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Preface

Welcome to the 2016 edition of the Asian Conference on Computer Vision in Taipei.
ACCYV 2016 received a total number of 590 submissions, of which 479 papers went
through a review process after excluding papers rejected without review because of
violation of the ACCV submission guidelines or being withdrawn before review. The
papers were submitted from diverse regions with 69% from Asia, 19% from Europe,
and 12% from North America.

The program chairs assembled a geographically diverse team of 39 area chairs who
handled nine to 15 papers each. Area chairs were selected to provide a broad range of
expertise, to balance junior and senior members, and to represent a variety of geographical
locations. Area chairs recommended reviewers for papers, and each paper received at least
three reviews from the 631 reviewers who participated in the process. Paper decisions
were finalized at an area chair meeting held in Taipei during August 13—14, 2016. At this
meeting, the area chairs worked in threes to reach collective decisions about acceptance,
and in panels of nine or 12 to decide on the oral/poster distinction. The total number of
papers accepted was 143 (an overall acceptance rate of 24%). Of these, 33 were selected
for oral presentations and 110 were selected for poster presentations.

We wish to thank all members of the local arrangements team for helping us run the
area chair meeting smoothly. We also wish to extend our immense gratitude to the area
chairs and reviewers for their generous participation in the process. The conference
would not have been possible without this huge voluntary investment of time and
effort. We acknowledge particularly the contribution of 29 reviewers designated as
“Outstanding Reviewers” who were nominated by the area chairs and program chairs
for having provided a large number of helpful, high-quality reviews. Last but not the
least, we would like to show our deepest gratitude to all of the emergency reviewers
who kindly responded to our last-minute request and provided thorough reviews for
papers with missing reviews. Finally, we wish all the attendees a highly simulating,
informative, and enjoyable conference.

January 2017 Shang-Hong Lai
Vincent Lepetit

Ko Nishino

Yoichi Sato
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Divide and Conquer: Efficient Density-Based
Tracking of 3D Sensors in Manhattan Worlds

Yi Zhou'2®) | Laurent Kneip"2, Cristian Rodriguez'2, and Hongdong Li'*?

1 Research School of Engineering, The Australian National University,
Canberra, Australia
{yi.zhou,laurent.kneip,cristian.rodriguez,hongdong.1i}@anu.edu.au
2 Australian Centre for Robotic Vision, Canberra, Australia

Abstract. 3D depth sensors such as LIDARs and RGB-D cameras have
become a popular choice for indoor localization and mapping. However,
due to the lack of direct frame-to-frame correspondences, the tracking
traditionally relies on the iterative closest point technique which does
not scale well with the number of points. In this paper, we build on top
of more recent and efficient density distribution alignment methods, and
notably push the idea towards a highly efficient and reliable solution
for full 6DoF motion estimation with only depth information. We pro-
pose a divide-and-conquer technique during which the estimation of the
rotation and the three degrees of freedom of the translation are all decou-
pled from one another. The rotation is estimated absolutely and drift-
free by exploiting the orthogonal structure in man-made environments.
The underlying algorithm is an efficient extension of the mean-shift par-
adigm to manifold-constrained multiple-mode tracking. Dedicated pro-
jections subsequently enable the estimation of the translation through
three simple 1D density alignment steps that can be executed in paral-
lel. An extensive evaluation on both simulated and publicly available real
datasets comparing several existing methods demonstrates outstanding
performance at low computational cost.

1 Introduction

3D depth sensors are a powerful alternative to cameras when it comes to auto-
mated localization and mapping. They perform especially well in man-made
indoor environments, which are often composed of homogeneously colored pla-
nar pieces, and thus provide sufficient well-defined 3D structures for depth
sensors, but insufficient texture for a reliable application of classical image-
based localization techniques. Further advantages of active sensing are given
by absolute (metric) scale operation (and therefore absence of scale drift) and
resilience against illumination or appearance changes in the environment, ulti-
mately even permitting operation in complete darkness. Depth sensors are an
Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-54193-8_1) contains supplementary material, which is available to
authorized users.
© Springer International Publishing AG 2017
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engineering answer to the inverse problem of structure-from-motion, and ubiq-
uitous success is demonstrated by numerous successful applications in robot-
ics [1,2], autonomous driving (e.g. Google Chauffeur), and—more recently—
consumer electronics (e.g. Google Tango, Meta Glass).

Depth sensors produce point cloud measurements. The fundamental problem
behind incremental motion estimation with depth sensors therefore is the reg-
istration of two 3D point sets A and B. The most popular technique by far is
given by the Iterative Closest Point (ICP) method [3]. The basic idea is straight-
forward: We find approximate correspondences between pairs of points between
A and B by simply associating the spatially nearest neighbor of set B to each
point of set A. We then minimize the sum of squared distances over a euclid-
ean transformation in closed form. We finally iterate over these two steps until
convergence. The complexity of the algorithm is an immediate consequence of
the need to find the closest point for each point in each iteration. Even the
fastest implementations [4,5] therefore fail to deliver real-time performance on
CPU as soon as we consider modern sensors returning dense depth images at
VGA resolution. Distance-transform based ICP variants such as the ones used
in KinectFusion [6] and Kintinuous [7] achieve real-time performance, however
only by leveraging the power of a GPU.

A more efficient alternative registration principle transforms the data into
lower dimensional, spatial density distribution functions [8]. The general advan-
tage of density alignment based methods is that they do no longer depend on
the establishment of one-to-one or even weighted, fuzzy one-to-many point cor-
respondences [9]. Our work lifts this concept to a general, real-time motion esti-
mation framework for 3D sensors. The key of our approach consists of exploiting
the structure of man-made environments, which often contain sets of orthogo-
nal planar pieces. We furthermore rely on efficient dense surface normal vector
computation in order to estimate the rotation independently of the translation.
As we will show, the exploitation of this prior furthermore allows us to split up
the translational alignment of the density distribution functions into three inde-
pendent steps, namely one along each direction in the corresponding cartesian
coordinate frame.

In summary, we present a highly efficient motion estimation framework for
popular 3D sensors such as the Microsoft Kinect, based on alignment of density
distribution functions. Our contributions are listed as follows:

— Efficient, decoupled estimation of camera rotation using mean-shift for multi-
mode tracking in surface normal vector distributions.

— Estimation of absolute rotation by exploiting the properties of Manhattan
Worlds, thus resulting in manifold-constrained multi-mode tracking.

— Efficient decoupled estimation of individual translational degrees of freedom
through 1D kernel density estimates.

— Integration into a real-time framework able to process dense depth images with
VGA resolution at more than 50 Hz on a laptop with only CPU resources. The
result is an attractive 6 DoF tracker for autonomous mobile systems, which
often have limited computational resources or energy supply.



Efficient Density-Based Tracking of 3D Sensors in Manhattan Worlds 5

We conclude the introduction by reviewing related work. Section2 then
introduces our main idea for motion estimation in Manhattan Worlds based on
3D sensors. The decoupled estimation of rotation and translation are presented
in Sects.3 and 4, respectively. Section5 finally presents our extensive experi-
mental evaluation on both simulated and real data. We test and evaluate our
algorithm against existing alternatives on publicly available datasets, showcasing
outstanding performance at the lowest computational cost.

Related Work: 3D Point set registration is a traditional problem that has been
investigated extensively in the computer vision community. We are limiting the
discussion to methods that process mainly rigid, geometric information. The
most commonly used method is given by the ICP algorithm [3], which performs
registration through iterative minimization of the SSD distance between spatial
neighbors in two point sets. The costly repetitive derivation of point-to-point
correspondences can be circumvented by representing and aligning point clouds
using density distribution functions. The idea goes back to [10,11], who repre-
sent point clouds as explicit Gaussian Mixture Models (GMM) or implicit Kernel
Density Estimates (KDE), and then find the relative transformation (not nec-
essarily Euclidean) by aligning those density distributions. [8] summarizes the
idea of using GMMs for finding the aligning transformation, and notably derives
a closed-form expression for computing the L2 distance between two GMMs.
Yet another alternative which avoids the establishment of point-to-point corre-
spondences is given by [12], which utilizes a distance transformation in order
to efficiently and robustly compute the cost of an aligning transformation. The
distance transformation itself, however, is again computationally intensive.

Classical ICP or even density alignment based methods are prone to local
minima as soon as the displacement is too large. In order to tackle situations
of large view-point changes, [13] investigated globally optimal solutions to the
point set registration problem. This method is however inefficient and thus not
suited for real-time applications, where the frame-to-frame displacement anyway
remains small enough for a successful application of local methods.

From a more modern perspective, the ICP algorithm and its close derivatives
[4-7] still represent the algorithm of choice for real-time LIDAR tracking. The
upcoming of RGB-D cameras has however led to a new generation of 2D-3D
registration algorithms that exercise a hybrid use of both depth and RGB infor-
mation. [14] for instance uses the depth information along with the optimized
relative transformation to warp the image from one frame to the next, thus per-
mitting direct and dense photometric error minimization. [15-18] apply a similar
idea to RGB camera tracking. More recently, [19] even applied ICP and distance
transforms to semi-dense 2D-3D registration.

The special structure of man-made environments can be exploited to sim-
plify or even robustify the formulation of motion estimation with exteroceptive
sensors. [20,21] introduce planar surfaces into the mapper which are often con-
tained in our man-made environments. [22] combines point and plane features
towards fast and accurate 3D registration. In our work, we additionally exploit
the fact that indoor environments such as corridors frequently contain orthogonal
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structure in the surface arrangement. [23] coined the term Manhattan World
(MW) to denote such an environment, and they estimated the camera orienta-
tion through Bayesian vanishing point estimation in a single RGB image. [24]
presents a video compass using a similar idea. Tracking the Manhattan Frame
(MF) can be regarded as absolute orientation estimation, and thus leads to sig-
nificant reduction or even complete elimination of the rotational drift. Silberman
et al. [25] improve VP-based MW orientation estimation by introducing depth
and surface normal information obtained from 3D sensors. More recently, [26]
proposes the inference of an explicit probabilistic model to describe the world
as a mixture of Manhattan frames. They employ an adaptive Markov-Chain
Monte-Carlo sampling algorithm with Metropolis-Hasting split/merge moves to
identify von-Mises-Fisher distributions of the surface normal vectors. In [27],
they adapt the idea to a more computationally friendly approach for real-time
tracking of a single, dominant MF. Our work is closely related, except that our
mean-shift tracking scheme [28] is simpler and more computationally efficient
than the MAP inference scheme presented in [27], which depends on approxi-
mations using the Karcher mean in order to achieve real-time performance. We
furthermore extend the idea to full 6DoF motion estimation.

2 Overview of the Proposed Algorithm

Our method is summarized in Fig. 1, and consists of three main steps. Note again
that we use only depth information:

— We first start by extracting surface normal vectors n; from the measured
point clouds, which later allows us to compute the orientation of the sen-
sor independently of the translation. Our method is a hyper-threaded CPU
implementation of the approach presented in [29], which can efficiently return

R

Surface normal Manhattan
extraction frame tracking
- n ey

Depth sensor Point cloud

P,
= "

Extraction of 1D distributions

[ - L

d. dy,/' d,;
dio bt 1D Alignment |

L

t
v
dy, ity ;[ 1D Alignment ]— ty
t

A

dz,i-lrtz,r-l ;( 1D Alignment '—) zi

Fig. 1. Overview of the proposed, decoupled motion estimation framework for 3D sen-
sors in Manhattan World.
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normal vectors for every pixel in a dense depth image. In order to get smooth
and regularized surface normal vectors, the depth map is pre-processed by a
smoothing guided filter [30].

— We then rely on the assumption that there is a dominant MF in the environ-
ment. This allows us to simply track a number of modes in the density distri-
bution of the surface normal vectors, which can be done in a non-parametric
way by employing the mean shift algorithm on the unit sphere. It prevents
us from having to identify the parameters of a complete explicit model of
the density distribution function. We present a manifold-constrained mean-
shift algorithm that takes the orthogonality prior into account. Note that the
optimization of the rotation is not a classical registration step, but a simple
tracking procedure that uses information of a single frame only to produce a
drift-free estimate of the absolute orientation.

— By knowing the absolute orientation in each frame, we can easily unrotate
the point clouds of a frame pair and assume that the transformation that
separates them is a pure translation. A further benefit is that the principal
directions of a Gaussian Mixture Model of the point cloud can be constrained
to align with the basis axes. In other words, the covariance matrices become
diagonal by which the purely translational alignment cost can effectively be
split up into three independent terms, namely one for each dimension. We
are therefore allowed to simply solve for each translational degree of freedom
independently. We notably do so by extracting kernel density distributions
of the point clouds projected onto the basis axes, and by performing three
simple 1D alignments. Again note that—due to the unrotation—the obtained
relative displacement is immediately expressed in the world frame.

We will in the following explain the details of the rotation and translation
alignment.

3 Absolute Orientation Estimation Based on
Manifold-Constrained Mean-Shift Tracking

We estimate the absolute orientation by tracking a dominant MF in the surface
normal vector distribution of each frame. We will start by introducing the mean-
shift tracking scheme that operates under the assumption that a sufficiently close
initialization point is known. We then conclude by explaining the initialization
in the very first frame, which builds on top of our mean-shift extension.

3.1 Basic Idea

For structures that obey the MW assumption, the surface normal vectors n;
have an organized distribution on the unit sphere S2, which can be exploited for
recognizing the MW orientation. It is reasonable to assume that the unit vectors
n; are samples of a probability density function, as they are more likely to be
distributed around the basis axes of the MW (in both directions). The process of
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finding the dominant axes is therefore equivalent to mode seeking in this density
distribution (i.e. finding local maxima in the density distribution function). The
modes are additionally constrained to be orthogonal with respect to each other.
We therefore express the MF by a proper 3D rotation matrix R € SO(3) of which
each column r; captures the direction of one of the dominant axes of the MF.
Special care however needs to be taken in order to deal with the non-uniqueness
of the representation, as each r; could in principle be replaced by its negative
(although we ensure that R always remains a right-handed matrix).

A popular, fast, and notably non-parametric method to seek modes is given
by the mean shift algorithm [31]. Given an approximate location for a mode,
the algorithm applies local Kernel Density Estimation (KDE) to iteratively take
steps in the direction of increasing density. We apply this idea to our unit normal
vectors on the manifold S? using a Gaussian kernel over conic section windows
of the unit sphere. The result is optimal under the assumption that the angles
between the normal vectors and their corresponding mode centre have a Gaussian
distribution. We independently compute one mean shift vector for each basis
vector r;, which potentially results in a non-orthogonal updated MF R. We
therefore finish each overall iteration by reprojecting R onto the nearest R €
SO(3). The following explains the update of each mode within a single mean-shift
iteration, as well as the projection back onto SO(3).

3.2 Mean Shift on the Unit Sphere

The core of our method is a single mean shift iteration for a dominant axis given
a set of normal vectors on S2. It works as follows:

— We start by finding all normal vectors that are within a neighbourhood of the
considered centre r;. The extent of this neighbourhood is notably defined by
the kernel-width of our KDE. In our case, the window is a conic section of the
unit sphere and the apex angle of the cone Oyinqow defines the size of the local
window. Relevant normal vectors for mode j need to lie inside the respective
cone, and thus satisfy the condition

. 9Wi11 W
I ¢ x| < sin( =757, (1)

Let us define the index ¢; which iterates through all n; that fulfill the above
condition. Note that—if choosing Oyindow < §—every n; contributes to at
most one mode.

— We then project all contributing n;; into the tangential plane at r; in order
to compute a mean shift. Let

Q = [Timod(j+1,3) Tmod(j+2,3) Fmod(j+3,3)] - (2)

Then
Il/i_,» = QTnij (3)
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represents the normal vector rotated into the MF, with a cyclic permutation
of the coordinates such that the last coordinate is along the direction of axis j.
In order for the distances in the tangential plane to represent proper geodesics
on S? (or equivalently angular deviations), we apply the Riemann logarithmic
map. The rescaled coordinates in the tangential plane are given by
, sin~! (N sign(nng) |:n;],a":|

)

m,; = i
J 4
A nlj,y

(4)

2

_ 12
where A = /n' , +n'7 .

lj,
Note that this projection has the advantage of correctly projecting normal
vectors from either direction into the same tangential plane.
— We compute the mean shift in the tangential plane

el 12
, i € it m'y,
s = . 5
j S (5)
15

where c is a design parameter that defines the width of the kernel.
— To conclude, we transform the mean shift back onto the unit sphere using the
Riemann exponential map

T
s; = [tan(HS;‘H)s/? 1} 7 (6)

lIs”5l

where [-] returns the input 3-vector divided by its norm.
— The updated direction t; is finally obtained by reapplying the current rotation
with permuted axes

tj = Qs;. (7)

3.3 Maintaining Orthogonality

After computing a mean shift for each mode rj, we effectively obtain an expres-
sion for the updated “rotation matrix”

R = [fo #1 2] . (8)
This update may however violate the orthogonality constraint on our rotation
matrix. We easily circumvent this problem by re-projecting R onto the closest
matrix on SO(3) under the Frobenius norm. Each column of R is re-weighted
by a factor A; which describes how certain the observation of a direction is. In
order to determine the weighting factors, we introduce a non-parametric variance
approximation by utilizing a double parzen-widow-based KDE. The method is
detailed in the supplemental material. The updated rotation matrix is finally
given by

R = UV7”, where (9)
[U,D, V] = SVD([Aofo Aif1 Aofa]). (10)
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Fig. 2. Illustration of our cascaded manifold-constrained mean-shift implementation.
We first compute updates s; for each mode on S?, which brings us from the black to the
blue modes. The blue modes however do no longer represent a point on the underlying
manifold SO(3). We find the nearest rotation through a projection onto the manifold
(green arrow), thus returning the red modes which are closest and at the same time
fulfill the orthogonality constraint. (Color figure online)

As illustrated in Fig.2, our method thus represents a double, cascaded
manifold-constrained mean-shift extension, where the update of each mode is
enforced to remain on the S? manifold, and the combination of all three modes
is each time enforced to remain an element on the SO(3) manifold. In other
words, in each iteration we compute the SO(3)-consistent update that is closest
to the individual mean-shift updates.

3.4 Initialization in the First Frame

We use mean-shift clustering to initialize the algorithm, and thus build on top of
our MF tracking scheme. The procedure is summarized in Fig. 3. We simply run
the MF tracking procedure for 100 times, each time starting from a random initial
rotation. This returns a redundant set of candidate MFs, within which we need
to identify the most dominant cluster in order to complete the initialization.
In fact, typically only a very small number of trials will not converge to the
dominant MF if there is only one MF in the observed scene. However, the MF
estimates are not directly comparable since one and the same MF may indeed
be found or represented by any permutation or negation of individual basis
vectors, as long as the result remains a right-handed matrix. In fact, there are 24
possible representations for one and the same MF. In order to render the results
comparable and identify the dominant MF cluster, we convert the matrices into
a canonical form based on a set of simple rules. For instance, the number of
possible representations can already be reduced to 4 by simply requiring the basis
vector with the potentially highest z-coordinate to be the one corresponding
to the z-axis. To finally identify the dominant cluster, we simply group them
based on a simple distance metric between rotation matrices, as well as a fixed
threshold.
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Fig. 3. The mechanism of the initial Manhattan frame seeking. The first figure shows
a random initial MF. As indicated by one example, each dominant direction is refined
by performing mean-shifts on the corresponding tangential plane. The second figure
shows the redundant result obtained after full MF fitting from 100 random starts. The
redundancy of the estimated rotation matrices R is removed by first converting them
into a canonical form, and then performing histogram-based non-maximum suppres-
sion. The final result is shown in the fourth figure. For the sake of a clear visualization,
the illustrated example is contaminated by a rather significant amount of uniformly
distributed noise. Note that the proposed seeking strategy is even able to find multiple
M F's in the environment, and thus come up with a mixture of Manhattan frames.

4 Translation Estimation Through Separated 1-D
Alignments

In this section, we show that by taking advantage of the MW properties, the
translation in each dominant direction can be estimated separately. We then
discuss the 1D alignments which rely on kernel density distribution functions.
A convergence analysis is given in Sect. 2 of the supplementary material.

4.1 Independence of the Three Translational Degrees of Freedom

Although we are not using an explicit model for representing the density dis-
tributions, let us assume for a moment that it is given by a simple Gaussian
(i.e. a toy GMM) to see the implications of a Manhattan world and a known
absolute orientation of the Manhattan frame. A Gaussian in 3D with mean p
and covariance ¥ is simply given by

exp[—0.5(x — )" X" (x — p)]

o(x|p, X) = (2m)3] det(X)]

(11)
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There are two Gaussians in two frames and—using the known absolute orienta-
tions to unrotate the point clouds—they are separated by a pure translation t.
By adding t to the mean of the Gaussian in the second frame, the kernel corre-
lation between the two Gaussians can be calculated by

D= [ Gy, Z)6(xl o + £), E2)dx
= ¢(0|py — prg — t, X1 + X). (12)

We now simplify the case by assuming that the unrotated point clouds can be
expressed by a 3D Gaussian distribution with a diagonal covariance matrix. This
is reasonable since the unrotated point clouds will indeed contain sets of points
that are parallel to the basis axes. Let ¥y = ¥ + Xy = diag(0ay, 0ay, 04-), and
g = 1 — Ho. Then the kernel correlation becomes

expl—0.5(Letiae)® | (ymia)® | (tamua)? )

o Odx Ody Odz
(27)304204y0 -
(te—pge)? Cv—ra)® (to—pg)?
=k-e “20ax e %y e —29dz (13)

The goal of the alignment in this toy example is to find t such that D is maxi-
mized. It is clear that the above expression involves the product of three inde-
pendent and positive elements, which means that maximizing each one inde-
pendently will also maximize the overall distance between the Gaussians. Note
that—in practice—the shape of the measured distributions is also influenced by
occlusions under motion. However, we confirmed through our experiments that
this has a neglible influence on the accuracy of the translation estimation in
frame-to-frame motion estimation, as the location of the peaks in the distribu-
tion typically remains very stable.

4.2 Alignment of Kernel Density Distributions

Our translation alignment procedure relies on implicit kernel density distribu-
tion functions. Assuming that the absolute orientation with respect to the MF is
given, each degree of freedom can be solved independently, as in our toy GMM-
based example. We therefore compensate for the absolute rotation of the point
clouds, and project them onto each basis axis to obtain three independent 1D
point sets. Inspired by popular point-set registration works, we then express the
1D point sets via kernel density distribution functions. We sample the function
at regular intervals between the minimal and the maximal value. A Gaussian
kernel with constant width is used to extract the density at each sampling posi-
tion. Finally, the alignment between pairs of discretely sampled 1D signals seeks
the 1D shift that minimizes the correlation distance between the two signals. It
is worth to note that minimizing the correlation distance is equivalent to max-
imizing the kernel correlation as discussed above. The correlation distance for
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each pair of 1-D discrete signals is defined as
F=3 (flait+t)—g(@),z € X, (19)
i=1

where X denotes a set of sampling positions for which a density is extracted using
a Gaussian kernel. The functions f and g record the density at discrete sampling
positions. The correlation distance is the sum over the squared differences at
each sampling position. ¢ is continuous, and we therefore obtain density values
in between the sampled positions by employing linear interpolation. Note that
the procedure has linear complexity in the number of points. The convergence
analysis of the 1-D alignment is detailed in the supplemental material.

5 Experimental Validation

This section evaluates our algorithm. We start by discussing parameter choices.
We then compare our algorithm against two other established state-of-the-art
motion estimation solutions on several publicly available datasets. We further-
more provide a reconstruction of a building-scale scene, and conclude by dis-
cussing the limitations and failure cases of our method.

Further simulation experiments and analyses are provided in the supplemen-
tal material. It contains (1) an evaluation of the robustness of our manifold-
constraint mean-shift based MF-seeking strategy and (2) the benefit of aligning
the point density distributions along the main axes of the MF.

5.1 Parameter Configuration

In the initial MF seeking (i.e. the initialization of the absolute rotation from
scratch), the total number of random starts N4 is set to 100. The apex angle
is set to 90° during the initialization and 20° during later tracking. This reduction
of the cone apex angle is justified by the assumption that the orientation of the
MF does not change too much under smooth motion. Each iterative mean-shift
procedure terminates once the angle of the update rotation within one iteration
falls below a threshold angle 8converge, which we set to 1°. The factor ¢ in Eq. (5)
is set to 20. Mean-shift updates are furthermore required to have a minimum
number N,,;, of surface normal vectors within the dual-cone. The value of N,
depends on the resolution of the input depth map. For low resolution sensors
(e.g. Kinect v.1, 160 x 120), Ny,;n, = 30. For high resolution sensors (Kinect v.2,
640 x 480), Nypin = 100.

The parameters for the translation estimation contain two parts. The first
part concerns the extraction of the density distributions. The sampling between
the minimum and maximum value along each basis axis is made in constant
intervals of §; = 0.0l m. The standard deviation o of the Gaussian kernel for
the KDEs is set to 0.03m. The second part concerns the actual minimization
of the correlation distance between each pair of 1D distributions. We simply
employ gradient descent with an initial step size of 0.001 m. The search range is
furthermore restricted to £0.1 m.
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Table 1. Performance comparison on several indoor datasets.

Dataset | DVO 1CP Our method

er € €rR | € er € |er € |er |€; €erR | €
TUM 1| 491 |0.15 [4.46 | 0.13 | 6.64|0.17| 6.010.15|1.02|0.02|0.82 0.01
TUM 2 | 2.21 |0.10 |[1.59 |0.06 | 9.07|0.27| 7.57/0.26|0.76|0.03 | 0.55 0.02
TUM 3 |10.90 [0.20 |3.89 |0.07 |12.80|0.1710.17|0.16 | 0.94 | 0.04 | 0.70 | 0.02
TUM 4 | 0.57|0.02|0.47 0.02| 8.66|0.29| 7.17|0.27|1.01 |0.03 |0.80 | 0.03
TUM 5| 0.94/0.020.74|0.02|16.80|0.24 | 14.19/0.22|1.12 |0.04 |0.87 | 0.02
IC1 10.91 |1.36 [9.37 |0.88 | 6.78|0.15| 5.42/0.10|1.55/0.13|1.12 | 0.09
IC 2 6.97 |0.70 |6.58 0.45 | 6.31|/0.16| 5.28|0.10|1.53|/0.10 1.07 | 0.08

5.2 Evaluation on Real Data

We compare the performance of our method against two state-of-the-art, open-
source motion estimation implementations for 3D sensors, namely DVO [14] and
KinectFusion’s ICP [6,7]. DVO uses both RGB images and depth maps while
ICP and our algorithm use only depth information. We evaluate the methods on
several recently published and challenging benchmark datasets from the TUM
RGB-D [32] and IC-NUIM ([33] series. The datasets we picked for evaluation
are listed below and the results are summarized in Table 1. The selection of the
datasets is based on the existence of sufficient MW structure in the observed
scenes.

- TUM 1, 2, 3, 4, 5: fr3 (cabinet, structure_notexture/_texture _far/ near)
— IC 1,2: Living Room kt3, Office Room kt3.

Note that for TUM 4, IC 1 and IC 2, our algorithm cannot process the
entire sequence due to algorithm limitations that are discussed in the following
section. However, in order to remain fair, we evaluate the performance of all
algorithms on the same segments of each sequence. A detailed result of the
TUM 1 dataset is shown in Fig. 4. We also evaluate each method using the tool
given by [32] and provide root-mean-square errors ¢ and median errors € per
second for both rotation (degree) and translation (meter) estimation in Table 1.
The best performing method’s error is each time indicated in bold.

It can be seen that in most cases, once the MW assumption is sufficiently
met, our result provides very low drift in both rotation and translation. It is
outperforming both ICP and DVO in most situations though DVO achieves
better performance once there is sufficient texture in the environment. On the
other hand, our method remains computationally efficient even on depth images
with VGA resolution, and processes frames at about 50 Hz on a CPU. While DVO
is real-time capable as well (about 30 Hz), ICP quickly drops in computational
efficiency as the number of points increases, and can only work in real-time with
the help of a powerful GPU.
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Fig. 4. Evaluation of our method on the TUM dataset cabinet and comparison to two
alternative odometry solutions (DVO and ICP). We provide the 3D trajectory, the
absolution rotation error (ARE), and the translational error in each degree of freedom
for each method. Our method (red curve) outperforms both DVO (blue curve) and ICP
(magenta curve) in terms of absolute drift in rotation and translation. Relative pose

errors can be found in Table 1. Note that only DVO uses RGB images. (Color figure
online)
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5.3 3D Reconstruction

In order to demonstrate that our algorithm can work in larger scale environments
such as corridors and open-space offices, we present a reconstruction result of
the TAMU RGB-D dataset (corridor A const) [34] in Fig.5. The trajectory
is about 40m long. Our algorithm robustly tracks the camera until only one
dominant direction of the MW can be observed. The reconstructed structures
(walls and ground, walls at the corridor corner) preserve orthogonality very well,
which demonstrates the good quality of the motion estimation. Note that only
depth information is used for the tracking. Color information is only used for
visualization purposes.

5.4 Limitations and Failure Cases

The existence of a MW structure in the environ-
ment is key to the proposed method. Therefore, the
effectiveness of our work currently has the following
limitations:

— Only one mode of a MF is observed.

— If only two orthogonal planes are observed, the
tracking can continue. However, due to the loss
of structural information, the density distribu-
tion in the unobserved direction becomes very
homogeneous, and the estimation of the respec-
tive translation becomes inaccurate.

— In the case where two MFs are very close to each
other (which could happen in so-called Atlanta
environments), our mean-shift scheme may con-
verge in between the two modes, which leads Fig.5. Reconstruction of a
to inaccurate rotation estimation and thus also corridor scene.
potentially wrong translation estimation.

6 Discussion

We present an efficient alternative to the iterative closest point algorithm for
real-time tracking of modern depth cameras in Manhattan Worlds. We exploit
the common orthogonal structure of man-made environments in order to decou-
ple the estimation of the rotation and the three degrees of freedom of the trans-
lation. The derived camera orientation is absolute and thus free of long-term
drift, which in turn benefits the accuracy of the translation estimation as well.
We achieve not only competitive accuracy, but also superior computational effi-
ciency. Our method operates robustly in large-scale environments, even if the
Manhattan World assumption is not fully met. In summary, the presented frame-
work has high value in mobile robotics or industrial applications, where compu-
tational load or the lack of texture are major concerns. Code will be released as
open-source.
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Our future work consists of removing the restriction to pure Manhattan
worlds. By adding a real-time mode detection and removal module, we can
extend our work to the more general case of piece-wise planar environments.
Interestingly, the cascaded mean-shift strategy presented in this work will still be
applicable, the only difference being that the underlying manifold will no longer
be SO(3), but the manifold of all direction bundles with constant inscribed
angles.
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Abstract. In this paper, we propose a saliency detection model for
RGB-D images based on the contrasting features of colour and depth
with a generative mixture model. The depth feature map is extracted
based on superpixel contrast computation with spatial priors. We model
the depth saliency map by approximating the density of depth-based con-
trast features using a Gaussian distribution. Similar to the depth saliency
computation, the colour saliency map is computed using a Gaussian
distribution based on multi-scale contrasts in superpixels by exploiting
low-level cues. By assuming that colour- and depth-based contrast fea-
tures are conditionally independent, given the classes, a discriminative
mixed-membership naive Bayes (DMNB) model is used to calculate the
final saliency map from the depth saliency and colour saliency probabil-
ities by applying Bayes’ theorem. The Gaussian distribution parameter
can be estimated in the DMNB model by using a variational inference-
based expectation maximization algorithm. The experimental results on
a recent eye tracking database show that the proposed model performs
better than other existing models.

1 Introduction

Saliency detection is the problem of identifying the points that attract the visual
attention of human beings. Le Callet and Niebur introduced the concepts of overt
and covert visual attention and the concepts of bottom-up and top-down process-
ing [11]. Visual attention selectively processes important visual information by
filtering out less important information and is an important characteristic of
the human visual system (HVS) for visual information processing. Visual atten-
tion is one of the most important mechanisms that are deployed in the HVS
to cope with large amounts of visual information and reduce the complexity of
scene analysis. Visual attention models have been successfully applied in many
domains, including multimedia delivery, visual retargeting, quality assessment
of images and videos, medical imaging, and 3D image applications [11].

Borji and Itti provided an excellent overview of the current state-of-the-art
2D visual attention modelling and included a taxonomy of models (cognitive,
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S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 20-35, 2017.
DOI: 10.1007/978-3-319-54193-8_2



Visual Saliency Detection for RGB-D Images with Generative Model 21

Bayesian, decision theoretic, information theoretical, graphical, spectral analysis,
pattern classification, and more) [3]. Many saliency measures have emerged that
simulate the HVS, which tends to find the most informative regions in 2D scenes
[4,13,18]. However, most saliency models disregard the fact that the HVS oper-
ates in 3D environments and these models can thus investigate only from 2D
images. Eye fixation data are captured while looking at 2D scenes, but depth
cues provide additional important information about content in the visual field
and therefore can also be considered relevant features for saliency detection. The
stereoscopic content carries important additional binocular cues for enhancing
human depth perception [5,10]. Today, with the development of 3D display tech-
nologies and devices, there are various emerging applications for 3D multimedia,
such as 3D video retargeting [16], 3D video quality assessment [9,19] and so forth.
Overall, the emerging demand for visual attention-based applications for 3D mul-
timedia has increased the need for computational saliency detection models for
3D multimedia content. In contrast to saliency detection for 2D images, the
depth factor must be considered when performing saliency detection for RGB-D
images. Therefore, two important challenges when designing 3D saliency mod-
els are how to estimate the saliency from depth cues and how to combine the
saliency from depth features with those of other 2D low-level features.

In this paper, we propose a new computational saliency detection model for
RGB-D images that considers both colour- and depth-based contrast features
with a generative mixture model. The main contributions of our approach consist
of two aspects: (1) to estimate saliency from depth cues, we propose the creation
of depth feature maps based on superpixel contrast computation with spatial
priors and model the depth saliency map by approximating the density of depth-
based contrast features using a Gaussian distribution, and (2) by assuming that
colour-based and depth-based features are conditionally independent given the
classes, the discriminative mixed-membership naive Bayes (DMNB) model is
used to calculate the final saliency map by applying Bayes’ theorem.

2 Related Work

As introduced in the Sect.1, many computational models of visual attention
have been proposed for various 2D multimedia processing applications. However,
compared with the set of 2D visual attention models, only a few computational
models of 3D visual attention have been proposed [6-8,12,14,17,20]. These mod-
els all contain a stage in which 2D saliency features are extracted and used to
compute 2D saliency maps. However, depending on the way in which they use
depth information in terms of the development of computational models, these
models can be classified into three different categories:

(1) Depth-weighting models—This type of model adopts depth information to
weight a 2D saliency map to calculate the final saliency map for RGB-D
images with feature map fusion [6,17]. Fang et al. proposed a novel 3D
saliency detection framework based on colour, luminance, texture and depth
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contrast features, which designed a new fusion method to combine the
feature maps to obtain the final saliency map for RGB-D images [6]. In [17],
colour contrast features and depth contrast features are calculated to con-
struct an effective multi-feature fusion to generate saliency maps, and multi-
scale enhancement is performed on the saliency map to further improve the
detection precision focused on the 3D salient object detection. The models
in this category combine 2D features with a depth feature to calculate the
final saliency map, but they do not include the depth saliency map in their
computation processes.

Depth-saliency models—This type of model combines depth saliency maps
and traditional 2D saliency maps simply to obtain saliency maps for RGB-D
images [8,12,14]. Ren et al. presented a two-stage 3D salient object detection
framework, which first integrates the contrast region with the background,
depth and orientation priors to achieve a saliency map and then recon-
structs the saliency map globally [14]. Peng et al. proved a simple fusion
framework that combines existing RGB-produced saliency with new depth-
induced saliency: the former one is estimated from existing RGB models
while the latter one is based on the multi-contextual contrast model [12].
Furthermore, Ju et al. proposed a novel saliency method that worked on
depth images based on anisotropic centre-surround difference [8]. The mod-
els in this category rely on the existence of “depth saliency maps.” Depth
features are extracted from the depth map to create additional feature maps,
which are then used to generate the depth saliency maps (DSM). These
depth saliency maps are finally combined with 2D saliency maps using a
saliency map pooling strategy to obtain a final 3D saliency map.
Learning-based models—Instead of using a depth saliency map directly, this
type of model uses machine learning techniques to build a 3D saliency detec-
tion model for RGB-D images based on extracted 2D features and depth fea-
tures [7,20]. Inspired by the recent success of machine learning techniques
in building 2D saliency detection models, Fang et al. proposed a learning-
based model for RGB-D images using linear SVM [7]. Zhu et al. proposed
a learning-based approach for extracting saliency from RGB-D images, in
which discriminative features can be automatically selected by learning sev-
eral decision trees based on the ground truth, and those features are further
utilized to search the saliency regions via the predictions of the trees [20].

From the above description, the key to 3D saliency detection models is deter-

mining how to integrate the depth cues with traditional 2D low-level features. In
this paper, we propose a learning-based 3D saliency detection model with a gen-
erative mixture model that considers both colour- and depth-based contrast fea-
tures. Instead of simply combining a depth map with 2D saliency maps as in pre-
vious studies, we propose a computational saliency detection model for RGB-D
images based on the DMNB model [15]. Experimental results from a public eye
tracking database demonstrate the improved performance of the proposed model
over other strategies.
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3 The Proposed Approach

In this section, we introduce a method that integrates the colour saliency proba-
bility with the depth saliency probability computed from Gaussian distributions
based on multi-scale superpixel contrast features and yields a prediction of the
final 3D saliency map using the DMNB model within a Bayesian framework.
First, the input RGB-D images are represented by superpixels using multi-scale
segmentation. Then, we compute the colour and depth map using the weighted
summation and normalization of the colour- and depth-based contrast features,
respectively, at different scales. Second, the probability distributions of both the
colour and depth saliency are modelled using the Gaussian distribution based on
the colour and depth feature maps, respectively. The parameters of the Gaussian
distribution can be estimated in the DMNB model using a variational inference-
based expectation maximization (EM) algorithm. The general architecture of
the proposed framework is presented in Fig. 1.

Train : Test

Input Image
RGB Image Depth Image Ground Truth

Input Image

RGB Image Depth Image

. -

Superpixel Segmentation |

Feature Extraction

) 10]
Depth Feature Map Color Feature Map Depth Feature Map

i Learning Prediction

Feature Vector

Depth Saliency

Variational
Inference
0 Probability Distribution

Gaussian Filter
Color Saliency

: Saliency Map
i Probability Distribution

Conditionally :
Independent | DNINB H
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Fig. 1. The flowchart of the proposed model. The framework of our model consists of
two stages: the training stage shown in the left part of the figure and the testing stage
shown in the right part of the figure. In this work, we perform experiments based on
the NLPR dataset in [12].
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3.1 Feature Extraction Using Multi-scale Superpixels

We introduce a colour-based contrast feature and a depth-based contrast feature
to capture the contrast information of salient regions with spatial priors based on
multi-scale superpixels, which are generated at various grid interval parameters
S, similar to simple linear iterative clustering (SLIC) [1]. We further impose a
spatial prior term on each of the contrast measures holistically, which constrains
the pixels that were rendered as salient to be compact as well as centred in the
image domain. This spatial prior can also be generalized to consider the spatial
distribution of different saliency cues such as the centre prior and background
prior [18]. We also observe that the background often presents local or global
appearance connectivity with each of four image boundaries. These two features
complement each other in detecting 3D saliency cues from different perspectives
and, when combined, yield the final 3D saliency value.

RGB-D Images Multi-scale Superpixel Segmentation. For an RGB-D
image pair, superpixels are segmented according to both colour and depth cues.
We notice that when applying the SLIC algorithm directly to the RGB image and
depth map, the segmentation result is unsatisfactory due to the lack of a mutual
context relationship. We redefine the distance measurement incorporating depth
as shown in Eq. 1:

m

D, - \/dlzab Fudd + a2, 1)

where dq = \/(d; — d;)? denotes the depth distance weighted by wq between pixel
¢ and j in the depth map, dj,, and d,, are the original distance measurements
of colour and spatiality normalized with g in [1], and Dy is the final distance
between two pixels in the RGB-D image pair.

We obtain more accurate segmentation results as shown in Fig.2 by con-
sidering the colour and depth cues simultaneously. The boundary between the
foreground and the background is segmented more accurately.

Fig. 2. Visual samples for superpixel segmentation of RGB-D images with § = 40.
(a) RGB image, (b) Depth image, (c¢) Colour-based segmentation, (d) Depth-based
segmentation, (e) Colour- and depth-based segmentation result on colour image and
(f) Colour- and depth-based segmentation result on depth image. (Color figure online)

Colour-Based Contrast Feature. An input image is oversegmented at L
scales, and the colour feature map is formulated as

f(plc) = wéSClGMR (2)
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(a) RGB image ) §=40 ) §=20 ) §=10

) S=40 ) §=20 ) §=10

) fusion

) fusion

(f) depth image

Fig. 3. Visual samples of different colour and depth feature maps. Row 1: colour feature
maps of the NLPR dataset. Row 2: depth feature maps of the NLPR dataset.

where p!, is a quantified histogram in the CIE Lab colour space for each superpixel
at any scale [, and SC4,,, is the colour saliency map generated by graph-based
manifold ranking only with background cues similar to [18], in which the RGB
image is represented as a single-layer graph with surperpixels as nodes at any [
scale. In contrast to [18], the definition of the background priors is inspired by
the observation that the patches from the corners of images are more likely to
be background and contain considerable scene information that helps distinguish
salient objects. With multi-scale fusion, the colour feature map is constructed by
weighted summation of f(p), where the weights are determined by ZzL:1 wh=1.
The final pixel-wise colour feature map is obtained by assigning the feature value
of each superpixel to every pixel belonging to it, as shown in the first row of Fig. 3.

Depth-Based Contrast Feature. Similar to the construction of the colour
feature maps, we formulate the depth feature maps based on multi-scale super-
pixels in the depth maps:

f(Piz) = wéSDlGMR (3)

where pil is the depth value of the centroid calculated as the mean depth value
within the superpixel and SDL,,» is the depth saliency map generated via
graph-based manifold ranking only with background cues. In this work, the
weight of the affinity matrix between two nodes in a depth map at any [ scales
is defined by

. (@ —a)?

wii=-¢e =) (4)

)

where dé- and d! denote the mean of the superpixel i and superpixel j cor-
responding to two nodes, respectively, and ¢ is a constant that controls the
strength of the weight in [18]. With multi-scale fusion, the depth feature map is
constructed by weighted summation of f (pfj), where the weights are determined
by Zle wl = 1. Visual samples for different depth feature maps are shown in
the second row of Fig. 3.
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3.2 Bayesian Framework for Saliency Detection

Let the binary random variable z, denote whether a point belongs to a salient
class. Given the observed colour-based contrast feature . and the depth-based
contrast feature x4 of that point, we formulate the saliency detection as a
Bayesian inference problem to estimate the posterior probability at each pixel
of the RGB-D image:

p(zsymmwd> (5)

P(Zs|Tc, Xq) =
(Zalre, wa) p(xe, )

where p(zs|@., xq) is shorthand for the probability of predicting whether a pixel
is salient, p(x.,xq) is the likelihood of the observed colour-based and depth-
based contrast features, and p(zs, x., 4) is the joint probability of the latent
class and observed features, defined as p(zs, ¢, ®q) = p(2s)p(€c, Ta|2s)-

In this paper, the class-conditional mutual information (CMI) is used as a
measure of dependence between two features x. and x4, which can be defined
as I(xc, xq|zs) = H(xe|zs) + H(xglzs) — H(xe, Talzs), where H(x.|zs) is
the class-conditional entropy of x.. We employ a CMI threshold 7 to dis-
cover feature dependencies, as shown in Fig.4. For CMI between the colour-
based contrast feature and depth-based contrast feature less than 7, we assume
that . and x4 are conditionally independent given the classes zgs, that is,
P(xe, Ta|zs) = p(xe|zs)p(xd|zs). This entails the assumption that the distri-
bution of the colour-based contrast features does not change with the depth-
based contrast features. Thus, the pixel-wise saliency of the likelihood is given

by p(zs|:cc, wd) X p(zs)p(wc|zs)p(wd|zs)'

- |*CMI

oer ---Average of CMI

0.8 *

*
*
*
*
*

Class-conditional mutual information

Number of Image

Fig. 4. Visual results for class-conditional mutual information between colour-based
contrast features and depth-based contrast features on two RGB-D image datasets.

3.3 Generative Model for Saliency Estimation

Given the graphical model of DMNB for saliency detection shown in Fig. 5, the
generative process for {z1.ny,y} following the DMNB model can be described
as follows (Algorithm 1), where Dir() is shorthand for a Dirichlet distribution,
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Algorithm 1. Generative process for saliency detection following the DMNB
model
1: Input: o, .

2: Choose a component proportion: § ~ Dir(0|a).

3: For each feature:
choose a component z; ~ Mult(z;]0);
choose a feature value x; ~ p(x;|z;, 2).

4: Choose the label: y ~ p(y|z;,n).

@
@

Fig. 5. Graphical models of DMNB for saliency estimation. y and a« are the corre-
sponding observed states, and z is the hidden variable.

Mult() is shorthand for a Multinomial distribution, ®1.x = (¢, ®q), 21.8 =
zs = (2¢,24), N is the number of features, and y is the label that indicates
whether the pixel is salient or not.

In this work, both the colour- and depth-based contrast features are assumed
to have been generated from a Gaussian distribution with a mean of {1, [j]13}

and a variance of {07, [5]}. The marginal distribution of (z.x,y) is

N
p(@1n, ylo, £2,7) =/p(0|a)(H > 0(zl0)p(w;]z), 2)p(ylz;.m))d6  (6)

J=1 z;

where 6 is the prior distribution over K components, 2 = {(u;, ajzk), 1V, (k)5

are the parameters for the distributions of NV features respectively, p(x;|z;, £2) =
N (|11 ajz-k). In two-class classification, y is either 0 or 1 generated from
Bern(y|n). Because the DMNB model assumes a generative process for both
the labels and features, we use both X = {(z;;), [i]{, [f]V'} and Y = {y;, [i]{}
as a collection of M superpixels in trained images from the generative process to
estimate the parameters of the DMNB model such that the likelihood of observ-
ing (X,)) is maximized. In practice, we may find a proper K using the Dirichlet
process mixture model (DPMM) [2]. The DPMM thus provides a nonparametric
prior for the parameters of a mixture model that allows the number of mixture
components to grow as the training set grows, as shown in Fig. 6.

Due to the latent variables, the computation of the likelihood in Eq.6 is
intractable. In this paper, we use a variational inference method, which alternates
between obtaining a tractable lower bound to the true log-likelihood and choos-
ing the model parameters to maximize the lower bound. By a direct application
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Generative Clusters DPMM Clustering
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(a) generative clusters for NLPR, (b) DPMM clustering for NLPR

Fig. 6. Visual result for the number of components K in the DMNB model: generative
clusters vs DPMM clustering. We find K = 28 using DPMM on the NLPR dataset.

of Jensen’s inequality [15], the lower bound to log p(y, z1.x|c, 2,7) is given by

log p(y, z1.n |, 2,1) > E(logp(y, 1.n, z1:n5 |, 2,0)) + H(q(z1:n,0]7, ¢))
(7)

Noticing that 1.5 and y are conditionally independent given zy.n, we use
a variational distribution:

N
q(z1:n, 017, 0) = q(0]y) H (zil9) (8)

where ¢(6,7) is a K-dimensional Dirichlet distribution for 8, ¢(z;|¢) is Discrete
distribution for z;. We use £ to denote the lower bound:

L =E,[log p(0|a)] + E,llog p(z1:n0)] + E,[log p(@1:n]21:n,7)]
— Eyllog q(0)] — Eqy[log q(z1:n)] + Eq[log p(y|z1.n,1)] (9)

where Eg[log p(y|z1.n,1)] > Zk 1 Or(nky — e"’“) - (% +logé) and £ > 0 is a
newly introduced variational parameter. Maxnmzmg the lower-bound function
LYk, dr, & o, £2,m) with respect to the variational parameters yields updated
equations for v, ¢ and & as follows:

N (@45~ 5)>
(W () =W (i v+ (g — S =00, HE3E))
J

Pr x € (10)
e =a+ Nog (11)
=1+ ZZ; Pre™ (12)

Variational parameters (v*, ¢*, £*) from the inference step gives the optimal
lower bound to the log-likelihood of (x;, ¥;), and maximizing the aggregate lower
bound ZZ/\;[1 L(v*, ¢*, &%, , £2,m) over all data points with respect to a, 2 and
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Algorithm 2. Variational EM algorithm for DMNB
1: repeat
2: E-step: Given («
mal variational parameters
(v, @7, &) = argmax L(yi, di, & o™, QMg ),
Then, L(vi", ¢7*, & o, £2,m) gives a lower bound to log p(y;, z1.n|a, £2,7).
3: M-step: Improved estimate of the model parameters («, §2,7) are obtained by
maximizing the aggregate lower bound:
(amv ‘va Um) = argmaX(a,,n) Z»f\il E('Yim: <25:n7 gim§ a, 2, 77)'
4 until 30 Ly, ¢, 6 ™, 27 ™) =30 Ly g am e pm
<threshold

m—1 m—1
79 )

n

™1 for each feature value and label, find the opti-

7, respecj\t/lively, yields the ilstimated parr;mmeters. As fg}: u, o and 7, we have
k= S o = HETESTIAS e = log(e).

Based on the variational inference and parameter estimation updates, it is
straightforward to construct a variant EM algorithm to estimate (v, {2, 7). Start-
ing with an initial guess (o, £2°,1°), the variational EM algorithm alternates
between two steps, as follows (Algorithm 2).

After obtaining the DMNB model parameters from the EM algorithm, we

can use 1 to perform saliency prediction. Given the feature x1., we have

s Ok =

nTE[z] — Ellog(1 + e”TE)] y=1

0— Ellog(1+e"%)] y=0 (13)

E[Ing(y|x1:Na04a9777)] = {

where Z is an average of z1.x over all of the observed features. The computation
for E[Z] is intractable; therefore, we again introduce the distribution ¢(z;.x,6)
and calculate E,[Z] as an approximation of E[Zz]. In particular, E,[Z] = ¢;
therefore, we only need to compare 17'¢ with 0.

4 Experimental Evaluation

4.1 Experimental Setup

Dataset. In this section, we conduct some experiments to demonstrate the per-
formance of our method. We use NLPR dataset! to evaluate the performance of
the proposed model. The NLPR dataset includes 1000 images of diverse scenes
in real 3D environments, where the ground-truth was obtained by requiring five
participants to select regions where objects are presented, i.e., the salient regions
were marked by hand.

Evaluation Metrics. We introduce two types of measures to evaluate algorithm
performance on the benchmark. The first one is the gold standard: F-measure
[13]. The second is the receiver operating characteristic (ROC) curve and the

! http://sites.google.com /site/rgbdsaliency.
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area under the ROC curve (AUC). A continuous saliency map can be converted
into a binary mask using a threshold, resulting in a pair of precision and recall
values when the binary mask is compared against the ground truth. A ROC
curve is then obtained by varying the threshold from 0 to 1.

Parameter Setting. To evaluate the quality of the proposed approach, we
divided the datasets into two subsets accroding to their CMI values, and we
held out 10% of the data for testing purpose and trained on the remaining 90%
whose CMI values are less than CMI threshold 7. As shown in Fig. 4, we compute
the CMI for all of the RGB-D images, and the parameter 7 is set to 0.35, which
is a heuristically determined value. We set the m = 20 and wy = 1.0 in Eq. 1.
We set the L = 3, w! = 0.2,0.3,0.5, w} = 0.3,0.3,0.4 and 02 = 0.1 in Egs. 2, 3
and 4 respectively. We initialize the model parameters using all data points and
their labels in the training set in Algorithm 1. In particular, we use the mean
and standard deviation of the data points in each class to initialize {2 and %
to initialize «;, where D, is the number of data points in class ¢ and D is the
total number of data points. For the n in the DMNB model, we run a cross
validation by holding out 10% of the training data as the validation set and use
the parameters generating the best results on the validation set. We find the
initial number of components K using the DPMM.

ROC curve

AUC
True positive rate

Multiscale

0.5
False positive rate

(a) (b)

Fig. 7. (a) The effects of the number of scales S on the NLPR dataset. A single scale
produces inferior results. (b) The ROC curves for different K components in the DMNB
model in terms of the NLPR dataset. The K found using DPMM was adjusted over
a wide range to compare the performance. The ROC curves show that changing the
parameter K has only a slight effect on the performance.

The Effect of the Parameters. In particular, we performed the experiments
while varying S from Eq.1 and K from Algorithm 1. Figure 7(a) shows typical
results when varying S from Eq. 1, which illustrates the AUC obtained from the
different numbers of superpixels. If only one scale is used, the results are inferior.
This justifies our multi-scale approach.

The parameter K in Algorithm 1 is set according to the training set based
on DPMM, as shown in Fig. 6. Figure 7(b) shows the ROC curve from changing
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the number of components K in Algorithm 1. Finally, for all the experiments
described below, the parameter K was fixed at 28 - no user fine-tuning was
done.

4.2 Qualitative Experiment

During the experiments, we compare our algorithm with five state-of-the-art
saliency detection methods, among which three are developed for RGB-D images
and two for traditional 2D image analysis. One RGB-D method performs saliency
detection at Low-level, Mid-level, and High-level stages and is therefore referred
to as LMH [12]. One RGB-D method is based on anisotropic centre-surround dif-
ference and is therefore denoted ACSD [8]. The other RGB-D method exploits
global priors, which include the background, depth, and orientation priors to
achieve a saliency map and is therefore denote GP [14]. The two 2D methods
are Hemami’s frequency-tuned method [13], which is denoted FT, and the app-
roach from the graph-based manifold ranking [18], which is denoted GMR. For
the two 2D saliency approaches, we also add and multiple their results with the
DSM produced by our proposed depth feature map; these results are denoted
FT+DSM, FTxDSM, GMR+DSM and GMRxDSM. All of the results are pro-
duced using the public codes that are offered by the authors of the previously
mentioned literature reports.

(a) (b) © @
u n
@® (h) ) )

(k) U]

Fig. 8. Visual comparison of the saliency estimations of the different 2D methods with
DSM. (a) RGB image, (b) depth image, (c) ground truth, (d) FT, (¢) FTxDSM, (f)
FT4+DSM, (g) GMR, (h) GMRxDSM, (i) GMR+DSM, (j) CSM, (k) DSM, (1) Ours.
+ indicates a linear combination strategy, and x indicates a weighting method based
on multiplication. DSM means depth saliency map, which is produced by our proposed
depth feature map. CSM means colour saliency map, which is produced by our proposed
colour feature map.

Figure8 compares our results with FT, FT4+DSM, FTxDSM, GMR,
GMR+DSM and GMR xDSM. FT detects many uninteresting background pixels
as salient because it does not consider any global features. The experiments show
that both FT+DSM and FTxDSM are highly improved when incorporated with
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the DSM. GMR fails to detect many pixels on the prominent objects because
it does not define the pseudo-background accurately. Although the simple late
fusion strategy achieves improvements, it still suffers from inconsistency in the
homogeneous foreground regions and lacks precision around object boundaries,
which may be ascribed to treating the appearance and depth correspondence
cues in an independent manner. Our approach consistently detects the pixels
on the dominant objects within a Bayesian framework with higher accuracy to
resolve the issue.

The comparison of the ACSD, LMH and GP RGB-D approaches is presented
in Fig.9. ACSD works on depth images on the assumption that salient objects
tend to stand out from the surrounding background, which takes relative depth
into consideration. ACSD generates unsatisfying results without colour cues.
LMH uses a simple fusion framework that takes advantage of both depth and
appearance cues from the low-, mid-, and high-levels. In [12], the background is
nicely excluded; however, many pixels on the salient object are not detected as
salient. Ren et al. proposed two priors, which are the normalized depth prior and
the global-context surface orientation prior [14]. Because their approach uses the
two priors, it has problems when such priors are invalid. We can see that the
proposed method can accurately locate the salient objects, and produce nearly
equal saliency values for the pixels within the target objects.

Fig. 9. Visual comparison of the saliency estimations of different 3D methods based
on the NLPR dataset. (a) RGB image, (b) Depth image, (¢) Ground truth, (d) ACSD,
(e) GP, (f) LMH, (g) Ours.

4.3 Quantitative Evaluation

Comparison of the 2D Models Combined with DSM. In this experiment,
we first compare the performances of existing 2D saliency models before and
after DSM fusing. Figure 10 presents the experimental results, where + and x
denote a linear combination strategy and a weighting method, respectively. From
Fig.10(a), we can see the strong influence of using the DSM on the distribution
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Fig. 10. The quantitative comparisons of the performance of depth cues. + means a
linear combination strategy and x means a weighting method based on multiplication.

of visual attention in terms of the viewing of 3D content. Although the simple
late fusion strategy achieves improvements, it still suffers from inconsistency
in the homogeneous foreground regions, which may be ascribed to treating the
appearance and depth correspondence cues in an independent manner, as shown
in Fig.8. We also provide the ROC curves for several compared methods in
Fig. 10(b). The ROC curves demonstrate that the proposed 3D saliency detection
model performs better than the compared methods do.

Comparison of 3D Models. In this paper, the GP model, LMH model and
ACSD model are classified as depth-saliency models. Figure 11 shows the quan-
titative comparisons among these method on the constructed RGBD datasets
in terms of ROC curves and F-measures. Interestingly, the LMH method, which
uses Bayesian fusion to fuse depth and RGB saliency by simple multiplication,
has lower performance compared to the GP method, which uses the Markov
Random Field model as a fusion strategy, as shown in Fig. 11(a). However, LMH
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Fig. 11. (a) The ROC curves of different 3D saliency detection models in terms of the
NLPR dataset. (b) The F-measures of different 3D saliency detection models when
used on the NLPR dataset.
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and GP achieve better performances than ACSD by using fusion strategies. The
proposed RGBD method is superior to the baselines in terms of all the evaluation
metrics. Although the ROC curves are very similar, Fig. 11(b) shows that the
proposed method improves the recall and F-measure when compared to LMH
and GP. This is mainly because the feature extraction using multi-scale super-
pixels enhances the consistency and compactness of salient patches.

5 Conclusion

In this study, we proposed a saliency detection model for RGB-D images that
considers both colour- and depth-based contrast features with a generative mix-
ture model. The experiments verify that the proposed model’s depth-produced
saliency can serve as a helpful complement to the existing colour-based saliency
models. Compared with other competing 3D models, the experimental results
based on a recent eye tracking databases show that the performance of the pro-
posed saliency detection model is promising. We hope that our work is helpful
in stimulating further research in the area of 3D saliency detection.
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ence and Technology Youth Backbone Training Plan (2015-16) and Innovation Group
Plan of Beijing Academy of Science and Technology (IG201506N).
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Abstract. The task of estimating the spatial layout of cluttered indoor
scenes from a single RGB image is addressed in this work. Existing solu-
tions to this problem largely rely on hand-crafted features and vanishing
lines, and they often fail in highly cluttered indoor scenes. The proposed
coarse-to-fine indoor layout estimation (CFILE) method consists of two
stages: (1) coarse layout estimation; and (2) fine layout localization. In
the first stage, we adopt a fully convolutional neural network (FCN) to
obtain a coarse-scale room layout estimate that is close to the ground
truth globally. The proposed FCN combines the layout contour prop-
erty and the surface property so as to provide a robust estimation in
the presence of cluttered objects. In the second stage, we formulate an
optimization framework that enforces several constraints such as layout
contour straightness, surface smoothness and geometric constraints for
layout detail refinement. Our proposed system offers the state-of-the-art
performance on two commonly used benchmark datasets.

1 Introduction

The task of spatial layout estimation of indoor scenes is to locate the boundaries
of the floor, walls and ceiling. The room layout can be represented by either sur-
face boundaries or surfaces themselves, which are two equivalent representations
for a room layout. The segmented boundaries and surfaces are valuable for a
wide range of computer vision applications such as indoor navigation [1], object
detection [2] and augmented reality [1,3-5]. However, there are many challenges
in estimating the room layout from a single RGB image, especially in highly
cluttered rooms where the ground and wall boundaries are occluded by various
objects. Furthermore, indoor scene images may be shot at different viewpoints
with large intra-class variations. As a result, high-level reasoning is often required
to accurately estimate the spatial layout. For example, the global room model
and its associated geometric reasoning can be exploited for this purpose.
The indoor room layout estimation problem has been actively studied in

recent years. Hedau et al. [6] formulated it as a structured learning problem. It
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first generates hundreds of layout proposals based on inference from vanishing
lines. Then, it uses the line membership and the geometric context features to
rank the obtained proposals and chooses the one with the highest score as the
desired final result.

Critical Line
Detection

Input MFCN Coarse Layout Layout Hypotheses and RankingI Result

Fig. 1. The pipeline of the proposed coarse-to-fine indoor layout estimation (CFILE)
method. For an input indoor image, a coarse layout estimate that contains large surfaces
and their boundaries are obtained by a multi-task fully convolutional neural network
(MFCN) in the first stage. Then, occluded lines and missing lines are filled in and
possible layout choices are ranked according to a pre-defined score function in the
second stage. The one with the highest score is chosen as the final output.

In this work, we propose a coarse-to-fine indoor layout estimation (CFILE)
method whose pipeline is shown in Fig. 1. The system takes an RGB image as
the input and provides a box layout as the output. The CFILE method consists
of two stages: (1) coarse layout estimation; and (2) fine layout localization. In the
first stage, we adopt a multi-task fully convolutional neural network (MFCN) [7]
to obtain a coarse-scale room layout estimate. This is motivated by the strength
of the FCN in semantic segmentation [8] and contour detection [9]. The FCN has
a strong discriminant power in handling a large variety of indoor scenes using
the surface property and the layout contour property. It can provide robust
estimation in the presence of cluttered objects, which is close to the ground
truth globally. In the second stage, being motivated by structured learning, we
formulate an optimization framework that enforces several constraints such as
layout contour straightness, surface smoothness and geometric constraints for
layout detail refinement.

It is worthwhile to emphasize that the spatial layout estimation problem
is different from semantic object segmentation problem in two aspects. First,
the aim of the spatial layout problem is to label the semantic surface of an
indoor room rather than objects in the room. Second, we have to label occluded
surfaces while semantic segmentation does not deal with the occlusion problem
at all. Also, unlike in the contour detection problem, occluded layout contours
have to be detected.

The major contributions of this work are three folds. First, we use the FCN
to learn the labeling of key contours and main surfaces jointly, which are critical
to robust estimation of indoor scene layout. The FCN training is elaborated and
it is shown that the coarse-scale layout estimate obtained by the FCN is robust



38 Y. Ren et al.

and close to the ground truth. Second, we formulate an optimization framework
that enforces three constraints (i.e. surface smoothness, contour straightness and
proper geometrical structure) to refine the coarse-scale layout estimate. Third,
we conduct extensive performance evaluation by comparing the proposed CFILE
method and several benchmarking methods on the dataset of Hedau et al. [6], and
the LSUN validation dataset [10]. It is shown by experimental results that the
proposed CFILE method offers the state-of-the-art performance. It outperforms
the second best method by 1.16% and 1.32% in Hedau dataset and the LSUN
dataset, respectively.

The rest of this paper is organized as follows. Related previous work is
reviewed in Sect. 2. The proposed CFILE method is described in detail in Sect. 3.
Experimental results are shown in Sect.4. Concluding remarks are drawn in
Sect. 5.

2 Related Work

Structured Learning. The structured learning methodology [11] has been
widely used in the context of indoor room layout estimation. The aim of this
methodology is to learn the structure of an environment in the presence of imper-
fect low-level features. It consists of the following two stages [11]. First, a set of
layout hypothesis are generated. Second, a score function is defined to evaluate
the structure in hypotheses set. The first stage is guided by low-level features
such as vanishing lines under the Manhattan assumption. The number of layout
hypotheses in the first stage is typically large, and the majority of the hypotheses
are of low accuracy due to the presence of clutters. If the quality of hypotheses
is low in the first stage, there is no easy way to fix it in the second stage. In
the second stage of layout ranking, the score function contains various features
such as line membership [6,12], geometric context [6,12], object location [13],
etc. The score function cannot handle objects well since they overlap with more
than one surface (e.g., between the floor and walls). The occluding objects in
turn make the surface appearance quite similar along their boundaries.

Classical Methods for Indoor Layout Estimation. Research on indoor
room layout estimation has been active in recent years. Hedau et al. [6] formu-
lated it as a structured learning problem. There are many follow-up efforts after
this milestone work. They focus on either developing new criteria to reject invalid
layout hypotheses or introducing new features to improve the score function in
layout ranking.

Different hypothesis evaluation methods were considered in [6,13-18]. Hedau
et al. [6] reduced noisy lines by first removing clutters. Specifically, they used the
line membership together with semantic labeling to evaluate hypotheses. Gupta
et al. [13] proposed an orientation map that labels three orthogonal surface
directions based on line segments, and then, used the orientation map to re-
evaluate layout proposals. They detected objects and fit them into 3D boxes.
Since an object cannot penetrate the wall, they used the box location as a
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constraint to reject invalid layout proposals. The work in [2,19] attempted to
model objects and spatial layout simultaneously. Hedau et al. [20] improved
their earlier work in [2,6] by localizing the box more precisely using several
cues such as edge- and corner-based features. Ramalingam et al. [18] proposed
an algorithm to detect Manhattan Junctions and selected the best layout by
optimizing a conditional random field whose corners are well aligned with pre-
detected Manhattan Junctions. Del Pero et al. [17] integrated the camera model,
an enclosing room box, frames (windows, doors, pictures), and objects (beds,
tables, couches, cabinets) to generate layout hypotheses. Lampert et al. [21]
improved object detection by maximizing a score function through the branch
and bound algorithm.

3D- and Video-based Indoor Layout Estimation. Zhao and Zhu [16]
exploited the location information and 3D spatial rules to obtain as many 3D
boxes as possible. For example, if a bed is detected, the algorithm will search
its neighborhood to look for a side table. Then, they rejected impossible layout
hypotheses. Choi et al. [22] trained several 3D scene graph models to learn the
relation among the scene type, the object type, the object location and layout
jointly. Guo et al. [14] recovered a 3D model from a single RGBD image by
transferring the exemplar layout in the training set to the test image. Fidler
et al. [23] and Xiang and Savarese [24] represented objects by a deformable 3D
cuboid model for improved object detection and then used in layout estimation.
Fouhey et al. [25] exploited human action and location in time-lapse video to
infer functional room geometry. Jiang et al. [26] proposed a novel linear method
to match cuboids in indoor scenes using RGBD images which effectively gave
room layout estimation. Khan et al. [27] improved the cuboid representation by
generating two types of cuboid hypotheses, one corresponding to regular objects
inside a scene, and the other corresponding to the main structures, such as floor
and walls.

CNN- and FCN-based Indoor Layout Estimation. The convolutional
neural networks (CNN) have had a great impact on various computer vision
research topics, such as object detection, scene classification, semantic segmen-
tation, etc. Mallya and Lazebnik [12] used the fully convolutional neural networks
(FCN) to learn the informative edge from an RGB image to provide a rough lay-
out. The FCN shares features in convolutional layers and optimize edges detec-
tion and geometric context labeling [6,28,29] jointly. The learned contours are
used as a new feature in sampling vanishing lines for layout hypotheses gen-
eration. Dasgupta and Kuan Fang [30] used an FCN to learn semantic surface
labels. Instead of learning edges, their solution adopted the heat map of semantic
surfaces obtained by the FCN as the belief map and further optimized it by van-
ishing lines. Generally speaking, a good layout should satisfy several constraints
such as boundary straightness, surface smoothness and proper geometrical struc-
ture. However, the CNN is weak in imposing spatial constraints and performing
spatial inference. As a result, an inference model was appended in both [12,30]
to refine the layout result obtained by CNN.
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3 Coarse-to-Fine Indoor Layout Estimation (CFILE)

3.1 System Overview

Most research on indoor layout estimation [6,13-18] is based on the “Manhattan
World” assumption. That is, a room contains three orthogonal directions indi-
cated by three groups of vanishing lines. Hedau et al. [6] presented a layout
model based on 4 rays and a vanishing point. The model can written as

Layout = (I1,12,13,14,v), (1)

where [; is the i'" line and v is the vanishing point. If (I1,ls,(3,14,v) can be
easily detected without any ambiguity, the layout problem is straightforward.
One example is given in Fig.2(a), where five surfaces are visible in the image
without occlusion. However, there exist more challenging cases, where vertices
p; and e; lie outside the image. One example is shown in Fig. 2(b) where vertices
p2 and p3 are floor corners and they are likely occluded by objects. Furthermore,
line I may be entirely or partially occluded as shown in Fig. 2(c), where lines I3
and [y are wall boundaries, that can be partially (but not fully) occluded, and
line /7 is the ceiling boundary which is likely to be visible.

@ < (b)

Fig. 2. Illustration of a layout model Layout = (l1,l2,(s,l4,v) that is parameterized
by four lines and a vanishing point: (a) An easy setting where all five surfaces are
present; (b) A setting where some surfaces are outside the image; (c) A setting where
key boundaries are occluded.

The proposed CFILE system consists of two stages as illustrated in Fig. 1.
In the first stage, we propose a multi-task fully convolutional neural network
(MFCN) to offer a coarse yet robust layout estimation. Since the CNN is weak
in imposing spatial smoothness and conducting geometric reasoning, it cannot
provide a fine-scale layout result. In the second stage, we first use the coarse
layout from the MFCN as a guidance to detect a set of critical lines. Then, we
generate a small set of high quality layout hypotheses based on these critical
lines. Finally, we define a score function to select the best layout as the desired
output. Detailed tasks in these two stages are elaborated below.
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3.2 Coarse Layout Estimation via MFCN

We adopt a multi-task fully convolutional neural network (MFCN) [7,8,12] to
learn the coarse layout of indoor scenes. The MFCN [7] shares features in the
convolutional layers with those in the fully connected layers and builds different
branches for multi-task learning. The total loss of the MFCN is the sum of the
losses of different tasks. The proposed two-task network structure is shown in
Fig. 3. We use the VGG-16 architecture for fully convolutional layers and train
the MFCN for two tasks jointly, i.e. one for layout learning while the other for
semantic surface learning (including the floor, left-, right-, center-walls and the
ceiling). Our work is different from that in [12], where layout is trained together
with geometric context labels [28,29] which contains object labels. Here, we
train the layout and semantic surface labels jointly. By removing objects from
the concern, the boundaries of semantic surfaces and layout contours can be
matched even in occluded regions, leading to a clearer layout. Compared to
the work in [30], which adopts the fully convolutional neural network to learn
semantic surfaces with a single task network, our network has two branches for
coarse layout learning and semantic surface learning, where their learned results
can help each other.

64

O convolutional layer O input layer
[ max pooling layer [ output layer
[ deconvolutional layer

~

Fig. 3. Illustration of the FCN-VGG16 with two output branches. We use one branch
for the coarse layout learning and the other branch for semantic surface learning. The
input image size is re-sized to 404 x 404 to match the receptive field size of the filter
at the fully convolutional layer.

The receptive field of the filter at the fully connected layer of the FCN-VGG16
is 404 x 404, which is independent of the input image size [8,31]. Xu et al. [31]
attempted to vary the FCN training image size so as to capture different level
of details in image content. If the input image size is larger than the receptive
field size, the filter of the fully connected layer looks only at a part of the image.
If the input image size is smaller than the receptive field size, it is padded with
zeros and spatial resolution is lost in this case. The layout describes the whole
image’s global structure. We resize the input image to 404 x 404 so that the filter
examines the whole image.
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3.3 Layout Refinement

There are two steps in structured learning: (1) to generate a hypotheses set; and
(2) to define a score function and search for a hypothesis in the hypotheses set
that maximizes the score function. Our objective is to improve performance in
both steps.

Given an input image I of size w x h x 3, the output of the coarse layout
from the proposed MFCN in Fig. 3 is a probability function in the form of

P® = Pr(L;; =kI), Vke{0,1}, i€ [l,...h], j€[l,...,w] (2)

where L is an image of size w x h that maps each pixel I;; in the original image
to a label L;; € {0, 1}, in the output image, where 0 denotes a background pixel
and 1 denotes a layout pixel. One way to estimate the final layout from the
MFCN output is to select the label with the highest score; namely,

L = arginaxPl(-f) Vie[l, . h], j el ...,w. (3)

It is worthwhile to point out that f;ij generated from the MFCN output is
noisy for the following two reasons. First, the contour from the MFCN is thick
and not straight since the convolution and the pooling operations lose the spatial
resolution gradually along stages. Second, the occluded floor boundary (e.g., the
Iy line in Fig.2) is more difficult to detect since it is less visible than other
contours (e.g., the I, I3 and Iy lines in Fig.2). We need to address these two
challenges in defining a score function.

The optimal solution for Eq. (3) is difficult to obtain directly. Instead, we first
generate layout hypotheses that are close to the global optimal layout, denoted
by L*, in the layout refinement algorithm. Then, we define a novel score function
to rank layout hypotheses and select the one with the highest score as the final
result.

Generation of High-Quality Layout Hypotheses. Our objective is to find
a set of layout hypotheses that contains fewer yet more robust proposals in
the presence of occluders. Then, the best layout with the smallest error can be
selected.

Vanishing Line Sampling. We first threshold the layout contour obtained
by the MFCN, convert it into a binary mask, and dilate it by 4 pixels to get a
binary mask image denoted by C. Then, we apply a vanishing lines detection
algorithm [13] to the original image and select those inside the binary mask
as critical lines l;(original), shown as solid lines in Fig.4(c)—(e) for ceiling, wall
and floor respectively. Candidate vanishing point v is generated by grid search
around the initial v from [13].
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Handling Undetected Lines. There exists a case when no vanishing lines are
detected inside C' because of low contrast, such as wall boundaries, I3(or ly). If
ceiling corners are available, I3 (or l4) are filled in by connecting ceiling corners
and vertical vanishing point. If ceiling corners do not present in the image, the
missing I3(or l4) is estimated by logistic regression using the layout points in L.

Handling Occluded Lines. As discussed earlier, the floor line, l5, can be
entirely or partially occluded. One illustrative example is shown in Fig. 4 where
I is partially occluded. If I is partially occluded, the occluded part of I can be
recovered by line extension. For entirely occluded [lo, if we simply search lines
inside C' or uniformly sample lines [12], the layout proposal will not be accurate
as the occluded boundary line cannot be recovered. Instead, we automatically
fill in occluded lines based on geometric rules. If po (or ps) is detectable by
connecting detected I3 (or l4) to eqv (or ezv), I is computed as the line passing
through the available ps or p3 and the vanishing point I associated with. If
neither py nor p3 is detectable, ls is estimated by logistic regression use the
layout points in L.

Critical Lines

(c) Ceiling (d) wall (e) Floor

Fig. 4. Illustration of critical lines detection for better layout hypotheses generation.
For a given input image, the coarse layout offers a mask that guides vanishing lines
selection and critical lines inference. The solid lines indicate detected vanishing lines
in C. The dashed wall lines indicate those wall lines that are not detected but inferred
inside mask C from ceiling corners. The dashed floor lines indicate those floor lines
that are not detected but inferred inside mask C.

In summary, the final ;141 used in generating layout hypotheses is the union
of three parts as given below:

leritical = li(original) U li(occluded) U li(undetected), (4)

where lj(original) denotes detected vanishing lines inside C, ljoccluded) denotes
the recovered occluded boundary, and ;(undetected) denotes undetected vanishing
lines because of low contrast but recovered from geometric reasoning. These
three types of lines are shown in Fig. 4. With l;(original) and vanishing point v,
we generate all possible layouts L using the model described in Sect. 3.1.
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Layout Ranking. We use the coarse layout probability map P as a weight
mask to evaluate the layout. The score function is defined as

1
S(LIP) = > P VL =1, (5)

(]

where P is the output from the MFCN, L is a layout from the hypotheses set,
and N is a normalization factor that is equal to the total number of layout pixels
in L. Then, the optimal layout is selected by

L* = argmax S(L|P). (6)
L

The score function is in favor of the layout that is aligned well with the coarse
layout. Figure 5 shows one example where the layout hypotheses are ranked using
the score function in Eq. (6). The layout with the highest score is chosen to be
the final result.

$=0.191 $=0.184 $=0.140

Fig. 5. Example of layout ranking using the proposed score function.

4 Experiments

4.1 Experimental Setup

We evaluate the proposed CFILE method on two popular datasets; namely,
Hedau dataset [6] and the LSUN dataset [12]. Hedau dataset contains 209 train-
ing images, 53 validation images and 105 test images. Mallya and Lazebnik [12]
expanded the Hedau dataset by adding 75 new images to the training set. This
expanded dataset is referred to as the Hedau+ dataset. We conduct data aug-
mentation for Hedau+ dataset as done in [12] by cropping, rotation, scaling and
luminance adjustment in the training of the MFCN. The LSUN dataset [10] con-
tains 4000 training images, 394 validation images and 1000 test images. Since
no ground truth is released for the 1000 test images, we evaluate the proposed
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method on the validation set only. We resize all images to 404 x 404 by bicubic
interpolation, and train two coarse layout models for the two datasets separately.

Hedau+ dataset provides both the layout and the geometric context labels
but it does not provide semantic surface labels. Thus, we use the layout poly-
gon provided in the dataset to generate semantic surface labels. The LSUN
dataset provides surface segmentation but not the layout boundary and semantic
surfaces. We relabel the surface segmentation to make the segmentation with the
same semantic to have the same label. We detect edges on semantic surface labels
and dilate them to a width of 7 pixels. By following [12], we use the NYUDv2
RGBD dataset [32] for semantic segmentation to initialize the MFCN. Also, we
set the base learning rate to 10~ with momentum 0.99.

We adopt two performance metrics: the pixel-wise error and the corner error.
To compute the pixel-wise error, the obtained layout segmentation is mapped to
the ground truth layout segmentation. Then, the pixel-wise error is computed
as the percentage of pixels that are wrongly matched. To compute the corner
error, we sum up all Euclidean distances between obtained corners and their
associated ground truth corners.

4.2 Experimental Results and Discussion

The coarse layout scheme described in Sect.3.2 is first evaluated using the
methodology in [33]. We compare our results, denoted by MFCN; and MFCNxo,
against the informative edge method [12], denoted by FCN; in Table 1. Our pro-
posed two coarse layout schemes have higher ODS (fixed contour threshold) and
OIS (per-image best threshold) scores. This indicates that they provide more
accurate regions for vanishing line samples in layout hypotheses generation.

We use several exemplary images to demonstrate that the proposed coarse
layout results are robust and close to the ground truth. That is, we compare
visual results of the FCN in [12] and the proposed MFCNjs in Fig. 6. As compared
to the layout results of the FCN in [12], the proposed MFCNy method provides
robust and clearer layout results in occluded regions, which are not significantly
affected by object boundaries.

Next, we evaluate the performance of the proposed full layout algorithm,
CFILE, including the coarse layout estimation and the layout optimization and
ranking. The performance of several methods for Hedau dataset and the LSUN

Table 1. Performance comparison of coarse layout results for Hedau test dataset,
where the performance metrics are the fixed contour threshold (ODS) and the per-
image best threshold (OIS) [33]. We use FCN to indicate the informative edge method
in [12]. Both MFCN; and MFCN3 are proposed in our work. They correspond to the
two settings where the layout and semantic surfaces are jointly trained on the original
image size (MFCN1) and the downsampled image size 404 x 404 (MFCN3).

FCN [12] MFCN; (our) | MFCN2 (our)
Metrics ODS | OIS |ODS | OIS ODS | OIS
Hedau dataset | 0.255 | 0.263 | 0.265 | 0.284 | 0.265 | 0.291
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liEilS

Fig. 6. Comparison of coarse layout results (from left to right): the input image, the
coarse layout result of the FCN in [12], the coarse layout results of the proposed MFCNy
and the ground truth. The results of the MFCNy are more robust, and it provides
clearer contours in occluded regions. The first two examples are from the Hedau dataset
and the last two examples are from the LSUN dataset.

dataset is compared in Tables 2 and 3, respectively. The proposed CFILE method
achieves state-of-the-art performance. It outperforms the second best algorithm
by 1.16% for Hedau dataset and 1.32% for the LSUN dataset.

The best six results of the proposed CFILE method for Hedau test images
are visualized in Fig.7. It can be observed from these six examples that the
coarse layout estimation algorithm is robust in highly cluttered rooms (see the
second row and the fourth row). The layout refinement algorithm can recover
occluded boundaries accurately in Fig. 7(a)—(e). It can also select the best layout
among several possible choices. The three worst results of the proposed CFILE
method for Hedau test images are visualized in Fig. 8. Figure8(a) shows one
example where the fine layout result is misled by the wrong coarse layout esti-
mate. Figure8(b) is a difficult case. The left wall and right wall have the same
appearance and there are several confusing wall boundaries. Figure8(c) gives
the worst example of the CFILE method with accuracy 79.4%. However, it is
still higher than the worst example reported in [12] with accuracy 61.05%. The
ceiling boundary is confusing in Fig. 8(c). The proposed CFILE method selects
the ceiling line overlapping with the coarse layout. More visual results from the
LSUN dataset are shown in Fig.9.
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(e) 94.1%

Fig. 7. Visualization of the six best results of the CFILE method in Hedau test dataset
(from top to bottom): original images, the coarse layout estimates from MFCN, our
results with pixel-wise accuracy (where the ground truth is shown in green and our
result is shown in red) (Color figure online).
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Table 2. Performance benchmarking for Hedau dataset.

Method Pixel error (%)
Hedau et al. (2009) [6] 21.20
Del Pero et al. (2012) [17] 16.30
Gupta et al. (2010) [13] 16.20
Zhao and Zho (2013) [16] 14.50
Ramalingam et al. (2013) [18] 13.34
Mallya and Lazebnik (2015) [12] 12.83
Schwing and Urtasun (2012) [34] 12.80
Del Pero et al. (2013) [35] 12.70
Dasgupta and Kuan Fang (2016) [30] | 9.73
Proposed CFILE 8.67

Table 3. Performance benchmarking for the LSUN dataset.

Method Corner error (%) | Pixel error (%)
Hedau et al. (2009) [6] 15.48 24.23
Mallya and Lazebnik (2015) [12] 11.02 16.71
Dasgupta and Kuan Fang (2016) [30] | 8.20 10.63
Proposed CFILE 7.95 9.31

=T

(a) 81.8% (b) 81.3% (c) 79.4%

Fig. 8. Visualization of the three worst results of the CFILE method in Hedau test
dataset (from top to bottom): original images, the coarse layout estimates from MFCN,
our results with pixel-wise accuracy (where the ground truth is shown in green and our
result is shown in red) (Color figure online).
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Fig. 9. Visualization of layout results of the CFILE method in the LSUN validation
set. Ground truth is shown in green and our result is shown in red (Color figure online).

5 Conclusion and Future Work

A coarse-to-fine indoor layout estimation (CFILE) method was proposed to esti-
mate the room layout from an RGB image. We adopted a multi-task fully con-
volutional neural network (MFCN) to provide a robust coarse layout estimate
for a variety of indoor scenes with joint layout and semantic surface training.
However, CNN is weak in enforcing spatial constraints. To address this problem,
we formulated an optimization framework that enforces several constraints such
as layout contour straightness, surface smoothness and geometric constraints for
layout detail refinement. It was demonstrated by experimental results that the
proposed CFILE system yields the best performance on two commonly used
benchmark datasets. It is an interesting topic to investigate how the improved
scene layout estimation can help in achieving a better performance for geometry
estimation, clutter identification, and semantic segmentation.

Acknowledgement. Computation for the work described in this paper was supported
by the University of Southern California’s Center for High-Performance Computing
(hpc.usc.edu).
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Abstract. We investigate recent state-of-the-art algorithms for absolute
pose problems (PnP and GPnP) and analyse their applicability to a
more general type, namely the scaled Euclidean registration from point-
to-point, point-to-line and point-to plane correspondences. Similar to
previous formulations we first compress the original set of equations to
a least squares error function that only depends on the non-linear rota-
tion parameters and a small symmetric coefficient matrix of fixed size.
Then, in a second step the rotation is solved with algorithms which are
derived using methods from algebraic geometry such as the Grobner basis
method. In previous approaches the first compression step was usually
tailored to a specific correspondence types and problem instances. Here,
we propose a unified formulation based on a representation with orthog-
onal complements which allows to combine different types of constraints
elegantly in one single framework. We show that with our unified for-
mulation existing polynomial solvers can be interchangeably applied to
problem instances other than those they were originally proposed for. It
becomes possible to compare them on various registrations problems with
respect to accuracy, numerical stability, and computational speed. Our
compression procedure not only preserves linear complexity, it is even
faster than previous formulations. For the second step we also derive an
own algebraic equation solver, which can additionally handle the reg-
istration from 3D point-to-point correspondences, where other solvers
surprisingly fail.

1 Introduction

We consider the problem of finding optimal similarity transformations which

relate a set of 3D points to other corresponding points, lines or planes in a

different coordinate system. The registration from point-to-point correspon-

dences is a fundamental problem in computer vision and has applications in

many fields, such as the correct alignment of independent Structure-from-Motion
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reconstructions, handling of drift in loop-closure, hand-eye calibration, and many
more. The two most prominent algorithms for solving this registration problem
were proposed by Umeyama [1] and Horn [2]. The latter is also an integral part
of the well-known ICP-algorithm for aligning point clouds. However, these algo-
rithms are not applicable to point-to-line or point-to-plane correspondences. Usu-
ally, iterative methods which only converge locally are used for these cases [3,4].

Olsson et al. [5] were the first to propose an algorithm to find the global
optimum for registration problems of this kind. The algorithm is based on an
iterative Branch-and-Bound procedure using convex under-estimators to solve
for the rotation. Although it guarantees to find the global optimum, it is also
computationally demanding. The same authors showed later [6] that their algo-
rithm is also applicable to the Perspective-n-Point problem (PnP).

Regarding the related field of perspective registration problems (PnP and
GPnP) substantial progress has been made in the last years. Hesch and
Roumeliotis [7] proposed an algorithm for the central PnP problem, where the
original problem is reduced to a polynomial equation system of fixed size irrespec-
tive of the number of used correspondences. This approach has been extended
to pose estimation from generalized cameras (Generalized PnP) with and with-
out scale [8,9]. In this paper, we propose a formulation which extends them
even further to various 3d registration problems considered by Olsson et al. At
the same time, their closed-form character and all of their desirable properties
are preserved: they remain non-iterative, applicable to minimal as well as to
overconstrained problem instances, and capable of providing all minima at once.

2 Unified Mathematical Framework for Registration
Problems

2.1 Objective Function and Vector-Matrix Representation

Suppose we have a set of K points, x;, € R3. Our goal is to find a transformation
consisting of a rotation, R € SO(3), a translation, t € R?, and an (inverse)
scaling s~! € R, so that the transformed points,

X, = s (Rxy + t), (1)

are as close as possible to their corresponding geometric entities, which may
either be a plane, 7, a line, I, or another point, px. For point correspondences
we measure the Euclidean distance between the transformed point x/k and the
reference point pg. For lines and planes we use the orthogonal distance, i.e. the
length of the shortest vector that connects the transformed point with some other
point on the line or the plane. We completely describe a geometric entity with
an offset point, yi, and an orthogonal complement matriz, N, whose columns
are orthonormal vectors which are perpendicular to the affine subspace of the
geometric entity. Then, the squared error can be written for all correspondence
types in a uniform way

di, = INL(x, = y) 13- (2)
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The registration problem can then be formulated as the least-squares
minimization of the total error for all correspondences,

K
arg min Z INL(Rxk +t — syr) |3 (3)
ReSO(3),teR3,seR =1

By multiplying the error function with the squared scale, i.e. s2 3 d%, we have
decoupled it from the other unknowns, and it now scales the offset points, yy.
This only affects the absolute value of the error, but not the location of the
minima. By stacking the rows of the rotation matrix, the scaling and the trans-
lation vector into a parameter vector, s' = [Ri11,Rq2,...,Rss, s,tT], Eq. 3 can
be re-factored and written in matrix-vector form,

arg min||As||3. (4)
R,t,s

The corresponding rows, Ay, belonging to the correspondence k can be written
compactly using the kronecker product (‘®’):

Ap e R = [NT @ x], —Nlyi, NIJ, ni € {1,2,3}. (5)

Each row of A corresponds to an equation in a (possibly overconstrained)
homogeneous system of equations representing the least-squares problem of
Eq. 4. Intuitively, the different types of correspondences should also impose dif-
ferent numbers of effective constraints on the registration problem. In our for-
mulation this is achieved naturally by the size of the orthogonal complement
matrix. For point-to-plane correspondences, Ng) € R3*! is given by the normal
vector of the plane which results in one equation per correspondence. Points can
be interpreted as entities that span a zero-dimensional subspace, so any vector in
R3 belongs to the orthogonal complement of a point. Thus, we are free to choose
an arbitrary orthogonal matrix for Nép ) € R3*3 yielding three equations per
correspondence. In particular, the identity matrix, I>*3, is a convenient choice.
In case of Point-to-line correspondences often there is no orthogonal comple-
ment matrix at hand, but a bearing vector, v, instead. For example, in the
PnP problem and its generalized variant the bearing vectors are the vectors con-
necting the homogenized image points and the camera centers. One can easily
obtain a matrix N,(Cl) € R3%2 by means of an orthogonalization method like the
Gram-Schmidt Algorithm or a QR-decomposition of vi. Alternatively, it is also
possible to construct 3 x 3 matrices N,(cl) with rank two directly from the bearing
vectors. Two possible options are:

NO) 3x3 _ J [Vi]x (cross product form)

N €R7 = {I — ViV (annihilator form) ’ (6)
where [vi]x is the skew-symmetric cross product matrix of vi. Using the cross
product form results in a similar system of equations than in the well-known
DLT-Algorithm [10]. Since both variants of N,(j) have only rank two, there
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are also only two rows of Ay which are linearly independent, and one might
be tempted to leave one of them out. We emphasize, however, that if v is
normalized (VZVk = 1) then we have NkNlT( = NkNL, so the squared error,
43 = (x;, — y&)TNLNEL(x, — y&), of the objective function (Eq.2) will remain
unchanged regardless of which matrix is used to represent the orthogonal com-
plement. This will be different if one decides to leave out one of the equations,
and thus, it should be avoided in order to not obtain biased solutions.

2.2 Thin-SVD-Based Linear Parameter Elimination

Based on the matrix-vector notation of the objective function, the linear para-
meters, s and t, can now be eliminated by representing them in terms of the
nonlinear parameters, r' = [R11,Rq2, ..., Ras], using the pseudo-inverse and by
back-substituting the resulting expression. Specifically, taking the derivative of
Eq. 4 with respect to s and t and setting it zero yields the first order optimality
conditions for [s,tT]

S
ALAr+ AT A, M =0. (7)
Here, we have partitioned A = [A, Ag] column-wise into the submatrices A,
and Ag; which belong to the non-linear parameters, r, and linear parameters,
s and t, respectively. Hence, we can express [s,tT] as a function of r using the
Moore-Penrose pseudoinverse, Alt = (AT, A,,)"*AT, which in turn can be com-

puted efficiently and numerically stably with the Singular-Value-decomposition,
A, =UXV' [11],

ﬂ — _vxiu' A,r. (8)
t H?_/
Ast

By plugging this expression back into Eq. 4 and by defining the fixed size matrix
M, e RO = ATA, - ATUZTZ)UTA,, (9)

we can describe the registration problem by the following constrained minimiza-
tion problem which now only depends on the rotation parameters r,

argmin {r' Myr}, (10)
RESO(3)

The expression for M, has been greatly simplified thanks to the orthogonality
of the singular vector matrices, VIV = I and UTU = I. The diagonal matrix
(X7%) usually is a 4x4 identity matrix. Only in certain degenerate configurations
it may also have zeros on its diagonal whenever some singular values of A are
zero (or smaller than a machine precision dependent threshold). It then acts as
a column selector for U, so that only those singular vectors are chosen which
effectively span the column space of A ;. Rewriting My, in Eq. 9 as M, = AI (I-
U(ZTXZ)UT)A, one can see that A, is again projected onto the orthogonal
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complement (I—U(X2)UT) of the column space of A ;. This mechanism allows
to elegantly cope with some degenerate configurations which we will discuss later
in this paper.

Considering the computational effort, one might still ask, whether using the
Singular-Value-Decomposition for computing the pseudoinverse is a good choice,
because for general n xm matrices the complexity for its computation is O(n?m-+
m3) (see [11]). In our case A € R"*%, so even though m = 4 is constant, we are
still left with quadratic complexity with respect to the number of equations or
constraints, n. It is important to note, however, that only the first four columns
of U are needed. In this case - which is often referred to as thin SVD or reduced
SVD - the number of computations can be reduced to O(nm? + m?). This is
an important part of our formulation because it still allows to compute M, in
linear time and thus also the effort for the whole registration problem remains
linear. Most matrix libraries offer appropriate routine options.! As we show in
our simulations it is even much faster than any of the’closed-form’ derivations
proposed in earlier papers.

2.3 Relation to Existing Approaches

We would like to point out commonalities and differences on how the registration
problem is formulated in previous approaches for the PnP and Generalized PnP
case [7—-9]. The typical procedure is to describe the problem by a system of
(noise-free) equations which in their most general form are as follows:

A1
V1 Yy —IBXS : R X1
v yx —I%3 s R XK
- t e
=:A N , =W =X

=:u
where additional virtual depth parameters A\ € R for the points are introduced.
These ensure that in the noiseless case the scaled image points, yx + A\x Vg, coin-
cide with their corresponding transformed points x;c. As in our case, the next step
consists in eliminating the linear parameters 1 by means of the pseudoinverse,
At = (ATA)_lAT, and expressing them in terms of the rotation parameters

a=ATWx. (12)

After inserting this expression back into Eq. 11 the resulting system of equations
depends only on the rotation R € SO(3) (or the vectorized rotation matrix r).

! Matlab provides the option ‘economy’ to the SVD-routine. In LAPACK the rou-
tine DGESVD comes with the option JOBU=‘S’ or JOBU=‘0’. In Eigen one can set
ComputeThinU in the constructor of the template JacobiSVD<.>.
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Fig. 1. Visualization of the equivalence of the geometric errors minimized in previous
approaches (red) and in our approach (blue). (Color figure online)

The final minimization problem to determine the rotation has again the following
form:

argmin {r' Mr}, (13)
RESO(3)
with
I®x!
M=[I®xy, -, I®xk]| (I-AAT) : . (14)
I ®x}—(

It is important to note that this formulation for the PnP problem and its
generalization minimizes the same error as in our case with point-to-line cor-
respondences. The previous approaches [7-9] minimize the Euclidean distance
between the transformed point x;c and the point yi + Avy which represents
the line [, parameterized by the depth value \g. Since the depth parameter is
included as optimization variable inside the whole minimization problem, it will
attain its optimal value when the vector x;c — Vi + Avg is exactly orthogonal to
the line [y, or the vector v, (see Fig. 1). Otherwise the error could still be reduced
by changlng Ak while leaving the other parameters fixed. In our formulation the
vector Xk Yy is directly projected onto the orthogonal complement of the line
which is spanned by the columns of the matrix N = [n1, ns|. As a consequence,
the lengths of both vectors, ||x; — yi. + Avy|| and |NE(x;, — yi)||, are equal at
the minimum of their respective objective functions. We also note that for non-
degenerate configurations the resulting matrices, M and M, are identical up to
small numerical differences when computed with the previous approaches and
with ours.

The major difference of previous formulations is that the geometric enti-
ties are described by their affine subspaces (represented by the bearing vec-
tor vi) and not by their orthogonal complement as in our case. This makes it
necessary to introduce the virtual depth parameters A;. The downside is that
the involved matrices A and W become very sparse and much larger than in
our case. In particular, computing the pseudoinverse of A € R¥EXE+ §g pro-
hibitively costly if one resorts to standard techniques for dense matrices. For this
reason an important aspect in the aforementioned papers is the presentation of a
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custom-made computation of the pseudoinverse of A and the final composition
of M. Special care was taken to exploit the sparsity of the matrices and thus to
preserve the linear complexity of the whole algorithm. Yet still, the computation
of M remains up to one order of magnitude slower than in our proposed method,
as we show in our simulations.

Furthermore, the derivations of M make specific assumptions on the tar-
geted problem instance, so they are only applicable to PuP-type problems (or
to 3d point-to-line registrations). It would be possible to extend these subspace-
based parameterizations to the registration of point-to-plane correspondences.
One would then introduce two “depth” parameters per plane and a 3 x 2 matrix
V. whose orthonormal column vectors span the subspace of the plane instead
of a single bearing vector v;. However, computations would only get more com-
plicated as one would have to track down the type of correspondence along the
whole process of generating M. In our case, once the matrix A is set up (Eq.5),
all information on the correspondence type is essentially hidden. In order to com-
pute the pseudoinverse of the dense matrix A, and finally M one can always
use the same technique, no matter if A, was composed from point-to-point,
point-to-line, point-to-plane correspondences or any mixture of them.

2.4 Minimal Number of Constraints and the Inhomogeneous Case

So far, we have restricted our discussion on the full seven DoF problem, i.e. the
Euclidean registration with scale. Intuitively, one will also need seven constrain-
ing equations for the problem in Eq.4 to be solvable in general. It does not
matter from which kind of correspondence types these constraints are obtained,
the important part is that the minimal number of seven effective constraints
are reached in total and that each 3D point-to-plane, point-to-line or point-
to-point yields one, two or three constraints, respectively. For example one
can compute the registration parameters from seven point-to-plane correspon-
dences only, where each correspondence gives rise to one equation. In previous
approaches to pose-and-scale estimation [9,12] at least ‘three-and-a-half’ 2D-3D
correspondences are needed, which is in accordance with our formulation, where
constraints arising from 2d image point measurements are translated into 3D
point-to-line correspondences. For general configurations, i.e. when the image
measurements are distributed in more than one camera (also referred to as the
non-central case [8]), the sub-matrix A has full rank four. So in the process of
eliminating the linear parameters by means of the pseudoinverse, Ait, the final
matrix Mj, € R%*? will have at least rank three, which is a necessary require-
ment for solving for the remaining three DoF of the rotation. Since the seven
DoF problem forms a homogeneous system of equations we also refer to this as
the homogeneous case.

By contrast, if the scale parameter is already known or only the rotation and
translation is to be estimated, then one would not eliminate the scale parameter.
The correct procedure is then to compute the SVD only on the matrix A, i.e.
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the columns of A = [A,4 A;] which belong to the translation part, and finally
solve the slightly modified problem

arg min {[rT, 1] M, [j } ., with M; € R10*10, (15)
RESO(3)

which we call the inhomogeneous case.

There is an important connection between the homogeneous and the inho-
mogeneous version, which happens when all lines and planes have one common
intersection point. This corresponds to the situation, when the camera pose is
estimated from measurements in a single camera only as in the central PnP or
PnL case. Clearly, for single-view pose estimation the scale parameter is mean-
ingless and cannot be computed. In the homogeneous case the problem is there-
fore ill-conditioned which manifests itself in the matrix A, € R"** having only
rank three. As a consequence, the pseudoinverse cannot be computed using the
explicit formula Af, = (AT, A,,)"'AT, because (AT,A,,) is singular. However,
by using the SVD instead, as proposed in Sect. 2.2, this degeneracy is automati-
cally handled correctly by means of the matrix X3, This leads to the important
property that the solutions to the remaining parameters, R and t, can still be
computed even if only six effective constraints are provided (e.g. three 2D-3D
correspondences for the PnP problem), because the resulting matrix My, still
has rank three. As for the inhomogeneous case we note, that the column as of
A =[A,, a,, A;] belonging to the scale parameter is a linear combination of the
columns of A; and therefore its projection onto the orthogonal complement of
Ay ie (I-U(ZTE)UT), is zero. Consequently, the last row and the column of
the resulting matrix M; will then also be zero and the upper-left 9 x 9 sub-matrix
in M; is identical to Mjy,.

To summarize, in the central case both matrices M; and M}, carry the same
information for the solution of the rotation. And as both, the central case (like
[7,13]) and the homogeneous non-central case [9], can be represented by 9 x 9
matrices My, we expect that the corresponding algebraic solvers for the non-
linear rotation can be used interchangeably for both types of problems. Further,
we expect that an algebraic solver working on a 10 x 10 matrix M; capable of
solving both the central case and the inhomogeneous non-central case, such as
the one inside the approach of Kneip et al. [8], can be applied to all problems
considered here.

2.5 [Efficiently Pre-rotating Reference Points

Often it is advantageous to work with a modified ﬁh that is derived by bimply
pre-rotating the reference points x; with some rotatlon matrix Ry, i.e. X =
Rox;. Any solution, R obtained on the basis of Mh is then also a rotated
version of the original solution R, i.e. R = RR]. The algebraic solvers which
will be discussed in the next Section may fail to determlne the correct solutions in
all cases. In particular, solvers based on the Cayley parameterization for rotation
matrices will not succeed whenever the correct solution for the rotation has an
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angle of m. In this case one can re-evaluate the problem for different ﬁh and
collect all solutions. Although not published by Hesch and Roumeliotis [7], the
same authors implemented this strategy as an improved version of the DLS-
algorithm?, which was later also adopted by others [14]. Another use case is the
post-refinement of solutlons for R with a second order Newton minimization
applied on a matrix Mh with the rotation R being optimized is close to the
identity. This was done e.g. by Zheng et al. and Kneip et al. [8,13].

Instead of re-evaluating ﬁh each time for the rotated points X, from scratch,
we observe that it is also possible to manipulate the matrix My, directly. This
has the same effect but it can be computed in constant time, whereas a full re-
evaluation requ/\ires a linear effort with respect to the number of correspondences.
Recomputing M}, for some Ry thus becomes a negligible operation compared to
the actual solving step of the algebraic solver.

As can be seen from 5, rotating the reference points xj, leaves A unchanged
and A, changes as follows,

o~ RO
Ar = ATR(), with Ro = RO 5 (16)
Ry

which together with Eq.9 yields
M), = RIM,,R,. (17)

One can partition My, into nine 3 x 3 submatrices Mgf"] ) and transform each
of them individually, i.e. ﬁg’]) = R}';MS’])RO. Thus, it is possible to exploit
the sparsity of Ry and to avoid explicitly constructing it as a matrix.

Considering again the Cayley-parameterization, the traditional procedure
consists of re-evaluating the problem for two extra randomly gerenated Ry. We
note, that the set of Cayley singularities actually forms a two-dimensional man-
ifold. So, in order to guarantee that R never is near the set of these singularities
for all evaluations, one actually has to perform four evaluations in total. This is
because for three arbitrary pre-rotating matrices, R;, 7 € 1,2, 3, one can always
find a forth rotation, Ry, so that R]JR,; has an rotation angle of 7. Instead of
generating the pre-rotation matrix Rg randomly, we propose to select it from
the canonical set of rotations,

1 1 —1 -1
Ry € 1], -1 : 1 , —1 , (18)
1 —1 ~1 1

where the relative rotation/loetween any two of these elements has the angle .
In this case, recomputing M}, simply amounts to changing signs of some of the
entries in My,. This can be achieved almost instantly and it alleviates some of
the common objections against the use of Cayley parameterization.

2 The implementation of DLS is available at http://www-users.cs.umn.edu/~joel/.
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3 Algebraic Solvers for the Rotation

We will now turn our attention towards solving for the nonlinear rotation, i.e.
finding all solutions of Eq.10 or 15. To this end the rotation matrix is para-
meterized either by quaternions or via Cayley parameters. For a quaternion,
q = [90,q1, 92, q3]", with real part go, the rotation matrix is given by

R+a -6 a3, 2aae—qa),  2(q92 — qg3)
R(Q) = m 2(Q1¢]2 + QO%), q% - ‘J% + q% - qga 2(Q2Q3 - QOlh) . (19)
2(q193 — 90%2),  2(¢2q3 + q0q1), @ — i — ;3 +43

The Cayley parameterization is given by simply fixing qo = 1.

The first order optimality conditions are obtained by taking the derivative of
the error function with respect to the four quaternion parameters, which leads to
a system of four equations with monomials in ¢; of degree three (three equations
for Cayley parametrization).

r(q)” M r(q) =0 (20)

3.1 UPnP Solver

For the UPnP-solver [8] four additional equations were added, which are the
derivatives of the squared unit norm constraint of the quaternion. The solver is
derived for the generalized PnP problem without scale for the minimal case of
three 2d—3d correspondences, but in practice it can be applied to any number.
The derivation of the solver by means of an automatic Grobner Basis solver
generator requires that the two-fold symmetry of quaternions is considered [15].
It is also necessary to model the input data in a consistent way in Z,. A C++
Version of the final algorithm can be found inside the OpenGV framework®. We
separated the linear parameter elimination step from the actual rotation solver,
so we are able to evaluate them separately.

3.2 DLS/gDLS Solver

The DLS-solver [7] uses the Macaulay-Resultant-Matrix method to solve the
algebraic equations. It uses the Cayley parametrization. The solver returns at
most 27 real solutions.

The solver of gDLS [9] is a transcription of the DLS solver from Matlab code
to C++ using Eigen as math library. Apart from that they are absolutely iden-
tical and we use the gDLS-version for efficiency reasons. It can be found inside
the Theia-Library*. For the evaluations we again separate everything related to
setting up the matrix My, from the actual solver.

3 http://laurentkneip.github.io/opengv/.
* http://www.theia-sfm.org/.
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3.3 Own Solver for the Homogeneous Case

We also developed an own solver following the main ideas presented by Kneip
et al. [8], but with the difference that it works on the 9 x 9 homogeneous matrix
Mj, instead of M;. We used Kukelova’s Automatic Solver Generator [16] for its
derivation. Several modifications were necessary, including the consideration of
the two-fold symmetry of quaternions [15] by working only with polynomials
of even degree. Furthermore, we replaced the default random Z,-instantiation
module with an own that generates ‘noiseless’ integer measurements before a
Grobner Basis is derived.

Our final solver uses an elimination template matrix of size 184 x 176. As for
the UPnP-solver the size of the final action matrix is 8 x 8, so our algorithms
also returns at most eight real solutions®.

4 FEvaluation

4.1 Accuracy

We conducted several synthetic evaluations for measuring the accuracy of the
solvers. Our focus is on the applicability of our unifying framework presented in
Sect. 2. Therefore, we replace the computation of My, by our version and only
use the polynomial solvers inside the algorithms (see Sect.3). The solvers are
denoted by DLS/gDLS (OC) [7,9], UPnP (OC) [8], and own solver (OC)
(Sect. 3.3), where ‘OC" refers to the substitution with our orthogonal complement
formulation. We only use the raw polynomial solvers, so no root-polishing is
applied on the obtained solutions afterwards (as opposed to the original UPnP
algorithm). For the DLS/gDLS solver which uses the cayley parametrization, we
employ the strategy outlined in Sect. 2.5, i.e. we solve the problem four times,
collect all solutions, and among the duplicates we only keep the ones which
have the smaller error according to Eq.10. We also apply the same strategy
for the UPnP solver and our own solver, although they do not suffer from the
singularities by the Cayley parameterization. We explain the reason for that in
a separate evaluation below in Sect. 4.2.

General Configurations for Point, Line and Plane Registration. In a
first experiment we analysed the accuracy of the full Euclidean registration with
scale for general geometric configurations.® We evaluated point-to-point, point-
to-line, and point-to-plane registration separately.

We created the evaluation data by first generating Gaussian distrib-
uted transformed points x;C with identity covariance. Given random ground-
truth rotation Rgr, translation tgr and scale sgr € [0.1,10] the inverse

5 Qur algorithm and the evaluation framework is available for academic purposes.
Please contact the authors.

5 More evaluations including the classical PnP problem and various degenerate con-
figurations can be found in the supplemental material corresponding to this paper.
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transformation is applied to obtain the reference points xj;. The subspace
spanned by a geometric entity and its orthogonal complement are obtained by
partitioning the columns of a random orthogonal matrix into N and V. On
the subspace a point is chosen as offset point y. Finally, Gaussian 3d noise is
added to xj, whose covariance was kept fixed to 0.001 times the identity matrix
throughout the evaluation run.

In the experiment we varied the number of input correspondences from which
the matrix M was constructed which, in turn, was used as input for the algo-
rithms. We evaluated the mean error of the rotation, translation, and scale with
respect to ground-truth. Figure 2 summarizes the results. It can be seen that it
is possible to successfully estimate the transformation parameters with all three
solvers for point-to-line and for point-to-plane correspondences and with similar
accuracy. This is an important result in several aspects. While Sweeney et al.
[9] demonstrated that DLS-Algorithm can be extended from the classical PnP
Problem to the Generalized PnP Problem with scale, we show here that it can
also be used for registration from point-to-plane constraints. The same is true
for the UPnP-solver, which also has never been used for point-to-plane registra-
tion. In addition, we note that the UPnP-Algorithm was originally proposed to
solve the classical and generalized pose problem with fized scale. Our evaluations
demonstrate that it can also be used to solve the 7 DoF-problem including the
scale as free parameter.
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Fig. 2. Mean errors of the estimated rotation, translation, and scale for general geo-
metric configurations with varying numbers of input correspondences.
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However, we also observe, that UPnP and gDLS cannot be extended to
point-to-point registration as they fail completely in estimating correct results.
By contrast, our own solver succeeds in this scenario. We compare it to the
algorithm of Umeyama [1] which is the standard algorithm for this case. Both
algorithms are almost identical regarding the accuracy.

4.2 Numerical Stability Under Strong Noise

It has already been observed previously that the numerical stability of the UPnP-
Algorithm degrades for the central case (homogeneous case) when strong noise
is present. Then it may still return very accurate solutions sometimes, but it also
happens more frequently that none of the returned solutions is anywhere near
the correct rotation. When evaluating the median value of the error instead of
the mean value (see [8,14]) the algorithm still showed superior performance.
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Fig. 3. Two independent evaluations showing the influence of the true rotation on the
stability of the rotation solvers under strong noise.

We further investigated this behaviour by analysing the stability as a function
of the true rotation. We generated a set of 20 3D point-to-line correspondences
using the identity matrix as initial ground truth rotation. We then added a fairly
large quantity of noise to the data. The magnitude of the noise corresponded
to five pixels standard deviation when projected onto the image plane in the
PnP case. Next we rotated the reference points xj; with a smoothly varying
rotation, Rg(a). The parameter o was used for the real part gy and was varied
in the range [0,1]. The imaginary values were all set to ¢; = /(1 —a?)/V/3
for i € {1,2,3}. The rest of the data, i.e. y; and N and the noise, was left
unchanged. For each corresponding matrix My, («) we estimate the rotation using
the algorithms from Sect. 3 and evaluated the error with respect to the ground-
truth rotation Rg(«). Figure 3 shows two independent evaluations. As expected,
the DLS/gDLS algorithm fails to compute the correct solution near o = 0, which
represents an element in the set of Cayley-degeneracies. The UPnP-solver and
our own also exhibit singularities. As opposed to the Cayley-parameterization
their location is not known in advance. However, as our analysis shows, they are
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also dependent on the rotation. This implies that the stability of these algorithms
can be significantly improved by re-evaluating the problem for different
pre-rotations of the reference points xj, which can be done very efficiently as
shown in Sect. 2.5.

4.3 Runtime Analysis

We evaluated the run-time performance of the algorithms which were all imple-
mented in C++ and executed single threaded with 3.5 GHz clock rate. Figure 4
shows the timings for the linear parameter elimination part inside the gDLS
and UPnP algorithm compared to our orthogonal complement based approach.
We used 2d-3d correspondences from the PnP problem as input. Both version
exhibit linear complexity. For more than 13 input correspondences our approach
is faster up to a factor of approximately 2.5. Table 1 shows the mean execution
times of the different algebraic solvers. The gDLS-solver is fastest and takes less
that 0.9 ms, followed closely by our solver. UPnP is approximately 50% slower
than gDLS.

Timings for linear parameter elimination
0! >

computation time [sec]

o

wo a6 30000 100000

W w w ooco
number of correspondences

Fig. 4. Computational time of our linear parameter elimination step versus previous
approaches.

Table 1. Mean execution times of the different rotation solvers.

UPnP [8] (Sect.3.1) | gDLS [9] (Sect. 3.2) | our solver (Sect. 3.3)
1.299 ms 0.871ms 0.908 ms

5 Conclusion

We presented a further generalization for Euclidean transformation problems.
We model the point-to-point, point-to-line and point-to-plane constraints using
an orthogonal complement representation, which makes it possible that they
can be used together in one single framework very elegantly and efficiently. Our
formulation also allows to use the different existing algebraic solvers for the
rotation interchangeably, so they can be compared against each other on varying
problems. We also propose an own solver, which additionally solves the case of
point-to-point registration with high precision, where existing solvers failed.
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Abstract. Energy-minimization methods are ubiquitous in computer
vision and related fields. Low-level computer vision problems are typi-
cally defined on regular pixel lattices and seek to assign discrete or con-
tinuous values (or both) to each pixel such that a combined data term
and a spatial smoothness prior are minimized. In this work we propose
to minimize difficult energies using repeated generalized fusion moves.
In contrast to standard fusion moves, the fusion step optimizes over
binary and continuous sets of variables representing label ranges. Fur-
ther, each fusion step can optimize over additional continuous unknowns.
We demonstrate the general method on a variational-inspired stereo app-
roach, and optionally optimize over radiometric changes between the
images as well.

1 Introduction

Many computer vision applications rely on finding a most-probable label assign-
ment for each pixel as an important subproblem. The dominant formulation as
a maximum a-posteriori problem leads to a corresponding energy minimization
task, where the energy is typically comprised of per-pixel data terms and smooth-
ness terms defined over small pixel neighborhoods. Often, the admissible set of
labels is naturally continuous or very large and therefore “almost continuous.”
There is a lot of work on approximate discrete inference, which is applicable
for finite label sets, and continuous labeling problems are often solved with dis-
crete methods after discretizing the label space. Continuous labeling problems
with convex energies are relatively easy to solve by standard convex minimiza-
tion methods. Therefore, continuous labeling tasks with non-convex energies are
more interesting and usually much more relevant in applications.

In this work we consider continuous labeling problems with piecewise con-
vex energy, which includes as an important special case truncated convex terms.
Determining a minimizer of such problems can be interpreted as first finding
which of the convex branches is active and subsequent estimation of the con-
tinuous labels. Thus, piece-wise convex energies naturally lead to a discrete-
continuous structure for the unknowns, with the discrete state describing the
convex branch and the continuous labels defining the desired solution. We build
on the convex discrete-continuous (DC-MRF) formulation proposed in [1] for
such problem classes. While in principle this method is directly applicable for a
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wide class of labeling problems, the computational cost and the quality of the
relaxation can be prohibitive. Therefore we propose to use a generalized fusion
move strategy, and employ the DC-MRF formulation only as a subroutine to
solve each fusion step. In contrast to existing fusion move approaches for solving
continuous labeling problems our generalized fusion move enables (i) the refine-
ment of participating labeling proposals and (ii) allows optimization over addi-
tional continuous unknowns. The first advantage reduces the requirements on
smart proposal generation and—we believe—also decreases the bias introduced
by the exact details of the utilized proposal generation strategy. The second
advantage allows more efficient joint optimization over several sets of unknowns
(such as joint estimation of disparities and radiometric alignment demonstrated
in Fig. 1 and Sect. 7), since (depending on the problem structure) proposals need
only to account for a subset of unknowns.

Fig. 1. Simultaneous estimation of continuous-valued disparity map d(x) and per-pixel
radiometric gain factor v(x). (a) left image; (b) right image; (c) true disparity; (d)
disparity estimated using 5 x 5 ZNCC and belief propagation using truncated L'-
smoothness prior; (e) estimated disparity d using generalized fusion moves; (f) esti-
mated gain ~. Irregularly shaped shadows and highlights are successfully recovered
without “fattening” at occlusions. As a problem in a multidimensional discrete label
space, this would be intractably large. This paper’s generalized fusion moves allow effi-
cient optimization over non-convex energies in continuous label spaces. Best viewed on
screen.

2 Related Work

Move-making algorithms for discrete labeling problems on loopy graphs are an
efficient alternative to e.g. belief propagation or message-passing methods for
approximate inference. In particular, a-expansion and a-(-swaps [2] are often
employed for low-level computer vision tasks auch as segmentation and stereo.
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The success of move-making algorithms depends on the “richness” of the allowed
moves in each step, and a lot of research is devoted to extending a-expansion and
a-f-swaps to enable more powerful moves (e.g. [3-5]). Note that e.g. a-expansion
is a very restricted move: for each node (pixel) either the current label is kept,
or a node is relabeled to a particular label a. These moves are iterated over all
possible labels a until covergence.

Our work shares a lot of motivation with the “range moves” concept origi-
nally proposed in [6] and refined later in [7—9]: here each move-making step can
keep the current label at a node, or switch to a label out of a contiguous label
range. Thus, each move is much more expressive than e.g. pure a-expansion, but
the pairwise (smoothness) cost in these works is restricted to truncated convex
priors.

For labeling tasks with continuous state spaces (such as computational stereo
and optical flow with subpixel accuracy) the algorithms mentioned above can not
be directly applied. Very often continuous state spaces allow direct energy min-
imization to obtain a labeling (one umbrella term is “variational optical flow”),
but these methods often do not cope well with the highly non-convex structure
of the underlying energy and can return poor local minima. One can expect
to escape such local minima by using a suitable move making algorithm allow-
ing larger update steps in the labeling. To our knowledge the first notion of a
move-making method for continuous labeling problems is the “optimal splicing”
concept introduced in [10], but the general “fusion move” technique was pop-
ularized in [11] (for discrete label spaces) and in [12] (for continuously valued
problems). The underlying idea is simple: two labeling proposals (with underly-
ing discrete or continuous state spaces) are optimally merged to yield a solution
with lower energy. How the two proposals should be optimally merged is sub-
ject to a binary segmentation problem, which usually can be efficiently solved.
These fusion move steps are repeated to obtain label assignments with decreasing
energy. The a-expansion method can now be understood as particular instance
of a fusion move method with the current best solution and a constant labeling
as proposals to merge. The quality of the result clearly depends on the propos-
als: it is e.g. demonstrated in [6,13] that the choice of proposals may introduce a
particular bias in the returned solution even if the optimized energy has no such
bias. If the energy to minimize is differentiable, new proposals can be generated
by gradient steps [14].

Our setting explicitly addresses continuous state spaces, but retains a discrete
domain, e.g. a regular pixel grid with 4-connected neighborhoods. Thus, our
setting is different to move making algorithms for label optimization derived on
continuous image domains such as [15,16].

This work is based on the convex relaxation framework for discrete-
continuous random fields presented in [1,17], which was subsequently generalized
to a larger class of dual objectives [18] and further extended to spatially contin-
uous image domains [19].
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3 Notations and Background

Notations: In the following we use the notations ¢ (z) and «{x € C} to write a
constraint € C in functional form, i.e. 1c(z) = 0 iff x € C and oo otherwise.
Further, we will make extensive use of the perspective of a convex function f:
(z,y) — xf(y/x) for x > 0 (see e.g. [20]). We denote the lower semi-continuous
extension of the perspective to the case x = 0 by fg, pronounced “persp f”.
fo can be computed as the biconjugate of the standard perspective, and usually
one obtains f(0,y) = 2{0}(y). In the context of this work the perspective of a
(convex) function f can be understood as convex extension of the conditional

fly) ifz=1
(x,y) — 40 ifz=0 (1)
00 otherwise.
Further, we denote the unit simplex by A, = {x e0,1]": >,z =1}

We represent an image domain as ﬁnlte rectangular lattice over pixels s € V
with an edge set £ induced by a 4-neighborhood connectivity. Thus, in this
setting the degree deg(s) of a node s, which we are going to use later, is always
four.

The DC-MRF Model: In this section we briefly review the DC-MRF formulation
for inference proposed in [1], which generalizes approximate discrete inference
(discrete state spaces and domains) to continuous-valued label spaces by replac-
ing the standard constant potentials with convex potential functions. For given
families of convex functions {fi}scy and {9} (s.pyee (with é,5 € {1,...,L}) the
discrete-continuous formulation reads as

EDC-MRF(X7y> = Z(f;) s’ys Z Z gst s%’ygﬂmy;]t—»t) (2)

EX (s,t)EE 1,

subject to the following marginalization and “decomposition” constraints
.’Eé = Z :L‘gﬁ m% = Z xéjt Z yst%s Z ystﬂfﬂ (3)
j i

and simplex constraints x, € Ap, x4 € Arz2. The unknown vector x collects the
“pseudo-marginals” (i.e. x,; indicates a one-hot encoding of the active poten-
tial function f;7 state at edge (s,t)). The unknowns y indirectly represent the
assigned continuous labels in the solution, which are actually given by the ratio
y + x (element-wise division). The DC-MRF model is an extension of the stan-
dard local-polytope relaxation for discrete labeling problems by allowing the
unary and pairwise potentials now to be arbitrary piecewise convex functions
with continuous label arguments. The formulation Eq. 2 is used in [1] to model
convex relaxations of non-convex continuous labeling tasks. In particular, the
data term for a continuous labeling problem is allowed to be piecewise convex
instead of globally convex, but the same construction applies to piecewise convex
higher-order potentials.
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3.1 Partial Optimality and Autarkies

In Sect. 5 we will describe an approach to potentially speed up minimization of
instances of Epc_mrr by first solving a simpler surrogate problem, which allows
to fix some (in the ideal case all) 2% to either 0 or 1 before fully minimizing the
discrete-continuous model. This surrogate problem is a standard (not necessarily
submodular) binary labeling task with at most pairwise potentials. The under-
lying technique in Sect. 5 is heavily inspired by the methods proposed in [21-23]
to certify partial optimality of label assignment for certain discrete inference
problems. In the following exposition we follow in particular [23] (specializing
the notation to the case of binary label spaces £ = {0, 1}): if we have two label
assignments k,1:) — £, then we introduce the component-wise minimum k A1
and maximum k V1 via

(kA D)g = min(ks, ) (k V1) = max(ks,ls).

Note with our binary label set these definitions coincide with a component-
wise logical and and logical or. Given two label assignments 1™, 1™2* such that
[min < [maX e define a “clamp” operation for another labeling k
min ymax) def min max
clamp(k; ™", 1M%%) = (k v 1™") A1,
A pair of labelings (1™, 1m2%) is called a weak autarky, if for all label assignment
k we have

f(clamp(k; ™2 1™8%)) < (k).

If the inequality is strict for all k such that k # clamp(k; 1™, 1ma%) " then
(Imin [max) forms a strong autarky. Weak autarkies ensure that there exists at
least one optimal solution that is “sandwiched” by 1™ and I™#% and strong
autarkies guarantee that every optimal solution lies between 1™ and 1m#*, If
we have a strong autarky available, we can reduce the search space in advance.
For binary labeling problems (as ours), a strong autarky (1™ 1™2%) allows to
fix the binary state at nodes s whenever [™® = [M8%_ The following two results
are essential for our construction:

Result 1 (Theorem 1 in [23]). Let f = g+ h, and let (™™ 1™2%) pe strong
autarky for g and a weak autarky for h. Then (1™, 1m2%) js q strong autarky
for f.

This result is easily verified by checking the strong autarky condition. The fol-
lowing statement provides sufficient conditions for a one-sided autarky to be a
weak one for h:

Result 2 [22,23]. For each s € V let Ky C L be a subset of states. If h satisfies
(fOT lSalt S ‘67 k/s S ICS; kt S Kt)

hs(ls V ks) < hs(ls)
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and
hst(ls \ ksylt \ kt) S hst(ls; lt)a

then (K™, 1) is a weak autarky for h for all k™" € & Ks.

In a nutshell, g are submodular potentials (and therefore efficient to solve for
exactly) constructed from the original potentials f, that in a carefully designed
way favor “smaller” labels (smaller in terms of an arbitrary chosen linear order
of labels). If an optimal labeling k for potentials g returns a “large” label k, at
node s as its optimal choice, then none of the smaller labels I < ks can appear
at s in an optimal solution for f.

Autarkies are a refined (but computationally also more expensive) variant
of dead-end elimination theorems (e.g. [24] and we refer to [25-27] for dead-end
elimination methods in continuous label spaces).

4 Discrete-Continuous Fusion Moves

Let G = (V,€) be an underlying graph (usually a 4-conntected or 8-connected
grid), and the task is to solve a continuous label assignment problem w.l.o.g.
with at most pairwise terms,

ELabeling(z) = Z fs (Zs) + Z st (ZS, Zt) (4)

seV (s,t)e€

for a node-specific data term fs and an edge-specific smoothness term gg.
If fs and g5 can be conveniently written as piecewise convex functions (e.g.
fs(2) = minjeqr, N} fi(z) with f? convex), then the DC-MRF relaxation is in
principle applicable, but this global relaxation might be weak and very expen-
sive to solve. One method to approximately solve a continuous labeling problem
such as Epabeling are fusion moves, which repeatedly merges two proposals with
continuous label values assigned to each pixel. Optimal combination of proposals
is achieved by solving a binary segmentation task in each iteration. Fusion moves
require the exact specification of proposal labelings, and the fusion move itself
does not refine the continuous labels.

In many applications the smoothness term has a parametric, piecewise con-
vex shape with a small number of branches (e.g. truncated linear or quadratic
pairwise costs). Further, the data term can be highly non-parametric (such as
matching costs used in computational stereo and optical flow), but convex sur-
rogate costs valid around a current continuous proposal can often be found (and
such approximations are successfully used in the literature, in particular for
variational optical flow).

We propose to extend the concept of fusion moves in order allow simultaneous
refinement of the continuous labels in addition to the per-node binary decision,
which of the two proposals to select. In the simplest setting we assume that g
is convex, i.e. non-convexity of the overall problem is introduced only via the
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node-specific data term f,. Further, given two proposal labelings, z° and z', our
problem under consideration is to determine a combined label assignment z, that
is a minimizer of

Erusion(x,2) = Z Z T f (2s) +Z Z 9st(2s,2t) (5)

s ie{0,1} (s,t) i,5€{0,1}

such that 22 > 0, 2% + 2! = 1, and the labels z, are “near” to either z0 or z!,

1949 ifzd =1
ned i

[ls,ul] fal=1
for appropriate intervals [I%,ul] containing zi. We define fi as the restriction
of fs to the range [I%,u%]. In this context being “near” to either z’ (i € {0,1})
means that f! is convex in [I%,u?] and ggt is convex in [I%,u’] x [I2,uZ] for all

i,7 € {0,1}. W L.o.g. we assume that [I%,u%] and [I!, u]] are non-overlapping. We
denote by g} the restriction of g to [I%,u?] x [IZ,u], and obtain

EFusmn X Z Z Z r fZ Zs + Z Z xstgst Zsazt) (6)

s ie{0,1} (s,t) i,5€{0,1}

subject to the marginalization constraints on x, x’ =2, 2 and x] = Do x4,
and simplex constraints x; € Ao, x4 € Ay. This energy is stlll not convex, and
we use the convex relaxation for piece-wise convex labeling problems proposed
in [1] to arrive at

EDC Fuswn X y Z Z fl svyi) (7)

s i€{0,1}

+ Z Z gst sjtv y;jtﬂsv y;jtﬁt)

(s,t) 3,5€{0,1}

subject to the marginalization/decomposition constraints in Eq.3, and the
respective simplex constraints on x. Recall that the continuous labels z are
represented via the ratios y + x. The convex relaxation can be made stronger
(not necessarily strictly stronger) by moving the unary cost function f¢ to the
pairwise ones [17]. In particular, we evenly distribute f! to the adjacent edges,
i.e. we introduce

def i 1
h = 94+ fi+

deg(s) E ( )ft (8)

deg

and rewrite Epc_pusion above as

EDC Fusmn X y Z Z h;]t ;'?t’yst*),s?yst*)t) (9)
(s,t) 1,5€{0,1}

subject to the same constraints. Note that

ml;l EDC Fusion (X Y) > ml}? EDC Fusion (X y)
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since EDC_FuSiOH is a tighter relaxation than Epc.pusion- Note that the struc-
ture of Epc.-Fusion 1S generally simpler than EDC_Fusion (the former has e.g. fewer
constraints). In our examples below the computational advantage of Enc_pusion
over EDC_FuSion turns out to be minimal, consequently we generally employ
the stronger relaxation EDC_Fusion in the following unless explicitly noted. Ulti-
mately, either Eq.7 or 9 is the convex optimization problem to solve in each
discrete-continuous fusion step.

We have described the discrete-continuous fusion moves for a setting where
the unknown at each node/pixel is just a continuous label. These fusion moves
can be immediately generalized to vector-valued labeling problems (as illustrated
in Sect. 7) and even to mixed discrete-continuous state spaces.

Implementation: To our knowledge there is no fast combinatorial algorithm
to minimize either Eq.7 or 9, and one has to revert to generic methods from
convex optimization. We utilize a first order method [28] due to its simplicity
and relative efficiency to determine a minimizer of the convex programs Eqs.7
and 9, respectively. The employed method maintains primal and dual variables,
which we found beneficial over purely optimizing a (smoothed) dual as proposed
in [17,18]. Since optimizing Fpc._rusion (OF EDC_Fusion) may lead to fractional val-
ues for x% (which can be understood as a per-pixel soft preference for proposal
1), we determine a suitable threshold to binarize x by sweeping over the [0, 1]

range. The threshold value p leading to the smallest original energy is applied.

0

The label at pixel s in the updated proposal is determined as z; « y? /x;,

where if = 0 if 20 > p and 1 otherwise.

5 Partial Optimality

Neither Epc.Fusion DOT EDC_FuSion can be optimized by a fast combinatorial algo-
rithm, and both energies require to our knowledge a generic optimization app-
roach for non-smooth convex problems. Consequently, it can be beneficial, if the
optimal state x% of many nodes/pixels can be determined in advance by a faster
method, i.e. before fully optimizing Epc.rusion- In this section we propose to
solve a surrogate discrete problem with only binary labels in order to commit
early to either 20 = 1 or 2! = 1 in Epc_rusion /E‘DC_FuSion without fully mini-
mizing the full optimization problem. Usually, this early committment will allow
only a subset of pixels to be labeled in advance. Since our surrogate problem is
just a discrete binary segmentation problem with at most pairwise potentials,
this labeling can be solved much faster than Epc.rusion-

Construction of g: In order to construct a surrogate problem over binary labels,
which allows us to determine a partial labeling (recall Sect.3.1), we need to
construct submodular potentials g = (gst)stce as follows: if for an s € V one has
1 € K, then hg has to satisfy the following constrains,

hat (26, 26) < hQp (24, 21) V(2 2) € Rygs (24, 21) € RY
hitl (st Zt) < h;?(z‘é, Zzlt) V(ZS, Zt) € R;tl’ (Z;, Zé) € R;?’
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where RY o (18, ul] x [lZ,ul]. If 1 € K, then the following constraints have to
be added,

hgtl (ZS, Zt) < hgg(zgv Z;) V(287 Zt) € R(thlﬂ (Z;, Z;) € Rgto
h;g (Zs, Zt) < hgfl(zls’ Z£> V(ZS, Zt) € RH (Z/ ) Z;) € Rgt}

st s
If s = {0} (i.e. it is already known that state 0 is not part of any optimal
solution at s), then this node does not add any constraints since I; V 0 = [;. We
define
hG < min hi(z, ) g = max (2, )
(zs,2¢)ER (zs,2¢)ER,

(similar for f). Dropping the subscript st for clarity, and using h = f — g, the
constraints on h rewritten in terms of g read as

goo < ioo + min{fn _?017i10 _?10

}

Further we have the submodularity constraint, g% < ¢°! + ¢'® — ¢g'!. One par-
ticular solution (in analogy to [22,23]) is to assign

10

911 _ ?11 g01 _ f01 10

(S
Il
I~

and
00 __ - 01 10 11 700 . o1 01 ,10 10
g”° =min{g” + ¢ —g" P Hmin {f -7 S —F

Intuitively, g is constructed to be submodular and to “favor” label 0in its solu-
tion. Thus, if 1 = (I5)sey is the optimal binary labeling for potentials g, then
ls = 1 implies that :c; = 1 in the fusion move energy Epc_pusion (assuming that 1
is the unique optimal solution for g). We solve the submodular problem induced
by g to fix x5 in Epc.Fusion i advance where possible.

6 Example 1: TV-L!-Variational Stereo

The first application demonstrates how the proposed generalized fusion moves
can be used to improve the results of a variational stereo approach. For a given
rectified pair of (grayscale) images I” and I one is interested in computing a
dense disparity map d such that I'*(x) ~ I*(z +d) for each pixel x (where x +d
is a shorthand notation for z + (d,0)”). Variational methods for dense disparity
estimation seek a minimizer of

Euoreold) = /Q 6 (IH () — 1%z + d(x))) dz + ¥(d), (10)
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Fig.2. Top row: result of generalized fusion moves. Bottom row: disparity maps
obtained using a variational multi-scale approach. The left three columns use A = 2L
and the three right ones A = 5L. We also report the resulting energy values F11_gcreo
below the images.

where ¢ is a function penalizing intensity differences, and ¥ is the regularization
(smoothness) term. The data term above assumes brightness constancy, and can
be replaced by different expressions. Even if ¢ and ¥ are convex functions, the
energy in Eq. 10 is usually not, since the warped image I? as a function of d,
d — Ifo(Id+d), is not convex. Consequently, I'(z+d(z)) is typically linearized
around a current linearization point d, i.e.

IRz +d) ~ Iz +d)+ (d—d) - V Iz + d).

In order to cope with the limited validity of the above approximation, typical
variational methods for dense disparity (or dense optical flow) estimation build
on a multi-scale, coarse-to-fine scheme. If we use a linear interpolation to sample
I% at fractional positions, for disparity estimation the above relation is ezact,
if d — d is sufficiently bounded. Due to its robustness and simplicity we focus
in the following on the L! intensity difference as the data term, i.e. ¢(-)=|-|.
Further, we employ the total variation regularization for the smoothness term
¥, which allows discontinuities in the solution and is still globally convex.
Since we are operating on a discrete domain (a regular pixel grid), the con-
tinuous energy Eq. 10 has a discrete counterpart (with our choice of ¢ and ¥),

ELl-stereo(d) = Z ‘IsL - IR(S + ds)| + HvdHl ) (11)

S

where ¥/ is a discrete gradient operator (e.g. computed via finite differences). If
we add respective bounds constraints on d; for all s (which depend on the current
linearization point d) the energy in Eq. 11 is convex (it is even a linear program
with our choice of the data and smoothness terms). If we knew a linearization
point d close to an optimal solution in advance, then minimzing Fgiereo Would
just return a refined (and optimal) disparity map d. We do not have a good
disparity map d available, but we can hypothesize any d' and try to merge
good aspects of d! into our current best solution d°.



Generalized Fusion Moves for Continuous Label Optimization 7

Let § be the radius of the “trust region”, where the linearization of image
intensities holds. If linear interpolation is used to sample from I%, then § = 0.5
pixels. One DC fusion move amounts to solve (note that y = x ® d with d our
desired continuous labeling)

§ : E : w ) j
-EL1 stereo- fusmn X, y hst Lsts Yst—ss yst—»t) (12)
st i,j€{0,1}
stx —xst—l—xst xt—xst—&—x

yé = yst—>s + yst—>s yt = yst—>t + yet—nﬁ

- A _
hY (ds, d;) = IR 4 (dy — dV)V, IR — I
st( 3 t) deg(s)‘ s +( s)v s s |
A R 77 R L
+ deg(t) ‘It + (dt - di)vwlt - It ‘
+|ds — di| + 1[—6,5]2 (ds — CZZS, dy — ng) . (13)

The perspective of the above function actually appearing in Eq. 12 is
() —
(hst)®(‘r7 Ys, yt) - deg(s)
A -
m‘m(ﬁz — &V I -1+ ytVzItR‘
+ ys =yl +120(2)
+{ys € z[d} — 8,d% + 8], y: € x[d] — §,d} + 8]}

o (IF = diVLIF — IF) + yo VL IT|

Jr

Each fusion step minimizes Eq. 12. We initialize one proposal as local best-cost
solution using absolute intensity differences, and the merged proposals are con-
stant but integral disparity hypotheses in a random order. The results shown in
the numerical experiments are obtained after one full round of fusion moves, i.e.
after L fusion steps. L is the maximum disparity. Figure 2 compares the results of
optimizing E71_giereo Via the proposed generalized fusion moves with the results
obtained by direct variational minimization using a coarse-to-fine framework and
frequent relinearization (warping) steps (20 per image pyramid level in our test).
We chose A = 2L and A = 5L in Ep1_gereo (in order to compensate for varying
number of disparities). Direct variational methods optimizing the non-convex
energy Eri gereo Work well in some cases (especially with strong smoothness
terms), but have difficulties in recovering from mistakes at coarser levels and are
generally prone to miss finer details.

7 Example 2: Towards a Generative Model for Stereo

In this section we consider a stereo problem similar to the formulation in the
previous section, but we explicitly allow radiometric differences between the
images. Radiometric changes are usually addressed in computational stereo by
using an appropriately invariant similarity measure such as zero-mean NCC,
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the census transform or mutual information (see e.g. [30]). In this section we
take a similar path as e.g. [31] by jointly determining a disparity map and
radiometric alignment between images. Consequently, we still employ a local,
pixel-wise similarity cost,

|FYSISL*[R(5+ds)|7 (14)

where ;4 is a spatially varying radiometric gain to compensate illumination and
exposure differences between I and I?. Note that a spatial prior on v, is needed
to avoid a nontrivial solution. The advantage of retaining a pixel-wise matching
cost is e.g. that the typical “foreground fattening” effect [32] of radiometrically
robust but patch-based matching costs is avoided. In order to keeps matters
simple, we do not aim for a fully generative model and consequently do not
optimize over an additional latent “clean” image I*. As with the disparity map
d our prior assumption is that v is bounded from above and below, and that - is
piecewise constant. Hence, we extend Eq. 12 such that there are two continuous
unknowns per pixel, the disparity ds and the gain compensation ~s:

E E 1] 24 ij ij ij
EL1 stereo+-+- fuslon XY, g het LstrYst—sr Yst—ts st—so gst—>t)

s,t i,j€{0,1}
(15)
such that
d—elall o=l
: 0 ”
y; = y;tHs + y;t—».s yt = yst—»t + yst—»t
i i0 i1 j 0j
92 = g;t—w + g:'t—ns gi = gsg—>t + gat—>t
and 29 + 2! =1, x > 0, where (hijt-)@ is the perspective of
R (ds, dy, s I 4 (dy — &)V IE -~ IF
( > Aty 7. 7’775) deg ’ ) o ’
+ | F ot (de — @)V I — I
deg
+|ds — di| + ofys — el
+ Z[_575]2 (ds — CZZS, dt d ) + 7,[ min mdx]z(’ys,’yt). (16)

Observe that we do not prefer a particular value of ~4 since we use a uni-
form prior in the range [y™", y™%%]. In our experiments we set y™" = 1/4 and
,_Ymax — 4'

In Fig. 3 we show estimated depth maps for radiometrically varying bench-
mark data [30] using the same low resolution setup as in [29]. Our approach
is able to optimize the standard resolution of the benchmark data as displayed
in Fig. 1. All results are generated with fixed values A\ = 2L (where L is the
maximum disparity) and o = 50. We use L = 80 in Fig.1 and L = 40 in Fig. 3.
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Fig. 3. Joint estimation of disparities and brightness changes and a comparison to [29].
(a) left image; (b) right image; (c) true disparity; (d) estimated disparity d using
generalized fusion moves; (e) result from [29]; (f) disparity estimated using 5 x5 ZNCC
and belief propagation using truncated L'-smoothness prior. Best viewed on screen.

8 Conclusion and Future Work

In this work we generalize standard fusion moves—which optimally merge two
given proposals—to fusion moves that may refine the proposals and which can
optimize over additional continuous latent variables. Consequently, the proposal
labelings provided in each fusion step can be inexact, which reduces the burden
on smart proposal generation techniques. Additionally, the generalized fusion
moves allow inclusion of extra continuous unknowns into the energy to be min-
imized without the need of including these into the proposal labelings (Fig. 4).

Fig. 4. Comparison between the weaker relaxation Epc-rusion (&,b) and the stronger
one Epc_rusion (¢, d) for TV-L! stereo. (b, d) illustrate the solution {z!}.cy for a partic-
ular fusion move, which ideally should be binary. (b) is less binary than (d), but in this
case the returned label assignments (a, c) are very similar (in their visual appearances
and final energies).

The proposed discrete-continuous fusion moves are very efficient in terms
of memory consumption, but the optimization task is expensive compared to a
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combinatorial discrete fusion move (the run-times range from minutes to hours
depending on the problem instance). On the other hand, each move can do
much more work, so the total number of fusions is expected to be lower. In
contrast to discrete labelling solutions, however, the first order methods typically
employed to minimize convex problems are trivially data parallel and amenable
to GPU implementation. We also conducted initial experiments to utilize an
early committment approach based on a variant for partial optimality [22,23],
but unfortunately most pixels remained unlabeled. Investigating into refined
formulations of partial optimality in a discrete-continuous context is left for
future work. Another interesting direction for future research is a quantitative
analysis of how the proposal generation influences the effective labeling prior.
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Abstract. Recent study shows successful results in generating a proper
language description for the given image, where the focus is on detect-
ing and describing the contextual relationship in the image, such as the
kind of object, relationship between two objects, or the action. In this
paper, we turn our attention to more subjective components of descrip-
tions that contain rich expressions to modify objects — namely attribute
expressions. We start by collecting a large amount of product images
from the online market site Etsy, and consider learning a language gen-
eration model using a popular combination of a convolutional neural net-
work (CNN) and a recurrent neural network (RNN). Our Etsy dataset
contains unique noise characteristics often arising in the online market.
We first apply natural language processing techniques to extract high-
quality, learnable examples in the real-world noisy data. We learn a gen-
eration model from product images with associated title descriptions,
and examine how e-commerce specific meta-data and fine-tuning improve
the generated expression. The experimental results suggest that we are
able to learn from the noisy online data and produce a product descrip-
tion that is closer to a man-made description with possibly subjective
attribute expressions.

1 Introduction

Imagine you are a shop owner and trying to sell a handmade miniature doll.
How would you advertise your product? Probably giving a good description is
one of the effective strategies. For example, stating Enchanting and unique fairy
doll with walking stick, the perfect gift for children would sound more appealing
to customers than just stating miniature doll for sale. In this paper, we consider
automatically generating good natural language descriptions for product images
which have rich and appealing expressions.

Natural language generation has become a popular topic as the vision com-
munity makes a significant progress in deep models to generate a word sequence
given an image [12,27]. Existing generation attempts focus mostly on detecting
and describing the contextual relationship in the image [18], such as a kind
of object in the scene (e.g., a man in the beach) or the action of the sub-
ject given a scene (e.g., a man is holding a surfboard). In this paper, we turn
© Springer International Publishing AG 2017
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our attention to generating proper descriptions for product images with rich
attribute expressions.

Attributes have been extensively studied in the community [3,14,23]. Typical
assumption is that there are visually recognizable attributes, and we can build a
supervised dataset for recognition. However, as we deal with open-world vocab-
ulary on the web, we often face much complex concepts consisting of phrases
rather than a single word. The plausible approach would be to model attributes
in terms of a language sequence instead of individual words. The challenge is that
attribute expressions can be subjective and ambiguous. Attribute-rich expres-
sions, such as antique copper flower decoration, or enchanting and unique fairy
doll, require higher-level judgement on the concept out of lower-level appearance
cues. Even humans do not always agree on the meaning of abstract concepts,
such as coolness or cuteness. The concept ambiguity brings a major challenge in
building a large-scale corpus of conceptually obscure attributes [20,29].

We attempt to learn attribute expressions using large-scale e-commerce data.
Product images in e-commerce websites typically depict a single object without
much consideration to the contextual relationship within an image, in contrast
to natural images [18,21,25]. Product descriptions must convey, specific color,
shape, pattern, material, or even subjective and abstract concepts out of the
single image with a short title, or with a longer description in the item detail for
those interested in buying the product, e.g., Beautiful hand felted and heathered
purple & fuschia wool bowl. Although e-commerce data look appealing in terms
of data availability and scale, descriptions and meta-data such as tags contain
web-specific noise due to the nature of online markets, such as fragmented texts
for search optimization or imbalance of distribution arising from shop owners.
Naively learning a generation model results in poor product description, e.g.,
made to order. In this paper, we apply natural language processing to extract
images and texts suitable for learning a generation model.

Our language generation model is based on the popular image-to-sequence
architecture consisting of a convolutional neural network (CNN) and a recurrent
neural network (RNN) [12,27]. We learn a generation model using the product
images and associated titles from the pre-processed dataset, and show that we are
able to generate areasonable description to the given product image. We also exam-
ine how e-commerce meta-data (product category) and optimization to the dataset
(fine-tuning) affect the generation process. We annotate a handful of images
using crowdsourcing and compare the quality of generated attribute expressions
using machine translation metrics. The results suggest that e-commerce meta-data
together with fine-tuning generate a product description closer to human.

We summarize our contribution in the following.

— We propose to learn attributes in the form of natural language expression,
to deal with the exponentially many combination of open-world modifier
vocabulary.

— We collect a large-scale dataset of product images from online market Etsy,
as well as human annotation of product descriptions using crowdsourcing for
evaluation purpose. We release data to the academic community'.

! http://vision.is.tohoku.ac.jp/~kyamagu/research /etsy-dataset.
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— We propose a simple yet effective data cleansing approach to transform
e-commerce data into a corpus suitable for learning.

— Our empirical study shows that our model can generate a description with
attribute expressions using noisy e-commerce data. The study also suggests
utilizing e-commerce meta-data can further improve the description quality.

2 Related Work

Language Generation. Generating a natural language description from the
given image has been an active topic of research in the vision community
[6,11,12,21,27,28]. Early attempts have used retrieval-based approach to gener-
ate a sentence [11,21], and recently a deep-learning approach becomes a popular
choice. For example, Vinyals et al. [27] shows that they can generate a high-
quality language description of the scene image using a combination of a CNN
and a RNN. Karpathy et al. [12] also shows that their model can generate par-
tial descriptions of given image regions, as well as a whole image. Antol et al. [1]
studies a model which is able to generate sentences in answer to various questions
about given images.

In this paper, we are interested in generating a natural language expression
that is rich in attribute. Previous work mostly focuses on natural images where
the major goal is to understand the scene semantics and spatial arrangement,
and produce an objective description. The closest to our motivation is perhaps
the work by Mathews et al. [20] that studies a model to generate more expressive
description with sentiment. They build a new dataset by asking crowd workers
to re-write description of images contained in MS-COCO, and report successful
generation with sentiment, for instance, beautiful, happy, or great. We take a
different approach of utilizing e-commerce data to build an attribute-rich corpus
of descriptions.

Attribute Recognition. Semantic or expressive attributes have been actively
studied in the community as a means of ontological entity [16] or localizable
visual elements [3], expecting that these semantic information can be useful for
many applications. In this work, we consider attribute expressions as a natural
language description that modifies an object (specifically, a product) and conveys
details possibly with abstract words. The attribute expressions are from open-
world vocabulary in the real-world e-commerce data. In that sense, we have
a similar spirit to weakly supervised learning [5,9,24]. We propose to use a
sequence generation model rather than attempting to learn a classifier from
exponentially many combinations of attribute expressions.

Vision in E-Commerce. Several attempts have been made to apply computer
vision in e-commerce applications [7,8,13,14,19], perhaps for the usefulness in a
specific scenario such as better user experience in retrieval or product recommen-
dation. The earlier work by Berg et al. [3] propose a method of automatic visual
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attribute discovery using web data, specifically product images from shopping
websites. Our work has the same motivation that we wish to learn language
description of attributes from the e-commerce data, though we use variety of
products and try to capture abstract attributes using language generation model.
Very recently, Zakrewsky et al. [30] reports an attempt of popularity prediction
of products offered in Etsy. The results suggest the potential usefulness of image
feature for selling strategies, such as advertisement.

3 Language Generation Model

Our language generation is based on the combination of convolutional neural
networks (CNN) to obtain image representation and recurrent neural networks
(RNN), using LSTM cells to translate the representation into a sequence of words
[12,27,32]. In addition to the image input, we also consider inserting e-commerce
meta-data to the RNN. In this paper, we utilize the category of product as extra
information available in the e-commerce scenario, and feed into the RNN as a
one-hot vector. Note that each product could have more than one category, such
as a main category and sub categories, but in this paper we use only the main
category for simplicity. Figure 1 illustrates our generation model.

\_-? — CNN — Image

Feature

Generated
. RNN Sentence

Meta-data
“clothing/women/dress”

“Yellow Cocktail Dress”

Fig. 1. Our language generation model combining CNN and RNN.

Let us denote the input product image I’s feature by z, = CNN (I), the one-
hot vector of the product category in meta-data by z., and the one-hot vector
of the currently generated word at description position ¢ by x;. Our sequence
generator is then expressed by:

)5 Whi (23 2] ;0] (t=1)

" [1; Whaxe;he—1]  (otherwise)

(i, f,0,9) = WrsrmHin, (2
ct=f0Oc-1+i0g, (3
h; = 0 ® tanh(cy), (4
v+ = softmax(W,phy + b,), (5

(1)

NN NN

where Wy, Whae, Wrstar, Won, b, are weights and biases of the network. We learn
these parameters from the dataset. Gates i, f, 0,g are controlling whether each
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input or output is used or not, allowing the model to deal with the vanishing
gradient problem. We feed the image and category input only at the beginning.
The output y; represents an unnormalized probability of each word, and has
the length equal to the vocabulary size 4+ 1 to represent a special END token to
indicate the end of a description.

To learn the network, we use product image, title and category information.
The learning procedure starts by setting hg = 0, y; to the desired word in the
description (y; = y; indicates the first word in the sequence), and x; to a special
START symbol to indicate the beginning of the sequence. We feed the rest of the
words from the ground truth until we reach the special END token at the end.
We learn the model to maximize the log probability in the dataset. At test time,
we first set hg = 0, 21 to the START token, and feed the image representation z,,
with the category vector z.. Once we get an output, we draw a word according
to y; and set the word to z;, the word predicted at the previous step (so when
t = 2, each z; is y;—1). We repeat the process until we observe the END token.

When training, we use Stochastic Gradient Descent, set the initial learning
rate to 1.0e-3, and lower as the process iterates. In this paper, we do not back-
propagate the gradient to CNN and separately train CNN and RNN. We evaluate
how different CNN models perform in Sect. 5.

4 Building Corpus from E-Commerce Data

We collect and build the image-text corpus from the online market site Etsy. We
prepare pairs of a product image and title as well as product meta-data suitable
for learning attribute expressions. The challenge here is how to choose good
descriptions for learning. In this section, we briefly describe the e-commerce data
and our approach to extract useful data using syntactic analysis and clustering.

4.1 E-Commerce Data

Etsy is an online market for hand-made products [31]. Figure2 shows some
examples of product images from the website. Each listing contains various infor-
mation, such as image, title, detailed description, tags, materials, shop owner,
price, etc. We crawled product listings from the website and downloaded over
two million product images.

We apply various pre-processing steps to transform the crawled raw data into
a useful corpus to learn attribute expressions. Note that this semi-automated
approach to build a corpus is distinct from the previous language generation
efforts where the approach is to start from supervised dataset with clean annno-
tations [18]. Our corpus is from the real-world market, and as common in any
Web data [21,25], the raw listing data from Etsy contain a lot of useless data for
learning, due to a huge amount of near-duplicates and inappropriate language
use for search engine optimization. For example, we observed the following titles:

— Army of two Airsoft Paintball BB Softair Gun Prop Helmet Salem Costume
Cosplay Goggle Mask Maske Masque jason MA102 et
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: title : Twat Finished Framed Subversive Cross Stitch Art
category : Needlecraft, Cross Stitch, Flower
tags : twat, british, cross stitch framed, twat cross stitch, ...

-~ materials : dmc floss, aida fabric, metal and glass frame
shopid :5520172
“ description : One for the Brits! For a twat, for your twat...

title : Felted Wool Soft Sculpture Fancy Girl Doll
category : Dolls and Miniatures, Soft Sculpture, Human Figure Doll
tags : soft sculpture, felted wool, pink, doll, handmade, ...

materials : wool, rhinestone, beads, cotton
shopid :5520172
description : This stuffed doll has been handmade with felted wool and...

Fig. 2. Product data in Etsy dataset.

— teacher notepad set - bird on apple/teacher personalized stationary/
personalized stationery/teacher notepad/teacher gift/notepad.

Using such raw data to learn a generation model results in poor language quality
in the output.

4.2 Syntactic Analysis

One common observation in Etsy is that there are fragments of noun phrases,
often considered as a list of keywords targeting at search engine optimization.
Although generating search-optimized description could be useful in some appli-
cation, we are not aiming at learning keyword fragments in this paper. We
attempt to identify such fragmented description by syntactic analysis.

We first apply Stanford Parser [4] and estimate part-of-speech (POS) tags,
such as noun or verb, for each word in the title. In this paper, we define mal-
formed descriptions by the following criteria:

— more than 5 noun phrases in a row, or
— more than 5 special symbols such as slash, dash, and comma.

Figure 3 shows a few accepted and rejected examples from Etsy data. Note that
due to the discrepancy between our Etsy titles and the corpus Stanford Parser is
trained on, we found even the syntactic parser frequently failed to assign correct
POS tags for each word. We did not apply any special pre-processing for such
cases since most of the failed POS tagging resulted in the sequence of nouns,
which in turn leads to reject.

4.3 Near-Duplicate Removal

Another e-commerce specific issue is that there is a huge amount of near-
duplicates. Near-duplicates are commonly occurring phenomena in web data.
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| TR

peppermint, tangerine, coffee bag backpack green jadeite jade beaded,

and hemp lip balms natural green white color
beads size 8mm charm
necklace

(a) Syntactically accepted

=t ]
a4
a
a2
) KEEP
= CALM
g AND
==  GOTO
~* CANADA
chunky pink and purple  travel journal diary texas license plate bird
butterfly cuddle critter notebook sketch book - house
cape set newborn to 3 keep calm and go to
months photo prop canada - ivory

(b) Syntactically rejected

Fig. 3. Accepted and rejected examples after syntactic analysis. Some products have
grammatically invalid title due to the optimization to search engine. (Color figure
online)

Here, we define near-duplicate items as products whose titles are similar and
differ only in a small part of the descriptions such as shown in Table 1. Those
near-duplicates add a strong bias towards specific phrasing and affect the quality
of the generated description. Without a precaution, the trained model always
generates a similar phrase for any kind of images. In Etsy, we observe near-
duplicates among the products offered by the same shop and listed in the same
kind of categories, such as a series of products under the same category, as shown
in Table 1. We find that such textual near-duplicates also exhibit visually similar
appearance. Note that near-duplicates can happen for visually similar items but
with different description, such as items under the same category but from a
different shop. However, we find that such cases are considerably rare compared
to the textual near-duplicates in Etsy, perhaps due to the nature of a hand-made
market where majority of products are one-of-a-kind.

We automatically identify near-duplicates using shop identity and title
description. We apply the following procedure to sub-sample product images
from the raw online data.
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Table 1. Examples of near-duplicate products.

CUSTOM iPad SLEEVE 1, 2,
New, 3 Light Pink Chevron Gray
Fancy Script PERSONALIZED
Monogram

CUSTOM iPad SLEEVE 1, 2,
A New, 3 Black Chevron Lime |
Green Personalized Monogram |

CUSTOM iPad SLEEVE 1, 2,
New, 3 Dark Blue Lattice Lime
Green PERSONALIZED Mono-
gram

CUSTOM iPad SLEEVE 1, 2, [
New, 3 Black Damask Hot Pink @
Personalized Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Light Blue Orange Floral
Pattern Teal PERSONALIZED
Monogram

CUSTOM iPad SLEEVE 1, 2, [
New, 3 Blue Diagonal Green |
PERSONALIZED Monogram

1. Group products if they are sold by the same shop and belonging to the same
category.

2. For each group, measure the similarity of the descriptions between all pairs
within the group.

3. Depending on the pairwise similarity, divide the group into sub-groups by
DBSCAN clustering.

4. Randomly sub-sample pre-defined number of product images from each sub-

group.

Our approach is based on the observation that the same shop tend to sell near-
duplicates. We divide products into sub-groups to diversify the variation of
descriptions. We divide the group into sub-groups based on thresholding on
the Jaccard similarity:

5N S--NS,

&*‘&usyuu&;

(6)
where S; represents a set of words in the title description. Low-similarity within
a cluster indicates the group contains variety of descriptions, and consists of sub-
tly different products. We apply Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [10] implemented in sklearn to obtain sub-clusters.
Figure 4 shows an example of groups. The purpose of the sub-sampling approach
is to trim excessive amount of similar products while keeping variety.

After clustering, we randomly pick a certain number of products from each

cluster. We determine the number of samples per cluster K¢ using the following
threshold:

1 m
K(;:N;nk+a. (7)
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Fig. 4. Near-duplicates clustering. Our clustering only uses meta-data and textual
descriptions to identify near-duplicates, but the resulting clusters tend to be visually
coherent.

Here, N is the total number of the groups, ny is the number of the products in
the group k and o is the standard deviation of the distribution of the number of
products in the whole groups. We leave out some of the products if the number
of products in a certain group or a subgroup is far above the average. After the
sub-sampling process, all kinds of products should have been equally distributed
in the corpus.

Out of over 2 million products from the raw Etsy products, we first selected
400k image-text pairs by syntactic analysis, and applied near-duplicate removal.
We obtained approximately 340k product images for our corpus. We take 75% of
the images for training and reserved the rest (25%) for testing in our experiment.
We picked up 100 images from testing set for human annotation, and did not
use for quantitative evaluation due to the difficulty in obtaining ground truth.

5 Experiment

We evaluate our learned generation model by measuring how close the generated
expressions are to human. For that purpose, we collect human annotations to
a small number of testing images and measure the performance using machine-
translation metrics.

5.1 Human Annotation

We use crowdsourcing to collect human description of the product images. We
designed a crowdsourcing task to describe the given product image. Figure5
depicts our annotation interface. We asked workers to come up with a descriptive
and appealing title to sell the given product. During the annotation task, we
provide workers the original title and the category information to make sure
they understand what kind of products they are trying to sell. We used Amazon
Mechanical Turk and asked 5 workers per image to collect reference descriptions
for 100 test images. As seen in Fig. 5, our images are quite different from natural
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Give nice and descriptive titles to the shown images.
® Please give each of the following products a nice, descriptive, and appealing title that conveys its
® We provide you the product category and associated description with images.

Bags and Purses/Laptop/Sleeve

ipad mini leather case ipad mini wool sleeve
ipad mini case ipad mini sleeve ipad mini
cover baroque

Give it a title:

Fig. 5. Crowdsourcing task to collect human description.

scene images. Often we observed phrases rather than a complete sentence in
the human annotation. This observation suggests that the essence of attribute
expression is indeed in the modifiers to the object rather than the recognition
of subject-verb relationships.

5.2 Evaluation Metrics

We use seven metrics to evaluate the quality of our generated descriptions:
BLEU-1 [22], BLEU-2, BLEU-3, BLEU-4, ROUGE [17], METEOR [2], and
CIDEr [26]. These metrics have been widely used in natural language process-
ing, such as machine translation, automatic text summarization, and recently in
language generation. Although our goal is to produce attribute-aware phrases
but not necessarily sentences, these metrics can be directly used to evaluate
our model using the reference human description. BLEU-N evaluates descrip-
tions based on precision on N-grams, ROUGE is also based on N-grams but
intended for recall, METEOR is designed for image descriptions, and CIDEr is
also proposed for image descriptions and using N-gram based method. We use
the coco-caption implementation [26] to calculate the above evaluation metrics.

5.3 Experimental Conditions

We use AlexNet [15] for the CNN architecture of our generation model, and
extract a 4,096 dimensional representation from fc7 layer given an input image
and its product category. In order to see how domain-knowledge affects the
quality of language generation, we compare a CNN model trained on ImageNet,
and a model fine-tuned to predict 32 product categories in Etsy dataset. Our
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recurrent neural network consists of a single hidden layer with 4,096 dimensional
image feature and a 32 dimensional one-hot category indicator for an input. We
use LSTM implementation of [12]. We compare the following models in the
experiment.

— Category+Fine-tune: Our proposed model with a fine-tuned CNN and a
category vector for RNN input.

— Category—+Pre-train: Our proposed model with a pre-trained CNN and a
category vector for RNN input.

— Fine-tune: A fine-tuned CNN with RNN without a category vector.

— Pre-train: A pre-trained CNN with RNN without a category vector.

— MS-COCO: A reference CNN+RNN model trained on MS-COCO
dataset [18] without any training in our corpus.

We include MS-COCO model to evaluate how domain-transfer affects the quality
of generated description. Note that MS-COCO dataset contains more objective
descriptions for explaining objects, actions, and scene in the given image.

5.4 Quantitative Results

We summarize the performance evaluation in Table 2. Note that all scores are
in percentage. Our Category+Fine-tune model achieves the best performance,
except for BLEU-3 and BLEU-4, in which Fine-tune model achieves the best. We
suspect overfitting happened in the Fine-tune only case where the model learned
to predict certain 3- or 4-word phrases such as Made to order, some happened
to be unexpectedly correct, and resulted in the sudden increase BLEU increase.
However, we did not observe a similar improvement in other scores, such as
ROUGE or CIDEr. We conjecture this possibly-outlier result could be attributed
to BLEU’s evaluation method.

From the result, we observe that introducing the category vector has the
largest impact on the description quality. We assume that category information
supplements semantic knowledge in the image feature even if the category is
not apparent from the product appearance, and that results in stabler language
generation for difficult images. Note that in the e-commerce scenario, meta-data
are often available for free without expensive manual annotation.

Table 2. Evaluation results.

Method Bleul | Bleu2 | Bleu3 Bleu4 Rouge | Meteor | CIDEr
Category+Fine-tune | 15.1 |6.55 |2.58 x 1072 |5.56 x 10~8 |12.9 |4.69 |11.2
Category+Pre-train | 9.43 |3.72 |1.65x 1075 |3.74x10~8 | 9.74 |3.70 8.01
Fine-tune 8.95 |3.94 | 2.03x10° 3.06x10"%| 498 |2.24 1.88
Pre-train 8.77 13.26 |1.50 x 107°|3.50 x 108 | 9.32 |3.36 6.87
MS-COCO 1.01 12,13 |8.30x107%/1.70 x 10=% | 8.31 |2.40 2.79
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The difference between Pre-train and Fine-tune models explains how domain-
specific image feature contributes to better learning and helps the model to gen-
erate high-quality descriptions. The result indicates that a pre-trained CNN is
not sufficient to capture the visual patterns in Etsy dataset. MS-COCO base-
line is performing significantly worse than other models, indicating that the gen-
eral description generated by MS-COCO is far from attribute-centric description
in product images. There is a significant difference between descriptions in the
MS-COCO dataset and our Etsy corpus. The former tends to be complete, gram-
matically correct descriptions focusing on the relationship between entities in the
scene, whereas Etsy product titles tend to omit a verb and often do not require
recognizing spatial arrangement of multiple entities. A product description can
be a fragment of phrases as seen in the actual data, and a long description can
look rather unnatural.

5.5 Qualitative Results

Table 3 shows examples of generated descriptions by different models as well as
the original product titles. Fine-tune+category model seems to have generated
better expressions while other methods sometimes fail to generate meaningful
description (e.g., custom made to order). MS-COCO model is generating signifi-
cantly different descriptions, and always tries to generate a description explaining
types of objects and the relationship among them.

Our model generates somewhat attribute-centric expressions such as needle
felted or primitive. Especially the latter expression is relatively abstract. These
examples confirms that at least we are able to automatically learn attribute
expressions from noisy online data. The descriptions tend to be noun phrases.
This tendency is probably due to the characteristics of e-commerce data contain-
ing phrases rather than a long, grammatically complete sentences. Our genera-

Table 3. Comparison of generated descriptions.

CUSTOM iPad SLEEVE 1, 2,
New, 3 Light Pink Chevron Gray
Fancy Script PERSONALIZED
Monogram

CUSTOM iPad SLEEVE 1, 2,
L) New, 3 Black Chevron Lime |
Green Personalized Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Dark Blue Lattice Lime
Green PERSONALIZED Mono-

gram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Black Damask Hot Pink
Personalized Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Light Blue Orange Floral
Pattern Teal PERSONALIZED
Monogram

CUSTOM iPad SLEEVE 1, 2, |
New, 3 Blue Diagonal Green |
PERSONALIZED Monogram
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N >
handmade journal note-  watercolor painting of
ble book moali statues at sunset

crochet barefoot sandals hand painted ceramic I’'m going to be a big
with flower mug brother t-shirt

Fig. 6. Examples of generated descriptions. Our model correctly identifies attribute
expressions (left 2 columns). The rightmost column shows failure cases due to corpus
issues.

tion results correctly reflect this characteristics. Figure 6 shows some examples
of generated descriptions by our model (category+fine-tune). Our model pre-
dicts attribute expressions such as reclaimed wood or hand-painted ceramic. We
observe failure due to corpus quality in some categories. For example, the paint-
ing or the printed t-shirts in Fig.6 suffer from bias towards specific types of
products in the category. Sometimes our model gives a better description than
the original title. For example, The middle in Table 3 shows a product entitled
Rooted, but it is almost impossible to guess the kind of product from the name,
or maybe even from the appearance. Our model produces art print for this exam-
ple, which seems to be much easier to understand the product kind and closer
to our intuition, even if the result is not accurate.

6 Discussion

In this paper, we used a product image, a title and category information to gen-
erate a description. However, there is other useful information in the e-commerce
data, such as tags, materials, or popularity metrics [31]. Especially, a product
description is likely to have more detailed information about the product, with
many attribute-like expressions having plenty of abstract or subjective words.
E-commerce dataset looks promising in this respect since sellers are trying to
attract more customers by “good” phrases which have a ring to it.
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If we are able to find attribute expressions in the longer product description,
we can expand our image-text corpus to a considerably larger scale. The chal-
lenge here is that we then need to identify which description is relevant to the
given image, because product descriptions contain irrelevant information also.
For example, in Etsy, a product often contains textual description on shipping
information. For a preliminary study, we applied a syntactic parser on Etsy
product descriptions, but often observed an error in a parse tree, due to gram-
matically broken descriptions in item listings. Identifying which description is
relevant or irrelevant seems like an interesting vision-language problem in the
e-commerce scenario.

Finally, in this paper we left tags and material information in the item list-
ings in Etsy dataset. These meta-data could be useful to learn a conventional
attribute or material classifier given an image, or to identify attribute-specific
expressions in the long product description.

7 Conclusion and Future Work

We studied the natural language generation from product images. In order to
learn a generation model, we collected product images from the online market
Etsy, and built a corpus to learn a generation model by applying dataset cleans-
ing procedure based on syntactic analysis and near-duplicate removal. We also
collected human descriptions for evaluation of the generated descriptions. The
empirical results suggest that our generation model fine-tuned on Etsy data with
categorical input successfully learns from noisy online data, and produces the
best language expression for the given product image. The result also indicates
a huge gap between the task nature of attribute-centric language generation and
a general scene description.

In the future, we wish to improve our automatic corpus construction from
noisy online data. We have left potentially-useful product meta-data in this
study. We hope to incorporate additional information such as product descrip-
tion or tags to improve language learning process, as well as to realize a new
application such as automatic title and keywords suggestion to shop owners.
Also, we are interested in improving the deep learning architecture to the gen-
erate attribute expressions.
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Abstract. A picture is worth a thousand words. Not until recently, how-
ever, we noticed some success stories in understanding of visual scenes:
a model that is able to detect/name objects, describe their attributes,
and recognize their relationships/interactions. In this paper, we propose
a phrase-based hierarchical Long Short-Term Memory (phi-LSTM) model
to generate image description. The proposed model encodes sentence as
a sequence of combination of phrases and words, instead of a sequence
of words alone as in those conventional solutions. The two levels of this
model are dedicated to (i) learn to generate image relevant noun phrases,
and (ii) produce appropriate image description from the phrases and
other words in the corpus. Adopting a convolutional neural network to
learn image features and the LSTM to learn the word sequence in a
sentence, the proposed model has shown better or competitive results
in comparison to the state-of-the-art models on Flickr8k and Flickr30k

datasets.

1 Introduction

Automatic caption/description gener-
ation from images is a challenging
problem that requires a combination
of visual information and linguistic as
illustrated in Fig.1. In other words, it
requires not only complete image under-
standing, but also sophisticated nat-
ural language generation [1-4]. This is
what makes it such an interesting task
that has been embraced by both the
computer vision and natural language
processing communities.

Our

A little boy is playing in the
proposed:  pool.

Groundtruth: A boy with a beach ball
behind him playing in a pool.

Fig.1. Complete visual scene under-
standing is a holy grail in computer vision.

One of the most common models applied for automatic caption generation
is a neural network model that composes of two sub-networks [5-10], where a
convolutional neural network (CNN) [11] is used to obtain feature representation
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Fig. 2. Model comparison: (a) Conventional RNN language model, and (b) Our pro-
posed phrase-based model.

of an image; while a recurrent neural network (RNN)! is applied to encode
and generate its caption description. In particular, Long Short-Term Memory
(LSTM) model [12] has emerged as the most popular architecture among RNN,
as it has the ability to capture long-term dependency and preserve sequence.
Although sequential model is appropriate for processing sentential data, it does
not capture any other syntactic structure of language at all. Nevertheless, it
is undeniable that sentence structure is one of the prominent characteristics of
language, and Victor Yngve - an influential contributor in linguistic theory stated
in 1960 that “language structure involving, in some form or other, a phrase-
structure hierarchy, or immediate constituent organization” [13]. Moreover, Tai
et al. [14] proved that a tree-structured LSTM model that incorporates syntactic
interpretation of sentence structure, can learn the semantic relatedness between
sentences better than a pure sequential LSTM alone. This gives rise to question
of whether is it a good idea to disregard other syntax of language in the task of
generating image description.

In this paper, we would like to investigate the capability of a phrase-based
language model in generating image caption as compared to the sequential lan-
guage model such as [6]. To this end, we design a novel phrase-based hierarchical
LSTM model, namely phi-LSTM to encode image description in three stages -
chunking of training caption, image-relevant phrases composition as a vector
representation and finally, sentence encoding with image, words and phrases. As
opposed to those conventional RNN language models which process sentence as
a sequence of words, our proposed method takes noun phrase as a unit in the
sentence, and thus processes the sentential data as a sequence of combination
of both words and phrases together. Figure 2 illustrates the difference between

1 RNN is a popular choice due to its capability to process arbitrary length sequences
like language where words sequence governing its semantic is order-sensitive.
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the conventional RNN language model and our proposal with an example.
Both phrases and sentences in our proposed model are learned with two dif-
ferent sets of LSTM parameters, each models the probability distribution of
word conditions on previous context and image. Such design is motivated by the
observation that some words are more prone to appear in phrase, while other
words are more likely to be used to link phrases. In order to train the proposed
model, a new perplexity based cost function is defined. Experimental results
using two publicly available datasets (Flickr8k [15] and Flickr30k [16]), and a
comparison to the state-of-the-art results [5-7,9,17] have shown the efficacy of
our proposed method.

2 Related Works

The image description generation task is generally inspired by two lines of
research, which are (i) the learning of cross-modality transition or representation
between image and language, and (ii) the description generation approaches.

2.1 Multimodal Representation and Transition

To model the relationship between image and language, some works asso-
ciate both modalities by embedding their representations into a common space
[18—-21]. First, they obtain the image features using a visual model like CNN
[19,20], as well as the representation of sentence with a language model such
as recursive neural network [20]. Then, both of them are embedded into a com-
mon multimodal space and the whole model is learned with ranking objective
for image and sentence retrieval task. This framework was also tested at object
level by Karpathy et al. [21] and proved to yield better results for the image
and sentence bi-directional retrieval task. Besides that, there are works that
learn the probability density over multimodal inputs using various statistical
approaches. These include Deep Boltzmann Machines [22], topic models [23],
log-bilinear neural language model [8,24] and recurrent neural networks [5-7]
etc. Such approaches fuse different input modalities together to obtain a uni-
fied representation of the inputs. It is notable to mention that there are also
some works which do not explicitly learn the multimodal representation between
image and language, but transit between modalities with retrieval approach. For
example, Kuznetsova et al. [25] retrieve images similar to the query image from
their database, and extract useful language segments (such as phrases) from the
descriptions of the retrieved images.

2.2 Description Generation

On the other hand, caption generation approaches can be grouped into three
categories in general as below:
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Template-Based. These approaches generate sentence from a fixed template
[26-30]. For example, Farhadi et al. [26] infer a single triplet of object, action
and scene from an image and convert it into a sentence with fixed template.
Kulkarni et al. [27] use complex graph of detections to infer elements in sentence
with conditional random field (CRF), but the generation of sentences is still
based on the template. Mitchell et al. [29] and Gupta et al. [30] use a more
powerful language parsing model to produce image description. In overall, all
these approaches generate description which is syntactically correct, but rigid
and not flexible.

Composition Method. These approaches extract components related to the
images and stitch them up to form a sentence [25,31,32]. Description generated
in such manner is broader and more expressive compared to the template-based
approach, but is more computationally expensive at test time due to its non-
parametric nature.

Neural Network. These approaches produce description by modeling the con-
ditional probability of a word given multimodal inputs. For instance, Kiros et al.
[8,24] developed multimodal log-bilinear neural language model for sentence gen-
eration based on context and image feature. However, it has a fixed window
context. The other popular model is recurrent neural network [5-7,9,33], due to
its ability to process arbitrary length of sequential inputs such as sequence of
words. This model is usually connected with a deep CNN that generates image
features. The variants on how this sub-network is connected to the RNN have
been investigated by different researchers. For instance, the multimodal recur-
rent neural network proposed by Mao et al. [5] introduces a multimodal layer
at each time step of the RNN, before the softmax prediction of words. Vinyals
et al. [6] treat the sentence generation task as a machine translation problem
from image to English, and thus image feature is employed in the first step of
the sequence trained with their LSTM RNN model.

2.3 Relation to Our Work

Automatic image caption generated via template-based [26-30] and composition
methods [25,31,32] are typically two-stage approaches, where relevant elements
such as objects (noun phrases) and relations (verb and prepositional phrases)
are generated first before a full descriptive sentence is formed with the phrases.
With the capability of LSTM model in processing long sequence of words, neural
network based method that uses a two-stage approach deem unnecessary. How-
ever, we are still interested to find out how sequential model with phrase as a
unit of sequence performs. The closest work related to ours is the one proposed
by Lebret et al. [17]. They obtain phrase representation with simple word vector
addition and learn its relevancy with image by training with negative samples.
Sentence is then generated as a sequence of phrases, predicted using a statistical
framework conditioned on previous phrases and its chunking tags. While their
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aim was to design a phrase-based model that is simpler than RNN, we intend
to compare RNN phrase-based model with its sequential counterpart. Hence,
our proposed model generates phrases and recomposes them into sentence with
two sub-networks of LSTM, which are linked to form a hierarchical structure as
shown in Fig. 2(b).

3 Owur Proposed phi-LSTM Model

This section details how the proposed method encodes image description in three
stages - (i) chunking of image description, (ii) encode words and phrases into
distributed representations, and finally (iii) encodes sentence with the phi-LSTM
model.

3.1 Phrase Chunking

[ The man inthe gray shirt and sandals s puling the large iy ] 2 quick overview on the structure of

[ seectivedependencyprsig image descriptions reveals that, key ele-
ments which made up the majority of
captions are usually noun phrases that
( Whaman i Shagaag il an sanls = puling T gaiads ) describe the content of the image, which

[ Newcnunking can be either objects or scene. These ele-
ments are linked with verb and preposi-
tional phrases. Thus, noun phrase essen-
tially covers over half of the corpus in
a language model trained to generate
image description. And so, in this paper,
our idea is to partition the learning of noun phrase and sentence structure so that
they can be processed more evenly, compared to extracting all phrases without
considering their part of speech tag.

To identify noun phrases from a training sentence, we adopt the dependency
parse with refinement using Stanford CoreNLP tool [34], which provides good
semantic representation over a sentence by providing structural relationships
between words. Though it does not chunk sentence directly as in constituency
parse and other chunking tools, the pattern of noun phrase extracted is more flex-
ible as we can select desirable structural relations. The relations we selected are:

det(man, the) amod(shirt, gray) amod(tricycle, large)
det(shirt, the) det(tricycle, the)

L our refinement (proposed)

| l the man | l the gray shirt | |the large tricycle | |

Fig.3. Phrase chunking from depen-
dency parse.

— determiner relation (det),

— numeric modifier (nummod),

— adjectival modifier (amod),

— adverbial modifier (advmod), but is selected only when the meaning of adjec-
tive term is modified, e.g. “dimly lit room”,

— compound (compound),

— nominal modifier for possessive alteration (nmod:of & nmod:poss).
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#ST&‘?RT# the man  #END#
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CNN & Img ‘
Embedding | 2 A 1

#START#  the man

Word vector pt Probability distribution
embedding over words

Fig. 4. Composition of phrase vector representation in the phi-LSTM model.

Note that the dependency parse only extracts triplet made up of a governor
word and a dependent word linked with a relation. So, in order to form phrase
chunk with the dependency parse, we made some refinements as illustrated in
Fig. 3. The triplets of selected relations in a sentence are first located, and those
consecutive words (as highlighted in the figure, e.g. “the”, “man”) are grouped
as a single phrase, while the standalone word (e.g. “in”) will remain as a unit in
the sentence.

3.2 Compositional Vector Representation of Phrase

This section describes how compositional vector representation of a phrase is
computed, given an image.

Image Representation. A 16-layer VggNet [35] pre-trained on ImageNet [36]
classification task is applied to learn image feature in this work. Let I € R” be
an image feature, it is embedded into a K-dimensional vector, v, with image
embedding matrix, Wi, € REXP and bias bip € RE.

Vp = WipI + bip. (1)

Word Embedding. Given a dictionary W with a total of V' vocabulary, where
word w € W denotes word in the dictionary, a word embedding matrix We €
RE*V is defined to encode each word into a K-dimensional vector representation,
x. Hence, an image description with words w - - - wp; will correspond to vectors
X1 - - - X accordingly.

Composition of Phrase Vector Representation. For each phrase extracted
from the sentence, a LSTM-based RNN model similar to [6] is used to encode its
sequence as shown in Fig. 4. Similar to [6], we treat the sequential modeling from
image to phrasal description as a machine translation task, where the embedded
image vector is inputted to the RNN on the first time step, followed by a start
token xgp € RX indicating the translation process. It is trained to predict the
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next word at each time step by outputting ps,+1 € REXV which is modeled as
the probability distribution over all words in the corpus. The last word of the
phrase will predict an end token. So, given a phrase P which is made up by L
words, the input x¢_ at each time step are:

Vp, ift, =-1
ti = 3 Xsp> if tp =0 (2)
Wewy,, fort,=1..L.
For a LSTM unit at time step t,, let iz, f;,, 0¢,,c;, and hy denote the input

gate, forget gate, output gate, memory cell and hidden state at the time step
respectively. Thus, the LSTM transition equations are:

i;, = o(Wixs, + Uihy, 1), 3)
ftp = O'(Wthp —|— Ufhtp_l),
p — U(Woxtp + Uohtpfl),
ug, = tanh(Wyxy, +Uyhy 1),
=i, Ou, + £, ©cy,-1,

h; = oy, ©tanh(cy,),

4)
5)
6)
7)
8)
Pt,+1 = softmax(hy ). (9)

O¢

Ctp

(
(
(
(
(
(

Here, o denotes a logistic sigmoid function while ® denotes elementwise
multiplication. The LSTM parameters {W;, Wg, W, W, U;, Ug, U, Uy, } are
all matrices with dimension of RE*X Intuitively, each gating unit controls
the extent of information updated, forgotten and forward-propagated while the
memory cell holds the unit internal memory regarding the information processed
up to current time step. The hidden state is therefore a gated, partial view of
the memory cell of the unit. At each time step, the probability distribution of
words outputted is equivalent to the conditional probability of word given the
previous words and image, P(w¢|wy.4—1,I). On the other hand, the hidden state
at the last time step L is used as the compositional vector representation of the
phrase, z € RX, where z = hy.

3.3 Encoding of Image Description

Once the compositional vector of phrases are obtained, they are linked with
the remaining words in the sentence using another LSTM-based RNN model
as shown in Fig.5. Another start token xss € R and image representation
vs € R¥ are introduced, where

vs = Wi I+ bi57 (10)

with Wis € REXD and bias bys € RX as embedding parameters. Hence, the
input units of the LSTM in this level will be the image representation vg, start



108 Y.H. Tan and C.S. Chan

#START#  #Phrase# in #Phrase# and sandals is pulling  #Phrase# HEND#
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Fig. 5. Sentence encoding using the phi-LSTM model.

token Xgg, followed by either compositional vector of phrase z or word vector x
in accordance to the sequence of its description.

For simplicity purpose, the arranged input sequence will be referred as y.
Therefore, given the example in Figs.4 and 5, the LSTM input sequence of
the sentence will be {vg,Xss,y1...yn} where N = 8, and it is equivalent to
sequence {Vs, Xgs, Z1, X3, Z2, X7, X8, X9, X10, Z3 |, as in Fig. 5. Note that a phrase
token is added to the vocabulary, so that the model can predict it as an output
when the next input is a noun phrase.

The encoding of the sentence is similar to the phrase vector composition.
Equations 3-9 are applied here using y¢, as input instead of xg,, where ¢, and
ts represent time step in phrase and sentence respectively. A new set of model
parameters with same dimensional size is used in this hierarchical level.

4 Training the phi-LSTM Model

The proposed phi-LSTM model is trained with log-likelihood objective function
computed from the perplexity? of sentence conditioned on its corresponding
image in the training set. Given an image I and its description S, let R be
the number of phrases of the sentence, P; correspond to the number of LSTM
blocks processed to get the compositional vector of phrase i, @ is the length of
composite sequence of sentence S, while pt, and pg, are the probability output
of LSTM block at time step ¢, — 1 and ¢, — 1 for phrase and sentence level
respectively. The perplexity of sentence S given its image I is

Q R P;
1
log, PPL(ST) = = | D logape,+ ) | D logapey| [, (11)
to=—1 i=1 |tp,=—1
where R
N=Q+) P. (12)
=1

2 Perplexity is a standard approach to evaluate language model.
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H+1 Binary output and H+1 Binary output
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Fig. 6. Upper hierarchy of the phi-LSTM model with phrase selection objective.

Random negative samples x H Random negative samples x H

Hence, with M number of training samples, the cost function of our model is:
M
cO)=-7 > [Njlogy PPL(S)|L;)] + - || 63, (13)

Jj=1
where

M
L=Mx>Y N (14)

j=1

It is the average log-likelihood of word given their previous context and the
image described, summed with a regularization term, X\g- || 6 ||3, average over
the number of training samples. Here, 6 is the parameters of the model.

This objective however, does not discern on the appropriateness of different
inputs at each time step. So, given multiple possible inputs, it is unable to
distinguish which phrase is the most probable input at that particular time
step during the decoding stage. That is, when a phrase token is inferred as
the next input, all possible phrases will be inputted in the next time step. The
candidate sequences are then ranked according to their perplexity up to this
time step, where only those with high probability are kept. Unfortunately, this
is problematic because subject in an image usually has much lower perplexity
as compared to object and scene. Thus, such algorithm will end up generating
description made up of only variants of subject noun phrases.

To overcome this limitation, we introduce a phrase selection objective during
the training stage. At all time steps when an input is a phrase, H number of
randomly selected phrases that are different from the ground truth input is feed
into the phi-LSTM model as shown in Fig. 6. The model will then produce two
outputs, which are the next word prediction solely based on the actual input,
and a classifier output that distinguishes the actual one from the rest. Though
the number of inputs at these time steps increases, the memory cell and hidden
state that is carried to the next time step keep only information of the actual
input. The cost function for phrase selection objective of a sentence is
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H+1

Cps = Z Z kit k0 (1 = Yehe k Wps). (15)

ts€P k=1

where P is the set of all time steps where the input is phrase, hy,y is the hidden
state output at time step ¢4 from input &, and y;_x is its label which is +1 for the
actual input and -1 for the false inputs. Wps € R¥*1 is trainable parameters for
the classifier while x;_ 1 scales and normalizes the objective based on the number
of actual and false inputs at each time step. The overall objective function is
then

Cr(0) = ——

il

M
> " [Njlog, PPL(S;|T;) + Cps;] + Ao+ || 6113 - (16)
j=1

This cost function is minimized and backpropagated with RMSprop optimizer
[37] and trained in a minibatch of 100 image-sentence pair per iteration. We cross-
validate the learning rate and weight decay depending on dataset, and dropout
regularization [38] is employed over the LSTM parameters during training to
avoid overfitting.

5 Image Caption Generation

Generation of textual description using the phi-LSTM model given an image
is similar to other statistical language models, except that the image relevant
phrases are generated first in the lower hierarchical level of the proposed model.
Here, embedded image feature of the given image followed by the start token
of phrase are inputted into the model, acting as the initial context required for
phrase generation. Then, the probability distribution of the next word over the
vocabulary is obtained at each time step given the previous contexts, and the
word with the maximum probability is picked and fed into the model again to
predict the subsequent word. This process is repeated until the end token for
phrase is inferred. As we usually need multiple phrases to generate a sentence,
beam search scheme is applied and the top K phrases generated are kept as the
candidates to form the sentence. To generate a description from the phrases, the
upper hierarchical level of the phi-LSTM model is applied in a similar fashion.
When a phrase token is inferred, K phrases generated earlier are used as the
inputs for the next time step. Keeping only those phrases which generate posi-
tive result with the phrase selection objective, inference on the next word given
the previous context and the selected phrases is performed again. This process
iterates until the end token is inferred by the model.

Some constraints are added here, which are (i) each predicted phrase may
only appears once in a sentence, (ii) maximum number of unit (word or phrase)
that made up a sentence is limited to 20, (iii) maximum number of words forming
a phrase is limited to 10, and (iv) generated phrases with perplexity higher than
threshold T are discarded.
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6 Experiment

6.1 Datasets

The proposed phi-LSTM model is tested on two benchmark datasets - Flickr8k
[15] and Flickr30k [16], and compared to the state-of-the-art methods [5-7,9,17].
These datasets consist of 8000 and 31000 images respectively, each annotated
with five ground truth descriptions from crowd sourcing. For both datasets,
1000 images are selected for validation and another 1000 images are selected for
testing; while the rest are used for training. All sentences are converted to lower
case, with frequently occurring punctuations removed and word that occurs less
than 5 times (Flickr8k) or 8 times (Flickr30k) in the training data discarded.
The punctuations are removed so that the image descriptions are consistent with
the data shared by Karpathy and Fei-Fei [7].

6.2 Results Evaluated with Automatic Metric

Sentence generated using the phi-LSTM model is evaluated with automatic met-
ric known as the bilingual evaluation understudy (BLEU) [39]. It computes the
n-gram co-occurrence statistic between the generated description and multiple
reference sentences by measuring the n-gram precision quality. It is the most
commonly used metric in this literature.

Table 1 shows the performance of our proposed model in comparison to the
current state-of-the-art methods. NIC [6] which is used as our baseline is a
reimplementation, and thus its BLEU score reported here is slightly different
from the original work. Our proposed model performs better or comparable to the
state-of-the-art methods on both Flickr8k and Flickr30k datasets. In particular,
we outperform our baseline on both datasets, as well as PbIC [17] - a work that
is very similar to us on Flickr30k dataset by at least 5-10%.

Table 1. BLEU score of generated sentence on Flickr8k and Flickr30k dataset.

(a) (b)
Flickr8k Flickr30k
Models B-1 B-2 B-3 B4  Models B-1 B2 B-3 B4

NIC [6]° [60.2(63) 40.4 25.9 165  mRNN [5] | 60 41 28 19
DeepVs [7]| 57.9 38.3 24.5 16.0  NIC [6]* [66.3(66) 42.3 27.7 18.3
phi-LSTM | 63.6 43.627.616.6  DecpVS [7]| 57.3 36.9 24.0 15.7
LRCNN [9]| 58.7 39.1 25.1 16.5
PbIC [17] | 59 35 20 12
phi-LSTM | 66.6 45.828.217.0

3The BLEU score reported here is computed from our implementation of NIC [6],
and the bracketed value is the reported score by the author.

“The BLEU score reported here is cited from [7], and the bracketed value is the
reported score by the author.
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Fig. 7. Effect of the perplexity threshold, 7" and maximum number of phrases used for
generating sentence, K on the BLEU score (best viewed in colour).

Table 2. Vocab size, word occurrence and average caption length in training data, test
data, and generated description in Flickr8k dataset.

Train data Test data Gen. caption
Number | 30000 5000 1000 1000
of
sentence

Actual | Trained | Actual | Trained | Actual | Trained | NIC [6] | phi-LSTM
Size of 7371 2538 3147 1919 1507 | 1187 128 154

vocab
Number |324481 316423 | 54335 52683 |11139 | 10806 |8275 6750
of words
Avg. 10.8 10.5 10.9 10.5 11.1 10.8 8.3 6.8
caption
length

As mentioned in Sect.5, we generate K phrases from each image and dis-
card those with perplexity higher than a threshold value T, when generating the
image caption. In order to understand how these two parameters affect our gen-
erated sentence, we use different K and T to generate the image caption with
our proposed model trained on the Flickr30k dataset. Changes of the BLEU
score against T and K are plotted in Fig. 7. It is shown that K does not have a
significant effect on the BLEU score, when T is set to below 5.5. On the other
hand, unigram and bi-gram BLEU scores improve with lower perplexity thresh-
old, in contrast to tri-gram and 4-gram BLEU scores that reach an optimum
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Table 3. Top 5 (a) least trained word found, and (b) most trained word missing, from
the generated captions in the Flickr8k dataset.

(a) (b)
NIC [6] phi-LSTM NIC [6] phi-LSTM
Word Occurrencel Word |Occurrence ~ Word|Occurrence| Word |Occurrence

obstacle 93 overlooking 81 to 2306 while 1443
surfer 127 obstacle 93 his 1711 green 931
bird 148 climber 96 while 1443 by 904
woods 155 course 106 three 1052 one 876
snowboarder 166 surfer 127 small 940 another 713

value when T'=5.2. This is because the initial (few) generated phrases with the
lowest perplexity are usually different variations of phrase describing the same
entity, such as ‘a man’ and ‘a person’. Sentence made with only such phrases
has higher chance to match with the reference descriptions, but it would hardly
get a match on tri-gram and 4-gram. In order to avoid generating caption made
from only repetition of similar phrases, we select T and K which yield the high-
est 4-gram BLEU score, which are T=6.5 and K=6 on Flickr8k dataset, and
T=5.2 and K=5 on Flickr30k dataset. A few examples are shown in Fig. 8.

6.3 Comparison of the phi-LSTM Model with Its Sequence Model
Counterpart

To compare the differences between a phrase-based hierarchical model and a
pure sequence model in generating image caption, the phi-LSTM model and
NIC [6] are both implemented using the same training strategy and parameter
tuning. We are interested to know how well the corpus is trained by both mod-
els. Using the Flickr8k dataset, we computed the corpus information of (i) the
training data, (ii) the reference sentences in the test data and (iii) the gener-
ated captions as tabulated in Table 2. We remove words that occur less than 5
times in the training data, and it results in 4833 words being removed. However,
this reduction in term of word count is only 2.48%. Furthermore, even though
the model is evaluated in comparison to all reference sentences in the test data,
there are actually 1228 words within the references that are not in our training
corpus. Thus, it is impossible for the model to predict those words, and this
is a limitation on scoring with references in all language models. For a better
comparison with the 1000 generated captions, we also compute another reference
corpus based on the first sentence of each test image. From Table 2, it can be
seen that even though there are at least 1187 possible words to be inferred with
images in the test set, the generated descriptions are made up from only 128
and 154 words in NIC [6] and phi-LSTM model, respectively. These numbers
show that the actual number of words learned by these two models are barely
10%, suggesting more research is necessary to improve the learning efficiency in
this field. Nevertheless, it shows that introducing the phrase-based structure in
sequential model still improves the diversity of caption generated.
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aperson
aman
the air
adirt bike
abike

his bike
abicycle
ahelmet
ad thedirt

amotorcycle

alittle girl
agirl
ayounggirl
achild
awoman
the camera
aboy

the girl
ababy
asmall child

the water

two dogs

the ocean

adog

the beach

" aman

§ | abrown dog

. three dogs
two people
ablack dog

agroup of people

agroup of children

acrowd

aman

the air

B the background

[ 2 building

Fy several people
three people

& the street

Fig. 8. Example of phrases generated from images using the lower hierarchical level of
the phi-LSTM model. Red fonts indicate that the perplexity of that phrase is below

threshold T.

Images:

Three dogs play in a grassy

phi-LSTM: Three people are standing in A skateboarder does a trick on
front of three men. a ramp. field.
p.
NIC [6]: A group of people are standing in A man is doing a trick on a B
el front of a building. skateboard. Two dogs play in the grass.
Groundtruth: A group of tourists stand around as a A skateboarder in the air at a big The three dogs ran in the yard.

lady puts her hand near the mouth of
a statue.

outdoor ramp.

Fig. 9. Examples of caption generated with the phi-LSTM model, in comparison to
NIC [6].

To get further insight on how the word occurrence in the training corpus
affects the word prediction when generating caption, we record the top five, most
trained words that are missing from the corpus of generated captions, and the
top five, least trained words that are predicted by both models when generating
description, as shown in Table 3. We consider only those words that appear in
the reference sentences to ensure that these words are related to the images
in the test data. It appears that the phrase-based model is able to infer more
words which are less trained, compared to the sequence model. Among the top
five words that are not predicted, even though they have high occurrence in the
training corpus, it can be seen that those words are either not very observable
in the images, or are more probable to be described with other alternative. For
example, the is a more probable alternative of another.

A few examples of the image description generated with our proposed model
and NIC model [6] are shown in Fig.9. It can be seen that both models are
comparable qualitatively. An interesting example is shown in the first image
where our model mis-recognizes the statue as a person, but is able to infer the
total number of “persons” within the image. The incorrect recognition stems
from insufficient training data on the word statue in the Flickr8k dataset, as it
only occurs for 48 times, which is about 0.015% in the training corpus.

7 Conclusion

In this paper, we present the phi-LSTM model, which is a neural network model
trained to generate reasonable description on image. The model consists of a
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CNN sub-network connected to a two-hierarchical level RNN, in which the lower
level encodes noun phrases relevant to the image; while the upper level learns the
sequence of words describing the image, with phrases encoded in the lower level
as a unit. A phrase selection objective is coupled when encoding the sentence. It
is designed to aid the generation of caption from relevant phrases. This design
preserves syntax of sentence better, by treating it as a sequence of phrases and
words instead of a sequence of words alone. Such adaptation also splits the
content to be learned by the model into two, which are stored in two sets of
parameters. Thus, it can generate sentence which is more accurate and with
more diverse corpus, as compared to a pure sequence model.
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Abstract. Visual attributes are great means of describing images or
scenes, in a way both humans and computers understand. In order to
establish a correspondence between images and to be able to compare the
strength of each property between images, relative attributes were intro-
duced. However, since their introduction, hand-crafted and engineered
features were used to learn increasingly complex models for the problem
of relative attributes. This limits the applicability of those methods for
more realistic cases. We introduce a deep neural network architecture for
the task of relative attribute prediction. A convolutional neural network
(ConvNet) is adopted to learn the features by including an additional
layer (ranking layer) that learns to rank the images based on these fea-
tures. We adopt an appropriate ranking loss to train the whole network
in an end-to-end fashion. Our proposed method outperforms the baseline
and state-of-the-art methods in relative attribute prediction on various
coarse and fine-grained datasets. Our qualitative results along with the
visualization of the saliency maps show that the network is able to learn
effective features for each specific attribute. Source code of the proposed
method is available at https://github.com/yassersouri/ghiaseddin.

1 Introduction

Visual attributes are linguistic terms that bear semantic properties of (visual)
entities, often shared among categories. They are both human understand-
able and machine detectable, which makes them appropriate for better human
machine communications. Visual attributes have been successfully used for many
applications, such as image search [1], interactive fine-grained recognition, [2,3]
and zero-shot learning [4,5].

Traditionally, visual attributes were treated as binary concepts [6,7], as if
they are present or not, in an image. Parikh and Grauman [5] introduced a
more natural view on visual attributes, in which pairs of visual entities can
be compared, with respect to their relative strength of any specific attribute.
With a set of human assessed relative orderings of image pairs, they learn a
global ranking function for each attribute that can be used to compare a pair of
two novel images respective to the same attribute (Fig.1). While binary visual
attributes relate properties to entities (e.g., a dog being furry), relative attributes
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Fig. 1. Visual Relative Attributes. This figure shows samples of training pairs of images
from the UT-Zap50K dataset, comparing shoes in terms of the comfort attribute (top).
The goal is to compare a pair of two novel images of shoes, respective to the same
attribute (bottom).

make it possible to relate entities to each other in terms of their properties (e.g.,
a bunny being furrier than a dog).

Many have tried to build on the seminal work of Parikh and Grauman [5]
with more complex and task-specific models for ranking, while still using hand-
crafted visual features, such as GIST [8] and HOG [9]. Recently, Convolutional
Neural Networks (ConvNets) have proved to be successful in various visual recog-
nition tasks, such as image classification [10], object detection [11] and image
segmentation [12]. Many ascribe the success of ConvNets to their ability to learn
multiple layers of visual features from the data.

In this work, we propose to use a ConvNet-based architecture comprising of
a feature learning and extraction and ranking portions. This network is used to
learn the ranking of images, using relatively annotated pairs of images with
similar and/or different strengths of some particular attribute. The network
learns a series of visual features, which are known to perform better than the
engineered visual features for various tasks [13]. These layers could simply be
learned through gradient descent. As a result, it would be possible to learn (or
fine-tune) the features through back-propagation, while learning the ranking
layer. Interweaving the two processes leads to a set of learned features that
appropriately characterizes each single attribute. Our qualitative investigation
of the learned feature space further confirms this assumption. This escalates
the overall performance and is the main advantage of our proposed method
over previous methods. Furthermore, our proposed model can effectively utilize
pairs of images with equal annotated attribute strength. The equality relation
can happen quite frequently when humans are qualitatively deciding about the
relations of attributes in images. In previous works, this is often overlooked and
mainly inequality relations are exploited. Our proposed method incorporates an
easy and elegant way to deal with equality relations (i.e., an attribute is similarly
strong in two images). In addition, it is noteworthy to pinpoint that by exploiting
the saliency maps of the learned features for each attribute, similar to [14], we
can discover the pixels which contribute the most towards an attribute in the
image. This can be used to coarsely localize the specific attribute.
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Our approach achieves very competitive results and improves the state-of-the-
art (with a large margin in some datasets) on major publicly available datasets
for relative attribute prediction, both coarse and fine-grained, while many of
the previous works targeted only one of the two sets of problems (coarse or
fine-grained), and designed a method accordingly.

The rest of the paper is organized as follows: Sect.2 discusses the related
works. Section 3 illustrates our proposed method. Then, Sect.4 exhibits the
experimental setup and results, and finally, Sect. 5 concludes the paper.

2 Related Works

We usually describe visual concepts with their attributes. Attributes are, there-
fore, mid-level representations for describing objects and scenes. In an early
work on attributes, Farhadi et al. [7] proposed to describe objects using mid-
level attributes. In another work [15], the authors described images based on
a semantic triple “object, action, scene”. In the recent years, attributes have
shown great performance in object recognition [7,16], action recognition [17,18]
and event detection [19]. Lampert et al. [4] predicted unseen objects using a
zero-shot learning framework, incorporating the binary attribute representation
of the objects.

Although detection and recognition based on the presence of attributes
appeared to be quite interesting, comparing attributes enables us to easily and
reliably search through high-level data derived from e.g., documents or images.
For instance, Kovashka et al. [20] proposed a relevance feedback strategy for
image search using attributes and their comparisons. In order to establish the
capacity for comparing attributes, we need to move from binary attributes
towards describing attributes relatively. In the recent years, relative attributes
have attracted the attention of many researchers. For instance, a linear relative
comparison function is learned in [5], based on RankSVM [21] and a non-linear
strategy in [22]. In another work, Datta et al. [23] used trained rankers for each
facial image feature and formed a global ranking function for attributes.

For the process of learning the attributes, different types of low-level image
features are often incorporated. For instance, Parikh and Grauman [5] used 512-
dimensional GIST [8] descriptors as image features, while Jayaraman et al. [24]
used histograms of image features, and reduced their dimensionality using PCA.
Other works tried learning attributes through e.g., local learning [25] or fine-
grained comparisons [26]. Yu and Grauman [26] proposed a local learning-to-
rank framework for fine-grained visual comparisons, in which the ranking model
is learned using only analogous training comparisons. In another work [27], they
proposed a local Bayesian model to rank images, which are hardly distinguishable
for a given attribute. However, none of these methods leverage the effectiveness
of feature learning methods and only use engineered and hand-crafted features
for predicting relative attributes.

As could be inferred from the literature, it is very hard to decide what
low-level image features to use for identifying and comparing visual attributes.
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Recent studies show that features learned through the convolutional neural
networks (CNNs) [28] (also known as deep features) could achieve great per-
formance for image classification [10] and object detection [29]. Zhang et al. [30]
utilized CNNs for classifying binary attributes. In other works, Escorcia et al. [31]
proposed CCNs with attribute centric nodes within the network for establishing
the relationships between visual attributes. Shankar et al. [32] proposed a weakly
supervised setting on convolutional neural networks, applied for attribute detec-
tion. Khan et al. [33] used deep features for describing human attributes and
thereafter for action recognition, and Huang et al. [34] used deep features for
cross-domain image retrieval based on binary attributes.

Neural networks have also been extended for learning-to-rank applications.
One of the earliest networks for ranking was proposed by Burges et al. [35],
known as RankNet. The underlying model in RankNet maps an input feature
vector to a Real number. The model is trained by presenting the network pairs
of input training feature vectors with differing labels. Then, based on how they
should be ranked, the underlying model parameters are updated. This model is
used in different fields for ranking and retrieval applications, e.g., for personal-
ized search [36] or content-based image retrieval [37]. In another work, Yao et
al. [38] proposed a ranking framework for videos for first-person video summa-
rization, through recognizing video highlights. They incorporated both spatial
and temporal streams through 2D and 3D CNNs and detect the video highlights.

3 Proposed Method

We propose to use a ConvNet-based deep neural network that is trained to
optimize an appropriate ranking loss for the task of predicting relative attribute
strength. The network architecture consists of two parts, the feature learning
and extraction part and the ranking part.

The feature learning and extraction part takes a fixed size image, I;, as input
and outputs the learned feature representation for that image 1; € R%. Over the
past few years, different network architectures for computer vision problems
have been developed. These deep architectures can be used for extracting and
learning features for different applications. For the current work, outputs of
an intermediate layer, like the last layer before the probability layer, from a
ConvNet architecture (e.g., AlexNet [10], VGGNet [39] or GoogLeNet [40]) can
be incorporated. In our experiments we use the VGG-16 architecture [39] with
the last fully connected layer (the class probabilities) removed. This architecture
takes as input a 224 x 224 RGB image and consists of 13, 3 x 3 convolutional
layers with max pooling layers in between. In addition, it has 2 fully connected
layers on top of the convolutional layers. For details on the architecture see [39].

One of the most widely used models for relative attributes in the literature
is RankSVM [21]. However, in our case, we seek a neural network-based rank-
ing procedure, to which relatively ordered pairs of feature vectors are provided
during training. This procedure should learn to map each feature vector to an
absolute ranking, for testing purpose. Burges et al. [35] introduced such a neural
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network based ranking procedure that exquisitely fits our needs. We adopt a
similar strategy and thus, the ranking part of our proposed network architecture
is analogous to [35] (referred to as RankNet).

During training for a minibatch of image pairs and their target orderings, the
output of the feature learning and extraction part of the network is fed into the
ranking part and a ranking loss is computed. The loss is then back-propagated
through the network, which enables us to simultaneously learn the weights of
both feature learning and extraction (ConvNet) and ranking (RankNet) parts
of the network. Further with back-propagation we can calculate the derivative
of the estimated ordering with respect to the pixel values. In this way, we can
generate saliency maps for each attribute (see Sect.4.6). These saliency maps
exhibit interesting properties, as they can be used to localize the regions in the
image that are informative about the attribute.

3.1 RankNet: Learning to Rank Using Gradient Descent

This section briefly overviews the RankNet procedure in our context. Given a set
(of size n) of pairs of sample feature vectors {( Yc), ék))|k €{1,...,n}} e Rixd,
and target probabilities {tg’;) |k e{1,... ,n}}, which indicate the probability of
sample z/;%k) being ranked higher than sample wgk). We would like to learn a
ranking function f : R? — R, such that f specifies the ranking order of a set
of features. Here, f(1;) > f(4;) indicates that the feature vector ; is ranked
higher than v;, denoted by 1;>;. The RankNet model [35] provides an elegant
procedure based on neural networks to learn the function f from a set of pairs
of samples and target probabilities.

Denoting r; = f(¢;), RankNet models the mapping from rank estimates to
posterior probabilities p;; = P(1; > ¢;) using a logistic function

B 1
B 1+ 6_(7"i_7"j) ’

pij : (1)
The loss for the sample pair of feature vectors (¢;,1;) along with target
probability ¢;; is defined as

Cij := —tijlog(pi;) — (1 — tiz) log(1 — pyj), (2)

which is the binary cross entropy loss. Figure2 (left) plots the loss value C;; as
a function of r; — r; for three values of target probability ¢;; € {0,0.5,1}. This
function is quite suitable for ranking purposes, as it acts differently compared
to regression functions. Specifically, we are not interested in regression instead
of ranking for two reasons: First, we cannot regress the absolute rank of images,
since the annotations are only available in pairwise ordering for each attribute,
in relative attribute datasets (see Sect.4.1). Second, regressing the difference
r; —r; to t;; is inappropriate. To understand this, let’s consider the squared loss

Rij = [(ri —75) — tij]27 (3)
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which is typically used for regression, illustrated in Fig.2 (right). We observe
that the regression loss forces the difference of rank estimates to be a specific
value and disallows over-estimation. Furthermore, its quadratic natures makes
it sensitive to noise. This sheds light into why regression objective is the wrong
objective to optimize when the goal is ranking.

0 . Ry S .
-15-1.0-05 00 05 1.0 1.5 2.0 25

=T

Fig. 2. The ranking loss value for three values of the target probability (left). The
squared loss value for three values of the target probability, typically used for regression
(right).

Note that when ¢;; = 0.5, and no information is available about the relative
rank of the two samples, the ranking cost becomes symmetric. This can be used
as a way to train on patterns that are desired to have similar ranks. This is
somewhat not much studied in the previous works on relative attributes. Fur-
thermore, this model asymptotically converges to a linear function which makes
it more appropriate for problems with noisy labels.

Training this model is possible using stochastic gradient descent or its vari-
ants like RMSProp. While testing, we only need to estimate the value of f(1;),
which resembles the absolute rank of the testing sample. Using f(;)s, we can
easily infer both absolute or relative ordering of the testing pairs.

3.2 Deep Relative Attributes

Our proposed model is depicted in Fig.3. The model is trained separately, for
each attribute. During training, pairs of images (I;, ;) are presented to the
network, together with the target probability ¢;;. If for the attribute of interest
I;>1; (image ¢ exhibits more of the attribute than image j), then ¢;; is expected
to be larger than 0.5 depending on our confidence on the relative ordering of
I; and I;. Similarly, if I; < I;, then t;; is expected to be smaller than 0.5, and
if it is desired that the two images have the same rank, t;; is expected to be
0.5. Because of the nature of the datasets, we chose ¢;; from the set {0,0.5,1},
according to the available annotations in the dataset.

The pair of images then go though the feature learning and extraction part
of the network (ConvNet). This procedure maps the images onto feature vec-
tors 9; and 1), respectively. Afterwards, these feature vectors go through the
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Fig. 3. The overall schematic view of the proposed method during training. The net-
work consists of two parts, the feature learning and extraction part (labeled ConvNet
in the figure), and the ranking part (the Ranking Layer). Pairs of images are presented
to the network with their corresponding target probabilities. This is used to calculate
the loss, which is then back-propagated through the network to update the weights.

ranking layer, as described in Sect. 3.1. We choose the ranking layer to be a fully
connected neural network layer with linear activation function, a single output
neuron and weights w and b. It maps the feature vector 1; to the estimated
absolute rank of that feature vector, r; € R, where

ri = wl; +b. (4)

The two estimated ranks r; and r;, for the two images I; and I; in comparison,
are then combined (using Eq. (1)) to output the estimated posterior probability
pij = P(I; > I;). This estimated posterior probability is used along with the
target probability t;; to calculate the loss, as in Eq. (2). This loss is then back-
propagated through the network and is used to update the weights of the whole
network, including both the weights of the feature learning and extraction sub-
network and the ranking layer.

During testing (Fig.4), we need to calculate the estimated absolute rank ry
for each testing image I. Using these estimated absolute ranks, we can then
easily infer both the relative or absolute attribute ordering, for all testing pairs.

o RL Yk Ranking
< > “e —_ — Tk
— Layer

Fig. 4. During testing, we only need to evaluate 7 for each testing image. Using this
value, we can infer the relative or absolute ordering of testing images, for the attribute
of interest.

4 Experiments

To evaluate our proposed method, we quantitatively compare it with the state-
of-the-art methods, as well as an informative baseline on all publicly available
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benchmarks for relative attributes to our knowledge. Furthermore, we perform
multiple qualitative experiments to demonstrate the capability and superiority
of our method.

4.1 Datasets

To assess the performance of the proposed method, we have evaluated it on
all publicly available datasets to our knowledge: Zappos50K [26] (both coarse
and fine-grained versions), LFW-10 [41] and for the sake of completeness and
comparison with previous works, on PubFig and OSR. datasets of [5].

UT-Zap50K [26] dataset is a collection of images with annotations for
relative comparison of 4 attributes. This dataset contains two collections:
Zapposb0K-1, in which relative attributes are annotated for coarse pairs, where
the comparisons are relatively easy to interpret, and Zapposb0K-2, where rela-
tive attributes are annotated for fine-grained pairs, for which making the dis-
tinction between them is hard according to human annotators. Training set for
Zapposb0K-1 contains approximately 1500 to 1800 annotated pairs of images
for each attribute. These are divided into 10 train/test splits which are pro-
vided alongside the dataset and used in this work. Meanwhile, Zappos50K-2
only contains a test set of approximately 4300 pairs, while its training set is the
combination of training and testing sets of Zappos50K-1.

We have also conducted experiments on the LFW-10 [41] dataset. This
dataset has 2000 images of faces of people and annotations for 10 attributes. For
each attribute, a random subset of 500 pairs of images have been annotated for
each training and testing set.

PubFig [5] dataset (a set of public figure faces), consists of 800 facial images
of 8 random subjects, with 11 attributes. OSR [5] dataset contains 2688 images
of outdoor scenes in 8 categories, for which 6 relative attributes are defined.
The ordering of samples in both PubFig and OSR datasets are annotated in a
category level, i.e., all images in a specific category may be ranked higher, equal,
or lower than all images in another category, with respect to an attribute. This
sometimes causes annotation inconsistencies [41]. In our experiments, we have
used the provided training/testing split of PubFig and OSR datasets.

4.2 Experimental Setup

We train our proposed model (described in Sect. 3) for each attribute, separately.
In our proposed model, it is possible to train multiple attributes at the same
time, however, this is not done due to the structure of the datasets, in which for
each training pair of images only a certain attribute is annotated.

We have used the Lasagne [42] deep learning framework to implement our
model. In all our experiments, for the feature learning and extraction part of the
network, we use the VGG-16 model of [39] and trim out the probability layer
(all layers up to fc7 are used, only the probability layer is not included). We
initialize the weights of the model using a pretrained model on ILSVRC 2014
dataset [43] for the task of image classification. These weights are fine-tuned as
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the network learns to predict the relative attributes (see Sect.4.5). The weights
w of the ranking layer are initialized using the Xavier method [44], and the bias
is initialized to 0.

For training, we use stochastic gradient descent with RMSProp [45] updates
and minibatches of size 32 (16 pair of images). We set the learning rate of the
feature learning and extraction layers of the network to 107® and the ranking
layer to 10™* for all experiments initially, then RMSProp changes the learning
rates dynamically during training. We have also used weight decay (2 norm
regularization), with a fixed 10~5 multiplier. Furthermore, when calculating the
binary cross entropy loss, we clip the estimated posterior p;; to be in the range
[1077,1 — 10~7]. This is used to prevent the loss from diverging.

In each epoch, we randomly shuffle the training pairs. The number of epochs
of training were chosen to reflect the training size. For Zappos50K and LFW-
10 datasets, we train for 25 and 40 epochs, respectively. For PubFig and OSR
datasets, we train for 2 epochs due to the large number of training sample pairs.
When performing evaluation on OSR the total number of pairs is too large
(around 3 million pairs) we only evaluate on a 5% random subset of them.

4.3 Baseline

As a baseline, we have also included results for the RankSVM method (as in
[5]), when the features given to the method were computed from the output of
the VGG-16 pretrained network on ILSVRC 2014.

Using this baseline we can evaluate the extent of effectiveness of off-the-shelf
ConvNet features [13] for the task of ranking. In a sense, comparing this baseline
with our proposed method reveals the effect of features fine-tuning, for the task.

4.4 Quantitative Results

Following [5,26,41], we report the accuracy in terms of the percentage of cor-
rectly ordered pairs. For our proposed method, we report the mean accuracy
and standard deviation over 3 separate runs.

Tables 1 and 2 shows our results on the OSR and PubFig dataset respectively.
Our method outperforms the baseline and the state-of-the-art on this dataset
by a considerable margin, on most attributes. These are relatively easy datasets
but have their own challenges. Specifically the OSR, dataset contains attributes

Table 1. Results for the OSR dataset

Method Natural |Open Perspective |Large size |Diag ClsDepth | Mean
Relative attributes [5] 95.03 90.77 86.73 86.23 86.50 87.53 88.80
Relative forest [22] 95.24 92.39 87.58 88.34 89.34 89.54 90.41
Fine-grained comparison [26]|95.70 94.10 90.43 91.10 92.43 90.47 92.37
VGG16-fc7 (baseline) 98.00 94.46 92.92 94.08 94.91 95.02 94.90
RankNet (ours) 99.40 97.44 96.88 96.79 98.43 97.65 97.77
(£0.10) |(£0.16) |(£0.13) (£0.32) (£0.23) | (£0.16) |(£0.10)
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Table 2. Results for the PubFig dataset

Method Male |White|Young|Smiling|Chubby|Forehead |Eyebrow| Eye | Nose | Lip | Face |Mean
Relative Attributes [7] 81.80 | 76.97 | 83.20 | 79.90 76.27 87.60 79.87 | 81.67 | 77.40 | 79.17 | 82.33 | 80.56
Relative Forest [22] 85.33 | 82.59 | 84.41 | 83.36 78.97 88.83 81.84 | 83.15 | 80.43 | 81.87 | 86.31 | 83.37
Fine-grained Comparison [20]| 91.77 | 87.43 | 91.87 | 87.00 87.37 94.00 89.83 91.40 | 89.07 | 90.43 | 86.70 | 89.72
VGG16-fc7 (baseline) 85.56 | 80.59 | 85.20 | 84.81 82.56 88.50 83.50 | 83.11 | 81.52 | 85.67 | 86.23 | 84.30

95.50 | 94.60 | 94.33 | 95.36 92.32 97.28 94.53 | 93.19 | 94.24 | 93.62 | 94.76 | 94.52
RankNet (ours)

(+ 0.36)| (£ 0.55)| (£ 0.36)| (& 0.56) | (£ 0.36) | (+0.49) | (£ 0.64) [(+ 0.51)|(+ 0.24)|(+ 0.20)|(+ 0.24)|(+ 0.08)

Table 3. Results for the LEFW-10 dataset

Method Bald |DkHair| Eyes |GdLook|Mascu.|Mouth| Smile | Teeth |FrHead|Young| Mean
Fine-grained Comparison [22]| 67.9 73.6 49.6 64.7 70.1 53.4 59.7 | 53.5 65.6 66.2 | 62.4
Relative Attributes [7] 70.4 75.7 52.6 68.4 71.3 55.0 54.6 | 56.0 64.5 65.8 | 63.4
Global + HOG [10] 78.8 72.4 70.7 67.6 84.5 67.8 67.4 | T1.7 79.3 68.4 | 72.9
Relative Parts [11] 71.8 80.5 90.5 7.6 67.0 7.6 81.3 | 76.2 80.2 824 | 785
Spatial Extent [17] 83.21 | 88.13 | 82.71 72.76 93.68 | 88.26 | 88.16 | 88.46 | 90.23 | 75.05 | 84.66
VGG16-fc7 (baseline) 72.26 | 79.23 | 55.64 | 62.85 90.80 | 62.42 | 66.38 | 59.38 | 64.45 | 66.31 | 67.97

81.14 | 88.92 | 74.44 | 70.28 98.08 | 85.46 | 82.49 | 82.77 | 81.90 | 76.33 | 82.18
RankNet (ours) . N

(4 3.39)| (4 0.75) | (£ 5.97)| (4 0.54) | (£ 0.33) | (& 0.70) |(+ 1.41)|(+ 2.15)| (£ 2.00) |(+ 0.43)|(+ 1.08)

like “Perspective” which are very generic, high level and global in the image,
which might not correspond easily to local low level image features. We think
that our proposed method is specially well suited for such cases.

Table3 shows our results on the LFW-10 dataset. On this dataset, our
method performs competitive with respect to the state-of-the-art, but cannot
outperform it. We think this might be due to label noise in this dataset and
due to the fact that most of the attributes in this dataset are highly local and
methods that outperform us on this dataset look locally on regions of the image
instead of the whole image.

Tables 4 and 5 show the results on Zappos50K-1 and Zapposb0K-2 datasets,
respectively. Our method, again, achieves the state-of-the-art accuracy on both
coarse-grained and fine-grained datasets. Our proposed method learns appropri-
ate features for the task, given the large amount of training data available in
this dataset.

4.5 Qualitative Results

Our proposed method uses a deep network with two parts, the feature learning
and extraction part and the ranking part. During training, not only the weights

Table 4. Results for the UT-Zap50K-1 (coarse) dataset

Method Open Pointy | Sporty | Comfort | Mean
Relative attributes [5] 87.77 89.37 91.20 89.93 89.57
Fine-grained comparison [26] | 90.67 90.83 92.67 92.37 91.64
Spatial extent [47] 95.03 94.80 96.47 95.60 95.47
VGG16-fc7 (baseline) 89.67 90.67 91.67 91.00 90.75
RankNet (ours) 95.37 94.43 97.30 95.57 95.67
(£0.82) | (£0.75) | (£0.81) |(£0.97) |(£0.49)
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Table 5. Results for the UT-Zap50K-2 (fine-grained) dataset

Method Open Pointy | Sporty | Comfort | Mean
Relative attributes [5] 60.18 59.56 62.70 64.04 61.62
Fine-grained comparison [26] | 74.91 63.74 64.54 62.51 66.43
LocalPair + ML + HOG [46] | 76.2 65.3 64.8 63.6 67.5
VGG16-fc7 (baseline) 64.82 64.51 67.31 67.01 65.91
RankNet (ours) 73.45 68.20 73.07 70.31 71.26
(£1.23) | (£0.18) | (£0.75) |(£1.50) |(=£0.50)

LFW10 - Bald Head

Fine-tuned Feature Space

Originial Feature Space

Fig. 5. t-SNE embedding of images in fine-tuned feature space (top) and original fea-
ture space (bottom). The set of visualizations on the left are for the Bald Head attribute
of the LEFW-10 dataset, while the visualizations on the right are for the Pointy attribute
of the Zappos50K-1 dataset. Images in the middle row show a number of samples from
the feature space. In the fine-tuned feature space, it is clear that images are ordered
according to their value of the attribute. Each point is colored according to its value of
the respective attribute, to discriminate images according to their value of the attribute.
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for the ranking part are learned, but also the weights for the feature learning and
extraction part of the network, which were initialized using a pretrained network,
are fine-tuned. By fine-tuning the features, our network learns a set of features
that are more appropriate for the images of that particular dataset, along with
the attribute of interest. To show the effectiveness of fine-tuning the features
of the feature learning and extraction part of the network, we have projected
them (features before and after fine-tuning) into 2-D space using the t-SNE [48],
as can be seen in Fig. 5. The visualizations on the top of each figure show the
images projected into 2-D space from the fine-tuned feature space, while the
visualizations on the bottom show the images from the original feature space.
Each image is displayed as a point and colored according to its attribute strength.
It is clear from these visualizations that fine-tuned feature space is better in
capturing the ordering of images with respect to the respective attribute. Since
t-SNE embedding is a non-linear embedding, relative distances between points
in the high-dimensional space and the low-dimensional embedding space are
preserved, thus close points in the low-dimensional embedding space are also
close to each other in the high-dimensional space. It can, therefore, be seen that
fine-tuning indeed changes the feature space such that images with similar values
of the respective attribute get projected into a close vicinity of the feature space.
However, in the original feature space, images are projected according to their
visual content, regardless of their value of the attribute.

Another property of our network is that it can achieve a total ordering of
images, given a set of pairwise orderings. In spite of the fact that training samples
are pairs of images annotated according to their relative value of the attribute,
the network can generalize the relativity of attribute values to a global ranking
of images. Figure 6 shows some images ordered according to their value of the
respective attribute.

strong weak

Smile -~ B o l‘&‘
L .1 % -%J ‘ m E k -
N 4 1 o

Sport; L
(Zaps0K-1) ‘ & ‘ J a' -
(OSR)

= o b bl b

Fig. 6. Sample images from different datasets, ordered according to the predicted value
of their respective attribute.

Natural
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Zapposb0k1 - Pointy

Fig. 7. Saliency maps obtained from the network. First we feed two test images into
the network and compute the derivative of the estimated posterior with respect to the
pair of input images and use the method of [14] to visualize salient pixels with Gaussian
smoothing. In each row, the two input images from the a dataset’s test set with their
corresponding overlaid saliency maps are shown (the warmer the color of the overlay
image, the more salient that pixel is).
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4.6 Saliency Maps and Localizing the Attributes

We have also used the method of [14] to visualize the saliency of each attribute.
Giving two image as inputs to the network, we take the derivative of the esti-
mated posterior with respect to the input images and visualize them. Figure 7
shows some sample visualization for some test pairs. To generate this figure we
have applied Gaussian smoothing to the saliency map.

These saliency maps visualize the pixels in the images which contributed most
to the ranking predicted by the network. Sometimes these saliency maps are
easily interpretable by humans and they can be used to localize attributes using
the same network that was trained to rank the attributes in an unsupervised
manner, i.e., although we haven’t explicitly trained our network to localize the
salient and informative regions of the image, it has implicitly learned to find
these regions. We see that this technique is able to localize both easy to localize
attributes such as “Bald Head” in the LEFW10 dataset and abstract attributes
such as “Natural” in the OSR dataset.

5 Conclusion

In this paper, we introduced an approach for relative attribute prediction on
images, based on convolutional neural networks. Unlike previous methods that
use engineered or hand-crafted features, our proposed method learns attribute-
specific features, on-the-fly, during the learning procedure of the ranking func-
tion. Our results achieve state-of-the-art performance in relative attribute pre-
diction on various datasets both coarse- and fine-grained. We qualitatively show
that the feature learning and extraction part, effectively learns appropriate fea-
tures for each attribute and dataset. Furthermore, we show that one can use a
trained model for relative attribute prediction to obtain saliency maps for each
attribute in the image.

Acknowledgments. We would like to thank Computer Engineering Department of
Sharif University of Technology and HPC center of IPM for their support with com-
putational resources.
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Abstract. Clothing fashion represents human’s aesthetic appreciation
towards their outfits and reflects the development status of society,
humanitarian and economics. Modelling fashion via machine is extremely
difficult due to the fact that fashion is too abstract to be efficiently
described by machine. In this paper, we delve into two fashion related
problems: what type of image feature best describes fashion and how
can we fast retrieve the fashionably similar images with any given query
fashion image. To address these two problems, we first conduct extensive
experiments on various image features, ranging from traditional low-level
hand-crafted features, mid-level style aware features to current high-level
powerful deep learning based features, to find the feature best describes
clothing fashion. To test each candidate feature’s performance, we fur-
ther design a fast fashion guided clothing image retrieval framework by
efficiently converting float formatted features into binary codes, with
which we can achieve much faster image retrieval without much accu-
racy reduction. Finally, we validate our proposed framework on two pub-
licly available datasets. Experimental results on both intra-domain and
cross-domain fashion clothing image retrieval show that deep learning
based image features with explicit fashion prior knowledge guidance best
describe fashion, and feature binarization scheme also achieves compa-
rable results in terms of various fashion clothing image retrieval tasks.

1 Introduction

Fashion, primarily a visual art form, integrates aesthetics, art, science and design
to create the work that reflects human’s understanding and preference to the
current world’s forefront development trend. As fashion direct carrier, clothing
fashion pushes the whole world forward in a way in which it affects our everyday
lives and both fashion designers and laymen can join in. As the fashion designer,
Marc Jacobs said, “clothing is a form of self-expression - there are hints about
who you are in what you wear”. In the meantime, clothing fashion trends are
erratic and fluctuating. For example, the warm red color and chiffon were very
popular in 2011, but the military green and taffeta came into burst in 2012
and 2013 respectively. Spring 2012 saw the instant emergence of neon color
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that reminiscently belongs to 90s. Clothing fashion is also visually apparent,
which allows us to analysis it through computer vision related methods. Yet
modelling abstract fashion is a challenging task due to large gap between machine
percepting an image as pixel-wise real values and we human’s percepting fashion
via extremely abstract manner.

Recent years witnessed significant clothing online shopping explosion.
According to a study from the technology and market research firm Forrester!,
the number of online shoppers is expected to grow to 192 million, or 56% of
U.S. population, by 2016, comparing by 53% in 2015. Large amount of cloth-
ing purchasing behaviours are driven by clothing fashion attribute. The huge
potential market has catalyzed numerous research topics in fashion in last sev-
eral years in both industry, like eBay? and Taobao, and academia, ranging from
fashion trend prediction [1], fashion image ranking [2], detection [3] to fashion
visual analysis[4-7], cross-domain visual matching [8,9] and recommendation
[10]. As image feature representation is prerequisite, they turn to either tra-
ditional hand-crafted features (i.e. color, texture) or current powerful convolu-
tional neural network (CNNs) feature driven by specific tasks [2,3]. However,
these feature representations they depend on have been merely demonstrated
to be helpful in non-fashion related tasks, such as object detection and classi-
fication. There is a lack of comprehensive study of what type of feature best
describes fashion. Kiapour et al. [6] describe fashion clothing with 5 styles that
easily understandable by humans but difficultly recognizable and processable by
machines: hipster, bohemian, pinup, pretty and goth. Vittayakorn et al. [4] tried
to figure out whether low-level image feature or mid-level attribute (they call
style and shape feature) contribute more to fashion. They show mid-level fea-
tures perform better than low-level features on their collected runaway dataset
and paper doll dataset [11] in terms of fashion description. Still, they did not
take high-level image features that are specially designed for fashion description
into consideration, which we will show perform much better than both low-level
and mid-level feature in this paper. Actually, fashion modelling is an extremely
difficult problem. For example, all the 8 fashion images that share the same fash-
ion property in Fig. 1 come from both the same brand name, year and fashion
show season. However, they mutually keep large visual discrepancy in terms of
color, texture and other common image features.

In this paper, we commit to answer two questions: what type of extracted
image features best models the clothing fashion? and given the fashion feature
representation extracted from a query image, how can we fast retrieve images
with similar fashions attribute? In general, we assume clothing images coming
from the same fashion show, same season and holding the same brand name share
similar fashion attributes. Because, fashion designers would usually express only
one unique fashion theme during their launched fashion show for a particular
season. We argue that fashion, especially the clothing fashion, is a distinctive and

! see report in http://mashable.com/2012/02/27/ecommerce-327-billion-2016-study/
#kc.44t967Zqq3.
2 see http://labs.ebay.com /tags/fashion.
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Fig. 1. Large visual discrepancy exists in fashion images. All the 8 images share the
same fashion property as they derive from fashion brand Apiece Apart in 2013 Spring
ready-to-wear season. However, they also hold large visual discrepancy between images,
including color information, texture, even the extraneous shape feature.

habitual trend in the style that people practice in their everyday dresses. It is
a kind of aesthetics that directly relates to people’s outfits, including footwear,
accessories, makeup, clothing. It integrates so many factors and a costume’s
parts to express a fashion theme that hardly can machines analyze it accurately
and comprehensively, even though it is comparably much easier for human to
percept and analyze. In this paper, we devote to bridge this gap to make the
machine to be able to “understand” fashion. Thus, to tackle the two problems,
we first devote to model fashion-aware image feature, ranging from low-level,
mid-level features mentioned above to high-level features that are abstract and
semantically expressive. We conduct comprehensive experiments to test various
image features, including color, texture (low-level), shape, style feature (mid-
level), and convolutional neural networks (CNNs), CNNs guided distance metric
learning ranking (CNNs&DML) and AutoEncoder features (high-level). CNNs
directly learn feature representation from a stack of non-linear neural networks.
CNNs&DML works in the same way but the learning process is deliberately
supervised by fashion similarity metrics via a triplet ranking loss. While CNNs
and CNNs&DML are supervised learning, AutoEncoder is completely unsuper-
vised learning. It learns feature representation by encoding and decoding a fash-
ion image, guaranteeing the input image and decoded image are maximally the
same.

Then, as a mean of testing each feature’s performance, we design another fast
image retrieval framework by converting the long float formatted feature vectors
into binary codes, which allows us to fast calculate two image’s fashion similarity.
We follow the binarization approach proposed by Xia et al. [12] to transform all
fashion features to binary codes, in which we introduce a sparsity encouraging
regularizer and additive noise to reduce the accuracy loss caused by this bina-
rization process. We will show in our experiment that this fast image retrieval
framework dramatically improves retrieval speed without obvious retrieval accu-
racy loss, which enables real-time application.

To validate our proposed fashion features’ performance, as well as to test the
fast fashion image retrieval framework, we conduct experiments on two publicly
available datasets: Runway dataset [4] and Paper Doll dataset [11]. Runway
dataset [4] contains fashion images from various fashion shows launched by
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famous brands (i.e. Christian Dior), ranging from 2010 to 2014. Paper Doll
dataset [11] contains clothing images people dress in their daily lives and shown
in various fashion shows. These two datasets enable us to test our framework
from different viewpoints. For example, retrieving images w.r.t. brand name,
year, season, or cross-domain retrieval between people wearing clothing fashion
show clothing. Overall, the main contributions of this paper lie in: 1. we conduct
extensive experiments on various existing image features to find the feature that
best describes fashion. The features we here use span from traditional low-level
color, texture features, mid-level shape, style feature to high-level deep learn-
ing based features. To the best of our knowledge, we have covered most existing
image features that have shown superiority in various tasks. 2. We design a novel
fashion guided fast image retrieval framework which enables fast image retrieval
according to different requests. Besides, our feature vector binarization scheme
achieves real-time application without obvious accuracy loss.

2 Fashion Image Feature Pool

Efficient image feature representation is of vital importance for various vision
tasks. Up to now, traditional hand-crafted features, semantically engineered fea-
ture as well as supervised learning based features have been proposed to address
various vision problems. Yet, none of these features was initially designed for
fashion description. To delve into what image features makes fashion, we take 7
kinds of features into consideration, namely color, texture, shape, style, Convo-
lutional Neural Networks (CNNs) feature, CNNs supervised by distance metric
learning feature (CNNs&DML) and AutoEncoder feature.

Color Feature. Color information is the most direct and intuitive visual infor-
mation we receive from an image. Given an image, we extract two 512 dimen-
sional histograms in both RGB space and Lab color space and further concate-
nate them together to form a 1024 dimensional feature vector. To avoid irrelevant
background interference, we merely extract color feature in the regions parsed
as foreground by [11]. (see Fig. 2 for parsing result).

Texture Feature. Texture captures an item’s surface physical appearance and
characteristics, such as roughness, topological structure and subtle color orien-
tation. Clothing texture conveys fashion theme from a bottom-to-top scope. In
this paper, texture feature consists of two bag-of-words (BoW) histograms from
regions parsed as foreground (also by [11]). The first one derives from the his-
togram from MR8 response [13] quantized into 256 visual words. The second
histogram derives from HOG descriptor [14] (8 x 8 blocks, 4 pixel step size, 9
orientations) quantized into 1000 words. These two histograms are also concate-
nated together to form one final feature vector.

Shape Feature. We follow the method proposed in [4] for shape feature extrac-
tion. Particularly, given a fashion image, we first apply the pose estimation algo-
rithm [15] to find the body part, then we divide the body part into 9 subregions
for head, chest, torso, left/right arm, between/left /right legs. For each subregion,
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Fashion Feature Candidates Image Database Retrieval Results

Fast Image Retrieval

CNNs

Top-1

CNNs&DML

AutoEncoder

Top-4

Fig. 2. Framework overview: given a fashion image, we first extract 7 fashion feature
candidates, then we convert these float formatted feature vectors into binary codes,
with which we can fast retrieve fashionably similar images.
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Fig. 3. AutoEncoder feature and Shape feature. A. AutoEncoder receives an input
fashion image and feeds it to the encoding-decoding neural network to learn compressed
representation (aka AutoEncoder feature). B. Shape feature calculation process: given
an original image, we first estimate the nini-tina’s pose with a bunch of bounding boxes.
Then we gradually binarize all bounding boxes to calculate the edge map, which serves
as shape feature.

we extract an edge map by an edge detection algorithm (see Fig.3B). Finally,
we binarize the edge map by minimizing the following loss function

Eshape = Z d(xuﬂ) + Z d(l‘_], mi) (1)

icx JET

where d(z;,7;) indicates the Euclidean distance of pixel ¢ of the binary map «
binarized at the threshold ¢ to the nearest pixel j of the clothing contour Z.

Style Feature. Style feature is particularly introduced by Yamaguchi et al. [11].
For an image, we first extract 24 key points and further use these key points to
create part-specific descriptors. Each descriptor builds on low-level features, such
as RGB, Lab, MR8, HOG and boundary distance, skin hair distance. Skin-hair
distance is calculated by using logistic regression for skin, hair, background and
clothing at pixel-level. Finally, all spatial descriptors are concatenated together
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to form the style feature vector. PCA is also applied for reducing the dimension-
ality from 39,168 to 441.

CNNs Feature. Convolutional neural networks have shown state of the art
performance on various vision tasks due to its super power to learn discrimina-
tive feature on large datasets. Tasks such as object detection [16], image seman-
tic segmentation [17] and image similarity measurement [8,18] benefited much
from the CNNs to learn discriminative feature through a layer-wise and highly
non-linear neural network. While shallow layer in CNNs architecture learns the
localized feature (i.e. edges, boundaries and textures), and intermediate layer
learns mid-level feature (i.e. motif, object, attribute), deep layers learns global
and abstract image feature. We exploit this advantage and extract CNNs final
full connection (fc) layer and treat its activation value vector as CNNs fashion
feature. Note that the CNNs feature discussed here is trained as a classification
problem. For example, given a set of fashion images, we can train a deep con-
volution neural network to classify these images according their brands. Then
we treat full connection feature before the softmax layer as CNNs fashion fea-
ture. By utilizing this feature, we test CNNs feature’s generalization ability to
interpret fashion.

CNNs& DML Feature. Instead of simply replying on CNNs feature alone, we
want to go further to supervise CNNs feature learning process via distance metric
learning (DML), anticipating the learned CNNs feature better fits for fashion
description. Distance metric learning has already been extensively applied to
image retrieval [19-23]. The key idea of distance metric learning is to find an
optimal metric that minimizes the predefined distance of similar images but
maximizes the distance of dissimilar images. In general, distance metric learning
either learns a global metric by satisfying all constraints simultaneously or a local
metric by merely satisfying partial constraints. In this paper, we adopt triple
ranking loss to rank the fashion similarity of an image pair. Triplet ranking loss
has been successfully applied to cross-domain clothing image retrieval [18] and
content-based image retrieval [9]. Triplet ranking loss requires triple image pair
input. Denoting I, I and I~ the anchor, positive and negative input image,
respectively, in which I and I are fashionably similar but I~ is fashionably
dissimilar to any image of the two. Our goal is to train the triplet ranking loss
by forcing it minimizes distance d(; r+) between anchor and positve and, at the
same time, maximizes the distance d(; ;- between anchor and negative. This
constraint is achieved by letting d(; r+) to be larger than d(; ;- by a small
pre-defined margin 9.

Liviper = >, max(0,0 + d(z,1+) — dr,1-)) (2)
(I,1+,17)

AutoEncoder Feature. Note that all the aforementioned fashion features
generation approaches require explicit heavy human engineering work, either
in human deliberately involved feature quantization (low-level and mid-level
feature) or human guided feature learning strategy (high-level feature). Actu-
ally, quantizing fashion image feature via human supervision cannot withstand
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scrutiny because there is current no general agreement upon what categories
or labels are meaningful for clothing fashion modelling. One more appropri-
ate way is to generate clothing fashion representation without explicit human
intervention. Inspired by this motivation, we leverage the AutoEncoder scheme
introduced by Torres [24] to create clothing fashion feature. AutoEncoder is ini-
tially designed for dimension reduction or feature compression via a sequence of
symmetrical neural networks by maximally keeping all meaningful information
in a much smaller domain. We take this advantage to train a neural network
to automatically learn fashion representation which automatically strips away
all irrelevant information in the original clothing image and stores the fashion
features in a condensed vector.

AutoEncoder learns the fashion presentation of clothing images by first
encoding them via a stack of neural networks with descending neutron num-
ber order, and then decoding the compressed representation through another
stack of neural networks with ascending neuron number order (see Fig. 3A). The
whole encoding-decoding neural network is trained through a sequence of for-
ward and backward propagation by forcing the input image to be the same as the
neural network’s output image. The biggest advantage of AutoEncoder feature
is that the neural networks automatically learn fashion representation without
being explicitly told what these representations should be look like. Conventional
AutoEncoder is notorious for being easily prone to be overfitting. To avoid this
dilemma, we follow the variational AutoEncoder introduced by Torres [24] to
introduce a regularization term and uncertain noise into the neural network.
Specifically, rather than treating the encoded fashion feature vector as static
numeric values, we interpret it under Bayesian framework and treat it as statis-
tical distribution with multivariate normal and identity covariance so that we
can draw samples from this distribution.

To be specific, given an input image I, we first forward propagate it through
the encoding neural network, then compute compression layer’s mean value p
and covariance 0. With the two values, we can resample the encoding vector
through variational posterior q(z) = N(z;u,02I). After forward propagating
the resampled feature to the decoding neural network to get the reconstructed
image, we can calculate the prior distribution p(z) = N (z,0,T). The final loss
function consists of two parts: the mean square error and KL divergence of our
trained posterior ¢(z) and pre-constructed prior p(z).

L= MSE(I;, I,) + Dk 1(q(2)[|p(2)) 3)

where M SE indicates the mean square error calculator. Involving regularization
term and extra noise during the whole training process keeps the AutoEncoder
from overfitting and thus guarantees fine fashion feature extraction in any test
fashion clothing image.

3 Fast Fashion Image Retrieval with Binary Codes

After calculating feature vectors for all fashion image datasets, we can calcu-
late any query image’s similarity with each image stored in the database by
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similarity metrics such as Euclidean distance, Hamming distance and Cosine
distance. However, since all the feature vectors are float formatted, distance cal-
culation is too computationally heavy, which is intolerable for many real appli-
cations, especially when the database involves millions of images. An empirical
way to reduce this computation burden is to convert the float formatted feature
vector to binary code vectors without much information loss. With the binary
code, the similarity distance can be fast calculated by XOR operation. To this
end, we follow the method introduced by Xia et al. [12] to convert float fashion
representation to binary fashion representation.

The basic theory of float vector binarization is simple: given an original float
feature ff, our goal is to train a matrix W to map f to new feature space
fo =W - f. fp is then binarized by thresholding. The whole process is supervised
by minimizing the distortion and variants between f; and f;,. More formally, we
use F' € R¥" to denote the input float feature matrix, each column of which
is a datum, our goal to train a projection matrix W?*?¢ which directly maps F
into the target binary codes B € R®™ by B = sign(WF) € {—1,1}**". The
key challenges arising from this process include a lack of an effective regularizer
for accurate mapping and high computation cost. We here introduce a sparsity
encouraging regularizer to mitigate these challenge by reducing the number of
parameters involved in projection operation. In sum, the objective functions
goes as

min = |WF — B||%
W,B (4)
s.t. WIw =1, |Wlp<m

where | - |g indicates the number of non-zero elements in W. m is the sparsity
controller. By optimizing Eq. 4, the float formatted fashion feature set can be
mapped to an binary domain, with which we can fast compute similarity with
Euclidean distance.

4 Experiment

We test our frameworks on two publicly available datasets: Runway dataset [4]
and Paper Doll dataset [11]. Runway dataset consists of runway images from
a wide variety of fashion shows. There are a total of 348,598 images which
are collected from style.com, including 9,328 fashion shows from 2000 to 2014.
Each image is tagged with a meta data describing the image’s brand name (i.e.
Christian Dior), show date, season (i.e. Resort 2007), city, the author name,
as well as the short text description. The number of images of each individ-
ual brand ranges from 10 to 100. There are 8 seasons in total: spring ready to
wear (S-RTW), spring menswear (S-MENS), Spring Couture (S-COUT), resort,
pre-fall, fall read-to-wear (F-RTW), fall menswear (F-MENS), fall couture (F-
COUT). In our experiment, we assume only fashion images sharing the same
brand name, year and seasons share the same fashion property because each
fashion designer always expresses one particular fashion theme for a fashion
show and all clothing items serve to express this fashion theme. For example, in
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the 2008 pre-fall fashion show, Burberry Prorsum has expressed brands signature
outerwear centered fashion through coutures “Coats were ruched, beaded, piped
with patent leather. Underneath, there was a loosened-up silhouette: still fitted
at the top, but fuller at the bottom”. Therefore, an image is only considered
as correct retrieval only if it comes from the same fashion show with the query
image. With the Runway dataset, we can conduct experiments on intra-domain
fashion image retrieval where “intra-domain” means all images coming from
various fashion shows.

Paper Doll dataset [11] contains clothing images people wearing in their
daily lives. There is a total of 339,797 images collected from the social network
named Fashionista which focuses on Chictopia fashion. Each image in Paper
Doll dataset [11] does not have a fashion tag, so we can not directly test each
feature candidate’s performance within our proposed fast fashion image retrieval
framework regarding fashion metrics. Here we utilize Paper Doll dataset [11] to
test each feature candidate’s generalization capability in retrieving really cloth-
ing images (clothing people wearing everyday) for runway fashion images. We
call it cross-domain fashion retrieval. Since there is no ground truth dataset for
quantitative evaluation, we involve human subjective evaluation: for each runway
query image’s retrieval results, we ask 5 volunteers to label the fashion similarity
between the query image and each retrieved realway image.

As for evaluation metrics, we adopt mean average precision (mAP), precision
and recall rate at particular ranks (“PQK”, “R@QK”) metrics that are often
employed for many standard image retrieval applications. Note that mAP strikes
a balance between precision and recall rate. Besides, it takes the retrieved image’s
location into consideration. The more forward an accurately retrieved fashion
image ranks, the higher mAP values it achieves. Specifically, mAP is computed
via the following equation,

1 & Pi—1+Di
mAP = N ;(Tz — Tz'—l) . % (5)
where 7; and p; indicate the recall and precision rate of top-i retrieval results,
respectively. A well-designed image retrieval framework often generates high
mAP value.

We implement CNNs and CNNs&DML feature learning on the open source
deep learning framework Caffe [25] with 4 Tesla K40 GPUs. The CNNs architec-
ture we adopt here is the 18-layer residual network with identity mapping pro-
posed by He et al. [16], which has shown promising performance on various vision
tasks. In CNNs feature training, we classify the Runway dataset [4] according
to their brand names (thus, the output layer is a softmaz layer with 851 out-
puts). Note that other classification criterias truly exist, such as year-based and
fashion season-based classification. We do not involve them here because we just
want to test non-fashion guided CNNs feature’s performance on fashion image
retrieval. We divide Runway dataset [4] into 300,000 and 48,598 for train and
testing, respectively. Data augmentation methods like scaling, vignetting, fish
eye distortion are involved here and it takes 6 days to train the whole dataset.
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We observe that the loss fluctuates slightly at the very beginning several epochs
iteration and then gradually diminishes to a small value. For CNNs&DML fea-
ture training, we first collect fashion images of the same brand, year and season
to form the anchor and positive pair, any image violating this similar-fashion
criterion is treated as negative. Finally, we randomly generate 500,000 triplet
pair, covering all the 9260 different fashion shows. The testing dataset for CNNs
fashion feature is also adopted here for testing.

Intra-domain Experiment. We only consider top-10 retrieval results for Run-
way dataset [4] because, in some extreme situations, one query fashion image cor-
responds only up to 10 fashion images. Specifically, we calculate mAP, P(R)@3,
P(R)@5, P(R)@Q7 and P(R)@10 metrics. The float formatted retrieval results are
given in Table1 and the binary codes retrieval results are given in Table2. We
can clearly observe that machine learning based features (CNNs, CNNs&DML
and AutoEncoder) far outperform traditional hand-crafted features by a large
margin on both float formatted retrieval and binary codes based retrieval. Tradi-
tional low-level features including color, texture, shape and style usually get fine
retrieval result with a low ranking K, which means that fashion property shows
correlation with low-level image features. However, while the retrieving num-
ber increases, traditional low-level features soon loss discrimination capability

Table 1. Fashion image retrieval results on runway dataset [4] (float formatted fea-
tures).

Feature mAP | PQ3 | PQ5 | PQ7 | PQ10 | R@3 | R@5 |R@7 |RQ10
Color 0.41 |0.70 1 0.43 |0.51 |0.57 |0.033 |0.065 |0.110 |0.167
Texture 0.45 |0.67 1 0.46 |0.54 |0.57 |0.036 | 0.063 |0.110 |0.172
Shape 0.51 |0.73 10.60 |0.63 |0.71 |0.049 0.078 |0.136 |0.198
Style 0.53 |/0.76 | 0.70 |0.63 | 0.69 |0.048 |0.080 |0.148 |0.213
CNNs 0.74 10.87 10.83 |0.83 |0.85 |0.088 |0.104 |0.197 |0.318
CNNs&DML | 0.87 |0.89 |0.93 | 0.87|0.92 | 0.094|0.138 0.210|0.321
AutoEncoder | 0.76 |0.80 | 0.85 [0.83 |0.84 |0.090 [0.112 | 0.187 |0.317

Table 2. Fashion image retrieval results on runway dataset [4] (binary codes features).

Feature mAP | P@3 | P@5  PQ7 | PQl10|R@3 |R@5 |RQ@7 |RQ10
Color 0.37 [0.68 |0.40 |0.43 |0.50 |0.030 | 0.055 |0.082 |0.154
Texture 0.45 [0.67 |0.40 |0.47 |0.50 |0.029 | 0.047 |0.090 |0.164
Shape 0.47 10.68 |0.52 |0.60 |0.68 |0.042 |0.071 |0.126 | 0.189
Style 0.50 [0.73 10.63 |0.59 |0.64 |0.043 | 0.076 |0.136 | 0.201
CNNs 0.70 |0.86 |0.81 |0.82 |0.80 |0.087 |0.104 |0.193 |0.310
CNNs&DML | 0.87 | 0.880.93 | 0.87|0.90 |0.094|0.137|0.210  0.321
AutoEncoder | 0.74 |0.74 |0.83 |0.82 | 0.84 |0.088 | 0.109 |0.183 |0.300
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regarding fashion description (which are testified by the fact that precision values
with a higher K are much smaller than prevision values with a lower K'). There-
fore, hand-crafted image features only hold weak correlation with fashion descrip-
tion, much more robust and discriminative characteristics of fashion are still are
incorporated by these hand-crafted features.

On the contrary, our proposed three machine learning based image fea-
tures (CNNs, CNNs&DML, AutoEncoder) have managed to grasp these hidden
characteristics of fashion. Their multi-layers perceptron and high non-linearity
perception manner assist them to mine deeper semantic and more abstract char-
acteristics of fashion. It in turn attests fashion integrates various visual informa-
tion, both intuitive and abstract, to be fashionable. Among the three machine
learning based methods, CNNs&DML performs the best (an average of 10 per-
cent increasing in mAP). We learn that explicitly telling the neural network some
side information about fashion, like what two images are fashionably similar but
the other two are not in our experiments, dramatically assist machines to under-
stand fashion. Unsupervised and self-explanatory AutoEncoder and non-fashion
task guided neural network CNNs, to some extent, often fail to fully capture fash-
ion properties. In addition, we also note that the three machine learning based
image features are barely affected by the variation of ranking number K (almost
stayed the same regardless of K changes). This shows that these three feature
managed to jump over the fashion interpretation barrier showing in Fig. 1. They
are better capable of understanding “what makes fashion”.

Visual results are shown in the left side of Fig.4, from which we can see
that hand-crafted image features often treat images from different brands, years
and seasons as fashionably similar. However, deep learning based methods can
avoid this problem and find the truly fashionably similar images, even though
they have dramatic visual difference. We do not provide the average processing
time difference here between float formatted features and binary codes. The
reason is that, on the one hand, the retrieval time for each query image heavily
depends on the size of database. Direct comparison without taking the database
size into consideration is somewhat meaningless. On the other hand, we observe
that no obvious time difference in the 30W+ Runway database [4] between
float formatted features and binary codes. However, when we applied the same
feature binarization scheme to other image retrieval problem on a much larger
database (i.e., 6 million), processing time difference emerges: the average time
to retrieve an image with float formatted feature is about 0.5s, but 0.2s with
its corresponding binary code.

Cross-domain Experiment. An intuitive idea is to figure out whether the
learned or hand-crafted fashion descriptors on runway scenarios (Runway dataset
[4]) can successfully be applied to real life clothing items’ fashion analysis. This
can help us to test these features’ generalization and transformation ability.
Thus, we further conduct experiment on Paper Poll dataset [11]. As we dis-
cussed above, there is not ground truth for Paper Poll dataset [11] for quanti-
tative evaluation. What we do here is to ask 5 volunteers to label the retrieval
results. This helps us to understand the fashion from human perspective, even
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Fig. 4. Visual representation of both intra-domain (left) and cross-domain (right) fash-
ion image retrieval results. The first image in each row for either domain is the runway
query image. For the intra-domain fashion image retrieval, we further provide year,
brand and season tags for better comparison.
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Table 3. Human judgement results on cross-domain experiment. Given an query image
from the Runway dataset [4], we retrieve fashionably similar images from Paper Doll
dataset [11]. Then we ask 5 volunteers to label each retrieval result and assign the
labelling result to one of the three classes according to the number of volunteers who
agree on the retrieval result. Finally, we calculate the rate of the three classes on the
testing dataset.

Classes Color | Texture | Shape | Style | CNNs | CNNs&DML | AutoEncoder
Unanimity | 0.43 |0.28 0.30 0.38 [0.40 |0.48 0.43
Major 0.33 |0.20 0.35 10.31 |0.37 |0.34 0.30
Some 0.24 |0.52 0.35 |0.31 |0.23 |0.18 0.27

though subjective personal preference and experience are heavily involved in this
experiments. Specifically, we follow the scoring system provided by Vittayakorn
et al. to ask the volunteers to label all query-retrieval image pair as fashion-
ably similar or dissimilar. Then we calculate the number of volunteers who have
given agreed labelling results and accordingly classify each retrieval results as
one of the three classes: Unanimity which means all the agreed on the retriev-
ing result. Majority which means more than or equal 3 volunteers agreed on
the retrieving result, and Some which indicates less than 3 volunteers agreed
on the retrieving result. To maximally reduce personal prejudice and unprofes-
sional judgement, we first ask all the volunteers to carefully look at Runway
dataset [4] to learn the idea what makes two images fashionably similar. Finally,
we calculate the rate of the whole testing images being classified as the three
classes regarding the 7 feature candidates. The result in shown in Table 3, from
which we can get that pre-trained volunteers exhibit professional expertise to
compare the fashion similarity for runway-realway image pair. They show com-
patible labelling result w.r.t intra-domain experiment. That is, machine learning
based methods’ retrieved results leads to larger unanimity rate. Hand-crafted
features, especially the shape and style features, arise much controversy between
volunteers. We think the reason behind it is that mid-level feature is neither
fully human understandable nor machine discernible. So, none of them can lead
to promising results on either the machine side or human judgement side. The
low-level features, however, even though they are still machine discernible regard-
ing fashion interpretation, can easily motivate human’s perception and further
inspire human to make judgement. This specially applies to color feature, from
which we see a large unanimity rate. Color information reduces human’s hesita-
tion to make a judgement, but texture varies significantly according to different
people.

The cross-domain visual result is given on the right side of Fig.4. We can
clearly see that texture feature can lead to large ambiguity between different
clothing parts in an image (second row). The nini-tina’s overcoat, trouser as well
as bag hold large texture discrepancies, texture feature alone failed to interpret
them hierarchically and efficiently. So the retrieved results exhibit large texture
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variations, even though all the three retrieved images have the white overcoat.
However, large machine learning based methods, especially deep learning based
methods, managed to strike a balance between them and accurately retrieve
image according to their fashion property.

Overall, after comprehensive and extensive experiments on both intra-domain
and cross-domain situation, we can see that deep learning based image features
(CNNs, CNNs&DML and AntoEncoder) can be used to describe an image’s fash-
ion property in both intra-domain and cross-domain application. Explicit fash-
ion guided training helps to learn better fashion features. Traditional features,
including low-level features and mid-level features, cannot grasp discriminative
and deep fashion properties. Besides, our proposed fast image retrieval frame-
work helps to fast retrieve fashion images according to their fashion properties.

5 Conclusion

In this paper, we delve into what special image feature makes fashion. We con-
duct extensive experiments to test various existing image features’ performances
in terms of fashion aware image retrieval, assuming fashion images deriving
from the same fashion show, same brand name as well as same season share
similar fashion properties. The image features we exploit in this paper cover
most famous low-level, mid-level and high-level image features that have been
demonstrated to be useful in other vision tasks. Our comprehensive experimen-
tal results show that machine learning (especially deep learning) based image
features better describe fashion than traditional hand-crafted image features.
Among all machine learning generated image features, fashion-guided machine
learning generated features (CNNs&DML) performs slightly better than both
non-fashion task supervised machine learning generated image feature (i.e. clas-
sification task supervised CNNs image feature) and unsupervised machine learn-
ing generated image feature (i.e. AutoEncoder), which shows that fashion term
is highly abstract and can be better described by telling the machine some side
information about fashion, such as what two images share similar fashion prop-
erty. Even though fashion is somewhat easily understandable by humans but
difficultly processible by machines, we find that it can still be efficiently mod-
elled by machines via current successful deep learning based methods.

In addition, to fast retrieve a fashion image, we propose to convert float
formatted feature vectors into binary codes. The feature binarization process
allows real-time fashion image retrieval application. Still, fashion is an open
problem and many interesting problems such as fashion trend prediction and
image fashion likelihood probability prediction, remain to be tackled.
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Abstract. Relative attributes can serve as a very useful method for
zero-shot learning of images. This was shown by the work of Parikh and
Grauman [1] where an image is expressed in terms of attributes that are
relatively specified between different class pairs. However, for zero-shot
learning the authors had assumed a simple Gaussian Mixture Model
(GMM) that used the GMM based clustering to obtain the label for
an unknown target test example. In this paper, we contribute a princi-
pled approach that uses Gaussian Process based classification to obtain
the posterior probability for each sample of an unknown target class, in
terms of Gaussian process classification and regression for nearest sample
images. We analyse different variants of this approach and show that such
a principled approach yields improved performance and a better under-
standing in terms of probabilistic estimates. The method is evaluated on
standard Pubfig and Shoes with Attributes benchmarks.

1 Introduction

Consider the task of recognizing a person at test time when we are not pro-
vided with any images of the person at training. This setting for classification is
termed zero-shot learning, i.e. the classifier is provided with no training image
for obtaining the classification. A technique used to recognize unseen classes is
through the use of attributes [5]. These attributes describe a person in terms as
the gender of a person, or type of hair that person has. However, as shown by
Parikh and Grauman [1], a more natural description is obtained by describing
the attributes of a person in relation to those that are known. For instance, we
can say that ‘Tracy Morgan’s face is chubbier as compared to ‘Anderson Cooper’
but less as compared to ‘Karl Rove’.
In this paper, we consider this problem of zero-shot recognition of different
objects like faces or shoes using relative attributes. The initial work by Parikh
and Grauman [1] used relative attributes in zero-shot recognition by using a
Gaussian mixture model of the relative attributes. However, a simple Gaussian
mixture model does not transfer the knowledge effectively in the model. In this
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paper, we propose a more principled approach where we use a Gaussian Process
prior over the relative attributes in order to obtain zero-shot recognition. This
approach while being principled also enables us to model the variance in the
samples. We further analyze different variants of using Gaussian process prior
for obtaining zero-shot recognition of samples.

In our approach we use two stages of Gaussian processes. In the first stage,
we use a Gaussian process based classifier to classify the set of classes that are
known in training. In the second stage, we use Gaussian process based regression
to obtain the zero shot recognition for samples in test that have no training
examples. The two stages allow for effective knowledge transfer from known
training samples of a fixed set of categories to unknown test samples of a set of
categories for which no training samples are present.

The main contribution of this work is to demonstrate a two-stage framework
using Gaussian process that allows us to obtain principled probabilistic estimates
of the relative attributes for zero shot learning. We obtain in this framework not
only the probablistic estimates of p(y|z) where y is the class label and z is
the feature set, but also the uncertainty in estimating p(y|x) that is extremely
relevant in the zero-shot setting. We demonstrate the efficacy of our method with
detailed comparison to the previous work [1] on standard benchmark datasets.

The rest of the paper is organized as follows: In the next section we give a brief
overview of the related work. In Sect.3 we provide the background that briefly
provides an overview of the relative attribute zero shot learning based setting. In
Sect. 4 we provide detailed description of the proposed method and its variants.
Section 5 discusses the experiments performed and the results obtained from the
experiments and we finally conclude in Sect. 6 with directions for future work.

2 Related Works

The use of attributes for zero shot learning was initially proposed by Lampert
et al. [5]. In their work they had shown that animals could be described in terms
of binary attribute vectors that captured the properties of each class. This was
then used to recognize an unseen class in terms of its attributes. Akata et al. [7]
extend the work by considering the attribute representation problem as one of
label embedding and learn the embedding instead of using a direct attribute
presentation [6]. Further work has been undertaken where they consider that
the attributes may be unreliable [8]. Another interesting line of work has been
analysed by Elhoseiny et al. [10] where the authors analysed the use of pure
textual descriptions instead of well defined attribute representations. A recent
work explores the structure of the semantic manifold in terms of semantic class
label graph for representing the distance [14]. Another explores the co-occurrence
of visual concepts for zero shot classification [15].

These methods have addressed the attribute representation. However, in our
work we address the method used for zero-shot recognition. The basic premise
is that just using a clustering would not exploit the structure of the data
for zero-shot recognition. Recently there has been interesting work by Yu and
Grauman [9] where the authors show that using Bayesian local learning they are
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able to analyse when two images are indistinguishable for a specific attribute.
In our work we jointly rely on multiple attributes and treat the problem of
identifying the sample through Gaussian process regression.

The present work relies on relative attributes which were proposed by Parikh
and Grauman [1]. In their work the authors introduced relative attributes and
showed that they were applicable for a number of use-cases including zero-shot
learning of unseen classes. Further, Berg [4] have shown that relative attributes
could be coupled with relative feedback and this would be useful for image search
cases such as searching for a shoe. These use-cases that extend relative attributes
could also be applicable using the proposed method.

Gaussian process is extensively used in our work. This framework has been
excellently presented by Rasmussen and Williams [2] in their book. This app-
roach while primarily suited for regression has also been used for other related
tasks such as multi-relational learning [11] and for one-shot recognition [12]. In
our approach we use it in a two stage approach for classification and regression
based on attribute data for zero-shot learning.

3 Background

Our method builds on the work of Devi Parikh and Grauman [1] where the
classes are modelled as Gaussian Distributions using relative attributes, which
depict the strength of an attribute as opposed to binary attributes which shows
its presence or the absence in the image.

During training, given a set of training images X represented by IN-
dimensional feature vector, z; € RV, and a set of M attributes, A,,, the relation
between the attribute strength of the seen classes are given as sets of ordered
pair O,, = {(¢,7)} and similarity-pair S,, = {(¢,7)}. These pairs are such that
if (i,7) € Oy, then image ¢ has stronger attribute a,, than image j. Similarly,
if the pair (¢,j) € Sy, image 7 and image j have similar strength of attribute
am,- Using these pairs as supervision, M ranking functions are learned for each
attribute that maps an image to its attribute strength score. These functions
transform the images z; € RV = RM. The images are now M-dimensional
vector where mth dimension represents the attribute a,,’s rank score. For the
unseen classes, the supervision is given with respect to one or two seen classes.
An unseen class ¢ can be described relative to seen classes ¢, and cj, using all
or a subset of M attributes, as ¢, < ¢, < g, OF Cppy < Clipy OF Cp < Copy
where the unseen class ¢j; has mth attribute stronger than class ¢, but weaker
than class cg.

Now given a novel image j to be classified into one of the seen or unseen
classes, a generative model of all the seen classes in RM is built. A seen class
¢, is represented by a Gaussian distribution c; ~ N (uz, E;) where mean is
Hp € RM and 25 is M x M covariance matrix. The parameters of the generative
model of the unseen classes U are described relative to the parameters of the
seen classes, built according to the supervision given. For attribute a.,, if an
unseen class ¢y is described as ¢, < ¢ < ¢, the mth component of the mean
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of unseen class pj,, is set as %(u;m + ,u;;m). Similarly for the unseen classes
described relative to just one seen class as ¢, < ¢, or ¢ < cg, py,, is described
as flp,, + dpy O fig,, — dy, respectively, where d,, is the average of the distances
between the sorted mean rank scores of seen classes for the mth attribute and
. w s 1 S s
the covariance X} is 5 > . 07.
Finally, maximum likelihood is computed and the test image j is assigned
the label with the highest likelihood of a seen or an unseen class.

¢* = argmax P (Z;|u;, X;) (1)
Je{L,...N}

The description of the unseen classes as simply the mean of the related seen
classes may not best represent the unseen class and hence a more accurate app-
roach is proposed to represent the unseen class for recognition.

4 Approach

In this section, we first explain our approach to improve zero-shot recognition
using Gaussian Processes by providing more accurate and systematic framework
to describe the images of the unseen class. Second, we describe in Sect. 4.2,
Gaussian-process based classifier for the seen classes and then, in Sect. 4.3,
Gaussian Process (GP) based method that improves the accuracy of recogni-
tion for the unseen class using k-nearest training images. In Sect. 4.4, we explain
a variant of our method that relies on multiple versions of distributions. This
method is however subsumed in terms of performance by the GP-kNN algorithm.

4.1 Gaussian Processes for Zero-Shot Recognition

Gaussian Process is a distribution of random variables such that any finite num-
ber of distribution of these variables is jointly Gaussian. The observations in
the process occur in a continuous domain. Any Gaussian process f(x) can be
specified as

f(x) ~ GP(m(z), k(xT,x)) (2)
where the process’s mean function and the covariance function are respectively:
m(z) = E[f(2)], k(" 2) =E[(f(z) - m(2))(f(z) —m(z))].  (3)

Let a regression model with Gaussian noise be given as
fx)=x"w, y=f(x)+N(0,02) (4)

where x is the input vector, w is the vector of weights (parameters) of the model
and f is the function value. The outcome observed is represented by y, assuming
that the additional noise term is an independent zero-mean Gaussian distribu-
tion. We assume a zero-mean Gaussian prior w ~ N (0, E,,). Given the model
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and the noise assumption, the likelihood and the posterior, given by combining
the prior with the likelihood using the Bayes’ rule, are respectively as follows.

P(ylX, w) = N(X™, 00 ]) (5)

Ply|X) = / P(y|X, w)P(w)dw (6)

Finally the predictive outcome f, at x, is given by

P, X,y) = N (ol A7y, xT A ) @
n
Further details of the full Bayesian treatment for Gaussian process is presented
by Rasmussen and Williams [2].

Our two-tier method uses Gaussian process (GP) based classifier in the first
step and Gaussian process regression for a more accurate description of unseen
class in the second step. In the first step, for each test image j, if the GP-
based classifier outputs a prediction greater than a certain set threshold 7, the
classifier corresponding to a seen-class c, labels image j as ‘class-p’. This takes
care of those test images which are very similar to a seen class’s training images,
thus suggesting that the target unknown-class has higher probability to be one
of the seen classes. The GP-based classifier for the seen classes is explained in
Subsect. 4.2.

In the second step, for a test image j which is not labeled by any of the GP-
classifiers of the first step, new Gaussian models representing the unseen classes
are created by modeling more accurate description of the attribute value of the
unseen class based on k sample images chosen from the training set which are
nearest to the test image j. These new distributions are also taken into account,
along with their initial Gaussian distribution, to represent the unseen classes.
Based on the maximum likelihood computed for all the distributions the final
label is assigned. The method is explained further in the following subsections.

4.2 Gaussian Process Based Classifier

During training, we are given a set of training images X belonging to S number of
seen classes and a set of attributes, A,,. These training images are represented
by R¥ feature vector. Using the supervision given for the relative attributes
between these seen classes, a ranking function is learnt which transforms the RY
image feature vector to RM™ vector in attribute-space.

For all the training images j, Mahalanobis distance of the image from every
seen class ¢, is computed. This distance shows how many standard deviations
away an image j is from a seen class. The distance comes out smaller for images
similar to the seen class, according to the attributes, and larger for images that
are dissimilar. By taking the average of these distances, Mahalanobis distance is
calculated for each pair of seen classes.

For every seen class cj, a Gaussian Process classifier is created, in the
attribute space, with the training images from c;, and c; as positive and negative
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samples, where class c; and c¢; are most distant from each other. The GPML
tool box [13] is used for the computation.

These Gaussian process classifiers, each corresponding to a seen class, are
used to find the posterior mean given the test image as the input. If the posterior
mean of the prediction is greater than the set threshold 7, (experimentally set to
0.9), the test image j is labelled positive by the classifier. In case more than one
classifier labels an image positive, the label by the classifier with a more positive
mean is assigned.

4.3 Zero-Shot Recognition Using Gaussian Process - kNN Approach

In the previous approach, given a generative model for all the classes, each class
is represented by a Gaussian distribution. The unseen classes are modeled using
supervision given for all or a subset of M attributes (see Sect.3). Every class-p,
seen and unseen, has a set of parameters corresponding to the mean y, and the
covariance X, of the class. The label is assigned to the test image based on the
highest likelihood value computed for each of the classes.

In our proposed approach to improve zero-shot recognition, for all the test
images which are not labelled by any of the seen-classes’ GP-based classifier,
Gaussian process is used to improve the recognition in the following way as is
shown in Fig. 1.

f posterior

ISR S SeiE S SiEEE Sy , prediction > Labelled. |

1 Inputto S GP-Classifiers for seen 1 _Threshold Seen class-
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= B
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Fig. 1. Basic outline of the proposed GP based method for Zero-shot recognition. Test
image in N-dimensional feature space is first transformed to M-dimensional attribute
space using the ranking function learned for each attribute. These images are then given
as an input to be labelled by GP-based classifiers for the seen classes, determined by
a threshold for the predicted posterior. k-training samples from seen classes are then
chosen according to their euclidean distance from the unlabeled test samples. Using
Gaussian process, explained in Sect. 4.3, and the attribute rank scores of these chosen
images to the GP, multivariate normal distributions (MVN) are modelled to represent
the unseen class more accurately. The label corresponding to the distribution which
gives the maximum likelihood, is assigned to the image.
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Fig. 2. k-nearest neighbours computed for two unlabelled test samples: Michelle Wie
and Ben Stiller. From the training set of 5 seen classes, k-nearest neighbour (k=5)
based on the Euclidean distance from the test image is seen. The neighbors selected
depends on attributes. Attributes like the shape of face and age is similar for the nearest
neighbors in this example.

1. From the set of training images, k-nearest samples are chosen whose Euclidean
distance is shortest from the test image j. These k images resemble the test
image most closely, in the attribute space. (See example in the Fig. 2 for two
test samples- Michelle Wie and Ben Stiller).

2. For every unseen class c¥, for an attribute a,,, if the supervision is given with

respect to two seen classes ¢, and ¢y as ¢, < Cgp, < Cgy, then the mth
component of the mean of the unseen class, p%,,, is computed using Guassian
process (GP) and the k nearest neighbours.
The unseen class is represented by a set of k means and covariances,
(piv, 0wy i € {1,..k}. A GP is created with the rank scores of the mth
attribute of the training images from seen classes c; and c; as positive and
negative training samples respectively. Now, the mth component in each of
the p* is the posterior prediction mean output, with the mth attribute rank
score of the ith-nearest training samples (chosen in Step 1) i € {1,..k} as
input to the above constructed GP.

3. For the attribute whose supervision is given with respect to just one seen

class, as ¢, < cg,, OF Cppy < Cppy, the mth component of the mean of the
unseen class is taken as pp,, + dm or pg,, — dp, respectively. Here d;, is the
average of the distances between the sorted mean rank scores of seen classes
for the mth attribute.

4. To assign label to the test image, the likelihood score is computed by
P(;%j| i EZ-), where p; and X; is the mean and covariance of all the classes,
including the k new sets of (p2*, Xi*) constructed for the unseen classes in the
previous step. The label is finally assigned based on the maximum likelihood

value.

4.4 Tray of Multivariate Normal Distributions - A Variant of Our
Proposed Method

We also experimented with a variant of our proposed GP-kNN method, and
studied its performance in a subset of PubFig dataset. In this step, for all those
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test images which are not labelled by any of the GP-classifiers from the first
step (Sect.4.2), likelihood of the image belonging to each class is computed. If
the likelihood of the test image to belong to a seen-class is highest, the label
is assigned to it accordingly. However, if the likelihood of the test image to
belong to one of the unseen classes is highest, instead of one set of mean u; and
covariance X;, multiple sets or a ‘tray’ of mean and covariances representing that
class is dynamically created as we come across test samples. The image is labeled
accordingly and a new distribution (u},%};), where the mth component of y) is
the posterior mean predicted with the test image’s mth attribute score as input,
is added to the tray. For subsequent test images, the likelihood for labeling, will
be computed using all the earlier distributions representing the classes and those
which are added to the tray.

In this approach rather than using GP regression, we had considered dynamic
updation of the multi-variate normal distribution for the unseen classes. Keep-
ing a dynamically increasing tray of multivariate normal distributions to com-
pute the likelihood and assign label to the test image, accomodates the idea
that a labeled test sample may improve the description of the unseen class, for
the following test images, than the original Gaussian mixture model. However,
improvement by this method is dependent on the order of test images which
led to the development of more systematic algorithm (GP-kNN) for the unseen
classes’ description. Moreover, as shown in Sect. 5.4, this method does not per-
form as well as the GP kNN regression method.

5 Experiments

We evaluate our method for zero-shot recognition using GP-based classifier and
k-nearest neighbors and compare our accuracy rate with the results obtained by
GMM based clustering, as in the work of Parikh and Grauman [1]. We report
results to demonstrate a more systematic and accurate description of the unseen
class and validate the improvement achieved in recognition.

5.1 Setup

Our experiments used two datasets: a subset of Public Figure Face Database
(PubFig) [3] and Shoes with Attributes Dataset [4]. The PubFig dataset
consists of images of 60 different personalities, each image being represented
by a 73-dimensional feature vector. Four sets of experiments were done on this
dataset to validate our method where in each set, 8-10 classes of people are
randomly chosen. The effect of changing the number of seen classes, the number
of attributes to describe the classes and varying the supervision in terms of 10
different relative attributes is also demonstrated.

The experiment on Shoes with Attributes Dataset is done by taking 8 classes
of shoes which are visibly distinct from each other, in terms of 10 relative
attributes. The effect of varying supervision in terms of the number of classes
seen is also presented. The images are represented as concatenation of the
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960-dimensional gist descriptor with 30-dimensional color histogram image
features. The feature vector was chosen to be same as the relative attributes
work [1] to which it is being compared.

5.2 Zero-Shot Learning Results

Results of PubFig Dataset: Four sets of experiment are done on this dataset
consisting of randomly chosen classes and 10 relative-attributes. Table 1 shows
in detail the classes that were randomly chosen, the attributes taken into con-
sideration and the partial ordering of the subset of relative attributes given
as supervision for the unseen classes, in one of the experiments. (For example
supervision ‘(8) : J < S < H’ means that Scarlett Johansson has narrower eyes
than Hugh Laurie and Jared Lato has narrower eyes than Scarlett Johansson).
In Fig. 3 we show some examples where our proposed method does better than
the GMM based. The green labels are correct labels assigned by our GP-based
method and labels in red are the incorrect labels. In an example, for a test
sample of class ‘Miley Cyrus’, both of the methods fail as the relative attribute
supervision given is not sufficient to distinguish it from the class ‘Alyssa Milano’.

By varying supervision in terms of attributes to relate classes, our method
follows a general trend of increasing accuracy rate with increase in the number
of seen classes. This is not only because with greater number of seen class the
supervision is more elaborate but also because as the number of seen classes

Table 1. Classes, relative attributes and supervision in one of the experiments with
PubFig dataset. Given four seen classes, and the unseen classes are described using
relative attributes with respect to the seen classes. Note that supervision column marks
the labels available for training.

Attributes Classes Supervision
Male (1) Alex Rodriguez (A) seen-class
White (2) Clive Owen (C) seen-class
Young (3) Hugh Laurie (H) seen-class
Smiling (4) Jared Leto (J) seen-class
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Fig. 3. The figure shows some examples of prediction using our GP-based method and
GMDM-based method. The color green shows the correct prediction and label in color
red shows the incorrect prediction. (Color figure online)

increases, the number of test images that are labeled correctly in our first step
by the GP-based classifiers also increases.

Secondly, our GP-based method, using the k-sample images nearest to the
test image, provides a more accurate description of the unseen class as opposed
to Gaussian mixture model of the classes where the unseen class is described as
means of the seen classes. This can be clearly seen as our method outperforms
the GMM based recognition. 120-150 test images uniformly belonging to each
of the seen and unseen classes, are randomly taken for evaluation. The graphs
below shows the accuracy curve obtained by GP-based method vs. GMM-based
method.

Graph 1 (top-left) and Graph 2 (top-right) presents the performance curve
of our proposed method vs the GMM based method. For 10 classes (seen and
unseen), 10 attributes are used to relatively describe the classes for learning the
ranking function and a subset of these attributes for unseen classes’ supervision.
The classes and the set of attributes vary for both the experiments. The classes
are randomly selected and the attributes are such chosen that they are capable of
representing these classes and vary well among the classes to make them distinct.
To study the effect of supervision in terms of the proportion of seen classes,
the number of seen classes are varied from 4 to 10, keeping the total number
of classes same. It is seen that as we see more number of classes, the overall
accuracy percentage increases for a test set of 150 images as the unseen classes
can be related to more number of seen classes to make itself more distinguishable.
The testset consists of randomly selected images, uniformly belonging to each of
the classes.

Graph 3 (bottom-left) and Graph 4 (bottom-right) validates the performance
of our method in the same way. Here, the 8 classes are randomly chosen and are
represented by 10 relative attributes for both of the experiments. The proportion
of seen classes are varied from 4 to 8 (all seen) and an increasing graph for
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accuracy in the recognition is observed. The test set consists of 120 randomly
selected images, uniformly belonging to each of the seen and unseen classes.

Results of Shoes with Attributes Dataset: In the experiment to evaluate
our method in shoes with attribute dataset, 8 distinct classes of the dataset
with 6 attributes relating them were chosen. The relative attribute supervision
is similar to that provided in the previous experiment. In Fig. 5 we show examples
where our proposed method does better labeling than the GMM based method.
The labels in green are correct labels for the test samples, assigned by our GP-
based method and labels in red are the incorrect labels. For test sample of
Rainboots, using the relative attributes chosen, it was difficult to distinguish
‘rainboots’ from ‘boots’.

The performance result obtained in this dataset is very similar to the one
obtained with the PubFig dataset. The classes in this dataset are chosen such
that they can be humanly perceived as distinct from each other without confusion
(e.g. keeping only ‘Athletic shoes’ and not -both Sneakers and Athletic shoes
and keeping ‘pumps’ instead of both pumps and high-heels). The accuracy of
our method increases as we increase the number of seen classes and outperforms
the GMM-based method. In the graph of Fig. 6, the proportion of seen classes
are varied keeping the total classes same.

5.3 Varying the Number of Attributes

Variation in the performance by varying the number of attributes to describe the
seen and the unseen classes is seen. For a PubFig dataset consisting of 8 classes
(5 seen and 3 unseen), the number of attributes used to describe these classes
relatively, were varied. In the graph of Fig.7, number of attributes to describe
the classes are varied in the x-axis from 6 to 11. It is seen that greater the
number of relative attributes learned to represent a class, the more descriptive it
is of the class and hence the recognition rate increases. Our proposed GP-based
method outperforms the GMM-based method for the recognition. The test set
consisted of 120 images randomly chosen and uniformly belonging to all the
classes (Fig.4).

5.4 Comparing Performance of Various Methods for Zero-Shot
Learning

Performance of proposed GP-based method is compared to GMM based method
and MVN-tray method (See Sect.4.4). The curve in Fig. 8, shows the accuracy
achieved by different methods on 6 classes of PubFig dataset. The classes were
chosen at random and 7 relative attributes were used to describe the classes.
From left to right, while Gaussian Mixture Model (GMM) achieves an accuracy
of 56.60%, a variant of our method of keeping a dynamically increasing tray
of the mutivariate normal (MVN) distribution for each unseen class, as more
test samples are seen, improves upon it. In this case, when more than one seen
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Fig. 5. The figure shows some examples of Prediction using our GP-based method and
GMM-based method. The green color shows the correct prediction and label in color
red shows the incorrect prediction. (Color figure online)

classes’ classifier gives a positive output in the first step of our algorithm, the
test image is not assigned any label.

Slight modification is done to this MVN-Tray method which improves the
accuracy further. In case of a tie between two classifiers which outputs a positive
prediction for the test image, label is assigned to the test image by the classifier
with more positive prediction posterior as opposed to MVN-Tray where no label
is assigned in such a case. This variant of MVN-Tray method is named as ‘MVN-
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Fig. 6. Performance curve evaluated on Shoes with Attribute Dataset with 8 differ-
ent categories of shoes represented by 6 relatively defined attributes. The accuracy of
recognition increases as the number of seen classes increases from left to right. The
accuracy is compared to GMM based method for recognition. The test set consisted of
100 images randomly chosen and belonging to all the classes.
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Fig. 7. The graph shows performance of our proposed method vs GMM-based method,
as the number of attributes to describe the classes is varied. The setup is 8 randomly
chosen classes from PubFig dataset with 5 seen and 3 unseen classes. The x-axis shows
the number of attributes used to model a class.

Tray-Modified’ in the figure. Finally, our proposed algorithm (GP-kNN) presents
a more principled method using Gaussian process with k-nearest sample images,
to improve the recognition of test images belonging to the seen classes, using GP-
based classifiers, as well as the unseen classes by better description of the class
using GP. The overall accuracy, using this method, increases to 63.33%. The test
set for this experiment consisted of 90 randomly chosen images belonging to all
the classes.
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Fig. 8. Accuracy curve for different approaches. The curve depicts the accuracy of zero-
shot recognition achieved by four different approaches. The accuracy of recognition
increases as we go from left to right with GMM based method, MVN-Tray method,
MVN-Tray-Modified for ’tie breaks’ and our final proposed method using GP kNN.

6 Conclusion

In this paper we propose a two stage Gaussian process (GP) based zero-shot
learning method using relative attributes. The method is extensively evaluated
on two standard datasets. The results from the method show consistent improve-
ment over the basic Gaussian mixture model based approach for zero-shot learn-
ing that was proposed earlier [1]. The method while being more accurate is also
more descriptive. The GP based classifier allows us to estimate the uncertainty
in a test sample to belong to one of the seen classes. The GP kNN based regres-
sion allows us to obtain reliable estimates of the attributes distribution for the
unseen class in terms of the relative attribute representation. These allow us to
obtain a better understanding of the mid-level representation obtained through
relative attributes (Fig. 8).

In future we would like to undertake research to obtain structured attribute
representations that are relative and are also structured with respect to the
uncertainty or unreliability of the attribute. Further, it would be interesting to
study the effect of the proposed method in the context of relative feedback.
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Abstract. Fine-grained visual categorization has recently received great
attention as the volumes of the labelled datasets for classification of spe-
cific objects, such as cars, bird species, and aircrafts, have been increas-
ing. The collection of large datasets has helped vision based classifica-
tion approaches and led to significant improvements in performances
of the state-of-the-art methods. Visual classification of maritime ves-
sels is another important task assisting naval security and surveillance
applications. In this work, we introduce a large-scale image dataset for
maritime vessels, consisting of 2 million user uploaded images and their
attributes including vessel identity, type, photograph category and year
of built, collected from a community website. We categorize the images
into 109 vessel type classes and construct 26 superclasses by combining
heavily populated classes with a semi-automatic clustering scheme. For
the analysis of our dataset, extensive experiments have been performed,
involving four potentially useful applications; vessel classification, verifi-
cation, retrieval, and recognition. We report encouraging results for each
application. The introduced dataset is publicly available.

1 Introduction

The coastal and marine surveillance systems are mainly based on sensors such
as radar and sonar, which allow detecting targets as well as taking counter mea-
sure actions. Vision based systems containing electro-optic imaging sensors can
be exploited for the development of more effective systems. Categorization of
maritime vessels is of utmost importance to improve the capabilities of maritime
security systems. For a given image of a ship, the goal is to automatically iden-
tify its category using computer vision and machine learning techniques. Vessel
images may include clues regarding different attributes such as vessel type, photo
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category, gross tonnage and draught. A large-scale dataset will be beneficial for
extracting such clues and learning models from images containing several types
of vessels.

Presence of benchmark datasets [1], with large quantities of images and
labels with meaningful attributes, resulted in a significant increase in the perfor-
mance of visual object classification by the use of appropriate machine learning
methods such as deep architectures [2]. Moreover, powerful deep representations
are employed in fine-grained visual categorization tasks by either training on
the datasets from scratch [3], fine-tuning deep networks trained on large-scale
datasets [4] or exploiting the previously trained architectures with specific mod-
ifications [5].

To classify images with a fine-grained resolution, a considerable amount of
training data is required for a respectable model generalization. Thus, fine-
grained datasets were published for specific object categories. Some examples
are aircrafts datasets [6,7], bird species dataset UCSD [8] consisting of 12K
images, car make and model datasets; Standford cars dataset [9] containing 16K
car images and CompCars [10] dataset of 130K images. The only work related to
marine vessel recognition is [11], where they utilized Shipspotting website! and
trained a modified version of AlexNet [2] for the classification of vessel types
with 130K random examples. In our dataset 140K images are utilized for vessel
classification with 26 superclasses constructed using a semi-supervised clustering
approach. Furthermore, our vessel superclasses are balanced; we force the train-
ing set to have equal number of examples in each superclass, i.e. we augment
the data on the vessel classes with less number of examples than a predefined
amount per class. However, there is a significant imbalance of examples between
the classes in [11], which may result in a bias in classification towards the classes
with dominant number of examples and makes it difficult to deduce a conclusion
about the mean per class accuracy. Hence, in our work, we report the mean
per class accuracy as the vessel type classification performance. In addition, we
accomplish further important tasks with 400K vessel images and obtain pleasing
results which will be described in details in the following sections.

In order to utilize the-state-of-the-art fine-grained visual classification meth-
ods for maritime vessel categorization, we collected a dataset consisting of
2M images downloaded from the Shipspotting website (See footnote 1), where
hobby photographers upload images of maritime vessels with various annota-
tions including vessel types, photo category, gross tonnage, draught, built year,
International Maritime Organization (IMO) number, which uniquely identifies
individual ships. To the best of our knowledge, our collected dataset, MARitime
VEsseLs (MARVEL), is the largest-scale dataset for the fine-grained visual cat-
egorization, recognition, retrieval and verification tasks.

In addition to introducing a large-scale dataset of maritime vessel images
and their corresponding annotations, our other major contributions are target-
ing visual vessel analysis from four different aspects: (1) vessel classification,
(2) wessel verification, (3) vessel retrieval, and (4) vessel recognition which will

! www.shipspotting.com.
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be discussed in Sect.2.1. To verify the practicality of MARVEL and encourage
researchers, we present baseline results for these tasks. We provide the relevant
splits of the dataset for each application to form a comparison basis. Thus we
hope that our structured dataset will be a benchmark for various visual process-
ing tasks on maritime vessels. The researchers may also develop several other
applications with the help of this dataset in addition to these four representative
applications.

Our paper is organized as follows: Sect. 2 provides a description of the prop-
erties of our dataset. In Sect. 3, superclass generation from the vessel types is pre-
sented, and the superclass classification results of two state-of-the-art approaches
are reported. Section 4 includes three maritime applications, vessel verification,
retrieval and recognition in details, and experimental results are demonstrated.
Finally, Sect. 5 concludes the paper with helpful remarks.

2 Dataset Properties

Our dataset consists of 2 million marine vessel images, collected from Shipspot-
ting website (See footnote 1). For most of the images in our dataset, the follow-
ing attributes are available: Beam, build year, draught, flag, gross tonnage, IMO
number, name, length, photo category, summer dwt, MMSI, vessel type. Beam is
the width of a ship at the widest cross section measured in the ship’s waterline.
Draught is the vertical distance between the bottom of the hull and the water-
line. Gross tonnage is a unitless index calculated using the internal volume of
the ship. Summer dwt is a measure of the carrying capacity of the ship. MMSI
is an abbreviation of Maritime Mobile Service Identity, which is a series of nine
digits to uniquely identify ship stations.

Besides the above attributes, we figure out that the most useful and visually
meaningful categories are three fold: (1) wvessel type (2) photo category and (3)
IMO number. Vessel type is assigned based on the type of the cargo the ves-
sel will be transporting. For instance, if the vessel carries passengers, its type
is very likely to be a Passengers Ship. The dataset contains 1,607,190 images
with annotated vessel types belonging to one of 197 categories. Vessel type his-
togram, highlighting the major categories, is depicted in Fig.1(c). The second
most important attribute is photo category, which is another vessel description.
Examples of the photo categories with a significant amount are chemical and
products tankers, containerships built 2001-2010 and Tugs (please see Fig. 1(a)).
All collected images have been assigned a photo category out of 185 categories
in our dataset. The third category is IMO number, which is an abbreviation for
International Maritime Organization number. Similar to the chassis numbers of
cars, IMO numbers uniquely identify the registered ships to IMO regardless of
any changes in the name, flag or owner of the ship. 1,628,056 of the collected
images are annotated with IMO numbers (please refer to Fig. 1(b)). Moreover,
there are 103,701 unique IMO numbers in our dataset.
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2.1 Potential Computer Vision Tasks with MARVEL Dataset

Huge quantity of images existing in MARVEL makes it amenable to directly
employ recent methods utilizing deep architectures such as AlexNet [2] for vessel
categorization with the provided annotations in our dataset. One may choose a
vessel attribute as vessel type or photo category, and apply classification methods
to categorize the images according to the selected vessel attribute.

MARVEL has more than 8,000 unique vessels (i.e. a unique IMO number)
with more than 50 examples as shown in Fig.1(b). This makes it possible to
use the dataset for maritime vessel verification and recognition, which could be
an important part of a maritime security system, similar to scenarios for license
plate recognition with a traffic security system.
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Fig. 1. Histograms of different categories.

The main foci of this study on MARVEL are four fold: (1) vessel classification
since the content of the cargo that a ship carries, specifying its vessel type, is
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crucial for maritime surveillance, (2) vessel verification where the ultimate goal
is whether the two vessel images belong to the same vessel with a unique IMO
number, (3) vessel retrieval where a user might want to query a vessel image and
retrieve an acceptable number of similar images, and finally (4) vessel recognition
which is a challenging but interesting task which aims at recognizing a specific
vessel within vessels of same type (This might be likened to a face recognition
task.).

For vessel classification, we first generate a set of superclasses which may
contain more than one wvessel type, since some subsets of vessel types are not
distinguishable even with a human supervision since the difference within the
subsets arises from the invisible content of the cargo rather than the appear-
ance of the ship. A concrete example of such a case is vessel type pair of crude
oil tanker and oil products tanker, which is illustrated in Fig.2. Although they
have obvious functional differences, the visual discriminations are subtle espe-
cially when the images are far from the camera resulting in a small coverage of
the image, and the deck of the ship is not visible from the camera view point.
Therefore, we merge some of the vessel types to generate superclasses which are
visually meaningful and discriminable. In the following section, we describe how
specific vessel types are merged.

Vessel verification serves for deciding whether a pair of vessel images
belong to the same vessel or not. This may be useful for a maritime surveillance
application, where a specific vessel is required to be tracked using an electro-optic
imaging system.

The task of wvessel retrieval is similar to vessel classification, yet the user
might want to retrieve more images than a single one to obtain a bunch of similar
vessels from a database.

Crude Oil Tanker

Oil Products Tanker

Fig. 2. Visual comparison of two very similar classes; oil products tanker and crude oil
tanker.
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Vessel recognition aims at finding the accurate identity of a vessel that a
test image belongs to within a group of vessels of same category such as vessel
type or photo category.

It is also notable that the attributes which exist for most of the images
in MARVEL (e.g. gross tonnage, length, etc.) can be utilized to increase the
recognition performance. Attribute-based computer vision tasks including object
recognition [12], detection [13] and identification [14] have proven to increase
the performance of the corresponding tasks. Moreover, we can learn hierarchical
object categories within the fine-grained object recognition problem such as in
[15] since MARVEL is constructed by merging relevant vessel types, and has
a multi-level relevance information. Thus, we aim to exploit our fine-labeled
dataset to further increase the performance of the particular tasks in the future.

3 Superclasses for Vessel Types

To generate superclasses from vessel types, first 50 vessel types containing largest
amount of examples are selected and sorted according to their quantity. The
vessel type with the largest amount of examples which is employed in our super-
class generation, is general cargo class with 324,561 examples. The class with
the smallest amount of examples is the timber carrier class with 1,837 examples.
To analyze the visual similarities of the vessel types, a pretrained convolutional
neural networks (CNN) architecture of VGG-F [16] is adopted to extract features
using MatConvNet Toolbox [17] by resizing the vessel images to 224 x 224, the
appropriate size of the network. The next to the last layer of VGG-F [16] activa-
tions are utilized as the visual representations of the images. Hence, each image
is represented by a 4096-dimensional feature vector. By utilizing these feature
vectors, we calculate a dissimilarity matrix for the selected 50 vessel classes. To
generate superclasses, 1/10 of the collected 50 classes are used (approximately
130,000 images) and this data is used for estimating individual class statistics.
Prior to calculating the dissimilarity matix, we first remove the outliers following
the preprocessing step below.

Outlier Removal: Although annotations of the images in most of the cate-
gories are reliable and correctly labelled, indoor images of the vessels are also
present in the dataset. Due to this reason and some other visual anomalies, we
prune the outliers from individual vessel types to prevent their use while cal-
culating the dissimilarity matrix. For this purpose, feature vector dimensions
are reduced to 10 by principal component analysis (PCA) using all examples of
the 50 classes, since Kullback-Leibler divergence is utilized in the dissimilarity
calculation between two classes and the determinant of a very high dimensional
matrix becomes unbounded. After the dimensionality reduction, each class is
processed independently where a Gaussian distribution is assumed. Mean and
covariance of each class are estimated. The feature vectors of the corresponding
classes are whitened to obtain unit variance within each class. Since our aim is
to prune the unlikely examples of the dataset to obtain a more clear dissimi-
larity matrix, the examples which are unlikely should be identified. Hence, we



MARVEL: A Large-Scale Image Dataset for Maritime Vessels 171

General Cargo
Container Ship

Bulk Carrier
Passengers Ship
Gilichemical Tanker

F 26

Tug

Ro-rofpassenger Ship
Tanker

Qil Products Tanker
Chemical Tanker

Ro-ro Cargo

“ehicles Carrier

eefer

Trawvler

Lpg Tanker

Fishing vessel

Crude Qi Tanker

“facht

Otfshore Supply Ship
Cargolcortainership
Researchisurvey Yessel
Supply Yessel

Lng Tanker

Self Discharging Bulk Carrier
Suction Dredger
Tugfsupply Vessel
Sailing Yessel

Hopper Dredger

Anchor Handling Vessel
Heavy Load Carrier
Cement Carrier

wood Chips Carrier
Livestock Carrier

Fire Fighting ‘Vessel
Patrol YYessel

Multi Purpose Offshore Vessel
Platform

Factory Trawler
Passengericargo Ship
Standby Safety Vessel
Combat Vessel

Cable Layer

Training Ship

Ore Carrier

Floating Storagedproduction
Icebreaker

Trailing Suction Hopper Dredger
Replenishment Yessel

Fish Carrier

Timber Carrier

oom'ﬂoq:uqoo;U<:U—H—'ﬂo-<oo:0w"mw4w1g10§ﬂ'"'ﬂ§'ﬂ'"'“g2004 mdmm
OECD=COoON=S00 g D D 2D CD O @ @ = T W [=R -1 SagaET
EEE LR ST PR P SRR EEEE LS L S PR ES
TE 4T 0R5300FEi- 5332800 J0FdgdossaauncTiE82sa20835a48
55532 2250 "22& 2525 LRa88=0 S5 P53828 2 P
52383 B EBy% "0 080 LRNOBSOIE ATRETE G nelnins PESY
2nT38 4 G788 200 Y2FHREs=0532ufo 43 gowpeslstg3ads
S L2 g Wgpol g 520 g8 88223982 $o225F ; Za oo
8% 93 2 7% & a2 $73% S@EtesSozp<T L FiZa g 52 2
= @ @ = @ =xa =% ety sa T T @
532 ¢ 22 -] o2 @ 3 3%¢9 o< Iz
2 ER-
R s T & o3 3§ @ oF EREL
= =z % iy = & = g =i 2 9
= 4 ] s T £ 2%
- = 2
5
5

Fig. 3. Dissimilarity matrix for 50 classes. Lower values indicate more similarity.

utilize x? distribution since the dataset is already whitened. For each example
in individual classes, the sum of the square values of the 10-dimensional feature
vectors are used as samples drawn from the x? distribution with 10-degrees of
freedom. Cumulative distribution function (cdf) value for each sample is calcu-
lated and removed from the class set if the cdf value is greater than 0.95, which
corresponds to the samples drawn from the 5% tail of the x? distribution.

Dissimilarity Matrix and Superclass Generation: Once the outliers are
removed from each class by the above procedure, the remaining examples are
used to compute the dissimilarity matrix. We use the symmetrised divergence as
the dissimilarity index. Symmetrised divergence Dg(P, Q) of two classes, namely
P and Q, is defined as Dg(P, Q) = $ Dk (P||Q)+ 3Dk (Q||P), where D (.]|.)
stands for Kullback-Liebler divergence of two multivariate Gaussian distribu-
tions. The dissimilarity matrix is depicted in Fig. 3.

By exploiting the computed dissimilarity matrix, we merge the similar classes
using a threshold. Prior to this thresholding, we apply spectral clustering meth-
ods with the help of the dissimilarity matrix. Nevertheless, the resulting groups
were not semantically meaningful. Hence, we opt to continue by increasing the
threshold for the similarities of the pairs of classes (i.e. this corresponds to each
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Fig. 4. Distribution of the wvessel types. In total, 1,190,169 images are available for
vessel type superclass classification.

entry of the dissimilarity matrix). If the dissimilarity index of a pair of classes
is below a threshold, the pair is assigned to the same superclass. We increase
the threshold until a point where semantically irrelevant classes (human super-
vision is adopted here) start to merge, and we define it as the final threshold for
clustering. The majority of the resulting superclasses contain reasonable classes.
The superclasses with more than one vessel type are: (1) tankers (which con-
tains oil products tanker, oil/chemical tanker, tanker, chemical tanker, crude oil
tanker, lpg tanker, Ing tanker, ore carrier), (2) carrier/floating (which contains
timber carrier, floating storage production, self discharging bulk carrier), (3) sup-
ply vessels (which contain offshore supply ship, supply vessel, tug/supply vessel,
anchor handling vessel, multi purpose offshore vessel) (4) fishing vessels (which
contains trawler, fishing vessel, factory trawler, fish carrier), (5) dredgers (which
contains suction dredger, hopper dredger). Finally, hand-crafted marginal adjust-
ments are done to make all superclasses as meaningful as possible. These adjust-
ments include merging the superclass containing only trailing suction hopper
dredger with the superclass consisting of Suction Dredger and Hopper Dredger.
In addition, seven wvessel types are removed entirely from the set of superclasses.
The classes to be eliminated are decided according to the average dissimilarity
of the classes to the rest. The salient overall dissimilarity scores are detected
manually. The removed classes are namely; (1) general cargo (it is significantly
confusing with the container ship and ro-ro cargo), (2) cargo/containership, (3)
research/survey vessel, (4) cement carrier, (5) multi purpose offshore vessel, (6)
passenger/cargo ship and (7) cable layer. The removed classes both visually and
functionally contain more than at least two separate classes, i.e. passenger/cargo
ship involve both passenger vessels and general cargo vessels. The merged classes
with thresholding also contain visually very meaningful vessel types, i.e. all of
the fish related vessels are clustered within the same superclass. The distribution
of final 26 superclasses can be viewed in Fig. 4.

3.1 Superclass Classification

As demonstrated in Fig. 4, there exists an imbalance between superclasses. Nev-
ertheless, even the superclass with the least amount of examples has a significant
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quantity of examples. Therefore; to classify superclasses of the wvessel types, we
train a deep CNN architecture AlexNet [2] implementation of the MatConvNet
Toolbox [17] by using the default and recommended parameters without batch
normalization. To avoid the imbalance between the superclasses, we select equal
numbers of samples per class for both training and testing as 8192 and 1024,
respectively. For the superclasses with examples less than the required quantity,
we generate more examples by data augmentation (using different croppings of
images). Hence, our training and test sets contain 212,992 and 26,624 examples,
respectively, though we have 140K unique examples. We should also note that,
no images of the same vessel are employed in both training and test sets. The
classification performance is measured by the help of the normalized confusion
matrix [7]. The practical performance metric for a fine-grained classification task
can be the class-normalized average classification accuracy, which is obtained as
the average of the diagonal elements of the normalized confusion matrix, C', and
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each of its entry is calculated as follows [6]:

Wiy = qNy = p}
O = " p=pll .

where |.| denotes the cardinality of the set and g; indicates the estimated class
label and y; is the actual correct label for the i** training example. The final
performance measure is the mean of the diagonal elements of the matrix C.
This value for 26 superclasses is 73.14% for the normalized confusion matrix in
Fig.5. To emphasize the validity and efficacy of the learned network, we also
compare it with another method utilizing multi-class Support Vector Machine
(SVM) with the Crammer and Singer multi-class SVM [18] implementation of
[19] in LIBLINEAR [20] library. The feature vectors for SVM are extracted
from the VGG-F network of [16], their dimensionality is reduced to 256, and
PCA whitening is applied. Since the memory requirements and computational
complexity complicate the optimization, we use half of the training set. We report
the class-normalized average classification accuracy as 53.89%. Compared to the
use of the prelearned VGG-F weights with an SVM classifier, AlexNet trained
from scratch has 35% improvement in accuracy.

4 Vessel Verification, Retrieval and Recognition

In this section, we make use of our dataset, MARVEL, for potential maritime
applications; vessel verification, retrieval, and recognition. In the following sub-
sections, these applications and necessary experimental settings are explained.

4.1 Vessel Verification

Akin to face verification [21], car model verification is applied in CompCars
dataset [10] to serve for conceivable purposes in transportation systems. That
kind of task is claimed to be more difficult compared to face verification, since the
unconstrained viewpoints make car model verification more challenging. Accord-
ingly, we perform maritime vessel verification where the attribute to be verified
is the vessel identity. Please note that our task is more challenging compared to
identifying other attributes such as photo category or vessel type. Furthermore,
this problem is more challenging than both car model and face verification tasks,
since it is desired to identify /verify pairs of individual vessels by looking only at
their appearances.

We follow training and testing strategies as in [10]. First, 8000 vessels with
unique IMO numbers are selected such that each vessel will have 50 examples,
resulting in a total of 400K examples. This data is divided into two splits as
training and testing. The training set consists of 4035 vessels (201,750 training
examples in total), and the test set contains 3965 vessels (198,250 test examples
in total). There exist 109 vessel types among 400K examples, and the training
and test sets are split such that the number of vessel types are identical in each
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set. In the rest of the paper, we will call the training split of this subset as IMO
training set, and the test split as IMO test set.

Prior to verification task, we learn a deep CNN representation from IMO
training set by making use of vessel type labels. We train the same architecture
of [2] as in wvessel classification task except for the last layer since we have 109
classes rather than 26. Deep representations for each example are extracted as
the penultimate layer activations of the trained network (as in the superclass
generation part in Sect. 3) with 4096 dimensions. Since more discriminative fea-
tures are preferable, we extract the penultimate layer activations prior to the
rectified linear unit (ReLU) layer, which carry more information than the layer
after ReLU since the negative values are cast to zero after ReLU. This choice
makes our vessel verification performance better than the case with the deep
representations after ReLLU case.

After acquiring the deep representations, 50K positive pairs (belonging to
same vessels) and 50K negative pairs (belonging to different vessels) are selected
randomly from both the training and test splits out of the 201,750 training
examples and 198,250 test examples, respectively?. For the total 400K train-
ing and testing examples, feature vector dimensionality is reduced to 100 by
PCA exploited with only the training examples. Moreover, all 100-dimensional
examples are PCA whitened since whitening increases the performance of SVM
classifier. Concatenation of two 100-dimensional vectors are utilized for describ-
ing pairs during the verification experiments. Finally, we train SVM with RBF
kernel on the training set by using LIBSVM library [22]. The precision recall
curve varying the classification threshold is plotted in Fig.6. We also compare
the performance of SVM with nearest neighbour (NN) classification. The result-
ing precision and recall values of SVM and NN classifier are presented in Table 1.
Accuracies of both classifiers are above 85%, which is very promising and quite
satisfactory for a real world verification application.

Table 1. Vessel verification results on 50K positive pairs and 50K negative pairs of
vessels for nearest neighbour and SVM classifiers by utilizing the feature vectors learned
in IMO training set, which does not contain any images of the vessels in IMO test set.

TP TN FP FN |ACC Precision | Recall
NN 44,978 40,198 | 9,802 | 5,022 | 85.18% | 82.11% | 89.96%
SVM | 45,503 | 45,422 | 4,578 | 4,497 | 90.93% | 90.86% | 91.01%

4.2 Vessel Retrieval

Compelling amount of research efforts [23-25] have been spent for content based
image retrieval (CBIR) as the image databases have been dramatically grow-
ing. Particularly, vessel retrieval is another promising application that may be

2 A negative pair indicates a pair of different vessel images, whereas a positive pair
corresponds to a pair of vessel images belonging to a unique vessel.
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potentially required in a maritime security system, where the user would like to
query the system with a test vessel and retrieve similar results. It could also be
useful for annotation of vessels that are uploaded to a database with no meta-
data. Hence, the system should be responsible for retrieving the similar vessels
sharing the same content from a database. In our application, this content is not
chosen as either the superclasses of vessel types that we constructed as the coarse
attribute in Sect. 3.1, or the IMO number (aiming to identify the exact vessel),
which is so fine for a retrieval task and appropriate for vessel recognition (This
is studied as the recognition problem and is explained in the next subsection.).
Instead, we use 109 wessel types of the 8000 unique vessels with 50 different
examples, as the content of the retrieval task. Euclidean and x? distance of two
different representations are compared for the content based vessel retrieval.
The first representation is the 109-dimensional classifier output of the net-
work which is trained in the verification task (Sect.4.1) on IMO training set.
On the other hand, we also would like to compare these learned deep represen-
tations (employing the content information) with another recent and effective
representation. Hence, we use the prelearned VGG-F weights to extract the 4096-
dimensional features (The dimension is also reduced to 20 similar to the vessel
verification task). We train a multi-class SVM to obtain the classifier for the 109
vessel types by again using the IMO training set. For each example, classifier
responses of dual combinations of 109 classes (generated during the multi-class

109
SVM phase) are utilized as ( 9 ) dimensional feature vectors. By utilizing these

two representations, the results are retrieved with both Euclidean as well as 2
distance threshold. Mean average precision curves for both methods are shown
in Fig. 7. Here, the deep representation learned specifically on the maritime ves-
sels dataset significantly outperforms the generic deep representation learned
for general object classification with 1000 classes [2,16] for both of the distance
types. In addition, x2 distance has a significant superiority over the Euclidean
distance for VGG-F features. For AlexNet features trained on our dataset, both
of the distance types perform comparably well.

4.3 Vessel Recognition

The recognition problem is one of the crucial topics of computer vision. Espe-
cially, face recognition has been studied extensively, and state-of-the-art meth-
ods [26,27], which perform effectively on the benchmark datasets [28-30], have
been proposed. Since encouraging performance results are obtained with the
recent methods, the final application that we perform utilizing MARVEL is ves-
sel recognition task, where ultimate goal is to find a vessel’s identity from its
visual appearance. It might be meaningless for object types other than vessels
or faces such as cars since same car models of same color have no discriminative
appearances and are not distinguishable. Nevertheless, individual vessels gener-
ally carry distinctive features, as the shapes of the vessels from the same vessel
types significantly vary due to their customized construction processes.
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For representing vessels, 100-dimensional feature vectors are utilized as in ves-
sel verification task. Vessel identification is performed among individual classes
separately, e.g. vessels belonging to the Passenger Ships class are trained and
tested within the Passenger Ships vessel type class, since there exist 3965 ves-
sels with 109 different vessel types and it would be computationally infeasible
to train all of these vessels with 3965 labels. Hence, we opt to perform vessel
recognition among individual vessel types.

Among the 3965 vessels in IMO test set, there exist 29 vessel types that have
at least 10 unique vessels, and each vessel has 50 examples. For recognition, we
first divide the examples of each vessel into 5 folds where each fold has 10 exam-
ples per vessel. The training and testing set contains 4 folds (40 examples) and
1 fold (10 examples) per vessel, respectively. We make five-fold cross-validation
for generating experimental results. For training, a multi-class SVM is employed
where the number of classes is the number of unique vessels of the particular
vessel type. In Table 2, the recognition performances are illustrated for each ves-
sel type. Among the vessel types, Supply Vessel is the most distinguishable one

Table 2. Average recognition accuracies computed within each of the 29 vessel types.

Vessel Types General Cargo Containership Oil/chemical Tanker Bulk Carrier Passengers Ship
Recognition Accuracy’ 34.2 27.88 47.8 39.34 42.5

# of unique vessels 965 851 295 196 179

Vessel Types Ro-ro/passenger Ship Tug Ro-ro Cargo Chemical Tanker Vehicles Carrier
Recognition Accuracy 64.65 52.00 58.80 55.23 46.61

# of unique vessels 178 176 132 127 101

Vessel Types Reefer Oil Products Tanker! Tanker Cargo/containership! Lpg Tanker
Recognition Accuracy’ 49.46 52.20 57.12 51.37 65.48

# of unique vessels 92 91 84 57 46

Vessel Types Self Discharging Bulk Carrier| Crude Oil Tanker [Research/survey Vessel Trawler Offshore Supply Ship
Recognition Accuracy’ 49.13 45.24 85.47 73.68 80.11

# of unique vessels 23 21 19 19 19

Vessel Types Yacht Hopper Dredger Suction Dredger Sailing Vessel Heavy Load Carrier
Recognition Accuracy| 69.44 81.13 80.88 57.47 77.54

# of unique vessels 18 18 16 16 15

Vessel Types Lng Tanker Supply Vessel Tug/supply Vessel |Fire Fighting Vessel —
Recognition Accuracy’ 64.77 88.33 73.09 62.88 —

# of unique vessels 13 12 11 10 —
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with a recognition accuracy of 88.33% for 12 different vessels whereas vessels
of Containership have subtle differences and a recognition accuracy of 27.88%
for 851 vessels. As the number of unique vessels increases within the dataset,
the recognition performance decreases as expected. Yet, recognition accuracies
over 50% can be obtained even though the number of unique vessels exceeds a
hundred, such as in Ro-ro Cargo and Chemical Tanker vessel types.

5 Discussions

In this work, we introduce a large-scale dataset, MARVEL, for maritime vessels.
With the help of this study, we aim to aid visual analysis tasks by adopting
effective learning methods, providing a massive number of examples as well as
the required labels to be used in corresponding tasks. Moreover, we merge the
vessel types by making use of deep features and obtain semantically consistent
superclasses. Upon this clustering, baseline classification results for the generated
superclasses are reported to form a basis for further comparisons. We obtained
promising results for vessel classification, 73% top-1 accuracy for 26 superclasses.
We further utilize MARVEL for the vessel verification, retrieval, and recognition
applications, and provide promising results. For vessel verification, we achieved
an accuracy of 91%. Finally, we show that learning over 109 vessel types improves
the performance over the representations learned for generic objects.

Acknowledgement. We would like to thank to Koray Akcgay for his invaluable sup-
port and special consultancy for maritime vessels.
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Abstract. An examination of object recognition challenge leaderboards
(ILSVRC, PASCAL-VOC) reveals that the top-performing classifiers
typically exhibit small differences amongst themselves in terms of error
rate/mAP. To better differentiate the top performers, additional crite-
ria are required. Moreover, the (test) images, on which the performance
scores are based, predominantly contain fully visible objects. Therefore,
‘harder’ test images, mimicking the challenging conditions (e.g. occlu-
sion) in which humans routinely recognize objects, need to be utilized
for benchmarking. To address the concerns mentioned above, we make
two contributions. First, we systematically vary the level of local object-
part content, global detail and spatial context in images from PASCAL
VOC 2010 to create a new benchmarking dataset dubbed PPSS-12. Sec-
ond, we propose an object-part based benchmarking procedure which
quantifies classifiers’ robustness to a range of visibility and contextual
settings. The benchmarking procedure relies on a semantic similarity
measure that naturally addresses potential semantic granularity differ-
ences between the category labels in training and test datasets, thus
eliminating manual mapping. We use our procedure on the PPSS-12
dataset to benchmark top-performing classifiers trained on the ILSVRC-
2012 dataset. Our results show that the proposed benchmarking pro-
cedure enables additional differentiation among state-of-the-art object
classifiers in terms of their ability to handle missing content and insuf-
ficient object detail. Given this capability for additional differentiation,
our approach can potentially supplement existing benchmarking proce-
dures used in object recognition challenge leaderboards.

1 Introduction

The performance of an object recognition system is typically measured in terms
of error rate averaged over the object categories covered. In this respect, various
deep-learning based classifiers have shown state-of-the-art performance on large-
scale object recognition challenges in recent times. In fact, recognition challenge
© Springer International Publishing AG 2017
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leaderboards [1,2] typically list classifiers which show minuscule differences in
the performance scores, particularly among the top-most performers. Moreover,
the scores typically correspond to test images sourced from the same master
image set used for training. Using such test images causes the well-documented
phenomenon of dataset-bias [3-5] to creep into performance scores, thereby pre-
senting a distorted picture of the classifiers’ generalization ability. In the face of
such observations, an important question arises: how else can these competing
systems be differentiated?

The Holy Grail is, of course, human-like level of performance [6,7]. But,
for a recognition system to claim it is within grasping distance of this Grail,
the performance criteria can no longer be error rates on mostly fully-visible
objects! present in biased test images. Instead, we need to design additional and
alternative criteria. Also, if we wish to realistically benchmark state-of-the-art
classifiers, we require test images which mimic the challenging conditions (e.g.
local occlusion, insufficient global context) in which humans routinely recognize
objects. To address these concerns, we make the following contributions:

— We systematically vary the level of object-part content, global visibility and
spatial context in object images to create a PASCAL-based [8] benchmarking
dataset named PPSS-12 (Sect. 4).

— We propose a novel semantic similarity measure called Contextual Dissimi-
larity Score (CDS). This measure has been designed to reflect a classifier’s
ability to predict the target category in a semantically meaningful manner
across varying visibility and contextual settings (Sect. 5).

— We use our measure CDS and the PPSS-12 dataset to benchmark the top-
performing object recognition classifiers trained on the ILSVRC-2012 dataset.
The results (Sect.6) show that our benchmarking procedure enables addi-
tional differentiation between the top-performers on the basis of their ability
to handle missing content and incomplete object detail.

2 Overview of Our Approach

Figure 1 provides an overview of our approach. In the text that follows, circled
numbers correspond to various data items and processing stages of our approach,
as marked in Fig. 1.

We benchmark the top-performing [9] object classifiers trained on the
1000-class ILSVRC-2012 dataset — ALEXNET [10], VGG-19 [11], NIN [12],
GOOGLENET [13]. For benchmarking purposes, we first create ‘PASCAL Parts
Simplified (PPS)-12’ — a modified, 12-category image subset ((2)) of PASCAL-
parts [14] which in turn is a database of object images with semantic-part anno-
tations (Sect. 3).

For each image I (©) in PPS-12 containing a reference object, we systemat-
ically vary the object’s level of global visibility and its spatial context in terms

! Anecdotally, this is the case in most object-recognition datasets.
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Fig. 1. A graphic overview of our approach (Sect.?2). For each image I (®) in PPS-
12, we systematically vary the object’s global visibility /spatial context in terms of its
parts (®) to create sequence Sy of images (@). The main processing block is shown
shaded in purple background above the black dash-dotted line. ® refers to collection of
such blocks, each of which contains the image sequences that form our benchmarking
dataset PPSS —12. The & in the lower half indicates that the various global visibility
schemes/spatial context schemes are applied to the base dataset PPS — 12 to create
the sequences which form PPSS —12. For each sequence image, the degree of semantic
similarity between its ground-truth label and that predicted by a classifier (®) is
depicted as the proportion to which the corresponding circle underneath the image is
filled (@). The similarity value of each sequence image is associated with a position-
in-sequence based weighing factor depicted by the relative size of the black filled circle
(®). The weighted similarities for the sequences in PPSS-12 are analyzed (©®) to
benchmark the classifiers (@9). Best viewed in color.
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of semantic object-parts () to create an associated sequence Sy of images (@)
(Sect. 4). The collection of all such sequences comprise our benchmarking dataset
‘PASCAL Parts Simplified Sequences (PPSS)-12’ ((®).

Having obtained the sequences, we first fix a classifier ((6)). For each image
in the sequence Sy, we determine the normalized semantic similarity (Sect.5)
between the classifier-predicted label and ground-truth label?. We associate the
similarity score of each image in the sequence with a normalized weight factor
such that the earlier the relative location of the image within the sequence, the
greater its weight®. We compute the weighted sum of similarity scores and nor-
malize them by the sequence length to obtain a similarity-measuring score s. To
obtain a measure similar in interpretation as error rate (i.e. lower the better),
we subtract s from 1 to arrive at the final classifier-specific dissimilarity score
which we term Contextual Dissimilarity Score C' DSy for image I (Sect.5). By
construction, early images of the sequence S; contain relatively smaller amount
of evidence for the reference object (see Figs.2 and 3). Therefore, the larger
the semantic similarity between classifier predictions and ground-truth for the
initial images of sequence S;, the greater the ability of the classifier to predict
the target category in a semantically meaningful manner in challenging visibility
and contextual settings and demonstrate human-like performance. This ability
is numerically characterized by a low average CDS for the classifier. We gather
statistics on CDS in the image sequences ((®) on a per-image and per-classifier
basis, across object categories. These statistics enable us to benchmark the clas-
sifiers as desired (@) (Sect. 6).

At this juncture, the reader might be inclined to question aspects of our
semantic part-based benchmarking approach. We discuss the reasons and con-
sequences of our choices in Sect.7. For now, we move on to describe our pre-
processing of the PASCAL-parts dataset.

3 Data Preprocessing

For the purpose of benchmarking, we start with a subset of PASCAL-parts [14],
a 20-category object dataset containing named-part (semantic) annotations?.
From these, we shortlist 12 categories (aeroplane, bicycle, bus, car, cat,
cow, dog, horse, person, sheep, train) using the following criteria: (1)
presence of at least two annotated parts (2) ease of annotating additional parts
as required. We used object bounding box annotations from PASCAL-parts to
obtain the cropped object images.

The part labeling scheme in PASCAL-parts contains labels on the basis of
object orientation (left-facing, right-facing etc.) and intra-object location (leg-
top, leg-bottom etc.). We simplified this scheme by ignoring such factors (i.e.
orientation, location). In addition, certain crucial object parts have not been

2 The degree of similarity is depicted as the proportion to which the circle underneath
each sequence image is filled - see (@ in Fig. 1.

3 The weighing factor is depicted by the relative size of the black filled circle - see ®.

4 In this paper, we refer to named parts interchangeably with semantic parts.
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annotated in PASCAL-parts dataset. Therefore, we modified the PASCAL-parts’
labeling scheme by adding such parts to the annotation scheme. We used an in-
house labeling tool to obtain annotations for these additional crucial parts.

In the end, we obtain an image set with 1850 object images across 12 object
categories. We refer to this subset of PASCAL-parts with simplified/modified
part annotations as PPS-12. Each object image in PPS-12 (See @ in Fig.1)
forms the basis for the construction of the image sequences in our benchmarking
dataset PPSS-12°. Next, we describe how these image sequences are actually
constructed.

4 Image Sequence Construction

For each object image I in PPS-12, we construct a sequence S; of images (See
@ in Fig. 1). This sequence typically begins with only one semantic-part of the
object in the image. The remaining object parts are successively added using a
pre-defined ‘part ordering scheme’ (Sect.4.1) to form the rest of the sequence.
For each image in the sequence S 1, a pre-defined ‘content scheme’ is applied to
obtain the new sequence Sz. The content scheme controls either the amount of
spatial context or level of object detail within the sequence (Sect. 4.2). Also, Sz
is constructed such that the final image in the sequence always coincides with
the object image I which serves as the basis for the sequence construction in the
first place. The collection of all such sequences constitutes our benchmarking
dataset PPSS-12.

For the remainder of the section, we first describe the different object-part
ordering schemes used to create image sequences. We subsequently describe the
object content schemes (Sect.4.2) activated during image sequence creation.

4.1 Part-Ordering Schemes

The part-ordering schemes essentially produce an ordered list of parts for each
object category based on the scheme’s criteria. During the image sequence cre-
ation (Sect.4.2), this list forms the basis for incremental addition of object
content.

In a recent work, Li et al. [15] augmented 850 images from PASCAL 2010
dataset with eye-fixation information to create their dataset PASCAL-S. In this
dataset, each image is associated with a set of eye-fixation sequences. Each eye-
fixation sequence, in turn, corresponds to spatial locations fixated upon by a
human subject’s eyes when shown the image. The PASCAL-parts derivative
dataset we have created, PPS-12, is also derived from PASCAL 2010. We first
identify images common to PASCAL-S and PPS-12. For these images, we ana-
lyze the density of fixation locations (from PASCAL-S) with respect to object
part boundaries (from PPS-12). For each object category, we sort the parts
in the decreasing order of fixation density to obtain the part-ordering scheme.

5 Our dataset is available at http://val.serc.iisc.ernet.in/pbbm/.
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In doing so, we implicitly make the assumption that fixation density is correlated
with relative importance of image content, a phenomenon repeatedly observed
in eye-fixation based image saliency studies [16]. We explored four variations in
determining per-part fixation density resulting in four eye fixation-based part
ordering schemes. We describe these schemes next.

Let FL(k) = {f;j(k) = (zj,y;)},j = 1,2,... Nj denote the k-th eye fixation
sequence (out of the N sequences from PASCAL-S) for an image I € PPS-12
containing an object from category C. Here, (z;,y;) corresponds to the spatial
location of the eye-fixation. Let p;(k),1 < j < N denote the part within whose
spatial boundary fixation f;(k) lies. NV}, denotes the number of fixations in the
k-th fixation sequence. Let P® denote the set of parts associated with category C.

Unnormalized Sequence Position Scheme (Eyg): Under this scheme, we
assign part importance based on the total number of fixations within a part
P’s boundary. However, we also weigh each fixation by the relative position of
the fixation within its original sequence. The part scheme factor for part P (of
category C) in image I is computed as:

N Ng

> k)P = p;(k))

k=1j=1

Eys(P) = NN (1)

SO 1@ = py(k)
QePC k=1 =1
Np—j+1

Ni

where r;(k) = (2)

Here, the factor r;(k) captures the intuition that the earlier a fixation’s loca-
tion within its fixation sequence, the greater the prominence of the part within
whose contour it falls. In the above equation and those that follow, 1 denotes
the indicator function.

Unnormalized Part Count Scheme (Ey): This scheme is similar to Eyg
except that all fixations are considered equally important, i.e. r;(k) = 1. Under
this scheme, we simply count the number of fixations that lie within a part P’s
boundary as a measure of part importance.

Part Area Normalized Schemes (F4 and E4g): In the Eyy scheme, a part
can have a large importance score merely because it covers a larger portion of
the image. Following Kiwon et al. [17], we normalize for part areas and construct
part-area normalized versions of Eyy and Eyg as follows:

Ea(P) = EAU<35))

B Area of part P
~ Area of the object within I

3)

where A(P) (4)
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Eys(P)
Eas(P)= —/——= 5
In all the part schemes mentioned above, we sum the part-importance factor
(Egs. 1, 3, 5) for each part across all images of the category and sum-normalize
to obtain the probability distribution of relative part importance. We obtain the
final part scheme by listing the parts in the order of decreasing probability.

4.2 Content (Global Object Visibility and Object Context) Schemes

Having described the part schemes, we next describe how systematic variations
in context and global object visibility are introduced into object images (See
® in Fig.1). We refer to the schemes which control image variations in these
aspects (global object visibility, object context) as ‘content schemes’. The content
schemes essentially control the level of detail and the manner in which this detail
is added as we progress across a part-image sequence. From a benchmarking
point of view, these schemes are designed to evaluate the extent to which lack of
content or the ability to exploit existing context affects a classifier’s performance.

Object Context Scheme: Two variations exist within the object context
scheme. In the first variation (‘Intra-object context’), the images of the part-
image sequence contain no contextual information other than that arising from
incremental addition of object’s parts. To ensure this, the object’s parts are
added to a completely black canvas. Figure 2 (top row) shows an example. In the
second variation (‘Intra-and-Neighborhood context’), the image content immedi-
ately surrounding the object is retained to provide neighborhood context. How-
ever, parts are incrementally added within a blacked-out bounding box enclosing
the object. Figure2 (bottom row) shows an example.

Fig. 2. Part sequences corresponding to change in ‘object context’ of a bus image. The
top row corresponds to ‘intra-object’ context scheme while the bottom row corresponds
to ‘intra-and-neighborhood’ context. Notice the road-like surroundings providing the
context (surrounding the object) in the bottom row.

Global Object Visibility Scheme: Unlike the context-based schemes men-
tioned above, the visibility schemes additionally have access to global context
from the entire image in a gist-like manner, including that from parts not yet
added. Figure 3 shows example sequences for this content scheme. In this scheme,
the entire image’s data is present, albeit at a low level of detail to begin with.
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Fig. 3. Part sequences corresponding to change in global object visibility of a bicycle
image. We refer to the two variations of the visibility level as ‘low level of detail’ (top
row) and ‘higher level of detail’ (bottom row).

As each part of the object is added, the part comes into focus. The net effect is
a blurring of the image relative to already added parts. This scheme is inspired
by the manner in which level of detail falls relative to the location fixated upon
by a human eye. To achieve this fall-off effect, we utilize the visual-field simu-
lation of Perry and Geisler [18]. By varying the parameters of the visual-field
simulation, the level of detail in the immediate vicinity of each added part can
be changed. For the purposes of our evaluation, we utilize two parameter set-
tings which result in two variations of the global object visibility scheme which
we refer to ‘low level of detail’ (top row of Fig.3) and ‘higher level of detail’
(bottom row).

In the next section, we describe how the PPSS-12 sequences created by apply-
ing the content schemes to images in PPS-12 help determine the ‘Contextual
Dissimilarity Score’ (CDS) for a fixed classifier. Later on (Sect.6), we shall see
how the process of determining CDS lets us benchmark the classifiers.

5 Determining Contextual Dissimilarity Score (CDS)

For a given image I from our PPS-12 dataset (@, Fig.1), we first choose a
part-ordering scheme (Sect.4.1) and generate a sequence of images Sy according
to this scheme. We then choose an object content scheme (Sect.4.2) and apply
it to each of the images in the sequence (®), Fig.1). With the content-scheme
applied sequence at hand ((@, Fig. 1), we are ready to determine the Contextual
Dissimilarity Score C' DS} for image I.

Let Sy = {51, 52, ..., SN} represent our aforementioned image sequence from
PPSS-12. Note that by construction, sequence image Sy corresponds to given
image I. Since our analysis is on a per-classifier basis, let us fix the classifier
C (®, Fig.1). Each image in sequence S; € Sy is input to the classifier to
obtain the corresponding class prediction label c;. Suppose the ground-truth
label for S is g;. In our case, c¢; and g; are drawn from two different label spaces
(Imagenet-based and PASCAL-based) with varying levels of semantic granularity
and therefore, an exact literal match may not be possible. Therefore, we utilize
a semantic similarity measure M which provides a [0, 1]-normalized score z;
reflecting the semantic similarity between ¢; and g; (i.e. z; = M(c;, g;)). Thus,
we obtain a sequence of normalized scores X7 = {1, 22,..., TN}

5 The colored rows containing the pie-like shapes in Fig. 1 correspond to such similarity
scores.
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Also note that by construction, early images of the sequences contain rela-
tively smaller amount of evidence for the reference object (see Figs.2 and 3).
Therefore, the higher the similarity score in the initial parts of the sequence,
the greater the ability of the classifier to perform well in challenging conditions
and demonstrate human-like performance. To characterize this notion, each sim-
ilarity score x; in the sequence in associated with a weight factor w; = %
such that the earlier the location, the greater its weight (®), Fig.1)). We then
compute NW SS - the normalized weighted sum of similarity scores. To obtain a
measure similar in interpretation as error rate (i.e. lower the better), we subtract
NWSS from 1 to arrive at the final Contextual Dissimilarity Score for image I
(CDSy).

N
E :mjwj

=1
CDS;=1-1"— (6)
> w;
j=1

The resulting C'D Sy is an indicator of the part-level and contextual content
required by classifier C to recognize the object in image I. Therefore, obtaining a
relatively smaller ‘average CDS’ when C' DS} are averaged across part-schemes,
context-schemes and object categories indicates the ability of a classifier to per-
form well in spite of missing or poorly detailed object information.

6 Experimental Analysis

As a preliminary experiment, we computed the median top-1 error-rate of each
classifier (ILSVRC-trained) on our PPS-12 (derived from PASCAL) images.
Given the inherent dataset bias commonly present in recognition challenge
datasets [3], the error-rates are higher unlike the low, barely distinguishable top-1
rates typically encountered on recognition challenge leaderboards (See Table 1).
This result should not be surprising. Instead, it merely serves to reinforce the
importance of cross-dataset validation in obtaining a fair assessment of classi-
fiers’ generalization capabilities [19].

Table 1. Cross-dataset error-rates: performance of the ILSVRC trained classifiers on
our PASCAL-based PPS-12 dataset using manual mappings across the two datasets.

Classifier GOOGLENET | VGG-19 | NIN | ALEXNET
Median error rate | 0.24 0.25 0.32 1 0.35

As part of the main benchmarking process, we determine the CDS (Sect. 5)
for all possible combinations of classifiers, part-ordering schemes (Sect. 4.1) and
object content schemes (Sect. 4.2). This sets the stage for examining the effect of
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these schemes on the overall benchmarking process. For the similarity measure
M between the category labels (Sect.5), we used Wu-Palmer similarity mea-
sure [20]. This measure calculates relatedness of two words using a graph-distance
based method applied to WordNet [21], a standard English lexical database con-
taining groupings of cognitively similar concepts and their interrelationships.

6.1 Benchmarking Classifiers Across Object Content Schemes

In the discussion that follows, it is important to remember that smaller the CDS,
better the classifier’s performance.

‘Intra-object’ Context: For the first set of experiments, we analyze CDS
for the ‘intra-object’ context scenario. This scenario consists of object images
without any of the surrounding context except that arising out of the object’s
parts themselves (see top row of Fig.2) and is perhaps the most challenging
scenario for a classifier. On the other hand, it is also the most appropriate since
the image content is precisely confined only to the object.

Fixing the content scheme to ‘intra-object’, for each classifier and for each
category, we compute the median CDS. We do this initially for each part-ordering
scheme and subsequently average the median scores over the schemes to obtain
category-wise CDS. These category-wise scores are, in turn, averaged to obtain
the CDS for each classifier. The results on a per-classifier basis can be seen in
the first column (‘Intra-object’) of Table2. As expected, the median scores are
relatively high regardless of classifier.

‘Intra-object and Neighborhood’ Context: We repeat the previous exper-
iment with the content-scheme now being ‘intra-object and neighborhood’.
In addition to object parts, contextual information from the immediate sur-
roundings is additionally available in this scheme (see bottom row of Fig.2).

Table 2. Benchmarking classifiers: Average median CDS across categories for different
context schemes. The best CDS score for each content scheme is shown in bold. The
bracketed percentages in column 2 indicate the improvement in CDS over column 1
with addition of context. The ones in column 4 indicate the improvement over column
3 when level of detail is increased. The best percentage improvement is also shown in
bold. Note that smaller the CDS, better the performance.

Scheme Context based Global visibility based
Intra-object | Intra-object and Low level of | Higher level of
neighborhood detail detail
ALEXNET 0.4499 0.4470 (0.6 %) 0.4450 0.3803 (14.54 %)
GOOGLENET | 0.5264 0.4319 (17.95 %) | 0.4544 0.3490 (30.20 %)
NIN 0.4788 0.4492 (6.18 %) 0.4689 0.3882 (17.20 %)
VGG-19 0.4136 0.4147 (—0.27 %) | 0.3628 0.2880 (20.62 %)
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We hypothesized that such information would improve performance and that is
indeed the case (see second column (‘Intra-object and neighborhood’) of Table 2).

Global Object Visibility: Next, we examine the impact of visibility-based
content schemes (Sect. 4.2). As mentioned before, these schemes, unlike the intra-
object and/or neighborhood context ones, have additional access to global con-
text from the entire image in a gist-like manner, including that from parts not
yet brought into focus (See Fig. 3). Therefore, the performance of the classifier
for these schemes conveys the extent to which it utilizes the global context.

Keeping the classifier fixed and content-scheme as ‘low-detail’, for each cate-
gory, we compute the median CDS for each part scheme and average them across
part schemes to obtain category-wise CDS. These are averaged in turn to obtain
the CDS for the classifier. As the results in Table2 (third column) suggest, the
presence of global information, even at a low level of detail and even with mini-
mal object-specific information, is still powerful enough to improve performance,
as evidenced by the lower CDS. Increase in the level of detail (i.e. lower level of
blurring) causes the results to be on predictable lines, with the overall average
median CDS trending downwards (See last column of Table 2).

6.2 Overall Performance and Additional Experiments

Examining the results in Table 2, it is evident that VGG-19 achieves the best
performance (lowest average CDS) in general. More importantly, Table2 also
shows that our benchmarking procedure contrasts the performance of almost
equally well-performing classifiers (GOOGLENET, VGG-19) better than the
traditional accuracy-based counterparts—the CDS-based benchmarking values
are generally further apart compared to the accuracy scores (compare Tables 1
and 2).

To determine which classifier exploits addition of object neighborhood-based
context the most, we compute the percentage improvement in average CDS over
the ‘object only’ (i.e. no neighborhood context) setting (Table 2, first column).
As the bracketed numbers in second column of Table2 show, GOOGLENET’s
performance improves the most. GOOGLENET also best exploits the increase in
level of detail (fourth column of Table 2). We believe these results stem from the
‘inception-style’ mechanism GOOGLENET [11] uses to capture context.

To obtain a category-level perspective on the benchmarking performance, we
determine the classifier that produces the lowest CDS most frequently across all
combinations of part schemes and content schemes. The entries in Table 3 (top
row) merely endorse the results seen earlier — VGG-19 is the best performer
in general. At the other end, NIN and surprisingly (for a couple of categories),
GOOGLENET have relatively higher CDS (bottom row of Table 3).

6.3 Relationship Between CDS and (Traditional) Error Measures

To verify that our CDS measure provides additional information beyond the
traditional top-1 error measure, we computed the correlation between CDS and



192 R.K. Sarvadevabhatla et al.

Table 3. Category-wise best and worst performers (in terms of CDS) aggregated across
part and content schemes.

Classifier |airplane |bicycle|bird |bus car cat cow dog horse |person sheep train
Lowest- |GO0GLENET|VGG-19 |VGG-19|VGG-19|VGG-19|VGG-19| VGG-19| VGG-19 VGG-19 | VGG-19 ALEXNET VGG-19
cds

Highest- |NIN NIN NIN NIN NIN NIN NIN GOOGLENET | NIN GOOGLENET | GOOGLENET | GOOGLENET
cds

the top-1 error rates across all the classifiers. For this, we determined the median
error-rate and median CDS for each content scheme by averaging across the
respective measures across part schemes and classifiers. Thus, we obtain two
vectors, one for median error-rate and the other for median CDS. The correlation
between these two vectors was found to be close to 0 (Pearson p = 0.0227,
p = 0.98 and Spearman p = 0,p = 1). This result indicates that CDS measures
an aspect of classifier performance distinct from the traditional top-1 measure.

7 Discussion and Related Work

Having presented the experiments and analysis, we now examine some of the
design decisions and forces at play in our work.

Our benchmarking procedure relies crucially on semantic object part-based
image sequences. Using ‘named’ semantic-parts ensures that all images of a
category are treated consistently. This advantage is lost when we use purely
statistically generated, unnamed, region-based part models” [22]. On a related
note, Taylor and Likova [23] suggest that humans tap into generic concepts of
objects, including linguistic propositions (e.g. named object-parts) while analyz-
ing a scene. Furthermore, studies by Palmer [24] have shown that when parts
correspond to a ‘good’ segmentation of a figure (e.g. object-part contours), the
speed and accuracy of responses related to queries on figure attributes improves
significantly. These observations further lend support for our use of semantic
named object-parts. The burdensome aspect of semantic-part annotation does
limit the number of categories benchmarked. However, recent trends seem to
suggest the possibility of large, richly detailed datasets [25] and multi-task recog-
nition frameworks [26] which can potentially offset this burden.

Our choice of part-importance order (Sect.4.1) offers a future opportunity to
explore connections between eye-fixation based saliency properties of a partial
content image and its recognizability. We wish to point out that our part ordering
schemes are not exhaustive — any other principled part-ordering scheme may
also be utilized for additional hold-out style benchmarking. In this respect, it is
interesting to note that Taylor and Likova [23] suggest a list specifying a Bayesian
prior on possible object attributes (including semantic-parts) to characterize
objects and related concepts.

" The lack of consistency also holds true for area-based approaches (e.g. systematically
decreasing the percentage of object area occluded by a fixed percent).
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The images from the sequences we used to compute the CDS are artificial
in construction and one might argue that they are too structured and there-
fore, an imperfect representation of the object occlusion scenarios typically
seen in real photos. An alternative could be to utilize realistic data wherein
the extent and the manner in which the target object is occluded can be pre-
cisely quantified. This, in itself, is an extremely challenging task although newer
datasets with depth ordering and occlusion level specified as part of annota-
tions [27] may compensate to some extent®. The advantage of our constructs is
that they let us quantify the global object visibility consistently — for a given
location in the part importance order, the same part is missing in all the image
sequences. Moreover, as the results indicate, state-of-the-art classifiers can still
utilize available information effectively in spite of the artificial nature of sequence
images.

Our benchmarking measure relies on a semantic measure of dissimilarity
between the predicted label and ground-truth label. The deeper implication of
our choice of similarity measure is that the median CDS for each classifier reflects
the general ability of the classifier to utilize the semantics of the image to pro-
duce semantically meaningful predictions. We initially considered an alternative
scheme: a more traditional ‘hard’ 0—1 binary prediction in place of ‘soft’ seman-
tic similarity. However, this approach requires a manual, subjectively grouped,
many-to-one mapping between predicted-label set (Imagenet) and ground-truth
label set (PASCAL).

On a deeper level, our overall approach reveals aspects of the object recogni-
tion task that each of the top-performers address better than the rest. As already
pointed out, while VGG-19 is the top-performer in general, GOOGLENET is
better (in percentage terms) at exploiting context from an object’s immediate
surroundings (Sect.6.2). Therefore, while our benchmarking procedure is use-
ful to differentiate classifiers, it can also be used to characterize the extent to
which contextual and visibility factors are addressed by a classifier on a stand-
alone basis. Such characterization can help classifier designers tweak their archi-
tectures and help improve the classifier’s capabilities. In addition, as Table 2
shows, our benchmarking procedure contrasts the performance of almost equally
well-performing classifiers (GOOGLENET, VGG-19) reasonably better than the
traditional approach (Tablel). In addition, the moderately high CDS scores
(Table 2) suggests that top of the line classifiers of current day are yet to per-
form well on images which mimic the challenging conditions (e.g. occlusion) in
which humans routinely recognize objects. To confirm that humans recognize
the objects much more robustly than machine classifiers, we performed a rudi-
mentary user study in which we asked human subjects to recognize the PPSS-12
sequence images. We found that human CDS values were indeed disproportion-
ately low compared to the classifiers®. Finally, we also wish to point out that

8 The dataset was not publicly available at the time of our publication.

9 In fact, the humans were able to correctly recognize the category at extremely
early stages of the sequence — the highest median score across content schemes was
0.20(+0.06) while the lowest was 0.



194 R.K. Sarvadevabhatla et al.

our benchmarking procedure is by no means complete - a gamut of additional
transformations (e.g. rotation) and their combinations can be applied to create
additional image sequences and benchmark them using the approach described
in our work.

Typically, the state-of-the-art results reported on recognition leaderboards
[1,2] and literature [6,28-30] correspond to ensemble models. However, the corre-
sponding pre-trained models were not always available. To keep the benchmark-
ing consistent, we utilized readily available, pre-trained, non-ensemble baseline
models [9].

Related Work: One class of quantitative approaches which supplement the
usual mAP /error-rate essentially use variations of the traditional measures or
tend to be derived from them [31,32]. These additional measures (e.g. Area-
Under-the-Curve(AUC), precision, recall) may provide additional differentiation
between classifiers but unlike our work, do not provide insight into semantic
aspects of data which affect classification. Somewhat similar to our approach,
Aghazadeh and Carlsson [33] propose measures which quantify properties of
training data (class bias, intra-class variation) and compare classifier perfor-
mance on the basis of such measures for an object detection problem. However,
their formulation involves comparison of features across image pairs whereas
our measure is based on per-image statistics aggregated over a category. Hoiem
et al. [34] characterize the effects of challenging extrinsic factors (e.g. occlu-
sion, viewpoint) and intrinsic factors (e.g. aspect ratio, part visibility) for the
object detection problem and suggest the factors most likely to impact perfor-
mance. Analyzing user study data for downsampled versions of 256 x 256 images,
Torralba [35] examine the effect of image resolution for scene and object recog-
nition. However, their study is focused on human subject performance.

8 Conclusion

In this paper, we have demonstrated a semantic part-based procedure for bench-
marking state-of-the-art classifiers. The benchmarking procedure relies on a
semantic similarity measure that naturally addresses potential granularity differ-
ences between the category names in training and test datasets, thus eliminating
laborious and subjective manual mapping. The measures we propose provide
additional insights into the classifiers’ ability to handle various degrees of object
detail and missing object information & la humans. In our particular case, the
benchmarking procedure enables performance evaluation of the ILSVRC-trained
classifiers for test images sourced from an different dataset (PASCAL). Given
this capability for additional differentiation, our benchmarking procedure can
supplement existing procedures used in object recognition leaderboards. In addi-
tion, our benchmarking procedure and dataset are potentially useful for classifier
designers on a standalone basis to analyze their classifier’s ability to handle miss-
ing content and incomplete object detail.

The top performers in our benchmarking study do not explicitly consider
object parts (semantic or otherwise) nor do they attempt to model occlusions.
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However, architectures which are “part-aware” [36] and explicitly contain com-
pensatory mechanisms for occlusion [37] hold great potential not only for our
benchmarking procedure, but for the broader area of object recognition as
well [7].

Please visit our project webpage http://val.serc.iisc.ernet.in/pbbm/ for addi-
tional and up-to-date information.
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Abstract. We present a method for training CNN-based object class
detectors directly using mean average precision (mAP) as the training
loss, in a truly end-to-end fashion that includes non-maximum suppre-
sion (NMS) at training time. This contrasts with the traditional approach
of training a CNN for a window classification loss, then applying NMS
only at test time, when mAP is used as the evaluation metric in place of
classification accuracy. However, mAP following NMS forms a piecewise-
constant structured loss over thousands of windows, with gradients that
do not convey useful information for gradient descent. Hence, we define
new, general gradient-like quantities for piecewise constant functions,
which have wide applicability. We describe how to calculate these effi-
ciently for mAP following NMS, enabling to train a detector based on
Fast R-CNN [1] directly for mAP. This model achieves equivalent per-
formance to the standard Fast R-CNN on the PASCAL VOC 2007 and
2012 datasets, while being conceptually more appealing as the very same
model and loss are used at both training and test time.

1 Introduction

Object class detection is the task of localising all instances of a given set of
object classes in an image. Modern techniques for object detection [1-4] use a
convolutional neural network (CNN) classifier [5, 6], operating on object proposal
windows [7-9]. Given an image, they first generate a set of windows likely to
include all objects, then apply a CNN classifier to each window independently.
The CNN is trained to output one score for each possible object class on each
window, and an additional one for ‘background’ or ‘no object’. Such models
are trained for window classification accuracy: the loss attempts to maximise
the number of training windows for which the CNN gives the highest score to
the correct class. At test time, the CNN is applied to every window in a test
image, followed by a non-maximum suppression processing stage (NMS). This
eliminates windows that are not locally the highest-scored for a class, yielding the
output set of detections. Typically, the performance of the detector is evaluated
using mean average precision (mAP) over classes, which is based on the ranking
of detection scores for each class [10].

Thus, the traditional approach is to train object detectors with one mea-
sure, classification accuracy over all windows, but test with another, mAP over
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locally highest-scoring windows. While the training loss correlates somewhat
with the test-time evaluation metric, they are not really the same, and further-
more, training ignores the effects of NMS. As such, the traditional approach is
not true end-to-end training for the final detection task, but for the surrogate
task of window classification.

In this work, we present a method for training object detectors directly using
mAP computed after NMS as the loss. This is in accordance with the machine
learning dictum that the loss we minimise at training time should correspond
as closely as possible to the evaluation metric used at test time. It also fits
with the recent trend towards training models end-to-end for their ultimate
task, in vision [11-13] and other areas [14,15], rather than training individual
components for engineered sub-tasks, and combining them by hand.

Directly optimising for mAP following NMS is very challenging for two main
reasons: (i) mAP depends on the global ordering of class scores for all windows
across all images, and as such is piecewise constant with respect to the scores;
and, (ii) NMS has highly non-local effects within an image, as changing one
window score can have a cascading effect on the retention of many other windows.
In short, we have a structured loss over many thousands of windows, that is non-
convex, discontinuous, and piecewise constant with respect to its inputs. Our
main contribution is to overcome these difficulties by proposing new gradient-
like quantities for piecewise constant functions, and showing how these can be
computed efficiently for mAP following NMS. This allows us to train a detector
based on Fast R-CNN [1] in a truly end-to-end fashion using stochastic gradient
descent, but with NMS included at training time, and mAP as the loss.

Experiments on the PASCAL VOC 2007 and 2012 detection datasets [16]
show that end-to-end training directly for mAP with NMS reaches equivalent
performance to the traditional way of training for window classification accuracy
and without NMS. It achieves this while being conceptually simpler and more
appealing from a machine learning perspective, as exactly the same model and
loss are used at both training and test time. Furthermore, our method is widely
applicable on two levels: firstly, our loss is a simple drop-in layer that can be
directly used in existing frameworks and models; secondly, our approach to defin-
ing gradient-like quantities of piecewise-constant functions is general and can be
applied to other piecewise-constant losses and even internal layers. For exam-
ple, using our method can enable training directly for other rank-based metrics
used in information retrieval, such as discounted cumulative gain [17]. Moreover,
we do not require a potentially expensive max-oracle to find the most-violating
inputs with respect to the model and loss, as required by [2,18,19].

2 Background

We recap here how NMS is performed (Sect.2.1) and mAP calculated (Sect. 2.2).
Then, we describe Fast R-CNN [1] in more detail (Sect. 2.3), as it forms the basis
for our proposed method.
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2.1 Non-maximum Suppression (NMS)

Given a set of windows in an image, with scores for some object class, NMS
removes those windows which are not locally the highest-scored, to yield a final
set of detections [20]. Specifically, all the windows are marked as retained or
suppressed by the following procedure: first, the highest-scored window is marked
as retained, and all those overlapping with it by more than some threshold (e.g.
30% in [1,4]) intersection-over-union (IoU) are marked as suppressed; then, the
highest-scored window neither retained nor suppressed is marked as retained, and
again all others sufficiently-overlapping are marked as suppressed. This process
is repeated until all windows are marked as either retained or suppressed. The
retained windows then constitute the final set of detections.

2.2 Mean Average Precision (mAP)

The mAP [10,16,21] for a set of detections is the mean over classes, of the
interpolated AP [22] for each class. This per-class AP is given by the area under
the precision/recall (PR) curve for the detections (Fig.1).

 high score low score
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Fig. 1. Precision/recall curve (bottom) for a sequence of true-positive (TP) and false-
positive (FP) detections ordered by score (top) for some object class with six ground-
truth instances. Plotting the sequence of precision and recall values yields the black
curve. The pink area shows the result of replacing each precision with the maximum
at same or higher recall. AP is the total area of the pink and blue regions. The arrows
(a—e) show the effect of positive perturbations to scores of FP detections. Blue arrows
(a—c) show perturbations with no effect on AP: (a) the order of detections does not
change; (b) the detection swaps places with another FP; (¢) the detection swaps places
with a TP, but a higher-recall TP (f) has higher precision so there is no change to area
under the filled-in curve (pink shading). Orange arrows (d—e) show perturbations that
do affect AP: (d) the same FP as (c) is moved beyond a TP that does appear on (hence
affect) the filled in curve; (e) the FP moves past a single TP, altering the filled-in curve
as far away as 0.5 recall. (Color figure online)
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The PR curve is constructed by first mapping each detection to its most-
overlapping ground-truth object instance, if any overlaps sufficiently—for PAS-
CAL VOQC, this is defined as overlapping with >50% IoU [16]. Then, the highest-
scored detection mapped to each ground-truth instance is counted as a true-
positive, and all other detections as false-positives. Next, we compute recall and
precision values for increasingly large subsets of detections, starting with the
highest-scored detection and adding the remainder in decreasing order of their
score. Recall is defined as the ratio of true-positive detections to ground-truth
instances, and precision as the ratio of true-positive detections to all detections.
The PR curve is then given by plotting these recall-and-precision pairs as pro-
gressively lower-scored detections are included. Finally, dips in the curve are
filled in (interpolated) by replacing each precision with the maximum of itself
and all precisions occurring at higher recall levels (pink shading in Fig. 1) [10,22].

The area under the interpolated PR curve is the AP value for the class. For
the PASCAL VOC 2007 dataset, this area is calculated by a rough quadrature
approximation sampling at 11 uniformly spaced values of recall [10]; for the VOC
2012 dataset it is the true area under the curve [16].

2.3 Fast R-CNN

Model. Our model is based on Fast R-CNN [1] (Figs. 2a, b), without bounding-
box regression. This model operates by classifying proposal windows of an image,
as belonging to one of a set of object classes, or as ‘background’. Whole images
are processed by a sequence of convolutional layers; then, for each window,
convolutional features with spatial support corresponding to that window are
extracted and resampled to fixed dimension, before being passed through three
fully-connected layers, the last of which yields a score for each object class and
‘background’. The class scores for each window are then passed through a soft-
max function, to yield a distribution over classes.

Training. This network is trained with a window classification loss. If a window
overlaps a ground-truth object with IoU > 0.5, its true class is defined as being
that object class; otherwise, its true class is ‘background’. For each window,
the network outputs softmax probabilities for each class, and the negative log
likelihood (NLL) of the true class is used as the loss for that window; the total loss
over a minibatch is simply a sum of the losses over all windows in it. The network
is trained by stochastic gradient descent (SGD) with momentum, operating on
minibatches of two images at a time.

Testing. At test time, windows are scored by passing them forwards through
the network, and recording the final softmax probabilities for each class. Then,
for each class and image, NMS is applied to the scored windows (Sect. 2.1). Note
that this NMS stage is not present at training time. Finally, the detections are
evaluated using mAP over the full test set.
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(b) Fast R-CNN, testing: NMS applied, and detections evaluated with mAP

<} loss pseudogradients from mAP

O
1000s of 10s of mAP
CNN, ROI-pooling S0 NMS so
scored scored loss
& FC layers R R
windows windows

(c) Our method, both training and testing: exactly the same operations occur at train and test
time , with identical model structure and the training loss matching the test-time evaluation
metric

Fig. 2. Fast R-CNN [1] architecture during training (a) and testing (b) phases, and
our architecture (c), which is the same in both phases.

3 Related Work

Nearly all works on object class detection train a window classifier, and ignore
NMS and mAP at training time. Earlier approaches [20,23-25] apply the classi-
fier to all windows in a dense regular grid, while more recently, object proposal
methods [7,9] have been used to greatly reduce the number of windows [4,8].
Below we review the few works that try to either train for AP or other structured
losses, or include NMS at training time.

Blaschko and Lampert [26] formulate object detection as a structured pre-
diction problem, outputing a binary indicator for object presence and a set
of bounding-box coordinates. This is trained using a structured SVM, with a
task loss that aims for correct classification and maximal IoU of predicted and
ground-truth boxes in images containing the target class. Like our method, this is
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a structured loss involving IoU of detections and ground-truth objects; however,
it does not correspond to maximising AP, and only a single detection is returned
in each image, so there is no NMS. More recently, [2] uses the same structured
SVM loss, but with a CNN in place of a kernelised linear model over SURF
features [26]. This work directly optimises the structured SVM loss via gradient
descent, allowing backpropagation to update the nonlinear CNN layers.

There exist works that train specifically for AP, but for classification prob-
lems, rather than for object detection with NMS. Yue et al. [18] optimizes AP
in the structured SVM framework—with a linear model, trained using a hinge
loss weighted according to AP. This requires solving a loss-augmented infer-
ence problem, i.e. finding the scores that maximise the sum of AP and the
output of the current model. They present a dynamic programming algorithm
to solve this, which has quadratic complexity in the number of training points.
Extending this work, [19] presents a more general technique for training nonlin-
ear structured models directly for non-differentiable losses, again assuming that
loss-augmented inference can be performed efficiently. Using the same dynamic-
programming approach as [18], they apply it to the case of single-class AP with a
model based on R-CNN [4], without NMS at training time. While their method
requires changes to the optimiser itself, ours does not. Instead, we simply define
a new loss layer that can be easily dropped into existing frameworks, and do not
require solving a loss-augmented inference problem. Furthermore, our approach
can incorporate NMS and train simultaneously for multiple classes. Thus, while
[19] trains for AP over binary window classification scores, ours trains directly
for mAP over object detections.

Taylor et al. [27] discuss a different formulation for gradient-descent optimi-
sation of certain losses based on ranking of scores (though not AP specifically).
They define a smooth proxy loss for a non-differentiable, piecewise constant
ranking loss. They treat the predicted score of each training point as a Gaussian
random variable centered on the actual value, and hence compute the distrib-
ution of ranks for each score, by pairwise comparisons to all other scores. This
distribution is used in place of the usual hard ranks when evaluating the loss,
and the resulting quantity is differentiable with respect to the original scores.
This method has cubic complexity in the number of training samples, making
it intractable when there are tens of classes and thousands of windows (e.g. in
PASCAL VOC).

Unlike most other approaches to object detection, [28] includes NMS at train-
ing time as well as test time. They use a deformable parts model over CNN
features, that outputs scored windows derived from a continuous response map
(in contrast to feeding fixed proposal windows through a CNN [1]). The windows
are passed through a non-standard variant of NMS. Instead of training for mAP
or window classification accuracy, the authors then introduce a new structured
loss. This includes terms for detections retained by NMS, but also for suppressed
windows, in a fashion requiring knowledge of which detection suppressed them.
As such, it is deeply tied to the NMS implementation at training time, rather
than being a generally-applicable loss such as mAP.



204 P. Henderson and V. Ferrari

4 Proposed Method

We now describe our proposed method (Fig.2c). We discuss how our model
differs from Fast R-CNN (Sect. 4.1) and why it is challenging to train (Sect. 4.2).
Then we introduce our general method for defining gradients of piecewise-
constant functions (Sect. 4.3) and how we apply it to train our model (Sect. 4.4).

4.1 Detection Framework

Model. Our model is identical to Fast R-CNN as described above, up to the
softmax layer: windows are still scored by passing through a sequence of convo-
lutional and fully-connected layers. As in [1], we can use different convolutional
network architectures pretrained for ILSVRC 2012 [21] classification, such as
AlexNet [5] or VGG16 [6]. We omit the softmax layer, using the activations of
the last fully-connected layer directly as window scores. In our experiment we
found that the softmax has little effect on the final performance, but its tendency
to saturate causes problems with propagating the loss gradients back through it.
In contrast to Fast R-CNN, our model also includes an NMS layer immediately
after the last fully-connected layer, which performs the same operation as used
at test time for Fast R-CNN. We regard the NMS layer as part of the model
itself, present at both training and test time.

Training. During training, we add a loss layer that computes mAP over the
minibatch, after NMS. Thus, at training time, minibatches undergo exactly the
same sequence of operations as at test time, and the training loss matches the
test-time evaluation metric. The network is still trained using SGD with momen-
tum. Section 4.2 describes how to define derivatives of the mAP and NMS layers,
while Sect. 4.5 discusses some additional techniques used during training.

Testing. During testing, our method is identical to Fast R-CNN, except that
the softmax layer is omitted.

4.2 Gradients of mAP and NMS Layers

In order to minimise our loss by gradient descent, we need to propagate deriv-
atives back to the fully-convolutional layers of the CNN and beyond. However,
mAP is a piecewise constant function of the detection scores, as it depends only
on their ordering—each score can be perturbed slightly without changing the
loss. The partial derivatives of such a loss function do not convey useful infor-
mation for gradient descent (Fig. 3a) as they are almost everywhere zero (in the
constant regions), and otherwise undefined (at the steps). The subgradient is
also undefined, as the function is non-convex.

Furthermore, even if we could compute the derivatives of mAP with respect
to the class scores, they still need to be propagated back through the NMS layer.
This requires a definition of the Jacobian of NMS, which is again non-trivial.
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Fig. 3. A piecewise constant function f(z) with steps at two points, and various defini-
tions for gradients. (a) Conventional partial derivative (red dashed) at z, equal to zero,
does not convey useful information for gradient descent. (b) Gradients at = given by
positive-perturbing and negative-perturbing finite difference estimators. (c) Piecewise-
linear upper (green) and lower (brown) envelopes of f(z). (d) Gradients at x given
by slope of upper/lower envelopes. When applied to our model, f(z) is mAP, and the
horizontal axis corresponds to the score of a single window with respect to which the
partial derivative is being computed. (Color figure online)

Note that max-pooling layers are similarly non-differentiable, but good results
are achieved by simply propagating the gradient back to the maximal input
only. We could do similar for NMS: allow only the locally-maximal windows
propagate gradients back; however, this loses valuable information. For example,
if all detections overlapping some ground-truth object are suppressed, then there
should be a gradient signal favouring increasing the score of those windows (or
decreasing that of their suppressors). This does not occur if we naively copy
gradients back through to maximal windows. In contrast, we require a Jacobian-
like quantity for NMS that does capture this information.

We therefore develop general definitions for gradient-like quantities of
piecewise-constant functions in Sect. 4.3, and then describe how to apply them
efficiently to NMS and mAP in Sect. 4.4.

4.3 Pseudogradients of General Piecewise-Constant Functions

We consider how to define a general pseudo partial derivative (PPD) operation
for piecewise-constant functions, that can be used to define quantities analogous
to the gradient and the Jacobian. For any piecewise-constant function f(x) with
countably many discontinuities (steps), we denote the PPD with respect to z;
by 595 f. When the PPD is non-zero we need to move some non-infinitesimal
distance before any change in the function occurs (unlike a conventional partial
derivative). However when there is a change, it will be in the direction indicated
by the PPD, and in magnitude corresponding to the PPD (this is made more
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prec1be below) We then use our PPD to define an analogue to the gradient by
Vf= (811 free ~z ~f). Intuitively, this tells us locally what direction to move
so that the functlon will decrease, if we move some non-infinitesimal distance in
this direction. Similarly, for the Jacobian of vector-valued f, we have J” = 8% fi-
We now discuss two possible definitions for the PPD; these and the regular
partial derivative are illustrated in Fig.3 for a one—dimensional function, at a
point lying in a constant region between two steps.

Finite Difference Estimators. Most simply, we can apply a traditional single-
sided finite difference estimator, as used for computing numerical gradients of a
differentiable function. Here, a small, fixed perturbation dx is added to x, the
function evaluated at this point, and the resulting slope used to approximate the
gradient, by 500 f= W. The piecewise-constant functions we are inter-
ested in have finitely many steps, and so the probability of f being undefined at
the perturbed point is zero. However, the constant regions of our function vary
in size by several orders of magnitude, and so it is impossible to pre-select a suit-
able value for dz. Instead, we use an adaptive approach: given x, set éx to the
smallest value such that f(x+dz) # f(x), then compute 9, f as above (Fig. 3b).
Note that this method is single-sided: it only takes account of the change due
to perturbing z in one direction or the other. This is undesirable, as in general,
it delivers different results for each direction, perhaps yielding complementary
information. We address this issue by performing the same calculation indepen-
dently with positive then negative perturbations dz™ and dz~, and taking a
mean of the resulting pseudogradients. We refer to this mean pseudogradient as
SDE, for symmetric difference estimator. This approach has the disadvantage
that the magnitude of the gradient is sensitive to the exact location of x: if it is
nearer to a step, the gradient will be larger, yet a correspondingly larger change
to the network parameters may be undesirable.

Linear Envelope Estimators. An alternative approach to defining the PPD
is to fit a piecewise-linear upper or lower envelope to the steps of the piecewise-
constant function (Fig.3c). The PPD 9, f is then given by the slope of the
envelope segment at the point = (Fig. 3d). In practice, we take the average of the
gradients of the upper and lower envelopes. Unlike SDE, this estimator does not
become arbitrarily large as x approaches a step. If f has finitely many steps, then
for all points before the first step and after the last, both linear envelopes have
zero gradient; we find however that better results are achieved by using SDE in
these regions, but with an empirically-tuned lower-bound on dx. We refer to this
pseudogradient as MEE, for mean envelope estimator.

4.4 Application to mAP and NMS

To apply the above methods to mAP, we must compute the PPD of each class’
AP with respect to each window score independently, holding the other scores
constant. This raises two questions: (i) how to efficiently find the locations of
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the nearest step before and after a point, and (ii) how to efficiently evaluate the
loss around those locations. We solve these problems by noting that changes to
AP only occur when two scores change their relative ordering, and even then,
only in certain cases. Specifically, AP changes value only when a window counted
as a true-positive changes place with one counted as a false-positive. Also, the
effective precision at a given recall is the maximum precision at that or any
higher recall (Sect. 2.2 and Fig. 1). So we have further conditions, e.g. decreasing
the score of a false-positive only affects AP when it drops below that of a true-
positive at which precision is higher than any with even lower score. This effect
and other perturbations are illustrated in Fig.1 (blue and orange arrows).

lower scores _ higher scores
TTFTF TF TTFTFFETEF
XA X X
(@ (b)

Fig. 4. Efficient calculation of smallest perturbations to detection scores to cause a
step in AP. In each case the circled FP is currently being considered. (a) Iterating
detections in decreasing order of score, finding the smallest increase to each score that
causes a change in AP (higher for TPs, lower for FPs). Detections already considered
have an arrow showing where they are perturbed to; a cross indicates no increase to
that score affects AP. When considering the circled FP, the last-seen TP is shown by
the orange asterisk; perturbing the score of the circled detection just beyond (left) of
this is the minimal change to affect AP. (b) Similar but iterating in increasing order
of score, and hence calculating minimal decreases in score to affect AP. (Color figure
online)

Thus, for each class, we can find the nearest step before and after each point
by making two linear passes over the detections, in descending then ascending
order of score (Fig.4). Assuming we have computed AP as described in Sect. 2.2,
we know whether each detection is a true- or false-positive, and can keep track of
the last-seen detection of each kind. In the descending pass, for each detection,
we find the smallest increase to its score that would result in a change to AP, thus
giving the location of the nearest step on the positive side. This score increase
is that which moves it an infinitesimal amount higher than the score of the last-
seen window of the other kind (true-positive vs. false-positive), subject to the
additional conditions mentioned above. Similarly, in the ascending pass, we can
find the required decreases in scores that would cause a change in AP. Once the
step locations have been found, the new AP values resulting from perturbing the
scores accordingly can be calculated by updating the relevant part of the PR
curve, and then computing its area as normal. Given the step locations and AP
values, it is then straightforward to use the methods of Sect. 4.3 to compute the
SDE or MEE.
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(a) (b)

Fig.5. Transitivity approximations for NMS. Dashed black box is a ground-truth
object; coloured boxes are scored windows, red > green > blue. (a) Red overlaps green
sufficiently for NMS inhibition, and green overlaps blue similarly, but red does not
overlap enough with blue. However, whether red is retained indirectly affects whether
blue is retained, as if red suppresses green, then green does not suppress blue. In our
approximation, this long-distance interaction between red and blue is ignored; however
the two local interactions (red-green and green-blue) are included. (b) Red and blue
overlap each other sufficiently for NMS inhibition; given that red suppresses blue, our
approximation assumes that blue overlaps the same ground-truth instance as red (if
any). (Color figure online)

Incorporating NMS. We must also account for NMS when propagating gra-
dients back. The PPDs of NMS can be used to define a Jacobian as described in
Sect. 4.3, which may then be composed with the pseudogradient of mAP to define
the gradient of mAP with respect to the pre-NMS scores. However, subject to a
small approximation, it is both easier and more efficient to consider NMS simul-
taneously with AP when determining step locations and the resultant changes
to the loss. Specifically, we introduce two transitivity approximations (Fig.5):
(i) we do not attempt to model cascaded long-distance interactions between
windows through multiple steps of NMS; (ii) we assume in certain cases that
windows suppressed by some detection overlap exactly the same ground-truth
instances as the detection itself. Under these approximations, it is possible to
compute the PPDs with respect to pre-NMS scores in linear time in the num-
ber of windows. This is achieved by: (i) adding gradient contributions due to
windows suppressed by a true-positive or false-positive detection at the same
time as that detection, as these suppressed windows need to have their scores
perturbed to the same point as their suppressor did to cause a change in AP; (ii)
including a third pass that adds gradient contributions from suppressed windows
overlapping ground-truth instances that were missed entirely (i.e. no detection
covers them); (iii) also adding gradient contributions from the detections that
caused the suppressed-but-overlapping windows of (ii) to be suppressed.

4.5 Training Protocol

In order to train our model successfully, we make various changes to the training
protocol used for Fast R-CNN in [1]. The impact of each of these changes is
given in Sect. 5.
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Minibatch Composition. We use larger minibatches than [1], as (i) object
detection mAP has a much higher batch-to-batch variance than simple window
classification accuracy, and (ii) including more windows increases the density
of the gradient signal, as there are likely to be more false positives which score
higher than some true positive (and vice versa). We also find that performance is
improved by using proportionally fewer foreground windows (those overlapping
a ground-truth instance as opposed to background) in each training minibatch.
While Fast R-CNN uses 25% foreground windows, we use 5%, which roughly
corresponds to the distribution of windows seen at test time, when 5% of all
selective search proposals overlap a ground-truth instance.

Regularisation. Using our method, we found empirically that scores are prone
to grow very large after several hundred iterations of training. This is effectively
mitigated by introducing a regulariser on the window scores. We find that an
L4 regulariser with very small weight performs best, as it gives greater free-
dom to smaller-magnitude scores while imposing a relatively hard constraint on
magnitude, compared to the more common L1/12 regularisation.

Log-Space. We find it is beneficial to follow gradients of log(mAP + ¢€) instead
of mAP itself, for some small, fixed constant e. Early in training when mAP is
low, scores of true-positive windows are uniformly distributed amongst those of
false-positive windows, and so an increase in the score of a true-positive often
yields only a very small gain in mAP. Using log(mAP + ¢) instead amplifies the
effect of these changes, so training quickly escapes from the initial very low mAP.

Gradient Clipping. We find that numerical behaviour is improved (partic-
ularly at high learning rates) by clipping elements of the gradient to a fixed
threshold.

5 Experiments

We now evaluate the performance of our approach on two datasets: PASCAL
VOC 2007 and 2012 [16]. Both datasets have 20 object classes; for VOC 2007,
we train on the trainval subset (5011 images) and test on the test subset (4952
images); for VOC 2012, we train on the train subset (5717 images) and test on
the validation subset (5823 images). We also give results training on the union
of VOC 2007 trainval and VOC 2012 trainval (total 16551 images), and testing
on VOC 2007 test.

We compare our method to two others: (i) Fast R-CNN trained with the
standard NLL loss for window classification, as described in [1] (bounding box
regression is disabled, to give a fair comparison with our method); and (ii) [19],
which also trains an R-CNN-like model for AP, but with a separate model for
each class, no NMS at training time, and with a different way to compute para-
meter gradients. This is the closest work in spirit to ours.
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Settings. We use Fast R-CNN as described in [1], built upon AlexNet [5] or
VGG16 [6], with weights initialised on ILSVRC 2012 classification [21]. We
then remove the softmax layers at both training and test time, as described
in Sect.4.1, and replace the training loss layer with our NMS layer and mAP
loss.

Incorporating the techniques described in Sect. 4.5, the overall loss we min-
imise by SGD is L = —log {3_, AP(NMS(s.))/K} + XY, |s|*, where s, are
the window scores for class ¢, K is the total number of classes, and b indexes
over windows.

The AP calculation during training is always matched to that used for evalu-
ation. When testing on VOC 2007, we train using the VOC 2007 approximation
to AP (Sect.2.2); when testing on VOC 2012, we train using the true AP. In
order to compute pseudogradients for training, we try both SDE and MEE and
compare their performance (Sect.4.3). As our method works best with large
minibatches, for the VGG16 experiments, we clamp the maximum image dimen-
sion to 600 pixels, to conserve GPU memory (this does not have a significant
impact on the baseline performance).

Table 1. Performance of our method measured by mAP on VOC 2007 test set, with
different pseudogradients (MEE vs SDE), network architectures (AlexNet vs VGG16),
and training sets (VOC 2007 trainval vs union of VOC 2007 trainval and VOC 2012
trainval). We also give results for Fast R-CNN trained using a traditional softmax loss,
without bounding box regression.

Trained on... | 2007 only 2007 + 2012
AlexNet | VGG16 | AlexNet | VGG16
Ours, MEE |51.6 58.9 54.9 62.5
Ours, SDE  |51.3 60.7 54.8 62.3
Fast R-CNN | 52.0 62.4 53.8 63.5

Main Results on VOC 2007. Table 1 shows how our methods compare with
Fast R-CNN, testing on the PASCAL VOC 2007 dataset. Overall, our method
achieves comparable performance to Fast R-CNN. The results also show that
using a larger training set (union of VOC 2007 and 2012 trainval subsets)
increases performance by up to 3.6% mAP, compared to training from VOC
2007 trainval alone. This effect is significantly stronger for our method than for
Fast R-CNN: for AlexNet, we gain 3.3% mAP compared with 1.8% for Fast
R-CNN; for VGG16, w