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Abstract. A picture is worth a thousand words. Not until recently, how-
ever, we noticed some success stories in understanding of visual scenes:
a model that is able to detect/name objects, describe their attributes,
and recognize their relationships/interactions. In this paper, we propose
a phrase-based hierarchical Long Short-Term Memory (phi-LSTM) model
to generate image description. The proposed model encodes sentence as
a sequence of combination of phrases and words, instead of a sequence
of words alone as in those conventional solutions. The two levels of this
model are dedicated to (i) learn to generate image relevant noun phrases,
and (ii) produce appropriate image description from the phrases and
other words in the corpus. Adopting a convolutional neural network to
learn image features and the LSTM to learn the word sequence in a
sentence, the proposed model has shown better or competitive results
in comparison to the state-of-the-art models on Flickr8k and Flickr30k
datasets.

1 Introduction

Fig. 1. Complete visual scene under-
standing is a holy grail in computer vision.

Automatic caption/description gener-
ation from images is a challenging
problem that requires a combination
of visual information and linguistic as
illustrated in Fig. 1. In other words, it
requires not only complete image under-
standing, but also sophisticated nat-
ural language generation [1–4]. This is
what makes it such an interesting task
that has been embraced by both the
computer vision and natural language
processing communities.

One of the most common models applied for automatic caption generation
is a neural network model that composes of two sub-networks [5–10], where a
convolutional neural network (CNN) [11] is used to obtain feature representation
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Fig. 2. Model comparison: (a) Conventional RNN language model, and (b) Our pro-
posed phrase-based model.

of an image; while a recurrent neural network (RNN)1 is applied to encode
and generate its caption description. In particular, Long Short-Term Memory
(LSTM) model [12] has emerged as the most popular architecture among RNN,
as it has the ability to capture long-term dependency and preserve sequence.
Although sequential model is appropriate for processing sentential data, it does
not capture any other syntactic structure of language at all. Nevertheless, it
is undeniable that sentence structure is one of the prominent characteristics of
language, and Victor Yngve - an influential contributor in linguistic theory stated
in 1960 that “language structure involving, in some form or other, a phrase-
structure hierarchy, or immediate constituent organization” [13]. Moreover, Tai
et al. [14] proved that a tree-structured LSTM model that incorporates syntactic
interpretation of sentence structure, can learn the semantic relatedness between
sentences better than a pure sequential LSTM alone. This gives rise to question
of whether is it a good idea to disregard other syntax of language in the task of
generating image description.

In this paper, we would like to investigate the capability of a phrase-based
language model in generating image caption as compared to the sequential lan-
guage model such as [6]. To this end, we design a novel phrase-based hierarchical
LSTM model, namely phi-LSTM to encode image description in three stages -
chunking of training caption, image-relevant phrases composition as a vector
representation and finally, sentence encoding with image, words and phrases. As
opposed to those conventional RNN language models which process sentence as
a sequence of words, our proposed method takes noun phrase as a unit in the
sentence, and thus processes the sentential data as a sequence of combination
of both words and phrases together. Figure 2 illustrates the difference between

1 RNN is a popular choice due to its capability to process arbitrary length sequences
like language where words sequence governing its semantic is order-sensitive.
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the conventional RNN language model and our proposal with an example.
Both phrases and sentences in our proposed model are learned with two dif-
ferent sets of LSTM parameters, each models the probability distribution of
word conditions on previous context and image. Such design is motivated by the
observation that some words are more prone to appear in phrase, while other
words are more likely to be used to link phrases. In order to train the proposed
model, a new perplexity based cost function is defined. Experimental results
using two publicly available datasets (Flickr8k [15] and Flickr30k [16]), and a
comparison to the state-of-the-art results [5–7,9,17] have shown the efficacy of
our proposed method.

2 Related Works

The image description generation task is generally inspired by two lines of
research, which are (i) the learning of cross-modality transition or representation
between image and language, and (ii) the description generation approaches.

2.1 Multimodal Representation and Transition

To model the relationship between image and language, some works asso-
ciate both modalities by embedding their representations into a common space
[18–21]. First, they obtain the image features using a visual model like CNN
[19,20], as well as the representation of sentence with a language model such
as recursive neural network [20]. Then, both of them are embedded into a com-
mon multimodal space and the whole model is learned with ranking objective
for image and sentence retrieval task. This framework was also tested at object
level by Karpathy et al. [21] and proved to yield better results for the image
and sentence bi-directional retrieval task. Besides that, there are works that
learn the probability density over multimodal inputs using various statistical
approaches. These include Deep Boltzmann Machines [22], topic models [23],
log-bilinear neural language model [8,24] and recurrent neural networks [5–7]
etc. Such approaches fuse different input modalities together to obtain a uni-
fied representation of the inputs. It is notable to mention that there are also
some works which do not explicitly learn the multimodal representation between
image and language, but transit between modalities with retrieval approach. For
example, Kuznetsova et al. [25] retrieve images similar to the query image from
their database, and extract useful language segments (such as phrases) from the
descriptions of the retrieved images.

2.2 Description Generation

On the other hand, caption generation approaches can be grouped into three
categories in general as below:
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Template-Based. These approaches generate sentence from a fixed template
[26–30]. For example, Farhadi et al. [26] infer a single triplet of object, action
and scene from an image and convert it into a sentence with fixed template.
Kulkarni et al. [27] use complex graph of detections to infer elements in sentence
with conditional random field (CRF), but the generation of sentences is still
based on the template. Mitchell et al. [29] and Gupta et al. [30] use a more
powerful language parsing model to produce image description. In overall, all
these approaches generate description which is syntactically correct, but rigid
and not flexible.

Composition Method. These approaches extract components related to the
images and stitch them up to form a sentence [25,31,32]. Description generated
in such manner is broader and more expressive compared to the template-based
approach, but is more computationally expensive at test time due to its non-
parametric nature.

Neural Network. These approaches produce description by modeling the con-
ditional probability of a word given multimodal inputs. For instance, Kiros et al.
[8,24] developed multimodal log-bilinear neural language model for sentence gen-
eration based on context and image feature. However, it has a fixed window
context. The other popular model is recurrent neural network [5–7,9,33], due to
its ability to process arbitrary length of sequential inputs such as sequence of
words. This model is usually connected with a deep CNN that generates image
features. The variants on how this sub-network is connected to the RNN have
been investigated by different researchers. For instance, the multimodal recur-
rent neural network proposed by Mao et al. [5] introduces a multimodal layer
at each time step of the RNN, before the softmax prediction of words. Vinyals
et al. [6] treat the sentence generation task as a machine translation problem
from image to English, and thus image feature is employed in the first step of
the sequence trained with their LSTM RNN model.

2.3 Relation to Our Work

Automatic image caption generated via template-based [26–30] and composition
methods [25,31,32] are typically two-stage approaches, where relevant elements
such as objects (noun phrases) and relations (verb and prepositional phrases)
are generated first before a full descriptive sentence is formed with the phrases.
With the capability of LSTM model in processing long sequence of words, neural
network based method that uses a two-stage approach deem unnecessary. How-
ever, we are still interested to find out how sequential model with phrase as a
unit of sequence performs. The closest work related to ours is the one proposed
by Lebret et al. [17]. They obtain phrase representation with simple word vector
addition and learn its relevancy with image by training with negative samples.
Sentence is then generated as a sequence of phrases, predicted using a statistical
framework conditioned on previous phrases and its chunking tags. While their
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aim was to design a phrase-based model that is simpler than RNN, we intend
to compare RNN phrase-based model with its sequential counterpart. Hence,
our proposed model generates phrases and recomposes them into sentence with
two sub-networks of LSTM, which are linked to form a hierarchical structure as
shown in Fig. 2(b).

3 Our Proposed phi-LSTM Model

This section details how the proposed method encodes image description in three
stages - (i) chunking of image description, (ii) encode words and phrases into
distributed representations, and finally (iii) encodes sentence with the phi-LSTM
model.

3.1 Phrase Chunking

Fig. 3. Phrase chunking from depen-
dency parse.

A quick overview on the structure of
image descriptions reveals that, key ele-
ments which made up the majority of
captions are usually noun phrases that
describe the content of the image, which
can be either objects or scene. These ele-
ments are linked with verb and preposi-
tional phrases. Thus, noun phrase essen-
tially covers over half of the corpus in
a language model trained to generate
image description. And so, in this paper,

our idea is to partition the learning of noun phrase and sentence structure so that
they can be processed more evenly, compared to extracting all phrases without
considering their part of speech tag.

To identify noun phrases from a training sentence, we adopt the dependency
parse with refinement using Stanford CoreNLP tool [34], which provides good
semantic representation over a sentence by providing structural relationships
between words. Though it does not chunk sentence directly as in constituency
parse and other chunking tools, the pattern of noun phrase extracted is more flex-
ible as we can select desirable structural relations. The relations we selected are:

– determiner relation (det),
– numeric modifier (nummod),
– adjectival modifier (amod),
– adverbial modifier (advmod), but is selected only when the meaning of adjec-

tive term is modified, e.g. “dimly lit room”,
– compound (compound),
– nominal modifier for possessive alteration (nmod:of & nmod:poss).



106 Y.H. Tan and C.S. Chan

Fig. 4. Composition of phrase vector representation in the phi-LSTM model.

Note that the dependency parse only extracts triplet made up of a governor
word and a dependent word linked with a relation. So, in order to form phrase
chunk with the dependency parse, we made some refinements as illustrated in
Fig. 3. The triplets of selected relations in a sentence are first located, and those
consecutive words (as highlighted in the figure, e.g. “the”, “man”) are grouped
as a single phrase, while the standalone word (e.g. “in”) will remain as a unit in
the sentence.

3.2 Compositional Vector Representation of Phrase

This section describes how compositional vector representation of a phrase is
computed, given an image.

Image Representation. A 16-layer VggNet [35] pre-trained on ImageNet [36]
classification task is applied to learn image feature in this work. Let I ∈ R

D be
an image feature, it is embedded into a K-dimensional vector, vp with image
embedding matrix, Wip ∈ R

K×D and bias bip ∈ R
K .

vp = WipI + bip. (1)

Word Embedding. Given a dictionary W with a total of V vocabulary, where
word w ∈ W denotes word in the dictionary, a word embedding matrix We ∈
R

K×V is defined to encode each word into a K -dimensional vector representation,
x. Hence, an image description with words w1 · · ·wM will correspond to vectors
x1 · · ·xM accordingly.

Composition of Phrase Vector Representation. For each phrase extracted
from the sentence, a LSTM-based RNN model similar to [6] is used to encode its
sequence as shown in Fig. 4. Similar to [6], we treat the sequential modeling from
image to phrasal description as a machine translation task, where the embedded
image vector is inputted to the RNN on the first time step, followed by a start
token xsp ∈ R

K indicating the translation process. It is trained to predict the
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next word at each time step by outputting ptp+1 ∈ R
K×V , which is modeled as

the probability distribution over all words in the corpus. The last word of the
phrase will predict an end token. So, given a phrase P which is made up by L
words, the input xtp at each time step are:

xtp =

⎧
⎪⎨

⎪⎩

vp, if tp = −1
xsp, if tp = 0
Wewtp , for tp = 1...L.

(2)

For a LSTM unit at time step tp, let itp , ftp ,otp , ctp and htp denote the input
gate, forget gate, output gate, memory cell and hidden state at the time step
respectively. Thus, the LSTM transition equations are:

itp = σ(Wixtp + Uihtp−1), (3)

ftp = σ(Wfxtp + Ufhtp−1), (4)

otp = σ(Woxtp + Uohtp−1), (5)

utp = tanh(Wuxtp + Uuhtp−1), (6)

ctp = itp � utp + ftp � ctp−1, (7)

htp = otp � tanh(ctp), (8)

ptp+1 = softmax(htp). (9)

Here, σ denotes a logistic sigmoid function while � denotes elementwise
multiplication. The LSTM parameters {Wi,Wf ,Wo,Wu,Ui,Uf ,Uo,Uu} are
all matrices with dimension of R

K×K . Intuitively, each gating unit controls
the extent of information updated, forgotten and forward-propagated while the
memory cell holds the unit internal memory regarding the information processed
up to current time step. The hidden state is therefore a gated, partial view of
the memory cell of the unit. At each time step, the probability distribution of
words outputted is equivalent to the conditional probability of word given the
previous words and image, P (wt|w1:t−1, I). On the other hand, the hidden state
at the last time step L is used as the compositional vector representation of the
phrase, z ∈ R

K , where z = hL.

3.3 Encoding of Image Description

Once the compositional vector of phrases are obtained, they are linked with
the remaining words in the sentence using another LSTM-based RNN model
as shown in Fig. 5. Another start token xss ∈ R

K and image representation
vs ∈ R

K are introduced, where

vs = WisI + bis, (10)

with Wis ∈ R
K×D and bias bis ∈ R

K as embedding parameters. Hence, the
input units of the LSTM in this level will be the image representation vs, start
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Fig. 5. Sentence encoding using the phi-LSTM model.

token xss, followed by either compositional vector of phrase z or word vector x
in accordance to the sequence of its description.

For simplicity purpose, the arranged input sequence will be referred as y.
Therefore, given the example in Figs. 4 and 5, the LSTM input sequence of
the sentence will be {vs,xss,y1 . . .yN} where N = 8, and it is equivalent to
sequence {vs,xss, z1,x3, z2,x7,x8,x9,x10, z3}, as in Fig. 5. Note that a phrase
token is added to the vocabulary, so that the model can predict it as an output
when the next input is a noun phrase.

The encoding of the sentence is similar to the phrase vector composition.
Equations 3–9 are applied here using yts as input instead of xtp , where tp and
ts represent time step in phrase and sentence respectively. A new set of model
parameters with same dimensional size is used in this hierarchical level.

4 Training the phi-LSTM Model

The proposed phi-LSTM model is trained with log-likelihood objective function
computed from the perplexity2 of sentence conditioned on its corresponding
image in the training set. Given an image I and its description S, let R be
the number of phrases of the sentence, Pi correspond to the number of LSTM
blocks processed to get the compositional vector of phrase i, Q is the length of
composite sequence of sentence S, while ptp and pts are the probability output
of LSTM block at time step tp − 1 and ts − 1 for phrase and sentence level
respectively. The perplexity of sentence S given its image I is

log2 PPL(S|I) = − 1
N

⎡

⎣
Q∑

ts=−1

log2 pts +
R∑

i=1

⎡

⎣
Pi∑

tp=−1

log2 ptp

⎤

⎦

⎤

⎦ , (11)

where

N = Q +
R∑

i=1

Pi. (12)

2 Perplexity is a standard approach to evaluate language model.
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Fig. 6. Upper hierarchy of the phi-LSTM model with phrase selection objective.

Hence, with M number of training samples, the cost function of our model is:

C(θ) = − 1
L

M∑

j=1

[Nj log2 PPL(Sj|Ij)] + λθ· ‖ θ ‖22, (13)

where

L = M ×
M∑

j=1

Nj . (14)

It is the average log-likelihood of word given their previous context and the
image described, summed with a regularization term, λθ· ‖ θ ‖22, average over
the number of training samples. Here, θ is the parameters of the model.

This objective however, does not discern on the appropriateness of different
inputs at each time step. So, given multiple possible inputs, it is unable to
distinguish which phrase is the most probable input at that particular time
step during the decoding stage. That is, when a phrase token is inferred as
the next input, all possible phrases will be inputted in the next time step. The
candidate sequences are then ranked according to their perplexity up to this
time step, where only those with high probability are kept. Unfortunately, this
is problematic because subject in an image usually has much lower perplexity
as compared to object and scene. Thus, such algorithm will end up generating
description made up of only variants of subject noun phrases.

To overcome this limitation, we introduce a phrase selection objective during
the training stage. At all time steps when an input is a phrase, H number of
randomly selected phrases that are different from the ground truth input is feed
into the phi-LSTM model as shown in Fig. 6. The model will then produce two
outputs, which are the next word prediction solely based on the actual input,
and a classifier output that distinguishes the actual one from the rest. Though
the number of inputs at these time steps increases, the memory cell and hidden
state that is carried to the next time step keep only information of the actual
input. The cost function for phrase selection objective of a sentence is
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CPS =
∑

ts∈P

H+1∑

k=1

κtskσ(1 − ytskhtskWps). (15)

where P is the set of all time steps where the input is phrase, htsk is the hidden
state output at time step ts from input k, and ytsk is its label which is +1 for the
actual input and -1 for the false inputs. Wps ∈ R

K×1 is trainable parameters for
the classifier while κtsk scales and normalizes the objective based on the number
of actual and false inputs at each time step. The overall objective function is
then

CF (θ) = − 1
L

M∑

j=1

[Nj log2 PPL(Sj|Ij) + CPSj ] + λθ· ‖ θ ‖22 . (16)

This cost function is minimized and backpropagated with RMSprop optimizer
[37] and trained in a minibatch of 100 image-sentence pair per iteration. We cross-
validate the learning rate and weight decay depending on dataset, and dropout
regularization [38] is employed over the LSTM parameters during training to
avoid overfitting.

5 Image Caption Generation

Generation of textual description using the phi-LSTM model given an image
is similar to other statistical language models, except that the image relevant
phrases are generated first in the lower hierarchical level of the proposed model.
Here, embedded image feature of the given image followed by the start token
of phrase are inputted into the model, acting as the initial context required for
phrase generation. Then, the probability distribution of the next word over the
vocabulary is obtained at each time step given the previous contexts, and the
word with the maximum probability is picked and fed into the model again to
predict the subsequent word. This process is repeated until the end token for
phrase is inferred. As we usually need multiple phrases to generate a sentence,
beam search scheme is applied and the top K phrases generated are kept as the
candidates to form the sentence. To generate a description from the phrases, the
upper hierarchical level of the phi-LSTM model is applied in a similar fashion.
When a phrase token is inferred, K phrases generated earlier are used as the
inputs for the next time step. Keeping only those phrases which generate posi-
tive result with the phrase selection objective, inference on the next word given
the previous context and the selected phrases is performed again. This process
iterates until the end token is inferred by the model.

Some constraints are added here, which are (i) each predicted phrase may
only appears once in a sentence, (ii) maximum number of unit (word or phrase)
that made up a sentence is limited to 20, (iii) maximum number of words forming
a phrase is limited to 10, and (iv) generated phrases with perplexity higher than
threshold T are discarded.
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6 Experiment

6.1 Datasets

The proposed phi-LSTM model is tested on two benchmark datasets - Flickr8k
[15] and Flickr30k [16], and compared to the state-of-the-art methods [5–7,9,17].
These datasets consist of 8000 and 31000 images respectively, each annotated
with five ground truth descriptions from crowd sourcing. For both datasets,
1000 images are selected for validation and another 1000 images are selected for
testing; while the rest are used for training. All sentences are converted to lower
case, with frequently occurring punctuations removed and word that occurs less
than 5 times (Flickr8k) or 8 times (Flickr30k) in the training data discarded.
The punctuations are removed so that the image descriptions are consistent with
the data shared by Karpathy and Fei-Fei [7].

6.2 Results Evaluated with Automatic Metric

Sentence generated using the phi-LSTM model is evaluated with automatic met-
ric known as the bilingual evaluation understudy (BLEU) [39]. It computes the
n-gram co-occurrence statistic between the generated description and multiple
reference sentences by measuring the n-gram precision quality. It is the most
commonly used metric in this literature.

Table 1 shows the performance of our proposed model in comparison to the
current state-of-the-art methods. NIC [6] which is used as our baseline is a
reimplementation, and thus its BLEU score reported here is slightly different
from the original work. Our proposed model performs better or comparable to the
state-of-the-art methods on both Flickr8k and Flickr30k datasets. In particular,
we outperform our baseline on both datasets, as well as PbIC [17] - a work that
is very similar to us on Flickr30k dataset by at least 5–10%.

Table 1. BLEU score of generated sentence on Flickr8k and Flickr30k dataset.

(a)

Flickr8k

Models B-1 B-2 B-3 B-4

NIC [6]3 60.2(63) 40.4 25.9 16.5
DeepVs [7] 57.9 38.3 24.5 16.0
phi-LSTM 63.6 43.6 27.6 16.6

(b)

Flickr30k

Models B-1 B-2 B-3 B-4

mRNN [5] 60 41 28 19
NIC [6]4 66.3(66) 42.3 27.7 18.3
DeepVS [7] 57.3 36.9 24.0 15.7
LRCNN [9] 58.7 39.1 25.1 16.5
PbIC [17] 59 35 20 12
phi-LSTM 66.6 45.8 28.2 17.0

3The BLEU score reported here is computed from our implementation of NIC [6],
and the bracketed value is the reported score by the author.
4The BLEU score reported here is cited from [7], and the bracketed value is the
reported score by the author.
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Fig. 7. Effect of the perplexity threshold, T and maximum number of phrases used for
generating sentence, K on the BLEU score (best viewed in colour).

Table 2. Vocab size, word occurrence and average caption length in training data, test
data, and generated description in Flickr8k dataset.

Train data Test data Gen. caption

Number
of
sentence

30000 5000 1000 1000

Actual Trained Actual Trained Actual Trained NIC [6] phi-LSTM

Size of
vocab

7371 2538 3147 1919 1507 1187 128 154

Number
of words

324481 316423 54335 52683 11139 10806 8275 6750

Avg.
caption
length

10.8 10.5 10.9 10.5 11.1 10.8 8.3 6.8

As mentioned in Sect. 5, we generate K phrases from each image and dis-
card those with perplexity higher than a threshold value T, when generating the
image caption. In order to understand how these two parameters affect our gen-
erated sentence, we use different K and T to generate the image caption with
our proposed model trained on the Flickr30k dataset. Changes of the BLEU
score against T and K are plotted in Fig. 7. It is shown that K does not have a
significant effect on the BLEU score, when T is set to below 5.5. On the other
hand, unigram and bi-gram BLEU scores improve with lower perplexity thresh-
old, in contrast to tri-gram and 4-gram BLEU scores that reach an optimum
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Table 3. Top 5 (a) least trained word found, and (b) most trained word missing, from
the generated captions in the Flickr8k dataset.

(a)

NIC [6] phi-LSTM

Word Occurrence Word Occurrence

obstacle 93 overlooking 81
surfer 127 obstacle 93
bird 148 climber 96
woods 155 course 106
snowboarder 166 surfer 127

(b)

NIC [6] phi-LSTM

Word Occurrence Word Occurrence

to 2306 while 1443
his 1711 green 931
while 1443 by 904
three 1052 one 876
small 940 another 713

value when T=5.2. This is because the initial (few) generated phrases with the
lowest perplexity are usually different variations of phrase describing the same
entity, such as ‘a man’ and ‘a person’. Sentence made with only such phrases
has higher chance to match with the reference descriptions, but it would hardly
get a match on tri-gram and 4-gram. In order to avoid generating caption made
from only repetition of similar phrases, we select T and K which yield the high-
est 4-gram BLEU score, which are T=6.5 and K=6 on Flickr8k dataset, and
T=5.2 and K=5 on Flickr30k dataset. A few examples are shown in Fig. 8.

6.3 Comparison of the phi-LSTM Model with Its Sequence Model
Counterpart

To compare the differences between a phrase-based hierarchical model and a
pure sequence model in generating image caption, the phi-LSTM model and
NIC [6] are both implemented using the same training strategy and parameter
tuning. We are interested to know how well the corpus is trained by both mod-
els. Using the Flickr8k dataset, we computed the corpus information of (i) the
training data, (ii) the reference sentences in the test data and (iii) the gener-
ated captions as tabulated in Table 2. We remove words that occur less than 5
times in the training data, and it results in 4833 words being removed. However,
this reduction in term of word count is only 2.48%. Furthermore, even though
the model is evaluated in comparison to all reference sentences in the test data,
there are actually 1228 words within the references that are not in our training
corpus. Thus, it is impossible for the model to predict those words, and this
is a limitation on scoring with references in all language models. For a better
comparison with the 1000 generated captions, we also compute another reference
corpus based on the first sentence of each test image. From Table 2, it can be
seen that even though there are at least 1187 possible words to be inferred with
images in the test set, the generated descriptions are made up from only 128
and 154 words in NIC [6] and phi-LSTM model, respectively. These numbers
show that the actual number of words learned by these two models are barely
10%, suggesting more research is necessary to improve the learning efficiency in
this field. Nevertheless, it shows that introducing the phrase-based structure in
sequential model still improves the diversity of caption generated.
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Fig. 8. Example of phrases generated from images using the lower hierarchical level of
the phi-LSTM model. Red fonts indicate that the perplexity of that phrase is below
threshold T.

Fig. 9. Examples of caption generated with the phi-LSTM model, in comparison to
NIC [6].

To get further insight on how the word occurrence in the training corpus
affects the word prediction when generating caption, we record the top five, most
trained words that are missing from the corpus of generated captions, and the
top five, least trained words that are predicted by both models when generating
description, as shown in Table 3. We consider only those words that appear in
the reference sentences to ensure that these words are related to the images
in the test data. It appears that the phrase-based model is able to infer more
words which are less trained, compared to the sequence model. Among the top
five words that are not predicted, even though they have high occurrence in the
training corpus, it can be seen that those words are either not very observable
in the images, or are more probable to be described with other alternative. For
example, the is a more probable alternative of another.

A few examples of the image description generated with our proposed model
and NIC model [6] are shown in Fig. 9. It can be seen that both models are
comparable qualitatively. An interesting example is shown in the first image
where our model mis-recognizes the statue as a person, but is able to infer the
total number of “persons” within the image. The incorrect recognition stems
from insufficient training data on the word statue in the Flickr8k dataset, as it
only occurs for 48 times, which is about 0.015% in the training corpus.

7 Conclusion

In this paper, we present the phi-LSTM model, which is a neural network model
trained to generate reasonable description on image. The model consists of a
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CNN sub-network connected to a two-hierarchical level RNN, in which the lower
level encodes noun phrases relevant to the image; while the upper level learns the
sequence of words describing the image, with phrases encoded in the lower level
as a unit. A phrase selection objective is coupled when encoding the sentence. It
is designed to aid the generation of caption from relevant phrases. This design
preserves syntax of sentence better, by treating it as a sequence of phrases and
words instead of a sequence of words alone. Such adaptation also splits the
content to be learned by the model into two, which are stored in two sets of
parameters. Thus, it can generate sentence which is more accurate and with
more diverse corpus, as compared to a pure sequence model.
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