functions

0 ≤ δk(t) ≤ δ, ∀t ≥ t0. (7.2)

B ∈ R
n×p, C ∈ R

q×n , D ∈ R
q×p, and Ak ∈ R

n×n , for k ∈ m0. It is well known that
the delay differential equation in (7.1) admits a unique solution satisfying a given
initial condition φ (see e.g. [13]). Throughout the chapter, the solution x(t) and the
corresponding output trajectory y(t) associated to a system S will be denoted as

(
x(t), y(t)

) = ΦS
(
t, t0, φ, u

)
. (7.3)

Following [14, 17], an internally positive linear delay system is defined as follows.

Definition 7.1 A delay system S = {{Ak}m0 , B,C, D
}
n,p,q is said to be internally

positive if

{
φ ∈ C ([−δ, 0],Rn+)

u ∈ L p
1,+

}
⇒

{
x(t) ∈ R

n+,

y(t) ∈ R
q
+,

∀t ≥ t0

}
. (7.4)

Stated informally, S is internally positive if nonnegative initial states and input
functions produce nonnegative state and output trajectories. The following result
gives necessary and sufficient conditions to fulfill Definition 7.1 (see [12, 23]).

Lemma 7.1 A delay system S = {{Ak}m0 , B,C, D}n,p,q is internally positive if and
only if A0 is Metzler and B, C, D and Ak, for k ∈ m, are nonnegative.

7.2.2 Positive Representation of Vectors and Matrices

Given a matrix (or vector) M ∈ R
m×n , the symbols M+, M− denote the compo-

nentwise positive and negative parts of M , while |M | stands for its componentwise
absolute value. It follows that M = M+ − M− and |M | = M+ + M−.

Let Δn = [In − In] ∈ R
n×2n . The definitions reported below are taken from

[4, 9].

Definition 7.2 A positive representation of a vector x ∈ R
n is any vector x̃ ∈ R

2n+
such that

x = Δn x̃ . (7.5)

The min-positive representation of a vector x ∈ R
n is the positive vector π(x) ∈ R

2n+
defined as

π(x) =
[
x+
x−

]
. (7.6)



84 F. Conte et al.

Themin-positive representationof amatrixM ∈ R
m×n is the positivematrixΠ(M) ∈

R
2m×2n
+ defined as

Π(M) =
[
M+ M−
M− M+

]
(7.7)

while the min-Metzler representation of a matrix A ∈ R
n×n is the Metzler matrix

Γ (A) ∈ R
2n×2n defined as

Γ (A) =
[
d(A) + (A − d(A))+ (A − d(A))−

(A − d(A))− d(A) + (A − d(A))+

]
. (7.8)

Of course, if d(A) ∈ R
n×n
+ then Γ (A) = Π(A). Moreover, for any x ∈ R

n and
matrices M ∈ R

m×n , A ∈ R
n×n the following properties hold true:

(a) x = Δnπ(x);
(b) ΔmΠ(M) = MΔn , so that ΔmΠ(M)π(x) = Mx ;
(c) ΔnΓ (A) = AΔn , so that ΔnΓ (A)π(x) = Ax .

7.2.3 Internally Positive Representations

The concept of Internally Positive Representation (IPR) of an arbitrary system has
been introduced in [4, 8, 9], for discrete-time systems, and in [2, 3] for continuous-
time systems. The IPR construction presented in [2] can be extended to the case of
time-varying delays systems by the following definition.

Definition 7.3 An Internally Positive Representation (IPR) of a delay system S ={{Ak}m0 , B,C, D
}
n,p,q is an internally positive system S̃ = {{ Ãk}m0 , B̃, C̃, D̃

}
ñ, p̃,q̃

together with four transformations {T f
X , T b

X , TU , TY },

T f
X : R

n 
→ R
ñ
+, T b

X : R
ñ
+ 
→ R

n, TU : R
p 
→ R

p̃
+, TY : R

q̃
+ 
→ R

q ,

(7.9)

such that∀t0 ∈ R,∀(
φ, u

) ∈ C ([−δ, 0],Rn) × L p
1 , the following implication holds:

{
φ̃(τ ) = T f

X

(
φ(τ)

)
, ∀τ ∈ [−δ, 0]

ũ(t) = TU
(
u(t)

)
, ∀t ≥ t0

}
=⇒

{
x(t) = T b

X

(
x̃(t)

)
,

y(t) = TY
(
ỹ(t)

)
,

∀t ≥ t0

}

(7.10)

where

(
x(t), y(t)

) = ΦS
(
t, t0, φ, u

)
,

(
x̃(t), ỹ(t)

) = ΦS̃

(
t, t0, φ̃, ũ

)
.
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T f
X and T b

X in (7.9) are the forward and backward state transformations of the IPR,
respectively, while TU and TY are the input and output transformations, respectively.
The implication (7.10) means that if the (nonnegative) pre-shape function φ̃ of the
IPR is computed as the forward state transformation T f

X of the pre-shape function
φ of the original system, and the (nonnegative) input ũ to the IPR is computed as
the input transformation TU of the input u to the original system, then the state
trajectory of the original system is given by the backward transformation T b

X of the
(nonnegative) state x̃ of the IPR, and the output trajectory y of the original system is
given by the output transformation TY of the (nonnegative) output ỹ of the IPR. For
consistency, the backwardmap T b

X must be a left-inverse of the forwardmap T f
X , i.e.

x = T b
X

(
T f
X (x)

)
, ∀x ∈ R

n .
The following theorem provides a method for the IPR construction of arbitrary

time-varying delays systems.

Theorem 7.1 Consider adelay system S as in (7.1), with S = {{Ak}m0 , B,C, D
}
n,p,q .

An internally positive system S̄ = {{Ak}m0 , B,C, D
}
2n,2p,2q , with

A0 = Γ (A0), B = Π(B), C = Π(C), D = Π(D), Ak = Π(Ak), k ∈ m,

(7.11)
together with the four transformations

x̄ = T f
X (x) = π(x), x = T b

X (x̄) = Δn x̄, (7.12)

ū = TU (u) = π(u), y = TY (ȳ) = Δq ȳ, (7.13)

is an IPR of S.

Proof First of all, since A0 isMetzler and B,C , D, and Ak , k ∈ m, are all nonnegative,
from Lemma 7.1 it follows that system S is internally positive. For any pre-shape
functionφ ∈ C ([−δ, 0],Rn), let x̄(t) and ȳ(t) denote the state and output trajectories

(
x̄(t), ȳ(t)

) = ΦS̄

(
t, t0, φ̄, ū

)
(7.14)

where φ̄(τ ) = T f
X (φ(τ)) = π(φ(τ)), ∀τ ∈ [−δ, 0] and ū(t) = TU (u(t)) = π(u(t)),

∀t ≥ t0. Thus, (7.14) solves the system

˙̄x(t) = A0 x̄(t) +
m∑

k=1

Ak x̄(t − δk(t)) + Bū(t),

ȳ(t) = Cx̄(t) + Dū(t),

t ≥ t0

x̄(t) = φ̄(t − t0), t ∈ [t0 − δ, t0]. (7.15)

Consider now the vectors

z(t) = T b
X (x̄(t)) = Δn x̄(t), (7.16)

v(t) = TY (ȳ(t)) = Δq ȳ(t). (7.17)
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The theorem is proved by showing that x(t) = z(t) and y(t) = v(t) for all t ≥ t0.
Using properties (b) and (c), given in Sect. 7.2.2, and (7.16), it results that, for t ≥ t0,

ż(t) = Δn ˙̄x(t) = Δn A0 x̄(t) +
m∑

k=1

Δn Ak x̄(t − δk(t)) + Δn Bπ
(
u(t)

)

= A0z(t) +
m∑

k=1

Akz(t − δk(t)) + Bu(t). (7.18)

and for t ∈ [t0 − δ, t0]

z(t) = Δn x̄(t) = Δnφ̄(t − t0) = Δnπ
(
φ(t − t0)

) = φ(t − t0), (7.19)

and

v(t) = Δq ȳ(t) = ΔqC x̄(t) + Δq Dπ
(
u(t)

) = Cz(t) + Du(t), t ≥ t0. (7.20)

Note that
(
z(t), v(t)

)
obey the same equations of (7.1), with the same initial condi-

tion. From the uniqueness of the solution we get
(
z(t), v(t)

) = (
x(t), y(t)

)
, and this

concludes the proof. �

Remark 7.1 If Ak = 0 for all k ∈ m the IPR proposed in Theorem 7.1 coincides with
the normal-form IPR proposed in [2] (Theorem7.4) for the delay-free case.

7.3 Stability Analysis

In this section we investigate the relationships between the stability of a delay sys-
tem and of its IPR. A quite obvious consequence of the boundedness of the state
transformations T f

X (·) and T b
X (·) in (7.12) is that if an IPR of a system is stable, then

the original system is stable as well. As we will see, the converse is not always true.
Throughout this chapter we will use a standard nomenclature about stability. The

trivial solution x(t) ≡ 0 of a delay system of the type (7.1) is said to be stable if any
solution x(t) for all t ≥ t0 satisfies a bound of the type ‖x(t)‖ ≤ k‖φ‖∞, for some
k > 0. If in addition limt→∞ ‖x(t)‖ = 0, the trivial solution is asymptotically stable.
If there exist k > 0 and η > 0 such that ‖x(t)‖ ≤ k e−η t‖φ‖∞, the trivial solution is
said to be exponentially stable.

A delay system as in (7.1) is said to be stable if the trivial solution is asymptotically
stable. It isworth recalling that the stability of a delay systemof the type (7.1) depends
on the nature of delays (see e.g. [7, 11]): one can have stability for a given set or
for any set of constant delays, for commensurate constant delays, for time-varying
delays, within a given bound or without a specific bound, fast or slowly varying, etc.
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For reasons that will soon be clear, in this chapter we are mainly concerned with
stability for any set of constant or time-varying delays without a specific bound
(delay-independent stability).

7.3.1 Stable IPRs of Delay-Free Systems

For the case of delay-free systems (Ak = 0, k ∈ m) in [2] it has been shown that the
IPR construction method there presented when applied to stable systems in some
cases may produce unstable IPRs. Indeed, the spectrum of A0 = Γ (A0) properly
contains the spectrumof A0, and the additional eigenvalues can be unstable.However,
a change of coordinates on the original system can generally affect the stability of the
IPR, and this fact can be exploited to obtain stable IPRs. In [2] it has been proved that
such a change of coordinates exists if σ(A0) belongs to the sector ofC− characterized
by �(z) + |�(z)| < 0. In [3], the IPR construction method of [2] has been suitably
extended so that stable IPRs can be constructed for any stable system, without any
limitation on the location of the eigenvalues of A0 within C−.

7.3.2 Stability of Positive Delay-Systems

The IPR produced by the method in Theorem 7.1 is by construction a linear positive
delay system. For this reason we recall below the stability conditions for such a class
of systems. Consider a system of the type (7.1) which is internally positive (i.e., A0

is Metzler and Ak , k ∈ m, are nonnegative, Lemma 7.1). In [12] it has been proved
that, when the delays δk are constant, a necessary and sufficient stability condition
is that there exist p and r in Rn such that

( m∑

k=0

Ak

)T
p + r = 0 p > 0, r > 0. (7.21)

Note that, being
∑m

k=0 Ak aMetzlermatrix, condition (7.21) is equivalent to
∑m

k=0 Ak

Hurwitz, i.e.

α

( m∑

k=0

Ak

)
< 0. (7.22)

Another interesting equivalent condition (see [6]), that does not require the explicit
computation of eigenvalues (condition (7.22)) or solving a linear problem (condition
(7.21)) is that all the leading principal minors of the matrix

M = −
m∑

k=0

Ak



88 F. Conte et al.

are positive, i.e. Mi > 0 for i = 1, ..., n, where Mi is the determinant of the matrix
obtained removing the last n − i rows and columns from M . Note that all these
equivalent conditions do not depend on the size of the delays. In [1] and in [17] it
has been proved that (7.22) is necessary and sufficient for stability even in the case
of time-varying delays δk(t), without limitation on the size of the delays and of their
derivatives. Ngoc in [23] proved a similar condition also for the case of distributed
delays.

Remark 7.2 It should be remarked that condition (7.22) is necessary and sufficient
for the delay-independent stability of a positive delay-system, while it is only nec-
essary for the stability of general (not necessarily positive) systems, being required
for the stability of the associated delay-free system.

To summarize, we have the following:

Proposition 7.1 If a system S as in (7.1), with A0 Metzler and B, C, D, Ak, for
k ∈ m, nonnegative, is stable for a given set of constant delays δk , then it is also
delay-independent stable, i.e. stable for any arbitrary set of constant or time-varying
delays.

Liu and Lam [16] showed that if a positive delay system is stable for all continuous
and bounded delays, then the trivial solution is exponentially stable for all continuous
and bounded delays. On the other hand, if the delays are continuous but unbounded,
the trivial solution may be asymptotically stable but not exponentially stable.

7.3.3 Stable IPRs of Delay Systems

Consider the equations (7.15) of the IPRgiven inTheorem7.1.Wehave the following:

Theorem 7.4 If a delay system S as in (7.1) admits a stable IPR, then necessarily
S is delay-independent stable.

Proof As discussed in the previous paragraph, since the IPR is a positive delay
system, a necessary and sufficient condition for its stability is that the Metzler matrix∑m

k=0 Ak is Hurwitz, and this in turn implies that the IPR is delay-independent
stable. The boundedness of the state transformations T f

X (·) and T b
X (·) defined in

(7.12) trivially implies the delay-independent stability of the original system. �

Stated in another way, Theorem 7.4 claims that only delay systems that are delay-
independent stable admit stable Internally Positive Representations.
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Theorem 7.4 suggests the following sufficient condition of delay-independent
stability for not necessarily positive delay systems.

Theorem 7.5 Consider a delay system S as in (7.1). If

α

(
Γ (A0) +

m∑

k=1

Π(Ak)

)
< 0, (7.23)

then S is delay-independent stable.

Proof Note first that the Metzler matrix in (7.23) coincides with
∑m

k=0 Ak , where
Ak are the matrices of the IPR of Theorem 7.1. Thus, if condition (7.23) is satisfied,
then the IPR of S is stable, and thanks to Theorem 7.4 the original system S is
delay-independent stable. �

Remark 7.3 As pointed out in Sect. 7.3.2, checking condition (7.23) does not
require the explicit computation of the eigenvalues of the Metzler matrix Γ (A0) +∑m

k=1 Π(Ak). Indeed, an easy equivalent condition only requires to check that all
the leading principal minors of M = −(

Γ (A0) + ∑m
k=1 Π(Ak)

)
are positive.

7.4 Comparison with Similar Conditions
of Delay-Independent Stability

Many stability conditions exist for delay systems with multiple delays, based on
different techniques: frequency sweeping [5], spectral analysis [20], Linear Matrix
Inequalities [7, 10] and others (see [11]). These results refer to different cases such as
commensurate or incommensurate delays, constant or time-varying delays, slowly
or fast varying delays. Many stability tests rely on numerical computations and
some have a not negligible computational complexity (particularly the necessary and
sufficient ones). Coming to delay-independent stability, in [21] and [22], for the case
of single and constant delay, the following sufficient condition for delay-independent
stability has been given

μp(A0) + ‖A1‖p < 0 (7.24)

where μp(A) is the logarithmic norm (or measure) of matrix A induced by the
operator norm ‖A‖p, defined as:

μp(A) = lim
ε→0

‖I + εA‖p − 1

ε
.
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The expression of μp(·) can easily be computed for p = 1, 2,∞:

μ1(A) = max
j=1...n

(
aii +

n∑

i=1, i �= j

|ai j |
)

,

μ2(A) = 1

2
λmax (A

T + A),

μ∞(A) = max
i=1...n

(
aii +

n∑

j=1, j �=i

|ai j |
)

.

The extended condition:

μp(A0) +
m∑

k=1

‖Ak‖p < 0 (7.25)

has been shown [26] to be sufficient for the stability of systems with multiple com-
mensurate delays, although only for the case of p = 2. In [25] and [24] the same
condition has been proven sufficient, for any p, also in the case of non commensu-
rate and time-varying delays of any size, and therefore is a sufficient condition of
delay-independent stability of the system.

As amatter of fact, it is rather easy to find delay-independent stable systemswhich
satisfy condition (7.23) given in Theorem 7.5 and do not satisfy condition (7.25):
an example is reported in Sect. 7.5. Further investigations are needed to compare the
conservativeness of the new condition with respect to the classical one.

7.5 Example

Consider the problem of verifying the delay-independent asymptotic stability of a
system S = {{A0, A1, A2}, B,C, D

}
3,p,q with:

A0 =
⎡

⎣
−25 −5 −14
0 −19 0.1
0.7 1.2 −16

⎤

⎦ , A1 =
⎡

⎣
−1.5 −0.4 0
0.5 −2.9 1

−1.5 0.5 −3.4

⎤

⎦ , A2 =
⎡

⎣
−7 2 6.8
1.8 −1.6 −2.1
0.5 1.6 −3.3

⎤

⎦

Since S is not an internally positive system, (7.22) is only a necessary condition for
its delay-independent stability (see Remark 7.2). We have that:

α

( m∑

k=0

Ak

)
= −23.131 < 0

and therefore condition (7.22) is satisfied.Hencewe can check the proposed sufficient
condition (7.23), verifying that all the leading principal minors of the matrix
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M = −(
Γ (A0) + Π(A1) + Π(A2)

)

are positive (Remark 7.3). We get:

M1 = 25, M2 = 470.4, M3 = 7.2 · 103, M4 = 1.4 · 105,
M5 = 2.3 · 106, M6 = det(M) = 1.5 · 107

and this is sufficient to conclude that the system is delay-independent stable.
Actually, the exact value of condition (7.23) is:

α

(
Γ (A0) + Π(A1) + Π(A2)

)
= −2.436.

It is not possible to achieve the same conclusion on the stability of the systemapplying
the classical sufficient condition (7.25), since:

μ1(A0) + ‖A1‖1 + ‖A2‖1 = 14.700 > 0,

μ2(A0) + ‖A1‖2 + ‖A2‖2 = 2.896 > 0,

μ∞(A0) + ‖A1‖∞ + ‖A2‖∞ = 15.200 > 0,

and therefore the condition is not satisfied at least for p = 1, 2,∞.
To sum up, for the system in this example the criterion (7.25) fails to assess the

stability, which has been proved using the proposed condition (7.23).
Figure7.1 depicts some examples of time evolution of log(‖x(t)‖) obtained with

u(t) = 0 for t ∈ [0, 200] and different constant values of the two delays. In all cases,
the plotted quantity decreases linearly, thus confirming the asymptotic stability,which
in the case of constant delays is also exponential.

Fig. 7.1 Plot of log(‖x(t)‖) with different constant delays values
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7.6 Conclusions and Future Work

In this chapter the Internally Positive Representation of linear delay systems with
multiple delays, possibly time-varying, has been introduced, and its consequences
on the study of the stability of the original system have been investigated, leading
to an easy-to-check sufficient condition whose efficacy with respect to the delay-
independent stability tests provided in [21, 24, 25] has been tested by means of
numerical examples. Future work will be devoted to further stability analysis and to
the extension of the IPR technique to other classes of delay systems.
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Chapter 8
On Robust Pseudo State Estimation
of Fractional Order Systems

Tarek Raïssi and Mohamed Aoun

Abstract The goal of this chapter is to design robust observers for fractional
dynamic continuous-time linear systems described by pseudo state space represen-
tation. The fractional observer is guaranteed to compute a domain enclosing all the
system pseudo states that are consistent with the model, the disturbances and the
measurement noise realizations. Uncertainties on the initial pseudo state and noises
are propagated in a reliable way to estimate the bounds of the fractional pseudo
state. Only the bounds of the uncertainties are used and no additional assumptions
about their stationarity or ergodicity are taken into account. A fractional observer
is firstly built for a particular case where the estimation error can be designed to
be positive. Then, the general case is investigated through changes of coordinates.
Some numerical simulations illustrate the proposed methodology.

Keywords Fractional systems · Interval observers · Robust estimation

8.1 Introduction

Fractional differentiation is an extension of classical integer differentiation to deal
with non-integer (fractional) orders. It was defined in the 19th century by Riemann
and Liouville, see for instance [13]. First applications on automatic control are cited
since 1945 by Bode [9] and subsequently in [24, 34, 45].

Nowadays, fractional calculus is widely used in many engineering fields [5, 12,
16, 18, 22, 23, 32, 33, 35, 39]. It is a powerful mathematical tool for the description
of long memory and hereditary properties of various materials and processes. For
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instance, in electrochemistry, diffusion processes of charges in acid batteries is gov-
erned by Randles models with an inherent fractional 0.5 derivatives of order [38].
Supercapacitor, which are highly energy device storage, are modeled with fractional
integrator [30, 46]. In thermal diffusion, it is shown that the solution of the heat
equation of a semi-infinite homogeneous medium depends on 0.5 order derivative
[7]. Diffusion phenomena in semi-infinite planar, spherical and cylindrical media
deals with a multiple of 0.5 differentiation order [31]. Experimental results prove
that fractional models are appropriate to represent vibrations on viscoelastic materi-
als [41]. The electromagnetic fields in dielectric media is described by a model with
fractional differentiation [6, 43].

Some methods to estimate the pseudo states of fractional systems have been
developed in the literature. For instance, fractionalKalman filters have been proposed
for both discrete and continuous-time systems [1, 4, 21, 42]. Luenberger-based
fractional observers have been also investigated in [14].

Themain drawback of these techniques design is the difficulty to take into account
uncertainties (unknown parameters or/and external disturbances). In the presence of
uncertainty, design of conventional observers/filters, converging to the ideal value
of the pseudo state is difficult to achieve. In such context, interval observers can be
considered as an alternative. The latters do not permit to compute only an approxi-
mation but the set of all admissible values is characterized at each time instant. The
width of the estimated domain should be proportional to the size of the uncertain-
ties. With respect to conventional observers, the mid-value can be considered as a
point estimation while the interval width is the uncertainty/deviation from such point
value.

The theory of interval observers is well developed in the context of integer dif-
ferentiation systems. In this chapter, such methodology is extended to fractional
differentiation systems based on the theory of positive systems. It will be shown that,
under some mild conditions, an interval observer can be developed for any linear
fractional system subject to bounded noises and disturbances. To the best of our
knowledge, it is the first time that interval observers are considered for this class of
systems.

The chapter is organized as follows: some properties of fractional systems are
recalled in Sect. 8.2. The main contribution is given in Sect. 8.3 where two observers
are proposed for a particular case and also for general fractional linear systems.
Finally, some numerical simulations are presented in Sect. 8.4 to illustrate this
methodology.

8.2 Fractional Systems

Riemann and Liouville extended differentiation by using not only integer but also
non-integer orders (fractional order). The γ th fractional order differentiation of a
continuous real function f (t) is defined as [29]:



8 On Robust Pseudo State Estimation of Fractional Order Systems 99

Dγ f (t) = 1

Γ (1 − γ )

(
d

dt

)�γ+1� ∫ t

0

f (τ )

(t − τ)γ
dτ (8.1)

In the field of engineering sciences another definition of fractional differentiation
has been proposed by Caputo [10]:

Dγ f (t) = 1

Γ (�γ � − γ )

∫ t

0

f (�γ �) (τ )

(t − τ)1−�γ �+γ
dτ (8.2)

where f (�γ �) (τ ) denotes the integer derivative at (�γ �) of f .
The fractional differentiation can be numerically evaluated using the Grünwald

approximation [3]:

Dγ f (t) � 1

hγ

∞∑

k=0

(−1)k(γk ) f (t − kh) (8.3)

where h is a small real number and
(

γ

k

)
= Γ (γ + 1)

k!Γ (γ − k + 1)
(8.4)

A continuous-time fractional linear system can be described with a fractional differ-
ential equation:

ny∑

i=0

ai D
αi y(t) =

nu∑

j=0

b j D
β j u(t) (8.5)

where u and y denote respectively the system input and output. The fractional dif-
ferentiation orders αi , i = 0 . . . ny and βi , i = 0 . . . nu are positive real numbers.
Generally they are assumed to be rational, thus a commensurate fractional differen-
tial equation can be obtained:

n′
y∑

l=0

a′
l D

lν y(t) =
n′
u∑

k=0

b′
k D

kνu(t) (8.6)

where the input and the output are differentiated to integer multiple of the commen-
surate order ν. From (8.6) the following representation can be deduced [36]:

{
xν(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(8.7)

where A, B,C and D are constant matrices with A ∈ R
n×n , B ∈ R

n×p, C ∈ R
m×n

and D ∈ R
m×p. For single input single output systems (m = p = 1), the vector x is

called a pseudo state and xν denotes its fractional derivative at order ν, 0 < ν ≤ 1.
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Thevariable x in (8.7) is not rigourously a state similar to the integer differentiation
context and it has been shown in [44] that the dimension of the actual state of
fractional systems is infinite. Indeed, the knowledge of x in (8.7) at t and all input
values u over an arbitrary interval [t, t + Δt] is not sufficient to compute the state at
t + Δt . However, the representation (8.7) iswidely usedwhen dealingwith fractional
systems since the pseudo state is sufficient for modelling, control and simulation
purposes. Roughly speaking, in the following, (8.7) will be called fractional state
space representation and x a state.

The system described by (8.7) is stable when all eigenvalues of A verify [2, 25]:

|arg(spec(A))| > ν
π

2
(8.8)

In the following, a matrix M is called stable if its eigenvalues satisfy the condi-
tion (8.8).

The observability of fractional systems has been discussed in several papers [8,
17, 26, 27, 40] and a necessary and sufficient rank condition similar to the case of
integer systems has been given in [17]:

rank

⎛

⎜⎜⎜⎝

C
CA
...

CAn−1

⎞

⎟⎟⎟⎠ = n (8.9)

In the following and without any loss of generality, we will suppose that D = 0. A
classical fractional observer structure for the estimation of x is given by:

{
x̂ν(t) = Ax̂(t) + Bu(t) + L

(
y(t) − ŷ(t)

)

ŷ(t) = Cx̂(t)
(8.10)

where x̂ denotes the estimated state and L is the observer gain. The estimation error
is given by:

x̃ν(t) = x̂ν(t) − xν(t) = (A − LC)(x̂(t) − x(t)) (8.11)

To ensure the convergence of the estimation error, the system (8.11) should verify
the stability condition (8.8). The observer gain L is chosen such that:

|arg(spec(A − LC))| > ν
π

2
(8.12)

Note that the observer (8.10) converges asymptotically provided that the system (8.7)
is not subject to noises and disturbances. Otherwise, the results can be unreliable. In
the following, a robust approach is proposed to compute not only an approximation
of the state but an interval which is guaranteed to enclose all the values of x consistent
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with the assumptions on the noises and disturbances. To the best of our knowledge,
it is the first tentative to investigate this methodology for fractional systems.

A dynamical system is called internally positive if starting from any nonnega-
tive condition and for any nonnegative input, its state remains always positive [19].
Furthermore, a matrix A ∈ R

n×n is called Metzler if all its off-diagonal entries are
nonnegative, i.e. A = {ai, j }, ai, j ≥ 0,∀i 
= j .

Lemma 8.1 [20] The fractional system described by (8.7) with ν ≤ 1 and x(0) ≥ 01

is internally positive if and only if A is Metzler and all coefficients of the matrices B
and C are nonnegative.

Lemma 8.2 [15] Given a vector σ(t) ∈ R
n verifying σ(t) ≤ σ ≤ σ(t) for two vec-

tors σ(t), σ (t) ∈ R
n. Then,

M+σ(t) − M−σ(t) ≤ Mσ(t) ≤ M+σ(t) − M− σ(t) (8.13)

8.3 Main Results

Given a matrix M ∈ R
m×n and define M+ = max(0, M) and M− = M+ − M .

|M | = M+ + M− is the matrix of absolute values of all elements of M .

8.3.1 Design of a Fractional Interval Observer

Consider the noisy fractional system

{
xν(t) = Ax(t) + Bu(t) + Gw(t)
y(t) = Cx(t) + v(t)

(8.14)

with ν ≤ 1. The input u(t) is known and A, B,C and G are constant matrices. w(t)
and v(t) are some bounded disturbances and noises.

In the context of interval observers, the goal is to derive two trajectories x(t) and
x(t) such that, starting from some initial conditions x0 ≤ x0 ≤ x0, we have:

x(t) ≤ x(t) ≤ x(t), ∀t ≥ t0

The following theorem gives a first result for the design of interval observers for
(8.14).

Theorem 8.1 Given the system (8.14) with the initial condition x0 satisfying x0 ≤
x0 ≤ x0 for x0, x0 ∈ R

n. Assume that the noises and disturbances are bounded,

1The order relations <,≤,>,≥ should be understood componentwise throughout this chapter.
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i.e. |v(t)| ≤ V , |w(t)| ≤ W. If there exists a gain L such that A − LC is Metzler
and |arg(spec(A − LC))| > ν π

2 , then, the system (8.15) is an interval observer for
(8.14): {

xν(t) = (A − LC) x(t) + Bu(t) + b(t), x(t0) = x0
xν(t) = (A − LC) x(t) + Bu(t) + b(t), x(t0) = x0

(8.15)

with {
b(t) = −|G|W + Ly(t) − |L|V
b(t) = |G|W + Ly(t) + |L|V (8.16)

Proof Consider the observer error ex = x − x . Based on (8.14) and (8.15), the
dynamics of ex is described by:

eν
x (t) = (A − LC)x + Bu(t) + |G|W + Ly + |L|V − (Ax(t) + Bu(t) + Gw(t))

= (A − LC)ex + (|L|V + Lv(t)) + (|G|W − Gw(t))
(8.17)

Since the gain L is designed such that (A − LC) is Metzler and by construction
|L|V + Lv(t) ≥ 0, |G|W − Gw(t) ≥ 0, then the dynamics of ex is positive, i.e.
ex = x − x ≥ 0,∀t ≥ t0. In addition, it is assumed that the gain L is chosen such
that A − LC is stable (i.e. |arg(spec(A − LC))| > ν π

2 ), thus the upper error ex is
stable. Similarly, the same methodology can be followed to prove that ex = x − x ≥
0,∀t ≥ t0 and that ex is stable. To conclude, it has been proven that the observation
errors are stable and that:

x(t) ≤ x(t) ≤ x(t), ∀t ≥ t0. (8.18)

�

Note here that the observability is a sufficient condition (however, the detectability
is necessary and sufficient) for the existence of a gain L ensuring the stability of both
ex and ex . In practice, computing a gain L satisfying both conditions of Theorem
8.1 is not obvious and may be impossible in some cases. To overcome this problem,
some changes of coordinates can be used to generalize the previous result.

8.3.2 General Case

Usually, it is not possible to find a gain L such that A − LC is simultaneously Met-
zler and stable. Furthermore, the eigenvalues of the matrix A − LC are preserved
under a change of coordinates. In this section, we propose a procedure to overcome
this concern by computing a gain L such that A − LC is stable and a nonsingu-
lar transformation matrix P ∈ R

n×n such that, in the new coordinates z = Px , the
matrix Γ = P(A − LC)P−1 is Metzler. The conditions of existence of such a real
transformation matrix P has been established by the following lemma.
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Lemma 8.3 [37] Given the matrices A ∈ R
n×n, R ∈ R

n×n and C ∈ R
p×n . If there

is a gain L ∈ R
n×p such that the matrices A − LC and R have the same eigenvalues,

then there exists a matrix P ∈ R
n×n such that R = P(A − LC)P−1 provided that

the pairs (A − LC, e1) and (R, e2) are observable for some e1 ∈ R
n, e2 ∈ R

n.

This result was used in [37] to design interval observers for integer linear time
invariant systems with a Metzler matrix R.

Furthermore, based on the Jordan form, it has been shown in [28] that it is usually
possible to design a transformation z = Px such that A − LC is Metzler. When
the eigenvalues of A − LC are real, the matrix P is constant, otherwise, it is time-
varying. A similar methodology has been developed in [11] where the complex-
valued transformations are used.

In the following, given a gain L such that A − LC is stable and consider a change
of coordinates z(t) = Px(t) such that P(A − LC)P−1 is Metzler. The matrix P
can be computed using the Lemma 8.3 or the Jordan form investigated in [11, 28].
Therefore, an interval observer structure for (8.7) in the coordinated z and x is given
in the following theorem.

Theorem 8.2 Given (8.14) with the initial condition x0 satisfying x0 ≤ x0 ≤ x0 for
x0, x0 ∈ R

n. Assume that the noises and disturbances are bounded, i.e. |v(t)| ≤ V ,
|w(t)| ≤ W. Suppose also that P is chosen following Lemma 8.3 and L such that the
stability condition (8.23) is verified. Then, the system (8.19), initialized with (8.21),
is an interval observer for (8.14) in the coordinates z = Px.

{
zν(t) = Γ z(t) + PBu(t) + b(t)
zν(t) = Γ z(t) + PBu(t) + b(t)

(8.19)

with
Γ = P (A − LC) M, M = P−1 (8.20)

{
z(0) = P+x0 − P−x0
z(0) = P+x0 − P−x0

(8.21)

{
b(t) = −|PG|W + PLy(t) − |PL|V
b(t) = |PG|W + PLy(t) + |PL|V (8.22)

|arg(spec(Γ )| > ν
π

2
(8.23)

In addition, an interval estimation of (8.14), in the coordinates x, is given by (8.24):

{
x(t) = M+z(t) − M−z(t)
x(t) = M+z(t) − M−z(t) (8.24)
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Proof The system (8.14) can be rewritten as:

zν(t) = Γ z(t) + PBu(t) + PLCP−1z(t) + PGw(t). (8.25)

Furthermore, according to (8.19) the dynamics of z is given by:

zν(t) = Γ z(t) + PBu(t) + b(t)
= Γ z(t) + PBu(t) + |PG|W + PLy(t) + |PL|V
= Γ z(t) + PBu(t) + |PG|W + PLCP−1z(t)

+PLv(t) + |PL|V .

(8.26)

Consider now the observer error ez = z − z. Based on (8.25) and (8.26), the dynamics
of ez is described by:

eν
z (t) = Γ zz(t) + PBu(t) + |PG|W + PLCP−1z(t)

+PLv(t) + |PL|V
−(Γ z(t) + PBu(t) + PLCP−1z + PGw(t)

= Γ ez(t) + |PL|V + PLv(t) + |PG|W − PGw(t)

(8.27)

Recall that thematrixΓ = P(A − LC)P−1 isMetzler and by construction |PL|V +
PLv(t) ≥ 0, |PG|W − PGw(t) ≥ 0, therefore the dynamics of ez is positive, i.e.
ez = z − z ≥ 0,∀t ≥ t0.

In addition, it is assumed that the gain L is chosen such that A − LC (and conse-
quently Γ ) is stable, thus the upper error ez is stable.

Moreover, the same methodology can be followed to prove that ez = z − z ≥
0,∀t ≥ t0 and that ez is stable.

Now, based on Lemma 8.2, it is trivial to show that:

x = M+z − M−z ≤ Mz = x ≤ M+z − M−z = x .

In addition, the stability of x − x and x − x are deduced from that of ez and ez since
such property is preserved under changes of coordinates.

8.4 Numerical Simulations

8.4.1 Example 1

Given a system described by:

{
xν(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + v (t)

(8.28)
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Fig. 8.1 Input, output and measurement noise for the system (8.28)

where:

A =
[−5 2

6 −3

]
, B =

[
1
1

]
,C = [

1 1
]

and the commensurate order is ν = 0.5. v(t) is a bounded noise such that |v(t)| ≤
V = 0.1. The initial state is arbitrarily chosen as (5, 10)T and is supposed to be
affected by 50% of uncertainty. Note that uncertainty on the initial state may model
the insufficient information about the past of the system. The input and the output of
the system are plotted on Fig. 8.1.

The pair (A,C) verifies the observability condition (8.9) and there exists a gain
L verifying (8.12):

|arg(spec(A − LC))| > 0.5
π

2
(8.29)

The gain L = (0.12, 0.27)T is used, it allows to the eigenvalues of A − LC to be the
same as those of A except the largest one which is multiplied by 4, i.e. spec(A −
LC) = {−7.61,−1.58}. For the chosen gain L , the matrix

A − LC =
[−5.36 1.64

5.17 −3.83

]
(8.30)

is Metzler. Therefore, the estimation error is positive and the fractional interval
observer is designed according to (8.15). The actual state and its lower and upper
bounds are plotted onFig. 8.2. Clearly, the robustness is shown through this numerical
example.
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Fig. 8.2 The actual states and their lower and upper bounds for the system (8.28)

Fig. 8.3 Fractional
electrical circuit

8.4.2 Example 2

Consider an electrical circuit to illustrate the design of a fractional interval observer
in the general case. The fractional electrical circuit is given on Fig. 8.3 where R is the
resistance, C f is a fractional order supercapacitor and L f is a fractional order induc-
tance [20]. Analysing the circuit with the Kirchhoffs laws we obtain the fractional
differential equations:

i(t) = C f
dαuc(t)

dt
(8.31)

and

u(t) = Ri(t) + uc(t) + L f
dβ i(t)

dt
(8.32)
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Assuming that ν = α = β and considering that only uc(t) is measured, the following
fractional state space representation can be obtained:

⎧
⎨

⎩

[
uc(t)
i(t)

]ν

=
[

0 1/C f

−1/L f −R/L f

] [
uc(t)
i(t)

]
+

[
0

1/L f

]
u(t) + w(t)

y(t) = uc(t) + v(t)
(8.33)

where w(t) and v(t) are some unknown additive disturbances and noises. For simu-
lation, the following numerical values are chosen:

R = 20� C f = 600µF,

L f = 30mH, ν = α = β = 0.5

The observability rank condition (8.9) is verified and the gain

L =
[
503.3333
−29.4667

]

is used. Thus, the closed-loop matrix is given by:

A − LC =
[−0.5033 1.6667

−0.0039 −0.6667

]
103 (8.34)

Fig. 8.4 Diagonalized states and their lower and upper bounds
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Fig. 8.5 uc and i(t) and their lower and upper bounds

Note that (A − LC) is not Metzler. Therefore, the fractional interval observer of
Theorem 8.1 cannot be applied. However, using a change of coordinates (a diago-
nalization of A − LC in this case), the interval observer of Theorem 8.2 permits to
estimate the lower and the upper bounds of the state in the coordinates z and also in
the initial ones (uc(t) and i(t)).

Noises w(t) and v(t) are supposed to be bounded with |W | = |V | = 0.1. The
initial state is chosen as (uc(0) = 2, i(0) = 0.5)T and is supposed to be affected by
large uncertainty, i.e.:

uc(0) = 0 uc(0) = 20

i(0) = 0 i(0) = 5

Applying Theorem 8.2, the estimated bounds of the state in the coordinates z are
plotted on Fig. 8.4. Those of uc(t) and i(t) are plotted on Fig. 8.5.

8.5 Conclusion

The design of interval observers for fractional differentiation systems is investigated
in this work. Under some mild conditions (boundedness of noises and disturbances,
observability), twoLuenberger-basedobservers allowone to compute reliable bounds
for the state values consistent with the bounds of the uncertainties. A first result is
given to build interval observers when it is possible to design a gain L satisfying the
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Metzler and stability properties of A − LC . In addition, by using a change of coor-
dinates, a general result, which can be applied to any linear fractional differentiation
system, is proposed. An extension of this approach to address the case of parameter
uncertainties and time-varying systems will be the subject of further works.
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Chapter 9
Analysis of the Positivity and Stability
of Fractional Discrete-Time Nonlinear
Systems

Tadeusz Kaczorek

Abstract The positivity and asymptotic stability of the discrete-time nonlinear sys-
tems are addressed. Necessary and sufficient conditions for the positivity and suffi-
cient conditions for the asymptotic stability of the nonlinear systems are established.
The proposed stability tests are based on an extension of the Lyapunov method
to the positive nonlinear systems. The effectiveness of the tests are demonstrated
on examples.

Keywords Positivity · Stability · Fractional · Nonlinear · System

9.1 Introduction

A dynamical system is called positive if its trajectory starting from any nonnegative
initial condition state remains forever in thepositive orthant for all nonnegative inputs.
An overview of state of the art in positive system theory is given in the monographs
[8, 11] and in the papers [10, 12, 18, 21]. Models having positive behavior can be
found in engineering, economics, social sciences, biology and medicine, etc.

The Lyapunov, Bohl and Perron exponents and stability of time-varying discrete-
time linear systems have been investigated in [1–7]. The positive standard and
descriptor systems and their stability have been analyzed in [10–12, 18, 21].
The positive linear systems with different fractional orders have been addressed
in [12, 13] and the descriptor discrete-time linear systems in [9, 10]. Descriptor
positive discrete-time and continuous-time nonlinear systems have been analyzed
in [14, 19, 20] and the positivity and linearization of nonlinear discrete-time systems
by state-feedbacks in [18]. The minimum energy control of positive linear systems
has been addressed in [15–17]. The stability and robust stabilization of discrete-time
switched systems have been analyzed in [23, 24].
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In this chapter the positivity and asymptotic stability of the fractional discrete-time
nonlinear systems will be investigated.

The chapter is organized as follows. In Sect. 9.2 the definitions and theorems
concerning the positivity and stability of positive discrete-time and continuous-
time linear systems are recalled. Necessary and sufficient conditions for the pos-
itivity of the fractional discrete-time nonlinear systems are established in Sect. 9.3.
The asymptotic stability of the positive nonlinear systems is addressed in Sect. 9.4,
where the sufficient conditions for the stability are proposed. Concluding remarks
are given in Sect. 9.5.

The following notation will be used: R—the set of real numbers, Rn×m—the set
of n × m real matrices, Rn×m

+ —the set of n × m matrices with nonnegative entries
andRn+ = R

n×1
+ , Z+—the set of nonnegative integers,Mn—the set of n × n Metzler

matrices (with nonnegative off-diagonal entries), In—the n × n identity matrix.

9.2 Positive Discrete-Time and Continuous-Time Linear
Systems and Their Stability

Consider the discrete-time linear system

xi+1 = Axi + Bui , i ∈ Z+ = {0, 1, . . .}, (9.1a)

yi = Cxi + Dui , (9.1b)

where xi ∈ R
n , ui ∈ R

m , yi ∈ R
p are the state, input and output vectors and A ∈

R
n×n , B ∈ R

n×m , C ∈ R
p×n , D ∈ R

p×m .

Definition 9.1 [8, 11] The discrete-time linear system (9.1) is called (internally)
positive if xi ∈ R

n+, yi ∈ R
p
+, i ∈ Z+ for any initial conditions x0 ∈ R

n+ and all inputs
ui ∈ R

m+, i ∈ Z+.

Theorem 9.1 [8, 11] The discrete-time linear system (9.1) is positive if and only if

A ∈ R
n×n
+ , B ∈ R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

Definition 9.2 [8, 11] The positive discrete-time linear system (9.1) is called asymp-
totically stable if

lim
i→∞ xi = 0 for any x0 ∈ R

n
+.

Theorem 9.2 The positive discrete-time linear system (9.1) is asymptotically stable
if and only if one of the following equivalent conditions is satisfied:

1. all coefficients of the polynomial

pn(z) = det[In(z + 1) − A] = zn + an−1z
n−1 + · · · + a1z + a0
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are positive, i.e. ai > 0 for i = 0, 1, . . . , n − 1.
2. all principal minors of the matrix A = In − A = [ai j ] are positive, i.e.

M1 = ∣∣a11
∣∣ > 0, M2 =

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ > 0, . . . , Mn = detA > 0.

Proof The proof is given in [11].

Consider the continuous-time linear system

ẋ = Ax + Bu, (9.2a)

y = Cx + Du, (9.2b)

where x = x(t) ∈ R
n , u = u(t) ∈ R

m , y = y(t) ∈ R
p are the state, input and output

vectors and A ∈ R
n×n , B ∈ R

n×m , C ∈ R
p×n , D ∈ R

p×m .

Definition 9.3 [8, 11] The continuous-time linear system (9.2) is called (internally)
positive if x ∈ R

n+, y ∈ R
p
+, t ≥ 0 for any initial conditions x0 ∈ R

n+ and all inputs
u ∈ R

m+, t ≥ 0.

Theorem 9.3 [8, 11]The continuous-time linear system (9.2) is positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ ,

Definition 9.4 [8, 11] The positive continuous-time linear system (9.2) is called
asymptotically stable if

lim
t→∞ x(t) = 0 for all x0 ∈ R

n
+.

Theorem 9.4 The positive continuous-time linear system (9.2) is asymptotically
stable if and only if one of the following equivalent conditions is satisfied:

1. all coefficients of the polynomial

pn(s) = det[Ins − A] = sn + ân−1s
n−1 + · · · + â1s + â0

are positive, i.e. âk > 0 for k = 0, 1, . . . , n − 1.
2. all principal minors of the matrix Â = −A = [âi j ] are positive, i.e.

M̂1 = ∣∣â11
∣∣ > 0, M̂2 =

∣∣∣∣
â11 â12
â21 â22

∣∣∣∣ > 0, . . . , M̂n = det Â > 0.

Proof The proof is given in [11].



116 T. Kaczorek

Theorem 9.5 The matrix A ∈ Mn satisfies the condition

−A−1 ∈ R
n×n
+

if and only if the positive system (9.2) is asymptotically stable.

Proof The proof is given in [11].

9.3 Positivity of the Fractional Nonlinear Systems

Consider the fractional discrete-time nonlinear system

Δαxi = Axi + f (xi−1, ui ), (9.3a)

yi = g(xi , ui ) (9.3b)

and 0 < α ≤ 1, i ∈ Z+ = {0, 1, . . .}, where

Δαxi =
i∑

j=0

aα
j xi− j (9.4a)

with

aα
j = (−1) j

(
α

j

)
,

(
α

j

)
=

{
1 for k = 0
α(α−1)···(α− j+1)

j ! for k = 1, 2, 3, . . .
(9.4b)

is the α-order difference of xi , xi ∈ R
n , ui ∈ R

m , yi ∈ R
p are the state, input and out-

put vectors, A ∈ R
n×n and f (xi−1, ui ) ∈ R

n , g(xi , ui ) ∈ R
p are vector functions

continuous in xi and ui .
Note that the fractional difference (9.4a) is defined in the point “i” not as usually

in the point “i + 1” [13, 22].
Substituting (9.4a) into (9.3a) we obtain

i∑

j=0

aα
j xi− j = Axi + f (xi−1, ui )

and

xi =
i∑

j=1

A1c
α
j xi− j + f1(xi−1, ui ), i ∈ Z+, (9.5)
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where

cα
j = −aα

j , j =1, . . . , i; A1 = [In − A]−1 ∈ R
n×n,

f1(xi−1, ui ) =A1 f (xi−1, ui ).

Assuming xi = 0, i = 1, 2, . . . from (9.5) for i = 0 we have

x0 = f1(0, u0). (9.6)

Therefore, the initial condition x0 is related with u0 by (9.6).

Lemma 9.1 The matrix
A1 = [In − A]−1 ∈ R

n×n
+ (9.7)

if and only if the positive linear system

xi+1 = Axi , A ∈ R
n×n
+ (9.8)

is asymptotically stable.

Proof ByTheorem9.2 thepositive discrete-time linear system (9.8) is asymptotically
stable if and only if the matrix A − In ∈ Mn is asymptotically stable (is Hurwitz)
andbyTheorem9.5 the condition (9.7) is satisfied if the system (9.8) is asymptotically
stable. �

Theorem 9.6 The solution xi of the Eq. (9.5) for given initial condition x0 ∈ R
n and

input ui ∈ R
m, i ∈ Z+ has the form

xi = Φi x0 +
i∑

j=1

Φi− j f1(x j−1, u j ), (9.9a)

where

Φ j =
j∑

k=1

cα
k A1Φ j−k, j = 1, 2, . . . , i; Φ0 = In . (9.9b)

Proof The proof can be accomplished by induction or by checking that (9.9) satisfies
the Eq. (9.5). �

In particular case for linear system

xi =
i∑

j=1

A1c
α
j xi− j + B1ui , i ∈ Z+, B1 ∈ R

n×m (9.10a)
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the solution xi has the form

xi = Φi x0 +
i∑

j=1

Φi− j B1u j (9.10b)

and the matrix Φ j is given by (9.9b).

Remark 9.1 The solution xi of theEq. (9.5) can be computed using the formulae (9.9)
iteratively for i = 1, 2, . . . and substituting x j−1 given by (9.9a) into the vector
function f1(x j−1, u j ) for i = 1, 2, . . ..

Definition 9.5 The discrete-time nonlinear system (9.3) is called (internally) pos-
itive if xi ∈ R

n+, yi ∈ R
p
+, i ∈ Z+ for any initial conditions x0 ∈ R

n+ and all inputs
ui ∈ R

m+, i ∈ Z+.

Theorem 9.7 The discrete-time nonlinear system (9.3) is positive if and only if
0 < α ≤ 1, the matrix A ∈ R

n×n+ is asymptotically stable and

f (xi−1, ui ) ∈ R
n
+ for xi ∈ R

n
+ and ui ∈ R

m
+, i ∈ Z+, (9.11)

g(xi , ui ) ∈ R
p
+ for xi ∈ R

n
+ and ui ∈ R

m
+, i ∈ Z+. (9.12)

Proof Sufficiency. By Lemma 9.1 if A ∈ R
n×n
+ is asymptotically stable

then A1 ∈ R
n×n
+ . It iswell-known [13] that if 0 < α ≤ 1 then cα

j > 0 for j = 1, 2, . . ..
Therefore, from (9.9b) we have Φ j ∈ R

n×n
+ for j = 0, 1, 2, . . . and from (9.9a) xi ∈

R
n+ for i = 1, 2, . . ., since by assumption (9.11) f1(xi−1, ui ) = A1 f (xi−1, ui ) ∈ R

n+
for xi ∈ R

n+ and ui ∈ R
m+, i ∈ Z+. If (9.12) holds then from (9.3b) we have yi ∈ R

p
+

for i ∈ Z+.

Necessity. If f (xi−1, ui ) = 0 then xi ∈ R
n+, i ∈ Z+ only if A1 ∈ R

n×n
+ and by Lemma

9.1 implies the asymptotic stability of thematrix A ∈ R
n×n
+ . Note that xi ∈ R

n+ for i ∈
Z+ implies the condition (9.11). Similarly, yi ∈ R

p
+ for i ∈ Z+ implies the condition

(9.12). �

9.4 Stability of the Positive Nonlinear Systems

Consider the fractional nonlinear system for zero inputs (ui = 0 and f (xi−1, 0) =
f̄2(xi−1) in the form

Δαxi = Axi + f̄2(xi−1), i ∈ Z+, 0 < α ≤ 1 (9.13)

or

xi =
i∑

j=1

A1c
α
j xi− j + f2(xi−1), i ∈ Z+, 0 < α ≤ 1, (9.14a)
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where
f2(xi−1) = A1 f̄2(xi−1), i ∈ Z+ (9.14b)

and A1 is defined by (9.7).

Definition 9.6 The fractional positive nonlinear system (9.13) is called asymptoti-
cally stable in the region D ∈ R

n+ if xi ∈ R
n+, i ∈ Z+ and

lim
i→∞ xi = 0 for x0 ∈ D ∈ R

n
+.

To test the asymptotic stability of the system the Lyapunov method will be used.
As a candidate of the Lyapunov function we choose

V (xi ) = cT xi > 0 for xi ∈ R
n
+, i ∈ Z+, (9.15)

where c ∈ R
n+ is a vector with strictly positive components ci > 0 for i = 1, . . . , n.

Using (9.14) and (9.15) we obtain

ΔV (xi ) = V (xi+1) − V (xi ) = cT xi+1 − cT xi

= cT
[
i+1∑
j=1

A1cα
j xi− j+1 + f2(xi ) −

(
i∑

j=1
A1cα

j xi− j + f2(xi−1)

)]

= cT
[

i∑
j=1

A1cα
j (xi− j+1 − xi− j ) + A1cα

i+1x0 + f2(xi ) − f2(xi−1)

]
< 0

and

i∑

j=1

A1c
α
j (xi− j+1 − xi− j ) + A1c

α
i+1x0 + f2(xi ) − f2(xi−1) < 0, xi ∈ D ∈ R

n
+

(9.16)
i ∈ Z+, since c ∈ R

n+ is strictly positive.
Therefore, the following theorem has been proved.

Theorem 9.8 The positive discrete-time nonlinear system (9.13) is asymptotically
stable in the region D ∈ R

n+ if the condition (9.16) is satisfied.

Example 9.1 Consider the discrete-time nonlinear system (9.13) with

xi =
[
x1,i
x2,i

]
, A =

[
0.3 0.1
0.2 0.4

]
, f2(xi ) =

[
x1,i x2,i
x22,i

]
.

In this case

A1 = [I2 − A]−1 =
[
0.7 −0.1

−0.2 0.6

]−1

= 1

0.4

[
0.6 0.1
0.2 0.7

]
= 1

4

[
6 1
2 7

]
∈ R

2×2
+ .
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Fig. 9.1 Stability region (inside the curved line)

The nonlinear system is positive, since the matrix A ∈ R
2×2
+ is asymptotically

stable and f2(xi ) ∈ R
2+ for all xi ∈ R

2+, i ∈ Z+.
The region D ∈ R

2+ is defined by

D := {x1,i , x2,i } =
i∑

j=1
A1c

α
j xi− j+1 + A1c

α
i+1x0 − xi + f2(xi )

=

⎡

⎢⎢⎢⎢⎣

1.5

(
i∑

j=1
cαj x1,i− j+1 + cαi+1x10

)
+ 0.25

(
i∑

j=1
cαj x2,i− j+1 + cαi+1x20

)
− x1,i + x1,i x2,i

0.5

(
i∑

j=1
cαj x1,i− j+1 + cαi+1x10

)
+ 1.75

(
i∑

j=1
cαj x2,i− j+1 + cαi+1x20

)
− x2,i + x22,i

⎤

⎥⎥⎥⎥⎦

(9.17)

Let us assume

x10 = 0.1, x20 = 0.2, α = 0.5, i = 4. (9.18)

The region defined by (9.17) with (9.18) is shown in Fig. 9.1.

9.5 Concluding Remarks

The positivity and asymptotic stability of the discrete-time nonlinear systems
have been addressed. Necessary and sufficient conditions for the positivity
of the discrete-time nonlinear systems have been established (Theorem 9.7). Using
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the Lyapunov direct method the sufficient conditions for asymptotic stability of the
discrete-time nonlinear systems have been proposed (Theorem 9.8). The effective-
ness of the conditions has been demonstrated on Example 9.1. The considerations
can be extended to fractional continuous-time nonlinear systems.

An open problem is an extension of the conditions to the descriptor fractional
discrete-time and continuous-time nonlinear systems.
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Chapter 10
Continuous-Time Compartmental
Switched Systems

Maria Elena Valcher and Irene Zorzan

Abstract In this chapter we investigate state-feedback and output-feedback stabi-
lization of compartmental switched systems, under the additional requirement that
the resulting switched system is in turn compartmental. Necessary and sufficient
conditions for the solvability of the two problems are given. Subsequently, affine
compartmental switched systems are considered, and a characterization of all the
switched equilibria that can be “reached” under some stabilizing switching law σ is
provided.

Keywords Compartmental system · Linear/affine switched system · Stabilization ·
Switched equilibrium point

10.1 Introduction

Compartmental switched systems (CSSs) are positive switched systems whose sub-
systems are (linear) compartmental models. While the general class of positive
switched systems has attracted a great deal of attention over the last 10 years
[4, 9, 12, 15, 18], a systematic analysis of the class of CSSs was initiated only
recently in [25, 26].

This class of systems provides an effective mathematical description of real phe-
nomena/processes that are characterized by some distinguished features: firstly, they
undergo different working conditions, each of them captured by a different linear
state-space model; secondly, their describing variables are intrinsically nonnegative
and obey some conservation law (e.g., mass, energy, fluid).

This is the case, for instance,whenmodeling afluid network: different open/closed
configurations of the pipes connecting the tanks correspond to different operating
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conditions, and the state variables representing fluid levels in the tanks evolve in
accordancewith a fluid conservation law [4].Analogously, a compartmental switched
systemmay be adopted to describe a thermal system: state variables represent relative
temperatures in the various rooms with respect to the external temperature, and each
subsystem corresponds to a specific set of heat transmission coefficients that depend
on the open/closed configurations of doors and windows between the rooms [4].

As a third example, consider a multicompartmental model describing the lung
functioning: the behaviour of the lung, regarded as an agglomeration of subunits,
differs significantly in the inspiration and in the expiration phases, and the time
evolution of the state variables representing the volumeof each subunit is governed by
a mass conservation law [14, 16, 26]. Another practical example arises, for instance,
when describing certain economical systems [17].

In [25, 26] stability under arbitrary switching or under dwell-time switching and
stabilizability of CSSs with autonomous subsystems have been addressed. Specifi-
cally, it has been shown that, differently from the broader class of positive switched
systems, for CSSs asymptotic stability is equivalent to the fact that all the subsystem
matrices are Hurwitz. On the other hand, a CSS is stabilizable if and only if there
exists a Hurwitz convex combination of the subsystem matrices.

In this chapter, we consider CSSs whose subsystems are compartmental and non-
autonomous. Specifically, we assume that all the subsystems are single-input com-
partmental state-space models. For this class of CSSs we investigate state-feedback
and output-feedback stabilization. In the final part of the chapter, we address affine
compartmental switched systems (ACSS) [3, 5] and provide some results on the
“reachability” of their switched equilibrium points, by means of switching control
laws.

10.2 Notation

Given k, n ∈ Z, with k ≤ n, the symbol [k, n] denotes the integer set {k, k +
1, . . . , n}. R+ is the semiring of nonnegative real numbers. In the sequel, the (i, j)th
entry of a matrix A is denoted by [A]ij, while the ith entry of a vector v by [v]i. A
matrix A+ with entries in R+ is a nonnegative matrix (A+ ≥ 0); if A+ ≥ 0 and at
least one entry is positive, A+ is a positive matrix (A+ > 0), while if all its entries are
positive it is a strictly positive matrix (A+ � 0). The same notation is adopted for
nonnegative, positive and strictly positive vectors. We let ei denote the ith vector of
the canonical basis inRn (where n is always clear from the context), whose entries are
all zero except for the ith one that is unitary. 1n is the n-dimensional vector with all
entries equal to 1 (the dimension nwill be omitted if it is clear from the context).AM

denotes the set of nonnegative vectors α ∈ R
M+ such that 1�α = 1. Given a matrix

A ∈ R
n×m, its nonzero pattern ZP(A) is the set {(i, j) ∈ [1, n] × [1,m] : [A]ij �= 0}.

For a vector v ∈ R
n, the nonzero pattern is defined asZP(v) := {i ∈ [1, n] : [v]i �= 0}.



10 Continuous-Time Compartmental Switched Systems 125

A real square matrix A isHurwitz if all its eigenvalues lie in the open left complex
halfplane, i.e., for every λ belonging to the spectrum σ(A) of A we have Re(λ) < 0.
AMetzler matrix is a real square matrix, whose off-diagonal entries are nonnegative.
If A is an n × n Metzler matrix, then [22] it exhibits a real dominant eigenvalue,
known as Frobenius eigenvalue and denoted by λF(A). This means that λF(A) >

Re(λ),∀ λ ∈ σ(A), λ �= λF(A), and there exists a positive eigenvector (Frobenius
eigenvector)vF corresponding toλF(A).Moreover, for aMetzlermatrix the following
monotonicity property holds [22]: let A, Ā ∈ R

n×n be Metzler matrices such that
A ≤ Ā, then λmax(A) ≤ λmax(Ā); if in addition Ā is irreducible, then A < Ā implies
λmax(A) < λmax(Ā).

An n × n, n ≥ 2, nonzero matrix A is reducible [10] if there exists a permutation
matrix Π such that (s.t.)

Π�AΠ =
[
A11 A12

0 A22

]
,

where A11 and A22 are square (nonvacuous) matrices, otherwise it is irreducible. In
general, given a Metzler matrix A, a permutation matrix Π can be found s.t.

Π�AΠ =

⎡

⎢⎢⎢⎣

A11 A12 . . . A1s

0 A22 . . . A2s
...

. . .
...

0 . . . Ass

⎤

⎥⎥⎥⎦ , (10.1)

where each diagonal block Aii, of size ni × ni, is either scalar (ni = 1) or irreducible.
(10.1) is usually known as Frobenius normal form of A [11, 19].

A single-input (linear) compartmental system is a linear state-space model:

ẋ(t) = Ax(t) + Bu(t), (10.2)

where B is a nonnegative vector in R
n+, while the state matrix A ∈ R

n×n is Metzler
and the entries of each of its columns sum up to a nonpositive number, i.e., 1�

n A ≤ 0.
A square matrix endowed with these two properties is called compartmental matrix
(see [13, 21]). For any such matrix the Frobenius eigenvalue λF(A) is nonpositive,
and if λF(A) = 0 then A is simply stable, by this meaning that it has the constant
mode associatedwithλF(A) = 0, but no unstablemodes.Moreover, a compartmental
irreducible matrix A is non-Hurwitz if and only if 1�

n A = 0 [23].
Given a Metzler matrix A ∈ R

n×n, we associate with it [6, 7, 20, 24] a digraph
D(A) = {V ,E }, where V = {1, . . . , n} is the set of vertices and E is the set of arcs
(or edges). There is an arc (j, �) ∈ E from j to �, with j �= �, if and only if [A]�j > 0.
A sequence j1 → j2 → · · · → jk → jk+1 is a path of length k from j1 to jk+1 provided
that (j1, j2), . . . , (jk, jk+1) are elements of E .

We say that vertex � is accessible from j, with j �= �, if there exists a path in
D(A) from j to � (equivalently, ∃ k ∈ N s.t. [Ak]�j > 0). Two distinct vertices � and j
are said to communicate if each of them is accessible from the other. Each vertex is
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assumed to communicate with itself. The concept of communicating vertices allows
to partition the set of vertices V into communicating classes, say C1,C2, . . . ,Cs.
Class Cj accesses class Ci if there is a path from some vertex k ∈ Cj to some vertex
h ∈ Ci. Each class Ci has clearly access to itself.

10.3 Linear Compartmental Switched Systems

In this chapter, by a (continuous-time, single-input) linear compartmental switched
system (LCSS) we mean a system described by the following equation:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), t ∈ R+, (10.3)

where x(t) ∈ R
n+ and u(t) ∈ R+ denote the value at time t of the n-dimensional state

variable and of the scalar input, respectively. σ : R+ → [1,M] is a switching func-
tion. For every i ∈ [1,M], Ai ∈ R

n×n is a compartmental matrix and Bi ∈ R
n+ is a

positive vector, namely Bi > 0 for every i ∈ [1,M].1 Consequently, each ith subsys-
tem (Ai,Bi) is a linear non-autonomous compartmental system. We assume that σ is
right continuous and in every finite interval it has a finite number of discontinuities.

Theproblemwewant to address is the followingone: assume that all the subsystem
matricesAi, i ∈ [1,M], are non-Hurwitz and that the switching function σ is arbitrary
but known at every time instant t ≥ 0. We want to determine, if possible, a feedback
control law, depending at each time t ≥ 0 on the value of the switching function σ

at t, such that the resulting feedback switched system is still compartmental and its
state trajectories converge to zero for every x(0) > 0 and every σ , namely it is an
asymptotically stable LCSS [25, 26].

We will investigate two kinds of feedback stabilization: state-feedback stabiliza-
tion in Sect. 10.4 and output-feedback stabilization in Sect. 10.5.

10.4 State-Feedback Stabilization

State-feedback stabilization problem: determine, if possible, a state-feedback control
law

u(t) = Kσ(t)x(t), (10.4)

with Ki ∈ R
1×n for every i ∈ [1,M], that makes the state trajectory converge to zero

for every initial condition x(0) > 0 and every switching function σ , while preserving
the compartmental property of the resulting closed-loop switched system.

1As a matter of fact, this assumption is only for the sake of simplicity. Some of the Bi’s could be
zero, but in that case the corresponding matrices Ai’s should be necessarily Hurwitz, in order for
stabilization to be possible.
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First of all, we observe that, under the state-feedback law (10.4), the resulting
closed-loop switched system takes the following form

ẋ(t) = (Aσ(t) + Bσ(t)Kσ(t))x(t), (10.5)

and hence the control input (10.4) solves the state-feedback stabilization problem if
and only if (10.5) is an asymptotically stable LCSS. On the other hand, it has been
proven in Proposition 1 of [25] that for LCSSs stability under arbitrary switching is
equivalent to the fact that all the subsystemsmatrices are Hurwitz. Hence, solving the
state-feedback stabilization problem means determining state-feedback matrices Ki,
i ∈ [1,M], such that for every i ∈ [1,M] the matrix Ai + BiKi is compartmental and
Hurwitz.Wefirst observe that ifKi is a positivematrix, thenAi + BiKi > Ai andby the
monotonicity of the Frobenius eigenvaluewe can claim thatλF(Ai + BiKi) ≥ λF(Ai).
So, as Ai is not Hurwitz, then Ai + BiKi is not Hurwitz for every choice of Ki > 0.
On the other hand, if there exists a matrix Ki ∈ R

1×n, with both positive and negative
entries, that makes Ai + BiKi compartmental and Hurwitz, we can always introduce
a permutation matrix Π such that

KiΠ = [
Ki+ Ki−

]
, Ki+ > 0, and Ki− � 0.

It is clearly seen that ifAi + BiKi (and henceΠ�AiΠ + Π�BiKiΠ ) is compartmental
and Hurwitz, then also Π�AiΠ + Π�Bi

[
0 Ki−

]
is compartmental and Hurwitz. So,

we can always restrict our attention to matrices Ki < 0.
Now that we have focused our attention on negative state-feedback matrices, we

can show that the solvability of the state-feedback stabilization problemonly depends
on the nonzero patterns of the pairs (Ai,Bi), i ∈ [1,M].
Proposition 10.1 For every i ∈ [1,M], let Πi be an n × n permutation matrix such
that

Π�
i AiΠi =

⎡

⎢⎢⎢⎣

A(i)
11 A(i)

12 . . . A(i)
1si

0 A(i)
22 . . . A(i)

2si
...

. . .
...

0 . . . . . . A(i)
sisi

⎤

⎥⎥⎥⎦ , Π�
i Bi =

⎡

⎢⎢⎢⎣

B(i)
1

B(i)
2
...

B(i)
si

⎤

⎥⎥⎥⎦ , (10.6)

where A(i)
jj ∈ R

n(i)
j ×n(i)

j , j ∈ [1, si], are either scalar or irreducible matrices and B(i)
j ∈

R
n(i)
j

+ . For every i ∈ [1,M], set ri := max{j ∈ [1, si] : B(i)
j �= 0}. The

state-feedback stabilization problem is solvable if and only if for every i ∈ [1,M] the
following three conditions hold:

(a) A(i)
jj is (compartmental and) Hurwitz for every j �= ri;

(b) B(i)
j = 0 for every j �= ri;

(c) there exists � ∈ [1, n(i)
ri ] such that ZP(B(i)

ri ) \ {�} ⊆ ZP(col�(A(i)
riri)) \ {�}.
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Proof We will prove that the existence of Ki < 0 such that Ai + BiKi is compart-
mental and Hurwitz is equivalent to the fact that conditions (a), (b) and (c) hold for
the pair (Ai,Bi). Since the asymptotic stability of system (10.5) is equivalent to the
fact that all matrices Ai + BiKi, i ∈ [1,M], are compartmental and Hurwitz [25], the
result will immediately follow.

Consider the pair (Ai,Bi) for a specific value of the index i ∈ [1,M]. For the sake
of simplicity, in the following we will drop the dependence on the index i, and hence
refer to the pair as (A,B). Also, we will assume that the pair (A,B) is already in the
form (10.6) (namely Π = In). This does not affect the substance of the proof, only
the notation.

(Necessity) LetK ∈ R
1×n,K < 0, be any state-feedbackmatrix such that A + BK

is compartmental and Hurwitz, and let us partition K in a way consistent with A and
B, namely as

K = [
K1 K2 . . . Ks

]
,

with Kj ∈ R
1×nj , Kj ≤ 0. We first prove necessity. Necessity of condition (a) can be

proven by following the same lines as those of Proposition 1 in [27]. Specifically, for
every K ∈ R

1×n the matrix A + BK takes the block-triangular form given in (10.7).

A + BK=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 + B1K1 . . . A1r + B1Kr
.
.
.

. . .
.
.
.

BrK1 . . . Arr + BrKr

A1r+1 + B1Kr+1 . . . A1s + B1Ks
.
.
.

. . .
.
.
.

Arr+1 + BrKr+1 . . . Ars + BrKs

Ar+1r+1 . . . Ar+1s
.
.
.

. . .
.
.
.

0 . . . Ass

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.7)

AsK < 0, if r > 1 anecessary condition for thismatrix to be compartmental is that
BrKj = 0 for every j ∈ [1, r − 1], and since Br > 0, this means that Kj = 0 for every
j ∈ [1, r − 1] (if r = 1 the result is trivially true). Consequently, the matrix A + BK
takes the same block triangular form asA, with each diagonal blockAjj + BjKj, j �= r,
coinciding with the corresponding diagonal block Ajj in A. So, in order for the matrix
A + BK to be Hurwitz, all the diagonal blocks Ajj, j �= r, must be (compartmental
and) Hurwitz.

To prove necessity of condition (b) notice that since Arr is compartmental, irre-
ducible and non-Hurwitz, 1�Arr = 0, and hence, by the compartmental property ofA,
it must be Ajr = 0 for every j < r. But then, since Kr < 0, for every j < r the matrix
Ajr + BjKr = BjKr ≥ 0 if and only if Bj = 0 for every j < r, namely condition (b)
holds.

To prove necessity of condition (c) notice that for every � ∈ [1, nr], if there exists
h ∈ ZP(Br) \ {�} such that h /∈ ZP(col�(Arr)) \ {�}, then [Arr + BrKr]h� ≥ 0 if and
only if [Arr + BrKr]h� = 0 namely if and only if [Kr]� = 0. Hence, if there does not
exist � ∈ [1, nr] such that ZP(Br) \ {�} ⊆ ZP(col�(Arr)) \ {�}, then Kr = 0 and the
matrix Arr + BrKr = Arr cannot be Hurwitz.
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(Sufficiency) We now prove that when conditions (a), (b) and (c) hold, a matrix
K < 0 such that A + BK is compartmental and Hurwitz exists. Let � ∈ [1, nr] be
such that ZP(Br) \ {�} ⊆ ZP(col�(Arr)) \ {�} and set k∗

� := minj∈[1,nr ]
j �=�

[Arr]j�
[Br]j . Then,

for every k� with −k∗
� ≤ k� < 0, the matrix

K̄r = [
0 . . . k� . . . 0

] = k�e�
�

is such that Arr + BrK̄r < Arr is still compartmental. Moreover, recalling that Arr is
irreducible, by the monotonicity property of the spectral abscissa, λF(Arr + BrK̄r) <

λF(Arr) = 0. Finally, set K = [
0 . . . 0 K̄r 0 . . . 0

]
. Condition (b) ensures that A +

BK is still compartmental, while condition (a) ensures that A + BK is also Hurwitz.

Remark 10.1 Proposition 10.1 extends the results about stabilization of continuous-
time positive systems obtained in [8] to the class of compartmental switched systems.
Indeed, in Theorem 1 of [8] necessary and sufficient conditions for the stabilization
of a single pair (Ai,Bi), with Ai Metzler and irreducible, and Bi > 0, meanwhile
preserving the Metzler property of the resulting matrix Ai + BiKi, have been pro-
vided, while Theorem 2 of [8] addresses the same problem without the irreducibility
assumption on Ai. The compartmental assumption on both Ai and the closed loop
matrix Ai + BiKi had two consequences: on the one hand it allowed us to derive the
previous characterization without introducing restrictive assumptions as in [8] (see,
in particular, the hypothesis that there exists x̄ � 0 such that Aix̄ = 0). On the other
hand it led to a set of conditions that are slightly more restrictive than those derived
in Theorem 2 of [8].

Remark 10.2 As an immediate consequence of the previous proof (see necessity
of condition (b)), it follows that if A is a compartmental and reducible matrix in
Frobenius normal form (10.1), A is non-Hurwitz if and only if there exists i ∈ [1, s]
such that Aii is compartmental, irreducible (or scalar) and non-Hurwitz. For every
such block Aii, it must be Aji = 0 for every j ∈ [1, i − 1]. Hence, in the general case,
a reducible compartmental matrix is non-Hurwitz if and only if a permutation matrix
Π can be found such that Π�AΠ has the following structure

Π�AΠ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 . . . 0 A1q+1 . . . A1s

0 A22 . . . 0 A2q+1 . . . A2s
...

. . .
...

...
...

0 . . . . . . Aqq Aqq+1 . . . Aqs

0 . . . . . . 0 Aq+1q+1 . . . Aq+1s
...

...
...

. . .
...

0 . . . . . . 0 . . . . . . Ass

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
1�Ajj = 0,∀ j ∈ [1, q],

Ajj Hurwitz,∀ j ∈ [q + 1, s].

(10.8)
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10.5 Output-Feedback Stabilization

In this section we assume that for the LCSS (10.3) a scalar output measurement
y(t) = Cσ(t)x(t) is available, namely we consider a single-input single-output LCSS
taking the following form:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), (10.9.1)

y(t) = Cσ(t)x(t), t ∈ R+, (10.9.2)

where for every i ∈ [1,M] thematricesAi ∈ R
n×n are compartmental, and the vectors

Bi ∈ R
n+ andCi ∈ R

1×n
+ are positive. In this new set-up,we consider a problem similar

to the one considered in the previous section, but the control input is now an output-
feedback control input, i.e., u(t) = kσ(t)y(t) = kσ(t)Cσ(t)x(t), where we can constrain
our attention (by the same reasoning we adopted in the previous section) to the case
ki < 0 for every i ∈ [1,M].

Output-feedback stabilization problem: determine, if possible, an output-feedback
control input

u(t) = kσ(t)y(t), (10.10)

with ki < 0 for every i ∈ [1,M], that makes the state trajectory converge to zero for
every initial condition x(0) > 0 and every switching function σ , while preserving
the compartmental property of the resulting closed-loop switched system.

Notice that,when the control input (10.10) is applied to system (10.9), the resulting
closed-loop switched system is given by

ẋ(t) = (Aσ(t) + kσ(t)Bσ(t)Cσ(t))x(t). (10.11)

By following the same reasoning as before, we can claim that the control input
(10.10) solves the output-feedback stabilization problem if and only if the matrix
Ai + kiBiCi is compartmental andHurwitz for every i ∈ [1,M].Of course, solving the
output-feedback stabilization problemmeans solving the state-feedback stabilization
problem with the additional constraint that every feedback matrix Ki := kiCi is a
scaled version of the output matrix Ci. It is then clear that conditions (a)–(c) of
Proposition 10.1 are necessary conditions also for the solvability of the output-
feedback stabilization problem (however, they are not sufficient). To investigate the
solvability of the output-feedback stabilization problem, let us assume that, when
the pair (Ai,Bi) is described as in (10.6), also the output matrix Ci is partitioned in
a way consistent with Ai and Bi, namely as

Ci =
[
C(i)
1 C(i)

2 . . . C(i)
si

]
, (10.12)
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with C(i)
j ∈ R

1×n(i)
j

+ . Again, it turns out that the solvability of the output-feedback
stabilization problem only depends on the nonzero pattern of all triples (Ai,Bi,Ci),
i ∈ [1,M].
Proposition 10.2 For every i ∈ [1,M], let Πi be an n × n permutation matrix such
that the pair (Π�

i AiΠi,Π
�
i Bi) and the output matrix CiΠi are described as in (10.6)

and (10.12), respectively. Assume that for every i ∈ [1,M] conditions (a) and (b) of
Proposition 10.1 are satisfied, where ri is the index of the unique nonzero block in
Π�

i Bi. For every i ∈ [1,M], set

ti := min{j ∈ [1, si] : C(i)
j �= 0}.

The output-feedback stabilization problem is solvable if and only if for every i ∈
[1,M] the following three conditions hold:

(c1) the first nonzero block in CiΠi corresponds to the unique nonzero block in
Π�

i Bi, namely ti = ri;
(c2) for every j ∈ [ri + 1, si] such that C(i)

j �= 0 the following property holds:

ZP(B(i)
ri ) × ZP(C(i)

j ) ⊆ ZP(A(i)
rij

); (10.13)

(c3)
(
ZP(B(i)

ri ) × ZP(C(i)
ri )

) \ {(�, �) : � ∈ [1, n(i)
ri ]} ⊆ ZP(A(i)

riri) \ {(�, �) : � ∈
[1, n(i)

ri ]}.
Proof As in the proof of Proposition 10.1, we will show that there exists ki < 0 such
that Ai + kiBiCi is compartmental and Hurwitz if and only if conditions (c1), (c2)
and (c3) hold for the triple (Ai,Bi,Ci). Since asymptotic stability of system (10.11)
is equivalent to the fact that all matrices Ai + kiBiCi, i ∈ [1,M], are compartmental
and Hurwitz, the result follows.

Consider the triple (Ai,Bi,Ci) for a specific value of the index i ∈ [1,M]. For the
sake of simplicity, similarly to what we did in the proof of the previous Proposition
10.1, we drop the dependence on the index i, and hence refer to the triple as (A,B,C),
and we assume that the triple is already in the desired block form (i.e., Π = In).

As condition (b) of Proposition 10.1 holds, namely Bj = 0 for every j �= r, then
for every scalar k the matrix A + kBC takes the following form

A + kBC=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 . . . A1r
...

. . .
...

kBrC1 . . . Arr + kBrCr

A1r+1 . . . A1s
...

. . .
...

Arr+1 + kBrCr+1 . . . Ars + kBrCs

Ar+1r+1 . . . Ar+1s
...

. . .
...

0 . . . Ass

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Recalling that Br �= 0, a negative scalar k is such that A + kBC is compartmental if
and only if the following conditions hold:

(1) kBrCj = 0 for every j ∈ [1, r − 1], namely Cj = 0 for every j ∈ [1, r − 1] (i.e.,
condition (c1) holds);

(2) Arr + kBrCr is compartmental;
(3) Arj + kBrCj is a nonnegative matrix for every j ∈ [r + 1, s].
It is easy to verify that there exists k < 0 satisfying condition (3) if and only if for
every j ∈ [r + 1, s] such that Cj �= 0 condition (10.13) holds. On the other hand,
since by hypothesis condition (a) of Proposition 10.1 holds true, A + kBC is com-
partmental and Hurwitz if and only if the matrix Arr + kBrCr is compartmental and
Hurwitz. Recalling that Arr is compartmental, irreducible and non-Hurwitz, by the
monotonicity property of the spectral abscissa it follows that there exists k < 0 such
that Arr + kBrCr is compartmental and Hurwitz if and only if also condition (c3)
holds true.

10.6 Affine Compartmental Switched Systems

In this section we consider (continuous-time, single-input) affine compartmental
switched systems (ACSS), i.e., compartmental systems of type (10.3) for which
the input function takes a constant value, i.e., u(t) = ū,∀t ∈ R+. An ACSS is thus
described by

ẋ(t) = Aσ(t)x(t) + bσ(t), (10.14)

where bσ(t) := Bσ(t)ū. Clearly, for every i ∈ [1,M], Ai is compartmental and bi is
positive.We assume that all pairs (Ai, bi), i ∈ [1,M], are stabilizable, in the standard
sense of linear systems. This amounts to saying thatwhen thematrixAi is notHurwitz,
and henceλF(Ai) = 0, then theHautus testmatrix evaluated at zero, [sIn − Ai|bi]|s=0,
has rank n, namely bi cannot be expressed as a linear combination of the columns of
Ai. In particular, bi �= 0.

We say that a state x̄ > 0 is a switched equilibrium point of (10.14) if the origin is
included in the convex hull of the vectors Aix̄ + bi, i ∈ [1,M] (see [1] for details on
discontinuous differential equations). Notice that, in general, x̄ is not an equilibrium
point of any of the affine subsystems ẋ(t) = Aix(t) + bi, i ∈ [1,M]. However, if
x̄ > 0 is a switched equilibrium point, there exists α = [

α1 . . . αM
]� ∈ AM such

that

0 =
M∑

i=1

αi(Aix̄ + bi) = A(α)x̄ + b(α), (10.15)

where A(α) := ∑M
i=1 αiAi, and b(α) := ∑M

i=1 αibi.By exploiting Theorem 2 in [25],
we want to provide a characterization of all the switched equilibria that can be
“reached” under some stabilizing switching law σ (see also [5]), by this meaning



10 Continuous-Time Compartmental Switched Systems 133

that for every ε > 0 we can ensure that there exists t̄ > 0 such that for every t ≥ t̄ the
distance between the state trajectory and the switched equilibrium point is smaller
than ε. To this end we need a preliminary lemma.

Lemma 10.1 Let A ∈ R
n×n be a reducible, non-Hurwitz, compartmental matrix in

Frobenius normal form:

A =

⎡

⎢⎢⎢⎣

A11 A12 . . . A1s

0 A22 . . . A2s
...

. . .
...

0 . . . Ass

⎤

⎥⎥⎥⎦ , (10.16)

where the diagonal blocks Aii ∈ R
ni×ni , i ∈ [1, s], are either scalar (ni = 1) or irre-

ducible matrices. Let Ci denote the communication class in D(A) associated with
the block Aii. The matrix A admits as left Frobenius eigenvector vF, corresponding to
λF(A) = 0, a positive vector that can be partitioned according to the block-partition
of A

v�
F = [

v�
1 v�

2 . . . v�
s

]
,

and whose blocks vi ∈ R
ni+ satisfy the following conditions:

(1) if Ci is a conservative class, namely it is associated with a non-Hurwitz block
Aii, then vi = 1ni ;

(2) if Ci is associated with a Hurwitz block Aii, and Ci has not access to any con-
servative class, then vi = 0;

(3) if Ci is associated with a Hurwitz block Aii, and Ci has access to some conserv-
ative class, then vi � 0.

Proof We first note that, by the assumptions on A (see Remark 10.2), a permutation
matrix Π can be found such that Π�AΠ is described as in (10.8), where the first
q (irreducible or scalar) diagonal blocks are singular and satisfy 1�

niAii = 0, while
the remaining s − q diagonal blocks are Hurwitz. It entails no loss of generality
assuming that A has the structure given in (10.8) (namely Π = In), since this can be
achieved by simply permuting the blocks of A and hence those of vF .

If we denote by I1,I2 and I3 the set of indices of the classes in (1), (2) and
(3), respectively, then clearly I1 = [1, q], while I2 ∪ I3 = [q + 1, s]. Moreover,
no class Ci, i ∈ I2, has access to any class Cj, j ∈ I1 ∪ I3.

(1) The conservative classes are those corresponding to the first q diagonal blocks,
andwehave alreadypointedout that1�

niAii = 0,∀ i ∈ I1 = [1, q]. So, the (essen-
tial) uniqueness of the left Frobenius eigenvector of an irreduciblematrix, ensures
that vi = 1ni ,∀ i ∈ I1.

(2) We prove this result by induction. Let i ∈ [q + 1, s] be the smallest index inI2.
Then Ci is a communication class associated with a Hurwitz block and it has
access to no other class, namely Aji = 0 for every j < i. So, condition

v�
1 A1i + v�

2 A2i + · · · + v�
j Aji + · · · + v�

i Aii = 0, (10.17)
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becomes v�
i Aii = 0, and since Aii is nonsingular, then vi = 0.

Suppose, now, that i ∈ [q + 2, s], i ∈ I2, and we have shown that for every
j ∈ I2, j < i, condition (2) holds. Then for every j < i, if j ∈ I1 ∪ I3 then
Aji = 0, if j ∈ I2 then vj = 0. Consequently, (10.17) becomes, again, v�

i Aii = 0,
and since Aii is nonsingular, vi = 0.

(3) We prove also this fact by induction. Let i ∈ [q + 1, s] be the smallest index in
I3. ThenCi is a communication class associated with a Hurwitz block and it has
direct access to (distance 1 from) some conservative class Cj, j ∈ I1 = [1, q],
by this meaning that there is an arc from some vertex in Ci to some vertex in
Cj. This amounts to saying that Aji > 0, ∃ j ∈ I1. On the other hand, for every
k < i, k ∈ I2, (if any),we have already proved that vk = 0. So, condition (10.17)
implies

v�
i = [v�

1 A1i + v�
2 A2i + · · · + v�

j Aji + · · · + v�
i−1Ai−1i](−Aii)

−1

≥ [v�
j Aji](−Aii)

−1,

where we used the fact that Aii is Hurwitz and irreducible (or scalar), and hence
the matrix (−Aii)

−1 is strictly positive [2]. On the other hand, vj = 1nj � 0 and
Aji > 0. This ensures that [v�

j Aji](−Aii)
−1 � 0, and hence vi � 0.

Suppose, now, that i ∈ [q + 2, s], i ∈ I3, and we have shown that for every
j ∈ I3, j < i, condition (3) holds. Then for every j < i, if j ∈ I1 ∪ I3 then
vj � 0 (and there exists j ∈ I1 ∪ I3 such that Aji > 0), if j ∈ I2 then vj = 0.
Consequently, (10.17) leads, again, to v�

i ≥ [v�
j Aji](−Aii)

−1 � 0.

This completes the proof.

We are now in a position to introduce the main result of this section, that adapts to
the class of affine compartmental switched systems the characterization first given
in [3].

Theorem 10.1 Suppose that the switched compartmental system (10.14) is expo-
nentially stabilizable [3, 25], by this meaning that when all the bi’s are set to zero in
(10.14) the state trajectories can be driven to zero (by resorting to some switching
control law). Also, assume that each pair (Ai, bi), i ∈ [1,M], in (10.14) is stabiliz-
able. Then the set of all switched equilibrium points of system (10.14) that can be
reached by resorting to some switching control law σ is given by

E = {x̄ > 0 : x̄ = −A(α)−1b(α), ∃ α ∈ A H
M },

where A H
M := {α ∈ AM : A(α) is Hurwitz}.

Proof We preliminary notice that the exponential stabilizability assumption on the
switched compartmental system

ẋ(t) = Aσ(t)x(t), (10.18)
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ensures by Theorem 2 in [25] that the setA H
M is not empty, and hence E �= ∅.Clearly,

all elements of E are switched equilibrium points, since they satisfy Eq. (10.15). We
nowprove the converse, namely that all equilibria belong toE . This amounts to saying
that if x̄ > 0 satisfies A(α)x̄ + b(α) = 0 for some α ∈ AM , then A(α) is Hurwitz.

Suppose, by contradiction, it is not. Then, being the convex combination of com-
partmental matrices, it will be compartmental with λF(A(α)) = 0. If A(α) is irre-
ducible, then 1�

n A(α) = 0. Consequently, for every i ∈ [1,M] such that αi > 0,
one has 1�

n Ai = 0, thus implying that Ai is not Hurwitz. On the other hand,
1�
n b(α) = 1�

n (A(α)x̄ + b(α)) = 0, and this implies that for every i ∈ [1,M] such
that αi > 0, one has bi = 0. This contradicts the stabilizability assumption on the
pairs (Ai, bi), i ∈ [1,M], such that αi > 0.

Suppose, now, that A(α) is reducible. It entails no loss of generality assuming that
A(α) is in Frobenius normal form (10.16) and b(α) is accordingly partitioned as

b(α) =

⎡

⎢⎢⎢⎣

B1(α)

B2(α)
...

Bs(α)

⎤

⎥⎥⎥⎦ ,

where Aii(α) ∈ R
ni×ni , i ∈ [1, s], are either scalar (ni = 1) or irreducible matrices,

and Bi(α) ∈ R
ni+. This is a not restrictive assumption, since we can always reduce

ourselves to this situation by resorting to a suitable permutation matrixΠ , and hence
moving from the pair (A(α), b(α)) to the pair (Π�A(α)Π,Π�b(α)). Now consider
the left Frobenius eigenvector of A(α), vF , corresponding to λF(A(α)) = 0 and given
in Lemma 10.1, partitioned accordingly to the block-partition of A(α) and b(α) as

v�
F = [

v�
1 v�

2 . . . v�
s

]
, with vi ∈ R

ni+.

By the previous lemma, we know that vi �= 0 if and only if the class Ci is either
conservative (Aii(α) is singular) or it has access to some conservative class, and if
vi �= 0 then vi � 0. We denote by I the set of indices i ∈ [1, s] such that vi � 0.
According to the notation used within the proof of Lemma 10.1,I = I1 ∪ I3. So,
condition

v�
F (A(α)x̄ + b(α)) = 0

implies v�
F b(α) = 0, and hence Bi(α) = 0 for every i ∈ I . This allows to say that a

(new) permutation matrix Π̃ can be found such that

Π̃�A(α)Π̃ =
⎡

⎣
D11(α) 0 D13(α)

0 D22(α) D23(α)

0 0 D33(α)

⎤

⎦ , Π̃�B(α) =
⎡

⎣
0

E2(α)

0

⎤

⎦ ,

where D11(α) is a block diagonal matrix that groups together all the diagonal blocks
Aii(α) in A(α) that are irreducible and conservative, D22(α) is a block triangular
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matrix that groups together all the diagonal blocks Aii(α) in A(α) that are irreducible,
Hurwitz and correspond to classes that have no access to conservative classes, and
finallyD33(α) is a block triangular matrix that groups together all the diagonal blocks
Aii(α) inA(α) that are irreducible, Hurwitz and correspond to classes that have access
to some conservative class. Also,D13(α) > 0,D23(α) ≥ 0 andE2(α) > 0. It is easily
seen that for every j ∈ [1,M] such that αj > 0 one has

Π̃�AjΠ̃ =
⎡

⎢⎣
D(j)

11 0 D(j)
13

0 D(j)
22 D(j)

23

0 0 D(j)
33

⎤

⎥⎦ , Π̃�bj =
⎡

⎣
0
E(j)
2
0

⎤

⎦ ,

and that D(j)
11 is a block diagonal matrix whose diagonal blocks are conservative and

hence singular. It is also clear that for every KjΠ̃ =
[
K (j)
1 K (j)

2 K (j)
3

]
one has

Π̃�(Aj + bjKj)Π̃ = Π̃�AjΠ̃ + Π̃�bjKjΠ̃

=
⎡

⎢⎣
D(j)

11 0 D(j)
13

E(j)
2 K (j)

1 D(j)
22 + E(j)

2 K (j)
2 D(j)

23 + E(j)
2 K (j)

3

0 0 D(j)
33

⎤

⎥⎦ ,

and hence 0 ∈ σ(Aj + bjKj) for every Kj, thus contradicting the stabilizability
assumption on the pair (Aj, bj). ThereforeA(α)must be Hurwitz and hence x̄ belongs
to E .

The second part of the proof proceeds like the one in [4] and we report it here
only for the sake of completeness. We now want to prove that all points in E
are equilibria achievable by means of some stabilizing switching control law. Let
A(α), α ∈ A H

M , be aHurwitzmatrix and letP = P� be a positive definitematrix such
that A�(α)P + PA(α) is negative definite. Let x̄ be the element of E corresponding
toA(α), and consider the control Lyapunov function V (x − x̄) := (x − x̄)�P(x − x̄)
and the control strategy σ(t) = u(x(t)) where

u(x) = argmin
i

(Aix + bi)
�P(x − x̄)+(x − x̄)�P(Aix + bi)

= argmin
i

2(x − x̄)�P(Aix + bi). (10.19)

Keeping in mind that A(α)x̄ = −b(α), we have for x �= x̄

(x − x̄)�P(Ai x + bi) = (x − x̄)�PA(α)(x − x̄)︸ ︷︷ ︸
<0

+ (x − x̄)�P[(Aix + bi) − (A(α)x + b(α))].

The first term on the right hand side is negative. On the other hand, by construction,
the vectorA(α)x + b(α) belongs to the convex hull of the vectorsAix + bi, and hence
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min
i

(x − x̄)�P[(Aix + bi) − (A(α)x + b(α))] ≤ 0.

This ensures thatmini V̇ (x − x̄) = mini 2(x − x̄)�P(Aix + bi) is negative, and hence
we have a stabilizing switching law that leads the system evolution to x̄.
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Chapter 11
Improved Controller Design for Positive
Systems and Its Application to Positive
Switched Systems

Junfeng Zhang, Linli Ma, Qian Wang, Yun Chen and Shaosheng Zhou

Abstract This chapter will address a new controller design approach for positive
systems. First, we decompose the feedback gainmatrix Km×n intom × n nonnegative
components and m × n non-positive components. For the nonnegative components,
each component contains only one positive element and the other ones are zero.
Similarly, each non-positive component contains only one negative element and
the other ones are zero. Then, a simple but effective controller design of positive
systems is proposed by incorporating the decomposed feedback gain matrix into
the resulting closed-loop systems. The present approach is thus applied to positive
switched systems. It is shown that the designed controller for positive switched
systems is less conservative than those ones in the literature.
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11.1 Introduction

Positive systems are a special class of control systems [1]. Over past two decades,
positive systems have gained increasing interests due to their extensive applications
in practice and theoretical complexes in control theory [2–9]. Compared with general
systems, positive systems do not receive much attention until this century. This leads
to that many issues of positive systems are open.

As general systems, stabilization is also a fundamental issue of positive systems.
There have been some significant results on the stabilization of positive systems. A
linear programming approach to controller design of positive systems was proposed
in [10, 11]. The output-feedback controller of positive systems [12] was proposed by
using the approach in [10, 11]. The problem of �1-induced state-feedback controller
design for positive systems was investigated by using a linear copositive Lyapunov
function in [13]. In [14], a static output-feedback controller design was presented,
where an iterative linear matrix inequality algorithm was provided to compute the
feedback gain matrix. In [15], the output-feedback controller was designed by virtue
of an iterative convex optimization algorithm. More results on positive systems can
refer to [16–23].

As far as the stabilization of positive systems is concerned, it is clear that there is
stillmuch room for improvements in the abovementionedworks. Thismotivates us to
carry out the present work. This chapter will further provide a new controller design
approach to remove some restrictions in the heavy computational burden, the con-
troller gain matrix, and the unreliability algorithms in the literature. By decomposing
the feedback gain matrix into parts, the new approach removes those restrictions in
the literature. Our developed design approach is very efficient in solving the control
synthesis problems of positive systems. An application to positive switched systems
is also given to show the efficiency of the proposed approach. The rest of the chapter
is organized as follows: Sect. 11.2 provides the problem statements; Sect. 11.3 gives
main results; Sect. 11.4 concludes the chapter.

NotationsLet�,�n,�n×n be the sets of real numbers, n-dimensional vectors and
n × n matrices, respectively. Denote by N,N+ the sets of nonnegative and positive
integers. For a vector x = (x1, . . . , xn)T , x � 0 (� 0) means that xi ≥ 0 (xi > 0)
∀i = 1, . . . , n. Similarly, x � 0 (≺ 0) means that xi ≤ 0 (xi < 0) ∀i = 1, . . . , n.
For a matrix A = [ai j ] ∈ �n×n , A � 0 (� 0) means that ai j ≥ 0 (ai j > 0) ∀i, j =
1, . . . , n. Similarly, A � 0 (≺ 0) means that ai j ≤ 0 (ai j < 0) ∀i, j = 1, . . . , n.
A matrix A is called as Metzler if all its non-diagonal elements are nonnega-
tive. I is the identical matrix with proper dimension. �n+ � {x |x ∈ �n, x � 0}. Let
1n = (1, . . . , 1︸ ︷︷ ︸

n

)T and 1(i)
n = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

)T . Throughout the chapter, the

dimensions of vectors and matrices are assumed to be compatible if not stated.
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11.2 Problem Formulation

Consider the following system:

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(11.1)

where x(t) ∈ �n, u(t) ∈ �m and y(t) ∈ �r are system state, control input, and out-
put, respectively. Assume that A ∈ �n×n is a Metzler matrix, B � 0 with B ∈ �n×m ,
and C � 0 with C ∈ �r×n .

The following preliminaries are first introduced for later use.

Definition 11.1 [3, 6] System (11.1) is positive if its state and output are nonneg-
ative for all time t whenever the initial condition x(t0) and control input u(t) are
nonnegative.

Lemma 11.1 [3, 6] System (11.1) is positive if and only if A is a Metzler matrix,
B � 0 and C � 0.

Noting the assumptions for system (11.1), it follows that system (11.1) is positive
by Lemma 11.1.

Lemma 11.2 A matrix M is Metzler if and only if there exists a positive constant ς
such that M + ς I � 0.

11.3 Main Results

In this section, we will address the stabilization of positive systems and positive
switched systems (PSSs). The objective of the stabilization is to design a controller
such that the resulting closed-loop system is positive and stable.

11.3.1 Stabilization of Positive Systems

We first consider the stabilization of system (11.1).

Theorem 11.1 If there exist constants ς > 0, k+
i j > 0, k+ > 0, k−

i j < 0, k− < 0 and
vectors v � 0 with v ∈ �n such that

AT v + ζ+ + ζ− ≺ 0, (11.2a)

A1Tm B
T v + B

∑m
i=1

∑r
j=1 1

(i)
m (ζ+

i j

+ ζ−
i j )

T + ς I � 0,
(11.2b)
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k+
i j < k+, (11.2c)

k−
i j < k−, (11.2d)

hold for i = 1, . . . ,m, j = 1, . . . , n, where ζ±
i j = (0, . . . , 0︸ ︷︷ ︸

j−1

, k±
i j , 0, . . . , 0︸ ︷︷ ︸

n− j

)T ∈ �n

and ζ± = (k±, . . . , k±)T ∈ �n, then under the state-feedback control law

u(t) = Kx(t)

= Σm
i=1Σ

n
j=11

(i)
m (ζ+

i j + ζ−
i j )

T

1Tm BT v
x(t)

(11.3)

the resulting closed-loop system (11.1) is positive and asymptotically stable.

Proof By 1m � 0 with 1m ∈ �m , B � 0 with B ∈ �n×m , and v � 0 with v ∈ �n , we
have 1Tr B

T v > 0. This together with (11.2b) gives that

A + B
Σm

i=1Σ
n
j=11

(i)
m (ζ+

i j + ζ−
i j )

T

1Tm BT v

+ ς

1Tm BT v
I � 0.

(11.4)

Using (11.3), it follows that

A + BK + ς

1Tm BT v
I � 0 (11.5)

By Lemma 11.2, A + BK is a Metzler matrix. Then, the closed-loop system (11.1)
is positive by Lemma 11.1, that is, x(t) � 0 ∀t ≥ 0.

Choose a linear copositive Lyapunov function candidate V (x(t)) = x(t)T v. Then

V̇ (x(t)) = x(t)T (AT v + KT BT v). (11.6)

By (11.2c) and (11.2d), we get

∑m
i=1

∑n
j=1 1

(i)
m (ζ+

i j + ζ−
i j )

T

= ∑m
i=1 1

(i)
m

∑n
j=1(ζ

+
i j + ζ−

i j )
T

� ∑m
i=1 1

(i)
m (ζ+ + ζ−)T

= 1m(ζ+ + ζ−)T .

(11.7)
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Furthermore,
KT BT v

= Σm
i=1Σ

n
j=1(ζ

+
i j + ζ−

i j )1
(i)T
m BT v

1Tm BT v

� (ζ+ + ζ−)1Tm B
T v

1Tm BT v

= ζ+ + ζ−.

(11.8)

With the fact x(t) � 0 in mind, one can obtain from (11.6) that

V̇ (x(t)) ≤ x(t)T (AT v + ζ+ + ζ−). (11.9)

By (11.2a), we have V̇ (x(t)) < 0. This completes the proof. �

Remark 11.1 In Theorem 11.1, the gain matrix K is decomposed into

K = 1

1Tm BT v

⎛

⎜⎜⎜⎝

k+
11 k+

12 · · · k+
1n

k+
21 k+

22 · · · k+
2n

...
...

. . .
...

k+
m1 k

+
m2 · · · k+

mn

⎞

⎟⎟⎟⎠

+ 1

1Tm BT v

⎛

⎜⎜⎜⎝

k−
11 k−

12 · · · k−
1n

k−
21 k−

22 · · · k−
2n

...
...

. . .
...

k−
m1 k

−
m2 · · · k−

mn

⎞

⎟⎟⎟⎠

=
∑m

i=1

∑n
j=1 1

(i)
m (ζ+

i j + ζ−
i j )

T

1Tm BT v
.

(11.10)

Thus, the term KT BT v is transformed into the linear programming form. It should
be pointed out that the rank of the gain matrix K is general without any restrictions.
The condition (2) is solvable by using the linear programming technique.

Remark 11.2 (i) Theorem 11.1 gives the sufficient condition for the existence of
feedback controller of positive systems whereas in the literature [10–15] some
necessary and sufficient conditions were established. Then, Theorem 11.1 is
more conservative than those results in the literature.

(ii) In [13–15], some iterative algorithms were addressed to compute the controller
gain matrix. These algorithms contain some complexities and unreliability such
as the introduction of some additional parameters and an initial controller gain.
The design in [10–12] is nice if one only considers the stabilization of positive
systems. In our opinion, the design in [10–12] seems to be restricted if applying
it to hybrid positive systems.



144 J. Zhang et al.

(iii) Aiming to these restrictions in those literature, Theorem 11.1 is presented.
The advantages of Theorem 11.1 lie in: (a) the implemental algorithm is easy,
(b) the restriction in the gain matrix is removed, and (c) it can be easily applied
to other control issues of hybrid positive systems.

The following corollary gives the output-feedback controller design of positive
systems and its proof is omitted.

Corollary 11.1 If there exist constantsς > 0, k+
i j > 0, k+ > 0, k−

i j < 0, k− < 0and
vectors v � 0 with v ∈ �n such that

AT v + CT ζ+ + CT ζ− ≺ 0,
A1Tm B

T v + B
∑m

i=1

∑r
j=1 1

(i)
m (ζ+

i j

+ ζ−
i j )

TC + ς I � 0,
k+
i j < k+,

k−
i j < k−,

(11.11)

hold for i = 1, . . . ,m, j = 1, . . . , r, where ζ±
i j = (0, . . . , 0︸ ︷︷ ︸

j−1

, k±
i j , 0, . . . , 0︸ ︷︷ ︸

r− j

)T ∈ �r

and ζ± = (k±, . . . , k±)T ∈ �r , then under the output-feedback control law

u(t) = Ky(t)

= Σm
i=1Σ

r
j=11

(i)
m (ζ+

i j + ζ−
i j )

T

1Tm BT v
y(t)

(11.12)

the resulting closed-loop system (11.1) is positive and asymptotically stable.

11.3.2 Stabilization of PSSs

In this subsection, we propose the feedback controller design of PSSs by applying
the present approach in Theorem 11.1. Consider the switched system:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t),
y(t) = Cσ(t)x(t),

(11.13)

where x(t) ∈ �n, u(t) ∈ �m, and y(t) ∈ �r are system state, control input, and out-
put, respectively. The function σ(t) represents the switching law, which is right
continuous takes values in a finite set S = {1, 2, . . . , J }, J ∈ N

+. The σ(ti )th sub-
system is active for t ∈ [ti , ti+1), i ∈ N, where ti and ti+1 are the switching time
instants. The states of system (11.1) are continuous and do not jump in the switching
time instants. For system (11.1), assume that Ap ∈ �n×n is a Metzler matrix and
Bp � 0 with Bp ∈ �n×m , Cp � 0 with Cp ∈ �r×n for each p ∈ S.
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Theorem 11.2 If there exist constants ςp > 0, k+
pi j > 0, k+

p > 0, k−
pi j < 0, k−

p < 0
and vectors vp � 0 with vp ∈ �n such that

AT
pvp + ζ+

p + ζ−
p + μvp ≺ 0, (11.14a)

Ap1Tm B
T
p vp + Bp

∑m
i=1

∑n
j=1 1

(i)
m (ζ+

pi j

+ ζ−
pi j )

T + ςp I � 0,
(11.14b)

k+
pi j < k+

p , (11.14c)

k−
pi j < k−

p , (11.14d)

vp ≺ λvq , (11.14e)

hold for i = 1, . . . ,m, j = 1, . . . , n,where ζ±
pi j = (0, . . . , 0︸ ︷︷ ︸

j−1

, k±
pi j , 0, . . . , 0︸ ︷︷ ︸

n− j

)T ∈ Rn

and ζ±
p = (k±

p , . . . , k±
p )T ∈ Rn, then under the state-feedback control law

u(t) = Kpx(t)

= Σm
i=1Σ

n
j=11

(i)
m (ζ+

pi j + ζ−
pi j )

T

1Tm BT
p vp

x(t)
(11.15)

the resulting closed-loop system (11.13) is positive and asymptotically stable with
the average dwell time satisfying

τ > ln λ
μ

. (11.16)

Sketch of Proof From the proof of Theorem 11.1, we can get that, for each p ∈ S,
the subsystem is positive and asymptotically stable under the state-feedback con-
trol law (11.15). Choose multiple linear copositive Lyapunov functions V (x(t)) =
x(t)T vσ(t), then

V̇ (x(t)) = x(t)T
(
AT

σ(tı )
v(σ (tı ))

+ KT
σ(tı )

BT
σ(tı )

v(σ (tı ))
) (11.17)

for t ∈ [tı , tı+1). From (11.14c), (11.14d), and (11.15), we can have

KT
σ(tı )

BT
σ(tı )

v(σ (tı )) � ζ+
σ(tı )

+ ζ−
σ(tı )

. (11.18)

With x(t) � 0 in mind, substituting (11.18) into (11.17) gives

V̇ (x(t)) ≤ x(t)T
(
AT

σ(tı )
v(σ (tı ))

+ ζ+
σ(tı )

+ ζ−
σ(tı )

)
.

(11.19)
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This together with (11.14a) yields

V̇ (x(t)) ≤ −μV (x(t)) (11.20)

for t ∈ [tı , tı+1). Then,
V (x(t)) ≤ e−μ(t−tı )V (x(tı )) (11.21)

for t ∈ [tı , tı+1). By (11.14e), it follows that

V (x(t)) ≤ λe−μ(t−tı )V (x(t−ı )). (11.22)

By recursive deduction, we get

V (x(t)) ≤ λ2e−μ(t−tı−1)V (x(tı−2))

≤ · · ·
≤ λNσ(t0 ,t)e−μ(t−t0)V (x(t0)),

(11.23)

where Nσ(t0,t) is the number of the switching in [t0, t]. Noting λ > 1, (11.23) is
transformed into

V (x(t)) ≤ λN0+ t−t0
τ e−μ(t−t0)V (x(t0))

= λN0e( ln λ
τ

−μ)(t−t0)V (x(t0)),
(11.24)

where N0 is the chatter bound. Then

||x(t)||1 ≤ 	2λ
N0

	1
e( ln λ

τ
−μ)(t−t0)||x(t0)||1, (11.25)

where 	1 and 	2 are the minimal and maximal elements of vp ∀p ∈ S. By (11.15),
ln λ
τ

− μ < 0. In addition, 	2λ
N0

	1
> 0 is obvious. So, the resulting closed-loop system

(11.13) is positive and exponentially stable. �

Remark 11.3 In [24, 25], the state-feedback controllers of PSSs and nonlinear PSSs
were proposed. In should be pointed out that the controller gain matrices contain the
restriction on the rank. In [26], we remove the restriction in [24, 25]. However, the
method in [26] contain a new restriction on average dwell time. Theorem 11.2 has
removed the restrictions in [24–26].

Remark 11.4 It is also worthy noting that the approach in Theorem 11.2 can be
applied to positive time-delay systems [27] and thus the restriction in [27] can be
removed. Up to now, there have been many interesting results on hybrid positive sys-
tems referring to positive Markovian jump systems and positive T-S fuzzy systems.
We notice that, when considering the issues of hybrid positive systems, a common
restriction is just the one stated in Remark 11.3. Therefore, Theorem 11.2 can be
further extended for those issues.
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Corollary 11.2 If there exist constants ςp > 0, k+
pi j > 0, k+

p > 0, k−
pi j < 0, k−

p < 0
and vectors vp � 0 with vp ∈ �n such that

AT
pvp + CT

p ζ+
p + CT

p ζ−
p + μvp ≺ 0,

Ap1Tm B
T
p vp + Bp

∑m
i=1

∑r
j=1 1

(i)
m (ζ+

pi j

+ ζ−
pi j )

TCp + ςp I � 0,
k+
pi j < k+

p ,

k−
pi j < k−

p ,

vp ≺ λvq ,

(11.26)

hold for i = 1, . . . ,m, j = 1, . . . , r, where ζ±
pi j = (0, . . . , 0︸ ︷︷ ︸

j−1

, k±
pi j , 0, . . . , 0︸ ︷︷ ︸

n− j

)T ∈ �r

and ζ±
p = (k±

p , . . . , k±
p )T ∈ �r , then under the output-feedback control law

u(t) = Kpy(t)

= Σm
i=1Σ

r
j=11

(i)
m (ζ+

pi j + ζ−
pi j )

T

1Tm BT
p vp

y(t)
(11.27)

the resulting closed-loop system (11.13) is positive and asymptotically stable with
the average dwell time satisfying (11.15).

11.4 Conclusions and Future Work

This chapter has addressed a new approach to control synthesis of positive systems.
Sufficient conditions for the feedback controller of positive systems are established
by using a linear copositive Lyapunov function associated with linear programming
technique. Then, the approach is applied to the controller design of PSSs. It is shown
that the restrictions in the literature are removed.

Furtherwork refers to two aspects.On one hand, some extension of the approach in
the chapter can be proceeded. On the other hand, necessary and sufficient conditions
for the approach are expected.
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Chapter 12
Polyhedral Invariance for Convolution
Systems over the Callier-Desoer Class

Jean Jacques Loiseau

Abstract BIBO stability is a central concept for convolution systems, introduced
in control theory by Callier, Desoer and Vidyasagar, in the seventies. It means that
a bounded input leads to a bounded output, and is characterized by the fact that the
kernel of the system is integrable. We generalize this result in this chapter, giving
conditions for the output of a convolution system to evolve in a given polyhedron,
for any input evolving in another given convex polyhedron. The conditions are for-
mulated in terms of integrals deduced from the kernel of the considered system and
the given polyhedra. The condition is exact. It permits to construct exact inner and
outer polyhedral approximations of the reachable set of a linear system. The result is
compared to various known results, and illustrated on the example of a system with
two delays.

Keywords Convolution systems · Callier-Desoer class · Invariance · Reachable
set · Polyhedra · Approximations

12.1 Introduction

The evaluation of the reachable space of a dynamical system is important for the
verification of properties [4], planification of trajectories and design of control laws
to achieve closed-loop specifications [7]. Exact formulae can not always be deter-
mined, so that various methods have been developed to compute approximations
of the reachable set. The case of linear finite dimensional systems has been deeply
investigated [19, 24]. The basic approach consists in reformulating the problem in
terms of optimal control, which can be extended to the case of nonlinear systems
[11] and hybrid systems [4, 9]. The effect of uncertainties or disturbances can also
be handled using similar ideas and interval analysis [15].

The case of distributed systems has also been addressed. Systemswith state delays
are considered in [8], where a bounding ellipsoid of the reachable state is derived

J.J. Loiseau (B)
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using Linear Matrix Inequalities. This idea gave rise to many generalizations, to
distributed delays and variable delays, see e.g. [2] and the references therein. The
question is generalized in [18] to that of the determination of invariant sets, for a
class of discrete systems with delays.

Adifferent approachwas recently introduced. The question is formulated in [16] in
an input-output setting. This is the basis of the present work. It concerns a large class
of convolution systems, that includes localized or distributed time delay systems,
ordinary or neutral time-delay systems, fractional systems andmany other distributed
systems. The basic idea is to observe that the input-output gain of a convolution
system is bounded by the L1 norm of its kernel. This can be reinterpreted in terms
of reachability: the output of a system with input in the unit ball is included into the
ball which radius is the L1 norm of the kernel. When the underlying topology is the
infinite norm, this observation comes down to a polytopic bound of the reachable
set of a constrained system. The aim of this communication is to develop this idea,
and to provide basic tools for the determination of polytopic approximations of the
reachable set for a large class of convolution systems. For amultivariable convolution
system, which input is constrained in a given polyhedron, we formulate conditions
for the output of the system to evolve in another given polyhedron. The conditions
are formulated in terms of integrals deduced from the kernel of the considered system
and the given polyhedra. The conditions are necessary and sufficient, which shows
that the bounds are in some sense exact.

The article is organized as follows. In Sect. 12.2, we recall the basic concepts that
are used, in particular the definition of the Wiener algebra, and of a polytope. We
identify bounds for the output of a given constrained system over theWiener algebra
in Sect. 12.3. These bounds are used to design overapproximations and underapprox-
imations of the reachable set of the system at a given time horizon. In Sect. 12.4, the
result is discussed, and illustrated on examples. Section12.5 is a short conclusion.

12.2 Background Concepts

12.2.1 Convolution Kernels

An input-output linear system given in the form of a convolution,

y = h � u , (12.1)

is BIBO-stable if its kernel h belongs to the class A of generalized functions of the
form

h(t) = ha(t) +
∑

i∈N
hiδ(t − ti ) , (12.2)
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where ha is in L1, hi ∈ R, ti ∈ R+, ti < ti+1 for i ≥ 0, and
∑

i∈N |hi | < ∞. The set
A endowed with the convolution product forms a Banach commutative algebra for
the norm

||h||A =
∫ +∞

0
|ha(t)|dt +

∑

i∈N
|hi | . (12.3)

This norm was shown to be the induced norm when h is seen as an operator over
L∞. We indeed have

sup
u �=0

||h � u||∞
||u||∞ = ||h||A , (12.4)

for every h inA . Here, as usually, || · ||∞ denotes the sup-norm on L∞, say ||u||∞ =
ess supt≥0 |u(t)|, ||y||∞ = ess supt≥0 |y(t)|. This shows that every bounded input
leads to a bounded output, and that ||h||A gives an exact bound on the output y(t).

The setA is sometimes calledWiener algebra (see, e.g. [20]). Many properties of
the setA are exposed in [10], and its use in control theory was gradually introduced
by various authors, among them Desoer [1, 5, 6], Callier [1, 5] and Vidyasagar
[6]. The set of fractions of elements of A (σ ) = e−σ tA is called the Callier-Desoer
class and is a key concept to describe robust stabilization methods for a large class
of distributed systems. The matter continues to generate interesting results, see for
instance Quadrat [20], or Lakkonen [13] for a recent survey.

The transfer of a system of the form (12.1) is the Laplace transform ĥ(s) of the
kernel h(t). For instance, the class A includes:

• the class of linear finite dimensional systems with rational transfer, e.g.

ĥ(s) = (s I − A)−1 , h(t) = eAt ,

• the class of time-delay systems, e.g.

ĥ(s) = e−θs

1 + sT
, h(t) =

{
0 , for t < θ ,

et−θ , for t ≥ θ ,
,

that are important models in many applications,

• the class of systems with distributed delays, e.g.

ĥ(s) = 1 − eθae−θs

s − a
, h(t) =

{
eat , for t ≤ θ ,

0 , for t > θ ,
,

that are important for the stabilization of time-delay systems,

• BIBO stable diffusive systems, e.g.
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ĥ(s) = 1 − e−α
√
s

√
s

, h(t) = 1 − erfc

(
α

2
√
t

)
.

This short list is not exhaustive. The class also includes many other linear distributed
systems, and covers many application fields [3, 22].

The system (12.2) is said to be regular if h(t) = ha(t), or equivalently if the
singular part is absent, say hi = 0 for i ∈ N. Notice that the class of regular systems
is also very large, for instance the four examples of transfer functions mentioned
above belong to this family.

Finally notice that in the present work, we basically consider systems with kernels
of the form (12.2) that are well defined, in the sense that the kernel h(t) is integrable
over every finite interval [0, t]. This includes the Callier-Desoer class, which justifies
the use of this expression in the title of the chapter. In Sect. 12.3.3, we shall assume
that the kernel of the system is defined over A .

12.2.2 Reachable Sets

We now consider a multivariable convolution system, defined by a kernel H , say

y = H � u , (12.5)

where u(t) ∈ U ⊂ R
m , for t ≥ 0. Recall that the convolution product � is defined as

yi (t) =
∫ t

0

∑

j

Hi j (t − τ)u j (τ )dτ . (12.6)

We consider a system with entries of the form (12.2), so that Hi j (t) = hai j (t) +∑
k∈N hki j (t − tk), for i = 1 to p and j = 1 to m. We hence have, for i = 1 to p:

yi (t) =
∑

j

⎛

⎝
∫ t

0
hai j (t − τ)u j (τ )dτ +

∑

k|tk≤t

hki j u j (t − tk)

⎞

⎠ .

We are interested into the characterization of the range of system (12.5). The basic
concept is that of reachable set.

Definition 12.1 System (12.5) and a subset U of Rm being given, we say that an
input function u is admissible, if u(t) ∈ U , for t ≥ 0. The reachable set R(U ) is
then defined as the set of vectors x ∈ R

p for which there exists an admissible control
u such that the output y(t) defined by (12.5) satisfies y(t) = x for some t ≥ 0. We
also define the set R(U , t) of vectors x that are reachable at t , so that x = y(t) for
some admissible input u, and the set Rt (U ) of the vectors x reachable within t , so
that x = y(τ ), for some instant τ satisfying 0 ≤ τ ≤ t .
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These definitions are taken from [24], a seminal paper on the computation of reach-
able sets for systems without memory. We remark that

Rt (U ) =
⋃

τ∈[0,t]
R(U , τ ) ,

and
R(U ) =

⋃

t>0

R(U , t) =
⋃

t>0

Rt (U ) .

One can see that R(U , t) is convex, if U is convex. In Sect. 12.3, we shall in
particular study the case whereU is given in the form of a polytope C (M). The sets
Rt (U ) and R(U ) are not convex, in general. Let us discuss these aspects.

The setsRt (U ) andR(U ) are not connected, in general. This is due to the singu-
lar part of the kernels of the form (12.2), that may cause discontinuity of the solution
y(t). Consider for instance the kernel h(t) = δ(t − θ), where θ is any positive num-
ber, and U = {1}. We have in this example R(U ) = {0, 1}, that is not connected.
One can find conditions under which the sets are connected, or convex.

Proposition 12.1 System (12.5) being given, together with a subset U of Rm, and
a real number t ≥ 0, the following claims are true.

(i) The setR(U , t) is convex if U is convex.
(ii) The setsRt (U ) andR(U ) are connected ifU is convex and the kernel of the

system is regular.
(iii) The sets Rt (U ) are growing with t if 0 ∈ U .
(iv) The setsRt (U ) and R(U ) are convex if U is convex, and 0 ∈ U .

Proof Notice first that ifU is convex, and y and y′ are reached using the admissible
input trajectories u(t) and u′(t), respectively, thenαu(t) + (1 − α)u′(t) is admissible
too, and permits to reach αy + (1 − α)y′. This shows thatR(U , t) is convex ifU is
convex. Further, the trajectories y(t) of the system are continuous when the kernel is
regular. Consider now two points y and y′ inR(U ). There exist admissible inputs u
and u′, and two instants t, t ′ ≥ 0 such that y = (H � u)(t) and y′ = (H � u′)(t ′). We
can assume, without any limitation, that t ′ < t . Defining y′′ = (H � u)(t ′), one can
see that there is a path from y′ to y′′ in R(U , t ′), since this set is convex. There is
also a path from y′′ to y inRt (U ), since y(τ ) is continuous, and takes its values into
Rt (U ), by definition of this set. Therefore, since R(U , t ′) is a subset of Rt (U ),
one deduces that there exists in the latter set a path from y′ to y, which shows
the second assertion of the proposition. The third assertion is obtained remarking
that if y ∈ R(U , t) and 0 ∈ U , then there exists an admissible function u, and
an instant t , such that y = (H � u)(t). One can see that y = (H � u′)(t ′), taking
u′(τ ) = 0, for τ ∈ [0, t ′ − t[, and u′(τ ) = u(t + τ − t ′), for τ ≥ t ′ − t . This shows
that y ∈ R(U , t ′), for every t ′ greater than t , and establishes the third assertion. The
last assertion is a consequence of (i) and (iii). �
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As a consequence to this remark, the hypotheses that U is convex and 0 ∈ U are
often formulated in the literature, even in the case of localized systems. Of course,
these assumptions are limitative. The identification ofmore accurate conditionsmight
be useful in certain applications with discontinuous behaviors.

12.2.3 Elements of Convex Analysis

Wenowrecall the definitionof a polytope and somebasic concepts of convex analysis.
These concepts are taken from [21] (see in particular Sects. 6 and 13), and will be
useful to analyse the reachability of constrained convolution systems.

A convex set C ⊂ R
n is such that, for every x, y ∈ C , and every λ ∈ [0, 1], the

vector z = λx + (1 − λ)y lies in C . The support function of C is fC : Rn → R
n ,

defined by
fC (v) = sup

x∈C
vT x ,

for v ∈ R
n . Notice that fC (v) takes only finite values if C is bounded. The ball of

radius ε centered on x ∈ R
n is denoted B(x, ε), as usually. A convex set C is open

if there exists ε > 0 such that the ball B(x, ε) is included into C. It is closed if its
complement is open. The least closed set containing C is called its closure, denoted
C . The greatest open set included into C is called the interior of C .

The concept of relative interior, that we now recall, is specific to the convex sets.
The affine hull of a convex set C is denoted aff C and is defined as the set

aff C = {z ∈ R
n | ∃x, y ∈ C , α ∈ R, z = x + α(y − x)} .

An affine set can also be written as aff C = x + linC , for any element x ∈ C , where
linC is the vector space generated by the differences y − x , with y ∈ C . The relative
interior of C , denoted riC , is the interior of C when it is considered as a subset of
aff C , say

riC = {x ∈ R
n | ∃ε > 0, B(x, ε) ∩ aff C ⊂ C } .

One says that C is relatively open if it equals its relative interior. If C is reduced to
a unique point, then linC = 0 and riC = C = C . In general, the three sets C , riC ,
and C are different, and we have the following.

Theorem 12.1 Two convex sets C1 and C2 being given, the following claims are
equivalent.

(i) fC1(v) = fC2(v), for every vector v ∈ R
n,

(ii) C1 = C2,
(iii) riC1 = riC2.

For a convex set C , and a vector v ∈ R
n , we have the inclusion {vT x | x ∈ C } ⊂

[− fC (−v), fC (v)], because inf x∈C {vT x} = − supx∈C {−vT x}. Thebounds are exact,
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and they belong or not to the set, depending on its topological property. The following
theorem precises this aspect (this is Theorem 13.1 of [21]).

Theorem 12.2 A nonempty convex set C being given, the following claims hold
true.

(i) C is closed if and only if ∀v ∈ R
n, {vT x | x ∈ C } = [− fC (−v), fC (v)].

(ii) C is open if and only if ∀v ∈ R
n, {vT x | x ∈ C } =] − fC (−v), fC (v)[.

(iii) C is relatively open if and only if {vT x | x ∈ C } =] − fC (−v), fC (v)[,
∀v ∈ R

n such that − fC (−v) < fC (v).

We finally recall basic facts and definitions concerning polytopes.

Definition 12.2 A matrix M ∈ R
m×n being given, the convex polytope of Rm gen-

erated by the columns of M is the set denoted C (M), and defined by

C (M) =
{
x ∈ R

m | ∃v ∈ R
n, v ≥ 0,

n∑

i=1

vi = 1, x = Mv

}
.

The relatively open polytope generated by M is defined by

Cro(M) =
{
x ∈ R

m | ∃v ∈ R
n, vi > 0,

n∑

i=1

vi = 1, x = Mv

}
.

In other words, introducing the notationΓ = {v ∈ R
n, v ≥ 0,

∑n
i=1 vi = 1}, we have

C (M) = MΓ , and Cro(M) = MriΓ = riMΓ . The following result is then clear
(see Theorems 6.6 and 6.9 from [21]).

Proposition 12.2 For every matrix M, we have the equality

riC (M) = Cro(M) .

Definition 12.3 A matrix P ∈ R
q×p and a vector π ∈ R

q being given, the polyhe-
dron denoted P(P, π) is the set defined as

P(P, π) = {
z ∈ R

p | Pz ≤ π
}

.

The relatively open polyhedron Pro(P, π) is defined by

Pro(P, π) =
⎧
⎨

⎩z ∈ P(P, π) |
p∑

j=1

Pi j z j < πi , for i ∈ J (P, π)

⎫
⎬

⎭ ,

with J (P, π) = {i | ∃z ∈ P(P, π),
∑p

j=1 Pi j z j < πi }.
In other words, some of the constraints corresponding to the rows of the matrix
P and the vector π actually define the affine hull of P(P, π). The other ones,
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corresponding to the set J (P, π), define a subset of affP(P, π), with a nonempty
interior that equals riP(P, π). We hence have the following result.

Proposition 12.3 Amatrix P ∈ R
p×m and a vector π ∈ R

p being given, the follow-
ing equality holds true

riP(P, π) = Pro(P, π) .

We are now ready to study the reachable set of convolution systems.

12.3 Polyhedral Bounds of the Reachable Set

12.3.1 Elementary Bounds

Abasic question consists in determining the range of the output y(t) of system (12.5).
We are precisely interested in verifying whether or not the output y(t) belongs to a
given polyhedron, provided that the input u(t) evolves in another given polyhedron.
The following elementary remark will be useful in the sequel.

Lemma 12.1 Let be given a vector x ∈ R
n and a vector v in the convex set Γ =

{v ∈ R
n, v ≥ 0,

∑n
i=1 vi = 1} defined as in Definition 12.2. Then, we have

max
v∈Γ

⎧
⎨

⎩

n∑

j=1

x j v j

⎫
⎬

⎭ = max
j

x j .

Proof Since x j ≤ max j x j , it is clear that
∑n

j=1 x j v j ≤ (max j x j )(
∑n

j=1 v j ). By

definition of Γ , it appears that
∑n

j=1 x j v j ≤ max j x j , so that maxv∈Γ

{∑n
j=1 x j v j

}

≤ max j x j . This is an exact bound, which follows considering the vector v defined
by vk = 1 and v j = 0, for j �= k, with k = arg max j x j . This ends the proof. �

We are now able to formulate the basic result on polyhedral bounds of system (12.5).

Theorem 12.3 System (12.5) being given, together with matrices M ∈ R
m×n, P ∈

R
q×p, a vector π ∈ R

q , and t > 0, then y(t) belongs to P(p, π) for every input
satisfying u(τ ) ∈ C (M), for τ ≥ 0, if and only if the following condition holds true
for i = 1 to q: ∫ t

0
max

j

{
(PH(τ )M)i j

}
dτ ≤ πi .
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Proof To begin with the proof, we proceed by equivalences:

y(t) ∈ P(P, π) ⇐⇒ Py(t) ≤ π , by definition of P(P, π),

⇐⇒ ∫ t
0 PH(τ )u(t − τ)dτ ≤ π , by definition of the system,

⇐⇒ ∫ t
0 PH(τ )Mv(t − τ)dτ ≤ π , by definition of C (M),

⇐⇒ ∫ t
0 max j

{
(PH(τ )M)i j

}
dτ ≤ πi , by Lemma 12.1.

Assuming that H is a matrix with inputs that are integrable over [0, t], we observe
that the integrals in these equivalences are well defined. They are indeed bounded
by the product p · m · maxk{|Pik |} · B · maxl |{Mlj |}, if B is a bound of the integrals
of the entries of H , for instance B = maxk,l ||Hkl ||A , if H is a matrix over A . In
these statements, the vector v(t − τ) lies in Γ , by hypothesis, which permits to apply
Lemma 12.1. The fact that this lemma gives exact bounds is essential to obtain the
last equivalence, from which the theorem is deduced. �

A preliminary version of this result was obtained in [16]. We first remark that upper
bounds and lower bounds of the behavior of the given system can be derived from
Theorem 12.3. For this purpose, one defines

λi (t) =
∫ t

0
min

j

{
(H(τ )M)i j

}
dτ , (12.7)

and

μi (t) =
∫ t

0
max

j

{
(H(τ )M)i j

}
dτ . (12.8)

Corollary 12.1 Thematrix M and the system (12.5) being given as in Theorem 12.3,
and λi (t), μi (t) being defined as in (12.7), (12.8), we have

λi (t) ≤ yi (t) ≤ μi (t) ,

for i = 1 to p. In addition, the bounds are reached, so that the range of yi (t), when the
input satisfies u(τ ) ∈ C (M), for τ ≥ 0, is exactly the closed interval [λi (t), μi (t)].
Proof Theupper boundofCorollary 12.1 is obtained taking P = Ip inTheorem12.3.
The lower bound is obtained with P = −Ip, since min j {x j } = −max j {−x j }, and
−maxv∈Γ {−x j v j } = minv∈Γ x j v j , with Γ defined as in Lemma 12.1.

To complete the proof, we remark that the upper bound μi (t) is indeed reached
using the control defined by uk(τ ) = Mkj (t−τ), for k = 1 to m and τ ∈ [0, t], with

j (τ ) = arg max
j

{
(H(τ )M)i j

}
.

Similarly, the lower bound is reached using the control that maximizes −yi (t), that
is defined in terms of an argument of max j

{−(H(τ )M)i j
}
. �

We can finally remark the following fact, that will be useful in Sect. 12.3.3.



160 J.J. Loiseau

Corollary 12.2 Under the conditions of Corollary 12.1, the range of yi (t) when
u(τ ) ∈ Cro(M) equals the open interval ]λi (t), μi (t)[, if λi (t) < μi (t), and is
reduced to {μi (t)}, if λi (t) = μi (t).

Proof If the equalityλi (t) = μi (t) is satisfied, one can see thatmin j
{
(H(τ )M)i j

} =
max j

{
(H(τ )M)i j

}
almost everywhere in the interval [0, t], and therefore the kernels

(H(τ )M)i j , for j = 1 to n, are equal almost everywhere in this interval. In this case,
y(t) takes a unique value, say

∫ t
0 (H(τ )M)i1dτ . If λi (t) < μi (t), then the different

kernels (H(τ )M)i j , for j = 1 to n, are not equal on a subset of [0, t] having a nonzero
measure. Taking an instant t from this set, we observe that min j

{
(H(τ )M)i j

}
<

H(τ )u(t − τ) < max j
{
(H(τ )M)i j

}
holds true, for every input u(t − τ) ∈ Cro(M),

from which one deduces that λi (t) < yi (t) < μi (t). The conclusion is obtained
remarking that the bounds can be approached with an arbitrary precision. To this
aim, define K = ∫ t

0

∑
k

(
max j

{
(H(τ )M)i j

} − (H(τ )M)ik
)
dτ . We can see that

K is positive, and has a finite value if the kernel is integrable over [0, t]. Tak-
ing u(t − τ) = Mν(t − τ), with v j (t − τ) = 1 − (n − 1)ε/K , and vk = ε/K , for
k �= j (t − τ), we obtain yi (t) = μi (t) − ε. The lower bound λi (t) is approached
in the same way, using an argument j (τ ) of max j

{−(H(τ )M)i j
}
and defining

now K = ∫ t
0

∑
k

(
(H(τ )M)ik − min j

{
(H(τ )M)i j

})
. One checks that the input

defined by u(t − τ) = Mν(t − τ), with v j (t − τ) = 1 − (n − 1)ε/K , and vk =
ε/K , for k �= j (t − τ) leads to an output verifying yi (t) = λi (t) + ε, which ends the
proof. �

12.3.2 Polyhedral Approximations of the Reachable Set

The previous results can be interpreted in terms of reachability.
Remark that the difference between the left and right members of the con-

dition of Theorem 12.3 is the distance between the reachable set and the plan
{y ∈ R

p | ∑
j Pi j y j = πi }. The left member of the condition, say

ρi (t) =
∫ t

0
max

j

{
(PH(τ )M)i j

}
dτ , (12.9)

is therefore so that the plan {y ∈ R
p | ∑

j Pi j y j = ρi (t)} is tangent to the reachable
space at t , sayR(C (M), t), of the system constrained byU = C (M). If the matrix
P is given, the polyhedron P(P, ρ(t)) is the least polyhedron whose faces are
oriented according to P , and that contains the reachable set. One can also compute
a point of the intersection between the face and the reachable set. We first define the
integers

jk(τ ) = arg max
j

{
(PH(τ )M)k j

}
,



12 Polyhedral Invariance for Convolution Systems … 161

for k = 1 to q, and the output vectors

νi (k, t) =
∫ t

0
(H(τ )M)i jk (τ )dτ ,

for k = 1 to q, and i = 1 to p. Then, N is defined as the matrix which columns are
the vectors ν(k, t), say

Ni j = νi ( j, t) ,

for i = 1 to p, j = 1 to q. The following definitions are inspired by [24].

Definition 12.4 A compact convex set R being given, we say that a polyhedron is
an exact outer approximation ofR if its faces are tangent toR, and that it is an exact
inner approximation of R, if its vertices are on the boundary ofR.

Theorem 12.4 The system (12.1) being given, together with an integer q and two
matrices P ∈ R

q×p and M ∈ R
m×q , and taking N and ρ defined as above, the convex

polytope C (N ) is an exact inner approximation, and the polyhedron P(P, ρ(t)) is
an exact outer approximation, of R(C (M), t).

Proof For k = 1 to q, the control defined by u(k)(t − τ) = Mv(k)(τ ), with v(k)
j (τ ) =

1, if j = jk(τ ), and v(k)
j (τ ) = 0, if j �= jk(τ ), satisfies (Py)k(t) = ρk(t). This shows

that the faces of P(P, ρ(t)) are tangent to R(C (M), t), and the vertices of C (N )

are on the boundary of R(C (M), t), which ends the proof. �

In otherwords,wehave the chainof inclusionsC (N ) ⊂ R(C (M), t) ⊂ P(P, ρ(t)),
and the distance between the three sets is null:

inf{d(x, y) | x ∈ C (N ), y ∈ R(C (M), t)} = 0 ,

and
inf{d(y, z) | y ∈ R(C (M), t), z ∈ P(P, ρ(t))} = 0.

The precision of the approximation can be defined as the Hausdorff distance between
the upper and lower approximations, defined, since C (N )) ⊂ P(P, ρ(t)), as:

max{d(z,C (N )) | z ∈ P(P, ρ(t))} .

This distance is decreasingwhen rows are added to thematrix P . This permits to reach
an arbitrary precision choosing amatrix P that corresponds to plans inmany different
directions. In practice, the number of rows is rapidly growing with the dimension of
the system. For this reason, one may prefer rough approximations in high dimension.
Anyway, this formulation is well fitted for numerical computations. The integrals can
be easily approximated using Matlab or Scilab, for instance, provided that the kernel
H(t) is explicitly known, or can be numerically computed. We shall give a simple
example in Sect. 12.4.
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We complete this study with remarks concerning the topological structure and the
approximation of Rt (U ) and R(U ).

12.3.3 Additional Comments on the Structure
of the Reachable Set

We first complete the previous results in terms of the reachable set at a given instant.

Proposition 12.4 The matrix M ∈ R
m×n, an instant t ≥ 0 and the system (12.5)

being given, then the following claims are true.

(i) The setR(C (M), t) is closed.

(ii) The setR(Cro(M), t) is relatively open.

(iii) We have the equalities R(Cro(M), t) = riR(C (M), t).

Proof The proof uses Theorem 12.2 (that is Theorem 13.1 of [21]), and a variant of
Theorem 12.3 and Corollary 12.2. According to claim (i) of Proposition 12.1, the
setR(C (M), t) is convex. We then remark that the support function ofR(C (M), t)
is defined, in any direction v ∈ R

p, by fR(C (M),t)(v) = ∫ t
0 max j {(vT H(τ )M) j }dτ .

Applying Corollary 12.2, one obtains that vTR(C (M), t) is either reduced to a
single element, if fR(C (M),t)(v) = − fR(C (M),t)(−v), or equal to the open interval
] − fR(C (M),t)(−v), fR(C (M),t)(v)[, if − fR(C (M),t)(−v) < fR(C (M),t)(v). The sec-
ond claim is therefore deduced from claim (iii) of Theorem 12.2. In a similar way,
one can see that for every v ∈ R

p, the set vTR(C (M), t) is a closed interval. The
claim (i) is then deduced from claim (i) of Theorem 12.2. From Corollaries 12.1
and 12.2, we conclude that actually R(C (M), t) is the closure of R(Cro(M), t).
We further obtain from Theorem 12.2 that the open interior of both sets are equal,
and the conclusion follows since R(Cro(M), t) is equal to its relative interior, from
claim (i). �
In other words, the set R(C (M), t) is closed if the kernel H(t) is integrable over
[0, t], because the limits are reached in the inequalities presented in Sect. 12.3.1, and
its relative interior coincides with the set of points that are reachable using inputs
in the relative interior of the polyhedron U = C (M). When t tends to the infinity,
the upper bound found for y(t) when the system is subject to a bounded input u(t)
converges to a bounded limit (assuming that system (12.5) is overA ), but this limit
may be reachable, or not, depending on H(t), and the choosen direction v. As a
consequence,R(C (M)) is not closed, in general. In the same way, when the kernels
include delayed diracs, the function μi (t) may be discontinuous, so that the set of
points that are reachable within a finite time, Rt (C (M)), is not always closed.

Consider for instance the system y = h ∗ u, with h(τ ) = fa(τ ) − δ(1 − τ), with
fa(τ ) = 1, for τ ∈ [0, 1], and fa(τ ) = 0, for τ > 0. We have
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y(t) =
{∫ t

0 fa(τ )u(t − τ)dτ , for t < 1,∫ t
0 fa(τ )u(t − τ)dτ − u(t − 1) , for t ≥ 1.

(12.10)

One can verify that taking u(τ ) = 1 on this example, we obtain y(t) = t , for t ∈
[0, 1[, and y(t) = 0, for t ≥ 1. The point y = 1 is not reachable within t = 1, if
U = {1}. We have in this case M = (1), C (M) = {1}, andRt (C (M)) = [0, t], for
t ∈ [0, 1[, and Rt (C (M)) = [0, 1[, for t ≥ 1.

A singular kernel may also cause that Rt (C (M)) and R(C (M)) are not con-
nected set. The consequences of these remarks are different in terms of outer or inner
approximations.

Remark 12.1 We can adapt Theorem 12.3 and Corollary 12.1 to have the constraint
y(τ ) ∈ P(P, π) satisfied within a finite time interval, say [0, t], or respectively for
t ≥ 0. For this purpose, one now defines

ρi (t) = sup
0≤θ≤t

∫ θ

0
max

j

{
(PH(τ )M)i j

}
dτ , (12.11)

or, respectively,

ρi = sup
t≥0

∫ t

0
max

j

{
(PH(τ )M)i j

}
dτ . (12.12)

We then obtain the following bounds within t :

yi (θ) ≤ ρi (t) ,

for θ ∈ [0, t], or, respectively
yi (t) ≤ ρi

for t ≥ 0.

Going on in this direction, we remark that the polyhedra P(P, ρ(t)), or P(P, ρ),
respectively, are outer approximations of Rt (C (M)) and R(C (M)), respectively.
As introduced in Proposition 12.1, additional hypotheses can be introduced to be
able to calculate inner approximations of the reachable sets.

Remark 12.2 The integral that appears in (12.12) is an increasing function of the
time t , when its integrand is non-negative. This is always the case when 0 lies in
C (M), or when the kernel H(t) and the matrix M are non-negative. In this case, the
bound (12.12) is equal to

ρi =
∫ ∞

0
max

j

{
(PH(τ )M)i j

}
dτ ,

that is well-defined if H(t) is defined over A .
Under the same hypothesis, that 0 ∈ C (M), we observe that ρi (t) is actually given

by (12.9), and Rt (C (M)) = R(C (M), t). In this case, the procedure presented in
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Sect. 12.3.2 can be used to calculate a matrix N that corresponds to a lower approxi-
mation of the reachable setRt (C (M)). We can also adapt this procedure to the case
of an indefinite integral. For k = 1 to q, we define N as in Sect. 12.3.2, with t = ∞.
According to Definition 12.4, we have obtained an exact approximation of the clo-
sure of the reachable set. We may remark that C (N ) is not included intoR(C (M)),
in general, but we have the inclusion Cro(N ) ⊂ R(Cro(M)) ⊂ Pro(P, ρ). In this
sense, the matrices P , N , and the vector ρ also define exact approximations of the
relatively open reachable set.

Remark 12.3 Inmany applications, onewants to compute approximations of the tube
(R(C (M), t), t) ⊂ R

p × R+. As suggested in claim (ii) of Proposition 12.1, this
tube is well defined if the kernel of system (12.4) is regular. The tube is then approx-
imated using polyhedral approximations ofR(C (M), ti ) at successive instants ti .

12.4 Remarks and Examples

12.4.1 Positive Kernels

The classical characterization of the positivity of a system in terms of the positivity
of its kernel can also be seen as a consequence of Theorem 12.3.

Definition 12.5 The system (12.1) is said to be non-negative if every non-negative
input u(t) leads to a non-negative output y(t). The multivariable system (12.5) is
non-negative if its entries are all non-negative.

Corollary 12.3 The system (12.1) is non-negative if and only if its kernel (12.2) is
non-negative almost everywhere. The system (12.5) is non-negative if and only if all
the entries of its kernel H(t) are non-negative almost everywhere.

Proof By definition, the system (12.1) is non-negative if R(C (M)) ⊂ P(P, π),
with M = (0, 1), P = (−1), and π = (0). Applying Theorem 12.3, we conclude
that

∫ t
0 max{0,−h(τ )}dτ ≤ 0, for t ≥ 0, from which we deduce that h(τ ) takes

non-negative values almost everywhere. �

If the system (12.2) is positive, and u(t) lies in [α, β], we have the following inequal-
ities, for t ≥ 0

α

∫ t

0
h(τ )dτ ≤ y(t) ≤ β

∫ t

0
h(τ )dτ .

In addition, these bounds are exact, in the sense that they are reached. If in addition
the kernel h(t) is an element of A , then we have y(t) ∈ [α‖h‖A , β‖h‖A ]. The
limits of this interval may be reached or not, but they are exact in the sense of the
discussion of Sect. 12.3.3, for instance we have R(Cro(M)) =]α‖h‖A , β‖h‖A [.

This first result can be generalized to kernels that are not necessarily positive.
Every measure h inA can be uniquely decomposed into a difference h = h+ − h−,
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where h+ and h− are two positive measures in A with disjoint supports. Then if
α ≤ u(t) ≤ β, the range of y(t) is given by

α

∫ t

0
h+(τ )dτ − β

∫ t

0
h−(τ )dτ ≤ y(t) ≤ β

∫ t

0
h+(τ )dτ − α

∫ t

0
h−(τ )dτ ,

for any positive t , that can be rewritten as

∫ t

0
min {αh(τ ), βh(τ )} dτ ≤ y(t) ≤

∫ t

0
max {αh(τ ), βh(τ )} dτ ,

that in turns appears to be a consequence of Theorem 12.3. The latter formulation
is well fitted for numerical computations, since it avoids the computation of h+ and
h−. Indeed the infinite integral can be easily approximated using Matlab or Scilab,
provided that h(t) is explicitly known, or can be numerically computed. We also
remark that this formula gives the way to calculate a control law umax that maximizes
the output. This control law is given by

umax(t − τ) =
{

α , if max {αh(τ ), βh(τ )} = αh(τ ) ,

β , else ,
(12.13)

for any positive t . In the same way, the control given by

umin(t − τ) =
{

α , if min {αh(τ ), βh(τ )} = αh(τ ) ,

β , else ,

permits to reach the lower value of the output. When t goes to infinity, we obtain
the results that follow. They are well-known and often used (or rediscovered) in the
literature.
(i) If u(t) ∈] − umax,+umax[, then y(t) ∈] − ymax,+ymax[, with ymax = ‖h‖umax.
(ii) If h(t) is positive, and u(t) ∈ [0,+umax[, then y(t) ∈ [0, ymax[.
(iii) If h(t) = h+(t) − h−(t) with h+ and h− positive, and u(t) ∈] − umin,+umax[,
then y(t) ∈] − ymin,+ymax[, with ymin = ‖h+‖umin + ‖h−‖umax, and ymax = ‖h+
‖umax + ‖h−‖umin.

12.4.2 Constrained Control and D-Invariance

We give here a simple example of the explicit computation of the bounds of input-
output systems. It illustrates that these techniques may be useful to design control
laws for constrained systems.
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We consider the following model, which was introduced by Simon some years
ago [23]. The inventory level y(t) of a simple logistic system follows the law

ẏ(t) = u(t − θ) − d(t) ,

where u(t) is the production rate order and d(t)is the instantaneous demand. We
assume that for t < θ , we have ẏ(t) = φ(t) − d(t), where φ(t) corresponds to some
initial condition. We choose the control law in the form

u(t) = K (yc − z(t)) ,

with

z(t) =
{
y(t) + ∫ t

t−θ
u(τ )dτ for t ≥ θ ,

y(t) + ∫ θ

t φ(τ)dτ + ∫ t
0 u(τ )dτ for t < θ .

One can show that the solution is written

ŷ(s) = 1 + K 1−e−sθ

s

s + K

(
y0 + φ̂(s) − d̂(s)

)
+ K e−sθ

s + K
.
( yc
s

+ φ̂
)

.

We therefore introduce the notations

ĥ1(s) =
(
1 + K 1−e−sθ

s

)

s + K
ĥ2(s) = K e−sθ

s + K

that are the Laplace transform of the kernels

h1(t) =
{
1 , for t ∈ [0, θ [ ,

e−K (t−θ) , for t ≥ θ ,
h2(t) =

{
0 , for t ∈ [0, θ [ ,

e−K (t−θ) , for t ≥ θ ,

and we notice that ‖h1‖A = θ + 1/K , and ‖h2‖A = 1. Assuming that the range of
the external demand d(t) is [0, dmax], we deduce the bounds

−dmax‖h1‖A + yc ‖h2‖A ≤ y(t) ≤ yc ‖h2‖A
that lead to explicit bounds on y(t)

yc − dmax

(
θ + 1

K

)
≤ y(t) ≤ yc ,

for t ≥ θ , and on the admissible initial conditions

y0 + wi p0 − θ ≤ y(t) ≤ y0 + wi p0 .
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over the initial period t ∈ [0, θ [, with wi p0 = ∫ θ

0 φ(τ)dτ . From these bounds, one
can easily deduce conditions to meet the constraints on the production and inventory
capacity, that are given as u(t) ∈ [0, umax] and y(t) ∈ [0, ymax], for every demand in
the range d(t) ∈ [0, dmax]. The admissible values of the control parameters are:

yc ∈ [θdmax, ymax] , K ≥ dmax

yc
− θ ,

and the admissible values of the sizing parameters are:

umax ≥ dmax , θdmax < ymax .

These results were obtained using other methods in [17]. The samemodel can also be
used to study the congestion control in communication networks, and similar results
have been expounded in [12].

12.4.3 Example of Approximation of the Reachable Set

Let us consider the following time delay system

ẋ(t) =
[−2 0
0 −1

]
x(t) +

[
1 0

−1 1

]
x(t − 1) +

[
0 1
0.5 0

]
x(t − π) +

[−0.5
1

]
u(t) ,

where the initial state of the system is taken as x(t) = 0 for t ∈ [−π, 0], and u(t) ver-
ifies u(t) ∈ U = {0 ≤ u(t) ≤ 1}, for t ≥ 0. Formally, this system can be rewritten
in the form

x(t) = (H � u)(t) ,

where H ∈ A 2×1. The first step of the design is to numerically compute the kernels
H11(t) and H21(t) using the solver dde23 of MATLAB. The result is plotted in
Fig. 12.1. The second step of the design consists in the computation of the outer
and inner approximations of the reachable set of the system. For this purpose, we
consider thematrix P that is obtained by the concatenation of row vectors of the form
(cos 2kπ

K , sin 2kπ
K ), for k = 1 to K , and apply the procedure indicated in Sect. 12.3.2

to compute the vector ν and the matrix N , so that the outer and inner approximations
of the reachable set are respectively P(P, ν) and C (N ). The polyhedra obtained
for K = 5 are shown in Fig. 12.2. We also represent on the figure the reachable set,
that was finely approximated using K = 360.
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Fig. 12.1 Graphs of the kernels H11(t) and H21(t)
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Fig. 12.2 Approximation of the reachable set

12.5 Conclusions

We have characterized bounds for a class of input-output systems defined by a con-
volution. They are derived from the concept of BIBO stability, and are given in
terms of integrals that are easy to compute numerically. A method for the approx-
imation of reachable sets of convolution systems was obtained from these bounds.
We shortly commented the topological structure of the reachable set and the case
of positive systems. The method was illustrated on a simple regulation problem of
inventory level in a logistic system, and on an academic example of system with two
non-commensurable delays.

Acknowledgements The author thanks very much Filippo Cacace and Joseph Winkin for their
warm encouragements, which were crucial to produce this report.
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Chapter 13
On the Connection Between the Stability of
Multidimensional Positive Systems and the
Stability of Switched Positive Systems

Hugo Alonso and Paula Rocha

Abstract In this work, we study the connection of the stability of multidimen-
sional positive systems with the stability of switched positive systems. In a previous
work, we showed that the stability of a multidimensional positive system implies the
stability of a related switched positive system. Here, we investigate the reciprocal
implication.

Keywords Stability · Switched positive systems · Multidimensional positive
systems

13.1 Introduction

The study of stability conditions for switched positive systems has attracted the
attention of several researchers (see, for instance, [4, 5, 8]). By relating a switched
positive systemwith a multidimensional positive system, in [1] we provided a simple
sufficient condition, that could be stated in terms of the spectral radius of a single
matrix. However, it turns out that this sufficient condition is not necessary. In order
to understand how far sufficiency is from necessity, here we search for additional
conditions underwhich the stability of a switched positive system implies the stability
of the related multidimensional positive system.

The remainder of this chapter is organized as follows. In the next section, we
make a brief introduction to multidimensional positive systems and their stability.
The connection between the stability of these systems and the stability of switched
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positive systems is studied in Sect. 13.3. Finally, the chapter endswith the conclusions
in Sect. 13.4.

13.2 Multidimensional Positive Systems and Their Stability

The k-dimensional (kD) positive linear discrete systems of order n considered here
are of the form

ΣkD
A1,...,Ak

: ω(i) =
k∑

j=1

A jω(i − e j ), (13.1)

where ω(i) ∈ R
n represents the non-negative local state at i = (i1, . . . , ik) ∈ Z

k ,
A1, . . . , Ak ∈ R

n×n are non-negative matrices, e j ∈ Z
k is the j-th unit vector and

so i − e j = (i1, . . . , i j−1, i j − 1, i j+1, . . . , ik). Furthermore, letting ī = ∑k
j=1 ik ,

the global state of ΣkD
A1,...,Ak

at time � ∈ Z
+
0 is defined as the set of local states

Ω� = {ω(i) : ī = �}. Note that the notions of local and global state only coin-
cide in the particular case of k = 1, when (13.1) describes a 1D system ΣA such
that ω(�) = Aω(� − 1). Now, it is obvious that, given a non-negative initial state
Ω0, a sequence Ω1,Ω2, . . . is uniquely determined by (13.1). The behavior of the
global state sequences determines the stability properties of the system. In particular,
ΣkD

A1,...,Ak
is said to be asymptotically stable if for every non-negative Ω0 such that

||Ω0|| < ∞, one has lim�→+∞ ||Ω�|| = 0, where ||Ω�|| = sup {||ω(i)||2 : ī = �}
and || · ||2 denotes the usual Euclidean norm. In the area of multidimensional sys-
tems, it is well known that the following condition (which does not explore the fact
that the system is positive) is necessary and sufficient for the asymptotic stability of
ΣkD

A1,...,Ak
[2]:

det(In −
k∑

j=1

z j A j ) �= 0 ∀(z1, . . . , zk) ∈ D
k,

whereD
k = {(z1, . . . , zk) ∈ C

k : |z j | ≤ 1, j = 1, . . . , k} is the closed unit polydisc
in C

k . This condition is unpractical and is not in general easy to check. However, if
we use the fact that the kD system is positive, then we get a simpler condition stated
in the proposition below. The result was presented for k = 2 in [10]. We presented
it for k ≥ 2 in [1], but without a proof. We now prove it.

Proposition 13.1 The kD positive system ΣkD
A1,...,Ak

is asymptotically stable if and
only if the 1D positive system ΣA with A = A1 + · · · + Ak is asymptotically stable.

Proof Let us assume that the kD positive system ΣkD
A1,...,Ak

is asymptotically sta-
ble. Suppose that the local states in Ω0 are all equal to a non-negative ω0 ∈ R

n ,
arbitrarily chosen. Then, it can be seen that the local states in Ω� are all equal to
(A1 + · · · + Ak)

�ω0 and hence that ||Ω�|| = ||(A1 + · · · + Ak)
�ω0||2 for all � ∈ Z

+
0 .
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The asymptotic stability of the kD positive system implies that lim�→+∞ ||Ω�|| = 0
and, therefore, lim�→+∞ ||(A1 + · · · + Ak)

�ω0||2 = 0. Given that ω0 is arbitrary, it
follows that the 1D positive system ΣA with A = A1 + · · · + Ak is asymptotically
stable.

Now, let us assume that the 1D positive system ΣA with A = A1 + · · · + Ak is
asymptotically stable. Suppose that the global state Ω0 of the kD positive system
ΣkD

A1,...,Ak
is non-negative and such that ||Ω0|| < ∞. Then, there exists L ∈ R

+ such
that, if ω(i) with ī = 0 is a local state in Ω0, then 0n ≤ ω(i) ≤ Ln , where 0n and Ln

are vectors of length n with all components equal to 0 and L , respectively, and where
the inequalities should be understood component-wise. Now, letΨ : (Z+

0 )k 	→ R
n×n

be the map whose value Ψ (i) = Ψ (i1, . . . , ik) corresponds to the matrix resulting
from the sum of all products in {A1, . . . , Ak} where A j appears i j times for j =
1, . . . , k, usually known as the Hurwitz product of A1, . . . , Ak associated with i . For
instance, if k = 2, then Ψ (0, 0) = In , Ψ (i1, 0) = Ai1

1 when i1 > 0, Ψ (0, i2) = Ai2
2

when i2 > 0 andΨ (i1, i2) = A1Ψ (i1 − 1, i2) + A2Ψ (i1, i2 − 1)when i1, i2 > 0 [3].
With this notation, if ω(i) with ī = � is a local state in Ω�, we have

||ω(i)||2 = ||
∑

j̄=�
Ψ ( j)ω(i − j)||2

≤ ||
∑

j̄=�
Ψ ( j)Ln||2

= ||(
∑

j̄=�
Ψ ( j))Ln||2

= ||(A1 + · · · + Ak)
�Ln||2

and so ||Ω�|| ≤ ||(A1 + · · · + Ak)
�Ln||2 for all � ∈ Z

+
0 . The asymptotic stability of

the 1D positive system ΣA with A = A1 + · · · + Ak implies that lim�→+∞ ||(A1 +
· · · + Ak)

�Ln||2 = 0 and, therefore, lim�→+∞ ||Ω�|| = 0. Finally, minding that Ω0

is arbitrary, it follows that the kD positive system ΣkD
A1,...,Ak

is asymptotically stable.

�

Remark 13.1 According to the proposition, checking the asymptotic stability of the
kD positive system ΣkD

A1,...,Ak
amounts to check the asymptotic stability of the 1D

positive system ΣA with A = A1 + · · · + Ak , but this is very easy, because ΣA is
asymptotically stable if and only if the spectral radius of A is less than one, that is,
ρ(A) < 1.

13.3 On the Connection Between the Stability
of Multidimensional Positive Systems and the Stability
of Switched Positive Systems

A switched positive linear discrete-time system of order n composed of k subsystems
can be described by
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ΣA1,...,Ak : x(�) = Aσ(�−1)x(� − 1), Aσ(�−1) ∈ {A1, . . . , Ak}, (13.2)

where x(�) ∈ R
n represents the non-negative state vector at time � ∈ Z

+
0 , A1, . . . , Ak

∈ R
n×n are non-negative matrices associated with the k subsystems and σ : Z

+
0 	→

{1, . . . , k} is the switching signal. It is clear that, given a non-negative initial state

x(0) = x0 (13.3)

and a switching signal σ , a sequence x(1), x(2), . . . is uniquely determined by (13.2).
The behavior of the state sequences determines the stability properties of the system.
In particular, ΣA1,...,Ak is said to be uniformly asymptotically stable if it is uniformly
stable (u.s.) and globally uniformly attractive (g.u.a.), i.e.:

• ∀ε > 0, ∃δ > 0: ||x(0)||2 < δ ⇒ ||x(�)||2 < ε ∀� ∈ Z
+
0 , σ (u.s.);

• ∀r, ε > 0, ∃�� ∈ Z
+: ||x(0)||2 < r ⇒ ||x(�)||2 < ε ∀� ≥ ��, σ (g.u.a.).

As is known, ΣA1,...,Ak is uniformly asymptotically stable if there exists a common
quadratic Lyapunov function (CQLF) V (x) = xT Px such that

P � 0 ∧ P − AT
j
P A j � 0 j = 1, . . . , k, (13.4)

where T denotes transposition and P � 0 means that P is positive definite [9].
Now, consider the kD positive system ΣkD

A1,...,Ak
described by (13.1) and whose

global state Ω0 = {ω(i) : ī = 0} is determined by

ω(0) = x0, ω(i) = 0 ī = 0 ∧ i �= 0. (13.5)

Note that, in ΣA1,...,Ak , the state is updated in each step in a single direction, corre-
sponding to the variable �. Moreover, ΣA1,...,Ak has k operation modes, and when the
j-th mode is active, the state update is made according to x(�) = A j x(� − 1). On
the other hand, in ΣkD

A1,...,Ak
, the local state is updated in each step in k directions,

corresponding to the variables i1, . . . , ik in i . In addition, the contribution of the j-th
update direction to the overall update, given by

ω(i1, . . . , i j , . . . , ik) = A1ω(i1 − 1, . . . , i j , . . . , ik) + · · ·+
A jω(i1, . . . , i j − 1, . . . , ik) + · · ·+
Akω(i1, . . . , i j , . . . , ik − 1),

is represented by A jω(i1, . . . , i j − 1, . . . , ik). Therefore, we can think of an update
direction in ΣkD

A1,...,Ak
as being associated with an operation mode in ΣA1,...,Ak . Fur-

thermore, it is easy to see that the local state ω(i) = ω(i1, . . . , ik) ofΣkD
A1,...,Ak

equals
the sum of all possibilities for the state x(�) of the switching system ΣA1,...,Ak after
� = ī stepswhere the value of the switching signal is j for i j timeswith j = 1, . . . , k.
Hence, the two systemshave state evolutions that are closely related.This is illustrated
in Fig. 13.1 for k = 2.Note for instance that the value ofω(i) = ω(i1, i2) along the i j -
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Fig. 13.1 State evolution of
the 2D system Σ2D

A1,A2
associated with the switching
system ΣA1,A2

axis evolves in the samemanner as the value of x(�)when the switching signal is such
that σ(�) = j for all �. Also remark that the value of ω(1, 1) = (A1A2 + A2A1)x0
results from the sum of the possible values for x(2) after two steps where the value
of the switching signal is 1 in one step and 2 in the other. Given the close relation
between the state evolutions of both systems, it is not surprising that their stability
properties are also related. This is clarified in the next proposition.

Proposition 13.2 The switched positive systemΣA1,...,Ak described by (13.2), (13.3)
is uniformly asymptotically stable if the associated kD positive system ΣkD

A1,...,Ak

described by (13.1), (13.5) is asymptotically stable.

We presented this result in [1]. In the following, we study the reciprocal implication
and identify conditions under which the uniform asymptotic stability of the switched
positive systemΣA1,...,Ak implies the asymptotic stability of the associated kDpositive
system ΣkD

A1,...,Ak
.

Start by noting that, as explained in Remark 13.1, a kD positive system ΣkD
A1,...,Ak

is asymptotically stable if and only if ρ(A1 + · · · + Ak) < 1. In [1], we showed
that, if ρ(A1 + · · · + Ak) < 1, then it is possible to find a CQLF for the switched
positive system ΣA1,...,Ak . Unfortunately, the converse is not true, as shown in the
next example.

Example 13.1 Consider the switched positive system ΣA1,A2 described by (13.2),
(13.3) with k = 2 and

A1 =
(
0.7 0
0 0.1

)
A2 =

(
0.4 0
0 0.1

)
.

It is obvious that A1 and A2 are such that ρ(A1), ρ(A2) < 1 and commute. Therefore,
it is possible to find a CQLF for ΣA1,A2 [7]. Moreover, it can be seen that ρ(A1 +
A2) = 1.1 ≮ 1.

At this point, a natural question arises: is there a relation between the existence of a
CQLF for a switched positive system ΣA1,...,Ak and the value of ρ(A1 + · · · + Ak)?
If the CQLF has no special form, then the answer is given by the following:

Proposition 13.3 If the switched positive system ΣA1,...,Ak described by (13.2),
(13.3) has a CQLF, then ρ(A1 + · · · + Ak) < k.
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Proof Let us assume that V (x) = xT Px is a CQLF for ΣA1,...,Ak such that P � 0
and

P − AT
1 PA1 � 0

...

P − AT
k P Ak � 0.

Then, (
P − AT

1 PA1
) + · · · + (

P − AT
k P Ak

) � 0 ⇔

kP −
k∑

j=1

AT
j P A j � 0 ⇔

k2
(
kP−1

)−1 −
k∑

j=1

AT
j P A j � 0 ⇔

(
kP−1

)−1 −
k∑

j=1

(
1

k
A j

)T

P

(
1

k
A j

)
� 0.

According to [6], the latter condition implies that the kD positive system ΣkD
1
k A1,...,

1
k Ak

is asymptotically stable. This in turn implies that ρ( 1k A1 + · · · + 1
k Ak) < 1 and so

ρ(A1 + · · · + Ak) < k. 
�
In the proposition just presented, no special form was assumed for the CQLF. How-
ever, if the CQLF for the switched positive system ΣA1,...,Ak is of a certain type, then
the bound on ρ(A1 + · · · + Ak) can be tightened. This is clarified in the next result,
which is the main contribution of this chapter. It identifies conditions under which
the uniform asymptotic stability of the switched positive system ΣA1,...,Ak implies
the asymptotic stability of the associated kD positive system ΣkD

A1,...,Ak
. The proof is

omitted because it is based on arguments similar to those previously used.

Proposition 13.4 If the switched positive system ΣA1,...,Ak described by (13.2),
(13.3) is uniformly asymptotically stable and has a CQLF V (x) = xT Px such that
P � 0 and

1

k2
P − AT

1 PA1 � 0

...

1

k2
P − AT

k P Ak � 0,
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thenρ(A1 + · · · + Ak) < 1and theassociated kDpositive systemΣkD
A1,...,Ak

described
by (13.1), (13.5) is asymptotically stable.

Remark 13.2 It is easy to see that a matrix P in the conditions above also satisfies
P − AT

j
P A j � 0 for j = 1, . . . , k. This means that in the previous proposition we

are indeed asking for the existence of a CQLF for ΣA1,...,Ak of a special form.

The next example illustrates the application of Proposition 13.4.

Example 13.2 Consider the switched positive system ΣA1,...,Ak described by (13.2),
(13.3) with non-negative diagonal matrices

A j = diag
(
α j1, . . . , α jn

)
j = 1, . . . , k.

Assume that ΣA1,...,Ak is uniformly asymptotically stable. Given that ρ(A1), . . . ,

ρ(Ak) < 1, since the system is stable only if each subsystem is stable, and A1, . . . , Ak

commute, ΣA1,...,Ak has a CQLF V (x) = xT Px with P of diagonal form [7]:

P = diag (p1, . . . , pn) ,

where p1, . . . , pn > 0. Assume that 1
k2 P − AT

j
P A j � 0 for j = 1, . . . , k, that is,

that the CQLF is in the conditions of the previous proposition. Then,

1

k2
P − AT

j
P A j � 0 ⇔

diag

(
p1

(
1

k2
− α2

j1

)
, . . . , pn

(
1

k2
− α2

jn

))
� 0 ⇔

0 ≤ α j1, . . . , α jn <
1

k

for j = 1, . . . , k. It is now simple to check that ρ(A1 + · · · + Ak) < 1 and hence the
associated kD positive systemΣkD

A1,...,Ak
described by (13.1), (13.5) is asymptotically

stable.

13.4 Conclusions

In this chapter we studied the relation between the stability of multidimensional
positive systems and the stability of switched positive systems. Motivated by the fact
that the stability of the former implies the stability of the latter [1], but not vice-
versa, we searched for additional conditions under which the stability of a switched
positive system implies the stability of a related multidimensional positive system.
As a preliminary result, we showed that if the switched positive system has a common
quadratic Lyapunov function of a certain type, then the associated multidimensional
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positive system is stable. In our opinion, this might be a step forward to obtain
necessary and sufficient conditions for the stability of a new class of switched positive
systems.
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Chapter 14
Positive Stabilization of a Diffusion System
by Nonnegative Boundary Control

Jonathan N. Dehaye and Joseph J. Winkin

Abstract This chapter deals with the issue of considering nonnegative inputs in the
positive stabilization problem. It is shown in two different ways why one cannot
expect to positively stabilize a positive system by use of a nonnegative input, first
by a classical approach with a formal proof, then by working on an extended system
for which the new input corresponds to the time derivative of the nominal one, thus
circumventing the sign restriction. However, it is shown via a classical example of
positive system—the pure diffusion system—that positively stabilizing a positive
system with a nonnegative input is in some way possible: using a boundary control,
the input sign depends on whether the boundary control appears in the boundary
conditions or in the dynamics. The chapter then provides a parameterization of all
positively stabilizing feedbacks for a discretized model of the pure diffusion system,
some numerical simulations and a convergence discussion which allows to extend
the results to the infinite-dimensional case, where the system is described again by
a parabolic partial differential equation and the input acts either in the dynamics or
in the boundary conditions.

Keywords Positive systems · Nonnegative input · Diffusion equation · Positive
stabilization · Feedback parameterization · Partial differential equations

14.1 Introduction

Positive linear systems are linear systems whose state variables are nonnegative at all
timewhenever so are the initial state and the input. Studying this kind of systems is of
great importance as the nonnegativity property can be found frequently in numerous
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fields like biology, chemistry, physics, ecology, economy or sociology (see e.g. [1,
4, 10, 11, 19] for particular examples).

It is known that positively stabilizing an unstable (lumped parameter) positive
system by means of a nonnegative input is impossible [6]. This has to be taken into
account while studying the positive stabilization problem. In this chapter, we show in
two different ways that a positive linear system is exponentially positively stabiliz-
able by a nonnegative input if and only if the system is already exponentially stable.
Then we introduce a classical and relevant example—the pure diffusion (distributed
parameter) system—for which the input nonnegativity issue is considered in two
different ways, depending on whether the boundary control appears in the boundary
conditions or in the dynamics [9]. The system is discretized and all positively stabi-
lizing feedbacks are parameterized [7] by use of classical positive control theory [11,
15]. Finally, the discretized system is positively stabilized with a suitable feedback,
and convergence issues are discussed.

14.2 Preliminaries

In the following subsections, we provide the reader with the notations, definitions
and main concepts used in the chapter.

14.2.1 Terminology

In the sequel, we will use the sets R+ := {x ∈ R | x ≥ 0}, R0,+ := {x ∈ R | x > 0},
R

n+ := {(x1, . . . , xn) ∈ R
n | xi ∈ R+,∀i = 1, . . . , n} and R

n
0,+ := {(x1, . . . , xn) ∈

R
n | xi ∈ R0,+,∀i = 1, . . . , n}. Similarly, R−, R0,−, Rn− and R

n
0,− denote the sets

{x ∈ R | x ≤ 0}, {x ∈ R | x < 0}, {(x1, . . . , xn) ∈ R
n | xi ∈ R−,∀i = 1, . . . , n} and

{(x1, . . . , xn) ∈ R
n | xi ∈ R0,−,∀i = 1, . . . , n} respectively. For convenience, we

use the notations v ≥ 0 if v ∈ R
n+, v > 0 if v ∈ R

n+ and v �= 0, v � 0 if v ∈ R
n
0,+.

The real part of a complex number z ∈ C will be denoted by R(z). A nonnegative
vector v has all its components greater or equal to zero (i.e. vi ∈ R+, for all i). The
transpose of a matrix A will be denoted by AT . The i j th entry of a matrix A will
be denoted by ai j . The spectrum of a matrix A is the set of its eigenvalues and will
be denoted by σ(A). A nonnegative matrix A (denoted by A ≥ 0) has all its entries
greater or equal to zero (i.e. ai j ∈ R+, for all i, j). AMetzlermatrix A has all its off-
diagonal entries greater or equal to zero (i.e. ai j ∈ R+, for all i �= j). A stablematrix
A has all its eigenvalues with negative real parts (i.e. R(λ) < 0, ∀λ ∈ σ(A)). For
convenience, lower-case letters when used in an appropriate context will represent
scalars or vectors, while upper-case letters will represent matrices.
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14.2.2 Main Concepts

Consider a linear time-invariant system

{
ẋ = Ax + Bu
y = Cx + Du

where A ∈ R
n×n , B ∈ R

n×m , C ∈ R
p×n and D ∈ R

p×m . We first recall the concept
of positive linear system [10, 11, 13, 15].

Definition 14.1 A linear system R = [A, B,C, D] is positive if for every nonneg-
ative initial state x0 ∈ R

n+ and for every admissible nonnegative input u (i.e. every
piecewise continuous function u : R+ → R

m+) the state trajectory x of the system and
the ouput trajectory y are nonnegative (i.e. for all t ≥ 0, x(t) ∈ R

n+ and y(t) ∈ R
p
+).

It is possible to express the positivity of a system by use of the matrices A, B, C
and D only [10, 11].

Theorem 14.1 A linear system R = [A, B,C, D] is positive if and only if A is a
Metzler matrix and B, C and D are nonnegative matrices.

Now we define the positive stabilizability of positive systems. For convenience,
throughout the chapter the notion of stability will refer to asymptotic stability, which
is equivalent to exponential stability as we deal with LTI systems.

Definition 14.2 A positive linear system R = [A, B,C, D] is positively (exponen-
tially) stabilizable if there exists a state feedbackmatrix K ∈ R

m×n such that A + BK
is a stable Metzler matrix, i.e. such that there exist positive constants M and σ such
that for all t ≥ 0 ∥∥e(A+BK )t

∥∥ ≤ Me−σ t

and for all t ≥ 0, e(A+BK )t ≥ 0. Such a feedback matrix K is called a positively
stabilizing feedback for the system R.

The positive stabilization problem is concerned with existence conditions and the
computation of such a matrix K . Finally, we introduce an important result from [4,
11, 15] which provides a necessary and sufficient condition for the stability of a
Metzler matrix.

Lemma 14.1 A Metzler matrix A ∈ R
n×n is stable if and only if there exists v � 0

in Rn such that Av 	 0.

Remark 14.1 The sufficiency of the condition can be shown by considering the
Lyapunov function V (x) = vT x which leads to V̇ (x) = vT Ax < 0. The necessity
follows from the fact that the opposite of the inverse of a stable Metzler matrix is
nonnegative: it suffices to define v = −A−1τ with τ � 0. See [11, Lemma 2.2] or
[16, Lemma 1.1].



182 J.N. Dehaye and J.J. Winkin

14.3 Positive Stabilization by Nonnegative Input

One obvious way to ensure the nonnegativity of the state trajectory of a positive sys-
tem is to force the input to remain nonnegative. However, it is impossible to positively
stabilize an unstable positive systemwith such an input. The first subsection provides
a classical approach of the problem, while the second one provides an alternative as
we work on an extended system.

14.3.1 A Classical Approach

First, let us recall the Perron-Frobenius theorem for Metzler matrices [2, 12]:

Theorem 14.2 If A is aMetzler matrix, there exist a real number λ and a real vector
v > 0 such that Av = λv and for every eigenvalue μ of A,R(μ) ≤ λ.

Remark 14.2 The result in [12] is actually shown for nonnegativematrices.However,
a Metzler matrix is a nonnegative matrix up to a diagonal shift. It is easy to see that
a diagonal shift just shifts the eigenvalues and leaves the eigenvectors unchanged,
making the result valid for Metzler matrices.

In [6] it is stated without proof that, in view of [17], if the dominant eigenvalue of
A is nonnegative one cannot stabilize the system with a nonnegative input. Then one
can conclude that if a positive system is not already stable, it cannot be stabilized by
use of a nonnegative input. For the sake of self-containedness, let us briefly formulate
and prove that assertion.

Theorem 14.3 Consider the positive linear system ẋ = Ax + bu. The system is
(exponentially) positively stabilizable by a state feedback u = Kx such that u ∈ R+
if and only if it is already (exponentially) stable.

Proof The sufficiency of the condition is trivial: it suffices to take K = 0, hence
u = 0. Let us prove the necessity. Suppose that the system is unstable, then the
dominant eigenvalue λ of AT is nonnegative (see Theorem 14.2). By [10, 12] there
exists an eigenvector v > 0 such that AT v = λv. Now let us define ρ = vT x and
focus on the unstable part of the system relative to λ. We then have

ρ̇ = vT ẋ = vT Ax + vT bu = (AT v)T x + vT bu = λρ + (vT b)u

where vT b ≥ 0. If u = Kx was a state feedback such that u ∈ R+, then

ρ(t) = eλtρ0 +
∫ t

0
eλ(t−τ)(vT b)u(τ )dτ

would not tend to zero as t → ∞, since λ, eλt , ρ0, (vT b) and u are all nonnegative
(or positive), thus showing that the system cannot be positively stabilized in this
way. �
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14.3.2 An Extended System

As we showed the issue of considering a nonnegative input, we try to circumvent the
problem by working on an extended system. Consider

{
ẋ = Ax + Bu
u̇ = v

where A is a Metzler matrix, B is nonnegative and v is the new input. This leads to
the positive extended system

˙[
x
u

]
=

[
A B
0 0

] [
x
u

]
+

[
0
I

]
v

that we will denote by ˙̃x = Ãx̃ + B̃v with initial condition

x̃0 =
[
x(0)
u(0)

]
=

[
x0
u0

]
≥ 0

and with state feedback control

v = K̃ x̃ = [Kx Ku]
[
x
u

]
= Kx x + Kuu

where the new input v has no sign restriction as it represents the variation of u,
which allows us to get rid of the input positivity problem. The resulting closed-loop
extended system is therefore described by

˙[
x
u

]
=

[
A B
0 0

] [
x
u

]
+

[
0
I

]
[Kx Ku]

[
x
u

]
=

[
A B
Kx Ku

] [
x
u

]
.

Note that if one considers a static feedback v = K̃ x̃ for the extended system, it
actually corresponds to a dynamic feedback controller u̇ = Kuu + Kxx for the initial
system. The extended system is positively stabilizable if and only if there exists a
state feedback K̃ = [Kx Ku] such that

1. the matrix

[
A B
Kx Ku

]
is Metzler, i.e. Ku is Metzler and Kx ≥ 0, and

2. the matrix

[
A B
Kx Ku

]
is exponentially stable.

As a consequence of these conditions, the pair ( Ã, B̃) should be exponentially
stabilizable. Now, [3, Sect. 10.3] provides necessary and sufficient conditions for the
positive stabilizability of a positive system, using LMIs and a Lyapunov equation.
We adapt this result to the extended system, leading to the following theorem.
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Theorem 14.4 Consider a linear time-invariant system ẋ = Ax + Bu and his
extended system ˙̃x = Ãx̃ + B̃v as defined above. The extended system is positively
stabilizable if and only if there exist a positive-definite diagonal matrix Q =

[
Q1 0
0 Q2

]

and a feedback K̃ such that, with Y = [Y1 Y2] = K̃ Q, the matrix

[
Q1AT + AQ1 Y T

1 + BQ2

Q2BT + Y1 Y T
2 + Y2

]

is negative-definite, Y1 is nonnegative and Y2 is Metzler.

Proof By [3] the extended system is positively stabilizable if and only if there exist
a positive-definite diagonal matrix Q and a feedback K̃ such that, with Y = K̃ Q,
( ÃQ + B̃Y ) is Metzler and Q ÃT + Y T B̃T + ÃQ + B̃Y is negative-definite. One
easily sees that ( ÃQ + B̃Y ) is Metzler if and only if the matrix

[
A B
Kx Ku

]

is Metzler, which means (as stated previously) that Kx has to be nonnegative and Ku

has to be Metzler. Moreover, as Y = K̃ Q,

[Y1 Y2] = [Kx Ku]
[
Q1 0
0 Q2

]

and then {
Kx = Y1Q

−1
1

Ku = Y2Q
−1
2

which implies that Y1 has to be nonnegative and Y2 has to be Metzler. Now, we can
rewrite Q ÃT + Y T B̃T + ÃQ + B̃Y as

[
Q1 0
0 Q2

] [
AT 0
BT 0

]
+

[
Y T
1

Y T
2

]
[0 I ] +

[
A B
0 0

] [
Q1 0
0 Q2

]
+

[
0
I

]
[Y1 Y2]

which is equal to [
Q1AT + AQ1 Y T

1 + BQ2

Q2BT + Y1 Y T
2 + Y2

]
.

�

Remark 14.3 By the previous theorem, the matrix

[
Q1AT + AQ1 Y T

1 + BQ2

Q2BT + Y1 Y T
2 + Y2

]
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has to be negative-definite in order to positively stabilize the extended system by
means of a feedback v = K̃ x̃ . However, it is known that every principal submatrix
of a negative-definite matrix is negative-definite. This means that Q1AT + AQ1 is
negative-definite and thus the initial system should be stable already. Thus the use of
an extended system does not allow to circumvent the obstacle of using a nonnegative
input as described in Sect. 14.3.1.

14.4 A Pure Diffusion System

Now we show that one can actually positively stabilize a pure diffusion system—
which is a distributed parameter positive system—by use of a nonnegative boundary
control, as long as the input appears in the boundary conditions.

14.4.1 Modelization

Consider a standard example of unstable positive distributed parameter system,
namely the pure diffusion system described by the partial differential equation (PDE)

∂x

∂t
= Da

∂2x

∂z2
(14.1)

with Neumann boundary conditions

{
∂x
∂z (t, 0) = v(t)
∂x
∂z (t, L) = 0

(14.2)

where v is the input, Da is the diffusion parameter and L is the domain length. By
[9, Example 2.1], this boundary control system is equivalent to the system described
by the PDE

∂x

∂t
= Da

∂2x

∂z2
+ δ0u(t) (14.3)

with the Dirac delta distribution δ0 as control operator and with homogeneous
Neumann boundary conditions

{
∂x
∂z (t, 0) = 0
∂x
∂z (t, L) = 0

(14.4)

where the input u(t) = −v(t). This implies that considering a positive input v(t) in
the boundary conditions leads to a negative input u(t) in the dynamics, and thus to
a potential stabilization of the system.
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14.4.2 Discretization

In order to stabilize the system, we discretize it by the finite difference method
and we obtain the finite-dimensional system (considering n discretization points zi ,
i = 1, . . . , n, with z1 = 0, zn = L and Δz = L/(n − 1) the discretization step)

ẋ (n) = A(n)x (n) + b(n)u (14.5)

where

A(n) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−p2 p2 0 · · · 0

p2 −2p2 p2
...

0
. . .

. . .
. . . 0

... p2 −2p2 p2
0 · · · 0 p2 −p2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n,

b(n) = [p1 0 · · · 0]T ∈ R
n

and
x (n) = [x(z1) · · · x(zn)]T ∈ R

n

where

p1 = 1

Δz
and p2 = Da

Δz2
.

Clearly, this finite-dimensional system is positive (see Theorem 14.1). Moreover,
the infinite-dimensional system (14.1)–(14.2) is not exponentially stable [1, 5] as zero
is in the spectrum of its generator. Discretizing the system will perturb the spectrum
though one easily sees that the finite-dimensional system (14.5) is not exponentially
stable as zero is still in the spectrum of A(n). Also note that all eigenvalues are real,
A(n) being symmetric.

14.4.3 Positive Stabilization of the System

Now we can provide the reader with a parameterization of all positively stabilizing
feedbacks for the distributed pure diffusion system (14.5), using Lemma 14.1 and
developing the resulting set of inequalities [7].

Theorem 14.5 A feedback k = [k1 · · · kn] is positively stabilizing for the dis-
cretized pure diffusion system (14.5) if and only if it is such that

k1 = Dav1 − Dav2 − k2v2Δz − · · · − knvnΔz − Δz2ω

v1Δz
,
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k2 ≥ −Da

Δz
and ki ≥ 0 i = 3, . . . , n,

with ω > 0 (free parameter) and such that v � 0 is a positive solution of the strict
inequalities set

−v1 + 2v2 − v3 > 0
...

−vn−2 + vn−1 − vn > 0
−vn−1 + vn > 0.

(14.6)

It is actually possible to parameterize all the solutions of the inequalities set (14.6),
leading to a full parameterization of all the positively stabilizing feedbacks for the
pure diffusion system (see [7]). In order to illustrate the theoretical results, let us
design a particular feedback that falls in the class defined in Theorem 14.5. Let us
set

k(n)
1 = − 1

Δz
κ and k(n)

i = 0 (i = 2, . . . , n) (14.7)

with κ > 0. Considering L = 1, Da = 1, κ = 0.2 and n = 11 and choosing the initial
condition x0 = 2z3 − 3z2 + 1 (this polynomial respects the boundary conditions and
the all-ones eigenvector corresponds to the Frobenius unstable eigenvalue λ = 0, so
the initial condition excites the unstable mode) yields the open-loop state trajectory
shown in Fig. 14.1, and the closed-loop state trajectory shown in Fig. 14.2. This
illustrates that the closed-loop system is positive and that it is stable unlike the open-
loop system. Figure14.3 shows the nonnegative input trajectory v(t).

Fig. 14.1 Open-loop state
trajectory x (n)(t) (n = 11). It
converges to a constant
non-null value
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Fig. 14.2 Closed-loop state trajectory x (n)(t) (n = 11). It stabilizes to zero while staying nonneg-
ative at all time

Fig. 14.3 Input trajectory v(t) = −k(n)x (n)(t) (n = 11). The input—as it appears in the boundary
conditions—is nonnegative at all time and decreases to zero

14.4.4 Convergence Analysis

Now we focus on convergence issues, whenever the finite difference step tends to
zero. Let us introduce the following result (see [7]).

Theorem 14.6 Applying the feedback k(n) given by (14.7) to the approximate system
(14.5) leads to the convergence of the resulting closed-loop system
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ẋ (n) = (A(n) + b(n)k(n))x (n), (14.8)

as Δz tends to zero, to the system described by the PDE

∂x

∂t
= Da

∂2x

∂z2
(14.9)

with Neumann boundary conditions

{
∂x
∂z (0, t) = κx(0, t)

∂x
∂z (L , t) = 0.

(14.10)

Moreover, the approximate closed-loop system (14.8) is positive and (exponentially)
stable for n sufficiently large, and the system (14.9)–(14.10) is positive and (expo-
nentially) stable.

One can show the convergence of the system operators by a state space approach,
setting the discretized operators in the appropriate spaces and using the related norms
[9, Example 2.1]. Positivity of system (14.9)–(14.10) can be proved by standard
arguments (positivity of the resolvent operator as in [14] or the maximum principle
as in [18]). Also, as it is of Sturm-Liouville type, system (14.9)–(14.10) is a Riesz-
spectral system [8]. Its spectrum is thus real and discrete: it is easy to compute all
eigenvalues and to show that they are negative, implying the stability of the system.
For a complete proof, refer to [7].

14.5 Conclusion

In this chapter, we have studied the issue of considering a nonnegative input while
positively stabilizing a positive system, using a classical approach and working on
an extended system. Then we have shown via a classical example that the boundary
input sign may vary depending on whether it acts in the dynamics or in the boundary
conditions, implying that it is technically possible to positively stabilize the system
with a nonnegative input. Finally we have provided a convenient way to parameterize
all the positively stabilizing feedbacks for a discretized model of the pure diffusion
system, we have discussed the convergence of the results and we have produced
some numerical simulations. Next steps in this work are—among others—to extend
Theorem 14.3 and its proof to infinite-dimensional systems, to find conditions over
any discretized feedback so that it converges to a positively stabilizing feedback for
the nominal PDE system, to optimize the choice of a positively stabilizing feedback
with respect to some given criterion, to design observer based compensators and to
extend the results to a specific interesting application in biochemical engineering.
These questions are currently under investigation.
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Chapter 15
Positive Stabilization of a Class
of Infinite-Dimensional Positive Systems

M. Elarbi Achhab and Joseph J. Winkin

Abstract For a class of positive unstable infinite-dimensional linear systems, a
method is described for computing a positively stabilizing state feedback, such that
the resulting input trajectory remains in an affine cone. This design results in a
possibly negative lower bound on the input, which makes the resulting closed-loop
system stable andwhichmaintains the nonnegativity of the state trajectory for specific
initial states.

Keywords Infinite dimensional systems · Positive linear systems · Positive
stabilization · State feedback · Affine cone

15.1 Introduction

Positive linear systems are linear dynamical systems whose state trajectories are
nonnegative for every nonnegative initial state and for every admissible nonnegative
input function. Equivalently a linear dynamical system is positive whenever the cor-
responding cone (which defines the considered order) of the state-space is invariant
under the state transitionmap (positive invariance). The positivity (or,more precisely,
nonnegativity) property occurs quite frequently in practical applications where the
state variables correspond to quantities that do not have real meaning unless they are
nonnegative, see e.g. [5, 14, 15, 19, 20], for examples of positive infinite dimensional
systems that are described by specific partial differential equations.

The positivity property and the positive stabilization problem have been exten-
sively studied for finite dimensional systems, see e.g. [6, 10, 16, 17] and references
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therein. Concerning the positivity of infinite dimensional linear systems, some new
points of view and perspectives are available in the literature. In particular, algebraic
conditions of positivity for dynamical systems defined on an ordered Banach space
whose positive cone has an empty interior are established in [1].

In this chapter, conditions are derived for the positive stabilization of a class
of distributed parameter systems, such that the closed loop system is stable and
positive. More specifically, for positive unstable infinite-dimensional linear systems,
conditions are established for positive stabilizability and a method is described for
computing a positively stabilizing state feedback, which guarantees that the stable
closed loop dynamics are nonnegative for specific initial states.

A feedback control is designed such that the unstable finite-dimensional spectrum
of the dynamics generator is replaced by the eigenvalues of the stable input dynamics
and such that the resulting input trajectory remains in an affine cone, thereby ensuring
a possibly negative lower bound on the input, which maintains the nonnegativity of
the state trajectory for specific initial states. Moreover a synthesis methodology of
a positively stabilizing state feedback is described; see [4]. These results constitute
extensions of those obtained in [3], with statements and proofs adapted to the case
of an invariant shifted cone for the input values. This extended theory is motivated
by the fact that positive stabilization of an unstable system by a nonnegative input
(in the dynamics equation) is not possible; see [9].

15.2 Positive Stabilization Problem

Let’s consider an infinite dimensional (state-space) system described by

{
ẋ(t) = Ax(t) + Bu(t)
x(0) = x0

(15.1)

where the linear operator A is the infinitesimal generator of a positive unstable C0-
semigroup T (t) on an ordered (separable) Hilbert space X with positive cone X+,
[8, 12]. It is known that there exist constants M ≥ 1 and ω ∈ IR such that

for all t ≥ 0, ‖T (t)‖ ≤ Meωt . (15.2)

In Eq. (15.1), the operator B ∈ L (IRm, X) is positive, i.e. B is a bounded linear
operator from IRm to X such that

B(IRm
+) ⊂ X+ , (15.3)

where IR+ denotes the set of nonnegative real numbers and the input u(·) is any locally
square integrable function. Hence the system (15.1) is positive: for every initial state
x0 ∈ X+ and for every (admissible) nonnegative input u, the corresponding state
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trajectory x(·) (interpreted as the mild solution of (15.1)) remains in X+, i.e. for all
t ≥ 0, x(t) ∈ X+ (see e.g. [1] and references therein).

The following conditions are also assumed to hold:
(C0) the operator A admits a Riesz basis of eigenvectors (φn)n≥1;
This condition holds e.g. if the operator A is a Riesz spectral operator or if it is

similar to a normal operator (see e.g. [11]). It follows from this condition that (φn)n≥1

is also a Riesz basis of eigenvectors of the operator K = λR(λ, A), for all λ > ω.
(C1) the system (15.1), i.e. the pair (A, B), is (exponentially) stabilizable;
Condition (C1) implies that the unstable part of the dynamics is a (totally) unstable

finite-dimensional system corresponding to all the eigenvalues of the operator A that
belong to the closed right-half plane, [8]. In the sequel, we will assume that the
number of such eigenvalues (counting multiplicities) is m.

(C2) the C0-semigroup T (t) has a compact resolvent, i.e. the resolvent operator
R(λ, A) := (λI − A)−1 ∈ L (X) is compact for all λ > ω.

Definition 15.1 The system (15.1), i.e. the pair (A, B), is said to be locally
positively stabilizable if there exist a subset S ⊂ X and a state feedback control law
u = Fx , where the feedback operator F is in L (X, IRm), such that the resulting
closed-loop system is stable and positive on S, i.e. theC0-semigroup TF (t) generated
by A + BF is exponentially stable and TF (t) is positive on the subset S, i.e.

TF (t)(X+ ∩ S) ⊂ X+ ; (15.4)

hence, in particular, (A, B) is stabilizable.

The positive stabilization problem consists in finding sufficient and/or necessary
conditions for the (local) positive stabilizability of a given system of the form (15.1),
leading hopefully to a computational method for designing a positively stabilizing
feedback, i.e. a stabilizing feedback operator F ∈ L (X, IRm) such that (15.4) holds
for some subset S ⊂ X .

Remark 15.1 Observe that the concept of partial positive stabilizability (which
requires that the closed-loop state trajectories starting from an initial state in X+ ∩ S
stay in X+ ∩ S, see [3]) is stronger than local positive stabilizability.

15.3 Main Result

The approach that is followed here is based on a finite spectrum assignment technique
yielding a stable closed-loop system and enforcing conditions on the inputs that
guarantee positive corresponding state trajectories starting from well-chosen initial
states. This approach, which is analyzed in the next section, goes along the lines of
the one introduced in [3]. It leads to the following main result:

Theorem 15.1 Consider an infinite-dimensional system described by (15.1) under
assumption (15.3) and assume that conditions (C0), (C1) and (C2) hold.
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(a) Consider a feedback operator F ∈ L (X, IRm) of full rank m. Then the set

Pq(F) := { x ∈ X : Fx ≥ −q } , where q ∈ IRm
+ ,

is TF (t)-invariant, i.e. TF (t) Pq(F) ⊂ Pq(F), if and only if there exists a
Metzler matrix H, satisfying Hq ≤ 0, such that

F(A + BF) − HF = 0 on D(A) (15.5)

i.e.
F(A + BF)x = HFx f or all x ∈ D(A) .

(b) If there exists a stabilizing feedback operator F ∈ L (X, IRm) of full rank m,
such that condition (15.5) holds for some Metzler matrix H satisfying Hq ≤ 0
and if there exists a subset X0 ⊂ X+ such that, for all x0 ∈ X0 and for all
t ≥ 0, x(t) ∈ X+ for any input u(·) ≥ −q, then the system (15.1), i.e. the pair
(A, B), is locally positively stabilizable and, in particular, for every initial state
x0 ∈ X0 ∩ Pq(F) and for all t ≥ 0,

x(t) = TF (t)x0 ∈ X+ ∩ Pq(F)

and, for some constants μ ≥ 1 and σ > 0,

‖x(t)‖ ≤ μ e−σ t , f or all t ≥ 0.

Remark 15.2 (a) A Metzler matrix is a square matrix whose off-diagonal entries
are nonnegative, see e.g. [13].

(b) The fact that the setPq(F) is TF (t)-invariant implies that, for any initial state x0
in X0 ∩ Pq(F), the corresponding input trajectory u(·) = Fx(·) (generated by
the feedback F) satisfies u(·) ≥ −q. In view of this observation, Theorem 15.1b
follows directly from its Part a). In the next section, we will therefore focus on
the proof of the first part. In addition, since the analysis is similar to the one
developed in [3], we will focus on the new specific arguments resulting from the
use of the setPq(F) instead of the nonnegative cone, i.e. the setP0(F), of the
input value set.

15.4 Auxiliary Results and Proofs

Theorem 15.1a is a straightforward consequence of the following result.

Theorem 15.2 Consider a C0-semigroup S(t) of bounded linear operators on a
Hilbert space X, whose infinitesimal generator is the operator A , such that
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for all t ≥ 0, ‖S(t)‖ ≤ Meωt , (15.6)

for some constants M ≥ 1 and ω ∈ IR. Assume that A admits a Riesz basis of
eigenvectors (φn)n≥1 and that S(t)has a compact resolvent, i.e. the resolvent operator
R(λ,A ) := (λI − A )−1 ∈ L (X) is compact for all λ > ω. Consider any given
bounded linear operator F ∈ L (X, IRm) of full rank m. Then the set

Pq(F) := { x ∈ X : Fx ≥ −q } , where q ∈ IRm
+

is S(t)-invariant, i.e. S(t) Pq(F) ⊂ Pq(F), if and only if there exists a Metzler
matrix H satisfying Hq ≤ 0 such that

FA − HF = 0 on D(A ) . (15.7)

The proof of Theorem 15.2 is detailed in Sect. 15.4.2. It is based on auxiliary
results concerning discrete time systems, that are developed in Sect. 15.4.1.

Under the conditions of Theorem 15.2, consider the family (Σλ)λ>ω of discrete-
time infinite-dimensional systems

(Σλ)

{
x(k + 1) = λR(λ,A )x(k)
x(0) = x0 .

(15.8)

Proposition 15.1 If the set Pq(F) is S(t)-invariant, then for all λ ≥ max {1, ω},
Pq(F) is invariant with respect to the system (Σλ), i.e.

λR(λ,A ) Pq(F) ⊂ Pq(F) .

Proof If x belongs to Pq(F), then for all t ≥ 0, S(t)x is also in Pq(F), i.e.
FS(t)x ≥ −q. By using the fact that the resolvent operator R(λ,A ) is the Laplace
transform (interpreted as aBochner integral, i.e. in the strong sense), of the semigroup

S(t), it follows that FR(λ,A )x ≥ −q

λ
for λ > ω.

15.4.1 Invariance of Discrete Time Systems

In order to study the invariance properties of discrete time systems of the form (15.8),
let’s consider a more general class of discrete-time infinite-dimensional systems:

Σd

{
x(k + 1) = K x(k)
x(0) = x0 ∈ X ,

(15.9)

where the bounded linear operator K ∈ L (X) is assumed to be compact and to have
a Riesz basis of eigenvectors (φn)n≥1.
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For every N ≥ 1, let XN denote the K -invariant finite-dimensional linear sub-
space of X defined by XN := span{φi : i = 1, 2, . . . , N } and let the operator
ΓN := ProjXN

denote the orthogonal projection on XN . Observe that the operator
KN := K ΓN has a finite rank and that the sequence (KN ) converges strongly towards
K inL (X), i.e.

lim
N→∞ ‖(K − KN )x‖ = 0 , x ∈ X.

Now we can define the sequence (Σd
N ) of discrete-time finite-dimensional sys-

tems:

Σd
N

{
xN (k + 1) = KN xN (k)
xN (0) ∈ XN .

(15.10)

Observe that such system is well-defined on XN . Indeed KN ∈ L (X) is such that
KN (XN ) ⊂ XN .

Proposition 15.2 If the set Pq(F) is invariant with respect to the system Σd , i.e.
K Pq(F) ⊂ Pq(F), then for all N ≥ 1, the set

Pq(F) ∩ XN := { x ∈ XN : Fx + q ∈ IRm
+ }

is invariant with respect to the system Σd
N .

Proof It suffices to observe that, for any x ∈ Pq(F) ∩ XN , KN x ∈ XN and FKN x =
FK x ≥ −q.

Now we are in a position to state and prove the main result of this subsection.

Proposition 15.3 The set Pq(F) is invariant with respect to the system Σd , i.e.
K Pq(F) ⊂ Pq(F), if and only if there exists a nonnegative matrix H such that

{
FK = HF on X
Hq ≤ q

(15.11)

The proof of the necessity of Conditions (15.11) in Proposition 15.3 is based on
the following affine form of the Ferkas lemma; see [18].

Lemma 15.1 let P be a non-empty polyhedron defined by m inequalities

aT
k z + bk ≥ 0 , k = 1, . . . ,m. (15.12)

Then an affine formΨ is nonnegative everywhere in P if and only if it is a nonnegative
linear combination of the faces, i.e. there exist positive reals λ0, λ1, . . . , λm such that

Ψ (z) = λ0 +
m∑

k=1

λk(a
T
k z + bk). (15.13)
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Proof of Proposition 15.3: Sufficiency is straightforward.
Necessity: Since the operator F is surjective and the set ∪{XN : N ≥ 1} is dense

in X , where (XN ) is a monotone increasing sequence of linear subspaces of X , by
[2, Lemma 3.1], there exists N0 such that F(XN0) = IRm , therefore for all N ≥ N0,
F(XN ) = IRm . Moreover, by Proposition 15.2, for all N ≥ 1, the set Pq(F) ∩ XN

is invariant with respect to the system Σd
N ; thus,

z ∈ Pq(F) ∩ XN =⇒ KN z ∈ Pq(F) ∩ XN

or
(FN ) j z + q j ≥ 0 =⇒ (FN ) j KN z + q j ≥ 0 ,∀ j, 1 ≤ j ≤ m

where (FN ) j is the jth row-vector of the matrix FN := FΓN . Putting for j, 1 ≤ j ≤
m,

Ψ j (z) = (FN ) j KN z + q j , (15.14)

Ψ j (.) is an affine form which is nonnegative everywhere in the polyhedronPq(F) ∩
XN . Thus, by Lemma 15.1, for every j, 1 ≤ j ≤ m there exist m + 1 positive reals
λ j0, λ j1, . . . , λ jm such that

Ψ j (z) = λ j0 +
m∑

k=1

λ jk((FN )k z + qk), 1 ≤ j ≤ m

This implies that for every j, 1 ≤ j ≤ m,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(FN ) j KN z =
m∑

k=1

λ jk((FN )k z

q j = λ j0 +
m∑

k=1

λ jkqk .

(15.15)

Now, define the matrix HN by (HN ) jk = λ jk for 1 ≤ j, k ≤ m, one deduces that HN

is a nonnegative matrix and

{
FN KN = HN FN on X
HNq ≤ q .

(15.16)

Consider any vector y ∈ IRm . For all N ≥ max{N0,m}, by the surjectivity of FN

and by the definition of XN , there exists x ∈ Xmax{N0,m} ⊂ XN (hence x is indepen-
dent of N ) such that y = Fx = FN x . It follows by identity (15.15) that,

HN y = HN Fx = HN FN x = FN KN x = FKN x .
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Thanks to the convergence of the sequence (KN ) towards the operator K , the
sequence HN y is convergent in IRm . Let’s define the matrix operator H ∈ IRm×m

by
Hy := lim

N→∞ HN y .

Obviously H is nonnegative because HN is nonnegative for N sufficiently large. In
addition, by the convergence of (FN ) towards F , it follows from identity (15.15) that
(15.11) holds.

15.4.2 Proof of Theorem 15.2

Sufficiency: Using the density of D(A ) in X , it follows from (15.7) that, for every
x0 ∈ X , the function u : IR+ → IRm : t 
→ u(t) := FS(t)x0 is the solution of the
finite-dimensional Cauchy problem:

u̇(t) = Hu(t), u(0) = Fx0 ,

or equivalently u(t) = eHt Fx0, where H is a Metzler matrix satisfying Hq ≤ 0.
Thus, if in addition x0 is in Pq(F), i.e. Fx0 ≥ −q, then for all t ≥ 0, u(t) ≥ −q,
i.e. S(t)x0 ∈ Pq(F); see e.g. [13]. This shows that the setPq(F) is S(t)-invariant.

Necessity: By Proposition 15.1, for all λ ≥ max {1, ω}, Pq(F) is invariant with
respect to the system (Σλ); it follows by Proposition 15.3 applied to K = λR(λ,A ),
that there exists a nonnegative matrix Hλ such that

{
FλR(λ,A ) = HλF on X.

Hλq ≤ q .
(15.17)

Now consider the (bounded linear) Yosida approximant of A (see e.g. [12]):

Aλ := λA R(λ,A ) = λ2R(λ,A ) − λI .

Observe that Equation (15.17) yields the identity:

FAλ = λ(Hλ − I )F . (15.18)

Moreover, by [12, Lemma II.3.4, p. 65], for all x ∈ D(A ),

lim
λ→∞ Aλx = A x . (15.19)
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Besides, since the operator F is onto and D(A ) is a dense subspace of X , by using [2,
Lemma 3.1], F(D(A )) = IRm . Therefore every y ∈ IRm can be written as y = Fx
for some x ∈ D(A ). Using this fact, it follows from (15.18) that, for all y ∈ IRm ,
the following limit

Hy := lim
λ→∞ λ(Hλ − I )y (15.20)

exists (in IRm). Also, by (15.17), the matrix H satisfies the condition Hq ≤ 0. In
addition, identity (15.7) holds. Indeed, for all x ∈ D(A ),

HFx = lim
λ→∞ λ(Hλ − I )Fx = lim

λ→∞ FAλx = FA x .

It remains to be shown that the matrix H given by (15.20) is a Metzler matrix. Recall
that, for λ ≥ max {1, ω}, the matrix Hλ is nonnegative, hence λ(Hλ − I ) is a Metzler
matrix. It follows by (15.20) that so is the matrix H .

15.5 Outlook

The design method which is described in [3] and which is based on the decomposi-
tion of the dynamics into a totally unstable finite-dimensional positively stabilizable
(positive) subsystem and a stable infinite-dimensional positive subsystem (as in [1]),
can be readily extended to the more general framework of this chapter. Its imple-
mentation on standard examples is currently under investigation, [4].

It is also worth to mention the recent work (in progress) [7] which investigates
the question of designing a positive exponential Luenberger type observer for a
class of infinite-dimensional linear positive systems. Such positive observers are
very important in applications, since negative estimated values of positive states
may not have a physical meaning (think of concentrations, for example). Necessary
and sufficient conditions for the existence of such positive observers are established
in that paper: under the decomposition spectral assumption, the authors show that
the problem is reduced to the design of a positive observer for an unstable finite-
dimensional subsystem. The technical mathematical tools are comparable to the
ones used in [1]. Finally, the applicability of the proposed estimation approach is
illustrated by an example of a parabolic system.

Acknowledgements The authorswish to thank the following personswithwhom they haveworked
jointly on dynamical analysis and control of positive systems for many years: B. Abouzaid (Ecole
Nationale des Sciences Appliquées, Université Chouaib Doukkali, El Jadida., Morocco), Ch. Beau-
thier (Cenaero, Gosselies, Belgium), D. Dochain (Université Catholique de Louvain, Belgium), M.
Laabissi (Université Chouaib Doukkali, El Jadida, Morocco) and V. Wertz (Université Catholique
de Louvain, Belgium).
This chapter presents research results of the Belgian Network DYSCO (Dynamical Systems, Con-
trol, and Optimization), funded by the Interuniversity Attraction Poles Programme initiated by the
Belgian Science Policy Office.



200 M.E. Achhab and J.J. Winkin

References

1. Abouzaid, B., Winkin, J., Wertz, V.: Positive stabilization of infinite-dimensional linear sys-
tems. In: Proceedings of the 49th Conference on Decision and Control (CDC), Atlanta, GA,
USA, 15–17 Dec 2010, Cd-Rom paper 0859, pp. 845–850

2. Achhab, M.E., Laabissi, M.: Feedback stabilization of a class of distributed parameter systems
with control constraints. Syst. Control Lett. 45, 163–171 (2002)

3. Achhab, M.E., Winkin, J.: Stabilization of infinite dimensional systems by state feedback with
positivity constraints. In: Proceedings of the 21st International Symposium on Mathematical
Theory of Networks and Systems (MTNS 2014), Groningen, NL, 2014, pp. 379–384

4. Achhab, M.E., Winkin, J.: Work in progress
5. Aksikas, I., Winkin, J., Dochain, D.: Optimal LQ-feedback regulation of a nonisothermal plug

flow reactor model by spectral factorization. IEEE Trans. Autom. Control 52(7), 1179–1193
(2007)

6. Beauthier, Ch.,Winkin, J.: LQ-optimal control of positive linear systems. Optim. Control Appl.
Methods 31, 547–566 (2010)

7. Binid,A.,Achhab,M.E., Laabissi,M.,Abouzaid, B.: Positive observers for infinite dimensional
positive linear systems (2016)

8. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite-Dimensional Linear Systems Theory.
Springer (1995)

9. Dehaye, J.N., Winkin, J.: Positive stabilization of a diffusion system by nonnegative boundary
control. In: Proceedings of POSTA 2016

10. De Leenheer, P., Aeyels, D.: Stabilization of positive linear systems. Syst. Control Lett. 44,
259271 (2001)

11. Dunford, N., Schwartz, J.T.: Linear Operators. Part II. Wiley Intersciences, New York (1951)
12. Engel, K.J., Nagel, R.: A Short Course on Operator Semigroups. Springer (2006) (especially

chapter VI)
13. Haddad, W.M., Chellaboina, V., Hui, Q.: Nonnegative and compartmental dynamical systems.

Princeton University Press, Princeton, NJ (2010)
14. Laabissi, M., Achhab, M.E., Winkin, J., Dochain, D.: Trajectory analysis of nonisothermal

tubular reactor nonlinear models. Syst. Control Lett. 42, 169–184 (2001)
15. Laabissi, M., Achhab, M.E., Winkin, J., Dochain, D.: Positivity and invariance properties of

nonisothermal tubular reactor nonlinear models. In: Benvenuti, L., De Santis, A., Farina, L.
(eds.) Positive Systems (Proceedings of the 1rst Multidisciplinary International Symposium
on Positive Systems: Theory and Applications (POSTA 03), Grenoble, France), pp. 159–166.
Lecture Notes in Control and Information Sciences. Springer, Berlin (2003)

16. Laabissi, M., Winkin, J., Beauthier, Ch.: On the positive LQ-problem for linear continuous-
time systems. In: Commault, Ch., Marchand, N. (eds.) Positive Systems (Proceedings of the
2nd Multidisciplinary International Symposium on Positive Systems: Theory and Applica-
tions (POSTA 06), Grenoble, France), pp. 295–302. Lecture Notes in Control and Information
Sciences. Springer, Berlin (2006)

17. Roszak, B., Davison, E.J.: Necessary and sufficient conditions for stabilizability of positive
LTI systems. Syst. Control Lett. 58, 474481 (2009)

18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (2000)
19. Smith, H.L.: Monotone Dynamical Systems : An Introduction to the Theory of Competitive

and Cooperative Systems. American Mathematical Society, Providence (1995)
20. Winkin, J., Dochain, D., Ligarius, Ph.: Dynamical analysis of distributed parameter tubular

reactors. Automatica 36(3), 349–361 (2000)



Chapter 16
Positivity Analysis of Continuous 2D
Fornasini-Marchesini Fractional Model

Krzysztof Rogowski

Abstract In the chapter continuous Fornasini-Marchesini type model containing
partial fractional-order derivatives described by the Caputo definition will be con-
sidered. General solution formula to the state-space equations of the model will be
given. Using this solution formula the positivity of such system will be analyzed
and the conditions under which the system is internally positive will be derived.
Considerations will be illustrated by numerical simulations.

Keywords Fractional-order systems · Two-dimensional systems ·General solution
formula · Positive systems

16.1 Introduction

The most popular models of two-dimensional (2D) linear systems are the one intro-
duced by Roesser [15], Fornasini andMarchesini [3, 4] and Kurek [13]. An overview
of 2D linear systems theory is given in [1, 5, 11] and for positive 2D systems in [10].

The notion of fractional-order 2D discrete systemswas introduced byKaczorek in
[9]. The continuous 2D fractional-order systems of the Roesser structure have been
introduced in [16] and extended for descriptor (nonsingular) case in [12, 17]. In
these papers the continuous state-space equations containing partial fractional order
derivative described by the Caputo definition have been considered. The Riemann-
Liouville definition has been applied for continuous fractional-order 2DRoesser type
model in [6].

The fractional-order 2D Fornasini-Marchesini continuous model with Riemann-
Liouville definition of fractional-order partial derivative has been considered in [7].

In this chapter the state-space equations of fractional-order 2D linear system of
the structure similar to the Fornasini-Marchesini first model will be introduced. The
partial fractional-order derivatives of a 2D continuous functions used in the chapter

K. Rogowski (B)
Faculty of Electrical Engineering, Bialystok University of Technology,
Bialystok, Poland
e-mail: k.rogowski@pb.edu.pl

© Springer International Publishing AG 2017
F. Cacace et al. (eds.), Positive Systems, Lecture Notes in Control
and Information Sciences 471, DOI 10.1007/978-3-319-54211-9_16

201



202 K. Rogowski

are based on the Caputo definition. In Sect. 16.2 definitions of fractional-order partial
derivatives and integrals for 2D continuous functions will be given. The state-space
equation of introduced system will be presented in Sect. 16.3 and, applying the 2D
Laplace transform method, the solution to the system will be derived. A numerical
example of the solution to the state-equations will be presented in the same section.
Internal positivity of such model will be considered in Sect. 16.4 and necessary
conditions for positivity will be derived. Concluding remarks and open problems
will be formulated in Sect. 16.5.

16.2 Fractional-Order Partial Derivatives
and Integrals of 2D Functions

LetRn×m be the set of n × m realmatrices andRn = R
n×1. The set of n × mmatrices

with real nonnegative elements will be denoted by R
n×m
+ and R

n+ = R
n×1
+ . The set

of nonnegative integers will be denoted by Z+ and the n × n identity matrix will be
denoted by In . The set of n × n Metzler matrices (matrices with arbitrary diagonal
elements and nonnegative remaining elements) will be denoted by Mn .

The following definitions of partial fractional order derivatives used in the chapter
are based on Caputo fractional order derivative definition [12, 14].

Definition 16.1 [16] The fractional αi -order partial derivative of a 2D continuous
function f (t1, t2) with respect to variable ti (i = 1, 2) is given by the formula

Dαi
ti f (t1, t2) = ∂αi

∂tαi
i

f (t1, t2) = 1

Γ (Ni − αi )

ti∫

0

f (Ni )
ti (ti )

(ti − τ)αi−Ni+1
dτ, (16.1a)

where αi ∈ R is the order of fractional partial derivative, Ni − 1 < αi < Ni , Γ (x)
is the Euler gamma function and

f (Ni )
ti (τ ) =

⎧
⎪⎨

⎪⎩

∂N1

∂τ N1
f (τ, t2) for i = 1,

∂N2

∂τ N2
f (t1, τ ) for i = 2.

(16.1b)

Using Definition 16.1 the 2D fractional derivative of continuous function f (t1, t2)
is defined by

Dα1,α2
t1,t2 f (t1, t2) = Dα1

t1 D
α2
t2 f (t1, t2) = Dα2

t2 D
α1
t1 f (t1, t2). (16.2)

The fractional-order integral with respect to the variable t1 will be defined by the
Riemann-Liouville definition [8, 14]
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I α
t1 f (t1, t2) = 1

Γ (α)

t1∫

0

(t1 − τ)α−1 f (τ, t2)dτ,

whereα > 0 is the fractional (real) order of the integration. Forα = 0we assume that
I α
t1 f (t1, t2) = f (t1, t2). In a similar way we may define the fractional-order integral
with respect to the second variable.

The 2D fractional order integration with respect to the variables t1 and t2 is given
by the formula

I α,β
t1,t2 f (t1, t2) = I α

t1

[
I β
t2 f (t1, t2)

]
= I β

t2

[
I α
t1 f (t1, t2)

]
,

where α, β > 0.
Let F(p, t2) (F(t1, s)) be the one-dimensional Laplace transform of a 2D contin-

uous function f (t1, t2) with respect to t1 (t2) defined by [2, 12]

F(p, t2) =Lt1 [ f (t1, t2)] =
∞∫

0

f (t1, t2)e
−pt1dt1

(
F(t1, s) =Lt2 [ f (t1, t2)] =

∞∫

0

f (t1, t2)e
−st2dt2

)
.

The 2D Laplace transform of f (t1, t2) is defined by

F(p, s) = Lt1,t2 [ f (t1, t2)] = Lt1

{
Lt2 [ f (t1, t2)]

} = Lt2

{
Lt1 [ f (t1, t2)]

}
.

It is easy to show that the 2D Laplace transform of partial fractional order deriv-
ative of the function f (t1, t2) with respect to variable t1 is given by the formula [12]

Lt1,t2

[
Dα1

t1 f (t1, t2)
] = pα1F(p, s) −

N1∑

k=1

pα1−k F (k−1)
t1 (0, s), (16.3a)

where

F (k)
t1 (0, s) = Lt2

{[
∂k

∂t k1
f (t1, t2)

]

t1=0

}
. (16.3b)

In a similar way we define the 2D Laplace transform of partial fractional order
derivative of the 2D function f (t1, t2) with respect to the second variable t2.
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Using (16.2) and (16.3) we obtain

Lt1,t2

[
Dα1,α2

t1,t2 f (t1, t2)
] =pα1sα2F(p, s) +

N1∑

k=1

N2∑

l=1

pα1−ksα2−l F (k−1,l−1)(0, 0)

− pα1

N2∑

l=1

sα2−l F (l−1)
t2 (p, 0) − sα2

N1∑

k=1

pα1−k F (k−1)
t1 (0, s),

(16.4a)
where

F (k,l)(0, 0) =
[

∂k∂ l

∂t k1 ∂t
l
2

f (t1, t2)

]

t1=0
t2=0

. (16.4b)

16.3 2D Fornasini-Marchesini Fractional-Order
Model and Its Solution

Let us consider the continuous 2D Fornasini-Marchesini fractional (α, β)-order
model described by the state-space equations

Dα1,α2
t1,t2 x(t1, t2) = A0x(t1, t2) + A1D

α1
t1 x(t1, t2) + A2D

α2
t2 x(t1, t2) + Bu(t1, t2),

(16.5)
where x(t1, t2) ∈ R

n is the state vector, u(t1, t2) ∈ R
m is the input vector, matrices

Ak ∈ R
n×n for k = 0, 1, 2; B ∈ R

n×m and the fractional derivatives are defined by
(16.1) and (16.2).

In this section we will consider the 2D fractional-order Fornasini-Marchesini
model (16.5) with α1 = α, α2 = β, where 0 < α < 1, 0 < β < 1. Hence we have
N1 = 1, N2 = 1.

The boundary conditions for (16.5) are given in the following form

x(t1, 0) ∈ R
n2 and x(0, t2) ∈ R

n2 .

Applying the 2D Laplace transform to the state-space equation (16.5) and taking
into account (16.3) and (16.4) we obtain

pαsβX (p, s) − pαsβ−1X (p, 0) − pα−1sβX (0, s) + pα−1sβ−1x(0, 0)

=A0X (p, s) + BU (p, s) + A1
[
pαX (p, s) − pα−1X (0, s)

]

+ A2
[
sβX (p, s) − sβ−1X (p, 0)

]
,

(16.6)

where
X (p, 0) = Lt1 [ f (t1, 0)] and X (0, s) = Lt2 [ f (0, t2)]

and U (p, s) is the 2D Laplace transform of the input vector u(t1, t2).
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Premultiplying both sides of equality (16.6) by p−αs−β we obtain

X (p, s) = G−1(p, s)
{
s−1 [

In − p−αA2
]
X (p, 0) + p−1 [

In − s−β A1
]
X (0, s)

−p−1s−1x(0, 0) + p−αs−βBU (p, s)
}
,

where
G(p, s) = [

In − p−αs−β A0 − s−β A1 − p−αA2
]
. (16.7)

Let

G−1(p, s) =
∞∑

i=0

∞∑

j=0

Ti j p
−iαs− jβ. (16.8)

It is well known that

G(p, s)G−1(p, s) = G−1(p, s)G(p, s) = In

and using (16.7) and (16.8) we may write

∞∑

i=0

∞∑

j=0

[
Ti j − A0Ti−1, j−1 − A1Ti, j−1 − A2Ti−1, j

]
p−iαs− jβ = In. (16.9)

Comparing the coefficients at the same powers of p and s we obtain

Ti j =

⎧
⎪⎪⎨

⎪⎪⎩

In for i = 0, j = 0;
A0Ti−1, j−1 + A1Ti, j−1 + A2Ti−1, j = Ti−1, j−1A0 + Ti, j−1A1 + Ti−1, j A2

for i + j > 0; i, j ∈ Z+;
0 for i < 0 and/or j < 0.

(16.10)
Using the 2D inverse Laplace transform to the Eq. (16.3) we obtain

x(t1, t2) =
∞∑

i=0

∞∑

j=0

{
− t iα1

Γ (iα + 1)

t jβ2
Γ ( jβ + 1)

Ti j x(0, 0) + Ti−1, j−1BI
iα, jβ
t1,t2 u(t1, t2)

+ t jβ2
Γ ( jβ + 1)

[
Ti j − Ti−1, j A2

]
I iαt1 x(t1, 0) + t iα1

Γ (iα + 1)

[
Ti j − Ti, j−1A1

]
I jβt2 x(0, t2)

}
,

(16.11)
since [12, 16]

L −1
t1

[
p−α

] = tα−1
1

Γ (α)
for α > 0

and
L −1

t1,t2

[
p−αF(p, s)

] = I α
t1 f (t1, t2) for α > 0.
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From the above considerations we have the following theorem.

Theorem 16.1 The solution to the state equation (16.5) with fractional orders
0 < α < 1, 0 < β < 1 for arbitrary input u(t1, t2) and boundary conditions x(t1, 0),
x(0, t2) is given by (16.11) with the transition matrices described by the formula
(16.10).

The following example shows the usefulness of the derived solution to the state-
space equations of fractional-order 2D system.

Example 16.1 Consider the fractional-order 2D linear system (16.5) with α = 0.7,
β = 0.9 and matrices

A0 =
[−0.1 0
0.1 −0.05

]
, A1 =

[−0.01 0.1
0.1 −0.05

]
,

A2 =
[−0.05 0

0.1 −0.01

]
, B =

[
0.1
0.1

]
.

(16.12)

Find a step response of the system (16.5) with thematrices (16.12) and zero boundary
conditions.

The input of such system has the form

u(t1, t2) = H(t1, t2) =
{
0 for t1 < 0 and/or t2 < 0,
1 for t1, t2 ≥ 0.

(16.13)

The solution to the state equations for zero boundary conditions and input of the
form (16.13) is given by

x(t1, t2) =
∞∑

i=0

∞∑

j=0

Ti−1, j−1BI
iα, jβ
t1,t2 H(t1, t2) =

∞∑

i=0

∞∑

j=0

Ti−1, j−1B
tiα1 t jβ2

Γ (iα + 1)Γ ( jβ + 1)
,

(16.14)
since it is well-known that [14, 16]

I α,β
t1,t2H(t1, t2) = tα1 t

β

2

Γ (α + 1)Γ (β + 1)
.

Formula (16.14) describes the step response of the system (16.5) with thematrices
(16.12). The gamma function strongly increases for growing i and j , therefore in
numerical analysis wemay assume that i and j are bounded by some natural numbers
L1 and L2.

The plots of the state variables, where L1 = 25 and L2 = 25 are shown on
Figs. 16.1 and 16.2.
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Fig. 16.1 State variable x1(t1, t2)

Fig. 16.2 State variable x2(t1, t2)
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16.4 Positivity Analysis

In this section we will consider the internal positivity of the introduced model.

Definition 16.2 The fractional 2D system (16.5) is called internally positive if
the state vector x(t1, t2) ∈ R

n+ (t1, t2 > 0) for all nonnegative boundary conditions
x(t1, 0) ∈ R

n+ and x(0, t2) ∈ R
n+ and all nonnegative inputs u(t1, t2) ∈ R

m+.

Theorem 16.2 The fractional-order 2D continuous Fornasini-Marchesini system
with 0 < α < 1 and 0 < β < 1 is internally positive if

A0 ∈ R
n×n
+ ; A1, A2 ∈ Mn and B ∈ R

n×m
+ .

Proof Let us consider the fractional-order 2D system (16.5) with zero input vector
u(t1, t2) = 0 for t1, t2 ≥ 0 and zero boundary conditions x(0, t2) = 0 for t2 ≥ 0. We
assume that only x(t1, 0) is nonnegative and nonzero for t1 > 0. Using the solution
formula (16.11) we have

x(t1, t2) =
∞∑

i=0

∞∑

j=0

t jβ2
Γ ( jβ + 1)

[
Ti j − Ti−1, j A2

]
I iαt1 x(t1, 0). (16.15)

For a small value of t1 > 0 and taking into account (16.10) and that the fractional
order integral of arbitrary function in a very small interval is close to zero we obtain

x(t1, t2) ≈
∞∑

j=0

t jβ2
Γ ( jβ + 1)

A j
1x(t1, 0) = Eβ(A1t

β

2 )x(t1, 0), (16.16)

where Eβ(A1t
β

2 ) is the one-parameter Mittag-Leffler function [8, 12]. There always
exists such small t1 for which the approximation (16.16) occurs.

It is well known [8, 12] that the one-parameter Mittag-Leffler function Eβ(A1t
β

2 )

is nonzero matrix function for all t2 > 0 and 0 < β < 1 if and only if the matrix A1

is the Metzler matrix, i.e. A1 ∈ Mn .
In similar way, assuming that only x(0, t2) is nonzero and nonnegative for t2 > 0,

we may show the necessity of A2 ∈ Mn .
Now we will consider the solution of the fractional order 2D system (16.5) with

zero boundary conditions x(t1, 0) = 0 for t1 ≥ 0, x(0, t2) = 0 for t2 ≥ 0 and nonzero
inputs u(t1, t2) > 0 for t1, t2 ≥ 0. In such case we have

x(t1, t2) =
∞∑

i=0

∞∑

j=0

Ti−1, j−1BI
iα, jβ
t1,t2 u(t1, t2). (16.17)

For a very small values of the variables t1 and t2 we obtain

x(t1, t2) ≈ BI α,β
t1,t2u(t1, t2). (16.18)
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From the fact that the fractional-order integral of nonnegative inputsu(t1, t2) is always
nonnegative for t1, t2 ≥ 0 follows the necessity of nonnegativity of the matrix B, i.e.
B ∈ R

n×m
+ .

Finally we will consider the solution of the fractional order 2D system (16.5)
with nonzero boundary condition with respect to zeros variables t1, t2 = 0 and zero
boundary conditions for t1, t2 > 0 and zero inputs u(t1, t2) = 0 for t1, t2 ≥ 0. In such
case we have

x(t1, t2) =
∞∑

i=0

∞∑

j=0

{
− t iα1

Γ (iα + 1)

t jβ2
Γ ( jβ + 1)

Ti j x(0, 0)

+ t jβ2
Γ ( jβ + 1)

[
Ti j − Ti−1, j A2

]
I iαt1 x(t1, 0)

+ t iα1
Γ (iα + 1)

[
Ti j − Ti, j−1A1

]
I jβ
t2 x(0, t2)

}
.

(16.19)

Substituting (16.10) into (16.19) we obtain

x(t1, t2) = x(t1, 0) + x(0, t2)

+
∞∑

i=0

∞∑

j=0
i+ j �=0

t jβ2
Γ ( jβ + 1)

(
Ti−1, j−1A0 + Ti, j−1A1

)
I iαt1 x(t1, 0)

+
∞∑

i=0

∞∑

j=0
i+ j �=0

t iα1
Γ (iα + 1)

(
Ti−1, j−1A0 + Ti−1, j A2

)
I jβ
t2 x(0, t2)

−
∞∑

i=0

∞∑

j=0

t iα1
Γ (iα + 1)

t jβ2
Γ ( jβ + 1)

Ti j x(0, 0).

(16.20)

For a small value of t1 and t2 and taking into account that A1, A2 ∈ Mn and (16.16)
we obtain the necessity of nonnegativity of matrix A0, i.e. A0 ∈ R

n×n
+ , since there

always exists such small t1 and t2 that the state vector described by (16.20) requires
nonnegative matrix A0.

Note that the fractional-order 2D system from Example 16.1 is not positive, since
the matrix A0 has negative elements. On a Figs. 16.1 and 16.2 we can see that for
greater values of the variables t1 and t2 the components of the state vector will take
negative values.

Example 16.2 Consider the fractional order 2D system from Example 16.1 with

A0 =
[
0.1 0
0.1 0.05

]
. (16.21)
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Note that for such case all conditions of Theorem 16.2 are met and the fractional
order 2D system is internally positive.

For the same boundary conditions and inputs we obtain the plots of the state
variables shown on Figs. 16.3 and 16.4.

Fig. 16.3 State variable x1(t1, t2)

Fig. 16.4 State variable x2(t1, t2)
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16.5 Concluding Remarks

In the chapter continuous Fornasini-Marchesini type model containing partial
fractional-order derivatives described by the Caputo definition has been considered.
The general solution formula has been derived using the inverse 2D Laplace trans-
form method. Using this solution the internal positivity of such system has been
analyzed. The necessary conditions under which the system is internally positive has
been given. The usefulness of the solution formula has been illustrated by numerical
examples of positive and not positive systems.

An open problem is to give necessary and sufficient conditions for the internal
positivity of considered in this chapter system as well as generalization for descriptor
(nonsingular) case.

Acknowledgements This work was supported by National Science Centre in Poland under work
No. 2014/13/B/ST7/03467.
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Chapter 17
Access Time Eccentricity and Diameter

Gabriele Oliva, Antonio Scala, Roberto Setola and Luigi Glielmo

Abstract In this chapter we study the access time on random walks, i.e., the expected
time for a random walk starting at a node vi to reach a node vj, an index that can be
easily calculated resorting to the powerful tools of positive systems. In particular, we
argue that such an index can be the base for developing novel topological descrip-
tors, namely access time eccentricity and diameter. While regular eccentricities and
diameter are defined considering minimum paths, the indices defined in this chapter
are related to random movements across the network, which may follow inefficient
paths, and are thus a complementary measure to identify central and peripheral nodes
and to set adequate time-to-live for the packets in a network of distributed agents,
where few or no routing information is available. A simulation campaign aimed at
showing the characteristics of the proposed indices concludes the chapter.

Keywords Random walk · Access time · Diameter · Eccentricity

17.1 Introduction

Random walk over a graph [1, 2] is a powerful tool that finds application in several
contexts, ranging from computer science to biology and from economics to psychol-
ogy (see [3–9] for recent applications in these fields).
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Within a random walk, we assume a walker visits the nodes in a graph at random
starting from a given node, and that at each turn the walker moves from a node to one
of its neighbors with uniform probability. In this view, a random walk can conve-
niently be represented as a Markov chain. Although the resulting matrix of transition
probabilities is in general not symmetric, it is possible to operate a transformation
into a symmetric matrix, so that the powerful tools of spectral analysis and positiv-
ity can be used to prove convergence results and to characterize several noteworthy
indicators.

Among others, in this chapter we focus on the access time for a pair of nodes in
the graph, that is, the expected time in which a random walk starting at a given node
i reaches a node j for the first time. We argue that this parameter can be related to
topological properties such as the eccentricity (i.e., the maximum distance among
a node i and any other node by using minimum paths) and the diameter (i.e., the
maximum among the eccentricities).

Eccentricities and diameter play a pivotal role in several contexts, such as distrib-
uted consensus algorithms, where having insights on such indicators can help reduce
computational effort [10–13], or can be used to set time-to-live parameters in routing
protocols [14].

However, such indices are related to communications along the minimum paths,
which can be a rough assumption in a completely distributed context, where the
nodes have little or no information about other nodes. For instance, suppose a node i
in a network of distributed agents has to transmit a message to a node j, and that the
message is encrypted with a public-private key scheme, so that only node j is able
to decrypt the message. If no routing information is available, a possible strategy is
to send the message at random to a neighbor and so on, thus obtaining a random
walk. In this scenario, therefore, it is interesting to find adequate time-to-live for
the message, to avoid unnecessary retransmissions and to prevent the message from
remaining indefinitely in the system.

The idea of using random walks to derive topological indicators is not new in
the literature; for instance in [15] the authors introduce the random walk closeness
centrality as a measure of centrality of the nodes, in terms of the average of the
expected times to reach a node from all the other nodes; in [16], similarly, a measure
of betweenness centrality over a graph is defined by counting how many times a
random walk passes through a specific node.

The outline of the chapter is as follows: In Sect. 17.2 we provide some prelim-
inary definitions, while in Sect. 17.3 we briefly review random walks and access
time; in Sect. 17.4 we discuss the adoption of alternative measures of diameter and
eccentricity based on access time and random walks, while in Sect. 17.5 we provide
some simulation results. We conclude the chapter with some conclusive remarks in
Sect. 17.6.
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17.2 Preliminaries

Let G = {V,E} denote a graph with a finite number n of nodes vi ∈ V and m edges
(vi, vj) ∈ E ⊂ V × V from node vi to node vj. A graph is said to be undirected
if (vi, vj) ∈ E whenever (vj, vi) ∈ E, and it is said to be directed otherwise. In the
following we will consider undirected graphs.

Let the neighborhoodNi of a node i over a graph G = {V,E} be the set of nodes
{vj|(vj, vi) ∈ E}. Let the degree di of a node vi be the number of its incident edges,
i.e., di = |Ni|.

A graph G = {V,E} is bipartite if the set of nodes can be partitioned in two
disjoint sets Va, Vb such that for all (vi, vj) ∈ E vi ∈ Va and vj ∈ Vb (or vice versa).

A path over a graph G = {V,E}, starting from a node vi ∈ V and ending in a
node vj ∈ V , is a subset of links in E that connects vi and vj. The length of the path is
the cardinality of such set. A graph is connected if for each pair of nodes vi, vj there
is a path over G that connects them.

A minimum path that connects vi and vj is the path from vi to vj of minimum
length, which we call the distance of the two nodes. The eccentricity εi of a node
vi ∈ V is the maximum distance from node vi to any other node. The diameter δ

of a graph G is the maximum distance between each possible pair of distinct nodes
vi, vj ∈ V . In other terms

δ = max
i=1,...,n

{εi}.

The radius r of a graph G is defined as

r = min
i=1,...,n

{εi}.

Let the adjacency matrix A of a graph G be the n × n matrix such that

Aij =
{

1, if (vi, vj) ∈ E

0, otherwise;

and such that Aii = 0 for all i, i.e., no self loops are allowed. Moreover, let the inverse
degree matrix be the n × n diagonal matrix D whose diagonal entries are

Dii = 1

di
.

17.3 RandomWalks

In this section we briefly review random walks over undirected graphs (see [2] and
references therein), with particular reference to a parameter, namely access time,
that is fundamental for the developments of this chapter. The results reviewed in this
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section, in fact, are the basis for the definition of the metrics introduced in Sect. 17.4.
Notice that we assume the graph is connected and undirected.

A random walk w : {0, 1, 2, . . . } → V is a path such that at each step t the
next node is randomly chosen among the neighbors of w(t) with equal probabili-
ties 1/dw(t).

The random walk can be described in a convenient way as a Markov chain
[17, 18], by considering a matrix M of transition probabilities1 such that

Mij =
{

1
di

, if (vi, vj) ∈ E

0, otherwise.

In other words, we assume that, while being in a node vi, we have no preference
for the next move, thus visiting any of the neighbors of vi is equally probable.

It can be easily shown that M = DA. The Markov chain representing the random
walk can be expressed as

pTt+1 = pTt M,

where pt ∈ R
n is the probability distribution at time t, i.e., a vector whose compo-

nents pt,i represent the probability that the random walker is in node vi at time t.
A probability distribution p̃ is stationary if p̃T = p̃TM; in this case, we refer to the
random walk as a stationary walk.

It is a well known result that for every graph G the distribution π = [
π1, . . . πn

]T
,

where

πi = di
2m

,∀i = 1, . . . n

is stationary [2]. Moreover, ifG is not bipartite, any distribution tends to the stationary
distribution as t → ∞ [2]. For bipartite graphs, the distribution may oscillate between
the partitions.

17.3.1 Spectral Decomposition

Notice that matrix M is, in general, not symmetric as the probability of moving from
node vi to vj is 1/di while the converse is 1/dj and di �= dj unless for d-regular
graphs.2 It is, however, simple to bring M to a symmetric form; such a symmetric
form can be used in order to ease the spectral analysis, and most of the results in the
literature are given with respect to the symmetric representation described below.

Let N = D−1/2MD1/2, it follows that

N = D−1/2DAD1/2 = D1/2AD1/2;

1Each entry Mij represents the probability to move from node i to node j at a given time instant.
2A graph is d-regular if the degree of each node is d.



17 Access Time Eccentricity and Diameter 219

hence, N is symmetric and it has non-negative entries. As a consequence, N can be
written in a spectral form as

N =
n∑

k=1

λkqkq
T
k ,

where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of N and qi, · · · , qn are the corre-
sponding eigenvectors of unit length.

Notice that

q1 = 1√
2m

[√
d1, . . . ,

√
dn

]T

is an eigenvector of N with eigenvalue 1, and that all components of q1 are positive.
Notice that the graph underlying the random walk is connected and undirected, hence
it can be shown that N is primitive. Therefore, as a consequence of the Frobenius-
Perron Theorem, it holds

λ1 = 1 > λ2 ≥ · · · ≥ λn ≥ −1.

If G is not bipartite, moreover, it can be shown that λn > −1.

17.3.2 Access Time

The access timeHij for a random walk over a graph G is the expected number of steps
required for a random walk starting at node vi to reach node vj (see, for instance,
[19]). The calculation of Hij is greatly simplified resorting to the above spectral
decomposition of N , as it holds [2]

Hij = 2m
n∑

k=2

1

1 − λk

(q2
kj

dj
− qkiqkj√

didj

)
.

17.4 Access Time Eccentricities

In this section, we define an alternative and complementary notion of eccentricity,
based on access times over a random walk.

Let us define the access time eccentricity εHi of node vi in G as

εHi = max
j=1,...,n

{Hij}.

Notice that standard eccentricity εi models the maximum distance among a node
vi and any other node, using minimum paths, and thus it is well suited to upper-bound
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the time required for node vi to send a message to any other node in an efficient way,
e.g., when the message routing is known.

Here, conversely, we are representing a case where no routing information is avail-
able and messages are forwarded on a purely random basis. In this case, therefore,
εHi is an upper bound on the expected time required to reach any node from vi when
no routing information is available. This index, therefore, is of particular interest in
fields where the nodes represent entities or agents attempting to communicate with
little or no information about other agents.

Similarly to standard diameter, we can define an access time diameter δH as

δH = max
i=1,...,n

{εHi } = max
i,j=1,...,n

{Hij},

which represents the maximum expected time required for sending a message
between a pair of nodes in the graph.

Let us describe next a few classical results that support the idea of adopting δH

as an alternate measure of the diameter of G. It should be noted, in fact, that δH is
closely related to the cover time ci, i.e., the expected number of steps required to
visit all nodes starting from a node vi. Although ci is complex to calculate exactly,
in fact, there is a nice result that links cover time and access time; in [20], Matthews
proved that

min
i,j

Hij

n∑

k=1

1

k
≤ ci ≤ max

i,j
Hij

n∑

k=1

1

k
; (17.1)

hence, the access time diameter can be used to derive an upper bound the cover time.
Another interesting result from Lovász [2] is that the expected number of steps b
before a random walk visits half of the nodes is such that

b ≤ 2δH .

17.5 Experimental Results

Figure 17.1 shows a comparison between eccentricities and access time eccentrici-
ties on a particular graph with n = 100 nodes. Specifically, we consider a random
geometric graph, i.e., a graph whose nodes are taken in the unit square [0, 1]2 in a
uniformly random way, and such that two nodes vi, vj are connected by an edge if
their Euclidean distance dij is less than a communication radius ρ. For the graph in
Fig. 17.1 we take ρ = 0.25. In the left plot we color the nodes in the graph accord-
ing to a heat-map, so that nodes with large eccentricities are red while nodes with
comparatively small eccentricities are blue, while we do the same for the access time
eccentricities in the right plot. According to the figure, it can be noted that eccen-
tricities and access time eccentricities are distributed in quite a different way; we
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Fig. 17.1 Heat-map comparison (i.e., nodes with higher values are plotted in red, while nodes
with lower values are in blue) between the eccentricity of the nodes (left plot) and the access time
eccentricity (right plot) over a random geometric graph with n = 100 nodes and ρ = 0.35 (please
refer to the online version for colors)
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Fig. 17.2 Example showing that the access time eccentricities do not vary monotonically with
the eccentricities. In this example we consider a random geometric graph with n = 300 nodes
and ρ = 0.15. We plot the eccentricities (normalized by the maximum one, shown in red as the
lowermost curve) for each node and the corresponding access time eccentricity (normalized by the
maximum one, shown in blue as the uppermost curve)

notice, in fact, that while some of the nodes around the center of the graph have the
smallest eccentricities, in the case of access time eccentricity the blue zone is focused
in the central upper part. This suggests that there is no trivial dependency relation
among the two indicators. In fact, as highlighted in Fig. 17.2, where we order the
eccentricities (normalized by the maximum one) for a random geometric graph with
n = 300 nodes and ρ = 0.15 and we shown the corresponding access time eccen-
tricities (normalized by the maximum one), there is no ordering preservation while
moving from eccentricities to access time eccentricities.
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Fig. 17.3 Upper plot correlation between the diameter δ and the access time diameter δH . Lower
plot correlation between the average eccentricity ε̄ and the average access time eccentricity ε̄H . The
results are obtained for R = 2000 random geometric graphs whose nodes are sampled in the unit
square in a uniformly random way; each graph has a random choice of the network size n ∈ [50, 100]
and of the communication radius ρ ∈ [0.25,

√
2]
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Although having relevant differences, we notice that these indicators are indeed
closely related. In Fig. 17.3 we show in the upper plot the correlation between the
diameter δ and the access time diameter δH and in the lower plot the correlation
between the average eccentricity

ε̄ = 1

n

n∑

i=1

εi

and the average access time eccentricity

ε̄H = 1

n

n∑

i=1

εHi .

Specifically, we consider R = 2000 random geometric graphs, each with a uni-
formly random network size n ∈ [50, 100] and a uniformly random communication
radius ρ ∈ [0.25,

√
2]. According to both plots, the indices based on access time

have high correlation with their counterpart based on the minimum paths, i.e., in
both cases we have a correlation around 0.79, with almost negligible p-score, which
suggest that the correlation in place is indeed significant.

In Fig. 17.4 we compare the access timesHij (recall thatHij is the expected time for
a random walk starting at vi to reach vj for the first time) with the associated standard
deviation σHij . Specifically, we consider a particular random geometric graph with
n = 100 nodes and ρ = 0.35 (left plot in Fig. 17.4), and we sampleR = 1000 random
walks starting from each node vi (thus, a total of Rn random walks), and each random
walk is run for a sufficient time so that all nodes are reached once. For each random
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Correlation=0.96921 p-score=10–15

Fig. 17.4 Comparison between the access times and the standard deviation for each pair of nodes
(right plot) for a particular instance of random geometric graph with n = 100 nodes and ρ = 0.35
(left plot)
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Fig. 17.5 Percentage of pairs of nodes that are not in reach in a random walk for different durations
of the random walk, with respect to a random geometric graph with n = 100 nodes and ρ = 0.35.
Results are the average and standard deviation for R = 1000 trials for each duration

walk starting at vi, we get the time tij in which each node vj is reached by the random
walk for the first time. We then calculate an approximation of the standard deviation
σHij in terms of the R samples of tij obtained. Notice that we do this due to the
difficulty of finding an exact closed form for σHij .

According to the left plot in Fig. 17.4, there is an almost linear relation between
Hij and σHij (the correlation is about 0.97 with a p-score of about 10−15). This sug-
gests that the standard deviation of Hij tends to have the same magnitude as Hij. A
consequence of that is that, while using the exact access-time eccentricities/diameter
to set the time-to-live of packets routed at random may fail (e.g., due to the high
standard deviation), it is reasonable to have time-to-live which is O(δH) (e.g., by
choosing δH + 3σδH = 4δH we reach all nodes in about the 99.73% of cases). This
evidence calls for broader analyses and simulations, which are a valuable future work
direction.

In Fig. 17.5, finally, we evaluate if δH or the upper bound on the cover time
are sufficient to let a random walk starting at any node vi reach any other node
vj. Specifically, we consider a random geometric graph with n = 100 nodes and
ρ = 0.35, and we chose different duration times T for the random walks. For each
choice of the duration time T we execute R = 1000 random walks starting from each
node, and we plot in the figure the average and standard deviation of the percentage
of pairs vi, vj such that a random walk starting in vi is not able to reach vj. According
to the figure when T = δH there is about 13.2% of pairs which are not in reach. The
percentage drops quickly as T grows, and for T = 4δH we have the 0.37% of pairs
not in reach. If T = c, where c is the maximum among the upper bounds for the
cover time ci discussed in Inequality (17.1), we have 0.12% while for T = 2c we get
0.0009%. It should be noted that only for T = 3c we have that all the nodes are in
reach in all trials.
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17.6 Conclusions

In this chapter we focus on the access time for a random walk in a graph, which can
be conveniently calculated using the tools of spectral analysis and positive systems.
Specifically, we develop some indicators, namely access time eccentricity and diam-
eter, which play a role in random walks which is similar to standard eccentricity and
diameter.

Instead of giving bounds based on minimum paths, in fact, we consider random
movements across the graph and we characterize the maximum expected time for
one node to reach all other nodes (access time centrality) and the maximum expected
time to reach any node from any other node (access time diameter). We then inspect
the relations among the indices and the possibility to use them to tune the time of
live of packets transmitted at random in the network.

Future work will be mainly devoted to further characterize the indices with respect
to different topologies and to provide applications in the field of wireless sensor
networks; for instance, we will inspect the applications of access time eccentricity
in distributed network localization problems (e.g., [21, 22]).
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Chapter 18
Nonlinear Left and Right Eigenvectors
for Max-Preserving Maps

Björn S. Rüffer

Abstract It is shown that max-preserving maps (or join-morphisms) on the positive
orthant in Euclidean n-space endowed with the component-wise partial order give
rise to a semiring. This semiring admits a closure operation for maps that generate
stable dynamical systems. For these monotone maps, the closure is used to define
suitable notions of left and right eigenvectors that are characterized by inequalities.
Some explicit examples are given and applications in the construction of Lyapunov
functions are described.

Keywords Monotone systems · Join-morphisms · Perron-Frobenius theory ·
Positive eigenvectors · Small-gain condition · Lyapunov functions

18.1 Introduction

Classical Perron-Frobenius theory asserts the existence of nonnegative left and right
eigenvectors corresponding to the dominant eigenvalue of a nonnegativematrix [3–5,
9, 10]. For (nonlinear) monotone mappings from a positive cone into itself, various
extensions to this theory have been developed, see [8] and the references therein.
While most of the nonlinear extensions consider some form of right eigenvalue
problem formonotone conemappings, the question of left eigenvectors has not found
a lot of attention. One reason that left eigenvectors do not have obvious counterparts
in the world of nonlinear mappings may be that they are naturally elements of the
(linear) dual of the underlying vector space in the classical spectral theory of linear
operators. Linear duals are not very natural places to look for nonlinear eigenvectors.

In this chapter we consider a class of monotone mappings defined on the posi-
tive cone in R

n equipped with the component-wise partial order. It admits a suitable
notion of left eigenvectors. This class consists ofmax-preservingmappings from R

n+
into itself, i.e., continuous, monotone maps A : R

n+ → R
n+ with A0 = 0 for which
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max{Ax, Ay} = Amax{x, y}. Instead of a numerical maximal eigenvalue, we con-
sider the casewhen a nonlinear extension of the spectral radius is less than one, which
can be characterised by the requirement that Akx → 0 as k → ∞ for any x ∈ R

n+,
or alternatively by the inequality

Ax � x for all x ∈ R
n
+, x �= 0.

Given this starting point, it is not surprising that our nonlinear left and right “eigen-
vectors” are characterised by inequalities rather than equations. The terms “sub-
eigenvectors” and spectral inequalities have been suggested as alternative terms
for the objects introduced here. Both are (nonlinear) functions l : R

n+ → R+ and
r : R+ → R

n+ that are continuous, zero at zero, monotone and unbounded in every
component. They satisfy

l(Ax) < l(x)

for all x ∈ R
n+, x > 0 as well as

A
(
r(t)

)
< r(t)

for all t > 0.
Both, l and r are defined via the closure A∗ of A in the semiring of max-preserving

maps on R
n+.

This chapter is organised as follows. The next section provides a little more
background on our interest in left eigenvectors. In Sect. 18.3we recall some necessary
notation and preliminary results. Section18.4 contains ourmain resultswith formulas
for left and right eigenvectors in Theorems 18.2 and 18.3, respectively. Two explicit
examples are given in Sect. 18.5. In Sect. 18.6 we explain how these eigenvectors can
be used to construct Lyapunov functions. Section18.7 concludes this chapter.

18.2 Motivation

Our interest in left eigenvectors is rooted in the stability analysis of interconnected
systems, where the construction of Lyapunov functions for monotone comparison
systems is of special interest [2].

For a dynamical system x(k + 1) = Ax(k), evolving onR
n+, a Lyapunov function

V : R
n+ → R+ is an energy function that decreases along trajectories. Lyapunov

functions are used to prove that trajectories converge to zero, to prove stability, or to
compute regions of attraction. Finding Lyapunov functions, however, is notoriously
hard. Basic properties they need to satisfy are continuity, positive definiteness, radial
unboundedness (i.e., ‖x‖ → ∞ implies V (x) → ∞) and descent along trajectories,
i.e., V (Ax) < V (x) whenever x �= 0.

If A ∈ R
n×n
+ has spectral radius less than one, one can find a positive vector r

(even in the case that A is merely nonnegative [11, Lemma 1.1]) so that Ar � r , i.e.,
the image under A of r is less than the vector r in every component. Such a vector
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determines a Lyapunov function via V (x) = maxi xi/ri , and this Lyapunov function
is called max-separable.

Max-separable Lyapunov functions exist for various monotone but nonlinear sys-
tems as well, but not for all [2]. In some of these nonlinear cases one can instead
find sum-separable Lyapunov functions, which are of the form V (x) = ∑

i vi (xi ).
If again A ∈ R

n×n
+ has spectral radius less than one, i.e., in the linear case, there

exists a positive vector l ∈ R
n+, so that lT A � lT . This vector, too, determines a Lya-

punov function, V (x) = lT x , and this one is sum-separable. For general monotone
systems however, these sum-separable Lyapunov functions are not well understood
yet, although progress has been made in some special cases [2, 6].

As left Perron eigenvectors do determine (sum-) separable Lyapunov functions
in the linear case, there is hope that a suitable notion of left eigenvectors will also
provide Lyapunov functions in more general scenarios. It turns out, however, that
while the present definition of left-eigenvectors does yield Lyapunov functions given
by explicit formulas, these Lyapunov functions are not separable in the above sense.

18.3 Preliminaries

In this work we consider R
n equipped with the component-wise partial order, which

generates the positive cone R
n+ = [0,∞)n . We use the following notation.

x ≤ y if y − x ∈ R
n
+,

x < y if x ≤ y and x �= y,

x � y if y − x is in the interior of R
n
+.

Note that max{x, y} is the component-wise maximum of the two vectors x, y ∈ R
n .

For notational convenience we use the binary symbol x ⊕ y to denote the same thing.
We also write

⊕{xk} to denote the component-wise supremum of a possibly infinite
set {xk} of vectors xk ∈ R

n .
By ‖x‖ = maxi |xi | we denote the maximum-norm of x ∈ R

n . We note that for
x, y ∈ R

n we have ‖x ⊕ y‖ ≤ max{‖x‖, ‖y‖} and equality holds if x, y ∈ R
n+.

The vector (1, . . . , 1)T ∈ R
n will be denoted by 1. The standard unit vectors in

R
n are denoted by e1, . . . , en .
In this work we will restrict our attention to continuous and monotone mappings.

A mapping A is monotone if it preserves the partial order, i.e., Ax ≤ Ay whenever
x ≤ y. The set of max-preserving mappings from R

n+ into itself is given by

MP = MP(Rn
+) =

{
A : R

n
+ → R

n
+ such that

A(x ⊕ y) = (Ax) ⊕ (Ay) for all x, y ∈ R
n
+
}
.
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The term max-preserving map has been coined in [7] in the context of stability
analysis of interconnected control systems. It coincides with the notion of join-
morphisms in lattice theory [1]. It is immediate that max-preserving mappings are
also monotone.

For A ∈ MPwe define non-decreasing functions ai j : R+ → R+, i, j = 1, . . . , n,
by ai j (t) = (

A(te j )
)
i for t ∈ R+. It is immediate that A can be represented as

Ax =
⎛

⎜⎝
a11(x1) ⊕ . . . ⊕ a1n(xn)

...

an1(x1) ⊕ . . . ⊕ ann(xn)

⎞

⎟⎠ ,

so it is natural to think of A as the matrix (ai j ).
We state the following observation, where ◦ refers to composition.

Lemma 18.1 The setMP is a (◦,⊕)-semiringwith identity element idRn+ and neutral
element 0Rn+ .

Proof If A, B ∈ MP then we verify

(A ◦ B)(x ⊕ y) = A(Bx ⊕ By) = (A ◦ B)x ⊕ (A ◦ B)y,

so MP is closed under composition and

(A ⊕ B)(x ⊕ y) = A(x ⊕ y) ⊕ B(x ⊕ y) =
(Ax ⊕ Ay) ⊕ (Bx ⊕ By) = (Ax ⊕ Bx) ⊕ (Ay ⊕ By) =

(A ⊕ B)x ⊕ (A ⊕ B)y,

so MP is closed under the maximum operation as well.
Clearly the identity idRn+ is a member of MP and it is the identity element for

composition. The function 0 = 0Rn+ , which sends all of R
n+ to 0 ∈ R

n+, is in MP, and
it serves as neutral element for the maximum operation.

For convenience we will write compositions simply as products, i.e.,

Ak = A ◦ A ◦ . . . ◦ A.

We make the convention that A0 = id.
We now further restrict our attention to continuous mappings A ∈ MP(Rn+) that

satisfy A0 = 0. We have the following characterisation.

Theorem 18.1 ([11]) Let A ∈ MP(Rn+) be continuous and satisfy A0 = 0. Then
the following are equivalent.

1. For every x ∈ R
n+,

Akx −→ 0 as k → ∞. (18.1)
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2. For every x ∈ R
n+, x �= 0,

Ax � x .

3. Every cycle in the matrix A is a contraction, i.e.,

(
ai1i2 ◦ ai2i3 ◦ . . . ◦ aik i1

)
(t) < t

for every t > 0 and all finite sequences (i1, . . . , ik) ∈ {1, . . . , n}k .
4. All minimal cycles in A are contractions, i.e., those that do not contain shorter

cycles.
5. For every b ∈ R

n+ there is a unique maximal solution x ∈ R
n+ to the inequality

x ≤ Ax ⊕ b.

Along with an alternative construction of a right eigenvector, a slightly weaker
version of this result has been proven in [11, Theorem 6.4], where the functions ai j
were assumed to be either strictly increasing or zero. However, the proof is essentially
the same in the current framework and thus omitted.

18.4 Main Results

Our main technical ingredient for the construction of left and right eigenvectors is
the closure of max-preserving maps in the semiring MP.

Lemma 18.2 Let A ∈ MP(Rn+) be continuous and satisfy A0 = 0. Let any of the
conditions 1–5 of Theorem 18.1 hold. Then the closure of A, given by

A∗x =
∞⊕

k=0

Akx (18.2)

is a continuous and max-preserving map A∗ : R
n+ → R

n+ with A∗0 = 0 that satisfies

A∗ = ID ⊕ AA∗ = ID ⊕ A∗A. (18.3)

Proof The identities (18.3) follow immediately from writing out (18.2). That A∗ is
well-defined is mostly a consequence of (18.1), once we note that (18.1) implies that
the supremum in (18.2) is a maximum that is attained after a finite number of iterates
of A.

The (i, j)th entry of the matrix A∗ consists of the supremum over all possible
paths from node j to node i in the weighted graph with n vertices and directed edges
weighted with the functions ai j . Because any path longer than n edges will contain
a cycle, which in turn is a contraction, the infinite supremum in the definition of A∗,
cf. (18.2), is in fact a maximum over at most n powers of A.
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Thus A∗ is max-preserving. In particular, only a finite number of terms ‖Akx‖
can be larger than ‖x‖ and they depend continuously on ‖x‖.
Remark 18.1 From the proof we see that in fact

A∗x =
n−1⊕

k=0

Akx,

a finite maximum of only n vectors instead of a supremum. This will be demonstrated
in Sect. 18.5.

Lemma 18.3 Let A ∈ MP(Rn+) be continuous and satisfy A0 = 0. Let any of the
conditions 1–5 of Theorem 18.1 hold. Then the closure of A satisfies

A
(
A∗(x)

) = A∗(A(x)
)
< A∗(x) (18.4)

for all x > 0.

Proof First we note that from the definition (18.2) it follows that A∗A = AA∗.
We have A∗A ≤ A∗A ⊕ id = A∗ from (18.3), so we only need to show that equal-

ity does not hold. To this end assume there is an x ∈ R
n+, x > 0, with A∗Ax = A∗x .

Denoting z = A∗x , we have

Az = AA∗x = A∗Ax = A∗x = z,

which contradicts property 2 of Theorem 18.1, as z ≥ x > 0. Hence no such x can
exist, proving that indeed AA∗x = A∗Ax < A∗x for all x > 0.

Our main result is the following.

Theorem 18.2 (left eigenvectors for max-preserving maps) Let A ∈ MP(Rn+) be
continuous and satisfy A0 = 0. Let any of the conditions 1–5 of Theorem 18.1 hold.

Then l : R
n+ → R+ given by

x 
→ 1T A∗(x) (18.5)

is continuous, monotone, satisfies l(0) = 0, as well as

1. l(x) → ∞ whenever ‖x‖ → ∞,
2. the left eigenvector inequality

l Ax ≤ lx

for all x ∈ R
n+, and, moreover, l Ax < lx whenever x �= 0.

Proof That the map l is well defined, continuous, monotone, and satisfies l(0) = 0
is an immediate consequence of Lemma 18.2. Assertion 1 follows from the fact that
A∗ ≥ id. Assertion 2 is a direct consequence of Lemma 18.3.
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Remark 18.2 Instead of a summation of the components of A∗(x) in (18.5) we could
have taken their maximum instead, at the expense of loosing the strict inequality in
in Assertion 2 of the theorem. In the context of Sect. 18.6, this would in general
give rise to a weak Lyapunov function, i.e., one that is merely non-increasing along
trajectories.

Our notion of left eigenvectors is complemented by right eigenvectors that are
given by a similar construction, which, to the best of our knowledge, was first demon-
strated in [7]. A different construction is given in [11].

Theorem 18.3 (right eigenvectors for max-preserving maps [7]) Let A ∈ MP(Rn+)
be continuous and satisfy A0 = 0. Let any of the conditions 1–5 of Theorem 18.1
hold.

Then r : R+ → R
n+ given by

t 
→ A∗(t1) (18.6)

is continuous, monotone, satisfies r(0) = 0 as well as

1. ri (t) → ∞ when ‖t‖ → ∞ for every i = 1, . . . , n,
2. the right eigenvector inequality

A
(
r(t)

) ≤ r(t) (18.7)

for all t ≥ 0, and, moreover, A
(
r(t)

)
< r(t) when t > 0.

Proof That r is well defined, continuous, monotone and satisfies r(0) = 0 follows
again from Lemma 18.2. Assertion 1 is a consequence of the fact that A∗ ≥ id,
see (18.3), so r(t) ≥ t1. Assertion 2 follows from Lemma 18.3 applied to x = t1.

Remark 18.3 In both, Theorems 18.2 and 18.3, instead of the vector 1 in the defini-
tion of l, respectively, r , any strictly positive vector could have been taken instead.

18.5 Examples

We demonstrate with two examples that the left and right eigenvectors obtained in
the previous section are given by finite expressions, cf. Remark 18.1, not as limits
as the definition in (18.2) might suggest. The examples are borrowed from [12]. To
this end we define

K∞ = {
a : R+ → R+

∣∣ a is continuous, unbounded,

strictly increasing and satisfies a(0) = 0
}
,

which is the set of homeomorphisms from R+ into itself.



234 B.S. Rüffer

First we consider the case n = 2. In this case A takes the form

A =
(
a11 a12
a21 a22

)

with ai j ∈ (K∞ ∪ {0}). The associated max-preserving mapping A : R
2+ → R

2+ is
given by (

x1
x2

)

→

(
a11(x1) ⊕ a12(x2)
a21(x1) ⊕ a22(x2)

)
.

The conditions of Theorem 18.1 are satisfied if and only if

a11 < id

a22 < id

and
a12 ◦ a21 < id. (18.8)

Note that (18.8) holds if and only if

a21 ◦ a12 < id

holds. This can be seen by observing that every K∞ function has an inverse which
is again a K∞ function.

Writing x = (x1, x2)T and under the above assumptions we compute

A∗(x) =
∞⊕

k=0

Ak(x)

= x ⊕ Ax = (
idR2+ ⊕ A

)
(x)

=
(
id a12
a21 id

)
(x) =

(
a∗
11 a

∗
12

a∗
21 a

∗
22

)
(x) (18.9)

as already

A2 =
(

a211 ⊕ a12 ◦ a21 a12 ◦ a22 ⊕ a11 ◦ a12
a21 ◦ a11 ⊕ a22 ◦ a21 a222 ⊕ a21 ◦ a12

)

is component-wise less than the matrix (idR2+ ⊕ A) computed above.
From (18.9) we obtain

l(x) = x1 ⊕ a12(x2) + x2 ⊕ a21(x1)

Notably, this function is in general not smooth and neither sum- nor max-separable.
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For the case n = 3 things are essentially the same.
Starting from

A =
⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠

and under the assumption that all cycles in A are contractions, we can compute A∗
simply by

A∗ = idR3+ ⊕ A ⊕ A2

=
⎛

⎝
id a12 ⊕ a13 ◦ a32 a13 ⊕ a12 ◦ a23

a21 ⊕ a23 ◦ a31 id a23 ⊕ a21 ◦ a13
a31 ⊕ a32 ◦ a21 a32 ⊕ a31 ◦ a12 id

⎞

⎠ , (18.10)

where we note that the simplifications used to obtain (18.10) are possible because
all cycles are contractions.

From (18.10) we obtain

l(x) = x1 ⊕ (a12 ⊕ a13 ◦ a32)(x2) ⊕ (a13 ⊕ a12 ◦ a23)(x3)

+(a21 ⊕ a23 ◦ a31)(x1) ⊕ x2 ⊕ (a23 ⊕ a21 ◦ a13)(x3)

+(a31 ⊕ a32 ◦ a21)(x1) ⊕ (a32 ⊕ a31 ◦ a12)(x2) ⊕ x3.

18.6 Application

Let A ∈ MP(Rn+) be continuous and satisfy A0 = 0. If Akx → 0 for k → ∞, two
types of Lyapunov functions can be defined based on the eigenvectors introduced in
the previous section. Let l : R

n+ → R+ and r : R+ → R
n+ denote the left and right

eigenvectors of A, respectively.
Under some additional regularity assumptions, or rather, regularisation of r , a

max-separable Lyapunov function V : R
n+ → R+ is given by

V (x) = max
i

r−1
i (xi ),

where ri denotes the i th component function of r . We refer the interested reader to
[7] or to [2] and the references therein for further details.

The left eigenvector l also yields a Lyapunov function V : R
n+ → R+ simply by

V (x) = l(x).

Theorem 18.2 establishes that this is indeed a Lyapunov function for the system
x(k + 1) = A(x(k).
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We note that this Lyapunov function is in general neither sum- nor max-separable.
However, it has the advantage that no additional regularity has to be assumed tomake
the components of the eigenvector invertible and that it can be computed directly
from the problem data.

Example 18.1 Consider the matrix

A =
⎛

⎝
1
2 2 0
1
3

1
2 3

1
7 0 1

2

⎞

⎠

where we take the entries as linear functions t 
→ ai j t and compute Ax in max
algebra, making the associated map A : R

n+ → R
n+ max-preserving.

There are five cycles in this matrix. Three of them are “self-loops” of weight 1/2.
The other two are from node 2 to 1 with weight 2 and back to node 2 with weight
1/3, as well as from 2 to 1 with weight 2, from there to 3 with weight 1/7 and back to
2 with weight 3. All of the loop-weights (products) are less than one, so this matrix
satisfies the equivalent conditions of Theorem 18.1.

A simple computation yields

A∗ =
⎛

⎝
1 2 6
3
7 1 3
1
7

2
7 1

⎞

⎠ .

From here we obtain

l(x) = max {x1, 2x2, 6x3} + max

{
3

7
x1, x2, 3x3

}
+ max

{
1

7
x1,

2

7
x2, x3

}

and we verify that for x > 0 the expression

l(Ax) = max

{
6

7
x1, 2x2, 6x3

}
+ max

{
3

7
x1,

6

7
x2, 3x3

}
+ max

{
1

7
x1,

2

7
x2,

6

7
x3

}

is indeed smaller.

18.7 Conclusion

For max-preserving maps A on R
n+ we have shown that left and right eigenvectors

can be defined in a natural sense based on the closure of the map A, extending the
classical Perron-Frobenius theory appropriately to nonlinear dominant eigenvalues.
In this work the dominant eigenvalue was assumed to be less than the identity, but
via suitable scaling this could be extended to more general scenarios.
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Our results have been presented on R
n+, however, an extension to join-morphisms

acting on Banach lattices is a natural next step.
The construction of left-eigenvectors and corresponding Lyapunov functions for

general monotone systems that are not generated by elements of a semiring remains
a challenge.
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Chapter 19
Positive Consensus Problem: The Case
of Complete Communication

Maria Elena Valcher and Irene Zorzan

Abstract In this chapter the positive consensus problem for homogeneous multi-
agent systems is investigated, by assuming that agents are described by positive
single-input and continuous-time systems, and that each agent communicates with
all the other agents. Under certain conditions on the Laplacian of the communica-
tion graph, that arise only when the graph is complete, some of the main necessary
conditions for the problem solvability derived in [17–19] do not hold, and this makes
the problem solution more complex. In this chapter we investigate this specific prob-
lem, by providing either necessary or sufficient conditions for its solvability and by
analysing some special cases.

Keywords Multi agent system · Continuous time positive system · Consensus ·
Complete communication graph

19.1 Introduction

Research on multi-agent systems and consensus problems has been flourishing in
the last decades [2, 7, 9, 11, 13, 14, 16], strongly stimulated by the large num-
ber of different applications areas where practical problems that can be formalized
as consensus problems among autonomous agents/units arise. Just to mention the
most popular ones, flocking and swarming in animal groups, dynamics of opinion
forming, coordination in sensor networks, clock synchronization, distributed tasks
among mobile robots/vehicles. These apparently different set-ups share some com-
mon features: in each of them there is a group of individuals/units (the agents), whose
behavior can be regarded as homogeneous. Each agent performs tasks and updates
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a vector of describing parameters (its state) based on the information received from
neighbouring agents, with the final goal of agreeing on a common value for such a
vector.

In a number of contexts, the information vector that the agents update (based on
communication exchange with their neighbours), aiming to achieve consensus, is
the value of variables that are intrinsically nonnegative. For instance, wireless sensor
networks in greenhouses [1] exchange information regarding physical parameters
as temperature, humidity, and CO2 concentration, and the sensors must converge
to some common values for these parameters, based on which ventilation/heating
systems will be activated, shading or artificial lights will be controlled, CO2 will be
injected, and so on.

Another interesting problem, that is formalized as a consensus problem with
positivity constraint, is the emissions control for a fleet of Plugin Hybrid Vehicles
[8]. Each vehicle has a parallel power-train configuration that allows for any arbitrary
combination of the power generated by the combustion engine and the electric motor.
Moreover, the vehicles can communicate. Under these assumptions, an algorithm is
proposed to regulate in a cooperative way the CO2 emissions, so that no vehicle has
a higher emission level than the others.

In a series of recent papers [17–19] we have investigated the consensus problem
for homogeneous multi-agent systems, whose agents are modelled as continuous-
time, single-input, positive state-space models. We assumed that interactions among
agents are cooperative and the communication graph regulating the agents’ mutual
interactions is weighted, undirected and connected but not complete, namely not
every agent directly exchanges information with all the other agents. As the agents’
states are intrinsically nonnegative, a natural requirement to introduce, in addition to
consensus, is the positivity of the overall controlled multi-agent system and hence
that the state feedback law adopted to achieve consensus constrains all the state
trajectories to remain in the positive orthant. A rather complete characterization of
the problem solvability has been provided, and special cases, arising under special
conditions either on the agents’ description or on the communication graph, have
been discussed.

The simple assumption that the communication graph is connected but not com-
plete allowed to exclude the rather peculiar situation when the maximum weighted
degree of an agent, namely the largest of the diagonal entries of the Laplacian associ-
ated with the communication graph, is smaller than all the positive eigenvalues of the
Laplacian. By ruling out this case, we were able to derive some powerful necessary
conditions for the solvability of the positive consensus problem that provided the
backbone of the analysis carried on in [17–19]. This chapter addresses the critical
case, namely the situation when the communication among the agents is described
by a complete graph and all the positive eigenvalues of its Laplacian are greater than
its diagonal entries. As we will see, the necessary conditions derived in this context
are weaker, and conditions that in the previous investigation turned out to be nec-
essary and sufficient for the problem solvability under the current assumptions are
only sufficient.
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In detail, Sect. 19.2 provides some background material. In Sect. 19.3 the positive
consensus problem is formalized. A set of necessary or sufficient conditions for the
problem solvability is provided in Sect. 19.4. The case when the input to state matrix
involved in the agents’ description is monomial is investigated in Sect. 19.5. Finally,
in Sect. 19.6, we address the case of two-dimensional agents.

19.2 Background Material

Given a positive integer N , we let [1, N ] denote the set {1, 2, . . . , N }. ei is the i th
canonical vector (whose size is always clear from the context). The (i, j)th entry
of a matrix A will be denoted either by ai j or by [A]i j , the i th entry of a vector
v by vi or [v]i .A vector v = viei , vi > 0, is called i th monomial vector. 1N is the
N -dimensional vector whose entries are all unitary. The Kronecker product of two
matrices A ∈ R

m×n and B ∈ R
p×q is the matrix

C = [A ⊗ B] :=

⎡

⎢⎢⎢⎣

a11B a12B . . . a1n B
a21B a22B . . . a2n B

...
...

. . .
...

am1B am2B . . . amn B

⎤

⎥⎥⎥⎦ ∈ R
pm×qn .

Given a matrix A ∈ R
n×n , we denote by σ(A) its spectrum. A is Hurwitz if all its

eigenvalues lie in the open left complex halfplane, i.e. λ ∈ σ(A) implies �(λ) < 0.
R+ is the set of nonnegative real numbers. A matrix (in particular, a vector) A+ with
entries in R+ is a nonnegative matrix (A+ ≥ 0); if A+ ≥ 0 and at least one entry
is positive, A+ is a positive matrix (A+ > 0), while if all its entries are positive it
is a strictly positive matrix (A+ � 0). A matrix A ∈ R

n×n is a Metzler matrix if its
off-diagonal entries are nonnegative.

Given A ∈ R
n×n , we define the spectral abscissa of A as

λmax(A) := max{�(λ), λ ∈ σ(A)}. (19.1)

For a Metzler matrix, the spectral abscissa is always an eigenvalue (namely the
eigenvaluewithmaximal real part is always real) and it is calledFrobenius eigenvalue.
Also, Metzler matrices exhibit a monotonicity property [15]: if A and Ā ∈ R

n×n are
Metzler matrices and A ≤ Ā, then λmax(A) ≤ λmax( Ā).

An undirected, weighted graph is a triple [10, 12] G = (V ,E ,A ), where
V = {1, . . . , N } is the set of vertices, E ⊆ V × V is the set of arcs. (i, j) ∈ E
if and only if ( j, i) ∈ E . Finally, A ∈ R

N×N
+ is the (positive and symmetric) adja-

cency matrix of the weighted graph G . We assume that the graph G has no self-
loops, i.e. [A ]i i = 0 for every index i ∈ [1, N ]. IfA is irreducible, the graph is con-
nected. If [A ]i j > 0 for every i, j ∈ V , i 	= j, the graphG is complete. If [A ]i j > 0
implies [A ]i j = 1 the graph is called unweighted. We define the Laplacian matrix
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L ∈ R
N×N associated with the graph G as L := C − A , where C ∈ R

N×N
+ is a

diagonal matrix with [C ]i i := ∑N
j=1[A ]i j ,∀ i ∈ [1, N ].Accordingly, the Laplacian

matrixL = L � takes the following form:

L =

⎡

⎢⎢⎢⎣

�11 �12 . . . �1N
�12 �22 . . . �2N
...

...
. . .

...

�1N �2N . . . �NN

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

∑N
j=1[A ]1 j −[A ]12 . . . −[A ]1N

−[A ]12
∑N

j=1[A ]2 j . . . −[A ]2N
...

...
. . .

...

−[A ]1N −[A ]2N . . .
∑N

j=1[A ]N j

⎤

⎥⎥⎥⎥⎦
.

If G is connected then �i i > 0 for every i ∈ [1, N ], and hence �∗ := maxi∈[1,N ] �i i
> 0. Notice that all rows ofL sum up to 0, and hence 1N is always a right eigenvector
of L corresponding to the null eigenvalue [3].

Lemma 19.1 [3, 13, 20] If the undirected, weighted graph G is connected, thenL
is a symmetric positive semidefinite matrix, and 0 is a simple eigenvalue of L .

Therefore, if we denote by {λ1, λ2, . . . , λN } the spectrum σ(L ), then λi ∈ R+ for
every i ∈ [1, N ], andwe can always assume that the λi ’s are sorted in non-decreasing
order, namely

0 = λ1 ≤ λ2 ≤ · · · ≤ λN . (19.2)

It is well-known that if the eigenvalues of L are sorted as in (19.2), then [4, 5]
�∗ ≤ λN . In addition, ifL is irreducible, then �∗ < λN (see Theorem 3 in [4]).

Lemma 19.2 (1) LetG be an undirected,weighted graphwith N vertices. If �∗ < λ2,
then [12] G is complete.

(2) If G is the undirected, unweighted graph with N vertices, then [3, 5, 10] �∗ < λ2

if and only if G is complete. Moreover, in this case �∗ = N − 1 and λ2 = · · · =
λN = N.

Notice that, differently from the unweighted case, completeness of a weighted
graph G does not imply �∗ < λ2. Consider, e.g., the weighted Laplacian matrix

L =
⎡

⎣
3 −1 −2

−1 2 −1
−2 −1 3

⎤

⎦ ,

and notice that λ2 = 3 and hence λ2 = �∗ = 3 even if G is complete. In the following
the complete, undirected and unweighted graph will be denoted by GN . Clearly, its
Laplacian can be expressed asL = N IN − 1N1�

N and its eigenvalues are λ2 = · · · =
λN = N , while �∗ = N − 1.
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19.3 Problem Statement

We consider a homogeneous multi-agent system consisting of N identical agents
whose dynamics is described by the continuous-time positive single-input system:

ẋi (t) = Axi (t) + Bui (t), t ∈ R+,

where xi ∈ R
n and ui ∈ R are the state vector and the (scalar) input, respectively, of

the i th agent. A = [
ai j

] ∈ R
n×n is a non-HurwitzMetzlermatrix, and B = [

bi
] ∈ R

n+
is a positive vector. The mutual interactions among agents are described by a
(connected, undirected, weighted) communication graph G = (V ,E ,A ), where
V = {1, . . . , N } andA = A � ∈ R

N×N
+ . Note that we assume that the mutual inter-

actions are cooperative and henceA is a nonnegative matrix. Differently from what
we did in [17–19], we assume that the graph G is complete, namely each agent com-
municates with all the other agents, and that �∗ < λ2. As we will see, this apparently
more restrictive situation makes the problem solution more difficult. In this scenario,
A ∈ R

N×N
+ is irreducible (in fact, primitive if N > 2), and if we sort the eigenvalues

of L as in (19.2), then

0 = λ1 < �∗ < λ2 ≤ · · · ≤ λN .

Let K ∈ R
1×n be a state-feedback matrix (to be designed) and assume that each

i th agent adopts the following DeGroot type control law [20]:

ui (t) = K
N∑

j=1

[A ]i j [x j (t) − xi (t)].

Define x(t) ∈ R
Nn and u(t) ∈ R

N as

x(t) := [
x�
1 (t) . . . x�

N (t)
]�

u(t) := [
u1(t) . . . uN (t)

]�

respectively. The state-space description of the overall system becomes:

ẋ(t) = (IN ⊗ A)x(t) + (IN ⊗ B)u(t)

u(t) = −(L ⊗ K )x(t)

and the resulting autonomous closed-loop system is described by

ẋ(t) = [(IN ⊗ A) − (IN ⊗ B)(L ⊗ K )]x(t). (19.3)

The positive consensus problem is naturally posed as follows: determine, if possible,
a state-feedback matrix K = [

ki
] ∈ R

1×n such that the (closed-loop multi-agent)
system (19.3) satisfies the following conditions:
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(I) positivity: A := (IN ⊗ A) − (IN ⊗ B)(L ⊗ K ) is a Metzler matrix;
(II) consensus: meaning that

lim
t→+∞ xi (t) − x j (t) = 0, ∀i, j ∈ [1, N ].

As well-known in the literature [2, 20], a necessary and sufficient condition for the
homogeneous agents to reach consensus is that all matrices A − λi BK , i ∈ [2, N ],
are Hurwitz. A necessary condition for this to happen is that the pair (A, B) is
stabilizable, a steady assumption from now onward.

As far as condition (I) is concerned, once we explicitly write the expression of
the overall state matrix A:

A =

⎡

⎢⎢⎢⎣

A − �11BK −�12BK . . . −�1N BK
−�12BK A − �22BK . . . −�2N BK

...
...

. . .
...

−�1N BK −�2N BK . . . A − �NN BK

⎤

⎥⎥⎥⎦

it is easy to see [17–19] that A is Metzler if and only if (a) the off-diagonal blocks
−�i j BK , i, j ∈ [1, N ], i 	= j , are non-negative; and (b) the diagonal blocks A −
�i i BK , i ∈ [1, N ], are Metzler. So, keeping in mind the assumptions on A and B,
once we define the vector K ∗ = [k∗

i ] ∈ R
1×n
+ as:

k∗
i :=

⎧
⎨

⎩
min j=1,...,n

j 	=i

a ji

b j

1

�∗ , if ∃ j 	= i s.t. b j 	= 0;
+∞, otherwise,

it is immediate to prove that condition (I) holds if and only if 0 ≤ K ≤ K ∗. Note that
in the special case when B is a monomial vector, say B = biei , for some i ∈ [1, n]
and bi > 0, the i th entry of K ∗ is infinite. In all the other cases (namely if B has at
least two non-zero entries) K ∗ is always finite.

To summarize, the positive consensus problem can be equivalently posed as fol-
lows:

Positive consensus problem:determine, if possible, K ∈ R
1×n
+ , 0 ≤ K ≤ K ∗, such

that all matrices A − λi BK , i ∈ [2, N ], are Hurwitz.

19.4 Necessary and/or Sufficient Conditions

Amajor consequence of the apparentlymore restrictive assumption that all the agents
communicate with each other and �∗ < λi , i ∈ [2, N ], is that one of the main nec-
essary conditions for the positive consensus problem solvability we exploited in the
previous analysis, namely the fact that the matrix A − λ2BK ∗ is Metzler and Hur-
witz, does not hold anymore. As �∗ is smaller than λ2, by the way K ∗ is defined the
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matrix A − λ2BK ∗ (and hence all matrices A − λi BK ∗, i ∈ [2, N ]) is not Metzler,
and the case may occur that A − λ2BK is Hurwitz even if A − λ2BK ∗ is not.

Some necessary conditions for the problem solvability, however, can be deter-
mined, as they are independent of the relationship between �∗ and λ2.

Proposition 19.1 Assume that A is an n × n Metzler non-Hurwitz matrix, B ∈ R
n+

is a positive vector and 0 < �∗ < λi , i ∈ [2, N ]. If the positive consensus problem
is solvable, then

(i) λmax(A) is a simple nonnegative eigenvalue;
(ii) K ∗B > tr(A)/λ2.

Proof (i) The fact that λmax(A) is a simple eigenvalue follows from Proposition 1
and Remark 1 in [18], since those results are independent of the relationship between
�∗ and λ2. The fact that it is real and nonnegative follows from the assumption that
A is a Metzler non-Hurwitz matrix.
(ii) As the trace of amatrix equals the sumof its eigenvalues, a necessary condition for
thematrices A − λi BK , i ∈ [2, N ], to beHurwitz is that their traces are negative, i.e.,
tr(A − λi BK ) = tr(A) − λi K B < 0,∀ i ∈ [2, N ].However, since both B and K are
positive vectors, if there exists a matrix K such that 0 ≤ K ≤ K ∗ and A − λi BK is
Hurwitz, then K ∗B ≥ K B > tr(A)

λi
,∀ i ∈ [2, N ]. Finally, note that if tr(A) < 0 the

previous condition is trivial. If tr(A) ≥ 0 then

tr(A)

λ2
≥ tr(A)

λi

for every i ∈ [2, N ]. So, in both cases, condition K ∗B > tr(A)

λi
holds for every i ∈

[2, N ] if and only if K ∗B > tr(A)

λ2
.

Conditions (i) and (ii) of the above proposition are not sufficient, not even when
dealing with N = 2 agents described by a two-dimensional (n = 2) model, as the
following elementary example shows.

Example 19.1 Consider the positive single-input agent

ẋi (t) = Axi (t) + Bui (t) =
[
3 1
1 −1

]
xi (t) +

[
1
1

]
ui (t)

A is aMetzler and non-Hurwitz matrix and the pair (A, B) is stabilizable. Thematrix
A has a simple positive eigenvalue and a negative one. Assume that there are N = 2
agents and assume that the interconnection topology is described by the complete,
undirected and unweighted graph G2, namely

L =
[
1 −1

−1 1

]
.
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Then (see Lemma 19.2) 0 = λ1 < �∗ = 1 < λ2 = 2. The matrix K ∗ is easily proved
to be K ∗ = [

1 1
]
, and hence condition 2 = K ∗B > tr(A)/λ2 = 1 holds. Yet, for

every K = [
k1 k2

]
, with 0 ≤ ki ≤ 1, i ∈ [1, 2], A − λ2BK is not Hurwitz. So, the

positive consensus problem is not solvable. ♣
Example 19.2 Consider the positive single-input agent

ẋi (t) = Axi (t) + Bui (t) =
⎡

⎣
−1 1 1
1 −1 0
1 1 6

⎤

⎦ xi (t) +
⎡

⎣
1
1
0

⎤

⎦ ui (t)

Notice that A is a Metzler and non-Hurwitz matrix and that the pair (A, B) is sta-
bilizable. Consider N = 3 agents and assume that the interconnection topology is
described by the complete, undirected and unweighted graph G3. In this case (see
Lemma 19.2) �∗ = 2 and the eigenvalues of L are λ1 = 0 and λ2 = λ3 = 3. The
matrix K ∗ is easily proved to be K ∗ = [

1
2

1
2 0

]
. As K ∗B = 1 < 4

3 = tr(A)

λ2
, we con-

clude that the positive consensus problem is not solvable. ♣
In order to investigate the problem solvability, let us define the set of solutions of

the positive consensus problem as

K H := {K : 0 ≤ K ≤ K ∗, A − λi BK Hurwitz, i ∈ [2, N ]}.

A sufficient condition for the solvability of the positive consensus problem is rep-
resented by the case when there is a matrix K , satisfying the given bounds, that
makes all matrices A − λi BK , i ∈ [2, N ], Metzler and Hurwitz. To investigate this
situation, we define

K MH := {K ∈ K H : A − λi BK Metzler, i ∈ [2, N ]}.

The following result provides, in the case when �∗ < λ2, an analysis that parallels
the one carried on in Sect. 6 of [18]. In the case we are currently investigating
the matrix A − λ2BK ∗ is no longer Metzler and Hurwitz. However, A − �∗BK ∗
is necessarily Metzler and hence we can ensure that all matrices taking the form
K = αK ∗, with α ∈ [0, 1], make A − �∗BK Metzler. So, we focus on this class of
state feedback matrices to determine whether some of them belong to K MH .

Proposition 19.2 Assume that A is an n × n Metzler non-Hurwitz matrix, B ∈ R
n+

is a positive vector and 0 < �∗ < λi , i ∈ [2, N ]. The following conditions are equiv-
alent:

(i) K MH 	= ∅;
(ii) �∗

λN
K ∗ ∈ K MH;

(iii) the set {α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz} is not empty and

α̃ := inf{α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz} (19.4)
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satisfies α̃ < λ2
λN
.

Proof (i) ⇒ (ii) Suppose that K MH 	= ∅ and let K ∈ K MH . As K ∈ K MH then
A − λN BK is Metzler (and Hurwitz) and this implies that λN K ≤ �∗K ∗, namely
K ≤ �∗

λN
K ∗. On the other hand, theMetzlermatrix A − �∗BK ∗ ≤ A − λN BK , being

upper bounded by a Metzler and Hurwitz matrix, is Hurwitz in turn. Therefore, for
every k ∈ [2, N ], A − λk BK ≥ A − λk

�∗
λN

BK ∗ ≥ A − �∗BK ∗. Since A − �∗BK ∗

isMetzler, then A − λk
�∗
λN

BK ∗ isMetzler, too, and being upper-boundedby aMetzler

Hurwitz matrix, it is Hurwitz, in turn. This proves that A − λk
�∗
λN

BK ∗ is Metzler and

Hurwitz for every k ∈ [2, N ], namely �∗
λN

K ∗ ∈ K MH .

(ii)⇒ (iii) If �∗
λN

K ∗ ∈ K MH , then A − λ2
�∗
λN

BK ∗ isMetzler and Hurwitz, and hence
λ2
λN

∈ {α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz}. This also implies that α̃ < λ2
λN
.

(iii) ⇒ (i) Observe, first, that if {α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz} is not empty
and α̃ is the infimum value of the set, then for every α ∈ (α̃, 1] the matrix A −
α�∗BK ∗ satisfies A − �∗BK ∗ ≤ A − α�∗BK ∗ < A − α̃�∗BK ∗ and hence it isMet-
zler Hurwitz. Set K = �∗

λN
K ∗. By assumption, α̃ < λ2

λN
, and hence A − λ2BK is Hur-

witz. On the other hand, A − λN BK = A − �∗BK ∗ is Metzler. This implies that
A − λ2BK ≥ A − λ3BK ≥ · · · ≥ A − λN BK are all Metzler matrices, and since
the largest one is Hurwitz, by the monotonicity property of the spectral abscissa we
can claim that they are all Hurwitz. So, K ∈ K MH .

Remark 19.1 It is easy to see that since A − �∗BK ∗ is Metzler, then the set {α ∈
(0, 1] : A − α�∗BK ∗ is Hurwitz} coincides with the set {α ∈ (0, 1] : A − α�∗BK ∗ is
Metzler and Hurwitz }. Moreover, if the set is not empty then theMetzler matrix A −
�∗BK ∗ satisfies A − �∗BK ∗ ≤ A − α̃�∗BK ∗ and hence it is necessarily Hurwitz.
So, Proposition 19.2 above, essentially states that the setK MH is not empty, namely
there exists a state feedback matrix K , satisfying the usual bounding conditions,
that makes all matrices A − λi BK , i ∈ [2, N ], Metzler and Hurwitz, if and only if
such a solution can be found in the set of matrices {αK ∗ : α ∈ (0, 1]}. Note that not
only the set {α ∈ (0, 1] : A − α�∗BK ∗ is Hurwitz} must be not empty, and hence
the parameter α̃ well defined, but the interval (α̃, 1] must be sufficiently “large" to

include the interval
[

λ2
λN

, 1
]
. Only in this way we can determine a matrix of the form

K = αK ∗ that makes A − λi BK Metzler and Hurwitz for every λ ∈ [λ2, λN ].

19.5 B Is a Monomial Vector

Weconsider now the casewhen B is amonomial vector.Without loss of generalitywe
assume that B = e1, since we can always reduce ourselves to this case by resorting
to a permutation and a rescaling that do not influence the problem solvability, only
the value of the specific solution.

Proposition 19.3 Assume that B = e1 and denote by A22 the principal submatrix
obtained from A by deleting its first row and column.
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(i) If the positive consensus problem is solvable then every eigenvalue of A22 with
nonnegative real part has geometric multiplicity equal to 1;

(ii) If A22 is Hurwitz, then the positive consensus problem is solvable.

Proof (i) Assume that the positive consensus problem is solvable and suppose by
contradiction that there existsμ ∈ σ(A22)with�{μ} ≥ 0 and geometric multiplicity
d > 1. Partition the matrix A as:

A =
[
a11 r�
c A22

]
,

where a11 ∈ R, r, c ∈ R
n−1
+ are nonnegative vectors, and A22 ∈ R

(n−1)×(n−1) is a
Metzler matrix. Partition the feedback matrix K ∈ R

1×n
+ , 0 ≤ K ≤ K ∗, in a consis-

tent way, namely as K = [
k1 k2

]
, where k2 ∈ R

1×(n−1)
+ . Now, notice that for every

i ∈ [2, N ] the characteristic polynomial of A − λi BK can be written as

det(s In − A + λi BK ) = det(s In − A) + λi K adj(s In − A)B

= det(s In−1 − A22)
[
s − a11 − r�(s In−1 − A22)

−1c
]

+ λi
[
k1 k2

] [
det(s In−1 − A22)

adj(s In−1 − A22)c

]

= (s − a11 + λi k1) det(s In−1 − A22)

+ (
λik2 − r�)

adj(s In−1 − A22)c.

Ifμ ∈ σ(A22), then det(μIn−1 − A22) = 0 and, since the geometric multiplicity ofμ
as an eigenvalue of A22 is d > 1, it also holds that adj(μIn−1 − A22) = 0, and hence
det(μIn − A + λi BK ) = 0 for every K ∈ R

1×n
+ , which contradicts the assumption

of the solvability of the positive consensus problem.
(ii) It is the same as the proof of the sufficiency part of Proposition 7 in [18].

Differently from the case λ2 ≤ �∗, the Hurwitz condition on the submatrix A22 is
sufficient for the problem solvability, but it is not necessary, as shown in Example
19.3 below.

Example 19.3 Consider the positive single-input agent

ẋi (t) = Axi (t) + Bui (t) =
⎡

⎣
−1 1 0
0 0 1
0 2 −1

⎤

⎦ xi (t) +
⎡

⎣
0
0
1

⎤

⎦ ui (t)

Notice that A is a Metzler and non-Hurwitz matrix and that the pair (A, B) is stabi-
lizable. Consider N = 3 agents and the same adjacency matrix as in Example 19.2,
so that �∗ = 2 and λ2 = λ3 = 3. B = e3 and the matrix A11, obtained from A by
deleting the third row and the third column, is non-Hurwitz, however this does not
preclude the problem solvability. If we consider
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A − �∗BK =
⎡

⎣
−1 1 0
0 0 1

−2k1 2 − 2k2 −1 − 2k3

⎤

⎦

we notice that K ∗ = [
0 1 +∞]

. It is easy to verify that the positive consensus prob-
lem is solvable since for K = [

0 1 0
] ∈ R

1×3, with 0 ≤ K ≤ K ∗, we get

A − λ2BK = A − λ3BK =
⎡

⎣
−1 1 0
0 0 1
0 −1 −1

⎤

⎦

which is Hurwitz. ♣

19.6 Second-Order Agents

We investigate now the case when the agents are modelled by a second-order (posi-
tive) linear system, i.e.

ẋi (t) = Axi (t) + Bui (t) =
[
a11 a12
a21 a22

]
xi (t) +

[
b1
b2

]
ui (t), (19.5)

with a12, a21, b1 and b2 nonnegative real numbers. Recalling that any matrix M ∈
R

2×2 is Hurwitz if and only if tr(M) < 0 and det(M) > 0, after elementary manip-
ulations it can be seen that for every A ∈ R

2×2, B ∈ R
2 and K ∈ R

1×2, the matrix
M := A − λBK is Hurwitz if and only if

{
λK B > tr(A);

λK adj(A)B < det(A).
(19.6)

This simple observation leads to the following Lemma.

Lemma 19.3 [18] Given A ∈ R
2×2 and B ∈ R

2 and K ∈ R
1×2, for every choice of

the N − 1 positive real numbers 0 < λ2 ≤ λ3 ≤ · · · ≤ λN , the following facts are
equivalent:

(i) A − λBK is Hurwitz for every λ ∈ [λ2, λN ];
(ii) A − λi BK is Hurwitz for every i ∈ [2, N ];
(iii) A − λi BK is Hurwitz for i = 2, N.

As a straightforward consequence of Lemma 19.3 and of the fact that K B ≥ 0
(and hence λN K B ≥ λ2K B), it follows that for two-dimensional agents the set of
feedback matrices that solve the positive consensus problem is the set of matrices
K ∈ R

1×2 that satisfy the following LMIs:

K ∗ ≥ K ≥ 0;
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λ2K B > tr(A);
det(A) > λi K adj(A)B, i = 2,N.

This ensures that the set of solutions is necessarily convex.
When the agents are described by second-order state-space models the case of B

monomial can be completely solved. To this aim recall that fromProposition 19.3 part
(ii) it follows that condition a22 < 0 ensures the solvability of the positive consensus
problem, but as we have shown this is not a necessary condition. So, in the following
we assume a22 ≥ 0, �∗ < λ2, and investigate under which additional conditions on
the matrix A and on the interconnection topology the positive consensus problem is
solvable.

Proposition 19.4 Assume that B = e1, A22 = a22 ≥ 0 and �∗ < λ2. Then, the pos-
itive consensus problem for second-order agents is solvable if and only if a21 > 0
and the following condition holds:

max

{
0,

tr(A)a22
λ2

}
<

a12a21
�∗ + min

{
det(A)

λ2
,
det(A)

λN

}
. (19.7)

When so, there is always a solution of the form K =
[
max

{
0, tr(A)a22

λ2

}
+ ε a12

�∗

]
,

with ε > 0 and arbitrarily small.

Proof Note first that as B = e1 and a22 ≥ 0, if the positive consensus problem is
solvable, then a21 must be positive, otherwise a22 would be an eigenvalue of every
matrix A − λi BK , i ∈ [2, N ]. Conversely, it is easy to see that condition (19.7)
implies a21 > 0. So, in the following we will assume a21 > 0. Set K = [

k1 k2
]
.

Then K B = k1, K ∗ = [+∞ a12
�∗

]
, and the previous LMIs become

k1 ≥ 0, k1 >
tr(A)

λ2
,

a12
�∗ ≥ k2 ≥ 0, (19.8)

[
k1 k2

] [
a22

−a21

]
< min

{
det(A)

λ2
,
det(A)

λN

}
. (19.9)

It is clear that, as a21 > 0, inequality (19.9) holds if and only if it holds for k2 =
k∗
2 = a12

�∗ . So, inequality (19.9) becomes

k1a22 <
a12a21

�∗ + min

{
det(A)

λ2
,
det(A)

λN

}
. (19.10)

If tr(A) < 0 then the only constraint on k1 is the nonnegativity and condition (19.10)
holds if and only if it holds for k1 = 0. And if this is the case it also holds for k1 = ε,
with ε > 0 and arbitrarily small. On the other hand, if tr(A) ≥ 0, then the problem is
solvable if and only if it is solvable by assuming k1 = tr(A)

λ2
+ ε, with ε > 0 arbitrarily

small, and this happens if and only if
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tr(A)

λ2
a22 <

a12a21
�∗ + min

{
det(A)

λ2
,
det(A)

λN

}
.

When the N agents are described by a second-order state-space model, B = e1,
A22 = a22 > 0, and the communication among them is described by GN , Proposition
19.4 allows us to draw the following conclusion concerning the number of agents.

Corollary 19.1 Assume that B = e1, A22 = a22 > 0 and the communication graph
is described by the complete undirected and unweighted graph GN (and hence �∗ <

λ2). Then, there exists N̄ such that for every N ≥ N̄ positive consensus cannot be
reached.

Proof The Laplacian of GN has �∗ = N − 1 and eigenvalues λ2 = · · · = λN = N .
So, condition (19.7) becomes

max

{
0,

tr(A)a22
N

}
<

a12a21
N − 1

+ det(A)

N
,

and it implies a222 < 1
N−1a12a21. Clearly, the term on the right goes to 0 as N tends to

+∞, while a222 > 0. So, there exists N̄ such for every N ≥ N̄ the previous inequality
and hence condition (19.7) do not hold, i.e. positive consensus cannot be reached.

Example 19.4 Consider the positive single-input agent

ẋi (t) = Axi (t) + Bui (t) =
[−1 1
3 1

]
xi (t) +

[
1
0

]
ui (t)

Assume that the communication among the agents is described byGN : it follows from
(19.7) that for every N ≥ N̄ = 4 the positive consensus problem is not solvable.
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