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Preface

Welcome to the 2016 edition of the Asian Conference on Computer Vision in Taipei.
ACCV 2016 received a total number of 590 submissions, of which 479 papers went
through a review process after excluding papers rejected without review because of
violation of the ACCV submission guidelines or being withdrawn before review. The
papers were submitted from diverse regions with 69% from Asia, 19% from Europe,
and 12% from North America.

The program chairs assembled a geographically diverse team of 39 area chairs who
handled nine to 15 papers each. Area chairs were selected to provide a broad range of
expertise, to balance junior and senior members, and to represent a variety of geographical
locations. Area chairs recommended reviewers for papers, and each paper received at least
three reviews from the 631 reviewers who participated in the process. Paper decisions
were finalized at an area chair meeting held in Taipei during August 13–14, 2016. At this
meeting, the area chairs worked in threes to reach collective decisions about acceptance,
and in panels of nine or 12 to decide on the oral/poster distinction. The total number of
papers accepted was 143 (an overall acceptance rate of 24%). Of these, 33 were selected
for oral presentations and 110 were selected for poster presentations.

We wish to thank all members of the local arrangements team for helping us run the
area chair meeting smoothly. We also wish to extend our immense gratitude to the area
chairs and reviewers for their generous participation in the process. The conference
would not have been possible without this huge voluntary investment of time and
effort. We acknowledge particularly the contribution of 29 reviewers designated as
“Outstanding Reviewers” who were nominated by the area chairs and program chairs
for having provided a large number of helpful, high-quality reviews. Last but not the
least, we would like to show our deepest gratitude to all of the emergency reviewers
who kindly responded to our last-minute request and provided thorough reviews for
papers with missing reviews. Finally, we wish all the attendees a highly simulating,
informative, and enjoyable conference.

January 2017 Shang-Hong Lai
Vincent Lepetit

Ko Nishino
Yoichi Sato
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Divide and Conquer: Efficient Density-Based
Tracking of 3D Sensors in Manhattan Worlds

Yi Zhou1,2(B), Laurent Kneip1,2, Cristian Rodriguez1,2, and Hongdong Li1,2

1 Research School of Engineering, The Australian National University,
Canberra, Australia

{yi.zhou,laurent.kneip,cristian.rodriguez,hongdong.li}@anu.edu.au
2 Australian Centre for Robotic Vision, Canberra, Australia

Abstract. 3D depth sensors such as LIDARs and RGB-D cameras have
become a popular choice for indoor localization and mapping. However,
due to the lack of direct frame-to-frame correspondences, the tracking
traditionally relies on the iterative closest point technique which does
not scale well with the number of points. In this paper, we build on top
of more recent and efficient density distribution alignment methods, and
notably push the idea towards a highly efficient and reliable solution
for full 6DoF motion estimation with only depth information. We pro-
pose a divide-and-conquer technique during which the estimation of the
rotation and the three degrees of freedom of the translation are all decou-
pled from one another. The rotation is estimated absolutely and drift-
free by exploiting the orthogonal structure in man-made environments.
The underlying algorithm is an efficient extension of the mean-shift par-
adigm to manifold-constrained multiple-mode tracking. Dedicated pro-
jections subsequently enable the estimation of the translation through
three simple 1D density alignment steps that can be executed in paral-
lel. An extensive evaluation on both simulated and publicly available real
datasets comparing several existing methods demonstrates outstanding
performance at low computational cost.

1 Introduction

3D depth sensors are a powerful alternative to cameras when it comes to auto-
mated localization and mapping. They perform especially well in man-made
indoor environments, which are often composed of homogeneously colored pla-
nar pieces, and thus provide sufficient well-defined 3D structures for depth
sensors, but insufficient texture for a reliable application of classical image-
based localization techniques. Further advantages of active sensing are given
by absolute (metric) scale operation (and therefore absence of scale drift) and
resilience against illumination or appearance changes in the environment, ulti-
mately even permitting operation in complete darkness. Depth sensors are an

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-54193-8 1) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-54193-8 1
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4 Y. Zhou et al.

engineering answer to the inverse problem of structure-from-motion, and ubiq-
uitous success is demonstrated by numerous successful applications in robot-
ics [1,2], autonomous driving (e.g. Google Chauffeur), and—more recently—
consumer electronics (e.g. Google Tango, Meta Glass).

Depth sensors produce point cloud measurements. The fundamental problem
behind incremental motion estimation with depth sensors therefore is the reg-
istration of two 3D point sets A and B. The most popular technique by far is
given by the Iterative Closest Point (ICP) method [3]. The basic idea is straight-
forward: We find approximate correspondences between pairs of points between
A and B by simply associating the spatially nearest neighbor of set B to each
point of set A. We then minimize the sum of squared distances over a euclid-
ean transformation in closed form. We finally iterate over these two steps until
convergence. The complexity of the algorithm is an immediate consequence of
the need to find the closest point for each point in each iteration. Even the
fastest implementations [4,5] therefore fail to deliver real-time performance on
CPU as soon as we consider modern sensors returning dense depth images at
VGA resolution. Distance-transform based ICP variants such as the ones used
in KinectFusion [6] and Kintinuous [7] achieve real-time performance, however
only by leveraging the power of a GPU.

A more efficient alternative registration principle transforms the data into
lower dimensional, spatial density distribution functions [8]. The general advan-
tage of density alignment based methods is that they do no longer depend on
the establishment of one-to-one or even weighted, fuzzy one-to-many point cor-
respondences [9]. Our work lifts this concept to a general, real-time motion esti-
mation framework for 3D sensors. The key of our approach consists of exploiting
the structure of man-made environments, which often contain sets of orthogo-
nal planar pieces. We furthermore rely on efficient dense surface normal vector
computation in order to estimate the rotation independently of the translation.
As we will show, the exploitation of this prior furthermore allows us to split up
the translational alignment of the density distribution functions into three inde-
pendent steps, namely one along each direction in the corresponding cartesian
coordinate frame.

In summary, we present a highly efficient motion estimation framework for
popular 3D sensors such as the Microsoft Kinect, based on alignment of density
distribution functions. Our contributions are listed as follows:

– Efficient, decoupled estimation of camera rotation using mean-shift for multi-
mode tracking in surface normal vector distributions.

– Estimation of absolute rotation by exploiting the properties of Manhattan
Worlds, thus resulting in manifold-constrained multi-mode tracking.

– Efficient decoupled estimation of individual translational degrees of freedom
through 1D kernel density estimates.

– Integration into a real-time framework able to process dense depth images with
VGA resolution at more than 50 Hz on a laptop with only CPU resources. The
result is an attractive 6 DoF tracker for autonomous mobile systems, which
often have limited computational resources or energy supply.
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We conclude the introduction by reviewing related work. Section 2 then
introduces our main idea for motion estimation in Manhattan Worlds based on
3D sensors. The decoupled estimation of rotation and translation are presented
in Sects. 3 and 4, respectively. Section 5 finally presents our extensive experi-
mental evaluation on both simulated and real data. We test and evaluate our
algorithm against existing alternatives on publicly available datasets, showcasing
outstanding performance at the lowest computational cost.

Related Work: 3D Point set registration is a traditional problem that has been
investigated extensively in the computer vision community. We are limiting the
discussion to methods that process mainly rigid, geometric information. The
most commonly used method is given by the ICP algorithm [3], which performs
registration through iterative minimization of the SSD distance between spatial
neighbors in two point sets. The costly repetitive derivation of point-to-point
correspondences can be circumvented by representing and aligning point clouds
using density distribution functions. The idea goes back to [10,11], who repre-
sent point clouds as explicit Gaussian Mixture Models (GMM) or implicit Kernel
Density Estimates (KDE), and then find the relative transformation (not nec-
essarily Euclidean) by aligning those density distributions. [8] summarizes the
idea of using GMMs for finding the aligning transformation, and notably derives
a closed-form expression for computing the L2 distance between two GMMs.
Yet another alternative which avoids the establishment of point-to-point corre-
spondences is given by [12], which utilizes a distance transformation in order
to efficiently and robustly compute the cost of an aligning transformation. The
distance transformation itself, however, is again computationally intensive.

Classical ICP or even density alignment based methods are prone to local
minima as soon as the displacement is too large. In order to tackle situations
of large view-point changes, [13] investigated globally optimal solutions to the
point set registration problem. This method is however inefficient and thus not
suited for real-time applications, where the frame-to-frame displacement anyway
remains small enough for a successful application of local methods.

From a more modern perspective, the ICP algorithm and its close derivatives
[4–7] still represent the algorithm of choice for real-time LIDAR tracking. The
upcoming of RGB-D cameras has however led to a new generation of 2D-3D
registration algorithms that exercise a hybrid use of both depth and RGB infor-
mation. [14] for instance uses the depth information along with the optimized
relative transformation to warp the image from one frame to the next, thus per-
mitting direct and dense photometric error minimization. [15–18] apply a similar
idea to RGB camera tracking. More recently, [19] even applied ICP and distance
transforms to semi-dense 2D-3D registration.

The special structure of man-made environments can be exploited to sim-
plify or even robustify the formulation of motion estimation with exteroceptive
sensors. [20,21] introduce planar surfaces into the mapper which are often con-
tained in our man-made environments. [22] combines point and plane features
towards fast and accurate 3D registration. In our work, we additionally exploit
the fact that indoor environments such as corridors frequently contain orthogonal
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structure in the surface arrangement. [23] coined the term Manhattan World
(MW) to denote such an environment, and they estimated the camera orienta-
tion through Bayesian vanishing point estimation in a single RGB image. [24]
presents a video compass using a similar idea. Tracking the Manhattan Frame
(MF) can be regarded as absolute orientation estimation, and thus leads to sig-
nificant reduction or even complete elimination of the rotational drift. Silberman
et al. [25] improve VP-based MW orientation estimation by introducing depth
and surface normal information obtained from 3D sensors. More recently, [26]
proposes the inference of an explicit probabilistic model to describe the world
as a mixture of Manhattan frames. They employ an adaptive Markov-Chain
Monte-Carlo sampling algorithm with Metropolis-Hasting split/merge moves to
identify von-Mises-Fisher distributions of the surface normal vectors. In [27],
they adapt the idea to a more computationally friendly approach for real-time
tracking of a single, dominant MF. Our work is closely related, except that our
mean-shift tracking scheme [28] is simpler and more computationally efficient
than the MAP inference scheme presented in [27], which depends on approxi-
mations using the Karcher mean in order to achieve real-time performance. We
furthermore extend the idea to full 6DoF motion estimation.

2 Overview of the Proposed Algorithm

Our method is summarized in Fig. 1, and consists of three main steps. Note again
that we use only depth information:

– We first start by extracting surface normal vectors ni from the measured
point clouds, which later allows us to compute the orientation of the sen-
sor independently of the translation. Our method is a hyper-threaded CPU
implementation of the approach presented in [29], which can efficiently return

Fig. 1. Overview of the proposed, decoupled motion estimation framework for 3D sen-
sors in Manhattan World.
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normal vectors for every pixel in a dense depth image. In order to get smooth
and regularized surface normal vectors, the depth map is pre-processed by a
smoothing guided filter [30].

– We then rely on the assumption that there is a dominant MF in the environ-
ment. This allows us to simply track a number of modes in the density distri-
bution of the surface normal vectors, which can be done in a non-parametric
way by employing the mean shift algorithm on the unit sphere. It prevents
us from having to identify the parameters of a complete explicit model of
the density distribution function. We present a manifold-constrained mean-
shift algorithm that takes the orthogonality prior into account. Note that the
optimization of the rotation is not a classical registration step, but a simple
tracking procedure that uses information of a single frame only to produce a
drift-free estimate of the absolute orientation.

– By knowing the absolute orientation in each frame, we can easily unrotate
the point clouds of a frame pair and assume that the transformation that
separates them is a pure translation. A further benefit is that the principal
directions of a Gaussian Mixture Model of the point cloud can be constrained
to align with the basis axes. In other words, the covariance matrices become
diagonal by which the purely translational alignment cost can effectively be
split up into three independent terms, namely one for each dimension. We
are therefore allowed to simply solve for each translational degree of freedom
independently. We notably do so by extracting kernel density distributions
of the point clouds projected onto the basis axes, and by performing three
simple 1D alignments. Again note that—due to the unrotation—the obtained
relative displacement is immediately expressed in the world frame.

We will in the following explain the details of the rotation and translation
alignment.

3 Absolute Orientation Estimation Based on
Manifold-Constrained Mean-Shift Tracking

We estimate the absolute orientation by tracking a dominant MF in the surface
normal vector distribution of each frame. We will start by introducing the mean-
shift tracking scheme that operates under the assumption that a sufficiently close
initialization point is known. We then conclude by explaining the initialization
in the very first frame, which builds on top of our mean-shift extension.

3.1 Basic Idea

For structures that obey the MW assumption, the surface normal vectors ni

have an organized distribution on the unit sphere S
2, which can be exploited for

recognizing the MW orientation. It is reasonable to assume that the unit vectors
ni are samples of a probability density function, as they are more likely to be
distributed around the basis axes of the MW (in both directions). The process of
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finding the dominant axes is therefore equivalent to mode seeking in this density
distribution (i.e. finding local maxima in the density distribution function). The
modes are additionally constrained to be orthogonal with respect to each other.
We therefore express the MF by a proper 3D rotation matrix R ∈ SO(3) of which
each column rj captures the direction of one of the dominant axes of the MF.
Special care however needs to be taken in order to deal with the non-uniqueness
of the representation, as each rj could in principle be replaced by its negative
(although we ensure that R always remains a right-handed matrix).

A popular, fast, and notably non-parametric method to seek modes is given
by the mean shift algorithm [31]. Given an approximate location for a mode,
the algorithm applies local Kernel Density Estimation (KDE) to iteratively take
steps in the direction of increasing density. We apply this idea to our unit normal
vectors on the manifold S

2 using a Gaussian kernel over conic section windows
of the unit sphere. The result is optimal under the assumption that the angles
between the normal vectors and their corresponding mode centre have a Gaussian
distribution. We independently compute one mean shift vector for each basis
vector rj , which potentially results in a non-orthogonal updated MF R̂. We
therefore finish each overall iteration by reprojecting R̂ onto the nearest R ∈
SO(3). The following explains the update of each mode within a single mean-shift
iteration, as well as the projection back onto SO(3).

3.2 Mean Shift on the Unit Sphere

The core of our method is a single mean shift iteration for a dominant axis given
a set of normal vectors on S

2. It works as follows:

– We start by finding all normal vectors that are within a neighbourhood of the
considered centre rj . The extent of this neighbourhood is notably defined by
the kernel-width of our KDE. In our case, the window is a conic section of the
unit sphere and the apex angle of the cone θwindow defines the size of the local
window. Relevant normal vectors for mode j need to lie inside the respective
cone, and thus satisfy the condition

‖ni × rj‖ < sin(
θwindow

2
). (1)

Let us define the index ij which iterates through all ni that fulfill the above
condition. Note that—if choosing θwindow < π

2—every ni contributes to at
most one mode.

– We then project all contributing nij
into the tangential plane at rj in order

to compute a mean shift. Let

Q =
[
rmod(j+1,3) rmod(j+2,3) rmod(j+3,3)

]
. (2)

Then
n′

ij
= QT nij

(3)
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represents the normal vector rotated into the MF, with a cyclic permutation
of the coordinates such that the last coordinate is along the direction of axis j.
In order for the distances in the tangential plane to represent proper geodesics
on S

2 (or equivalently angular deviations), we apply the Riemann logarithmic
map. The rescaled coordinates in the tangential plane are given by

m′
ij

=
sin−1(λ) sign(n′

ij ,z)

λ

[
n′

ij ,x

n′
ij ,y

]
, (4)

where λ =
√

n′2
ij ,x + n′2

ij ,y.

Note that this projection has the advantage of correctly projecting normal
vectors from either direction into the same tangential plane.

– We compute the mean shift in the tangential plane

s′
j =

∑
ij

e−c‖m′
ij

‖2

m′
ij

∑
ij

e−c‖m′
ij

‖2 . (5)

where c is a design parameter that defines the width of the kernel.
– To conclude, we transform the mean shift back onto the unit sphere using the

Riemann exponential map

sj =
[
tan(‖s′

j‖)
‖s′

j‖ s′T
j 1

]T

, (6)

where [·] returns the input 3-vector divided by its norm.
– The updated direction r̂j is finally obtained by reapplying the current rotation

with permuted axes
r̂j = Qsj . (7)

3.3 Maintaining Orthogonality

After computing a mean shift for each mode rj , we effectively obtain an expres-
sion for the updated “rotation matrix”

R̂ =
[
r̂0 r̂1 r̂2

]
. (8)

This update may however violate the orthogonality constraint on our rotation
matrix. We easily circumvent this problem by re-projecting R̂ onto the closest
matrix on SO(3) under the Frobenius norm. Each column of R̂ is re-weighted
by a factor λi which describes how certain the observation of a direction is. In
order to determine the weighting factors, we introduce a non-parametric variance
approximation by utilizing a double parzen-widow-based KDE. The method is
detailed in the supplemental material. The updated rotation matrix is finally
given by

R = UVT , where (9)
[U,D,V] = SVD(

[
λ0r̂0 λ1r̂1 λ2r̂2

]
). (10)
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Fig. 2. Illustration of our cascaded manifold-constrained mean-shift implementation.
We first compute updates sj for each mode on S

2, which brings us from the black to the
blue modes. The blue modes however do no longer represent a point on the underlying
manifold SO(3). We find the nearest rotation through a projection onto the manifold
(green arrow), thus returning the red modes which are closest and at the same time
fulfill the orthogonality constraint. (Color figure online)

As illustrated in Fig. 2, our method thus represents a double, cascaded
manifold-constrained mean-shift extension, where the update of each mode is
enforced to remain on the S

2 manifold, and the combination of all three modes
is each time enforced to remain an element on the SO(3) manifold. In other
words, in each iteration we compute the SO(3)-consistent update that is closest
to the individual mean-shift updates.

3.4 Initialization in the First Frame

We use mean-shift clustering to initialize the algorithm, and thus build on top of
our MF tracking scheme. The procedure is summarized in Fig. 3. We simply run
the MF tracking procedure for 100 times, each time starting from a random initial
rotation. This returns a redundant set of candidate MFs, within which we need
to identify the most dominant cluster in order to complete the initialization.
In fact, typically only a very small number of trials will not converge to the
dominant MF if there is only one MF in the observed scene. However, the MF
estimates are not directly comparable since one and the same MF may indeed
be found or represented by any permutation or negation of individual basis
vectors, as long as the result remains a right-handed matrix. In fact, there are 24
possible representations for one and the same MF. In order to render the results
comparable and identify the dominant MF cluster, we convert the matrices into
a canonical form based on a set of simple rules. For instance, the number of
possible representations can already be reduced to 4 by simply requiring the basis
vector with the potentially highest z-coordinate to be the one corresponding
to the z-axis. To finally identify the dominant cluster, we simply group them
based on a simple distance metric between rotation matrices, as well as a fixed
threshold.
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Fig. 3. The mechanism of the initial Manhattan frame seeking. The first figure shows
a random initial MF. As indicated by one example, each dominant direction is refined
by performing mean-shifts on the corresponding tangential plane. The second figure
shows the redundant result obtained after full MF fitting from 100 random starts. The
redundancy of the estimated rotation matrices R is removed by first converting them
into a canonical form, and then performing histogram-based non-maximum suppres-
sion. The final result is shown in the fourth figure. For the sake of a clear visualization,
the illustrated example is contaminated by a rather significant amount of uniformly
distributed noise. Note that the proposed seeking strategy is even able to find multiple
MF s in the environment, and thus come up with a mixture of Manhattan frames.

4 Translation Estimation Through Separated 1-D
Alignments

In this section, we show that by taking advantage of the MW properties, the
translation in each dominant direction can be estimated separately. We then
discuss the 1D alignments which rely on kernel density distribution functions.
A convergence analysis is given in Sect. 2 of the supplementary material.

4.1 Independence of the Three Translational Degrees of Freedom

Although we are not using an explicit model for representing the density dis-
tributions, let us assume for a moment that it is given by a simple Gaussian
(i.e. a toy GMM) to see the implications of a Manhattan world and a known
absolute orientation of the Manhattan frame. A Gaussian in 3D with mean μ
and covariance Σ is simply given by

φ(x|μ,Σ) =
exp[−0.5(x − μ)T Σ−1(x − μ)]

√
(2π)3|det(Σ)| . (11)
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There are two Gaussians in two frames and—using the known absolute orienta-
tions to unrotate the point clouds—they are separated by a pure translation t.
By adding t to the mean of the Gaussian in the second frame, the kernel corre-
lation between the two Gaussians can be calculated by

D =
∫

φ(x|μ1,Σ1)φ(x|(μ2 + t),Σ2)dx

= φ(0|μ1 − μ2 − t,Σ1 + Σ2). (12)

We now simplify the case by assuming that the unrotated point clouds can be
expressed by a 3D Gaussian distribution with a diagonal covariance matrix. This
is reasonable since the unrotated point clouds will indeed contain sets of points
that are parallel to the basis axes. Let Σd = Σ1 +Σ2 = diag(σdx, σdy, σdz), and
μd = μ1 − μ2. Then the kernel correlation becomes

D =
exp[−0.5( (tx−μdx)

2

σdx
+ (ty−μdy)

2

σdy
+ (tz−μdz)

2

σdz
)]

√
(2π)3σdxσdyσdz

= k · e
(tx−μdx)2

−2σdx e
(ty−μdy)2

−2σdy e
(tz−μdz)2

−2σdz . (13)

The goal of the alignment in this toy example is to find t such that D is maxi-
mized. It is clear that the above expression involves the product of three inde-
pendent and positive elements, which means that maximizing each one inde-
pendently will also maximize the overall distance between the Gaussians. Note
that—in practice—the shape of the measured distributions is also influenced by
occlusions under motion. However, we confirmed through our experiments that
this has a neglible influence on the accuracy of the translation estimation in
frame-to-frame motion estimation, as the location of the peaks in the distribu-
tion typically remains very stable.

4.2 Alignment of Kernel Density Distributions

Our translation alignment procedure relies on implicit kernel density distribu-
tion functions. Assuming that the absolute orientation with respect to the MF is
given, each degree of freedom can be solved independently, as in our toy GMM-
based example. We therefore compensate for the absolute rotation of the point
clouds, and project them onto each basis axis to obtain three independent 1D
point sets. Inspired by popular point-set registration works, we then express the
1D point sets via kernel density distribution functions. We sample the function
at regular intervals between the minimal and the maximal value. A Gaussian
kernel with constant width is used to extract the density at each sampling posi-
tion. Finally, the alignment between pairs of discretely sampled 1D signals seeks
the 1D shift that minimizes the correlation distance between the two signals. It
is worth to note that minimizing the correlation distance is equivalent to max-
imizing the kernel correlation as discussed above. The correlation distance for
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each pair of 1-D discrete signals is defined as

F =
n∑

i=1

(f(xi + t) − g(xi))
2
, xi ∈ X, (14)

where X denotes a set of sampling positions for which a density is extracted using
a Gaussian kernel. The functions f and g record the density at discrete sampling
positions. The correlation distance is the sum over the squared differences at
each sampling position. t is continuous, and we therefore obtain density values
in between the sampled positions by employing linear interpolation. Note that
the procedure has linear complexity in the number of points. The convergence
analysis of the 1-D alignment is detailed in the supplemental material.

5 Experimental Validation

This section evaluates our algorithm. We start by discussing parameter choices.
We then compare our algorithm against two other established state-of-the-art
motion estimation solutions on several publicly available datasets. We further-
more provide a reconstruction of a building-scale scene, and conclude by dis-
cussing the limitations and failure cases of our method.

Further simulation experiments and analyses are provided in the supplemen-
tal material. It contains (1) an evaluation of the robustness of our manifold-
constraint mean-shift based MF-seeking strategy and (2) the benefit of aligning
the point density distributions along the main axes of the MF.

5.1 Parameter Configuration

In the initial MF seeking (i.e. the initialization of the absolute rotation from
scratch), the total number of random starts Ntrial is set to 100. The apex angle
is set to 90◦ during the initialization and 20◦ during later tracking. This reduction
of the cone apex angle is justified by the assumption that the orientation of the
MF does not change too much under smooth motion. Each iterative mean-shift
procedure terminates once the angle of the update rotation within one iteration
falls below a threshold angle θConverge, which we set to 1◦. The factor c in Eq. (5)
is set to 20. Mean-shift updates are furthermore required to have a minimum
number Nmin of surface normal vectors within the dual-cone. The value of Nmin

depends on the resolution of the input depth map. For low resolution sensors
(e.g. Kinect v.1, 160× 120), Nmin = 30. For high resolution sensors (Kinect v.2,
640 × 480), Nmin = 100.

The parameters for the translation estimation contain two parts. The first
part concerns the extraction of the density distributions. The sampling between
the minimum and maximum value along each basis axis is made in constant
intervals of δs = 0.01 m. The standard deviation σ of the Gaussian kernel for
the KDEs is set to 0.03 m. The second part concerns the actual minimization
of the correlation distance between each pair of 1D distributions. We simply
employ gradient descent with an initial step size of 0.001 m. The search range is
furthermore restricted to ±0.1 m.
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Table 1. Performance comparison on several indoor datasets.

Dataset DVO ICP Our method

êR êt ẽR ẽt êR êt ẽR ẽt êR êt ẽR ẽt

TUM 1 4.91 0.15 4.46 0.13 6.64 0.17 6.01 0.15 1.02 0.02 0.82 0.01

TUM 2 2.21 0.10 1.59 0.06 9.07 0.27 7.57 0.26 0.76 0.03 0.55 0.02

TUM 3 10.90 0.20 3.89 0.07 12.80 0.17 10.17 0.16 0.94 0.04 0.70 0.02

TUM 4 0.57 0.02 0.47 0.02 8.66 0.29 7.17 0.27 1.01 0.03 0.80 0.03

TUM 5 0.94 0.02 0.74 0.02 16.80 0.24 14.19 0.22 1.12 0.04 0.87 0.02

IC 1 10.91 1.36 9.37 0.88 6.78 0.15 5.42 0.10 1.55 0.13 1.12 0.09

IC 2 6.97 0.70 6.58 0.45 6.31 0.16 5.28 0.10 1.53 0.10 1.07 0.08

5.2 Evaluation on Real Data

We compare the performance of our method against two state-of-the-art, open-
source motion estimation implementations for 3D sensors, namely DVO [14] and
KinectFusion’s ICP [6,7]. DVO uses both RGB images and depth maps while
ICP and our algorithm use only depth information. We evaluate the methods on
several recently published and challenging benchmark datasets from the TUM
RGB-D [32] and IC-NUIM [33] series. The datasets we picked for evaluation
are listed below and the results are summarized in Table 1. The selection of the
datasets is based on the existence of sufficient MW structure in the observed
scenes.

– TUM 1, 2, 3, 4, 5: fr3 (cabinet, structure notexture/ texture far/ near)
– IC 1,2: Living Room kt3, Office Room kt3.

Note that for TUM 4, IC 1 and IC 2, our algorithm cannot process the
entire sequence due to algorithm limitations that are discussed in the following
section. However, in order to remain fair, we evaluate the performance of all
algorithms on the same segments of each sequence. A detailed result of the
TUM 1 dataset is shown in Fig. 4. We also evaluate each method using the tool
given by [32] and provide root-mean-square errors ê and median errors ẽ per
second for both rotation (degree) and translation (meter) estimation in Table 1.
The best performing method’s error is each time indicated in bold.

It can be seen that in most cases, once the MW assumption is sufficiently
met, our result provides very low drift in both rotation and translation. It is
outperforming both ICP and DVO in most situations though DVO achieves
better performance once there is sufficient texture in the environment. On the
other hand, our method remains computationally efficient even on depth images
with VGA resolution, and processes frames at about 50 Hz on a CPU. While DVO
is real-time capable as well (about 30 Hz), ICP quickly drops in computational
efficiency as the number of points increases, and can only work in real-time with
the help of a powerful GPU.
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(a) RGB image. (b) Depth map.
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(c) 3D Trajectory.
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(f) ARE of ICP.

frame number
0 200 400 600 800 1000 1200

d
eg

-200

-150

-100

-50

0

50

100

150

200
Roll

GT
result
DVO
ICP

(g) Estimation of roll.

frame number
0 200 400 600 800 1000 1200

d
eg

-60

-40

-20

0

20

40

60

80
Pitch

GT
result
DVO
ICP

(h) Estimation of pitch.

frame number
0 200 400 600 800 1000 1200

d
eg

0

50

100

150

200

250

300

350

400
Yaw

GT
result
DVO
ICP

(i) Estimation of yaw.
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Fig. 4. Evaluation of our method on the TUM dataset cabinet and comparison to two
alternative odometry solutions (DVO and ICP). We provide the 3D trajectory, the
absolution rotation error (ARE), and the translational error in each degree of freedom
for each method. Our method (red curve) outperforms both DVO (blue curve) and ICP
(magenta curve) in terms of absolute drift in rotation and translation. Relative pose
errors can be found in Table 1. Note that only DVO uses RGB images. (Color figure
online)
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5.3 3D Reconstruction

In order to demonstrate that our algorithm can work in larger scale environments
such as corridors and open-space offices, we present a reconstruction result of
the TAMU RGB-D dataset (corridor A const) [34] in Fig. 5. The trajectory
is about 40 m long. Our algorithm robustly tracks the camera until only one
dominant direction of the MW can be observed. The reconstructed structures
(walls and ground, walls at the corridor corner) preserve orthogonality very well,
which demonstrates the good quality of the motion estimation. Note that only
depth information is used for the tracking. Color information is only used for
visualization purposes.

5.4 Limitations and Failure Cases

Fig. 5. Reconstruction of a
corridor scene.

The existence of a MW structure in the environ-
ment is key to the proposed method. Therefore, the
effectiveness of our work currently has the following
limitations:

– Only one mode of a MF is observed.
– If only two orthogonal planes are observed, the

tracking can continue. However, due to the loss
of structural information, the density distribu-
tion in the unobserved direction becomes very
homogeneous, and the estimation of the respec-
tive translation becomes inaccurate.

– In the case where two MFs are very close to each
other (which could happen in so-called Atlanta
environments), our mean-shift scheme may con-
verge in between the two modes, which leads
to inaccurate rotation estimation and thus also
potentially wrong translation estimation.

6 Discussion

We present an efficient alternative to the iterative closest point algorithm for
real-time tracking of modern depth cameras in Manhattan Worlds. We exploit
the common orthogonal structure of man-made environments in order to decou-
ple the estimation of the rotation and the three degrees of freedom of the trans-
lation. The derived camera orientation is absolute and thus free of long-term
drift, which in turn benefits the accuracy of the translation estimation as well.
We achieve not only competitive accuracy, but also superior computational effi-
ciency. Our method operates robustly in large-scale environments, even if the
Manhattan World assumption is not fully met. In summary, the presented frame-
work has high value in mobile robotics or industrial applications, where compu-
tational load or the lack of texture are major concerns. Code will be released as
open-source.
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Our future work consists of removing the restriction to pure Manhattan
worlds. By adding a real-time mode detection and removal module, we can
extend our work to the more general case of piece-wise planar environments.
Interestingly, the cascaded mean-shift strategy presented in this work will still be
applicable, the only difference being that the underlying manifold will no longer
be SO(3), but the manifold of all direction bundles with constant inscribed
angles.
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Abstract. In this paper, we propose a saliency detection model for
RGB-D images based on the contrasting features of colour and depth
with a generative mixture model. The depth feature map is extracted
based on superpixel contrast computation with spatial priors. We model
the depth saliency map by approximating the density of depth-based con-
trast features using a Gaussian distribution. Similar to the depth saliency
computation, the colour saliency map is computed using a Gaussian
distribution based on multi-scale contrasts in superpixels by exploiting
low-level cues. By assuming that colour- and depth-based contrast fea-
tures are conditionally independent, given the classes, a discriminative
mixed-membership naive Bayes (DMNB) model is used to calculate the
final saliency map from the depth saliency and colour saliency probabil-
ities by applying Bayes’ theorem. The Gaussian distribution parameter
can be estimated in the DMNB model by using a variational inference-
based expectation maximization algorithm. The experimental results on
a recent eye tracking database show that the proposed model performs
better than other existing models.

1 Introduction

Saliency detection is the problem of identifying the points that attract the visual
attention of human beings. Le Callet and Niebur introduced the concepts of overt
and covert visual attention and the concepts of bottom-up and top-down process-
ing [11]. Visual attention selectively processes important visual information by
filtering out less important information and is an important characteristic of
the human visual system (HVS) for visual information processing. Visual atten-
tion is one of the most important mechanisms that are deployed in the HVS
to cope with large amounts of visual information and reduce the complexity of
scene analysis. Visual attention models have been successfully applied in many
domains, including multimedia delivery, visual retargeting, quality assessment
of images and videos, medical imaging, and 3D image applications [11].

Borji and Itti provided an excellent overview of the current state-of-the-art
2D visual attention modelling and included a taxonomy of models (cognitive,
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 20–35, 2017.
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Bayesian, decision theoretic, information theoretical, graphical, spectral analysis,
pattern classification, and more) [3]. Many saliency measures have emerged that
simulate the HVS, which tends to find the most informative regions in 2D scenes
[4,13,18]. However, most saliency models disregard the fact that the HVS oper-
ates in 3D environments and these models can thus investigate only from 2D
images. Eye fixation data are captured while looking at 2D scenes, but depth
cues provide additional important information about content in the visual field
and therefore can also be considered relevant features for saliency detection. The
stereoscopic content carries important additional binocular cues for enhancing
human depth perception [5,10]. Today, with the development of 3D display tech-
nologies and devices, there are various emerging applications for 3D multimedia,
such as 3D video retargeting [16], 3D video quality assessment [9,19] and so forth.
Overall, the emerging demand for visual attention-based applications for 3D mul-
timedia has increased the need for computational saliency detection models for
3D multimedia content. In contrast to saliency detection for 2D images, the
depth factor must be considered when performing saliency detection for RGB-D
images. Therefore, two important challenges when designing 3D saliency mod-
els are how to estimate the saliency from depth cues and how to combine the
saliency from depth features with those of other 2D low-level features.

In this paper, we propose a new computational saliency detection model for
RGB-D images that considers both colour- and depth-based contrast features
with a generative mixture model. The main contributions of our approach consist
of two aspects: (1) to estimate saliency from depth cues, we propose the creation
of depth feature maps based on superpixel contrast computation with spatial
priors and model the depth saliency map by approximating the density of depth-
based contrast features using a Gaussian distribution, and (2) by assuming that
colour-based and depth-based features are conditionally independent given the
classes, the discriminative mixed-membership naive Bayes (DMNB) model is
used to calculate the final saliency map by applying Bayes’ theorem.

2 Related Work

As introduced in the Sect. 1, many computational models of visual attention
have been proposed for various 2D multimedia processing applications. However,
compared with the set of 2D visual attention models, only a few computational
models of 3D visual attention have been proposed [6–8,12,14,17,20]. These mod-
els all contain a stage in which 2D saliency features are extracted and used to
compute 2D saliency maps. However, depending on the way in which they use
depth information in terms of the development of computational models, these
models can be classified into three different categories:

(1) Depth-weighting models−This type of model adopts depth information to
weight a 2D saliency map to calculate the final saliency map for RGB-D
images with feature map fusion [6,17]. Fang et al. proposed a novel 3D
saliency detection framework based on colour, luminance, texture and depth
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contrast features, which designed a new fusion method to combine the
feature maps to obtain the final saliency map for RGB-D images [6]. In [17],
colour contrast features and depth contrast features are calculated to con-
struct an effective multi-feature fusion to generate saliency maps, and multi-
scale enhancement is performed on the saliency map to further improve the
detection precision focused on the 3D salient object detection. The models
in this category combine 2D features with a depth feature to calculate the
final saliency map, but they do not include the depth saliency map in their
computation processes.

(2) Depth-saliency models−This type of model combines depth saliency maps
and traditional 2D saliency maps simply to obtain saliency maps for RGB-D
images [8,12,14]. Ren et al. presented a two-stage 3D salient object detection
framework, which first integrates the contrast region with the background,
depth and orientation priors to achieve a saliency map and then recon-
structs the saliency map globally [14]. Peng et al. proved a simple fusion
framework that combines existing RGB-produced saliency with new depth-
induced saliency: the former one is estimated from existing RGB models
while the latter one is based on the multi-contextual contrast model [12].
Furthermore, Ju et al. proposed a novel saliency method that worked on
depth images based on anisotropic centre-surround difference [8]. The mod-
els in this category rely on the existence of “depth saliency maps.” Depth
features are extracted from the depth map to create additional feature maps,
which are then used to generate the depth saliency maps (DSM). These
depth saliency maps are finally combined with 2D saliency maps using a
saliency map pooling strategy to obtain a final 3D saliency map.

(3) Learning-based models−Instead of using a depth saliency map directly, this
type of model uses machine learning techniques to build a 3D saliency detec-
tion model for RGB-D images based on extracted 2D features and depth fea-
tures [7,20]. Inspired by the recent success of machine learning techniques
in building 2D saliency detection models, Fang et al. proposed a learning-
based model for RGB-D images using linear SVM [7]. Zhu et al. proposed
a learning-based approach for extracting saliency from RGB-D images, in
which discriminative features can be automatically selected by learning sev-
eral decision trees based on the ground truth, and those features are further
utilized to search the saliency regions via the predictions of the trees [20].

From the above description, the key to 3D saliency detection models is deter-
mining how to integrate the depth cues with traditional 2D low-level features. In
this paper, we propose a learning-based 3D saliency detection model with a gen-
erative mixture model that considers both colour- and depth-based contrast fea-
tures. Instead of simply combining a depth map with 2D saliency maps as in pre-
vious studies, we propose a computational saliency detection model for RGB-D
images based on the DMNB model [15]. Experimental results from a public eye
tracking database demonstrate the improved performance of the proposed model
over other strategies.
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3 The Proposed Approach

In this section, we introduce a method that integrates the colour saliency proba-
bility with the depth saliency probability computed from Gaussian distributions
based on multi-scale superpixel contrast features and yields a prediction of the
final 3D saliency map using the DMNB model within a Bayesian framework.
First, the input RGB-D images are represented by superpixels using multi-scale
segmentation. Then, we compute the colour and depth map using the weighted
summation and normalization of the colour- and depth-based contrast features,
respectively, at different scales. Second, the probability distributions of both the
colour and depth saliency are modelled using the Gaussian distribution based on
the colour and depth feature maps, respectively. The parameters of the Gaussian
distribution can be estimated in the DMNB model using a variational inference-
based expectation maximization (EM) algorithm. The general architecture of
the proposed framework is presented in Fig. 1.

Fig. 1. The flowchart of the proposed model. The framework of our model consists of
two stages: the training stage shown in the left part of the figure and the testing stage
shown in the right part of the figure. In this work, we perform experiments based on
the NLPR dataset in [12].
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3.1 Feature Extraction Using Multi-scale Superpixels

We introduce a colour-based contrast feature and a depth-based contrast feature
to capture the contrast information of salient regions with spatial priors based on
multi-scale superpixels, which are generated at various grid interval parameters
S, similar to simple linear iterative clustering (SLIC) [1]. We further impose a
spatial prior term on each of the contrast measures holistically, which constrains
the pixels that were rendered as salient to be compact as well as centred in the
image domain. This spatial prior can also be generalized to consider the spatial
distribution of different saliency cues such as the centre prior and background
prior [18]. We also observe that the background often presents local or global
appearance connectivity with each of four image boundaries. These two features
complement each other in detecting 3D saliency cues from different perspectives
and, when combined, yield the final 3D saliency value.

RGB-D Images Multi-scale Superpixel Segmentation. For an RGB-D
image pair, superpixels are segmented according to both colour and depth cues.
We notice that when applying the SLIC algorithm directly to the RGB image and
depth map, the segmentation result is unsatisfactory due to the lack of a mutual
context relationship. We redefine the distance measurement incorporating depth
as shown in Eq. 1:

Ds =
√

d2lab + ωdd2d +
m

S d2xy (1)

where dd =
√

(dj − di)2 denotes the depth distance weighted by ωd between pixel
i and j in the depth map, dlab and dxy are the original distance measurements
of colour and spatiality normalized with m

S in [1], and Ds is the final distance
between two pixels in the RGB-D image pair.

We obtain more accurate segmentation results as shown in Fig. 2 by con-
sidering the colour and depth cues simultaneously. The boundary between the
foreground and the background is segmented more accurately.

Fig. 2. Visual samples for superpixel segmentation of RGB-D images with S = 40.
(a) RGB image, (b) Depth image, (c) Colour-based segmentation, (d) Depth-based
segmentation, (e) Colour- and depth-based segmentation result on colour image and
(f) Colour- and depth-based segmentation result on depth image. (Color figure online)

Colour-Based Contrast Feature. An input image is oversegmented at L
scales, and the colour feature map is formulated as

f(pl
c) = ωl

cSCl
GMR (2)
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(a) RGB image (b) S=40 (c) S=20 (d) S=10 (e) fusion

(f) depth image (g) S=40 (h) S=20 (i) S=10 (j) fusion

Fig. 3. Visual samples of different colour and depth feature maps. Row 1: colour feature
maps of the NLPR dataset. Row 2: depth feature maps of the NLPR dataset.

where pl
c is a quantified histogram in the CIE Lab colour space for each superpixel

at any scale l, and SCl
GMR is the colour saliency map generated by graph-based

manifold ranking only with background cues similar to [18], in which the RGB
image is represented as a single-layer graph with surperpixels as nodes at any l
scale. In contrast to [18], the definition of the background priors is inspired by
the observation that the patches from the corners of images are more likely to
be background and contain considerable scene information that helps distinguish
salient objects. With multi-scale fusion, the colour feature map is constructed by
weighted summation of f(pl

c), where the weights are determined by
∑L

l=1 ωl
c = 1.

The final pixel-wise colour feature map is obtained by assigning the feature value
of each superpixel to every pixel belonging to it, as shown in the first row of Fig. 3.

Depth-Based Contrast Feature. Similar to the construction of the colour
feature maps, we formulate the depth feature maps based on multi-scale super-
pixels in the depth maps:

f(pl
d) = ωl

dSDl
GMR (3)

where pl
d is the depth value of the centroid calculated as the mean depth value

within the superpixel and SDl
GMR is the depth saliency map generated via

graph-based manifold ranking only with background cues. In this work, the
weight of the affinity matrix between two nodes in a depth map at any l scales
is defined by

ωl
ij = e− (dl

j
−dl

i
)2

σ2 (4)

where dl
j and dl

i denote the mean of the superpixel i and superpixel j cor-
responding to two nodes, respectively, and σ is a constant that controls the
strength of the weight in [18]. With multi-scale fusion, the depth feature map is
constructed by weighted summation of f(pl

d), where the weights are determined
by

∑L
l=1 ωl

d = 1. Visual samples for different depth feature maps are shown in
the second row of Fig. 3.
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3.2 Bayesian Framework for Saliency Detection

Let the binary random variable zs denote whether a point belongs to a salient
class. Given the observed colour-based contrast feature xc and the depth-based
contrast feature xd of that point, we formulate the saliency detection as a
Bayesian inference problem to estimate the posterior probability at each pixel
of the RGB-D image:

p(zs|xc,xd) =
p(zs,xc,xd)

p(xc,xd)
(5)

where p(zs|xc,xd) is shorthand for the probability of predicting whether a pixel
is salient, p(xc,xd) is the likelihood of the observed colour-based and depth-
based contrast features, and p(zs,xc,xd) is the joint probability of the latent
class and observed features, defined as p(zs,xc,xd) = p(zs)p(xc,xd|zs).

In this paper, the class-conditional mutual information (CMI) is used as a
measure of dependence between two features xc and xd, which can be defined
as I(xc,xd|zs) = H(xc|zs) + H(xd|zs) − H(xc,xd|zs), where H(xc|zs) is
the class-conditional entropy of xc. We employ a CMI threshold τ to dis-
cover feature dependencies, as shown in Fig. 4. For CMI between the colour-
based contrast feature and depth-based contrast feature less than τ , we assume
that xc and xd are conditionally independent given the classes zs, that is,
p(xc,xd|zs) = p(xc|zs)p(xd|zs). This entails the assumption that the distri-
bution of the colour-based contrast features does not change with the depth-
based contrast features. Thus, the pixel-wise saliency of the likelihood is given
by p(zs|xc,xd) ∝ p(zs)p(xc|zs)p(xd|zs).
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Fig. 4. Visual results for class-conditional mutual information between colour-based
contrast features and depth-based contrast features on two RGB-D image datasets.

3.3 Generative Model for Saliency Estimation

Given the graphical model of DMNB for saliency detection shown in Fig. 5, the
generative process for {x1:N , y} following the DMNB model can be described
as follows (Algorithm 1), where Dir() is shorthand for a Dirichlet distribution,
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Algorithm 1. Generative process for saliency detection following the DMNB
model
1: Input: α, η.
2: Choose a component proportion: θ ∼ Dir(θ|α).
3: For each feature:

choose a component zj ∼ Mult(zj |θ);
choose a feature value xj ∼ p(xj |zj , Ω).

4: Choose the label: y ∼ p(y|zj , η).

Fig. 5. Graphical models of DMNB for saliency estimation. y and x are the corre-
sponding observed states, and z is the hidden variable.

Mult() is shorthand for a Multinomial distribution, x1:N = (xc,xd), z1:N =
zs = (zc,zd), N is the number of features, and y is the label that indicates
whether the pixel is salient or not.

In this work, both the colour- and depth-based contrast features are assumed
to have been generated from a Gaussian distribution with a mean of {μjk, [j]N1 }
and a variance of {σ2

jk, [j]N1 }. The marginal distribution of (x1:N ,y) is

p(x1:N ,y|α,Ω, η) =
∫

p(θ|α)(
N∏

j=1

∑

zj

p(zj |θ)p(xj |zj , Ω)p(y|zj , η))dθ (6)

where θ is the prior distribution over K components, Ω = {(μjk, σ2
jk), [j]N1 , [k]K1 }

are the parameters for the distributions of N features respectively, p(xj |zj , Ω) �
N (xj |μjk, σ2

jk). In two-class classification, y is either 0 or 1 generated from
Bern(y|η). Because the DMNB model assumes a generative process for both
the labels and features, we use both X = {(xij), [i]M1 , [j]N1 } and Y = {yi, [i]M1 }
as a collection of M superpixels in trained images from the generative process to
estimate the parameters of the DMNB model such that the likelihood of observ-
ing (X ,Y) is maximized. In practice, we may find a proper K using the Dirichlet
process mixture model (DPMM) [2]. The DPMM thus provides a nonparametric
prior for the parameters of a mixture model that allows the number of mixture
components to grow as the training set grows, as shown in Fig. 6.

Due to the latent variables, the computation of the likelihood in Eq. 6 is
intractable. In this paper, we use a variational inference method, which alternates
between obtaining a tractable lower bound to the true log-likelihood and choos-
ing the model parameters to maximize the lower bound. By a direct application
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(b) DPMM clustering for NLPR

Fig. 6. Visual result for the number of components K in the DMNB model: generative
clusters vs DPMM clustering. We find K = 28 using DPMM on the NLPR dataset.

of Jensen’s inequality [15], the lower bound to log p(y,x1:N |α,Ω, η) is given by

log p(y,x1:N |α,Ω, η) ≥ Eq(log p(y,x1:N ,z1:N |α,Ω, η)) + H(q(z1:N , θ|γ, φ))
(7)

Noticing that x1:N and y are conditionally independent given z1:N , we use
a variational distribution:

q(z1:N , θ|γ, φ) = q(θ|γ)
N∏

j=1

q(zj |φ) (8)

where q(θ, γ) is a K-dimensional Dirichlet distribution for θ, q(zj |φ) is Discrete
distribution for zj . We use L to denote the lower bound:

L =Eq[log p(θ|α)] + Eq[log p(z1:N |θ)] + Eq[log p(x1:N |z1:N , γ)]
− Eq[log q(θ)] − Eq[log q(z1:N )] + Eq[log p(y|z1:N , η)] (9)

where Eq[log p(y|z1:N , η)] ≥ ∑K
k=1 φk(ηky − eηk

ξ ) − ( 1ξ + log ξ) and ξ > 0 is a
newly introduced variational parameter. Maximizing the lower-bound function
L(γk, φk, ξ;α,Ω, η) with respect to the variational parameters yields updated
equations for γk, φk and ξ as follows:

φk ∝ e
(Ψ(γk)−Ψ(

∑K
l=1 γl)+

1
N (ηkyi− eηk

ξ −∑N
j=1

(xij−μjk)2

2σ2
jk

))
(10)

γk = α + Nφk (11)

ξ = 1 +
∑K

k=1
φkeηk (12)

Variational parameters (γ∗, φ∗, ξ∗) from the inference step gives the optimal
lower bound to the log-likelihood of (xi,yi), and maximizing the aggregate lower
bound

∑M
i=1 L(γ∗, φ∗, ξ∗, α,Ω, η) over all data points with respect to α, Ω and
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Algorithm 2. Variational EM algorithm for DMNB
1: repeat
2: E-step: Given (αm−1, Ωm−1, ηm−1), for each feature value and label, find the opti-

mal variational parameters
(γm

i , φm
i , ξm

i ) = arg max L(γi, φi, ξi; α
m−1, Ωm−1, ηm−1).

Then, L(γm
i , φm

i , ξm
i ; α, Ω, η) gives a lower bound to log p(yi,x1:N |α, Ω, η).

3: M-step: Improved estimate of the model parameters (α, Ω, η) are obtained by
maximizing the aggregate lower bound:
(αm, Ωm, ηm) = arg max(α,Ω,η)

∑N
i=1 L(γm

i , φm
i , ξm

i ; α, Ω, η).
4: until

∑L(γm
i , φm

i , ξm
i ; αm, Ωm, ηm)−∑L(γm+1

i , φm+1
i , ξm+1

i ; αm+1, Ωm+1, ηm+1)
≤threshold

η, respectively, yields the estimated parameters. As for μ, σ and η, we have
μjk =

∑M
i=1 φikxij∑M

i=1 φik
, σjk =

∑M
i=1 φik(xij−μjk)

2
∑M

i=1 φik
, ηk = log(

∑M
i=1 φikyi
∑M

i=1
φik
ξi

).

Based on the variational inference and parameter estimation updates, it is
straightforward to construct a variant EM algorithm to estimate (α,Ω, η). Start-
ing with an initial guess (α0, Ω0, η0), the variational EM algorithm alternates
between two steps, as follows (Algorithm 2).

After obtaining the DMNB model parameters from the EM algorithm, we
can use η to perform saliency prediction. Given the feature x1:N , we have

E[log p(y|x1:N , α,Ω, η)] =

{
ηTE[z] − E[log(1 + eηT z)] y = 1

0 − E[log(1 + eηT z)] y = 0
(13)

where z is an average of z1:N over all of the observed features. The computation
for E[z] is intractable; therefore, we again introduce the distribution q(z1:N , θ)
and calculate Eq[z] as an approximation of E[z]. In particular, Eq[z] = φ;
therefore, we only need to compare ηT φ with 0.

4 Experimental Evaluation

4.1 Experimental Setup

Dataset. In this section, we conduct some experiments to demonstrate the per-
formance of our method. We use NLPR dataset1 to evaluate the performance of
the proposed model. The NLPR dataset includes 1000 images of diverse scenes
in real 3D environments, where the ground-truth was obtained by requiring five
participants to select regions where objects are presented, i.e., the salient regions
were marked by hand.

Evaluation Metrics. We introduce two types of measures to evaluate algorithm
performance on the benchmark. The first one is the gold standard: F-measure
[13]. The second is the receiver operating characteristic (ROC) curve and the

1 http://sites.google.com/site/rgbdsaliency.

http://sites.google.com/site/rgbdsaliency
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area under the ROC curve (AUC). A continuous saliency map can be converted
into a binary mask using a threshold, resulting in a pair of precision and recall
values when the binary mask is compared against the ground truth. A ROC
curve is then obtained by varying the threshold from 0 to 1.

Parameter Setting. To evaluate the quality of the proposed approach, we
divided the datasets into two subsets accroding to their CMI values, and we
held out 10% of the data for testing purpose and trained on the remaining 90%
whose CMI values are less than CMI threshold τ . As shown in Fig. 4, we compute
the CMI for all of the RGB-D images, and the parameter τ is set to 0.35, which
is a heuristically determined value. We set the m = 20 and ωd = 1.0 in Eq. 1.
We set the L = 3, ωl

c = 0.2, 0.3, 0.5, ωl
d = 0.3, 0.3, 0.4 and σ2 = 0.1 in Eqs. 2, 3

and 4 respectively. We initialize the model parameters using all data points and
their labels in the training set in Algorithm1. In particular, we use the mean
and standard deviation of the data points in each class to initialize Ω and Dc

D
to initialize αi, where Dc is the number of data points in class c and D is the
total number of data points. For the η in the DMNB model, we run a cross
validation by holding out 10% of the training data as the validation set and use
the parameters generating the best results on the validation set. We find the
initial number of components K using the DPMM.
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Fig. 7. (a) The effects of the number of scales S on the NLPR dataset. A single scale
produces inferior results. (b) The ROC curves for different K components in the DMNB
model in terms of the NLPR dataset. The K found using DPMM was adjusted over
a wide range to compare the performance. The ROC curves show that changing the
parameter K has only a slight effect on the performance.

The Effect of the Parameters. In particular, we performed the experiments
while varying S from Eq. 1 and K from Algorithm 1. Figure 7(a) shows typical
results when varying S from Eq. 1, which illustrates the AUC obtained from the
different numbers of superpixels. If only one scale is used, the results are inferior.
This justifies our multi-scale approach.

The parameter K in Algorithm 1 is set according to the training set based
on DPMM, as shown in Fig. 6. Figure 7(b) shows the ROC curve from changing
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the number of components K in Algorithm 1. Finally, for all the experiments
described below, the parameter K was fixed at 28 - no user fine-tuning was
done.

4.2 Qualitative Experiment

During the experiments, we compare our algorithm with five state-of-the-art
saliency detection methods, among which three are developed for RGB-D images
and two for traditional 2D image analysis. One RGB-D method performs saliency
detection at Low-level, Mid-level, and High-level stages and is therefore referred
to as LMH [12]. One RGB-D method is based on anisotropic centre-surround dif-
ference and is therefore denoted ACSD [8]. The other RGB-D method exploits
global priors, which include the background, depth, and orientation priors to
achieve a saliency map and is therefore denote GP [14]. The two 2D methods
are Hemami’s frequency-tuned method [13], which is denoted FT, and the app-
roach from the graph-based manifold ranking [18], which is denoted GMR. For
the two 2D saliency approaches, we also add and multiple their results with the
DSM produced by our proposed depth feature map; these results are denoted
FT+DSM, FT×DSM, GMR+DSM and GMR×DSM. All of the results are pro-
duced using the public codes that are offered by the authors of the previously
mentioned literature reports.

Fig. 8. Visual comparison of the saliency estimations of the different 2D methods with
DSM. (a) RGB image, (b) depth image, (c) ground truth, (d) FT, (e) FT×DSM, (f)
FT+DSM, (g) GMR, (h) GMR×DSM, (i) GMR+DSM, (j) CSM, (k) DSM, (l) Ours.
+ indicates a linear combination strategy, and × indicates a weighting method based
on multiplication. DSM means depth saliency map, which is produced by our proposed
depth feature map. CSM means colour saliency map, which is produced by our proposed
colour feature map.

Figure 8 compares our results with FT, FT+DSM, FT×DSM, GMR,
GMR+DSM and GMR×DSM. FT detects many uninteresting background pixels
as salient because it does not consider any global features. The experiments show
that both FT+DSM and FT×DSM are highly improved when incorporated with
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the DSM. GMR fails to detect many pixels on the prominent objects because
it does not define the pseudo-background accurately. Although the simple late
fusion strategy achieves improvements, it still suffers from inconsistency in the
homogeneous foreground regions and lacks precision around object boundaries,
which may be ascribed to treating the appearance and depth correspondence
cues in an independent manner. Our approach consistently detects the pixels
on the dominant objects within a Bayesian framework with higher accuracy to
resolve the issue.

The comparison of the ACSD, LMH and GP RGB-D approaches is presented
in Fig. 9. ACSD works on depth images on the assumption that salient objects
tend to stand out from the surrounding background, which takes relative depth
into consideration. ACSD generates unsatisfying results without colour cues.
LMH uses a simple fusion framework that takes advantage of both depth and
appearance cues from the low-, mid-, and high-levels. In [12], the background is
nicely excluded; however, many pixels on the salient object are not detected as
salient. Ren et al. proposed two priors, which are the normalized depth prior and
the global-context surface orientation prior [14]. Because their approach uses the
two priors, it has problems when such priors are invalid. We can see that the
proposed method can accurately locate the salient objects, and produce nearly
equal saliency values for the pixels within the target objects.

Fig. 9. Visual comparison of the saliency estimations of different 3D methods based
on the NLPR dataset. (a) RGB image, (b) Depth image, (c) Ground truth, (d) ACSD,
(e) GP, (f) LMH, (g) Ours.

4.3 Quantitative Evaluation

Comparison of the 2D Models Combined with DSM. In this experiment,
we first compare the performances of existing 2D saliency models before and
after DSM fusing. Figure 10 presents the experimental results, where + and ×
denote a linear combination strategy and a weighting method, respectively. From
Fig. 10(a), we can see the strong influence of using the DSM on the distribution
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Fig. 10. The quantitative comparisons of the performance of depth cues. + means a
linear combination strategy and × means a weighting method based on multiplication.

of visual attention in terms of the viewing of 3D content. Although the simple
late fusion strategy achieves improvements, it still suffers from inconsistency
in the homogeneous foreground regions, which may be ascribed to treating the
appearance and depth correspondence cues in an independent manner, as shown
in Fig. 8. We also provide the ROC curves for several compared methods in
Fig. 10(b). The ROC curves demonstrate that the proposed 3D saliency detection
model performs better than the compared methods do.

Comparison of 3D Models. In this paper, the GP model, LMH model and
ACSD model are classified as depth-saliency models. Figure 11 shows the quan-
titative comparisons among these method on the constructed RGBD datasets
in terms of ROC curves and F-measures. Interestingly, the LMH method, which
uses Bayesian fusion to fuse depth and RGB saliency by simple multiplication,
has lower performance compared to the GP method, which uses the Markov
Random Field model as a fusion strategy, as shown in Fig. 11(a). However, LMH
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Fig. 11. (a) The ROC curves of different 3D saliency detection models in terms of the
NLPR dataset. (b) The F-measures of different 3D saliency detection models when
used on the NLPR dataset.
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and GP achieve better performances than ACSD by using fusion strategies. The
proposed RGBD method is superior to the baselines in terms of all the evaluation
metrics. Although the ROC curves are very similar, Fig. 11(b) shows that the
proposed method improves the recall and F-measure when compared to LMH
and GP. This is mainly because the feature extraction using multi-scale super-
pixels enhances the consistency and compactness of salient patches.

5 Conclusion

In this study, we proposed a saliency detection model for RGB-D images that
considers both colour- and depth-based contrast features with a generative mix-
ture model. The experiments verify that the proposed model’s depth-produced
saliency can serve as a helpful complement to the existing colour-based saliency
models. Compared with other competing 3D models, the experimental results
based on a recent eye tracking databases show that the performance of the pro-
posed saliency detection model is promising. We hope that our work is helpful
in stimulating further research in the area of 3D saliency detection.
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Plan of Beijing Academy of Science and Technology (IG201506N).
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Abstract. The task of estimating the spatial layout of cluttered indoor
scenes from a single RGB image is addressed in this work. Existing solu-
tions to this problem largely rely on hand-crafted features and vanishing
lines, and they often fail in highly cluttered indoor scenes. The proposed
coarse-to-fine indoor layout estimation (CFILE) method consists of two
stages: (1) coarse layout estimation; and (2) fine layout localization. In
the first stage, we adopt a fully convolutional neural network (FCN) to
obtain a coarse-scale room layout estimate that is close to the ground
truth globally. The proposed FCN combines the layout contour prop-
erty and the surface property so as to provide a robust estimation in
the presence of cluttered objects. In the second stage, we formulate an
optimization framework that enforces several constraints such as layout
contour straightness, surface smoothness and geometric constraints for
layout detail refinement. Our proposed system offers the state-of-the-art
performance on two commonly used benchmark datasets.

1 Introduction

The task of spatial layout estimation of indoor scenes is to locate the boundaries
of the floor, walls and ceiling. The room layout can be represented by either sur-
face boundaries or surfaces themselves, which are two equivalent representations
for a room layout. The segmented boundaries and surfaces are valuable for a
wide range of computer vision applications such as indoor navigation [1], object
detection [2] and augmented reality [1,3–5]. However, there are many challenges
in estimating the room layout from a single RGB image, especially in highly
cluttered rooms where the ground and wall boundaries are occluded by various
objects. Furthermore, indoor scene images may be shot at different viewpoints
with large intra-class variations. As a result, high-level reasoning is often required
to accurately estimate the spatial layout. For example, the global room model
and its associated geometric reasoning can be exploited for this purpose.

The indoor room layout estimation problem has been actively studied in
recent years. Hedau et al. [6] formulated it as a structured learning problem. It
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first generates hundreds of layout proposals based on inference from vanishing
lines. Then, it uses the line membership and the geometric context features to
rank the obtained proposals and chooses the one with the highest score as the
desired final result.

Coarse LayoutMFCN Layout Hypotheses and RankingCritical Line 
Detection 

Input Result 

… 

Fig. 1. The pipeline of the proposed coarse-to-fine indoor layout estimation (CFILE)
method. For an input indoor image, a coarse layout estimate that contains large surfaces
and their boundaries are obtained by a multi-task fully convolutional neural network
(MFCN) in the first stage. Then, occluded lines and missing lines are filled in and
possible layout choices are ranked according to a pre-defined score function in the
second stage. The one with the highest score is chosen as the final output.

In this work, we propose a coarse-to-fine indoor layout estimation (CFILE)
method whose pipeline is shown in Fig. 1. The system takes an RGB image as
the input and provides a box layout as the output. The CFILE method consists
of two stages: (1) coarse layout estimation; and (2) fine layout localization. In the
first stage, we adopt a multi-task fully convolutional neural network (MFCN) [7]
to obtain a coarse-scale room layout estimate. This is motivated by the strength
of the FCN in semantic segmentation [8] and contour detection [9]. The FCN has
a strong discriminant power in handling a large variety of indoor scenes using
the surface property and the layout contour property. It can provide robust
estimation in the presence of cluttered objects, which is close to the ground
truth globally. In the second stage, being motivated by structured learning, we
formulate an optimization framework that enforces several constraints such as
layout contour straightness, surface smoothness and geometric constraints for
layout detail refinement.

It is worthwhile to emphasize that the spatial layout estimation problem
is different from semantic object segmentation problem in two aspects. First,
the aim of the spatial layout problem is to label the semantic surface of an
indoor room rather than objects in the room. Second, we have to label occluded
surfaces while semantic segmentation does not deal with the occlusion problem
at all. Also, unlike in the contour detection problem, occluded layout contours
have to be detected.

The major contributions of this work are three folds. First, we use the FCN
to learn the labeling of key contours and main surfaces jointly, which are critical
to robust estimation of indoor scene layout. The FCN training is elaborated and
it is shown that the coarse-scale layout estimate obtained by the FCN is robust
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and close to the ground truth. Second, we formulate an optimization framework
that enforces three constraints (i.e. surface smoothness, contour straightness and
proper geometrical structure) to refine the coarse-scale layout estimate. Third,
we conduct extensive performance evaluation by comparing the proposed CFILE
method and several benchmarking methods on the dataset of Hedau et al. [6], and
the LSUN validation dataset [10]. It is shown by experimental results that the
proposed CFILE method offers the state-of-the-art performance. It outperforms
the second best method by 1.16% and 1.32% in Hedau dataset and the LSUN
dataset, respectively.

The rest of this paper is organized as follows. Related previous work is
reviewed in Sect. 2. The proposed CFILE method is described in detail in Sect. 3.
Experimental results are shown in Sect. 4. Concluding remarks are drawn in
Sect. 5.

2 Related Work

Structured Learning. The structured learning methodology [11] has been
widely used in the context of indoor room layout estimation. The aim of this
methodology is to learn the structure of an environment in the presence of imper-
fect low-level features. It consists of the following two stages [11]. First, a set of
layout hypothesis are generated. Second, a score function is defined to evaluate
the structure in hypotheses set. The first stage is guided by low-level features
such as vanishing lines under the Manhattan assumption. The number of layout
hypotheses in the first stage is typically large, and the majority of the hypotheses
are of low accuracy due to the presence of clutters. If the quality of hypotheses
is low in the first stage, there is no easy way to fix it in the second stage. In
the second stage of layout ranking, the score function contains various features
such as line membership [6,12], geometric context [6,12], object location [13],
etc. The score function cannot handle objects well since they overlap with more
than one surface (e.g., between the floor and walls). The occluding objects in
turn make the surface appearance quite similar along their boundaries.

Classical Methods for Indoor Layout Estimation. Research on indoor
room layout estimation has been active in recent years. Hedau et al. [6] formu-
lated it as a structured learning problem. There are many follow-up efforts after
this milestone work. They focus on either developing new criteria to reject invalid
layout hypotheses or introducing new features to improve the score function in
layout ranking.

Different hypothesis evaluation methods were considered in [6,13–18]. Hedau
et al. [6] reduced noisy lines by first removing clutters. Specifically, they used the
line membership together with semantic labeling to evaluate hypotheses. Gupta
et al. [13] proposed an orientation map that labels three orthogonal surface
directions based on line segments, and then, used the orientation map to re-
evaluate layout proposals. They detected objects and fit them into 3D boxes.
Since an object cannot penetrate the wall, they used the box location as a
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constraint to reject invalid layout proposals. The work in [2,19] attempted to
model objects and spatial layout simultaneously. Hedau et al. [20] improved
their earlier work in [2,6] by localizing the box more precisely using several
cues such as edge- and corner-based features. Ramalingam et al. [18] proposed
an algorithm to detect Manhattan Junctions and selected the best layout by
optimizing a conditional random field whose corners are well aligned with pre-
detected Manhattan Junctions. Del Pero et al. [17] integrated the camera model,
an enclosing room box, frames (windows, doors, pictures), and objects (beds,
tables, couches, cabinets) to generate layout hypotheses. Lampert et al. [21]
improved object detection by maximizing a score function through the branch
and bound algorithm.

3D- and Video-based Indoor Layout Estimation. Zhao and Zhu [16]
exploited the location information and 3D spatial rules to obtain as many 3D
boxes as possible. For example, if a bed is detected, the algorithm will search
its neighborhood to look for a side table. Then, they rejected impossible layout
hypotheses. Choi et al. [22] trained several 3D scene graph models to learn the
relation among the scene type, the object type, the object location and layout
jointly. Guo et al. [14] recovered a 3D model from a single RGBD image by
transferring the exemplar layout in the training set to the test image. Fidler
et al. [23] and Xiang and Savarese [24] represented objects by a deformable 3D
cuboid model for improved object detection and then used in layout estimation.
Fouhey et al. [25] exploited human action and location in time-lapse video to
infer functional room geometry. Jiang et al. [26] proposed a novel linear method
to match cuboids in indoor scenes using RGBD images which effectively gave
room layout estimation. Khan et al. [27] improved the cuboid representation by
generating two types of cuboid hypotheses, one corresponding to regular objects
inside a scene, and the other corresponding to the main structures, such as floor
and walls.

CNN- and FCN-based Indoor Layout Estimation. The convolutional
neural networks (CNN) have had a great impact on various computer vision
research topics, such as object detection, scene classification, semantic segmen-
tation, etc. Mallya and Lazebnik [12] used the fully convolutional neural networks
(FCN) to learn the informative edge from an RGB image to provide a rough lay-
out. The FCN shares features in convolutional layers and optimize edges detec-
tion and geometric context labeling [6,28,29] jointly. The learned contours are
used as a new feature in sampling vanishing lines for layout hypotheses gen-
eration. Dasgupta and Kuan Fang [30] used an FCN to learn semantic surface
labels. Instead of learning edges, their solution adopted the heat map of semantic
surfaces obtained by the FCN as the belief map and further optimized it by van-
ishing lines. Generally speaking, a good layout should satisfy several constraints
such as boundary straightness, surface smoothness and proper geometrical struc-
ture. However, the CNN is weak in imposing spatial constraints and performing
spatial inference. As a result, an inference model was appended in both [12,30]
to refine the layout result obtained by CNN.
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3 Coarse-to-Fine Indoor Layout Estimation (CFILE)

3.1 System Overview

Most research on indoor layout estimation [6,13–18] is based on the “Manhattan
World” assumption. That is, a room contains three orthogonal directions indi-
cated by three groups of vanishing lines. Hedau et al. [6] presented a layout
model based on 4 rays and a vanishing point. The model can written as

Layout = (l1, l2, l3, l4, v), (1)

where li is the ith line and v is the vanishing point. If (l1, l2, l3, l4, v) can be
easily detected without any ambiguity, the layout problem is straightforward.
One example is given in Fig. 2(a), where five surfaces are visible in the image
without occlusion. However, there exist more challenging cases, where vertices
pi and ei lie outside the image. One example is shown in Fig. 2(b) where vertices
p2 and p3 are floor corners and they are likely occluded by objects. Furthermore,
line l2 may be entirely or partially occluded as shown in Fig. 2(c), where lines l3
and l4 are wall boundaries, that can be partially (but not fully) occluded, and
line l1 is the ceiling boundary which is likely to be visible.

(a)      (b)      (c)

Fig. 2. Illustration of a layout model Layout = (l1, l2, l3, l4, v) that is parameterized
by four lines and a vanishing point: (a) An easy setting where all five surfaces are
present; (b) A setting where some surfaces are outside the image; (c) A setting where
key boundaries are occluded.

The proposed CFILE system consists of two stages as illustrated in Fig. 1.
In the first stage, we propose a multi-task fully convolutional neural network
(MFCN) to offer a coarse yet robust layout estimation. Since the CNN is weak
in imposing spatial smoothness and conducting geometric reasoning, it cannot
provide a fine-scale layout result. In the second stage, we first use the coarse
layout from the MFCN as a guidance to detect a set of critical lines. Then, we
generate a small set of high quality layout hypotheses based on these critical
lines. Finally, we define a score function to select the best layout as the desired
output. Detailed tasks in these two stages are elaborated below.
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3.2 Coarse Layout Estimation via MFCN

We adopt a multi-task fully convolutional neural network (MFCN) [7,8,12] to
learn the coarse layout of indoor scenes. The MFCN [7] shares features in the
convolutional layers with those in the fully connected layers and builds different
branches for multi-task learning. The total loss of the MFCN is the sum of the
losses of different tasks. The proposed two-task network structure is shown in
Fig. 3. We use the VGG-16 architecture for fully convolutional layers and train
the MFCN for two tasks jointly, i.e. one for layout learning while the other for
semantic surface learning (including the floor, left-, right-, center-walls and the
ceiling). Our work is different from that in [12], where layout is trained together
with geometric context labels [28,29] which contains object labels. Here, we
train the layout and semantic surface labels jointly. By removing objects from
the concern, the boundaries of semantic surfaces and layout contours can be
matched even in occluded regions, leading to a clearer layout. Compared to
the work in [30], which adopts the fully convolutional neural network to learn
semantic surfaces with a single task network, our network has two branches for
coarse layout learning and semantic surface learning, where their learned results
can help each other.

input layer

output layermax pooling layer

convolutional layer
64

128

256

512 512

deconvolutional layer

4096

2
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Fig. 3. Illustration of the FCN-VGG16 with two output branches. We use one branch
for the coarse layout learning and the other branch for semantic surface learning. The
input image size is re-sized to 404 × 404 to match the receptive field size of the filter
at the fully convolutional layer.

The receptive field of the filter at the fully connected layer of the FCN-VGG16
is 404 × 404, which is independent of the input image size [8,31]. Xu et al. [31]
attempted to vary the FCN training image size so as to capture different level
of details in image content. If the input image size is larger than the receptive
field size, the filter of the fully connected layer looks only at a part of the image.
If the input image size is smaller than the receptive field size, it is padded with
zeros and spatial resolution is lost in this case. The layout describes the whole
image’s global structure. We resize the input image to 404×404 so that the filter
examines the whole image.
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3.3 Layout Refinement

There are two steps in structured learning: (1) to generate a hypotheses set; and
(2) to define a score function and search for a hypothesis in the hypotheses set
that maximizes the score function. Our objective is to improve performance in
both steps.

Given an input image I of size w × h × 3, the output of the coarse layout
from the proposed MFCN in Fig. 3 is a probability function in the form of

P(k) = Pr(Lij = k|I), ∀k ∈ {0, 1}, i ∈ [1, ..., h], j ∈ [1, ..., w], (2)

where L is an image of size w × h that maps each pixel Iij in the original image
to a label Lij ∈ {0, 1}, in the output image, where 0 denotes a background pixel
and 1 denotes a layout pixel. One way to estimate the final layout from the
MFCN output is to select the label with the highest score; namely,

L̂ij = argmax
k

P(k)
ij ∀i ∈ [1, ..., h], j ∈ [1, ..., w]. (3)

It is worthwhile to point out that L̂ij generated from the MFCN output is
noisy for the following two reasons. First, the contour from the MFCN is thick
and not straight since the convolution and the pooling operations lose the spatial
resolution gradually along stages. Second, the occluded floor boundary (e.g., the
l2 line in Fig. 2) is more difficult to detect since it is less visible than other
contours (e.g., the l1, l3 and l4 lines in Fig. 2). We need to address these two
challenges in defining a score function.

The optimal solution for Eq. (3) is difficult to obtain directly. Instead, we first
generate layout hypotheses that are close to the global optimal layout, denoted
by L∗, in the layout refinement algorithm. Then, we define a novel score function
to rank layout hypotheses and select the one with the highest score as the final
result.

Generation of High-Quality Layout Hypotheses. Our objective is to find
a set of layout hypotheses that contains fewer yet more robust proposals in
the presence of occluders. Then, the best layout with the smallest error can be
selected.

Vanishing Line Sampling. We first threshold the layout contour obtained
by the MFCN, convert it into a binary mask, and dilate it by 4 pixels to get a
binary mask image denoted by C. Then, we apply a vanishing lines detection
algorithm [13] to the original image and select those inside the binary mask
as critical lines li(original), shown as solid lines in Fig. 4(c)–(e) for ceiling, wall
and floor respectively. Candidate vanishing point v is generated by grid search
around the initial v from [13].
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Handling Undetected Lines. There exists a case when no vanishing lines are
detected inside C because of low contrast, such as wall boundaries, l3(or l4). If
ceiling corners are available, l3 (or l4) are filled in by connecting ceiling corners
and vertical vanishing point. If ceiling corners do not present in the image, the
missing l3(or l4) is estimated by logistic regression using the layout points in L.

Handling Occluded Lines. As discussed earlier, the floor line, l2, can be
entirely or partially occluded. One illustrative example is shown in Fig. 4 where
l2 is partially occluded. If l2 is partially occluded, the occluded part of l2 can be
recovered by line extension. For entirely occluded l2, if we simply search lines
inside C or uniformly sample lines [12], the layout proposal will not be accurate
as the occluded boundary line cannot be recovered. Instead, we automatically
fill in occluded lines based on geometric rules. If p2 (or p3) is detectable by
connecting detected l3 (or l4) to e2v (or e3v), l2 is computed as the line passing
through the available p2 or p3 and the vanishing point l2 associated with. If
neither p2 nor p3 is detectable, l2 is estimated by logistic regression use the
layout points in L.

(a) Coarse Layout

Critical Lines 

(e) Floor

(b) Vanishing Lines

(c) Ceiling (d) Wall 

Fig. 4. Illustration of critical lines detection for better layout hypotheses generation.
For a given input image, the coarse layout offers a mask that guides vanishing lines
selection and critical lines inference. The solid lines indicate detected vanishing lines
in C. The dashed wall lines indicate those wall lines that are not detected but inferred
inside mask C from ceiling corners. The dashed floor lines indicate those floor lines
that are not detected but inferred inside mask C.

In summary, the final lcritial used in generating layout hypotheses is the union
of three parts as given below:

lcritical = li(original) ∪ li(occluded) ∪ li(undetected), (4)

where li(original) denotes detected vanishing lines inside C, li(occluded) denotes
the recovered occluded boundary, and li(undetected) denotes undetected vanishing
lines because of low contrast but recovered from geometric reasoning. These
three types of lines are shown in Fig. 4. With li(original) and vanishing point v,
we generate all possible layouts L using the model described in Sect. 3.1.
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Layout Ranking. We use the coarse layout probability map P as a weight
mask to evaluate the layout. The score function is defined as

S(L|P) =
1
N

∑

i,j

Pi,j , ∀Li,j = 1, (5)

where P is the output from the MFCN, L is a layout from the hypotheses set,
and N is a normalization factor that is equal to the total number of layout pixels
in L. Then, the optimal layout is selected by

L∗ = argmax
L

S(L|P). (6)

The score function is in favor of the layout that is aligned well with the coarse
layout. Figure 5 shows one example where the layout hypotheses are ranked using
the score function in Eq. (6). The layout with the highest score is chosen to be
the final result.

S = 0.242   S = 0.221   S = 0.201

S = 0.191    S = 0.184  S = 0.140

Fig. 5. Example of layout ranking using the proposed score function.

4 Experiments

4.1 Experimental Setup

We evaluate the proposed CFILE method on two popular datasets; namely,
Hedau dataset [6] and the LSUN dataset [12]. Hedau dataset contains 209 train-
ing images, 53 validation images and 105 test images. Mallya and Lazebnik [12]
expanded the Hedau dataset by adding 75 new images to the training set. This
expanded dataset is referred to as the Hedau+ dataset. We conduct data aug-
mentation for Hedau+ dataset as done in [12] by cropping, rotation, scaling and
luminance adjustment in the training of the MFCN. The LSUN dataset [10] con-
tains 4000 training images, 394 validation images and 1000 test images. Since
no ground truth is released for the 1000 test images, we evaluate the proposed
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method on the validation set only. We resize all images to 404 × 404 by bicubic
interpolation, and train two coarse layout models for the two datasets separately.

Hedau+ dataset provides both the layout and the geometric context labels
but it does not provide semantic surface labels. Thus, we use the layout poly-
gon provided in the dataset to generate semantic surface labels. The LSUN
dataset provides surface segmentation but not the layout boundary and semantic
surfaces. We relabel the surface segmentation to make the segmentation with the
same semantic to have the same label. We detect edges on semantic surface labels
and dilate them to a width of 7 pixels. By following [12], we use the NYUDv2
RGBD dataset [32] for semantic segmentation to initialize the MFCN. Also, we
set the base learning rate to 10−4 with momentum 0.99.

We adopt two performance metrics: the pixel-wise error and the corner error.
To compute the pixel-wise error, the obtained layout segmentation is mapped to
the ground truth layout segmentation. Then, the pixel-wise error is computed
as the percentage of pixels that are wrongly matched. To compute the corner
error, we sum up all Euclidean distances between obtained corners and their
associated ground truth corners.

4.2 Experimental Results and Discussion

The coarse layout scheme described in Sect. 3.2 is first evaluated using the
methodology in [33]. We compare our results, denoted by MFCN1 and MFCN2,
against the informative edge method [12], denoted by FCN, in Table 1. Our pro-
posed two coarse layout schemes have higher ODS (fixed contour threshold) and
OIS (per-image best threshold) scores. This indicates that they provide more
accurate regions for vanishing line samples in layout hypotheses generation.

We use several exemplary images to demonstrate that the proposed coarse
layout results are robust and close to the ground truth. That is, we compare
visual results of the FCN in [12] and the proposed MFCN2 in Fig. 6. As compared
to the layout results of the FCN in [12], the proposed MFCN2 method provides
robust and clearer layout results in occluded regions, which are not significantly
affected by object boundaries.

Next, we evaluate the performance of the proposed full layout algorithm,
CFILE, including the coarse layout estimation and the layout optimization and
ranking. The performance of several methods for Hedau dataset and the LSUN

Table 1. Performance comparison of coarse layout results for Hedau test dataset,
where the performance metrics are the fixed contour threshold (ODS) and the per-
image best threshold (OIS) [33]. We use FCN to indicate the informative edge method
in [12]. Both MFCN1 and MFCN2 are proposed in our work. They correspond to the
two settings where the layout and semantic surfaces are jointly trained on the original
image size (MFCN1) and the downsampled image size 404 × 404 (MFCN2).

FCN [12] MFCN1(our) MFCN2(our)

Metrics ODS OIS ODS OIS ODS OIS

Hedau dataset 0.255 0.263 0.265 0.284 0.265 0.291
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Fig. 6. Comparison of coarse layout results (from left to right): the input image, the
coarse layout result of the FCN in [12], the coarse layout results of the proposed MFCN2

and the ground truth. The results of the MFCN2 are more robust, and it provides
clearer contours in occluded regions. The first two examples are from the Hedau dataset
and the last two examples are from the LSUN dataset.

dataset is compared in Tables 2 and 3, respectively. The proposed CFILE method
achieves state-of-the-art performance. It outperforms the second best algorithm
by 1.16% for Hedau dataset and 1.32% for the LSUN dataset.

The best six results of the proposed CFILE method for Hedau test images
are visualized in Fig. 7. It can be observed from these six examples that the
coarse layout estimation algorithm is robust in highly cluttered rooms (see the
second row and the fourth row). The layout refinement algorithm can recover
occluded boundaries accurately in Fig. 7(a)–(e). It can also select the best layout
among several possible choices. The three worst results of the proposed CFILE
method for Hedau test images are visualized in Fig. 8. Figure 8(a) shows one
example where the fine layout result is misled by the wrong coarse layout esti-
mate. Figure 8(b) is a difficult case. The left wall and right wall have the same
appearance and there are several confusing wall boundaries. Figure 8(c) gives
the worst example of the CFILE method with accuracy 79.4%. However, it is
still higher than the worst example reported in [12] with accuracy 61.05%. The
ceiling boundary is confusing in Fig. 8(c). The proposed CFILE method selects
the ceiling line overlapping with the coarse layout. More visual results from the
LSUN dataset are shown in Fig. 9.
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(a) 98.8%   (b) 98.4%  (c) 98.4%

(d) 97.4% (e) 94.1% (f) 93.7%

Fig. 7. Visualization of the six best results of the CFILE method in Hedau test dataset
(from top to bottom): original images, the coarse layout estimates from MFCN, our
results with pixel-wise accuracy (where the ground truth is shown in green and our
result is shown in red) (Color figure online).



48 Y. Ren et al.

Table 2. Performance benchmarking for Hedau dataset.

Method Pixel error (%)

Hedau et al. (2009) [6] 21.20

Del Pero et al. (2012) [17] 16.30

Gupta et al. (2010) [13] 16.20

Zhao and Zho (2013) [16] 14.50

Ramalingam et al. (2013) [18] 13.34

Mallya and Lazebnik (2015) [12] 12.83

Schwing and Urtasun (2012) [34] 12.80

Del Pero et al. (2013) [35] 12.70

Dasgupta and Kuan Fang (2016) [30] 9.73

Proposed CFILE 8.67

Table 3. Performance benchmarking for the LSUN dataset.

Method Corner error (%) Pixel error (%)

Hedau et al. (2009) [6] 15.48 24.23

Mallya and Lazebnik (2015) [12] 11.02 16.71

Dasgupta and Kuan Fang (2016) [30] 8.20 10.63

Proposed CFILE 7.95 9.31

(a) 81.8% (b) 81.3% (c) 79.4%

Fig. 8. Visualization of the three worst results of the CFILE method in Hedau test
dataset (from top to bottom): original images, the coarse layout estimates from MFCN,
our results with pixel-wise accuracy (where the ground truth is shown in green and our
result is shown in red) (Color figure online).
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(a) (b) (c)

(d)    (e)  (f)  

Fig. 9. Visualization of layout results of the CFILE method in the LSUN validation
set. Ground truth is shown in green and our result is shown in red (Color figure online).

5 Conclusion and Future Work

A coarse-to-fine indoor layout estimation (CFILE) method was proposed to esti-
mate the room layout from an RGB image. We adopted a multi-task fully con-
volutional neural network (MFCN) to provide a robust coarse layout estimate
for a variety of indoor scenes with joint layout and semantic surface training.
However, CNN is weak in enforcing spatial constraints. To address this problem,
we formulated an optimization framework that enforces several constraints such
as layout contour straightness, surface smoothness and geometric constraints for
layout detail refinement. It was demonstrated by experimental results that the
proposed CFILE system yields the best performance on two commonly used
benchmark datasets. It is an interesting topic to investigate how the improved
scene layout estimation can help in achieving a better performance for geometry
estimation, clutter identification, and semantic segmentation.

Acknowledgement. Computation for the work described in this paper was supported
by the University of Southern California’s Center for High-Performance Computing
(hpc.usc.edu).
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Abstract. We investigate recent state-of-the-art algorithms for absolute
pose problems (PnP and GPnP) and analyse their applicability to a
more general type, namely the scaled Euclidean registration from point-
to-point, point-to-line and point-to plane correspondences. Similar to
previous formulations we first compress the original set of equations to
a least squares error function that only depends on the non-linear rota-
tion parameters and a small symmetric coefficient matrix of fixed size.
Then, in a second step the rotation is solved with algorithms which are
derived using methods from algebraic geometry such as the Gröbner basis
method. In previous approaches the first compression step was usually
tailored to a specific correspondence types and problem instances. Here,
we propose a unified formulation based on a representation with orthog-
onal complements which allows to combine different types of constraints
elegantly in one single framework. We show that with our unified for-
mulation existing polynomial solvers can be interchangeably applied to
problem instances other than those they were originally proposed for. It
becomes possible to compare them on various registrations problems with
respect to accuracy, numerical stability, and computational speed. Our
compression procedure not only preserves linear complexity, it is even
faster than previous formulations. For the second step we also derive an
own algebraic equation solver, which can additionally handle the reg-
istration from 3D point-to-point correspondences, where other solvers
surprisingly fail.

1 Introduction

We consider the problem of finding optimal similarity transformations which
relate a set of 3D points to other corresponding points, lines or planes in a
different coordinate system. The registration from point-to-point correspon-
dences is a fundamental problem in computer vision and has applications in
many fields, such as the correct alignment of independent Structure-from-Motion
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reconstructions, handling of drift in loop-closure, hand-eye calibration, and many
more. The two most prominent algorithms for solving this registration problem
were proposed by Umeyama [1] and Horn [2]. The latter is also an integral part
of the well-known ICP-algorithm for aligning point clouds. However, these algo-
rithms are not applicable to point-to-line or point-to-plane correspondences. Usu-
ally, iterative methods which only converge locally are used for these cases [3,4].

Olsson et al. [5] were the first to propose an algorithm to find the global
optimum for registration problems of this kind. The algorithm is based on an
iterative Branch-and-Bound procedure using convex under-estimators to solve
for the rotation. Although it guarantees to find the global optimum, it is also
computationally demanding. The same authors showed later [6] that their algo-
rithm is also applicable to the Perspective-n-Point problem (PnP).

Regarding the related field of perspective registration problems (PnP and
GPnP) substantial progress has been made in the last years. Hesch and
Roumeliotis [7] proposed an algorithm for the central PnP problem, where the
original problem is reduced to a polynomial equation system of fixed size irrespec-
tive of the number of used correspondences. This approach has been extended
to pose estimation from generalized cameras (Generalized PnP) with and with-
out scale [8,9]. In this paper, we propose a formulation which extends them
even further to various 3d registration problems considered by Olsson et al. At
the same time, their closed-form character and all of their desirable properties
are preserved: they remain non-iterative, applicable to minimal as well as to
overconstrained problem instances, and capable of providing all minima at once.

2 Unified Mathematical Framework for Registration
Problems

2.1 Objective Function and Vector-Matrix Representation

Suppose we have a set of K points, xk ∈ R
3. Our goal is to find a transformation

consisting of a rotation, R ∈ SO(3), a translation, t ∈ R
3, and an (inverse)

scaling s−1 ∈ R+, so that the transformed points,

x
′
k = s−1(Rxk + t), (1)

are as close as possible to their corresponding geometric entities, which may
either be a plane, πk, a line, lk, or another point, pk. For point correspondences
we measure the Euclidean distance between the transformed point x

′
k and the

reference point pk. For lines and planes we use the orthogonal distance, i.e. the
length of the shortest vector that connects the transformed point with some other
point on the line or the plane. We completely describe a geometric entity with
an offset point, yk, and an orthogonal complement matrix, Nk, whose columns
are orthonormal vectors which are perpendicular to the affine subspace of the
geometric entity. Then, the squared error can be written for all correspondence
types in a uniform way

d2k = ‖NT
k(x

′
k − yk)‖22. (2)
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The registration problem can then be formulated as the least-squares
minimization of the total error for all correspondences,

arg min
R∈SO(3),t∈R3,s∈R+

K∑

k=1

‖NT
k(Rxk + t − syk)‖22. (3)

By multiplying the error function with the squared scale, i.e. s2
∑

d2k, we have
decoupled it from the other unknowns, and it now scales the offset points, yk.
This only affects the absolute value of the error, but not the location of the
minima. By stacking the rows of the rotation matrix, the scaling and the trans-
lation vector into a parameter vector, sT = [R11,R12, . . . ,R33, s, tT], Eq. 3 can
be re-factored and written in matrix-vector form,

arg min
R,t,s

‖As‖22. (4)

The corresponding rows, Ak, belonging to the correspondence k can be written
compactly using the kronecker product (‘⊗’):

Ak ∈ R
nk×13 =

[
NT

k ⊗ xT
k, −NT

kyk, NT
k

]
, nk ∈ {1, 2, 3}. (5)

Each row of A corresponds to an equation in a (possibly overconstrained)
homogeneous system of equations representing the least-squares problem of
Eq. 4. Intuitively, the different types of correspondences should also impose dif-
ferent numbers of effective constraints on the registration problem. In our for-
mulation this is achieved naturally by the size of the orthogonal complement
matrix. For point-to-plane correspondences, N(π)

k ∈ R
3×1 is given by the normal

vector of the plane which results in one equation per correspondence. Points can
be interpreted as entities that span a zero-dimensional subspace, so any vector in
R

3 belongs to the orthogonal complement of a point. Thus, we are free to choose
an arbitrary orthogonal matrix for N(p)

k ∈ R
3×3 yielding three equations per

correspondence. In particular, the identity matrix, I3×3, is a convenient choice.
In case of Point-to-line correspondences often there is no orthogonal comple-
ment matrix at hand, but a bearing vector, vk, instead. For example, in the
PnP problem and its generalized variant the bearing vectors are the vectors con-
necting the homogenized image points and the camera centers. One can easily
obtain a matrix N(l)

k ∈ R
3×2 by means of an orthogonalization method like the

Gram-Schmidt Algorithm or a QR-decomposition of vk. Alternatively, it is also
possible to construct 3×3 matrices Ñ(l)

k with rank two directly from the bearing
vectors. Two possible options are:

Ñ(l)
k ∈ R

3×3 =
{

[vk]× (cross product form)
I − vkvT

k (annihilator form) , (6)

where [vk]× is the skew-symmetric cross product matrix of vk. Using the cross
product form results in a similar system of equations than in the well-known
DLT-Algorithm [10]. Since both variants of Ñ(l)

k have only rank two, there
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are also only two rows of Ak which are linearly independent, and one might
be tempted to leave one of them out. We emphasize, however, that if vk is
normalized (vT

kvk = 1) then we have ÑkÑT
k = NkNT

k, so the squared error,
d2k = (x

′
k − yk)TNkNT

k(x
′
k − yk), of the objective function (Eq. 2) will remain

unchanged regardless of which matrix is used to represent the orthogonal com-
plement. This will be different if one decides to leave out one of the equations,
and thus, it should be avoided in order to not obtain biased solutions.

2.2 Thin-SVD-Based Linear Parameter Elimination

Based on the matrix-vector notation of the objective function, the linear para-
meters, s and t, can now be eliminated by representing them in terms of the
nonlinear parameters, rT = [R11,R12, . . . ,R33], using the pseudo-inverse and by
back-substituting the resulting expression. Specifically, taking the derivative of
Eq. 4 with respect to s and t and setting it zero yields the first order optimality
conditions for [s, tT]

AT
stArr + AT

stAst

[
s
t

]
= 0. (7)

Here, we have partitioned A = [Ar Ast] column-wise into the submatrices Ar

and Ast which belong to the non-linear parameters, r, and linear parameters,
s and t, respectively. Hence, we can express [s, tT] as a function of r using the
Moore-Penrose pseudoinverse, A†

st = (AT
stAst)−1AT

st which in turn can be com-
puted efficiently and numerically stably with the Singular-Value-decomposition,
Ast = UΣVT [11], [

s
t

]
= −VΣ†U

T

︸ ︷︷ ︸
A†

st

Arr. (8)

By plugging this expression back into Eq. 4 and by defining the fixed size matrix

Mh ∈ R
9×9 = AT

rAr − AT
rU(Σ†Σ)UTAr, (9)

we can describe the registration problem by the following constrained minimiza-
tion problem which now only depends on the rotation parameters r,

arg min
R∈SO(3)

{rTMhr}, (10)

The expression for Mh has been greatly simplified thanks to the orthogonality
of the singular vector matrices, VTV = I and UTU = I. The diagonal matrix
(Σ†Σ) usually is a 4×4 identity matrix. Only in certain degenerate configurations
it may also have zeros on its diagonal whenever some singular values of Ast are
zero (or smaller than a machine precision dependent threshold). It then acts as
a column selector for U, so that only those singular vectors are chosen which
effectively span the column space of Ast. Rewriting Mh in Eq. 9 as Mh = AT

r (I−
U(Σ†Σ)UT)Ar one can see that Ar is again projected onto the orthogonal
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complement (I−U(Σ†Σ)UT) of the column space of Ast. This mechanism allows
to elegantly cope with some degenerate configurations which we will discuss later
in this paper.

Considering the computational effort, one might still ask, whether using the
Singular-Value-Decomposition for computing the pseudoinverse is a good choice,
because for general n×m matrices the complexity for its computation is O(n2m+
m3) (see [11]). In our case Ast ∈ R

n×4, so even though m = 4 is constant, we are
still left with quadratic complexity with respect to the number of equations or
constraints, n. It is important to note, however, that only the first four columns
of U are needed. In this case - which is often referred to as thin SVD or reduced
SVD - the number of computations can be reduced to O(nm2 + m3). This is
an important part of our formulation because it still allows to compute Mh in
linear time and thus also the effort for the whole registration problem remains
linear. Most matrix libraries offer appropriate routine options.1 As we show in
our simulations it is even much faster than any of the’closed-form’ derivations
proposed in earlier papers.

2.3 Relation to Existing Approaches

We would like to point out commonalities and differences on how the registration
problem is formulated in previous approaches for the PnP and Generalized PnP
case [7–9]. The typical procedure is to describe the problem by a system of
(noise-free) equations which in their most general form are as follows:

⎡

⎢
⎣

v1 y1 −I3×3

. . .
...

...
vK yK −I3×3

⎤

⎥
⎦

︸ ︷︷ ︸
=:Ã

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ1

...
λK

s
t

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
=:ũ

=

⎡

⎢
⎣

R
. . .

R

⎤

⎥
⎦

︸ ︷︷ ︸
=:W̃

⎡

⎢
⎣

x1

...
xK

⎤

⎥
⎦

︸ ︷︷ ︸
=:x̃

, (11)

where additional virtual depth parameters λk ∈ R for the points are introduced.
These ensure that in the noiseless case the scaled image points, yk + λkvk, coin-
cide with their corresponding transformed points x

′
k. As in our case, the next step

consists in eliminating the linear parameters ũ by means of the pseudoinverse,
Ã† = (ÃTÃ)−1ÃT, and expressing them in terms of the rotation parameters

ũ = Ã†W̃x̃. (12)

After inserting this expression back into Eq. 11 the resulting system of equations
depends only on the rotation R ∈ SO(3) (or the vectorized rotation matrix r).

1 Matlab provides the option ‘economy’ to the SVD-routine. In LAPACK the rou-
tine DGESVD comes with the option JOBU=‘S’ or JOBU=‘O’. In Eigen one can set
ComputeThinU in the constructor of the template JacobiSVD<.>.
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vk

n1

n2

yk

lk

x
′
k − (yk + λkvk)

yk + λkvk

x
′
k

NT
k(x

′
k − yk)

λk‖vk‖

Fig. 1. Visualization of the equivalence of the geometric errors minimized in previous
approaches (red) and in our approach (blue). (Color figure online)

The final minimization problem to determine the rotation has again the following
form:

arg min
R∈SO(3)

{rTM̃r}, (13)

with

M̃ =
[
I ⊗ x1, · · · , I ⊗ xK

]
(I − ÃÃ†)

⎡

⎢
⎣

I ⊗ xT
1

...
I ⊗ xT

K

⎤

⎥
⎦ . (14)

It is important to note that this formulation for the PnP problem and its
generalization minimizes the same error as in our case with point-to-line cor-
respondences. The previous approaches [7–9] minimize the Euclidean distance
between the transformed point x

′
k and the point yk + λvk which represents

the line lk parameterized by the depth value λk. Since the depth parameter is
included as optimization variable inside the whole minimization problem, it will
attain its optimal value when the vector x

′
k − yk + λvk is exactly orthogonal to

the line lk or the vector vk (see Fig. 1). Otherwise the error could still be reduced
by changing λk while leaving the other parameters fixed. In our formulation the
vector x

′
k − yk is directly projected onto the orthogonal complement of the line

which is spanned by the columns of the matrix Nk = [n1,n2]. As a consequence,
the lengths of both vectors, ‖x′

k − yk + λvk‖ and ‖NT
k(x

′
k − yk)‖, are equal at

the minimum of their respective objective functions. We also note that for non-
degenerate configurations the resulting matrices, M̃ and M, are identical up to
small numerical differences when computed with the previous approaches and
with ours.

The major difference of previous formulations is that the geometric enti-
ties are described by their affine subspaces (represented by the bearing vec-
tor vk) and not by their orthogonal complement as in our case. This makes it
necessary to introduce the virtual depth parameters λk. The downside is that
the involved matrices Ã and W̃ become very sparse and much larger than in
our case. In particular, computing the pseudoinverse of Ã ∈ R

3K×K+4 is pro-
hibitively costly if one resorts to standard techniques for dense matrices. For this
reason an important aspect in the aforementioned papers is the presentation of a
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custom-made computation of the pseudoinverse of Ã and the final composition
of M̃. Special care was taken to exploit the sparsity of the matrices and thus to
preserve the linear complexity of the whole algorithm. Yet still, the computation
of M̃ remains up to one order of magnitude slower than in our proposed method,
as we show in our simulations.

Furthermore, the derivations of M̃ make specific assumptions on the tar-
geted problem instance, so they are only applicable to PnP-type problems (or
to 3d point-to-line registrations). It would be possible to extend these subspace-
based parameterizations to the registration of point-to-plane correspondences.
One would then introduce two “depth” parameters per plane and a 3×2 matrix
Vk whose orthonormal column vectors span the subspace of the plane instead
of a single bearing vector vk. However, computations would only get more com-
plicated as one would have to track down the type of correspondence along the
whole process of generating M̃. In our case, once the matrix A is set up (Eq. 5),
all information on the correspondence type is essentially hidden. In order to com-
pute the pseudoinverse of the dense matrix Au and finally M one can always
use the same technique, no matter if Au was composed from point-to-point,
point-to-line, point-to-plane correspondences or any mixture of them.

2.4 Minimal Number of Constraints and the Inhomogeneous Case

So far, we have restricted our discussion on the full seven DoF problem, i.e. the
Euclidean registration with scale. Intuitively, one will also need seven constrain-
ing equations for the problem in Eq. 4 to be solvable in general. It does not
matter from which kind of correspondence types these constraints are obtained,
the important part is that the minimal number of seven effective constraints
are reached in total and that each 3D point-to-plane, point-to-line or point-
to-point yields one, two or three constraints, respectively. For example one
can compute the registration parameters from seven point-to-plane correspon-
dences only, where each correspondence gives rise to one equation. In previous
approaches to pose-and-scale estimation [9,12] at least ‘three-and-a-half’ 2D-3D
correspondences are needed, which is in accordance with our formulation, where
constraints arising from 2d image point measurements are translated into 3D
point-to-line correspondences. For general configurations, i.e. when the image
measurements are distributed in more than one camera (also referred to as the
non-central case [8]), the sub-matrix Ast has full rank four. So in the process of
eliminating the linear parameters by means of the pseudoinverse, A†

st, the final
matrix Mh ∈ R

9×9 will have at least rank three, which is a necessary require-
ment for solving for the remaining three DoF of the rotation. Since the seven
DoF problem forms a homogeneous system of equations we also refer to this as
the homogeneous case.

By contrast, if the scale parameter is already known or only the rotation and
translation is to be estimated, then one would not eliminate the scale parameter.
The correct procedure is then to compute the SVD only on the matrix At, i.e.
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the columns of A = [Ars At] which belong to the translation part, and finally
solve the slightly modified problem

arg min
R∈SO(3)

{
[rT, 1] Mi

[
r
1

]}
, with Mi ∈ R

10×10, (15)

which we call the inhomogeneous case.
There is an important connection between the homogeneous and the inho-

mogeneous version, which happens when all lines and planes have one common
intersection point. This corresponds to the situation, when the camera pose is
estimated from measurements in a single camera only as in the central PnP or
PnL case. Clearly, for single-view pose estimation the scale parameter is mean-
ingless and cannot be computed. In the homogeneous case the problem is there-
fore ill-conditioned which manifests itself in the matrix Ast ∈ R

n×4 having only
rank three. As a consequence, the pseudoinverse cannot be computed using the
explicit formula A†

st = (AT
stAst)−1AT

st because (AT
stAst) is singular. However,

by using the SVD instead, as proposed in Sect. 2.2, this degeneracy is automati-
cally handled correctly by means of the matrix Σ†Σ. This leads to the important
property that the solutions to the remaining parameters, R and t, can still be
computed even if only six effective constraints are provided (e.g. three 2D-3D
correspondences for the PnP problem), because the resulting matrix Mh still
has rank three. As for the inhomogeneous case we note, that the column as of
A = [Ar,as,At] belonging to the scale parameter is a linear combination of the
columns of At and therefore its projection onto the orthogonal complement of
At, i.e. (I − U(Σ†Σ)UT), is zero. Consequently, the last row and the column of
the resulting matrix Mi will then also be zero and the upper-left 9×9 sub-matrix
in Mi is identical to Mh.

To summarize, in the central case both matrices Mi and Mh carry the same
information for the solution of the rotation. And as both, the central case (like
[7,13]) and the homogeneous non-central case [9], can be represented by 9 × 9
matrices Mh, we expect that the corresponding algebraic solvers for the non-
linear rotation can be used interchangeably for both types of problems. Further,
we expect that an algebraic solver working on a 10 × 10 matrix Mi capable of
solving both the central case and the inhomogeneous non-central case, such as
the one inside the approach of Kneip et al. [8], can be applied to all problems
considered here.

2.5 Efficiently Pre-rotating Reference Points

Often it is advantageous to work with a modified M̂h that is derived by simply
pre-rotating the reference points xk with some rotation matrix R0, i.e. x̂k =
R0xk. Any solution, R̂, obtained on the basis of M̂h is then also a rotated
version of the original solution R, i.e. R̂ = RRT

0 . The algebraic solvers which
will be discussed in the next Section may fail to determine the correct solutions in
all cases. In particular, solvers based on the Cayley parameterization for rotation
matrices will not succeed whenever the correct solution for the rotation has an
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angle of π. In this case one can re-evaluate the problem for different M̂h and
collect all solutions. Although not published by Hesch and Roumeliotis [7], the
same authors implemented this strategy as an improved version of the DLS-
algorithm2, which was later also adopted by others [14]. Another use case is the
post-refinement of solutions for R with a second order Newton minimization
applied on a matrix M̂h with the rotation R̂ being optimized is close to the
identity. This was done e.g. by Zheng et al. and Kneip et al. [8,13].

Instead of re-evaluating M̂h each time for the rotated points x̂k from scratch,
we observe that it is also possible to manipulate the matrix Mh, directly. This
has the same effect but it can be computed in constant time, whereas a full re-
evaluation requires a linear effort with respect to the number of correspondences.
Recomputing M̂h for some R0 thus becomes a negligible operation compared to
the actual solving step of the algebraic solver.

As can be seen from 5, rotating the reference points xk leaves Ast unchanged
and Ar changes as follows,

Âr = ArR0, with R0 =

⎡

⎣
R0

R0

R0

⎤

⎦ , (16)

which together with Eq. 9 yields

M̂h = RT
0MhR0. (17)

One can partition Mh into nine 3×3 submatrices M(i,j)
h and transform each

of them individually, i.e. M̂(i,j)
h = RT

0M
(i,j)
h R0. Thus, it is possible to exploit

the sparsity of R0 and to avoid explicitly constructing it as a matrix.
Considering again the Cayley-parameterization, the traditional procedure

consists of re-evaluating the problem for two extra randomly gerenated R0. We
note, that the set of Cayley singularities actually forms a two-dimensional man-
ifold. So, in order to guarantee that R̂ never is near the set of these singularities
for all evaluations, one actually has to perform four evaluations in total. This is
because for three arbitrary pre-rotating matrices, Ri, i ∈ 1, 2, 3, one can always
find a forth rotation, R4, so that RT

4Ri has an rotation angle of π. Instead of
generating the pre-rotation matrix R0 randomly, we propose to select it from
the canonical set of rotations,

R0 ∈
⎧
⎨

⎩

⎡

⎣
1

1
1

⎤

⎦ ,

⎡

⎣
1

−1
−1

⎤

⎦ ,

⎡

⎣
−1

1
−1

⎤

⎦ ,

⎡

⎣
−1

−1
1

⎤

⎦

⎫
⎬

⎭
, (18)

where the relative rotation between any two of these elements has the angle π.
In this case, recomputing M̂h simply amounts to changing signs of some of the
entries in Mh. This can be achieved almost instantly and it alleviates some of
the common objections against the use of Cayley parameterization.
2 The implementation of DLS is available at http://www-users.cs.umn.edu/∼joel/.

http://www-users.cs.umn.edu/{~}joel/
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3 Algebraic Solvers for the Rotation

We will now turn our attention towards solving for the nonlinear rotation, i.e.
finding all solutions of Eq. 10 or 15. To this end the rotation matrix is para-
meterized either by quaternions or via Cayley parameters. For a quaternion,
q = [q0, q1, q2, q3]T, with real part q0, the rotation matrix is given by

R(q) =
1

‖q‖

⎡

⎣
q20 + q21 − q22 − q23 , 2(q1q2 − q0q3), 2(q1q2 − q0q3)
2(q1q2 + q0q3), q20 − q21 + q22 − q23 , 2(q2q3 − q0q1)
2(q1q3 − q0q2), 2(q2q3 + q0q1), q20 − q21 − q22 + q23

⎤

⎦. (19)

The Cayley parameterization is given by simply fixing q0 = 1.
The first order optimality conditions are obtained by taking the derivative of

the error function with respect to the four quaternion parameters, which leads to
a system of four equations with monomials in qi of degree three (three equations
for Cayley parametrization).

2
∂

∂qi
r(q)T · M · r(q) = 0 (20)

3.1 UPnP Solver

For the UPnP-solver [8] four additional equations were added, which are the
derivatives of the squared unit norm constraint of the quaternion. The solver is
derived for the generalized PnP problem without scale for the minimal case of
three 2d–3d correspondences, but in practice it can be applied to any number.
The derivation of the solver by means of an automatic Gröbner Basis solver
generator requires that the two-fold symmetry of quaternions is considered [15].
It is also necessary to model the input data in a consistent way in Zp. A C++
Version of the final algorithm can be found inside the OpenGV framework3. We
separated the linear parameter elimination step from the actual rotation solver,
so we are able to evaluate them separately.

3.2 DLS/gDLS Solver

The DLS-solver [7] uses the Macaulay-Resultant-Matrix method to solve the
algebraic equations. It uses the Cayley parametrization. The solver returns at
most 27 real solutions.

The solver of gDLS [9] is a transcription of the DLS solver from Matlab code
to C++ using Eigen as math library. Apart from that they are absolutely iden-
tical and we use the gDLS-version for efficiency reasons. It can be found inside
the Theia-Library4. For the evaluations we again separate everything related to
setting up the matrix Mh from the actual solver.

3 http://laurentkneip.github.io/opengv/.
4 http://www.theia-sfm.org/.

http://laurentkneip.github.io/opengv/
http://www.theia-sfm.org/
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3.3 Own Solver for the Homogeneous Case

We also developed an own solver following the main ideas presented by Kneip
et al. [8], but with the difference that it works on the 9× 9 homogeneous matrix
Mh instead of Mi. We used Kukelova’s Automatic Solver Generator [16] for its
derivation. Several modifications were necessary, including the consideration of
the two-fold symmetry of quaternions [15] by working only with polynomials
of even degree. Furthermore, we replaced the default random Zp-instantiation
module with an own that generates ‘noiseless’ integer measurements before a
Gröbner Basis is derived.

Our final solver uses an elimination template matrix of size 184×176. As for
the UPnP-solver the size of the final action matrix is 8 × 8, so our algorithms
also returns at most eight real solutions5.

4 Evaluation

4.1 Accuracy

We conducted several synthetic evaluations for measuring the accuracy of the
solvers. Our focus is on the applicability of our unifying framework presented in
Sect. 2. Therefore, we replace the computation of Mh by our version and only
use the polynomial solvers inside the algorithms (see Sect. 3). The solvers are
denoted by DLS/gDLS (OC) [7,9], UPnP (OC) [8], and own solver (OC)
(Sect. 3.3), where ‘OC’ refers to the substitution with our orthogonal complement
formulation. We only use the raw polynomial solvers, so no root-polishing is
applied on the obtained solutions afterwards (as opposed to the original UPnP
algorithm). For the DLS/gDLS solver which uses the cayley parametrization, we
employ the strategy outlined in Sect. 2.5, i.e. we solve the problem four times,
collect all solutions, and among the duplicates we only keep the ones which
have the smaller error according to Eq. 10. We also apply the same strategy
for the UPnP solver and our own solver, although they do not suffer from the
singularities by the Cayley parameterization. We explain the reason for that in
a separate evaluation below in Sect. 4.2.

General Configurations for Point, Line and Plane Registration. In a
first experiment we analysed the accuracy of the full Euclidean registration with
scale for general geometric configurations.6 We evaluated point-to-point, point-
to-line, and point-to-plane registration separately.

We created the evaluation data by first generating Gaussian distrib-
uted transformed points x

′
k with identity covariance. Given random ground-

truth rotation RGT , translation tGT and scale sGT ∈ [0.1, 10] the inverse

5 Our algorithm and the evaluation framework is available for academic purposes.
Please contact the authors.

6 More evaluations including the classical PnP problem and various degenerate con-
figurations can be found in the supplemental material corresponding to this paper.
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transformation is applied to obtain the reference points xk. The subspace
spanned by a geometric entity and its orthogonal complement are obtained by
partitioning the columns of a random orthogonal matrix into Nk and Vk. On
the subspace a point is chosen as offset point yk. Finally, Gaussian 3d noise is
added to xk, whose covariance was kept fixed to 0.001 times the identity matrix
throughout the evaluation run.

In the experiment we varied the number of input correspondences from which
the matrix Mh was constructed which, in turn, was used as input for the algo-
rithms. We evaluated the mean error of the rotation, translation, and scale with
respect to ground-truth. Figure 2 summarizes the results. It can be seen that it
is possible to successfully estimate the transformation parameters with all three
solvers for point-to-line and for point-to-plane correspondences and with similar
accuracy. This is an important result in several aspects. While Sweeney et al.
[9] demonstrated that DLS-Algorithm can be extended from the classical PnP
Problem to the Generalized PnP Problem with scale, we show here that it can
also be used for registration from point-to-plane constraints. The same is true
for the UPnP-solver, which also has never been used for point-to-plane registra-
tion. In addition, we note that the UPnP-Algorithm was originally proposed to
solve the classical and generalized pose problem with fixed scale. Our evaluations
demonstrate that it can also be used to solve the 7 DoF-problem including the
scale as free parameter.
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Fig. 2. Mean errors of the estimated rotation, translation, and scale for general geo-
metric configurations with varying numbers of input correspondences.
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However, we also observe, that UPnP and gDLS cannot be extended to
point-to-point registration as they fail completely in estimating correct results.
By contrast, our own solver succeeds in this scenario. We compare it to the
algorithm of Umeyama [1] which is the standard algorithm for this case. Both
algorithms are almost identical regarding the accuracy.

4.2 Numerical Stability Under Strong Noise

It has already been observed previously that the numerical stability of the UPnP-
Algorithm degrades for the central case (homogeneous case) when strong noise
is present. Then it may still return very accurate solutions sometimes, but it also
happens more frequently that none of the returned solutions is anywhere near
the correct rotation. When evaluating the median value of the error instead of
the mean value (see [8,14]) the algorithm still showed superior performance.

Fig. 3. Two independent evaluations showing the influence of the true rotation on the
stability of the rotation solvers under strong noise.

We further investigated this behaviour by analysing the stability as a function
of the true rotation. We generated a set of 20 3D point-to-line correspondences
using the identity matrix as initial ground truth rotation. We then added a fairly
large quantity of noise to the data. The magnitude of the noise corresponded
to five pixels standard deviation when projected onto the image plane in the
PnP case. Next we rotated the reference points xk with a smoothly varying
rotation, R0(α). The parameter α was used for the real part q0 and was varied
in the range [0, 1]. The imaginary values were all set to qi =

√
(1 − α2)/

√
3

for i ∈ {1, 2, 3}. The rest of the data, i.e. yk and Nk and the noise, was left
unchanged. For each corresponding matrix Mh(α) we estimate the rotation using
the algorithms from Sect. 3 and evaluated the error with respect to the ground-
truth rotation R0(α). Figure 3 shows two independent evaluations. As expected,
the DLS/gDLS algorithm fails to compute the correct solution near α = 0, which
represents an element in the set of Cayley-degeneracies. The UPnP-solver and
our own also exhibit singularities. As opposed to the Cayley-parameterization
their location is not known in advance. However, as our analysis shows, they are
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also dependent on the rotation. This implies that the stability of these algorithms
can be significantly improved by re-evaluating the problem for different
pre-rotations of the reference points xk, which can be done very efficiently as
shown in Sect. 2.5.

4.3 Runtime Analysis

We evaluated the run-time performance of the algorithms which were all imple-
mented in C++ and executed single threaded with 3.5 GHz clock rate. Figure 4
shows the timings for the linear parameter elimination part inside the gDLS
and UPnP algorithm compared to our orthogonal complement based approach.
We used 2d-3d correspondences from the PnP problem as input. Both version
exhibit linear complexity. For more than 13 input correspondences our approach
is faster up to a factor of approximately 2.5. Table 1 shows the mean execution
times of the different algebraic solvers. The gDLS-solver is fastest and takes less
that 0.9 ms, followed closely by our solver. UPnP is approximately 50% slower
than gDLS.

number of correspondences
3 10 30 100 300 1000 3000 10000 30000 100000

co
m

pu
ta

tio
n 

tim
e 

[s
ec

]

10-4

10-3

10-2

10-1
Timings for linear parameter elimination

M
h
 (gDLS)

Miq (UPnP)

Mh (OC)

M
i
 (OC)

Fig. 4. Computational time of our linear parameter elimination step versus previous
approaches.

Table 1. Mean execution times of the different rotation solvers.

UPnP [8] (Sect. 3.1) gDLS [9] (Sect. 3.2) our solver (Sect. 3.3)

1.299 ms 0.871 ms 0.908 ms

5 Conclusion

We presented a further generalization for Euclidean transformation problems.
We model the point-to-point, point-to-line and point-to-plane constraints using
an orthogonal complement representation, which makes it possible that they
can be used together in one single framework very elegantly and efficiently. Our
formulation also allows to use the different existing algebraic solvers for the
rotation interchangeably, so they can be compared against each other on varying
problems. We also propose an own solver, which additionally solves the case of
point-to-point registration with high precision, where existing solvers failed.



66 F. Wientapper and A. Kuijper

References

1. Umeyama, S.: Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 13, 376–380
(1991)

2. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions.
J. Opt. Soc. Am. (JOSA) 4, 629–642 (1987)

3. Low, K.: Linear least-squares optimization for point-to- plane ICP surface regis-
tration. Technical report TR04-004, University of North Carolina (2004)

4. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,
Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: real-time dense
surface mapping and tracking. In: IEEE Proceedings of International Symposium
on Mixed and Augmented Reality (ISMAR), pp. 127–136 (2011)

5. Olsson, C., Kahl, F., Oskarsson, M.: The registration problem revisited: Optimal
solutions from points, lines and planes. In: IEEE Proceedings of Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 1206–1213 (2006)

6. Olsson, C., Kahl, F., Oskarsson, M.: Branch-and-bound methods for euclidean
registration problems. IEEE Tran. Pattern Anal. Mach. Intell. (PAMI) 31, 783–
794 (2009)

7. Hesch, J.A., Roumeliotis, S.I.: A direct least-squares (DLS) method for PnP. In:
IEEE Computer Society, Los Alamitos (2011)

8. Kneip, L., Li, H., Seo, Y.: UPnP: an optimal O(n) solution to the absolute pose
problem with universal applicability. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 127–142. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-10590-1 9

9. Sweeney, C., Fragoso, V., Höllerer, T., Turk, M.: GDLS: a scalable solution to the
generalized pose and scale problem. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 16–31. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-10593-2 2

10. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518

11. Golub, G.H., Van Loan, C.F.: Matrix computations: Johns Hopkins Studies in the
Mathematical Sciences. The Johns Hopkins University Press, Baltimore (1996)

12. Ventura, J., Arth, C., Reitmayr, G., Schmalstieg, D.: A minimal solution to the gen-
eralized pose-and-scale problem. In: IEEE Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 422–429. IEEE Computer Society,
Los Alamitos (2014)

13. Zheng, Y., Kuang, Y., Sugimoto, S., Åström, K., Okutomi, M.: Revisiting the
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Abstract. Energy-minimization methods are ubiquitous in computer
vision and related fields. Low-level computer vision problems are typi-
cally defined on regular pixel lattices and seek to assign discrete or con-
tinuous values (or both) to each pixel such that a combined data term
and a spatial smoothness prior are minimized. In this work we propose
to minimize difficult energies using repeated generalized fusion moves.
In contrast to standard fusion moves, the fusion step optimizes over
binary and continuous sets of variables representing label ranges. Fur-
ther, each fusion step can optimize over additional continuous unknowns.
We demonstrate the general method on a variational-inspired stereo app-
roach, and optionally optimize over radiometric changes between the
images as well.

1 Introduction

Many computer vision applications rely on finding a most-probable label assign-
ment for each pixel as an important subproblem. The dominant formulation as
a maximum a-posteriori problem leads to a corresponding energy minimization
task, where the energy is typically comprised of per-pixel data terms and smooth-
ness terms defined over small pixel neighborhoods. Often, the admissible set of
labels is naturally continuous or very large and therefore “almost continuous.”
There is a lot of work on approximate discrete inference, which is applicable
for finite label sets, and continuous labeling problems are often solved with dis-
crete methods after discretizing the label space. Continuous labeling problems
with convex energies are relatively easy to solve by standard convex minimiza-
tion methods. Therefore, continuous labeling tasks with non-convex energies are
more interesting and usually much more relevant in applications.

In this work we consider continuous labeling problems with piecewise con-
vex energy, which includes as an important special case truncated convex terms.
Determining a minimizer of such problems can be interpreted as first finding
which of the convex branches is active and subsequent estimation of the con-
tinuous labels. Thus, piece-wise convex energies naturally lead to a discrete-
continuous structure for the unknowns, with the discrete state describing the
convex branch and the continuous labels defining the desired solution. We build
on the convex discrete-continuous (DC-MRF) formulation proposed in [1] for
such problem classes. While in principle this method is directly applicable for a
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 67–81, 2017.
DOI: 10.1007/978-3-319-54193-8 5
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wide class of labeling problems, the computational cost and the quality of the
relaxation can be prohibitive. Therefore we propose to use a generalized fusion
move strategy, and employ the DC-MRF formulation only as a subroutine to
solve each fusion step. In contrast to existing fusion move approaches for solving
continuous labeling problems our generalized fusion move enables (i) the refine-
ment of participating labeling proposals and (ii) allows optimization over addi-
tional continuous unknowns. The first advantage reduces the requirements on
smart proposal generation and—we believe—also decreases the bias introduced
by the exact details of the utilized proposal generation strategy. The second
advantage allows more efficient joint optimization over several sets of unknowns
(such as joint estimation of disparities and radiometric alignment demonstrated
in Fig. 1 and Sect. 7), since (depending on the problem structure) proposals need
only to account for a subset of unknowns.

Fig. 1. Simultaneous estimation of continuous-valued disparity map d(x) and per-pixel
radiometric gain factor γ(x). (a) left image; (b) right image; (c) true disparity; (d)
disparity estimated using 5 × 5 ZNCC and belief propagation using truncated L1-
smoothness prior; (e) estimated disparity d using generalized fusion moves; (f) esti-
mated gain γ. Irregularly shaped shadows and highlights are successfully recovered
without “fattening” at occlusions. As a problem in a multidimensional discrete label
space, this would be intractably large. This paper’s generalized fusion moves allow effi-
cient optimization over non-convex energies in continuous label spaces. Best viewed on
screen.

2 Related Work

Move-making algorithms for discrete labeling problems on loopy graphs are an
efficient alternative to e.g. belief propagation or message-passing methods for
approximate inference. In particular, α-expansion and α-β-swaps [2] are often
employed for low-level computer vision tasks auch as segmentation and stereo.
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The success of move-making algorithms depends on the “richness” of the allowed
moves in each step, and a lot of research is devoted to extending α-expansion and
α-β-swaps to enable more powerful moves (e.g. [3–5]). Note that e.g. α-expansion
is a very restricted move: for each node (pixel) either the current label is kept,
or a node is relabeled to a particular label α. These moves are iterated over all
possible labels α until covergence.

Our work shares a lot of motivation with the “range moves” concept origi-
nally proposed in [6] and refined later in [7–9]: here each move-making step can
keep the current label at a node, or switch to a label out of a contiguous label
range. Thus, each move is much more expressive than e.g. pure α-expansion, but
the pairwise (smoothness) cost in these works is restricted to truncated convex
priors.

For labeling tasks with continuous state spaces (such as computational stereo
and optical flow with subpixel accuracy) the algorithms mentioned above can not
be directly applied. Very often continuous state spaces allow direct energy min-
imization to obtain a labeling (one umbrella term is “variational optical flow”),
but these methods often do not cope well with the highly non-convex structure
of the underlying energy and can return poor local minima. One can expect
to escape such local minima by using a suitable move making algorithm allow-
ing larger update steps in the labeling. To our knowledge the first notion of a
move-making method for continuous labeling problems is the “optimal splicing”
concept introduced in [10], but the general “fusion move” technique was pop-
ularized in [11] (for discrete label spaces) and in [12] (for continuously valued
problems). The underlying idea is simple: two labeling proposals (with underly-
ing discrete or continuous state spaces) are optimally merged to yield a solution
with lower energy. How the two proposals should be optimally merged is sub-
ject to a binary segmentation problem, which usually can be efficiently solved.
These fusion move steps are repeated to obtain label assignments with decreasing
energy. The α-expansion method can now be understood as particular instance
of a fusion move method with the current best solution and a constant labeling
as proposals to merge. The quality of the result clearly depends on the propos-
als: it is e.g. demonstrated in [6,13] that the choice of proposals may introduce a
particular bias in the returned solution even if the optimized energy has no such
bias. If the energy to minimize is differentiable, new proposals can be generated
by gradient steps [14].

Our setting explicitly addresses continuous state spaces, but retains a discrete
domain, e.g. a regular pixel grid with 4-connected neighborhoods. Thus, our
setting is different to move making algorithms for label optimization derived on
continuous image domains such as [15,16].

This work is based on the convex relaxation framework for discrete-
continuous random fields presented in [1,17], which was subsequently generalized
to a larger class of dual objectives [18] and further extended to spatially contin-
uous image domains [19].
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3 Notations and Background

Notations: In the following we use the notations ıC(x) and ı{x ∈ C} to write a
constraint x ∈ C in functional form, i.e. ıC(x) = 0 iff x ∈ C and ∞ otherwise.
Further, we will make extensive use of the perspective of a convex function f :
(x, y) �→ xf(y/x) for x > 0 (see e.g. [20]). We denote the lower semi-continuous
extension of the perspective to the case x = 0 by f�, pronounced “persp f”.
f� can be computed as the biconjugate of the standard perspective, and usually
one obtains f�(0, y) = ı{0}(y). In the context of this work the perspective of a
(convex) function f can be understood as convex extension of the conditional

(x, y) �→

⎧
⎪⎨

⎪⎩

f(y) if x = 1
0 if x = 0
∞ otherwise.

(1)

Further, we denote the unit simplex by Δn
def= {x ∈ [0, 1]n :

∑
i xi = 1}.

We represent an image domain as finite rectangular lattice over pixels s ∈ V
with an edge set E induced by a 4-neighborhood connectivity. Thus, in this
setting the degree deg(s) of a node s, which we are going to use later, is always
four.

The DC-MRF Model: In this section we briefly review the DC-MRF formulation
for inference proposed in [1], which generalizes approximate discrete inference
(discrete state spaces and domains) to continuous-valued label spaces by replac-
ing the standard constant potentials with convex potential functions. For given
families of convex functions {f i

s}s∈V and {gij
st}(s,t)∈E (with i, j ∈ {1, . . . , L}) the

discrete-continuous formulation reads as

EDC-MRF(x,y) =
∑

s,i

(f i
s)�(xi

s, y
i
s) +

∑

(s,t)∈E

∑

i,j

(gij
st)�(xij

st, y
ij
st→s, y

ij
st→t) (2)

subject to the following marginalization and “decomposition” constraints

xi
s =

∑

j

xij
st xj

t =
∑

i

xij
st yi

s =
∑

j

yij
st→s yj

t =
∑

i

yij
st→t, (3)

and simplex constraints xs ∈ ΔL, xst ∈ ΔL2 . The unknown vector x collects the
“pseudo-marginals” (i.e. xst indicates a one-hot encoding of the active poten-
tial function f ij

st state at edge (s, t)). The unknowns y indirectly represent the
assigned continuous labels in the solution, which are actually given by the ratio
y ÷ x (element-wise division). The DC-MRF model is an extension of the stan-
dard local-polytope relaxation for discrete labeling problems by allowing the
unary and pairwise potentials now to be arbitrary piecewise convex functions
with continuous label arguments. The formulation Eq. 2 is used in [1] to model
convex relaxations of non-convex continuous labeling tasks. In particular, the
data term for a continuous labeling problem is allowed to be piecewise convex
instead of globally convex, but the same construction applies to piecewise convex
higher-order potentials.
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3.1 Partial Optimality and Autarkies

In Sect. 5 we will describe an approach to potentially speed up minimization of
instances of EDC−MRF by first solving a simpler surrogate problem, which allows
to fix some (in the ideal case all) xi

s to either 0 or 1 before fully minimizing the
discrete-continuous model. This surrogate problem is a standard (not necessarily
submodular) binary labeling task with at most pairwise potentials. The under-
lying technique in Sect. 5 is heavily inspired by the methods proposed in [21–23]
to certify partial optimality of label assignment for certain discrete inference
problems. In the following exposition we follow in particular [23] (specializing
the notation to the case of binary label spaces L = {0, 1}): if we have two label
assignments k, l : V → L, then we introduce the component-wise minimum k∧ l
and maximum k ∨ l via

(k ∧ l)s = min(ks, ls) (k ∨ l)s = max(ks, ls).

Note with our binary label set these definitions coincide with a component-
wise logical and and logical or. Given two label assignments lmin, lmax such that
lmin
s ≤ lmax

s we define a “clamp” operation for another labeling k

clamp(k; lmin, lmax) def= (k ∨ lmin) ∧ lmax.

A pair of labelings (lmin, lmax) is called a weak autarky, if for all label assignment
k we have

f(clamp(k; lmin, lmax)) ≤ f(k).

If the inequality is strict for all k such that k 	= clamp(k; lmin, lmax), then
(lmin, lmax) forms a strong autarky. Weak autarkies ensure that there exists at
least one optimal solution that is “sandwiched” by lmin and lmax, and strong
autarkies guarantee that every optimal solution lies between lmin and lmax. If
we have a strong autarky available, we can reduce the search space in advance.
For binary labeling problems (as ours), a strong autarky (lmin, lmax) allows to
fix the binary state at nodes s whenever lmin

s = lmax
s . The following two results

are essential for our construction:

Result 1 (Theorem 1 in [23]). Let f = g + h, and let (lmin, lmax) be strong
autarky for g and a weak autarky for h. Then (lmin, lmax) is a strong autarky
for f .

This result is easily verified by checking the strong autarky condition. The fol-
lowing statement provides sufficient conditions for a one-sided autarky to be a
weak one for h:

Result 2 [22,23]. For each s ∈ V let Ks ⊆ L be a subset of states. If h satisfies
(for ls, lt ∈ L, ks ∈ Ks, kt ∈ Kt)

hs(ls ∨ ks) ≤ hs(ls)
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and

hst(ls ∨ ks, lt ∨ kt) ≤ hst(ls, lt),

then (kmin,1) is a weak autarky for h for all kmin ∈ ⊗Ks.

In a nutshell, g are submodular potentials (and therefore efficient to solve for
exactly) constructed from the original potentials f , that in a carefully designed
way favor “smaller” labels (smaller in terms of an arbitrary chosen linear order
of labels). If an optimal labeling k for potentials g returns a “large” label ks at
node s as its optimal choice, then none of the smaller labels ls < ks can appear
at s in an optimal solution for f .

Autarkies are a refined (but computationally also more expensive) variant
of dead-end elimination theorems (e.g. [24] and we refer to [25–27] for dead-end
elimination methods in continuous label spaces).

4 Discrete-Continuous Fusion Moves

Let G = (V, E) be an underlying graph (usually a 4-conntected or 8-connected
grid), and the task is to solve a continuous label assignment problem w.l.o.g.
with at most pairwise terms,

ELabeling(z) =
∑

s∈V
fs(zs) +

∑

(s,t)∈E
gst(zs, zt) (4)

for a node-specific data term fs and an edge-specific smoothness term gst.
If fs and gst can be conveniently written as piecewise convex functions (e.g.
fs(z) = mini∈{1,...,Ns} f̃ i

s(z) with f̃ i
s convex), then the DC-MRF relaxation is in

principle applicable, but this global relaxation might be weak and very expen-
sive to solve. One method to approximately solve a continuous labeling problem
such as ELabeling are fusion moves, which repeatedly merges two proposals with
continuous label values assigned to each pixel. Optimal combination of proposals
is achieved by solving a binary segmentation task in each iteration. Fusion moves
require the exact specification of proposal labelings, and the fusion move itself
does not refine the continuous labels.

In many applications the smoothness term has a parametric, piecewise con-
vex shape with a small number of branches (e.g. truncated linear or quadratic
pairwise costs). Further, the data term can be highly non-parametric (such as
matching costs used in computational stereo and optical flow), but convex sur-
rogate costs valid around a current continuous proposal can often be found (and
such approximations are successfully used in the literature, in particular for
variational optical flow).

We propose to extend the concept of fusion moves in order allow simultaneous
refinement of the continuous labels in addition to the per-node binary decision,
which of the two proposals to select. In the simplest setting we assume that gst

is convex, i.e. non-convexity of the overall problem is introduced only via the
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node-specific data term fs. Further, given two proposal labelings, z̄0 and z̄1, our
problem under consideration is to determine a combined label assignment z, that
is a minimizer of

EFusion(x, z) =
∑

s

∑

i∈{0,1}
xi

sf
i
s(zs) +

∑

(s,t)

∑

i,j∈{0,1}
gst(zs, zt) (5)

such that xi
s ≥ 0, x0

s + x1
s = 1, and the labels zs are “near” to either z̄0s or z̄1s ,

zs ∈
{

[l0s , u
0
s] if x0

s = 1
[l1s , u

1
s] if x1

s = 1

for appropriate intervals [lis, u
i
s] containing z̄i

s. We define f i
s as the restriction

of fs to the range [lis, u
i
s]. In this context being “near” to either z̄i

s (i ∈ {0, 1})
means that f i

s is convex in [lis, u
i
s] and gst is convex in [lis, u

i
s] × [ljs, u

j
s] for all

i, j ∈ {0, 1}. W.l.o.g. we assume that [l0s , u
0
s] and [l1s , u

1
s] are non-overlapping. We

denote by gij
st the restriction of gst to [lis, u

i
s] × [ljs, u

j
s], and obtain

EFusion(x, z) =
∑

s

∑

i∈{0,1}
xi

sf
i
s(zs) +

∑

(s,t)

∑

i,j∈{0,1}
xij

stg
ij
st(zs, zt) (6)

subject to the marginalization constraints on x, xi
s =

∑
j xij

st and xj
t =

∑
i xij

st,
and simplex constraints xs ∈ Δ2, xst ∈ Δ4. This energy is still not convex, and
we use the convex relaxation for piece-wise convex labeling problems proposed
in [1] to arrive at

EDC−Fusion(x,y) =
∑

s

∑

i∈{0,1}
(f i

s)�(xi
s, y

i
s) (7)

+
∑

(s,t)

∑

i,j∈{0,1}
(gij

st)�(xij
st, y

ij
st→s, y

ij
st→t)

subject to the marginalization/decomposition constraints in Eq. 3, and the
respective simplex constraints on x. Recall that the continuous labels z are
represented via the ratios y ÷ x. The convex relaxation can be made stronger
(not necessarily strictly stronger) by moving the unary cost function f i

s to the
pairwise ones [17]. In particular, we evenly distribute f i

s to the adjacent edges,
i.e. we introduce

hij
st

def= gij
st +

1
deg(s)

f i
s +

1
deg(t)

f j
t (8)

and rewrite EDC-Fusion above as

ĔDC−Fusion(x,y) =
∑

(s,t)

∑

i,j∈{0,1}
(hij

st)�(xij
st, y

ij
st→s, y

ij
st→t) (9)

subject to the same constraints. Note that

min
x,y

ĔDC-Fusion(x,y) ≥ min
x,y

EDC-Fusion(x,y),
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since ĔDC-Fusion is a tighter relaxation than EDC-Fusion. Note that the struc-
ture of EDC-Fusion is generally simpler than ĔDC-Fusion (the former has e.g. fewer
constraints). In our examples below the computational advantage of EDC-Fusion

over ĔDC-Fusion turns out to be minimal, consequently we generally employ
the stronger relaxation ĔDC-Fusion in the following unless explicitly noted. Ulti-
mately, either Eq. 7 or 9 is the convex optimization problem to solve in each
discrete-continuous fusion step.

We have described the discrete-continuous fusion moves for a setting where
the unknown at each node/pixel is just a continuous label. These fusion moves
can be immediately generalized to vector-valued labeling problems (as illustrated
in Sect. 7) and even to mixed discrete-continuous state spaces.

Implementation: To our knowledge there is no fast combinatorial algorithm
to minimize either Eq. 7 or 9, and one has to revert to generic methods from
convex optimization. We utilize a first order method [28] due to its simplicity
and relative efficiency to determine a minimizer of the convex programs Eqs. 7
and 9, respectively. The employed method maintains primal and dual variables,
which we found beneficial over purely optimizing a (smoothed) dual as proposed
in [17,18]. Since optimizing EDC-Fusion (or ĔDC-Fusion) may lead to fractional val-
ues for xi

s (which can be understood as a per-pixel soft preference for proposal
i), we determine a suitable threshold to binarize x by sweeping over the [0, 1]
range. The threshold value ρ leading to the smallest original energy is applied.
The label at pixel s in the updated proposal is determined as z̄0s ← y

i∗
s

s /x
i∗
s

s ,
where i∗s = 0 if x0

s ≥ ρ and 1 otherwise.

5 Partial Optimality

Neither EDC-Fusion nor ĔDC-Fusion can be optimized by a fast combinatorial algo-
rithm, and both energies require to our knowledge a generic optimization app-
roach for non-smooth convex problems. Consequently, it can be beneficial, if the
optimal state xi

s of many nodes/pixels can be determined in advance by a faster
method, i.e. before fully optimizing EDC-Fusion. In this section we propose to
solve a surrogate discrete problem with only binary labels in order to commit
early to either x0

s = 1 or x1
s = 1 in EDC-Fusion/ĔDC-Fusion without fully mini-

mizing the full optimization problem. Usually, this early committment will allow
only a subset of pixels to be labeled in advance. Since our surrogate problem is
just a discrete binary segmentation problem with at most pairwise potentials,
this labeling can be solved much faster than EDC-Fusion.
Construction of g: In order to construct a surrogate problem over binary labels,
which allows us to determine a partial labeling (recall Sect. 3.1), we need to
construct submodular potentials g = (gst)st∈E as follows: if for an s ∈ V one has
1 ∈ Ks, then hst has to satisfy the following constrains,

h10
st (zs, zt) ≤ h00

st (z
′
s, z

′
t) ∀(zs, zt) ∈ R10

st , (z′
s, z

′
t) ∈ R00

st

h11
st (zs, zt) ≤ h10

st (z
′
s, z

′
t) ∀(zs, zt) ∈ R11

st , (z′
s, z

′
t) ∈ R10

st ,
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where Rij
st

def= [lis, u
i
s] × [ljt , u

j
t ]. If 1 ∈ Kt, then the following constraints have to

be added,

h01
st (zs, zt) ≤ h00

st (z
′
s, z

′
t) ∀(zs, zt) ∈ R01

st , (z′
s, z

′
t) ∈ R00

st

h11
st (zs, zt) ≤ h01

st (z
′
s, z

′
t) ∀(zs, zt) ∈ R11

st , (z′
s, z

′
t) ∈ R01

st .

If Ks = {0} (i.e. it is already known that state 0 is not part of any optimal
solution at s), then this node does not add any constraints since ls ∨ 0 = ls. We
define

hij
st

def= min
(zs,zt)∈Rij

st

hij
st(zs, zt) h

ij

st
def= max

(zs,zt)∈Rij
st

hij
st(zs, zt)

(similar for f). Dropping the subscript st for clarity, and using h = f − g, the
constraints on h rewritten in terms of g read as

g00 ≤ f00 + min{f01 − f
01

, f10 − f
10}

g01 ≤ f01 + g11 − f
11

g10 ≤ f10 + g11 − f
11

.

Further we have the submodularity constraint, g00 ≤ g01 + g10 − g11. One par-
ticular solution (in analogy to [22,23]) is to assign

g11 = f
11

g01 = f01 g10 = f10

and

g00 = min
{

g01 + g10 − g11, f00 + min
{
f01 − f

01
, f10 − f

10}}
.

Intuitively, g is constructed to be submodular and to “favor” label 0 in its solu-
tion. Thus, if l = (ls)s∈V is the optimal binary labeling for potentials g, then
ls = 1 implies that x1

s = 1 in the fusion move energy EDC-Fusion (assuming that l
is the unique optimal solution for g). We solve the submodular problem induced
by g to fix xs in EDC-Fusion in advance where possible.

6 Example 1: TV-L1-Variational Stereo

The first application demonstrates how the proposed generalized fusion moves
can be used to improve the results of a variational stereo approach. For a given
rectified pair of (grayscale) images IL and IR one is interested in computing a
dense disparity map d such that IL(x) ≈ IR(x+d) for each pixel x (where x+d
is a shorthand notation for x + (d, 0)T ). Variational methods for dense disparity
estimation seek a minimizer of

Estereo(d) =
∫

Ω

φ
(
IL(x) − IR(x + d(x))

)
dx + Ψ(d), (10)
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(a) 37288 (b) 180863 (c) 268329 (d) 67487.2 (e) 324856 (f) 449273

(g) 41983.4 (h) 225823 (i) 592599 (j) 88789.2 (k) 731055 (l) 1775650

Fig. 2. Top row: result of generalized fusion moves. Bottom row: disparity maps
obtained using a variational multi-scale approach. The left three columns use λ = 2L
and the three right ones λ = 5L. We also report the resulting energy values EL1-stereo

below the images.

where φ is a function penalizing intensity differences, and Ψ is the regularization
(smoothness) term. The data term above assumes brightness constancy, and can
be replaced by different expressions. Even if φ and Ψ are convex functions, the
energy in Eq. 10 is usually not, since the warped image IR as a function of d,
d �→ IR◦(Id+d), is not convex. Consequently, IR(x+d(x)) is typically linearized
around a current linearization point d̄, i.e.

IR(x + d) ≈ IR(x + d̄) + (d − d̄) · ∇xIR(x + d̄).

In order to cope with the limited validity of the above approximation, typical
variational methods for dense disparity (or dense optical flow) estimation build
on a multi-scale, coarse-to-fine scheme. If we use a linear interpolation to sample
IR at fractional positions, for disparity estimation the above relation is exact,
if d − d̄ is sufficiently bounded. Due to its robustness and simplicity we focus
in the following on the L1 intensity difference as the data term, i.e. φ(·) = | · |.
Further, we employ the total variation regularization for the smoothness term
Ψ , which allows discontinuities in the solution and is still globally convex.

Since we are operating on a discrete domain (a regular pixel grid), the con-
tinuous energy Eq. 10 has a discrete counterpart (with our choice of φ and Ψ),

EL1-stereo(d) =
∑

s

∣
∣IL

s − IR(s + ds)
∣
∣ + ‖�d‖1 , (11)

where � is a discrete gradient operator (e.g. computed via finite differences). If
we add respective bounds constraints on ds for all s (which depend on the current
linearization point d̄) the energy in Eq. 11 is convex (it is even a linear program
with our choice of the data and smoothness terms). If we knew a linearization
point d̄ close to an optimal solution in advance, then minimzing Estereo would
just return a refined (and optimal) disparity map d. We do not have a good
disparity map d̄ available, but we can hypothesize any d̄1 and try to merge
good aspects of d̄1 into our current best solution d̄0.
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Let δ be the radius of the “trust region”, where the linearization of image
intensities holds. If linear interpolation is used to sample from IR, then δ = 0.5
pixels. One DC fusion move amounts to solve (note that y = x � d with d our
desired continuous labeling)

EL1-stereo-fusion(x,y) =
∑

s,t

∑

i,j∈{0,1}
(hij

st)�(xij
st, y

ij
st→s, y

ij
st→t) (12)

s.t. xi
s = xi0

st + xi1
st xj

t = x0j
st + x1j

st

yi
s = yi0

st→s + yi1
st→s yj

t = y0j
st→t + y1j

st→t

and x0
s + x1

s = 1, x ≥ 0, where

hij
st(ds, dt) =

λ

deg(s)

∣
∣IR

s + (ds − d̄i
s)∇xIR

s − IL
s

∣
∣

+
λ

deg(t)

∣
∣IR

t + (dt − d̄j
t )∇xIR

t − IL
t

∣
∣

+ |ds − dt| + ı[−δ,δ]2

(
ds − d̄i

s, dt − d̄j
t

)
. (13)

The perspective of the above function actually appearing in Eq. 12 is

(hij
st)�(x, ys, yt)=

λ

deg(s)

∣
∣x(IR

s − d̄i
s∇xIR

s − IL
s ) + ys∇xIR

s

∣
∣

+
λ

deg(t)

∣
∣x(IR

t − d̄j
t∇xIR

t − IL
t ) + yt∇xIR

t

∣
∣

+ |ys − yt| + ı≥0(x)

+ ı{ys ∈ x[d̄i
s − δ, d̄i

s + δ], yt ∈ x[d̄j
t − δ, d̄j

t + δ]}.

Each fusion step minimizes Eq. 12. We initialize one proposal as local best-cost
solution using absolute intensity differences, and the merged proposals are con-
stant but integral disparity hypotheses in a random order. The results shown in
the numerical experiments are obtained after one full round of fusion moves, i.e.
after L fusion steps. L is the maximum disparity. Figure 2 compares the results of
optimizing EL1-stereo via the proposed generalized fusion moves with the results
obtained by direct variational minimization using a coarse-to-fine framework and
frequent relinearization (warping) steps (20 per image pyramid level in our test).
We chose λ = 2L and λ = 5L in EL1-stereo (in order to compensate for varying
number of disparities). Direct variational methods optimizing the non-convex
energy EL1-stereo work well in some cases (especially with strong smoothness
terms), but have difficulties in recovering from mistakes at coarser levels and are
generally prone to miss finer details.

7 Example 2: Towards a Generative Model for Stereo

In this section we consider a stereo problem similar to the formulation in the
previous section, but we explicitly allow radiometric differences between the
images. Radiometric changes are usually addressed in computational stereo by
using an appropriately invariant similarity measure such as zero-mean NCC,
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the census transform or mutual information (see e.g. [30]). In this section we
take a similar path as e.g. [31] by jointly determining a disparity map and
radiometric alignment between images. Consequently, we still employ a local,
pixel-wise similarity cost,

∣
∣γsI

L
s − IR(s + ds)

∣
∣ , (14)

where γs is a spatially varying radiometric gain to compensate illumination and
exposure differences between IL and IR. Note that a spatial prior on γs is needed
to avoid a nontrivial solution. The advantage of retaining a pixel-wise matching
cost is e.g. that the typical “foreground fattening” effect [32] of radiometrically
robust but patch-based matching costs is avoided. In order to keeps matters
simple, we do not aim for a fully generative model and consequently do not
optimize over an additional latent “clean” image I∗. As with the disparity map
d our prior assumption is that γ is bounded from above and below, and that γ is
piecewise constant. Hence, we extend Eq. 12 such that there are two continuous
unknowns per pixel, the disparity ds and the gain compensation γs:

EL1-stereo++-fusion(x,y,g) =
∑

s,t

∑

i,j∈{0,1}
(hij

st)�(xij
st, y

ij
st→s, y

ij
st→t, g

ij
st→s, g

ij
st→t)

(15)

such that

xi
s = xi0

st + xi1
st xj

t = x0j
st + x1j

st

yi
s = yi0

st→s + yi1
st→s yj

t = y0j
st→t + y1j

st→t

gi
s = gi0

st→s + gi1
st→s gj

t = g0j
st→t + g1j

st→t

and x0
s + x1

s = 1, x ≥ 0, where (hij
st)� is the perspective of

hij
st(ds, dt, γs, γt) =

λ

deg(s)

∣
∣IR

s + (ds − d̄i
s)∇xIR

s − γsI
L
s

∣
∣

+
λ

deg(t)

∣
∣IR

t + (dt − d̄j
t)∇xIR

t − γtI
L
t

∣
∣

+ |ds − dt| + α|γs − γt|
+ ı[−δ,δ]2

(
ds − d̄i

s, dt − d̄j
t

)
+ ı[γmin,γmax]2(γs, γt). (16)

Observe that we do not prefer a particular value of γs since we use a uni-
form prior in the range [γmin, γmax]. In our experiments we set γmin = 1/4 and
γmax = 4.

In Fig. 3 we show estimated depth maps for radiometrically varying bench-
mark data [30] using the same low resolution setup as in [29]. Our approach
is able to optimize the standard resolution of the benchmark data as displayed
in Fig. 1. All results are generated with fixed values λ = 2L (where L is the
maximum disparity) and α = 50. We use L = 80 in Fig. 1 and L = 40 in Fig. 3.
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Fig. 3. Joint estimation of disparities and brightness changes and a comparison to [29].
(a) left image; (b) right image; (c) true disparity; (d) estimated disparity d using
generalized fusion moves; (e) result from [29]; (f) disparity estimated using 5×5 ZNCC
and belief propagation using truncated L1-smoothness prior. Best viewed on screen.

8 Conclusion and Future Work

In this work we generalize standard fusion moves—which optimally merge two
given proposals—to fusion moves that may refine the proposals and which can
optimize over additional continuous latent variables. Consequently, the proposal
labelings provided in each fusion step can be inexact, which reduces the burden
on smart proposal generation techniques. Additionally, the generalized fusion
moves allow inclusion of extra continuous unknowns into the energy to be min-
imized without the need of including these into the proposal labelings (Fig. 4).

Fig. 4. Comparison between the weaker relaxation EDC-Fusion (a, b) and the stronger
one ĔDC-Fusion (c, d) for TV-L1 stereo. (b, d) illustrate the solution {x1

s}s∈V for a partic-
ular fusion move, which ideally should be binary. (b) is less binary than (d), but in this
case the returned label assignments (a, c) are very similar (in their visual appearances
and final energies).

The proposed discrete-continuous fusion moves are very efficient in terms
of memory consumption, but the optimization task is expensive compared to a
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combinatorial discrete fusion move (the run-times range from minutes to hours
depending on the problem instance). On the other hand, each move can do
much more work, so the total number of fusions is expected to be lower. In
contrast to discrete labelling solutions, however, the first order methods typically
employed to minimize convex problems are trivially data parallel and amenable
to GPU implementation. We also conducted initial experiments to utilize an
early committment approach based on a variant for partial optimality [22,23],
but unfortunately most pixels remained unlabeled. Investigating into refined
formulations of partial optimality in a discrete-continuous context is left for
future work. Another interesting direction for future research is a quantitative
analysis of how the proposal generation influences the effective labeling prior.
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19. Möllenhoff, T., Laude, E., Moeller, M., Lellmann, J., Cremers, D.: Sublabel-
accurate relaxation of nonconvex energies. In: Proceedings of CVPR (2016)
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Abstract. Recent study shows successful results in generating a proper
language description for the given image, where the focus is on detect-
ing and describing the contextual relationship in the image, such as the
kind of object, relationship between two objects, or the action. In this
paper, we turn our attention to more subjective components of descrip-
tions that contain rich expressions to modify objects – namely attribute
expressions. We start by collecting a large amount of product images
from the online market site Etsy, and consider learning a language gen-
eration model using a popular combination of a convolutional neural net-
work (CNN) and a recurrent neural network (RNN). Our Etsy dataset
contains unique noise characteristics often arising in the online market.
We first apply natural language processing techniques to extract high-
quality, learnable examples in the real-world noisy data. We learn a gen-
eration model from product images with associated title descriptions,
and examine how e-commerce specific meta-data and fine-tuning improve
the generated expression. The experimental results suggest that we are
able to learn from the noisy online data and produce a product descrip-
tion that is closer to a man-made description with possibly subjective
attribute expressions.

1 Introduction

Imagine you are a shop owner and trying to sell a handmade miniature doll.
How would you advertise your product? Probably giving a good description is
one of the effective strategies. For example, stating Enchanting and unique fairy
doll with walking stick, the perfect gift for children would sound more appealing
to customers than just stating miniature doll for sale. In this paper, we consider
automatically generating good natural language descriptions for product images
which have rich and appealing expressions.

Natural language generation has become a popular topic as the vision com-
munity makes a significant progress in deep models to generate a word sequence
given an image [12,27]. Existing generation attempts focus mostly on detecting
and describing the contextual relationship in the image [18], such as a kind
of object in the scene (e.g., a man in the beach) or the action of the sub-
ject given a scene (e.g., a man is holding a surfboard). In this paper, we turn
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 85–100, 2017.
DOI: 10.1007/978-3-319-54193-8 6
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our attention to generating proper descriptions for product images with rich
attribute expressions.

Attributes have been extensively studied in the community [3,14,23]. Typical
assumption is that there are visually recognizable attributes, and we can build a
supervised dataset for recognition. However, as we deal with open-world vocab-
ulary on the web, we often face much complex concepts consisting of phrases
rather than a single word. The plausible approach would be to model attributes
in terms of a language sequence instead of individual words. The challenge is that
attribute expressions can be subjective and ambiguous. Attribute-rich expres-
sions, such as antique copper flower decoration, or enchanting and unique fairy
doll, require higher-level judgement on the concept out of lower-level appearance
cues. Even humans do not always agree on the meaning of abstract concepts,
such as coolness or cuteness. The concept ambiguity brings a major challenge in
building a large-scale corpus of conceptually obscure attributes [20,29].

We attempt to learn attribute expressions using large-scale e-commerce data.
Product images in e-commerce websites typically depict a single object without
much consideration to the contextual relationship within an image, in contrast
to natural images [18,21,25]. Product descriptions must convey, specific color,
shape, pattern, material, or even subjective and abstract concepts out of the
single image with a short title, or with a longer description in the item detail for
those interested in buying the product, e.g., Beautiful hand felted and heathered
purple & fuschia wool bowl. Although e-commerce data look appealing in terms
of data availability and scale, descriptions and meta-data such as tags contain
web-specific noise due to the nature of online markets, such as fragmented texts
for search optimization or imbalance of distribution arising from shop owners.
Naively learning a generation model results in poor product description, e.g.,
made to order. In this paper, we apply natural language processing to extract
images and texts suitable for learning a generation model.

Our language generation model is based on the popular image-to-sequence
architecture consisting of a convolutional neural network (CNN) and a recurrent
neural network (RNN) [12,27]. We learn a generation model using the product
images and associated titles from the pre-processed dataset, and show that we are
able to generate a reasonable description to the givenproduct image.Wealso exam-
ine how e-commerce meta-data (product category) and optimization to the dataset
(fine-tuning) affect the generation process. We annotate a handful of images
using crowdsourcing and compare the quality of generated attribute expressions
using machine translation metrics. The results suggest that e-commerce meta-data
together with fine-tuning generate a product description closer to human.

We summarize our contribution in the following.

– We propose to learn attributes in the form of natural language expression,
to deal with the exponentially many combination of open-world modifier
vocabulary.

– We collect a large-scale dataset of product images from online market Etsy,
as well as human annotation of product descriptions using crowdsourcing for
evaluation purpose. We release data to the academic community1.

1 http://vision.is.tohoku.ac.jp/∼kyamagu/research/etsy-dataset.

http://vision.is.tohoku.ac.jp/~kyamagu/research/etsy-dataset
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– We propose a simple yet effective data cleansing approach to transform
e-commerce data into a corpus suitable for learning.

– Our empirical study shows that our model can generate a description with
attribute expressions using noisy e-commerce data. The study also suggests
utilizing e-commerce meta-data can further improve the description quality.

2 Related Work

Language Generation. Generating a natural language description from the
given image has been an active topic of research in the vision community
[6,11,12,21,27,28]. Early attempts have used retrieval-based approach to gener-
ate a sentence [11,21], and recently a deep-learning approach becomes a popular
choice. For example, Vinyals et al. [27] shows that they can generate a high-
quality language description of the scene image using a combination of a CNN
and a RNN. Karpathy et al. [12] also shows that their model can generate par-
tial descriptions of given image regions, as well as a whole image. Antol et al. [1]
studies a model which is able to generate sentences in answer to various questions
about given images.

In this paper, we are interested in generating a natural language expression
that is rich in attribute. Previous work mostly focuses on natural images where
the major goal is to understand the scene semantics and spatial arrangement,
and produce an objective description. The closest to our motivation is perhaps
the work by Mathews et al. [20] that studies a model to generate more expressive
description with sentiment. They build a new dataset by asking crowd workers
to re-write description of images contained in MS-COCO, and report successful
generation with sentiment, for instance, beautiful, happy, or great. We take a
different approach of utilizing e-commerce data to build an attribute-rich corpus
of descriptions.

Attribute Recognition. Semantic or expressive attributes have been actively
studied in the community as a means of ontological entity [16] or localizable
visual elements [3], expecting that these semantic information can be useful for
many applications. In this work, we consider attribute expressions as a natural
language description that modifies an object (specifically, a product) and conveys
details possibly with abstract words. The attribute expressions are from open-
world vocabulary in the real-world e-commerce data. In that sense, we have
a similar spirit to weakly supervised learning [5,9,24]. We propose to use a
sequence generation model rather than attempting to learn a classifier from
exponentially many combinations of attribute expressions.

Vision in E-Commerce. Several attempts have been made to apply computer
vision in e-commerce applications [7,8,13,14,19], perhaps for the usefulness in a
specific scenario such as better user experience in retrieval or product recommen-
dation. The earlier work by Berg et al. [3] propose a method of automatic visual
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attribute discovery using web data, specifically product images from shopping
websites. Our work has the same motivation that we wish to learn language
description of attributes from the e-commerce data, though we use variety of
products and try to capture abstract attributes using language generation model.
Very recently, Zakrewsky et al. [30] reports an attempt of popularity prediction
of products offered in Etsy. The results suggest the potential usefulness of image
feature for selling strategies, such as advertisement.

3 Language Generation Model

Our language generation is based on the combination of convolutional neural
networks (CNN) to obtain image representation and recurrent neural networks
(RNN), using LSTM cells to translate the representation into a sequence of words
[12,27,32]. In addition to the image input, we also consider inserting e-commerce
meta-data to the RNN. In this paper, we utilize the category of product as extra
information available in the e-commerce scenario, and feed into the RNN as a
one-hot vector. Note that each product could have more than one category, such
as a main category and sub categories, but in this paper we use only the main
category for simplicity. Figure 1 illustrates our generation model.

Fig. 1. Our language generation model combining CNN and RNN.

Let us denote the input product image I’s feature by zv = CNN (I), the one-
hot vector of the product category in meta-data by zc, and the one-hot vector
of the currently generated word at description position t by xt. Our sequence
generator is then expressed by:

Hin =

{
[1;Whi [zv; zc] ;0] (t = 1)
[1;Whxxt;ht−1] (otherwise)

(1)

(i, f, o, g) = WLSTMHin, (2)
ct = f � ct−1 + i � g, (3)
ht = o � tanh(ct), (4)
yt = softmax(Wohht + bo), (5)

where Whi,Whx,WLSTM ,Woh, bo are weights and biases of the network. We learn
these parameters from the dataset. Gates i, f, o, g are controlling whether each
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input or output is used or not, allowing the model to deal with the vanishing
gradient problem. We feed the image and category input only at the beginning.
The output yt represents an unnormalized probability of each word, and has
the length equal to the vocabulary size + 1 to represent a special END token to
indicate the end of a description.

To learn the network, we use product image, title and category information.
The learning procedure starts by setting h0 = 0, y1 to the desired word in the
description (yt = y1 indicates the first word in the sequence), and x1 to a special
START symbol to indicate the beginning of the sequence. We feed the rest of the
words from the ground truth until we reach the special END token at the end.
We learn the model to maximize the log probability in the dataset. At test time,
we first set h0 = 0, x1 to the START token, and feed the image representation zv
with the category vector zc. Once we get an output, we draw a word according
to yt and set the word to xt, the word predicted at the previous step (so when
t � 2, each xt is yt−1). We repeat the process until we observe the END token.

When training, we use Stochastic Gradient Descent, set the initial learning
rate to 1.0e-3, and lower as the process iterates. In this paper, we do not back-
propagate the gradient to CNN and separately train CNN and RNN. We evaluate
how different CNN models perform in Sect. 5.

4 Building Corpus from E-Commerce Data

We collect and build the image-text corpus from the online market site Etsy. We
prepare pairs of a product image and title as well as product meta-data suitable
for learning attribute expressions. The challenge here is how to choose good
descriptions for learning. In this section, we briefly describe the e-commerce data
and our approach to extract useful data using syntactic analysis and clustering.

4.1 E-Commerce Data

Etsy is an online market for hand-made products [31]. Figure 2 shows some
examples of product images from the website. Each listing contains various infor-
mation, such as image, title, detailed description, tags, materials, shop owner,
price, etc. We crawled product listings from the website and downloaded over
two million product images.

We apply various pre-processing steps to transform the crawled raw data into
a useful corpus to learn attribute expressions. Note that this semi-automated
approach to build a corpus is distinct from the previous language generation
efforts where the approach is to start from supervised dataset with clean annno-
tations [18]. Our corpus is from the real-world market, and as common in any
Web data [21,25], the raw listing data from Etsy contain a lot of useless data for
learning, due to a huge amount of near-duplicates and inappropriate language
use for search engine optimization. For example, we observed the following titles:

– Army of two Airsoft Paintball BB Softair Gun Prop Helmet Salem Costume
Cosplay Goggle Mask Maske Masque jason MA102 et
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Fig. 2. Product data in Etsy dataset.

– teacher notepad set - bird on apple/teacher personalized stationary/
personalized stationery/teacher notepad/teacher gift/notepad.

Using such raw data to learn a generation model results in poor language quality
in the output.

4.2 Syntactic Analysis

One common observation in Etsy is that there are fragments of noun phrases,
often considered as a list of keywords targeting at search engine optimization.
Although generating search-optimized description could be useful in some appli-
cation, we are not aiming at learning keyword fragments in this paper. We
attempt to identify such fragmented description by syntactic analysis.

We first apply Stanford Parser [4] and estimate part-of-speech (POS) tags,
such as noun or verb, for each word in the title. In this paper, we define mal-
formed descriptions by the following criteria:

– more than 5 noun phrases in a row, or
– more than 5 special symbols such as slash, dash, and comma.

Figure 3 shows a few accepted and rejected examples from Etsy data. Note that
due to the discrepancy between our Etsy titles and the corpus Stanford Parser is
trained on, we found even the syntactic parser frequently failed to assign correct
POS tags for each word. We did not apply any special pre-processing for such
cases since most of the failed POS tagging resulted in the sequence of nouns,
which in turn leads to reject.

4.3 Near-Duplicate Removal

Another e-commerce specific issue is that there is a huge amount of near-
duplicates. Near-duplicates are commonly occurring phenomena in web data.
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peppermint tangerine
and hemp lip balms 

coffee bag backpack green jadeite jade beaded
natural green white color 
beads size 8mm charm 
necklace 

(a) Syntactically accepted

chunky pink and purple 
butterfly cuddle critter 
cape set newborn to 3 
months photo prop 

travel journal diary 
notebook sketch book - 
keep calm and go to 
canada - ivory 

texas license plate bird 
house 

(b) Syntactically rejected

Fig. 3. Accepted and rejected examples after syntactic analysis. Some products have
grammatically invalid title due to the optimization to search engine. (Color figure
online)

Here, we define near-duplicate items as products whose titles are similar and
differ only in a small part of the descriptions such as shown in Table 1. Those
near-duplicates add a strong bias towards specific phrasing and affect the quality
of the generated description. Without a precaution, the trained model always
generates a similar phrase for any kind of images. In Etsy, we observe near-
duplicates among the products offered by the same shop and listed in the same
kind of categories, such as a series of products under the same category, as shown
in Table 1. We find that such textual near-duplicates also exhibit visually similar
appearance. Note that near-duplicates can happen for visually similar items but
with different description, such as items under the same category but from a
different shop. However, we find that such cases are considerably rare compared
to the textual near-duplicates in Etsy, perhaps due to the nature of a hand-made
market where majority of products are one-of-a-kind.

We automatically identify near-duplicates using shop identity and title
description. We apply the following procedure to sub-sample product images
from the raw online data.
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Table 1. Examples of near-duplicate products.

CUSTOM iPad SLEEVE 1, 2,
New, 3 Black Chevron Lime
Green Personalized Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Light Pink Chevron Gray
Fancy Script PERSONALIZED
Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Black Damask Hot Pink
Personalized Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Dark Blue Lattice Lime
Green PERSONALIZED Mono-
gram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Blue Diagonal Green
PERSONALIZED Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Light Blue Orange Floral
Pattern Teal PERSONALIZED
Monogram

1. Group products if they are sold by the same shop and belonging to the same
category.

2. For each group, measure the similarity of the descriptions between all pairs
within the group.

3. Depending on the pairwise similarity, divide the group into sub-groups by
DBSCAN clustering.

4. Randomly sub-sample pre-defined number of product images from each sub-
group.

Our approach is based on the observation that the same shop tend to sell near-
duplicates. We divide products into sub-groups to diversify the variation of
descriptions. We divide the group into sub-groups based on thresholding on
the Jaccard similarity:

JG =
S1 ∩ S2 · · · ∩ Sn

S1 ∪ S2 · · · ∪ Sn
, (6)

where Si represents a set of words in the title description. Low-similarity within
a cluster indicates the group contains variety of descriptions, and consists of sub-
tly different products. We apply Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [10] implemented in sklearn to obtain sub-clusters.
Figure 4 shows an example of groups. The purpose of the sub-sampling approach
is to trim excessive amount of similar products while keeping variety.

After clustering, we randomly pick a certain number of products from each
cluster. We determine the number of samples per cluster KG using the following
threshold:

KG =
1
N

m∑

k=1

nk + σ. (7)
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Fig. 4. Near-duplicates clustering. Our clustering only uses meta-data and textual
descriptions to identify near-duplicates, but the resulting clusters tend to be visually
coherent.

Here, N is the total number of the groups, nk is the number of the products in
the group k and σ is the standard deviation of the distribution of the number of
products in the whole groups. We leave out some of the products if the number
of products in a certain group or a subgroup is far above the average. After the
sub-sampling process, all kinds of products should have been equally distributed
in the corpus.

Out of over 2 million products from the raw Etsy products, we first selected
400k image-text pairs by syntactic analysis, and applied near-duplicate removal.
We obtained approximately 340k product images for our corpus. We take 75% of
the images for training and reserved the rest (25%) for testing in our experiment.
We picked up 100 images from testing set for human annotation, and did not
use for quantitative evaluation due to the difficulty in obtaining ground truth.

5 Experiment

We evaluate our learned generation model by measuring how close the generated
expressions are to human. For that purpose, we collect human annotations to
a small number of testing images and measure the performance using machine-
translation metrics.

5.1 Human Annotation

We use crowdsourcing to collect human description of the product images. We
designed a crowdsourcing task to describe the given product image. Figure 5
depicts our annotation interface. We asked workers to come up with a descriptive
and appealing title to sell the given product. During the annotation task, we
provide workers the original title and the category information to make sure
they understand what kind of products they are trying to sell. We used Amazon
Mechanical Turk and asked 5 workers per image to collect reference descriptions
for 100 test images. As seen in Fig. 5, our images are quite different from natural
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Fig. 5. Crowdsourcing task to collect human description.

scene images. Often we observed phrases rather than a complete sentence in
the human annotation. This observation suggests that the essence of attribute
expression is indeed in the modifiers to the object rather than the recognition
of subject-verb relationships.

5.2 Evaluation Metrics

We use seven metrics to evaluate the quality of our generated descriptions:
BLEU-1 [22], BLEU-2, BLEU-3, BLEU-4, ROUGE [17], METEOR [2], and
CIDEr [26]. These metrics have been widely used in natural language process-
ing, such as machine translation, automatic text summarization, and recently in
language generation. Although our goal is to produce attribute-aware phrases
but not necessarily sentences, these metrics can be directly used to evaluate
our model using the reference human description. BLEU-N evaluates descrip-
tions based on precision on N-grams, ROUGE is also based on N-grams but
intended for recall, METEOR is designed for image descriptions, and CIDEr is
also proposed for image descriptions and using N-gram based method. We use
the coco-caption implementation [26] to calculate the above evaluation metrics.

5.3 Experimental Conditions

We use AlexNet [15] for the CNN architecture of our generation model, and
extract a 4,096 dimensional representation from fc7 layer given an input image
and its product category. In order to see how domain-knowledge affects the
quality of language generation, we compare a CNN model trained on ImageNet,
and a model fine-tuned to predict 32 product categories in Etsy dataset. Our
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recurrent neural network consists of a single hidden layer with 4,096 dimensional
image feature and a 32 dimensional one-hot category indicator for an input. We
use LSTM implementation of [12]. We compare the following models in the
experiment.

– Category+Fine-tune: Our proposed model with a fine-tuned CNN and a
category vector for RNN input.

– Category+Pre-train: Our proposed model with a pre-trained CNN and a
category vector for RNN input.

– Fine-tune: A fine-tuned CNN with RNN without a category vector.
– Pre-train: A pre-trained CNN with RNN without a category vector.
– MS-COCO: A reference CNN+RNN model trained on MS-COCO

dataset [18] without any training in our corpus.

We include MS-COCO model to evaluate how domain-transfer affects the quality
of generated description. Note that MS-COCO dataset contains more objective
descriptions for explaining objects, actions, and scene in the given image.

5.4 Quantitative Results

We summarize the performance evaluation in Table 2. Note that all scores are
in percentage. Our Category+Fine-tune model achieves the best performance,
except for BLEU-3 and BLEU-4, in which Fine-tune model achieves the best. We
suspect overfitting happened in the Fine-tune only case where the model learned
to predict certain 3- or 4-word phrases such as Made to order, some happened
to be unexpectedly correct, and resulted in the sudden increase BLEU increase.
However, we did not observe a similar improvement in other scores, such as
ROUGE or CIDEr. We conjecture this possibly-outlier result could be attributed
to BLEU’s evaluation method.

From the result, we observe that introducing the category vector has the
largest impact on the description quality. We assume that category information
supplements semantic knowledge in the image feature even if the category is
not apparent from the product appearance, and that results in stabler language
generation for difficult images. Note that in the e-commerce scenario, meta-data
are often available for free without expensive manual annotation.

Table 2. Evaluation results.

Method Bleu1 Bleu2 Bleu3 Bleu4 Rouge Meteor CIDEr

Category+Fine-tune 15.1 6.55 2.58× 10−5 5.56× 10−8 12.9 4.69 11.2

Category+Pre-train 9.43 3.72 1.65× 10−5 3.74× 10−8 9.74 3.70 8.01

Fine-tune 8.95 3.94 2.03× 100 3.06× 10−4 4.98 2.24 1.88

Pre-train 8.77 3.26 1.50× 10−5 3.50× 10−8 9.32 3.36 6.87

MS-COCO 1.01 2.13 8.30× 10−6 1.70× 10−8 8.31 2.40 2.79
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The difference between Pre-train and Fine-tune models explains how domain-
specific image feature contributes to better learning and helps the model to gen-
erate high-quality descriptions. The result indicates that a pre-trained CNN is
not sufficient to capture the visual patterns in Etsy dataset. MS-COCO base-
line is performing significantly worse than other models, indicating that the gen-
eral description generated by MS-COCO is far from attribute-centric description
in product images. There is a significant difference between descriptions in the
MS-COCO dataset and our Etsy corpus. The former tends to be complete, gram-
matically correct descriptions focusing on the relationship between entities in the
scene, whereas Etsy product titles tend to omit a verb and often do not require
recognizing spatial arrangement of multiple entities. A product description can
be a fragment of phrases as seen in the actual data, and a long description can
look rather unnatural.

5.5 Qualitative Results

Table 3 shows examples of generated descriptions by different models as well as
the original product titles. Fine-tune+category model seems to have generated
better expressions while other methods sometimes fail to generate meaningful
description (e.g., custom made to order). MS-COCO model is generating signifi-
cantly different descriptions, and always tries to generate a description explaining
types of objects and the relationship among them.

Our model generates somewhat attribute-centric expressions such as needle
felted or primitive. Especially the latter expression is relatively abstract. These
examples confirms that at least we are able to automatically learn attribute
expressions from noisy online data. The descriptions tend to be noun phrases.
This tendency is probably due to the characteristics of e-commerce data contain-
ing phrases rather than a long, grammatically complete sentences. Our genera-

Table 3. Comparison of generated descriptions.

CUSTOM iPad SLEEVE 1, 2,
New, 3 Black Chevron Lime
Green Personalized Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Light Pink Chevron Gray
Fancy Script PERSONALIZED
Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Black Damask Hot Pink
Personalized Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Dark Blue Lattice Lime
Green PERSONALIZED Mono-
gram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Blue Diagonal Green
PERSONALIZED Monogram

CUSTOM iPad SLEEVE 1, 2,
New, 3 Light Blue Orange Floral
Pattern Teal PERSONALIZED
Monogram
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reclaimed wood coffee ta-
ble

handmade journal note-
book

watercolor painting of
moai statues at sunset

crochet barefoot sandals
with flower

hand painted ceramic
mug

I’m going to be a big
brother t-shirt

Fig. 6. Examples of generated descriptions. Our model correctly identifies attribute
expressions (left 2 columns). The rightmost column shows failure cases due to corpus
issues.

tion results correctly reflect this characteristics. Figure 6 shows some examples
of generated descriptions by our model (category+fine-tune). Our model pre-
dicts attribute expressions such as reclaimed wood or hand-painted ceramic. We
observe failure due to corpus quality in some categories. For example, the paint-
ing or the printed t-shirts in Fig. 6 suffer from bias towards specific types of
products in the category. Sometimes our model gives a better description than
the original title. For example, The middle in Table 3 shows a product entitled
Rooted, but it is almost impossible to guess the kind of product from the name,
or maybe even from the appearance. Our model produces art print for this exam-
ple, which seems to be much easier to understand the product kind and closer
to our intuition, even if the result is not accurate.

6 Discussion

In this paper, we used a product image, a title and category information to gen-
erate a description. However, there is other useful information in the e-commerce
data, such as tags, materials, or popularity metrics [31]. Especially, a product
description is likely to have more detailed information about the product, with
many attribute-like expressions having plenty of abstract or subjective words.
E-commerce dataset looks promising in this respect since sellers are trying to
attract more customers by “good” phrases which have a ring to it.
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If we are able to find attribute expressions in the longer product description,
we can expand our image-text corpus to a considerably larger scale. The chal-
lenge here is that we then need to identify which description is relevant to the
given image, because product descriptions contain irrelevant information also.
For example, in Etsy, a product often contains textual description on shipping
information. For a preliminary study, we applied a syntactic parser on Etsy
product descriptions, but often observed an error in a parse tree, due to gram-
matically broken descriptions in item listings. Identifying which description is
relevant or irrelevant seems like an interesting vision-language problem in the
e-commerce scenario.

Finally, in this paper we left tags and material information in the item list-
ings in Etsy dataset. These meta-data could be useful to learn a conventional
attribute or material classifier given an image, or to identify attribute-specific
expressions in the long product description.

7 Conclusion and Future Work

We studied the natural language generation from product images. In order to
learn a generation model, we collected product images from the online market
Etsy, and built a corpus to learn a generation model by applying dataset cleans-
ing procedure based on syntactic analysis and near-duplicate removal. We also
collected human descriptions for evaluation of the generated descriptions. The
empirical results suggest that our generation model fine-tuned on Etsy data with
categorical input successfully learns from noisy online data, and produces the
best language expression for the given product image. The result also indicates
a huge gap between the task nature of attribute-centric language generation and
a general scene description.

In the future, we wish to improve our automatic corpus construction from
noisy online data. We have left potentially-useful product meta-data in this
study. We hope to incorporate additional information such as product descrip-
tion or tags to improve language learning process, as well as to realize a new
application such as automatic title and keywords suggestion to shop owners.
Also, we are interested in improving the deep learning architecture to the gen-
erate attribute expressions.
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Abstract. A picture is worth a thousand words. Not until recently, how-
ever, we noticed some success stories in understanding of visual scenes:
a model that is able to detect/name objects, describe their attributes,
and recognize their relationships/interactions. In this paper, we propose
a phrase-based hierarchical Long Short-Term Memory (phi-LSTM) model
to generate image description. The proposed model encodes sentence as
a sequence of combination of phrases and words, instead of a sequence
of words alone as in those conventional solutions. The two levels of this
model are dedicated to (i) learn to generate image relevant noun phrases,
and (ii) produce appropriate image description from the phrases and
other words in the corpus. Adopting a convolutional neural network to
learn image features and the LSTM to learn the word sequence in a
sentence, the proposed model has shown better or competitive results
in comparison to the state-of-the-art models on Flickr8k and Flickr30k
datasets.

1 Introduction

Fig. 1. Complete visual scene under-
standing is a holy grail in computer vision.

Automatic caption/description gener-
ation from images is a challenging
problem that requires a combination
of visual information and linguistic as
illustrated in Fig. 1. In other words, it
requires not only complete image under-
standing, but also sophisticated nat-
ural language generation [1–4]. This is
what makes it such an interesting task
that has been embraced by both the
computer vision and natural language
processing communities.

One of the most common models applied for automatic caption generation
is a neural network model that composes of two sub-networks [5–10], where a
convolutional neural network (CNN) [11] is used to obtain feature representation
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Fig. 2. Model comparison: (a) Conventional RNN language model, and (b) Our pro-
posed phrase-based model.

of an image; while a recurrent neural network (RNN)1 is applied to encode
and generate its caption description. In particular, Long Short-Term Memory
(LSTM) model [12] has emerged as the most popular architecture among RNN,
as it has the ability to capture long-term dependency and preserve sequence.
Although sequential model is appropriate for processing sentential data, it does
not capture any other syntactic structure of language at all. Nevertheless, it
is undeniable that sentence structure is one of the prominent characteristics of
language, and Victor Yngve - an influential contributor in linguistic theory stated
in 1960 that “language structure involving, in some form or other, a phrase-
structure hierarchy, or immediate constituent organization” [13]. Moreover, Tai
et al. [14] proved that a tree-structured LSTM model that incorporates syntactic
interpretation of sentence structure, can learn the semantic relatedness between
sentences better than a pure sequential LSTM alone. This gives rise to question
of whether is it a good idea to disregard other syntax of language in the task of
generating image description.

In this paper, we would like to investigate the capability of a phrase-based
language model in generating image caption as compared to the sequential lan-
guage model such as [6]. To this end, we design a novel phrase-based hierarchical
LSTM model, namely phi-LSTM to encode image description in three stages -
chunking of training caption, image-relevant phrases composition as a vector
representation and finally, sentence encoding with image, words and phrases. As
opposed to those conventional RNN language models which process sentence as
a sequence of words, our proposed method takes noun phrase as a unit in the
sentence, and thus processes the sentential data as a sequence of combination
of both words and phrases together. Figure 2 illustrates the difference between

1 RNN is a popular choice due to its capability to process arbitrary length sequences
like language where words sequence governing its semantic is order-sensitive.
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the conventional RNN language model and our proposal with an example.
Both phrases and sentences in our proposed model are learned with two dif-
ferent sets of LSTM parameters, each models the probability distribution of
word conditions on previous context and image. Such design is motivated by the
observation that some words are more prone to appear in phrase, while other
words are more likely to be used to link phrases. In order to train the proposed
model, a new perplexity based cost function is defined. Experimental results
using two publicly available datasets (Flickr8k [15] and Flickr30k [16]), and a
comparison to the state-of-the-art results [5–7,9,17] have shown the efficacy of
our proposed method.

2 Related Works

The image description generation task is generally inspired by two lines of
research, which are (i) the learning of cross-modality transition or representation
between image and language, and (ii) the description generation approaches.

2.1 Multimodal Representation and Transition

To model the relationship between image and language, some works asso-
ciate both modalities by embedding their representations into a common space
[18–21]. First, they obtain the image features using a visual model like CNN
[19,20], as well as the representation of sentence with a language model such
as recursive neural network [20]. Then, both of them are embedded into a com-
mon multimodal space and the whole model is learned with ranking objective
for image and sentence retrieval task. This framework was also tested at object
level by Karpathy et al. [21] and proved to yield better results for the image
and sentence bi-directional retrieval task. Besides that, there are works that
learn the probability density over multimodal inputs using various statistical
approaches. These include Deep Boltzmann Machines [22], topic models [23],
log-bilinear neural language model [8,24] and recurrent neural networks [5–7]
etc. Such approaches fuse different input modalities together to obtain a uni-
fied representation of the inputs. It is notable to mention that there are also
some works which do not explicitly learn the multimodal representation between
image and language, but transit between modalities with retrieval approach. For
example, Kuznetsova et al. [25] retrieve images similar to the query image from
their database, and extract useful language segments (such as phrases) from the
descriptions of the retrieved images.

2.2 Description Generation

On the other hand, caption generation approaches can be grouped into three
categories in general as below:
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Template-Based. These approaches generate sentence from a fixed template
[26–30]. For example, Farhadi et al. [26] infer a single triplet of object, action
and scene from an image and convert it into a sentence with fixed template.
Kulkarni et al. [27] use complex graph of detections to infer elements in sentence
with conditional random field (CRF), but the generation of sentences is still
based on the template. Mitchell et al. [29] and Gupta et al. [30] use a more
powerful language parsing model to produce image description. In overall, all
these approaches generate description which is syntactically correct, but rigid
and not flexible.

Composition Method. These approaches extract components related to the
images and stitch them up to form a sentence [25,31,32]. Description generated
in such manner is broader and more expressive compared to the template-based
approach, but is more computationally expensive at test time due to its non-
parametric nature.

Neural Network. These approaches produce description by modeling the con-
ditional probability of a word given multimodal inputs. For instance, Kiros et al.
[8,24] developed multimodal log-bilinear neural language model for sentence gen-
eration based on context and image feature. However, it has a fixed window
context. The other popular model is recurrent neural network [5–7,9,33], due to
its ability to process arbitrary length of sequential inputs such as sequence of
words. This model is usually connected with a deep CNN that generates image
features. The variants on how this sub-network is connected to the RNN have
been investigated by different researchers. For instance, the multimodal recur-
rent neural network proposed by Mao et al. [5] introduces a multimodal layer
at each time step of the RNN, before the softmax prediction of words. Vinyals
et al. [6] treat the sentence generation task as a machine translation problem
from image to English, and thus image feature is employed in the first step of
the sequence trained with their LSTM RNN model.

2.3 Relation to Our Work

Automatic image caption generated via template-based [26–30] and composition
methods [25,31,32] are typically two-stage approaches, where relevant elements
such as objects (noun phrases) and relations (verb and prepositional phrases)
are generated first before a full descriptive sentence is formed with the phrases.
With the capability of LSTM model in processing long sequence of words, neural
network based method that uses a two-stage approach deem unnecessary. How-
ever, we are still interested to find out how sequential model with phrase as a
unit of sequence performs. The closest work related to ours is the one proposed
by Lebret et al. [17]. They obtain phrase representation with simple word vector
addition and learn its relevancy with image by training with negative samples.
Sentence is then generated as a sequence of phrases, predicted using a statistical
framework conditioned on previous phrases and its chunking tags. While their
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aim was to design a phrase-based model that is simpler than RNN, we intend
to compare RNN phrase-based model with its sequential counterpart. Hence,
our proposed model generates phrases and recomposes them into sentence with
two sub-networks of LSTM, which are linked to form a hierarchical structure as
shown in Fig. 2(b).

3 Our Proposed phi-LSTM Model

This section details how the proposed method encodes image description in three
stages - (i) chunking of image description, (ii) encode words and phrases into
distributed representations, and finally (iii) encodes sentence with the phi-LSTM
model.

3.1 Phrase Chunking

Fig. 3. Phrase chunking from depen-
dency parse.

A quick overview on the structure of
image descriptions reveals that, key ele-
ments which made up the majority of
captions are usually noun phrases that
describe the content of the image, which
can be either objects or scene. These ele-
ments are linked with verb and preposi-
tional phrases. Thus, noun phrase essen-
tially covers over half of the corpus in
a language model trained to generate
image description. And so, in this paper,

our idea is to partition the learning of noun phrase and sentence structure so that
they can be processed more evenly, compared to extracting all phrases without
considering their part of speech tag.

To identify noun phrases from a training sentence, we adopt the dependency
parse with refinement using Stanford CoreNLP tool [34], which provides good
semantic representation over a sentence by providing structural relationships
between words. Though it does not chunk sentence directly as in constituency
parse and other chunking tools, the pattern of noun phrase extracted is more flex-
ible as we can select desirable structural relations. The relations we selected are:

– determiner relation (det),
– numeric modifier (nummod),
– adjectival modifier (amod),
– adverbial modifier (advmod), but is selected only when the meaning of adjec-

tive term is modified, e.g. “dimly lit room”,
– compound (compound),
– nominal modifier for possessive alteration (nmod:of & nmod:poss).
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Fig. 4. Composition of phrase vector representation in the phi-LSTM model.

Note that the dependency parse only extracts triplet made up of a governor
word and a dependent word linked with a relation. So, in order to form phrase
chunk with the dependency parse, we made some refinements as illustrated in
Fig. 3. The triplets of selected relations in a sentence are first located, and those
consecutive words (as highlighted in the figure, e.g. “the”, “man”) are grouped
as a single phrase, while the standalone word (e.g. “in”) will remain as a unit in
the sentence.

3.2 Compositional Vector Representation of Phrase

This section describes how compositional vector representation of a phrase is
computed, given an image.

Image Representation. A 16-layer VggNet [35] pre-trained on ImageNet [36]
classification task is applied to learn image feature in this work. Let I ∈ R

D be
an image feature, it is embedded into a K-dimensional vector, vp with image
embedding matrix, Wip ∈ R

K×D and bias bip ∈ R
K .

vp = WipI + bip. (1)

Word Embedding. Given a dictionary W with a total of V vocabulary, where
word w ∈ W denotes word in the dictionary, a word embedding matrix We ∈
R

K×V is defined to encode each word into a K -dimensional vector representation,
x. Hence, an image description with words w1 · · ·wM will correspond to vectors
x1 · · ·xM accordingly.

Composition of Phrase Vector Representation. For each phrase extracted
from the sentence, a LSTM-based RNN model similar to [6] is used to encode its
sequence as shown in Fig. 4. Similar to [6], we treat the sequential modeling from
image to phrasal description as a machine translation task, where the embedded
image vector is inputted to the RNN on the first time step, followed by a start
token xsp ∈ R

K indicating the translation process. It is trained to predict the
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next word at each time step by outputting ptp+1 ∈ R
K×V , which is modeled as

the probability distribution over all words in the corpus. The last word of the
phrase will predict an end token. So, given a phrase P which is made up by L
words, the input xtp at each time step are:

xtp =

⎧
⎪⎨

⎪⎩

vp, if tp = −1
xsp, if tp = 0
Wewtp , for tp = 1...L.

(2)

For a LSTM unit at time step tp, let itp , ftp ,otp , ctp and htp denote the input
gate, forget gate, output gate, memory cell and hidden state at the time step
respectively. Thus, the LSTM transition equations are:

itp = σ(Wixtp + Uihtp−1), (3)

ftp = σ(Wfxtp + Ufhtp−1), (4)

otp = σ(Woxtp + Uohtp−1), (5)

utp = tanh(Wuxtp + Uuhtp−1), (6)

ctp = itp � utp + ftp � ctp−1, (7)

htp = otp � tanh(ctp), (8)

ptp+1 = softmax(htp). (9)

Here, σ denotes a logistic sigmoid function while � denotes elementwise
multiplication. The LSTM parameters {Wi,Wf ,Wo,Wu,Ui,Uf ,Uo,Uu} are
all matrices with dimension of R

K×K . Intuitively, each gating unit controls
the extent of information updated, forgotten and forward-propagated while the
memory cell holds the unit internal memory regarding the information processed
up to current time step. The hidden state is therefore a gated, partial view of
the memory cell of the unit. At each time step, the probability distribution of
words outputted is equivalent to the conditional probability of word given the
previous words and image, P (wt|w1:t−1, I). On the other hand, the hidden state
at the last time step L is used as the compositional vector representation of the
phrase, z ∈ R

K , where z = hL.

3.3 Encoding of Image Description

Once the compositional vector of phrases are obtained, they are linked with
the remaining words in the sentence using another LSTM-based RNN model
as shown in Fig. 5. Another start token xss ∈ R

K and image representation
vs ∈ R

K are introduced, where

vs = WisI + bis, (10)

with Wis ∈ R
K×D and bias bis ∈ R

K as embedding parameters. Hence, the
input units of the LSTM in this level will be the image representation vs, start
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Fig. 5. Sentence encoding using the phi-LSTM model.

token xss, followed by either compositional vector of phrase z or word vector x
in accordance to the sequence of its description.

For simplicity purpose, the arranged input sequence will be referred as y.
Therefore, given the example in Figs. 4 and 5, the LSTM input sequence of
the sentence will be {vs,xss,y1 . . .yN} where N = 8, and it is equivalent to
sequence {vs,xss, z1,x3, z2,x7,x8,x9,x10, z3}, as in Fig. 5. Note that a phrase
token is added to the vocabulary, so that the model can predict it as an output
when the next input is a noun phrase.

The encoding of the sentence is similar to the phrase vector composition.
Equations 3–9 are applied here using yts as input instead of xtp , where tp and
ts represent time step in phrase and sentence respectively. A new set of model
parameters with same dimensional size is used in this hierarchical level.

4 Training the phi-LSTM Model

The proposed phi-LSTM model is trained with log-likelihood objective function
computed from the perplexity2 of sentence conditioned on its corresponding
image in the training set. Given an image I and its description S, let R be
the number of phrases of the sentence, Pi correspond to the number of LSTM
blocks processed to get the compositional vector of phrase i, Q is the length of
composite sequence of sentence S, while ptp and pts are the probability output
of LSTM block at time step tp − 1 and ts − 1 for phrase and sentence level
respectively. The perplexity of sentence S given its image I is

log2 PPL(S|I) = − 1
N

⎡

⎣
Q∑

ts=−1

log2 pts +
R∑

i=1

⎡

⎣
Pi∑

tp=−1

log2 ptp

⎤

⎦

⎤

⎦ , (11)

where

N = Q +
R∑

i=1

Pi. (12)

2 Perplexity is a standard approach to evaluate language model.
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Fig. 6. Upper hierarchy of the phi-LSTM model with phrase selection objective.

Hence, with M number of training samples, the cost function of our model is:

C(θ) = − 1
L

M∑

j=1

[Nj log2 PPL(Sj|Ij)] + λθ· ‖ θ ‖22, (13)

where

L = M ×
M∑

j=1

Nj . (14)

It is the average log-likelihood of word given their previous context and the
image described, summed with a regularization term, λθ· ‖ θ ‖22, average over
the number of training samples. Here, θ is the parameters of the model.

This objective however, does not discern on the appropriateness of different
inputs at each time step. So, given multiple possible inputs, it is unable to
distinguish which phrase is the most probable input at that particular time
step during the decoding stage. That is, when a phrase token is inferred as
the next input, all possible phrases will be inputted in the next time step. The
candidate sequences are then ranked according to their perplexity up to this
time step, where only those with high probability are kept. Unfortunately, this
is problematic because subject in an image usually has much lower perplexity
as compared to object and scene. Thus, such algorithm will end up generating
description made up of only variants of subject noun phrases.

To overcome this limitation, we introduce a phrase selection objective during
the training stage. At all time steps when an input is a phrase, H number of
randomly selected phrases that are different from the ground truth input is feed
into the phi-LSTM model as shown in Fig. 6. The model will then produce two
outputs, which are the next word prediction solely based on the actual input,
and a classifier output that distinguishes the actual one from the rest. Though
the number of inputs at these time steps increases, the memory cell and hidden
state that is carried to the next time step keep only information of the actual
input. The cost function for phrase selection objective of a sentence is
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CPS =
∑

ts∈P

H+1∑

k=1

κtskσ(1 − ytskhtskWps). (15)

where P is the set of all time steps where the input is phrase, htsk is the hidden
state output at time step ts from input k, and ytsk is its label which is +1 for the
actual input and -1 for the false inputs. Wps ∈ R

K×1 is trainable parameters for
the classifier while κtsk scales and normalizes the objective based on the number
of actual and false inputs at each time step. The overall objective function is
then

CF (θ) = − 1
L

M∑

j=1

[Nj log2 PPL(Sj|Ij) + CPSj ] + λθ· ‖ θ ‖22 . (16)

This cost function is minimized and backpropagated with RMSprop optimizer
[37] and trained in a minibatch of 100 image-sentence pair per iteration. We cross-
validate the learning rate and weight decay depending on dataset, and dropout
regularization [38] is employed over the LSTM parameters during training to
avoid overfitting.

5 Image Caption Generation

Generation of textual description using the phi-LSTM model given an image
is similar to other statistical language models, except that the image relevant
phrases are generated first in the lower hierarchical level of the proposed model.
Here, embedded image feature of the given image followed by the start token
of phrase are inputted into the model, acting as the initial context required for
phrase generation. Then, the probability distribution of the next word over the
vocabulary is obtained at each time step given the previous contexts, and the
word with the maximum probability is picked and fed into the model again to
predict the subsequent word. This process is repeated until the end token for
phrase is inferred. As we usually need multiple phrases to generate a sentence,
beam search scheme is applied and the top K phrases generated are kept as the
candidates to form the sentence. To generate a description from the phrases, the
upper hierarchical level of the phi-LSTM model is applied in a similar fashion.
When a phrase token is inferred, K phrases generated earlier are used as the
inputs for the next time step. Keeping only those phrases which generate posi-
tive result with the phrase selection objective, inference on the next word given
the previous context and the selected phrases is performed again. This process
iterates until the end token is inferred by the model.

Some constraints are added here, which are (i) each predicted phrase may
only appears once in a sentence, (ii) maximum number of unit (word or phrase)
that made up a sentence is limited to 20, (iii) maximum number of words forming
a phrase is limited to 10, and (iv) generated phrases with perplexity higher than
threshold T are discarded.
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6 Experiment

6.1 Datasets

The proposed phi-LSTM model is tested on two benchmark datasets - Flickr8k
[15] and Flickr30k [16], and compared to the state-of-the-art methods [5–7,9,17].
These datasets consist of 8000 and 31000 images respectively, each annotated
with five ground truth descriptions from crowd sourcing. For both datasets,
1000 images are selected for validation and another 1000 images are selected for
testing; while the rest are used for training. All sentences are converted to lower
case, with frequently occurring punctuations removed and word that occurs less
than 5 times (Flickr8k) or 8 times (Flickr30k) in the training data discarded.
The punctuations are removed so that the image descriptions are consistent with
the data shared by Karpathy and Fei-Fei [7].

6.2 Results Evaluated with Automatic Metric

Sentence generated using the phi-LSTM model is evaluated with automatic met-
ric known as the bilingual evaluation understudy (BLEU) [39]. It computes the
n-gram co-occurrence statistic between the generated description and multiple
reference sentences by measuring the n-gram precision quality. It is the most
commonly used metric in this literature.

Table 1 shows the performance of our proposed model in comparison to the
current state-of-the-art methods. NIC [6] which is used as our baseline is a
reimplementation, and thus its BLEU score reported here is slightly different
from the original work. Our proposed model performs better or comparable to the
state-of-the-art methods on both Flickr8k and Flickr30k datasets. In particular,
we outperform our baseline on both datasets, as well as PbIC [17] - a work that
is very similar to us on Flickr30k dataset by at least 5–10%.

Table 1. BLEU score of generated sentence on Flickr8k and Flickr30k dataset.

(a)

Flickr8k

Models B-1 B-2 B-3 B-4

NIC [6]3 60.2(63) 40.4 25.9 16.5
DeepVs [7] 57.9 38.3 24.5 16.0
phi-LSTM 63.6 43.6 27.6 16.6

(b)

Flickr30k

Models B-1 B-2 B-3 B-4

mRNN [5] 60 41 28 19
NIC [6]4 66.3(66) 42.3 27.7 18.3
DeepVS [7] 57.3 36.9 24.0 15.7
LRCNN [9] 58.7 39.1 25.1 16.5
PbIC [17] 59 35 20 12
phi-LSTM 66.6 45.8 28.2 17.0

3The BLEU score reported here is computed from our implementation of NIC [6],
and the bracketed value is the reported score by the author.
4The BLEU score reported here is cited from [7], and the bracketed value is the
reported score by the author.
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Fig. 7. Effect of the perplexity threshold, T and maximum number of phrases used for
generating sentence, K on the BLEU score (best viewed in colour).

Table 2. Vocab size, word occurrence and average caption length in training data, test
data, and generated description in Flickr8k dataset.

Train data Test data Gen. caption

Number
of
sentence

30000 5000 1000 1000

Actual Trained Actual Trained Actual Trained NIC [6] phi-LSTM

Size of
vocab

7371 2538 3147 1919 1507 1187 128 154

Number
of words

324481 316423 54335 52683 11139 10806 8275 6750

Avg.
caption
length

10.8 10.5 10.9 10.5 11.1 10.8 8.3 6.8

As mentioned in Sect. 5, we generate K phrases from each image and dis-
card those with perplexity higher than a threshold value T, when generating the
image caption. In order to understand how these two parameters affect our gen-
erated sentence, we use different K and T to generate the image caption with
our proposed model trained on the Flickr30k dataset. Changes of the BLEU
score against T and K are plotted in Fig. 7. It is shown that K does not have a
significant effect on the BLEU score, when T is set to below 5.5. On the other
hand, unigram and bi-gram BLEU scores improve with lower perplexity thresh-
old, in contrast to tri-gram and 4-gram BLEU scores that reach an optimum
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Table 3. Top 5 (a) least trained word found, and (b) most trained word missing, from
the generated captions in the Flickr8k dataset.

(a)

NIC [6] phi-LSTM

Word Occurrence Word Occurrence

obstacle 93 overlooking 81
surfer 127 obstacle 93
bird 148 climber 96
woods 155 course 106
snowboarder 166 surfer 127

(b)

NIC [6] phi-LSTM

Word Occurrence Word Occurrence

to 2306 while 1443
his 1711 green 931
while 1443 by 904
three 1052 one 876
small 940 another 713

value when T=5.2. This is because the initial (few) generated phrases with the
lowest perplexity are usually different variations of phrase describing the same
entity, such as ‘a man’ and ‘a person’. Sentence made with only such phrases
has higher chance to match with the reference descriptions, but it would hardly
get a match on tri-gram and 4-gram. In order to avoid generating caption made
from only repetition of similar phrases, we select T and K which yield the high-
est 4-gram BLEU score, which are T=6.5 and K=6 on Flickr8k dataset, and
T=5.2 and K=5 on Flickr30k dataset. A few examples are shown in Fig. 8.

6.3 Comparison of the phi-LSTM Model with Its Sequence Model
Counterpart

To compare the differences between a phrase-based hierarchical model and a
pure sequence model in generating image caption, the phi-LSTM model and
NIC [6] are both implemented using the same training strategy and parameter
tuning. We are interested to know how well the corpus is trained by both mod-
els. Using the Flickr8k dataset, we computed the corpus information of (i) the
training data, (ii) the reference sentences in the test data and (iii) the gener-
ated captions as tabulated in Table 2. We remove words that occur less than 5
times in the training data, and it results in 4833 words being removed. However,
this reduction in term of word count is only 2.48%. Furthermore, even though
the model is evaluated in comparison to all reference sentences in the test data,
there are actually 1228 words within the references that are not in our training
corpus. Thus, it is impossible for the model to predict those words, and this
is a limitation on scoring with references in all language models. For a better
comparison with the 1000 generated captions, we also compute another reference
corpus based on the first sentence of each test image. From Table 2, it can be
seen that even though there are at least 1187 possible words to be inferred with
images in the test set, the generated descriptions are made up from only 128
and 154 words in NIC [6] and phi-LSTM model, respectively. These numbers
show that the actual number of words learned by these two models are barely
10%, suggesting more research is necessary to improve the learning efficiency in
this field. Nevertheless, it shows that introducing the phrase-based structure in
sequential model still improves the diversity of caption generated.
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Fig. 8. Example of phrases generated from images using the lower hierarchical level of
the phi-LSTM model. Red fonts indicate that the perplexity of that phrase is below
threshold T.

Fig. 9. Examples of caption generated with the phi-LSTM model, in comparison to
NIC [6].

To get further insight on how the word occurrence in the training corpus
affects the word prediction when generating caption, we record the top five, most
trained words that are missing from the corpus of generated captions, and the
top five, least trained words that are predicted by both models when generating
description, as shown in Table 3. We consider only those words that appear in
the reference sentences to ensure that these words are related to the images
in the test data. It appears that the phrase-based model is able to infer more
words which are less trained, compared to the sequence model. Among the top
five words that are not predicted, even though they have high occurrence in the
training corpus, it can be seen that those words are either not very observable
in the images, or are more probable to be described with other alternative. For
example, the is a more probable alternative of another.

A few examples of the image description generated with our proposed model
and NIC model [6] are shown in Fig. 9. It can be seen that both models are
comparable qualitatively. An interesting example is shown in the first image
where our model mis-recognizes the statue as a person, but is able to infer the
total number of “persons” within the image. The incorrect recognition stems
from insufficient training data on the word statue in the Flickr8k dataset, as it
only occurs for 48 times, which is about 0.015% in the training corpus.

7 Conclusion

In this paper, we present the phi-LSTM model, which is a neural network model
trained to generate reasonable description on image. The model consists of a
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CNN sub-network connected to a two-hierarchical level RNN, in which the lower
level encodes noun phrases relevant to the image; while the upper level learns the
sequence of words describing the image, with phrases encoded in the lower level
as a unit. A phrase selection objective is coupled when encoding the sentence. It
is designed to aid the generation of caption from relevant phrases. This design
preserves syntax of sentence better, by treating it as a sequence of phrases and
words instead of a sequence of words alone. Such adaptation also splits the
content to be learned by the model into two, which are stored in two sets of
parameters. Thus, it can generate sentence which is more accurate and with
more diverse corpus, as compared to a pure sequence model.
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Abstract. Visual attributes are great means of describing images or
scenes, in a way both humans and computers understand. In order to
establish a correspondence between images and to be able to compare the
strength of each property between images, relative attributes were intro-
duced. However, since their introduction, hand-crafted and engineered
features were used to learn increasingly complex models for the problem
of relative attributes. This limits the applicability of those methods for
more realistic cases. We introduce a deep neural network architecture for
the task of relative attribute prediction. A convolutional neural network
(ConvNet) is adopted to learn the features by including an additional
layer (ranking layer) that learns to rank the images based on these fea-
tures. We adopt an appropriate ranking loss to train the whole network
in an end-to-end fashion. Our proposed method outperforms the baseline
and state-of-the-art methods in relative attribute prediction on various
coarse and fine-grained datasets. Our qualitative results along with the
visualization of the saliency maps show that the network is able to learn
effective features for each specific attribute. Source code of the proposed
method is available at https://github.com/yassersouri/ghiaseddin.

1 Introduction

Visual attributes are linguistic terms that bear semantic properties of (visual)
entities, often shared among categories. They are both human understand-
able and machine detectable, which makes them appropriate for better human
machine communications. Visual attributes have been successfully used for many
applications, such as image search [1], interactive fine-grained recognition, [2,3]
and zero-shot learning [4,5].

Traditionally, visual attributes were treated as binary concepts [6,7], as if
they are present or not, in an image. Parikh and Grauman [5] introduced a
more natural view on visual attributes, in which pairs of visual entities can
be compared, with respect to their relative strength of any specific attribute.
With a set of human assessed relative orderings of image pairs, they learn a
global ranking function for each attribute that can be used to compare a pair of
two novel images respective to the same attribute (Fig. 1). While binary visual
attributes relate properties to entities (e.g., a dog being furry), relative attributes

c© Springer International Publishing AG 2017
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Fig. 1. Visual Relative Attributes. This figure shows samples of training pairs of images
from the UT-Zap50K dataset, comparing shoes in terms of the comfort attribute (top).
The goal is to compare a pair of two novel images of shoes, respective to the same
attribute (bottom).

make it possible to relate entities to each other in terms of their properties (e.g.,
a bunny being furrier than a dog).

Many have tried to build on the seminal work of Parikh and Grauman [5]
with more complex and task-specific models for ranking, while still using hand-
crafted visual features, such as GIST [8] and HOG [9]. Recently, Convolutional
Neural Networks (ConvNets) have proved to be successful in various visual recog-
nition tasks, such as image classification [10], object detection [11] and image
segmentation [12]. Many ascribe the success of ConvNets to their ability to learn
multiple layers of visual features from the data.

In this work, we propose to use a ConvNet-based architecture comprising of
a feature learning and extraction and ranking portions. This network is used to
learn the ranking of images, using relatively annotated pairs of images with
similar and/or different strengths of some particular attribute. The network
learns a series of visual features, which are known to perform better than the
engineered visual features for various tasks [13]. These layers could simply be
learned through gradient descent. As a result, it would be possible to learn (or
fine-tune) the features through back-propagation, while learning the ranking
layer. Interweaving the two processes leads to a set of learned features that
appropriately characterizes each single attribute. Our qualitative investigation
of the learned feature space further confirms this assumption. This escalates
the overall performance and is the main advantage of our proposed method
over previous methods. Furthermore, our proposed model can effectively utilize
pairs of images with equal annotated attribute strength. The equality relation
can happen quite frequently when humans are qualitatively deciding about the
relations of attributes in images. In previous works, this is often overlooked and
mainly inequality relations are exploited. Our proposed method incorporates an
easy and elegant way to deal with equality relations (i.e., an attribute is similarly
strong in two images). In addition, it is noteworthy to pinpoint that by exploiting
the saliency maps of the learned features for each attribute, similar to [14], we
can discover the pixels which contribute the most towards an attribute in the
image. This can be used to coarsely localize the specific attribute.
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Our approach achieves very competitive results and improves the state-of-the-
art (with a large margin in some datasets) on major publicly available datasets
for relative attribute prediction, both coarse and fine-grained, while many of
the previous works targeted only one of the two sets of problems (coarse or
fine-grained), and designed a method accordingly.

The rest of the paper is organized as follows: Sect. 2 discusses the related
works. Section 3 illustrates our proposed method. Then, Sect. 4 exhibits the
experimental setup and results, and finally, Sect. 5 concludes the paper.

2 Related Works

We usually describe visual concepts with their attributes. Attributes are, there-
fore, mid-level representations for describing objects and scenes. In an early
work on attributes, Farhadi et al. [7] proposed to describe objects using mid-
level attributes. In another work [15], the authors described images based on
a semantic triple “object, action, scene”. In the recent years, attributes have
shown great performance in object recognition [7,16], action recognition [17,18]
and event detection [19]. Lampert et al. [4] predicted unseen objects using a
zero-shot learning framework, incorporating the binary attribute representation
of the objects.

Although detection and recognition based on the presence of attributes
appeared to be quite interesting, comparing attributes enables us to easily and
reliably search through high-level data derived from e.g., documents or images.
For instance, Kovashka et al. [20] proposed a relevance feedback strategy for
image search using attributes and their comparisons. In order to establish the
capacity for comparing attributes, we need to move from binary attributes
towards describing attributes relatively. In the recent years, relative attributes
have attracted the attention of many researchers. For instance, a linear relative
comparison function is learned in [5], based on RankSVM [21] and a non-linear
strategy in [22]. In another work, Datta et al. [23] used trained rankers for each
facial image feature and formed a global ranking function for attributes.

For the process of learning the attributes, different types of low-level image
features are often incorporated. For instance, Parikh and Grauman [5] used 512-
dimensional GIST [8] descriptors as image features, while Jayaraman et al. [24]
used histograms of image features, and reduced their dimensionality using PCA.
Other works tried learning attributes through e.g., local learning [25] or fine-
grained comparisons [26]. Yu and Grauman [26] proposed a local learning-to-
rank framework for fine-grained visual comparisons, in which the ranking model
is learned using only analogous training comparisons. In another work [27], they
proposed a local Bayesian model to rank images, which are hardly distinguishable
for a given attribute. However, none of these methods leverage the effectiveness
of feature learning methods and only use engineered and hand-crafted features
for predicting relative attributes.

As could be inferred from the literature, it is very hard to decide what
low-level image features to use for identifying and comparing visual attributes.
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Recent studies show that features learned through the convolutional neural
networks (CNNs) [28] (also known as deep features) could achieve great per-
formance for image classification [10] and object detection [29]. Zhang et al. [30]
utilized CNNs for classifying binary attributes. In other works, Escorcia et al. [31]
proposed CCNs with attribute centric nodes within the network for establishing
the relationships between visual attributes. Shankar et al. [32] proposed a weakly
supervised setting on convolutional neural networks, applied for attribute detec-
tion. Khan et al. [33] used deep features for describing human attributes and
thereafter for action recognition, and Huang et al. [34] used deep features for
cross-domain image retrieval based on binary attributes.

Neural networks have also been extended for learning-to-rank applications.
One of the earliest networks for ranking was proposed by Burges et al. [35],
known as RankNet. The underlying model in RankNet maps an input feature
vector to a Real number. The model is trained by presenting the network pairs
of input training feature vectors with differing labels. Then, based on how they
should be ranked, the underlying model parameters are updated. This model is
used in different fields for ranking and retrieval applications, e.g., for personal-
ized search [36] or content-based image retrieval [37]. In another work, Yao et
al. [38] proposed a ranking framework for videos for first-person video summa-
rization, through recognizing video highlights. They incorporated both spatial
and temporal streams through 2D and 3D CNNs and detect the video highlights.

3 Proposed Method

We propose to use a ConvNet-based deep neural network that is trained to
optimize an appropriate ranking loss for the task of predicting relative attribute
strength. The network architecture consists of two parts, the feature learning
and extraction part and the ranking part.

The feature learning and extraction part takes a fixed size image, Ii, as input
and outputs the learned feature representation for that image ψi ∈ R

d. Over the
past few years, different network architectures for computer vision problems
have been developed. These deep architectures can be used for extracting and
learning features for different applications. For the current work, outputs of
an intermediate layer, like the last layer before the probability layer, from a
ConvNet architecture (e.g., AlexNet [10], VGGNet [39] or GoogLeNet [40]) can
be incorporated. In our experiments we use the VGG-16 architecture [39] with
the last fully connected layer (the class probabilities) removed. This architecture
takes as input a 224× 224 RGB image and consists of 13, 3 × 3 convolutional
layers with max pooling layers in between. In addition, it has 2 fully connected
layers on top of the convolutional layers. For details on the architecture see [39].

One of the most widely used models for relative attributes in the literature
is RankSVM [21]. However, in our case, we seek a neural network-based rank-
ing procedure, to which relatively ordered pairs of feature vectors are provided
during training. This procedure should learn to map each feature vector to an
absolute ranking, for testing purpose. Burges et al. [35] introduced such a neural
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network based ranking procedure that exquisitely fits our needs. We adopt a
similar strategy and thus, the ranking part of our proposed network architecture
is analogous to [35] (referred to as RankNet).

During training for a minibatch of image pairs and their target orderings, the
output of the feature learning and extraction part of the network is fed into the
ranking part and a ranking loss is computed. The loss is then back-propagated
through the network, which enables us to simultaneously learn the weights of
both feature learning and extraction (ConvNet) and ranking (RankNet) parts
of the network. Further with back-propagation we can calculate the derivative
of the estimated ordering with respect to the pixel values. In this way, we can
generate saliency maps for each attribute (see Sect. 4.6). These saliency maps
exhibit interesting properties, as they can be used to localize the regions in the
image that are informative about the attribute.

3.1 RankNet: Learning to Rank Using Gradient Descent

This section briefly overviews the RankNet procedure in our context. Given a set
(of size n) of pairs of sample feature vectors

{
(ψ(k)

1 , ψ
(k)
2 )|k ∈ {1, . . . , n}} ∈ R

d×d,
and target probabilities

{
t
(k)
12 |k ∈ {1, . . . , n}}, which indicate the probability of

sample ψ
(k)
1 being ranked higher than sample ψ

(k)
2 . We would like to learn a

ranking function f : Rd �→ R, such that f specifies the ranking order of a set
of features. Here, f(ψi) > f(ψj) indicates that the feature vector ψi is ranked
higher than ψj , denoted by ψi �ψj . The RankNet model [35] provides an elegant
procedure based on neural networks to learn the function f from a set of pairs
of samples and target probabilities.

Denoting ri ≡ f(ψi), RankNet models the mapping from rank estimates to
posterior probabilities pij = P (ψi � ψj) using a logistic function

pij :=
1

1 + e−(ri−rj)
. (1)

The loss for the sample pair of feature vectors (ψi, ψj) along with target
probability tij is defined as

Cij := −tij log(pij) − (1 − tij) log(1 − pij), (2)

which is the binary cross entropy loss. Figure 2 (left) plots the loss value Cij as
a function of ri − rj for three values of target probability tij ∈ {0, 0.5, 1}. This
function is quite suitable for ranking purposes, as it acts differently compared
to regression functions. Specifically, we are not interested in regression instead
of ranking for two reasons: First, we cannot regress the absolute rank of images,
since the annotations are only available in pairwise ordering for each attribute,
in relative attribute datasets (see Sect. 4.1). Second, regressing the difference
ri − rj to tij is inappropriate. To understand this, let’s consider the squared loss

Rij =
[
(ri − rj) − tij

]2
, (3)
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which is typically used for regression, illustrated in Fig. 2 (right). We observe
that the regression loss forces the difference of rank estimates to be a specific
value and disallows over-estimation. Furthermore, its quadratic natures makes
it sensitive to noise. This sheds light into why regression objective is the wrong
objective to optimize when the goal is ranking.

Fig. 2. The ranking loss value for three values of the target probability (left). The
squared loss value for three values of the target probability, typically used for regression
(right).

Note that when tij = 0.5, and no information is available about the relative
rank of the two samples, the ranking cost becomes symmetric. This can be used
as a way to train on patterns that are desired to have similar ranks. This is
somewhat not much studied in the previous works on relative attributes. Fur-
thermore, this model asymptotically converges to a linear function which makes
it more appropriate for problems with noisy labels.

Training this model is possible using stochastic gradient descent or its vari-
ants like RMSProp. While testing, we only need to estimate the value of f(ψi),
which resembles the absolute rank of the testing sample. Using f(ψi)s, we can
easily infer both absolute or relative ordering of the testing pairs.

3.2 Deep Relative Attributes

Our proposed model is depicted in Fig. 3. The model is trained separately, for
each attribute. During training, pairs of images (Ii, Ij) are presented to the
network, together with the target probability tij . If for the attribute of interest
Ii � Ij (image i exhibits more of the attribute than image j), then tij is expected
to be larger than 0.5 depending on our confidence on the relative ordering of
Ii and Ij . Similarly, if Ii � Ij , then tij is expected to be smaller than 0.5, and
if it is desired that the two images have the same rank, tij is expected to be
0.5. Because of the nature of the datasets, we chose tij from the set {0, 0.5, 1},
according to the available annotations in the dataset.

The pair of images then go though the feature learning and extraction part
of the network (ConvNet). This procedure maps the images onto feature vec-
tors ψi and ψj , respectively. Afterwards, these feature vectors go through the
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Fig. 3. The overall schematic view of the proposed method during training. The net-
work consists of two parts, the feature learning and extraction part (labeled ConvNet
in the figure), and the ranking part (the Ranking Layer). Pairs of images are presented
to the network with their corresponding target probabilities. This is used to calculate
the loss, which is then back-propagated through the network to update the weights.

ranking layer, as described in Sect. 3.1. We choose the ranking layer to be a fully
connected neural network layer with linear activation function, a single output
neuron and weights w and b. It maps the feature vector ψi to the estimated
absolute rank of that feature vector, ri ∈ R, where

ri := wTψi + b. (4)

The two estimated ranks ri and rj , for the two images Ii and Ij in comparison,
are then combined (using Eq. (1)) to output the estimated posterior probability
pij = P (Ii � Ij). This estimated posterior probability is used along with the
target probability tij to calculate the loss, as in Eq. (2). This loss is then back-
propagated through the network and is used to update the weights of the whole
network, including both the weights of the feature learning and extraction sub-
network and the ranking layer.

During testing (Fig. 4), we need to calculate the estimated absolute rank rk
for each testing image Ik. Using these estimated absolute ranks, we can then
easily infer both the relative or absolute attribute ordering, for all testing pairs.

Ik . . . Ranking
Layer

ψk
rk

Fig. 4. During testing, we only need to evaluate rk for each testing image. Using this
value, we can infer the relative or absolute ordering of testing images, for the attribute
of interest.

4 Experiments

To evaluate our proposed method, we quantitatively compare it with the state-
of-the-art methods, as well as an informative baseline on all publicly available
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benchmarks for relative attributes to our knowledge. Furthermore, we perform
multiple qualitative experiments to demonstrate the capability and superiority
of our method.

4.1 Datasets

To assess the performance of the proposed method, we have evaluated it on
all publicly available datasets to our knowledge: Zappos50K [26] (both coarse
and fine-grained versions), LFW-10 [41] and for the sake of completeness and
comparison with previous works, on PubFig and OSR datasets of [5].

UT-Zap50K [26] dataset is a collection of images with annotations for
relative comparison of 4 attributes. This dataset contains two collections:
Zappos50K-1, in which relative attributes are annotated for coarse pairs, where
the comparisons are relatively easy to interpret, and Zappos50K-2, where rela-
tive attributes are annotated for fine-grained pairs, for which making the dis-
tinction between them is hard according to human annotators. Training set for
Zappos50K-1 contains approximately 1500 to 1800 annotated pairs of images
for each attribute. These are divided into 10 train/test splits which are pro-
vided alongside the dataset and used in this work. Meanwhile, Zappos50K-2
only contains a test set of approximately 4300 pairs, while its training set is the
combination of training and testing sets of Zappos50K-1.

We have also conducted experiments on the LFW-10 [41] dataset. This
dataset has 2000 images of faces of people and annotations for 10 attributes. For
each attribute, a random subset of 500 pairs of images have been annotated for
each training and testing set.

PubFig [5] dataset (a set of public figure faces), consists of 800 facial images
of 8 random subjects, with 11 attributes. OSR [5] dataset contains 2688 images
of outdoor scenes in 8 categories, for which 6 relative attributes are defined.
The ordering of samples in both PubFig and OSR datasets are annotated in a
category level, i.e., all images in a specific category may be ranked higher, equal,
or lower than all images in another category, with respect to an attribute. This
sometimes causes annotation inconsistencies [41]. In our experiments, we have
used the provided training/testing split of PubFig and OSR datasets.

4.2 Experimental Setup

We train our proposed model (described in Sect. 3) for each attribute, separately.
In our proposed model, it is possible to train multiple attributes at the same
time, however, this is not done due to the structure of the datasets, in which for
each training pair of images only a certain attribute is annotated.

We have used the Lasagne [42] deep learning framework to implement our
model. In all our experiments, for the feature learning and extraction part of the
network, we use the VGG-16 model of [39] and trim out the probability layer
(all layers up to fc7 are used, only the probability layer is not included). We
initialize the weights of the model using a pretrained model on ILSVRC 2014
dataset [43] for the task of image classification. These weights are fine-tuned as
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the network learns to predict the relative attributes (see Sect. 4.5). The weights
w of the ranking layer are initialized using the Xavier method [44], and the bias
is initialized to 0.

For training, we use stochastic gradient descent with RMSProp [45] updates
and minibatches of size 32 (16 pair of images). We set the learning rate of the
feature learning and extraction layers of the network to 10−5 and the ranking
layer to 10−4 for all experiments initially, then RMSProp changes the learning
rates dynamically during training. We have also used weight decay (�2 norm
regularization), with a fixed 10−5 multiplier. Furthermore, when calculating the
binary cross entropy loss, we clip the estimated posterior pij to be in the range
[10−7, 1 − 10−7]. This is used to prevent the loss from diverging.

In each epoch, we randomly shuffle the training pairs. The number of epochs
of training were chosen to reflect the training size. For Zappos50K and LFW-
10 datasets, we train for 25 and 40 epochs, respectively. For PubFig and OSR
datasets, we train for 2 epochs due to the large number of training sample pairs.
When performing evaluation on OSR the total number of pairs is too large
(around 3 million pairs) we only evaluate on a 5% random subset of them.

4.3 Baseline

As a baseline, we have also included results for the RankSVM method (as in
[5]), when the features given to the method were computed from the output of
the VGG-16 pretrained network on ILSVRC 2014.

Using this baseline we can evaluate the extent of effectiveness of off-the-shelf
ConvNet features [13] for the task of ranking. In a sense, comparing this baseline
with our proposed method reveals the effect of features fine-tuning, for the task.

4.4 Quantitative Results

Following [5,26,41], we report the accuracy in terms of the percentage of cor-
rectly ordered pairs. For our proposed method, we report the mean accuracy
and standard deviation over 3 separate runs.

Tables 1 and 2 shows our results on the OSR and PubFig dataset respectively.
Our method outperforms the baseline and the state-of-the-art on this dataset
by a considerable margin, on most attributes. These are relatively easy datasets
but have their own challenges. Specifically the OSR dataset contains attributes

Table 1. Results for the OSR dataset

Method Natural Open Perspective Large size Diag ClsDepth Mean

Relative attributes [5] 95.03 90.77 86.73 86.23 86.50 87.53 88.80

Relative forest [22] 95.24 92.39 87.58 88.34 89.34 89.54 90.41

Fine-grained comparison [26] 95.70 94.10 90.43 91.10 92.43 90.47 92.37

VGG16-fc7 (baseline) 98.00 94.46 92.92 94.08 94.91 95.02 94.90

RankNet (ours) 99.40

(±0.10)

97.44

(±0.16)

96.88

(±0.13)

96.79

(±0.32)

98.43

(±0.23)

97.65

(±0.16)

97.77

(±0.10)
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Table 2. Results for the PubFig dataset

Method Male White Young Smiling Chubby Forehead Eyebrow Eye Nose Lip Face Mean

Relative Attributes [5] 81.80 76.97 83.20 79.90 76.27 87.60 79.87 81.67 77.40 79.17 82.33 80.56
Relative Forest [22] 85.33 82.59 84.41 83.36 78.97 88.83 81.84 83.15 80.43 81.87 86.31 83.37
Fine-grained Comparison [26] 91.77 87.43 91.87 87.00 87.37 94.00 89.83 91.40 89.07 90.43 86.70 89.72
VGG16-fc7 (baseline) 85.56 80.59 85.20 84.81 82.56 88.50 83.50 83.11 81.52 85.67 86.23 84.30

RankNet (ours)
95.50 94.60 94.33 95.36 92.32 97.28 94.53 93.19 94.24 93.62 94.76 94.52

(± 0.36) (± 0.55) (± 0.36) (± 0.56) (± 0.36) (± 0.49) (± 0.64) (± 0.51) (± 0.24) (± 0.20) (± 0.24) (± 0.08)

Table 3. Results for the LFW-10 dataset

Method Bald DkHair Eyes GdLook Mascu. Mouth Smile Teeth FrHead Young Mean

Fine-grained Comparison [22] 67.9 73.6 49.6 64.7 70.1 53.4 59.7 53.5 65.6 66.2 62.4
Relative Attributes [5] 70.4 75.7 52.6 68.4 71.3 55.0 54.6 56.0 64.5 65.8 63.4
Global + HOG [46] 78.8 72.4 70.7 67.6 84.5 67.8 67.4 71.7 79.3 68.4 72.9
Relative Parts [41] 71.8 80.5 90.5 77.6 67.0 77.6 81.3 76.2 80.2 82.4 78.5
Spatial Extent [47] 83.21 88.13 82.71 72.76 93.68 88.26 88.16 88.46 90.23 75.05 84.66
VGG16-fc7 (baseline) 72.26 79.23 55.64 62.85 90.80 62.42 66.38 59.38 64.45 66.31 67.97

RankNet (ours)
81.14 88.92 74.44 70.28 98.08 85.46 82.49 82.77 81.90 76.33 82.18

(± 3.39) (± 0.75) (± 5.97) (± 0.54) (± 0.33) (± 0.70) (± 1.41) (± 2.15) (± 2.00) (± 0.43) (± 1.08)

like “Perspective” which are very generic, high level and global in the image,
which might not correspond easily to local low level image features. We think
that our proposed method is specially well suited for such cases.

Table 3 shows our results on the LFW-10 dataset. On this dataset, our
method performs competitive with respect to the state-of-the-art, but cannot
outperform it. We think this might be due to label noise in this dataset and
due to the fact that most of the attributes in this dataset are highly local and
methods that outperform us on this dataset look locally on regions of the image
instead of the whole image.

Tables 4 and 5 show the results on Zappos50K-1 and Zappos50K-2 datasets,
respectively. Our method, again, achieves the state-of-the-art accuracy on both
coarse-grained and fine-grained datasets. Our proposed method learns appropri-
ate features for the task, given the large amount of training data available in
this dataset.

4.5 Qualitative Results

Our proposed method uses a deep network with two parts, the feature learning
and extraction part and the ranking part. During training, not only the weights

Table 4. Results for the UT-Zap50K-1 (coarse) dataset

Method Open Pointy Sporty Comfort Mean

Relative attributes [5] 87.77 89.37 91.20 89.93 89.57

Fine-grained comparison [26] 90.67 90.83 92.67 92.37 91.64

Spatial extent [47] 95.03 94.80 96.47 95.60 95.47

VGG16-fc7 (baseline) 89.67 90.67 91.67 91.00 90.75

RankNet (ours) 95.37
(±0.82)

94.43
(±0.75)

97.30
(±0.81)

95.57
(±0.97)

95.67
(±0.49)



128 Y. Souri et al.

Table 5. Results for the UT-Zap50K-2 (fine-grained) dataset

Method Open Pointy Sporty Comfort Mean

Relative attributes [5] 60.18 59.56 62.70 64.04 61.62

Fine-grained comparison [26] 74.91 63.74 64.54 62.51 66.43

LocalPair + ML + HOG [46] 76.2 65.3 64.8 63.6 67.5

VGG16-fc7 (baseline) 64.82 64.51 67.31 67.01 65.91

RankNet (ours) 73.45
(±1.23)

68.20
(±0.18)

73.07
(±0.75)

70.31
(±1.50)

71.26
(±0.50)

Fig. 5. t-SNE embedding of images in fine-tuned feature space (top) and original fea-
ture space (bottom). The set of visualizations on the left are for the Bald Head attribute
of the LFW-10 dataset, while the visualizations on the right are for the Pointy attribute
of the Zappos50K-1 dataset. Images in the middle row show a number of samples from
the feature space. In the fine-tuned feature space, it is clear that images are ordered
according to their value of the attribute. Each point is colored according to its value of
the respective attribute, to discriminate images according to their value of the attribute.
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for the ranking part are learned, but also the weights for the feature learning and
extraction part of the network, which were initialized using a pretrained network,
are fine-tuned. By fine-tuning the features, our network learns a set of features
that are more appropriate for the images of that particular dataset, along with
the attribute of interest. To show the effectiveness of fine-tuning the features
of the feature learning and extraction part of the network, we have projected
them (features before and after fine-tuning) into 2-D space using the t-SNE [48],
as can be seen in Fig. 5. The visualizations on the top of each figure show the
images projected into 2-D space from the fine-tuned feature space, while the
visualizations on the bottom show the images from the original feature space.
Each image is displayed as a point and colored according to its attribute strength.
It is clear from these visualizations that fine-tuned feature space is better in
capturing the ordering of images with respect to the respective attribute. Since
t-SNE embedding is a non-linear embedding, relative distances between points
in the high-dimensional space and the low-dimensional embedding space are
preserved, thus close points in the low-dimensional embedding space are also
close to each other in the high-dimensional space. It can, therefore, be seen that
fine-tuning indeed changes the feature space such that images with similar values
of the respective attribute get projected into a close vicinity of the feature space.
However, in the original feature space, images are projected according to their
visual content, regardless of their value of the attribute.

Another property of our network is that it can achieve a total ordering of
images, given a set of pairwise orderings. In spite of the fact that training samples
are pairs of images annotated according to their relative value of the attribute,
the network can generalize the relativity of attribute values to a global ranking
of images. Figure 6 shows some images ordered according to their value of the
respective attribute.

strong weak

Smile
(LFW-10)

Sporty
(Zap50K-1)

Natural
(OSR)

Forehead
(PubFig)

Fig. 6. Sample images from different datasets, ordered according to the predicted value
of their respective attribute.
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LFW10 - Bald Head

LFW10 - Good Looking

OSR - Natural

Zappos50k1 - Pointy

Fig. 7. Saliency maps obtained from the network. First we feed two test images into
the network and compute the derivative of the estimated posterior with respect to the
pair of input images and use the method of [14] to visualize salient pixels with Gaussian
smoothing. In each row, the two input images from the a dataset’s test set with their
corresponding overlaid saliency maps are shown (the warmer the color of the overlay
image, the more salient that pixel is).
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4.6 Saliency Maps and Localizing the Attributes

We have also used the method of [14] to visualize the saliency of each attribute.
Giving two image as inputs to the network, we take the derivative of the esti-
mated posterior with respect to the input images and visualize them. Figure 7
shows some sample visualization for some test pairs. To generate this figure we
have applied Gaussian smoothing to the saliency map.

These saliency maps visualize the pixels in the images which contributed most
to the ranking predicted by the network. Sometimes these saliency maps are
easily interpretable by humans and they can be used to localize attributes using
the same network that was trained to rank the attributes in an unsupervised
manner, i.e., although we haven’t explicitly trained our network to localize the
salient and informative regions of the image, it has implicitly learned to find
these regions. We see that this technique is able to localize both easy to localize
attributes such as “Bald Head” in the LFW10 dataset and abstract attributes
such as “Natural” in the OSR dataset.

5 Conclusion

In this paper, we introduced an approach for relative attribute prediction on
images, based on convolutional neural networks. Unlike previous methods that
use engineered or hand-crafted features, our proposed method learns attribute-
specific features, on-the-fly, during the learning procedure of the ranking func-
tion. Our results achieve state-of-the-art performance in relative attribute pre-
diction on various datasets both coarse- and fine-grained. We qualitatively show
that the feature learning and extraction part, effectively learns appropriate fea-
tures for each attribute and dataset. Furthermore, we show that one can use a
trained model for relative attribute prediction to obtain saliency maps for each
attribute in the image.

Acknowledgments. We would like to thank Computer Engineering Department of
Sharif University of Technology and HPC center of IPM for their support with com-
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Abstract. Clothing fashion represents human’s aesthetic appreciation
towards their outfits and reflects the development status of society,
humanitarian and economics. Modelling fashion via machine is extremely
difficult due to the fact that fashion is too abstract to be efficiently
described by machine. In this paper, we delve into two fashion related
problems: what type of image feature best describes fashion and how
can we fast retrieve the fashionably similar images with any given query
fashion image. To address these two problems, we first conduct extensive
experiments on various image features, ranging from traditional low-level
hand-crafted features, mid-level style aware features to current high-level
powerful deep learning based features, to find the feature best describes
clothing fashion. To test each candidate feature’s performance, we fur-
ther design a fast fashion guided clothing image retrieval framework by
efficiently converting float formatted features into binary codes, with
which we can achieve much faster image retrieval without much accu-
racy reduction. Finally, we validate our proposed framework on two pub-
licly available datasets. Experimental results on both intra-domain and
cross-domain fashion clothing image retrieval show that deep learning
based image features with explicit fashion prior knowledge guidance best
describe fashion, and feature binarization scheme also achieves compa-
rable results in terms of various fashion clothing image retrieval tasks.

1 Introduction

Fashion, primarily a visual art form, integrates aesthetics, art, science and design
to create the work that reflects human’s understanding and preference to the
current world’s forefront development trend. As fashion direct carrier, clothing
fashion pushes the whole world forward in a way in which it affects our everyday
lives and both fashion designers and laymen can join in. As the fashion designer,
Marc Jacobs said, “clothing is a form of self-expression - there are hints about
who you are in what you wear”. In the meantime, clothing fashion trends are
erratic and fluctuating. For example, the warm red color and chiffon were very
popular in 2011, but the military green and taffeta came into burst in 2012
and 2013 respectively. Spring 2012 saw the instant emergence of neon color
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 134–149, 2017.
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that reminiscently belongs to 90s. Clothing fashion is also visually apparent,
which allows us to analysis it through computer vision related methods. Yet
modelling abstract fashion is a challenging task due to large gap between machine
percepting an image as pixel-wise real values and we human’s percepting fashion
via extremely abstract manner.

Recent years witnessed significant clothing online shopping explosion.
According to a study from the technology and market research firm Forrester1,
the number of online shoppers is expected to grow to 192 million, or 56% of
U.S. population, by 2016, comparing by 53% in 2015. Large amount of cloth-
ing purchasing behaviours are driven by clothing fashion attribute. The huge
potential market has catalyzed numerous research topics in fashion in last sev-
eral years in both industry, like eBay2 and Taobao, and academia, ranging from
fashion trend prediction [1], fashion image ranking [2], detection [3] to fashion
visual analysis [4–7], cross-domain visual matching [8,9] and recommendation
[10]. As image feature representation is prerequisite, they turn to either tra-
ditional hand-crafted features (i.e. color, texture) or current powerful convolu-
tional neural network (CNNs) feature driven by specific tasks [2,3]. However,
these feature representations they depend on have been merely demonstrated
to be helpful in non-fashion related tasks, such as object detection and classi-
fication. There is a lack of comprehensive study of what type of feature best
describes fashion. Kiapour et al. [6] describe fashion clothing with 5 styles that
easily understandable by humans but difficultly recognizable and processable by
machines: hipster, bohemian, pinup, pretty and goth. Vittayakorn et al. [4] tried
to figure out whether low-level image feature or mid-level attribute (they call
style and shape feature) contribute more to fashion. They show mid-level fea-
tures perform better than low-level features on their collected runaway dataset
and paper doll dataset [11] in terms of fashion description. Still, they did not
take high-level image features that are specially designed for fashion description
into consideration, which we will show perform much better than both low-level
and mid-level feature in this paper. Actually, fashion modelling is an extremely
difficult problem. For example, all the 8 fashion images that share the same fash-
ion property in Fig. 1 come from both the same brand name, year and fashion
show season. However, they mutually keep large visual discrepancy in terms of
color, texture and other common image features.

In this paper, we commit to answer two questions: what type of extracted
image features best models the clothing fashion? and given the fashion feature
representation extracted from a query image, how can we fast retrieve images
with similar fashions attribute? In general, we assume clothing images coming
from the same fashion show, same season and holding the same brand name share
similar fashion attributes. Because, fashion designers would usually express only
one unique fashion theme during their launched fashion show for a particular
season. We argue that fashion, especially the clothing fashion, is a distinctive and

1 see report in http://mashable.com/2012/02/27/ecommerce-327-billion-2016-study/
#kc.44t96Zqq3.

2 see http://labs.ebay.com/tags/fashion.

http://mashable.com/2012/02/27/ecommerce-327-billion-2016-study/#kc.44t96Zqq3
http://mashable.com/2012/02/27/ecommerce-327-billion-2016-study/#kc.44t96Zqq3
http://labs.ebay.com/tags/fashion
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Fig. 1. Large visual discrepancy exists in fashion images. All the 8 images share the
same fashion property as they derive from fashion brand Apiece Apart in 2013 Spring
ready-to-wear season. However, they also hold large visual discrepancy between images,
including color information, texture, even the extraneous shape feature.

habitual trend in the style that people practice in their everyday dresses. It is
a kind of aesthetics that directly relates to people’s outfits, including footwear,
accessories, makeup, clothing. It integrates so many factors and a costume’s
parts to express a fashion theme that hardly can machines analyze it accurately
and comprehensively, even though it is comparably much easier for human to
percept and analyze. In this paper, we devote to bridge this gap to make the
machine to be able to “understand” fashion. Thus, to tackle the two problems,
we first devote to model fashion-aware image feature, ranging from low-level,
mid-level features mentioned above to high-level features that are abstract and
semantically expressive. We conduct comprehensive experiments to test various
image features, including color, texture (low-level), shape, style feature (mid-
level), and convolutional neural networks (CNNs), CNNs guided distance metric
learning ranking (CNNs&DML) and AutoEncoder features (high-level). CNNs
directly learn feature representation from a stack of non-linear neural networks.
CNNs&DML works in the same way but the learning process is deliberately
supervised by fashion similarity metrics via a triplet ranking loss. While CNNs
and CNNs&DML are supervised learning, AutoEncoder is completely unsuper-
vised learning. It learns feature representation by encoding and decoding a fash-
ion image, guaranteeing the input image and decoded image are maximally the
same.

Then, as a mean of testing each feature’s performance, we design another fast
image retrieval framework by converting the long float formatted feature vectors
into binary codes, which allows us to fast calculate two image’s fashion similarity.
We follow the binarization approach proposed by Xia et al. [12] to transform all
fashion features to binary codes, in which we introduce a sparsity encouraging
regularizer and additive noise to reduce the accuracy loss caused by this bina-
rization process. We will show in our experiment that this fast image retrieval
framework dramatically improves retrieval speed without obvious retrieval accu-
racy loss, which enables real-time application.

To validate our proposed fashion features’ performance, as well as to test the
fast fashion image retrieval framework, we conduct experiments on two publicly
available datasets: Runway dataset [4] and Paper Doll dataset [11]. Runway
dataset [4] contains fashion images from various fashion shows launched by
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famous brands (i.e. Christian Dior), ranging from 2010 to 2014. Paper Doll
dataset [11] contains clothing images people dress in their daily lives and shown
in various fashion shows. These two datasets enable us to test our framework
from different viewpoints. For example, retrieving images w.r.t. brand name,
year, season, or cross-domain retrieval between people wearing clothing fashion
show clothing. Overall, the main contributions of this paper lie in: 1. we conduct
extensive experiments on various existing image features to find the feature that
best describes fashion. The features we here use span from traditional low-level
color, texture features, mid-level shape, style feature to high-level deep learn-
ing based features. To the best of our knowledge, we have covered most existing
image features that have shown superiority in various tasks. 2. We design a novel
fashion guided fast image retrieval framework which enables fast image retrieval
according to different requests. Besides, our feature vector binarization scheme
achieves real-time application without obvious accuracy loss.

2 Fashion Image Feature Pool

Efficient image feature representation is of vital importance for various vision
tasks. Up to now, traditional hand-crafted features, semantically engineered fea-
ture as well as supervised learning based features have been proposed to address
various vision problems. Yet, none of these features was initially designed for
fashion description. To delve into what image features makes fashion, we take 7
kinds of features into consideration, namely color, texture, shape, style, Convo-
lutional Neural Networks (CNNs) feature, CNNs supervised by distance metric
learning feature (CNNs&DML) and AutoEncoder feature.

Color Feature. Color information is the most direct and intuitive visual infor-
mation we receive from an image. Given an image, we extract two 512 dimen-
sional histograms in both RGB space and Lab color space and further concate-
nate them together to form a 1024 dimensional feature vector. To avoid irrelevant
background interference, we merely extract color feature in the regions parsed
as foreground by [11]. (see Fig. 2 for parsing result).

Texture Feature. Texture captures an item’s surface physical appearance and
characteristics, such as roughness, topological structure and subtle color orien-
tation. Clothing texture conveys fashion theme from a bottom-to-top scope. In
this paper, texture feature consists of two bag-of-words (BoW) histograms from
regions parsed as foreground (also by [11]). The first one derives from the his-
togram from MR8 response [13] quantized into 256 visual words. The second
histogram derives from HOG descriptor [14] (8× 8 blocks, 4 pixel step size, 9
orientations) quantized into 1000 words. These two histograms are also concate-
nated together to form one final feature vector.

Shape Feature. We follow the method proposed in [4] for shape feature extrac-
tion. Particularly, given a fashion image, we first apply the pose estimation algo-
rithm [15] to find the body part, then we divide the body part into 9 subregions
for head, chest, torso, left/right arm, between/left/right legs. For each subregion,
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Fig. 2. Framework overview: given a fashion image, we first extract 7 fashion feature
candidates, then we convert these float formatted feature vectors into binary codes,
with which we can fast retrieve fashionably similar images.

Fig. 3. AutoEncoder feature and Shape feature. A. AutoEncoder receives an input
fashion image and feeds it to the encoding-decoding neural network to learn compressed
representation (aka AutoEncoder feature). B. Shape feature calculation process: given
an original image, we first estimate the nini-tina’s pose with a bunch of bounding boxes.
Then we gradually binarize all bounding boxes to calculate the edge map, which serves
as shape feature.

we extract an edge map by an edge detection algorithm (see Fig. 3B). Finally,
we binarize the edge map by minimizing the following loss function

Lshape =
∑

i∈x

d(xi, xj) +
∑

j∈x

d(xj , xi) (1)

where d(xi, xj) indicates the Euclidean distance of pixel i of the binary map x
binarized at the threshold t to the nearest pixel j of the clothing contour x.

Style Feature. Style feature is particularly introduced by Yamaguchi et al. [11].
For an image, we first extract 24 key points and further use these key points to
create part-specific descriptors. Each descriptor builds on low-level features, such
as RGB, Lab, MR8, HOG and boundary distance, skin hair distance. Skin-hair
distance is calculated by using logistic regression for skin, hair, background and
clothing at pixel-level. Finally, all spatial descriptors are concatenated together
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to form the style feature vector. PCA is also applied for reducing the dimension-
ality from 39,168 to 441.

CNNs Feature. Convolutional neural networks have shown state of the art
performance on various vision tasks due to its super power to learn discrimina-
tive feature on large datasets. Tasks such as object detection [16], image seman-
tic segmentation [17] and image similarity measurement [8,18] benefited much
from the CNNs to learn discriminative feature through a layer-wise and highly
non-linear neural network. While shallow layer in CNNs architecture learns the
localized feature (i.e. edges, boundaries and textures), and intermediate layer
learns mid-level feature (i.e. motif, object, attribute), deep layers learns global
and abstract image feature. We exploit this advantage and extract CNNs final
full connection (fc) layer and treat its activation value vector as CNNs fashion
feature. Note that the CNNs feature discussed here is trained as a classification
problem. For example, given a set of fashion images, we can train a deep con-
volution neural network to classify these images according their brands. Then
we treat full connection feature before the softmax layer as CNNs fashion fea-
ture. By utilizing this feature, we test CNNs feature’s generalization ability to
interpret fashion.

CNNs&DML Feature. Instead of simply replying on CNNs feature alone, we
want to go further to supervise CNNs feature learning process via distance metric
learning (DML), anticipating the learned CNNs feature better fits for fashion
description. Distance metric learning has already been extensively applied to
image retrieval [19–23]. The key idea of distance metric learning is to find an
optimal metric that minimizes the predefined distance of similar images but
maximizes the distance of dissimilar images. In general, distance metric learning
either learns a global metric by satisfying all constraints simultaneously or a local
metric by merely satisfying partial constraints. In this paper, we adopt triple
ranking loss to rank the fashion similarity of an image pair. Triplet ranking loss
has been successfully applied to cross-domain clothing image retrieval [18] and
content-based image retrieval [9]. Triplet ranking loss requires triple image pair
input. Denoting I, I+ and I− the anchor, positive and negative input image,
respectively, in which I and I+ are fashionably similar but I− is fashionably
dissimilar to any image of the two. Our goal is to train the triplet ranking loss
by forcing it minimizes distance d(I,I+) between anchor and positve and, at the
same time, maximizes the distance d(I,I−) between anchor and negative. This
constraint is achieved by letting d(I,I+) to be larger than d(I,I−) by a small
pre-defined margin δ.

Ltriplet =
∑

(I,I+,I−)

max(0, δ + d(I,I+) − d(I,I−)) (2)

AutoEncoder Feature. Note that all the aforementioned fashion features
generation approaches require explicit heavy human engineering work, either
in human deliberately involved feature quantization (low-level and mid-level
feature) or human guided feature learning strategy (high-level feature). Actu-
ally, quantizing fashion image feature via human supervision cannot withstand
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scrutiny because there is current no general agreement upon what categories
or labels are meaningful for clothing fashion modelling. One more appropri-
ate way is to generate clothing fashion representation without explicit human
intervention. Inspired by this motivation, we leverage the AutoEncoder scheme
introduced by Torres [24] to create clothing fashion feature. AutoEncoder is ini-
tially designed for dimension reduction or feature compression via a sequence of
symmetrical neural networks by maximally keeping all meaningful information
in a much smaller domain. We take this advantage to train a neural network
to automatically learn fashion representation which automatically strips away
all irrelevant information in the original clothing image and stores the fashion
features in a condensed vector.

AutoEncoder learns the fashion presentation of clothing images by first
encoding them via a stack of neural networks with descending neutron num-
ber order, and then decoding the compressed representation through another
stack of neural networks with ascending neuron number order (see Fig. 3A). The
whole encoding-decoding neural network is trained through a sequence of for-
ward and backward propagation by forcing the input image to be the same as the
neural network’s output image. The biggest advantage of AutoEncoder feature
is that the neural networks automatically learn fashion representation without
being explicitly told what these representations should be look like. Conventional
AutoEncoder is notorious for being easily prone to be overfitting. To avoid this
dilemma, we follow the variational AutoEncoder introduced by Torres [24] to
introduce a regularization term and uncertain noise into the neural network.
Specifically, rather than treating the encoded fashion feature vector as static
numeric values, we interpret it under Bayesian framework and treat it as statis-
tical distribution with multivariate normal and identity covariance so that we
can draw samples from this distribution.

To be specific, given an input image I, we first forward propagate it through
the encoding neural network, then compute compression layer’s mean value μ
and covariance σ2. With the two values, we can resample the encoding vector
through variational posterior q(z) = N (z;μ, σ2I). After forward propagating
the resampled feature to the decoding neural network to get the reconstructed
image, we can calculate the prior distribution p(z) = N (z, 0, I). The final loss
function consists of two parts: the mean square error and KL divergence of our
trained posterior q(z) and pre-constructed prior p(z).

L = MSE(Ii, Io) + DKL(q(z)||p(z)) (3)

where MSE indicates the mean square error calculator. Involving regularization
term and extra noise during the whole training process keeps the AutoEncoder
from overfitting and thus guarantees fine fashion feature extraction in any test
fashion clothing image.

3 Fast Fashion Image Retrieval with Binary Codes

After calculating feature vectors for all fashion image datasets, we can calcu-
late any query image’s similarity with each image stored in the database by
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similarity metrics such as Euclidean distance, Hamming distance and Cosine
distance. However, since all the feature vectors are float formatted, distance cal-
culation is too computationally heavy, which is intolerable for many real appli-
cations, especially when the database involves millions of images. An empirical
way to reduce this computation burden is to convert the float formatted feature
vector to binary code vectors without much information loss. With the binary
code, the similarity distance can be fast calculated by XOR operation. To this
end, we follow the method introduced by Xia et al. [12] to convert float fashion
representation to binary fashion representation.

The basic theory of float vector binarization is simple: given an original float
feature ff , our goal is to train a matrix W to map f to new feature space
fb = W ·ff . fb is then binarized by thresholding. The whole process is supervised
by minimizing the distortion and variants between ff and fb. More formally, we
use F ∈ R

d×n to denote the input float feature matrix, each column of which
is a datum, our goal to train a projection matrix W b×d which directly maps F
into the target binary codes B ∈ R

b×n by B = sign(WF ) ∈ {−1, 1}b×n. The
key challenges arising from this process include a lack of an effective regularizer
for accurate mapping and high computation cost. We here introduce a sparsity
encouraging regularizer to mitigate these challenge by reducing the number of
parameters involved in projection operation. In sum, the objective functions
goes as

min
W,B

= ‖WF − B‖2F
s.t. WTW = I, |W |0 � m

(4)

where | · |0 indicates the number of non-zero elements in W . m is the sparsity
controller. By optimizing Eq. 4, the float formatted fashion feature set can be
mapped to an binary domain, with which we can fast compute similarity with
Euclidean distance.

4 Experiment

We test our frameworks on two publicly available datasets: Runway dataset [4]
and Paper Doll dataset [11]. Runway dataset consists of runway images from
a wide variety of fashion shows. There are a total of 348,598 images which
are collected from style.com, including 9,328 fashion shows from 2000 to 2014.
Each image is tagged with a meta data describing the image’s brand name (i.e.
Christian Dior), show date, season (i.e. Resort 2007), city, the author name,
as well as the short text description. The number of images of each individ-
ual brand ranges from 10 to 100. There are 8 seasons in total: spring ready to
wear (S-RTW), spring menswear (S-MENS), Spring Couture (S-COUT), resort,
pre-fall, fall read-to-wear (F-RTW), fall menswear (F-MENS), fall couture (F-
COUT). In our experiment, we assume only fashion images sharing the same
brand name, year and seasons share the same fashion property because each
fashion designer always expresses one particular fashion theme for a fashion
show and all clothing items serve to express this fashion theme. For example, in
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the 2008 pre-fall fashion show, Burberry Prorsum has expressed brands signature
outerwear centered fashion through coutures “Coats were ruched, beaded, piped
with patent leather. Underneath, there was a loosened-up silhouette: still fitted
at the top, but fuller at the bottom”. Therefore, an image is only considered
as correct retrieval only if it comes from the same fashion show with the query
image. With the Runway dataset, we can conduct experiments on intra-domain
fashion image retrieval where “intra-domain” means all images coming from
various fashion shows.

Paper Doll dataset [11] contains clothing images people wearing in their
daily lives. There is a total of 339,797 images collected from the social network
named Fashionista which focuses on Chictopia fashion. Each image in Paper
Doll dataset [11] does not have a fashion tag, so we can not directly test each
feature candidate’s performance within our proposed fast fashion image retrieval
framework regarding fashion metrics. Here we utilize Paper Doll dataset [11] to
test each feature candidate’s generalization capability in retrieving really cloth-
ing images (clothing people wearing everyday) for runway fashion images. We
call it cross-domain fashion retrieval. Since there is no ground truth dataset for
quantitative evaluation, we involve human subjective evaluation: for each runway
query image’s retrieval results, we ask 5 volunteers to label the fashion similarity
between the query image and each retrieved realway image.

As for evaluation metrics, we adopt mean average precision (mAP), precision
and recall rate at particular ranks (“P@K”, “R@K”) metrics that are often
employed for many standard image retrieval applications. Note that mAP strikes
a balance between precision and recall rate. Besides, it takes the retrieved image’s
location into consideration. The more forward an accurately retrieved fashion
image ranks, the higher mAP values it achieves. Specifically, mAP is computed
via the following equation,

mAP =
1
N

N∑

i=2

(ri − ri−1) · (pi−1 + pi)
2.0

(5)

where ri and pi indicate the recall and precision rate of top-i retrieval results,
respectively. A well-designed image retrieval framework often generates high
mAP value.

We implement CNNs and CNNs&DML feature learning on the open source
deep learning framework Caffe [25] with 4 Tesla K40 GPUs. The CNNs architec-
ture we adopt here is the 18-layer residual network with identity mapping pro-
posed by He et al. [16], which has shown promising performance on various vision
tasks. In CNNs feature training, we classify the Runway dataset [4] according
to their brand names (thus, the output layer is a softmax layer with 851 out-
puts). Note that other classification criterias truly exist, such as year-based and
fashion season-based classification. We do not involve them here because we just
want to test non-fashion guided CNNs feature’s performance on fashion image
retrieval. We divide Runway dataset [4] into 300,000 and 48,598 for train and
testing, respectively. Data augmentation methods like scaling, vignetting, fish
eye distortion are involved here and it takes 6 days to train the whole dataset.
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We observe that the loss fluctuates slightly at the very beginning several epochs
iteration and then gradually diminishes to a small value. For CNNs&DML fea-
ture training, we first collect fashion images of the same brand, year and season
to form the anchor and positive pair, any image violating this similar-fashion
criterion is treated as negative. Finally, we randomly generate 500,000 triplet
pair, covering all the 9260 different fashion shows. The testing dataset for CNNs
fashion feature is also adopted here for testing.

Intra-domain Experiment. We only consider top-10 retrieval results for Run-
way dataset [4] because, in some extreme situations, one query fashion image cor-
responds only up to 10 fashion images. Specifically, we calculate mAP, P(R)@3,
P(R)@5, P(R)@7 and P(R)@10 metrics. The float formatted retrieval results are
given in Table 1 and the binary codes retrieval results are given in Table 2. We
can clearly observe that machine learning based features (CNNs, CNNs&DML
and AutoEncoder) far outperform traditional hand-crafted features by a large
margin on both float formatted retrieval and binary codes based retrieval. Tradi-
tional low-level features including color, texture, shape and style usually get fine
retrieval result with a low ranking K, which means that fashion property shows
correlation with low-level image features. However, while the retrieving num-
ber increases, traditional low-level features soon loss discrimination capability

Table 1. Fashion image retrieval results on runway dataset [4] (float formatted fea-
tures).

Feature mAP P@3 P@5 P@7 P@10 R@3 R@5 R@7 R@10

Color 0.41 0.70 0.43 0.51 0.57 0.033 0.065 0.110 0.167

Texture 0.45 0.67 0.46 0.54 0.57 0.036 0.063 0.110 0.172

Shape 0.51 0.73 0.60 0.63 0.71 0.049 0.078 0.136 0.198

Style 0.53 0.76 0.70 0.63 0.69 0.048 0.080 0.148 0.213

CNNs 0.74 0.87 0.83 0.83 0.85 0.088 0.104 0.197 0.318

CNNs&DML 0.87 0.89 0.93 0.87 0.92 0.094 0.138 0.210 0.321

AutoEncoder 0.76 0.80 0.85 0.83 0.84 0.090 0.112 0.187 0.317

Table 2. Fashion image retrieval results on runway dataset [4] (binary codes features).

Feature mAP P@3 P@5 P@7 P@10 R@3 R@5 R@7 R@10

Color 0.37 0.68 0.40 0.43 0.50 0.030 0.055 0.082 0.154

Texture 0.45 0.67 0.40 0.47 0.50 0.029 0.047 0.090 0.164

Shape 0.47 0.68 0.52 0.60 0.68 0.042 0.071 0.126 0.189

Style 0.50 0.73 0.63 0.59 0.64 0.043 0.076 0.136 0.201

CNNs 0.70 0.86 0.81 0.82 0.80 0.087 0.104 0.193 0.310

CNNs&DML 0.87 0.88 0.93 0.87 0.90 0.094 0.137 0.210 0.321

AutoEncoder 0.74 0.74 0.83 0.82 0.84 0.088 0.109 0.183 0.300
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regarding fashion description (which are testified by the fact that precision values
with a higher K are much smaller than prevision values with a lower K). There-
fore, hand-crafted image features only hold weak correlation with fashion descrip-
tion, much more robust and discriminative characteristics of fashion are still are
incorporated by these hand-crafted features.

On the contrary, our proposed three machine learning based image fea-
tures (CNNs, CNNs&DML, AutoEncoder) have managed to grasp these hidden
characteristics of fashion. Their multi-layers perceptron and high non-linearity
perception manner assist them to mine deeper semantic and more abstract char-
acteristics of fashion. It in turn attests fashion integrates various visual informa-
tion, both intuitive and abstract, to be fashionable. Among the three machine
learning based methods, CNNs&DML performs the best (an average of 10 per-
cent increasing in mAP). We learn that explicitly telling the neural network some
side information about fashion, like what two images are fashionably similar but
the other two are not in our experiments, dramatically assist machines to under-
stand fashion. Unsupervised and self-explanatory AutoEncoder and non-fashion
task guided neural network CNNs, to some extent, often fail to fully capture fash-
ion properties. In addition, we also note that the three machine learning based
image features are barely affected by the variation of ranking number K (almost
stayed the same regardless of K changes). This shows that these three feature
managed to jump over the fashion interpretation barrier showing in Fig. 1. They
are better capable of understanding “what makes fashion”.

Visual results are shown in the left side of Fig. 4, from which we can see
that hand-crafted image features often treat images from different brands, years
and seasons as fashionably similar. However, deep learning based methods can
avoid this problem and find the truly fashionably similar images, even though
they have dramatic visual difference. We do not provide the average processing
time difference here between float formatted features and binary codes. The
reason is that, on the one hand, the retrieval time for each query image heavily
depends on the size of database. Direct comparison without taking the database
size into consideration is somewhat meaningless. On the other hand, we observe
that no obvious time difference in the 30W+ Runway database [4] between
float formatted features and binary codes. However, when we applied the same
feature binarization scheme to other image retrieval problem on a much larger
database (i.e., 6 million), processing time difference emerges: the average time
to retrieve an image with float formatted feature is about 0.5 s, but 0.2 s with
its corresponding binary code.

Cross-domain Experiment. An intuitive idea is to figure out whether the
learned or hand-crafted fashion descriptors on runway scenarios (Runway dataset
[4]) can successfully be applied to real life clothing items’ fashion analysis. This
can help us to test these features’ generalization and transformation ability.
Thus, we further conduct experiment on Paper Poll dataset [11]. As we dis-
cussed above, there is not ground truth for Paper Poll dataset [11] for quanti-
tative evaluation. What we do here is to ask 5 volunteers to label the retrieval
results. This helps us to understand the fashion from human perspective, even
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Fig. 4. Visual representation of both intra-domain (left) and cross-domain (right) fash-
ion image retrieval results. The first image in each row for either domain is the runway
query image. For the intra-domain fashion image retrieval, we further provide year,
brand and season tags for better comparison.
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Table 3. Human judgement results on cross-domain experiment. Given an query image
from the Runway dataset [4], we retrieve fashionably similar images from Paper Doll
dataset [11]. Then we ask 5 volunteers to label each retrieval result and assign the
labelling result to one of the three classes according to the number of volunteers who
agree on the retrieval result. Finally, we calculate the rate of the three classes on the
testing dataset.

Classes Color Texture Shape Style CNNs CNNs&DML AutoEncoder

Unanimity 0.43 0.28 0.30 0.38 0.40 0.48 0.43

Major 0.33 0.20 0.35 0.31 0.37 0.34 0.30

Some 0.24 0.52 0.35 0.31 0.23 0.18 0.27

though subjective personal preference and experience are heavily involved in this
experiments. Specifically, we follow the scoring system provided by Vittayakorn
et al. to ask the volunteers to label all query-retrieval image pair as fashion-
ably similar or dissimilar. Then we calculate the number of volunteers who have
given agreed labelling results and accordingly classify each retrieval results as
one of the three classes: Unanimity which means all the agreed on the retriev-
ing result. Majority which means more than or equal 3 volunteers agreed on
the retrieving result, and Some which indicates less than 3 volunteers agreed
on the retrieving result. To maximally reduce personal prejudice and unprofes-
sional judgement, we first ask all the volunteers to carefully look at Runway
dataset [4] to learn the idea what makes two images fashionably similar. Finally,
we calculate the rate of the whole testing images being classified as the three
classes regarding the 7 feature candidates. The result in shown in Table 3, from
which we can get that pre-trained volunteers exhibit professional expertise to
compare the fashion similarity for runway-realway image pair. They show com-
patible labelling result w.r.t intra-domain experiment. That is, machine learning
based methods’ retrieved results leads to larger unanimity rate. Hand-crafted
features, especially the shape and style features, arise much controversy between
volunteers. We think the reason behind it is that mid-level feature is neither
fully human understandable nor machine discernible. So, none of them can lead
to promising results on either the machine side or human judgement side. The
low-level features, however, even though they are still machine discernible regard-
ing fashion interpretation, can easily motivate human’s perception and further
inspire human to make judgement. This specially applies to color feature, from
which we see a large unanimity rate. Color information reduces human’s hesita-
tion to make a judgement, but texture varies significantly according to different
people.

The cross-domain visual result is given on the right side of Fig. 4. We can
clearly see that texture feature can lead to large ambiguity between different
clothing parts in an image (second row). The nini-tina’s overcoat, trouser as well
as bag hold large texture discrepancies, texture feature alone failed to interpret
them hierarchically and efficiently. So the retrieved results exhibit large texture
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variations, even though all the three retrieved images have the white overcoat.
However, large machine learning based methods, especially deep learning based
methods, managed to strike a balance between them and accurately retrieve
image according to their fashion property.

Overall, after comprehensive and extensive experiments on both intra-domain
and cross-domain situation, we can see that deep learning based image features
(CNNs, CNNs&DML and AntoEncoder) can be used to describe an image’s fash-
ion property in both intra-domain and cross-domain application. Explicit fash-
ion guided training helps to learn better fashion features. Traditional features,
including low-level features and mid-level features, cannot grasp discriminative
and deep fashion properties. Besides, our proposed fast image retrieval frame-
work helps to fast retrieve fashion images according to their fashion properties.

5 Conclusion

In this paper, we delve into what special image feature makes fashion. We con-
duct extensive experiments to test various existing image features’ performances
in terms of fashion aware image retrieval, assuming fashion images deriving
from the same fashion show, same brand name as well as same season share
similar fashion properties. The image features we exploit in this paper cover
most famous low-level, mid-level and high-level image features that have been
demonstrated to be useful in other vision tasks. Our comprehensive experimen-
tal results show that machine learning (especially deep learning) based image
features better describe fashion than traditional hand-crafted image features.
Among all machine learning generated image features, fashion-guided machine
learning generated features (CNNs&DML) performs slightly better than both
non-fashion task supervised machine learning generated image feature (i.e. clas-
sification task supervised CNNs image feature) and unsupervised machine learn-
ing generated image feature (i.e. AutoEncoder), which shows that fashion term
is highly abstract and can be better described by telling the machine some side
information about fashion, such as what two images share similar fashion prop-
erty. Even though fashion is somewhat easily understandable by humans but
difficultly processible by machines, we find that it can still be efficiently mod-
elled by machines via current successful deep learning based methods.

In addition, to fast retrieve a fashion image, we propose to convert float
formatted feature vectors into binary codes. The feature binarization process
allows real-time fashion image retrieval application. Still, fashion is an open
problem and many interesting problems such as fashion trend prediction and
image fashion likelihood probability prediction, remain to be tackled.
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Abstract. Relative attributes can serve as a very useful method for
zero-shot learning of images. This was shown by the work of Parikh and
Grauman [1] where an image is expressed in terms of attributes that are
relatively specified between different class pairs. However, for zero-shot
learning the authors had assumed a simple Gaussian Mixture Model
(GMM) that used the GMM based clustering to obtain the label for
an unknown target test example. In this paper, we contribute a princi-
pled approach that uses Gaussian Process based classification to obtain
the posterior probability for each sample of an unknown target class, in
terms of Gaussian process classification and regression for nearest sample
images. We analyse different variants of this approach and show that such
a principled approach yields improved performance and a better under-
standing in terms of probabilistic estimates. The method is evaluated on
standard Pubfig and Shoes with Attributes benchmarks.

1 Introduction

Consider the task of recognizing a person at test time when we are not pro-
vided with any images of the person at training. This setting for classification is
termed zero-shot learning, i.e. the classifier is provided with no training image
for obtaining the classification. A technique used to recognize unseen classes is
through the use of attributes [5]. These attributes describe a person in terms as
the gender of a person, or type of hair that person has. However, as shown by
Parikh and Grauman [1], a more natural description is obtained by describing
the attributes of a person in relation to those that are known. For instance, we
can say that ‘Tracy Morgan’s face is chubbier as compared to ‘Anderson Cooper’
but less as compared to ‘Karl Rove’.

In this paper, we consider this problem of zero-shot recognition of different
objects like faces or shoes using relative attributes. The initial work by Parikh
and Grauman [1] used relative attributes in zero-shot recognition by using a
Gaussian mixture model of the relative attributes. However, a simple Gaussian
mixture model does not transfer the knowledge effectively in the model. In this
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paper, we propose a more principled approach where we use a Gaussian Process
prior over the relative attributes in order to obtain zero-shot recognition. This
approach while being principled also enables us to model the variance in the
samples. We further analyze different variants of using Gaussian process prior
for obtaining zero-shot recognition of samples.

In our approach we use two stages of Gaussian processes. In the first stage,
we use a Gaussian process based classifier to classify the set of classes that are
known in training. In the second stage, we use Gaussian process based regression
to obtain the zero shot recognition for samples in test that have no training
examples. The two stages allow for effective knowledge transfer from known
training samples of a fixed set of categories to unknown test samples of a set of
categories for which no training samples are present.

The main contribution of this work is to demonstrate a two-stage framework
using Gaussian process that allows us to obtain principled probabilistic estimates
of the relative attributes for zero shot learning. We obtain in this framework not
only the probablistic estimates of p(y|x) where y is the class label and x is
the feature set, but also the uncertainty in estimating p(y|x) that is extremely
relevant in the zero-shot setting. We demonstrate the efficacy of our method with
detailed comparison to the previous work [1] on standard benchmark datasets.

The rest of the paper is organized as follows: In the next section we give a brief
overview of the related work. In Sect. 3 we provide the background that briefly
provides an overview of the relative attribute zero shot learning based setting. In
Sect. 4 we provide detailed description of the proposed method and its variants.
Section 5 discusses the experiments performed and the results obtained from the
experiments and we finally conclude in Sect. 6 with directions for future work.

2 Related Works

The use of attributes for zero shot learning was initially proposed by Lampert
et al. [5]. In their work they had shown that animals could be described in terms
of binary attribute vectors that captured the properties of each class. This was
then used to recognize an unseen class in terms of its attributes. Akata et al. [7]
extend the work by considering the attribute representation problem as one of
label embedding and learn the embedding instead of using a direct attribute
presentation [6]. Further work has been undertaken where they consider that
the attributes may be unreliable [8]. Another interesting line of work has been
analysed by Elhoseiny et al. [10] where the authors analysed the use of pure
textual descriptions instead of well defined attribute representations. A recent
work explores the structure of the semantic manifold in terms of semantic class
label graph for representing the distance [14]. Another explores the co-occurrence
of visual concepts for zero shot classification [15].

These methods have addressed the attribute representation. However, in our
work we address the method used for zero-shot recognition. The basic premise
is that just using a clustering would not exploit the structure of the data
for zero-shot recognition. Recently there has been interesting work by Yu and
Grauman [9] where the authors show that using Bayesian local learning they are
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able to analyse when two images are indistinguishable for a specific attribute.
In our work we jointly rely on multiple attributes and treat the problem of
identifying the sample through Gaussian process regression.

The present work relies on relative attributes which were proposed by Parikh
and Grauman [1]. In their work the authors introduced relative attributes and
showed that they were applicable for a number of use-cases including zero-shot
learning of unseen classes. Further, Berg [4] have shown that relative attributes
could be coupled with relative feedback and this would be useful for image search
cases such as searching for a shoe. These use-cases that extend relative attributes
could also be applicable using the proposed method.

Gaussian process is extensively used in our work. This framework has been
excellently presented by Rasmussen and Williams [2] in their book. This app-
roach while primarily suited for regression has also been used for other related
tasks such as multi-relational learning [11] and for one-shot recognition [12]. In
our approach we use it in a two stage approach for classification and regression
based on attribute data for zero-shot learning.

3 Background

Our method builds on the work of Devi Parikh and Grauman [1] where the
classes are modelled as Gaussian Distributions using relative attributes, which
depict the strength of an attribute as opposed to binary attributes which shows
its presence or the absence in the image.

During training, given a set of training images X represented by N -
dimensional feature vector, xi ∈ R

N , and a set of M attributes, Am, the relation
between the attribute strength of the seen classes are given as sets of ordered
pair Om = {(i, j)} and similarity-pair Sm = {(i, j)}. These pairs are such that
if (i, j) ∈ Om, then image i has stronger attribute am than image j. Similarly,
if the pair (i, j) ∈ Sm, image i and image j have similar strength of attribute
am. Using these pairs as supervision, M ranking functions are learned for each
attribute that maps an image to its attribute strength score. These functions
transform the images xi ∈ R

N =⇒ R
M . The images are now M -dimensional

vector where mth dimension represents the attribute am’s rank score. For the
unseen classes, the supervision is given with respect to one or two seen classes.
An unseen class cuk can be described relative to seen classes csp and csq, using all
or a subset of M attributes, as cspm ≺ cukm ≺ csqm or cspm ≺ cukm, or cukm ≺ csqm,
where the unseen class cuk has mth attribute stronger than class csp but weaker
than class cuq .

Now given a novel image j to be classified into one of the seen or unseen
classes, a generative model of all the seen classes in R

M is built. A seen class
csp is represented by a Gaussian distribution csp ∼ N (μs

p, Σ
s
p) where mean is

μs
p ∈ R

M and Σs
p is M ×M covariance matrix. The parameters of the generative

model of the unseen classes U are described relative to the parameters of the
seen classes, built according to the supervision given. For attribute am, if an
unseen class cuk is described as csp ≺ cuk ≺ csq, the mth component of the mean
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of unseen class μu
km is set as 1

2

(
μs
pm + μs

qm

)
. Similarly for the unseen classes

described relative to just one seen class as csp ≺ cuk or cuk ≺ csq, μu
km is described

as μs
pm + dm or μs

qm − dm respectively, where dm is the average of the distances
between the sorted mean rank scores of seen classes for the mth attribute and
the covariance Σu

k is 1
S

∑S
i=1 σs

i .
Finally, maximum likelihood is computed and the test image j is assigned

the label with the highest likelihood of a seen or an unseen class.

c∗ = arg max
j∈{1,..,N}

P(
x̃i|μj , Σj

)
(1)

The description of the unseen classes as simply the mean of the related seen
classes may not best represent the unseen class and hence a more accurate app-
roach is proposed to represent the unseen class for recognition.

4 Approach

In this section, we first explain our approach to improve zero-shot recognition
using Gaussian Processes by providing more accurate and systematic framework
to describe the images of the unseen class. Second, we describe in Sect. 4.2,
Gaussian-process based classifier for the seen classes and then, in Sect. 4.3,
Gaussian Process (GP) based method that improves the accuracy of recogni-
tion for the unseen class using k-nearest training images. In Sect. 4.4, we explain
a variant of our method that relies on multiple versions of distributions. This
method is however subsumed in terms of performance by the GP-kNN algorithm.

4.1 Gaussian Processes for Zero-Shot Recognition

Gaussian Process is a distribution of random variables such that any finite num-
ber of distribution of these variables is jointly Gaussian. The observations in
the process occur in a continuous domain. Any Gaussian process f(x) can be
specified as

f(x) ∼ GP(
m(x), k(xT , x)

)
(2)

where the process’s mean function and the covariance function are respectively:

m(x) = E[f(x)], k(xT , x) = E
[(

f(x) − m(x)
)(

f(x) − m(x)
)]

. (3)

Let a regression model with Gaussian noise be given as

f(x) = xTw, y = f(x) + N (
0, σ2

n

)
(4)

where x is the input vector, w is the vector of weights (parameters) of the model
and f is the function value. The outcome observed is represented by y, assuming
that the additional noise term is an independent zero-mean Gaussian distribu-
tion. We assume a zero-mean Gaussian prior w ∼ N (

0, Σp

)
. Given the model
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and the noise assumption, the likelihood and the posterior, given by combining
the prior with the likelihood using the Bayes’ rule, are respectively as follows.

P(y|X,w) = N (Xw, σ2
nI) (5)

P(y|X) =
∫

P(y|X,w)P(w)dw (6)

Finally the predictive outcome f∗ at x∗ is given by

P(f∗|x∗,X,y) = N ( 1
σ2
n

xT
∗ A−1Xy,xT

∗ A−1x∗
)

(7)

Further details of the full Bayesian treatment for Gaussian process is presented
by Rasmussen and Williams [2].

Our two-tier method uses Gaussian process (GP) based classifier in the first
step and Gaussian process regression for a more accurate description of unseen
class in the second step. In the first step, for each test image j, if the GP-
based classifier outputs a prediction greater than a certain set threshold τ , the
classifier corresponding to a seen-class csp labels image j as ‘class-p’. This takes
care of those test images which are very similar to a seen class’s training images,
thus suggesting that the target unknown-class has higher probability to be one
of the seen classes. The GP-based classifier for the seen classes is explained in
Subsect. 4.2.

In the second step, for a test image j which is not labeled by any of the GP-
classifiers of the first step, new Gaussian models representing the unseen classes
are created by modeling more accurate description of the attribute value of the
unseen class based on k sample images chosen from the training set which are
nearest to the test image j. These new distributions are also taken into account,
along with their initial Gaussian distribution, to represent the unseen classes.
Based on the maximum likelihood computed for all the distributions the final
label is assigned. The method is explained further in the following subsections.

4.2 Gaussian Process Based Classifier

During training, we are given a set of training images X belonging to S number of
seen classes and a set of attributes, Am. These training images are represented
by R

N feature vector. Using the supervision given for the relative attributes
between these seen classes, a ranking function is learnt which transforms the R

N

image feature vector to R
M vector in attribute-space.

For all the training images j, Mahalanobis distance of the image from every
seen class csp is computed. This distance shows how many standard deviations
away an image j is from a seen class. The distance comes out smaller for images
similar to the seen class, according to the attributes, and larger for images that
are dissimilar. By taking the average of these distances, Mahalanobis distance is
calculated for each pair of seen classes.

For every seen class csp, a Gaussian Process classifier is created, in the
attribute space, with the training images from csp and csq as positive and negative
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samples, where class csp and csq are most distant from each other. The GPML
tool box [13] is used for the computation.

These Gaussian process classifiers, each corresponding to a seen class, are
used to find the posterior mean given the test image as the input. If the posterior
mean of the prediction is greater than the set threshold τ , (experimentally set to
0.9), the test image j is labelled positive by the classifier. In case more than one
classifier labels an image positive, the label by the classifier with a more positive
mean is assigned.

4.3 Zero-Shot Recognition Using Gaussian Process - kNN Approach

In the previous approach, given a generative model for all the classes, each class
is represented by a Gaussian distribution. The unseen classes are modeled using
supervision given for all or a subset of M attributes (see Sect. 3). Every class-p,
seen and unseen, has a set of parameters corresponding to the mean μp and the
covariance Σp of the class. The label is assigned to the test image based on the
highest likelihood value computed for each of the classes.

In our proposed approach to improve zero-shot recognition, for all the test
images which are not labelled by any of the seen-classes’ GP-based classifier,
Gaussian process is used to improve the recognition in the following way as is
shown in Fig. 1.

Fig. 1. Basic outline of the proposed GP based method for Zero-shot recognition. Test
image in N -dimensional feature space is first transformed to M -dimensional attribute
space using the ranking function learned for each attribute. These images are then given
as an input to be labelled by GP-based classifiers for the seen classes, determined by
a threshold for the predicted posterior. k-training samples from seen classes are then
chosen according to their euclidean distance from the unlabeled test samples. Using
Gaussian process, explained in Sect. 4.3, and the attribute rank scores of these chosen
images to the GP, multivariate normal distributions (MVN) are modelled to represent
the unseen class more accurately. The label corresponding to the distribution which
gives the maximum likelihood, is assigned to the image.
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Fig. 2. k-nearest neighbours computed for two unlabelled test samples: Michelle Wie
and Ben Stiller. From the training set of 5 seen classes, k-nearest neighbour (k = 5)
based on the Euclidean distance from the test image is seen. The neighbors selected
depends on attributes. Attributes like the shape of face and age is similar for the nearest
neighbors in this example.

1. From the set of training images, k-nearest samples are chosen whose Euclidean
distance is shortest from the test image j. These k images resemble the test
image most closely, in the attribute space. (See example in the Fig. 2 for two
test samples- Michelle Wie and Ben Stiller).

2. For every unseen class cuo , for an attribute am, if the supervision is given with
respect to two seen classes csp and csq as cspm ≺ cuom ≺ csqm, then the mth
component of the mean of the unseen class, μu

om is computed using Guassian
process (GP) and the k nearest neighbours.
The unseen class is represented by a set of k means and covariances,
(μiu

o , Σiu
o ), i ∈ {1, ..k}. A GP is created with the rank scores of the mth

attribute of the training images from seen classes csp and csq as positive and
negative training samples respectively. Now, the mth component in each of
the μiu

o is the posterior prediction mean output, with the mth attribute rank
score of the ith-nearest training samples (chosen in Step 1) i ∈ {1, ..k} as
input to the above constructed GP.

3. For the attribute whose supervision is given with respect to just one seen
class, as cspm ≺ cuom or cuom ≺ csqm, the mth component of the mean of the
unseen class is taken as μs

pm + dm or μs
qm − dm respectively. Here dm is the

average of the distances between the sorted mean rank scores of seen classes
for the mth attribute.

4. To assign label to the test image, the likelihood score is computed by
P(

x̃j |μi, Σi

)
, where μi and Σi is the mean and covariance of all the classes,

including the k new sets of (μiu
o , Σiu

o ) constructed for the unseen classes in the
previous step. The label is finally assigned based on the maximum likelihood
value.

4.4 Tray of Multivariate Normal Distributions - A Variant of Our
Proposed Method

We also experimented with a variant of our proposed GP-kNN method, and
studied its performance in a subset of PubFig dataset. In this step, for all those
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test images which are not labelled by any of the GP-classifiers from the first
step (Sect. 4.2), likelihood of the image belonging to each class is computed. If
the likelihood of the test image to belong to a seen-class is highest, the label
is assigned to it accordingly. However, if the likelihood of the test image to
belong to one of the unseen classes is highest, instead of one set of mean μi and
covariance Σi, multiple sets or a ‘tray’ of mean and covariances representing that
class is dynamically created as we come across test samples. The image is labeled
accordingly and a new distribution (μ′

i,Σi), where the mth component of μ′
i is

the posterior mean predicted with the test image’s mth attribute score as input,
is added to the tray. For subsequent test images, the likelihood for labeling, will
be computed using all the earlier distributions representing the classes and those
which are added to the tray.

In this approach rather than using GP regression, we had considered dynamic
updation of the multi-variate normal distribution for the unseen classes. Keep-
ing a dynamically increasing tray of multivariate normal distributions to com-
pute the likelihood and assign label to the test image, accomodates the idea
that a labeled test sample may improve the description of the unseen class, for
the following test images, than the original Gaussian mixture model. However,
improvement by this method is dependent on the order of test images which
led to the development of more systematic algorithm (GP-kNN) for the unseen
classes’ description. Moreover, as shown in Sect. 5.4, this method does not per-
form as well as the GP kNN regression method.

5 Experiments

We evaluate our method for zero-shot recognition using GP-based classifier and
k-nearest neighbors and compare our accuracy rate with the results obtained by
GMM based clustering, as in the work of Parikh and Grauman [1]. We report
results to demonstrate a more systematic and accurate description of the unseen
class and validate the improvement achieved in recognition.

5.1 Setup

Our experiments used two datasets: a subset of Public Figure Face Database
(PubFig) [3] and Shoes with Attributes Dataset [4]. The PubFig dataset
consists of images of 60 different personalities, each image being represented
by a 73-dimensional feature vector. Four sets of experiments were done on this
dataset to validate our method where in each set, 8–10 classes of people are
randomly chosen. The effect of changing the number of seen classes, the number
of attributes to describe the classes and varying the supervision in terms of 10
different relative attributes is also demonstrated.

The experiment on Shoes with Attributes Dataset is done by taking 8 classes
of shoes which are visibly distinct from each other, in terms of 10 relative
attributes. The effect of varying supervision in terms of the number of classes
seen is also presented. The images are represented as concatenation of the
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960-dimensional gist descriptor with 30-dimensional color histogram image
features. The feature vector was chosen to be same as the relative attributes
work [1] to which it is being compared.

5.2 Zero-Shot Learning Results

Results of PubFig Dataset: Four sets of experiment are done on this dataset
consisting of randomly chosen classes and 10 relative-attributes. Table 1 shows
in detail the classes that were randomly chosen, the attributes taken into con-
sideration and the partial ordering of the subset of relative attributes given
as supervision for the unseen classes, in one of the experiments. (For example
supervision ‘(8) : J ≺ S ≺ H’ means that Scarlett Johansson has narrower eyes
than Hugh Laurie and Jared Lato has narrower eyes than Scarlett Johansson).
In Fig. 3 we show some examples where our proposed method does better than
the GMM based. The green labels are correct labels assigned by our GP-based
method and labels in red are the incorrect labels. In an example, for a test
sample of class ‘Miley Cyrus’, both of the methods fail as the relative attribute
supervision given is not sufficient to distinguish it from the class ‘Alyssa Milano’.

By varying supervision in terms of attributes to relate classes, our method
follows a general trend of increasing accuracy rate with increase in the number
of seen classes. This is not only because with greater number of seen class the
supervision is more elaborate but also because as the number of seen classes

Table 1. Classes, relative attributes and supervision in one of the experiments with
PubFig dataset. Given four seen classes, and the unseen classes are described using
relative attributes with respect to the seen classes. Note that supervision column marks
the labels available for training.

Attributes Classes Supervision

Male (1) Alex Rodriguez (A) seen-class

White (2) Clive Owen (C) seen-class

Young (3) Hugh Laurie (H) seen-class

Smiling (4) Jared Leto (J) seen-class

Chubby (5) Miley Cyrus (M) (1): M <J (3): A <M
(6): J <M <C (10): C <M <A

Visible Forehead (6) Viggo Mortensen (V) (3): V <A (4): V <C
(5): V <J (10): H <V <C

Bushy Eyebrows (7) Scarlett Johansson (S) (1): S <J (3): S <M
(8): J <S <H
(9): C <S <H (10): A <S

Narrow Eyes (8) Zac Efron (Z) (1): Z <A (3): Z <J
(5): H <Z <A (6): Z <C

Pointy Nose (9)

Big Lips (10)
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Fig. 3. The figure shows some examples of prediction using our GP-based method and
GMM-based method. The color green shows the correct prediction and label in color
red shows the incorrect prediction. (Color figure online)

increases, the number of test images that are labeled correctly in our first step
by the GP-based classifiers also increases.

Secondly, our GP-based method, using the k-sample images nearest to the
test image, provides a more accurate description of the unseen class as opposed
to Gaussian mixture model of the classes where the unseen class is described as
means of the seen classes. This can be clearly seen as our method outperforms
the GMM based recognition. 120–150 test images uniformly belonging to each
of the seen and unseen classes, are randomly taken for evaluation. The graphs
below shows the accuracy curve obtained by GP-based method vs. GMM-based
method.

Graph 1 (top-left) and Graph 2 (top-right) presents the performance curve
of our proposed method vs the GMM based method. For 10 classes (seen and
unseen), 10 attributes are used to relatively describe the classes for learning the
ranking function and a subset of these attributes for unseen classes’ supervision.
The classes and the set of attributes vary for both the experiments. The classes
are randomly selected and the attributes are such chosen that they are capable of
representing these classes and vary well among the classes to make them distinct.
To study the effect of supervision in terms of the proportion of seen classes,
the number of seen classes are varied from 4 to 10, keeping the total number
of classes same. It is seen that as we see more number of classes, the overall
accuracy percentage increases for a test set of 150 images as the unseen classes
can be related to more number of seen classes to make itself more distinguishable.
The testset consists of randomly selected images, uniformly belonging to each of
the classes.

Graph 3 (bottom-left) and Graph 4 (bottom-right) validates the performance
of our method in the same way. Here, the 8 classes are randomly chosen and are
represented by 10 relative attributes for both of the experiments. The proportion
of seen classes are varied from 4 to 8 (all seen) and an increasing graph for
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accuracy in the recognition is observed. The test set consists of 120 randomly
selected images, uniformly belonging to each of the seen and unseen classes.

Results of Shoes with Attributes Dataset: In the experiment to evaluate
our method in shoes with attribute dataset, 8 distinct classes of the dataset
with 6 attributes relating them were chosen. The relative attribute supervision
is similar to that provided in the previous experiment. In Fig. 5 we show examples
where our proposed method does better labeling than the GMM based method.
The labels in green are correct labels for the test samples, assigned by our GP-
based method and labels in red are the incorrect labels. For test sample of
Rainboots, using the relative attributes chosen, it was difficult to distinguish
‘rainboots’ from ‘boots’.

The performance result obtained in this dataset is very similar to the one
obtained with the PubFig dataset. The classes in this dataset are chosen such
that they can be humanly perceived as distinct from each other without confusion
(e.g. keeping only ‘Athletic shoes’ and not -both Sneakers and Athletic shoes
and keeping ‘pumps’ instead of both pumps and high-heels). The accuracy of
our method increases as we increase the number of seen classes and outperforms
the GMM-based method. In the graph of Fig. 6, the proportion of seen classes
are varied keeping the total classes same.

5.3 Varying the Number of Attributes

Variation in the performance by varying the number of attributes to describe the
seen and the unseen classes is seen. For a PubFig dataset consisting of 8 classes
(5 seen and 3 unseen), the number of attributes used to describe these classes
relatively, were varied. In the graph of Fig. 7, number of attributes to describe
the classes are varied in the x-axis from 6 to 11. It is seen that greater the
number of relative attributes learned to represent a class, the more descriptive it
is of the class and hence the recognition rate increases. Our proposed GP-based
method outperforms the GMM-based method for the recognition. The test set
consisted of 120 images randomly chosen and uniformly belonging to all the
classes (Fig. 4).

5.4 Comparing Performance of Various Methods for Zero-Shot
Learning

Performance of proposed GP-based method is compared to GMM based method
and MVN-tray method (See Sect. 4.4). The curve in Fig. 8, shows the accuracy
achieved by different methods on 6 classes of PubFig dataset. The classes were
chosen at random and 7 relative attributes were used to describe the classes.
From left to right, while Gaussian Mixture Model (GMM) achieves an accuracy
of 56.60%, a variant of our method of keeping a dynamically increasing tray
of the mutivariate normal (MVN) distribution for each unseen class, as more
test samples are seen, improves upon it. In this case, when more than one seen
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Fig. 4. Performance curve for experiment with PubFig dataset. The accuracy rate is
presented for four different sets of experiments done on PubFig and changes in the
accuracy for recognition as the proportion of seen classes is varied.

Fig. 5. The figure shows some examples of Prediction using our GP-based method and
GMM-based method. The green color shows the correct prediction and label in color
red shows the incorrect prediction. (Color figure online)

classes’ classifier gives a positive output in the first step of our algorithm, the
test image is not assigned any label.

Slight modification is done to this MVN-Tray method which improves the
accuracy further. In case of a tie between two classifiers which outputs a positive
prediction for the test image, label is assigned to the test image by the classifier
with more positive prediction posterior as opposed to MVN-Tray where no label
is assigned in such a case. This variant of MVN-Tray method is named as ‘MVN-
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Fig. 6. Performance curve evaluated on Shoes with Attribute Dataset with 8 differ-
ent categories of shoes represented by 6 relatively defined attributes. The accuracy of
recognition increases as the number of seen classes increases from left to right. The
accuracy is compared to GMM based method for recognition. The test set consisted of
100 images randomly chosen and belonging to all the classes.

Fig. 7. The graph shows performance of our proposed method vs GMM-based method,
as the number of attributes to describe the classes is varied. The setup is 8 randomly
chosen classes from PubFig dataset with 5 seen and 3 unseen classes. The x-axis shows
the number of attributes used to model a class.

Tray-Modified’ in the figure. Finally, our proposed algorithm (GP-kNN) presents
a more principled method using Gaussian process with k-nearest sample images,
to improve the recognition of test images belonging to the seen classes, using GP-
based classifiers, as well as the unseen classes by better description of the class
using GP. The overall accuracy, using this method, increases to 63.33%. The test
set for this experiment consisted of 90 randomly chosen images belonging to all
the classes.



Using GP to Improve Zero-Shot Learning with Relative Attributes 163

Fig. 8. Accuracy curve for different approaches. The curve depicts the accuracy of zero-
shot recognition achieved by four different approaches. The accuracy of recognition
increases as we go from left to right with GMM based method, MVN-Tray method,
MVN-Tray-Modified for ’tie breaks’ and our final proposed method using GP kNN.

6 Conclusion

In this paper we propose a two stage Gaussian process (GP) based zero-shot
learning method using relative attributes. The method is extensively evaluated
on two standard datasets. The results from the method show consistent improve-
ment over the basic Gaussian mixture model based approach for zero-shot learn-
ing that was proposed earlier [1]. The method while being more accurate is also
more descriptive. The GP based classifier allows us to estimate the uncertainty
in a test sample to belong to one of the seen classes. The GP kNN based regres-
sion allows us to obtain reliable estimates of the attributes distribution for the
unseen class in terms of the relative attribute representation. These allow us to
obtain a better understanding of the mid-level representation obtained through
relative attributes (Fig. 8).

In future we would like to undertake research to obtain structured attribute
representations that are relative and are also structured with respect to the
uncertainty or unreliability of the attribute. Further, it would be interesting to
study the effect of the proposed method in the context of relative feedback.
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Abstract. Fine-grained visual categorization has recently received great
attention as the volumes of the labelled datasets for classification of spe-
cific objects, such as cars, bird species, and aircrafts, have been increas-
ing. The collection of large datasets has helped vision based classifica-
tion approaches and led to significant improvements in performances
of the state-of-the-art methods. Visual classification of maritime ves-
sels is another important task assisting naval security and surveillance
applications. In this work, we introduce a large-scale image dataset for
maritime vessels, consisting of 2 million user uploaded images and their
attributes including vessel identity, type, photograph category and year
of built, collected from a community website. We categorize the images
into 109 vessel type classes and construct 26 superclasses by combining
heavily populated classes with a semi-automatic clustering scheme. For
the analysis of our dataset, extensive experiments have been performed,
involving four potentially useful applications; vessel classification, verifi-
cation, retrieval, and recognition. We report encouraging results for each
application. The introduced dataset is publicly available.

1 Introduction

The coastal and marine surveillance systems are mainly based on sensors such
as radar and sonar, which allow detecting targets as well as taking counter mea-
sure actions. Vision based systems containing electro-optic imaging sensors can
be exploited for the development of more effective systems. Categorization of
maritime vessels is of utmost importance to improve the capabilities of maritime
security systems. For a given image of a ship, the goal is to automatically iden-
tify its category using computer vision and machine learning techniques. Vessel
images may include clues regarding different attributes such as vessel type, photo
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category, gross tonnage and draught. A large-scale dataset will be beneficial for
extracting such clues and learning models from images containing several types
of vessels.

Presence of benchmark datasets [1], with large quantities of images and
labels with meaningful attributes, resulted in a significant increase in the perfor-
mance of visual object classification by the use of appropriate machine learning
methods such as deep architectures [2]. Moreover, powerful deep representations
are employed in fine-grained visual categorization tasks by either training on
the datasets from scratch [3], fine-tuning deep networks trained on large-scale
datasets [4] or exploiting the previously trained architectures with specific mod-
ifications [5].

To classify images with a fine-grained resolution, a considerable amount of
training data is required for a respectable model generalization. Thus, fine-
grained datasets were published for specific object categories. Some examples
are aircrafts datasets [6,7], bird species dataset UCSD [8] consisting of 12K
images, car make and model datasets; Standford cars dataset [9] containing 16K
car images and CompCars [10] dataset of 130K images. The only work related to
marine vessel recognition is [11], where they utilized Shipspotting website1 and
trained a modified version of AlexNet [2] for the classification of vessel types
with 130K random examples. In our dataset 140K images are utilized for vessel
classification with 26 superclasses constructed using a semi-supervised clustering
approach. Furthermore, our vessel superclasses are balanced; we force the train-
ing set to have equal number of examples in each superclass, i.e. we augment
the data on the vessel classes with less number of examples than a predefined
amount per class. However, there is a significant imbalance of examples between
the classes in [11], which may result in a bias in classification towards the classes
with dominant number of examples and makes it difficult to deduce a conclusion
about the mean per class accuracy. Hence, in our work, we report the mean
per class accuracy as the vessel type classification performance. In addition, we
accomplish further important tasks with 400K vessel images and obtain pleasing
results which will be described in details in the following sections.

In order to utilize the-state-of-the-art fine-grained visual classification meth-
ods for maritime vessel categorization, we collected a dataset consisting of
2M images downloaded from the Shipspotting website (See footnote 1), where
hobby photographers upload images of maritime vessels with various annota-
tions including vessel types, photo category, gross tonnage, draught, built year,
International Maritime Organization (IMO) number, which uniquely identifies
individual ships. To the best of our knowledge, our collected dataset, MARitime
VEsseLs (MARVEL), is the largest-scale dataset for the fine-grained visual cat-
egorization, recognition, retrieval and verification tasks.

In addition to introducing a large-scale dataset of maritime vessel images
and their corresponding annotations, our other major contributions are target-
ing visual vessel analysis from four different aspects: (1) vessel classification,
(2) vessel verification, (3) vessel retrieval, and (4) vessel recognition which will

1 www.shipspotting.com.

www.shipspotting.com
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be discussed in Sect. 2.1. To verify the practicality of MARVEL and encourage
researchers, we present baseline results for these tasks. We provide the relevant
splits of the dataset for each application to form a comparison basis. Thus we
hope that our structured dataset will be a benchmark for various visual process-
ing tasks on maritime vessels. The researchers may also develop several other
applications with the help of this dataset in addition to these four representative
applications.

Our paper is organized as follows: Sect. 2 provides a description of the prop-
erties of our dataset. In Sect. 3, superclass generation from the vessel types is pre-
sented, and the superclass classification results of two state-of-the-art approaches
are reported. Section 4 includes three maritime applications, vessel verification,
retrieval and recognition in details, and experimental results are demonstrated.
Finally, Sect. 5 concludes the paper with helpful remarks.

2 Dataset Properties

Our dataset consists of 2 million marine vessel images, collected from Shipspot-
ting website (See footnote 1). For most of the images in our dataset, the follow-
ing attributes are available: Beam, build year, draught, flag, gross tonnage, IMO
number, name, length, photo category, summer dwt, MMSI, vessel type. Beam is
the width of a ship at the widest cross section measured in the ship’s waterline.
Draught is the vertical distance between the bottom of the hull and the water-
line. Gross tonnage is a unitless index calculated using the internal volume of
the ship. Summer dwt is a measure of the carrying capacity of the ship. MMSI
is an abbreviation of Maritime Mobile Service Identity, which is a series of nine
digits to uniquely identify ship stations.

Besides the above attributes, we figure out that the most useful and visually
meaningful categories are three fold: (1) vessel type (2) photo category and (3)
IMO number. Vessel type is assigned based on the type of the cargo the ves-
sel will be transporting. For instance, if the vessel carries passengers, its type
is very likely to be a Passengers Ship. The dataset contains 1,607,190 images
with annotated vessel types belonging to one of 197 categories. Vessel type his-
togram, highlighting the major categories, is depicted in Fig. 1(c). The second
most important attribute is photo category, which is another vessel description.
Examples of the photo categories with a significant amount are chemical and
products tankers, containerships built 2001–2010 and Tugs (please see Fig. 1(a)).
All collected images have been assigned a photo category out of 185 categories
in our dataset. The third category is IMO number, which is an abbreviation for
International Maritime Organization number. Similar to the chassis numbers of
cars, IMO numbers uniquely identify the registered ships to IMO regardless of
any changes in the name, flag or owner of the ship. 1,628,056 of the collected
images are annotated with IMO numbers (please refer to Fig. 1(b)). Moreover,
there are 103,701 unique IMO numbers in our dataset.
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2.1 Potential Computer Vision Tasks with MARVEL Dataset

Huge quantity of images existing in MARVEL makes it amenable to directly
employ recent methods utilizing deep architectures such as AlexNet [2] for vessel
categorization with the provided annotations in our dataset. One may choose a
vessel attribute as vessel type or photo category, and apply classification methods
to categorize the images according to the selected vessel attribute.

MARVEL has more than 8,000 unique vessels (i.e. a unique IMO number)
with more than 50 examples as shown in Fig. 1(b). This makes it possible to
use the dataset for maritime vessel verification and recognition, which could be
an important part of a maritime security system, similar to scenarios for license
plate recognition with a traffic security system.
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Fig. 1. Histograms of different categories.

The main foci of this study on MARVEL are four fold: (1) vessel classification
since the content of the cargo that a ship carries, specifying its vessel type, is
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crucial for maritime surveillance, (2) vessel verification where the ultimate goal
is whether the two vessel images belong to the same vessel with a unique IMO
number, (3) vessel retrieval where a user might want to query a vessel image and
retrieve an acceptable number of similar images, and finally (4) vessel recognition
which is a challenging but interesting task which aims at recognizing a specific
vessel within vessels of same type (This might be likened to a face recognition
task.).

For vessel classification , we first generate a set of superclasses which may
contain more than one vessel type, since some subsets of vessel types are not
distinguishable even with a human supervision since the difference within the
subsets arises from the invisible content of the cargo rather than the appear-
ance of the ship. A concrete example of such a case is vessel type pair of crude
oil tanker and oil products tanker, which is illustrated in Fig. 2. Although they
have obvious functional differences, the visual discriminations are subtle espe-
cially when the images are far from the camera resulting in a small coverage of
the image, and the deck of the ship is not visible from the camera view point.
Therefore, we merge some of the vessel types to generate superclasses which are
visually meaningful and discriminable. In the following section, we describe how
specific vessel types are merged.

Vessel verification serves for deciding whether a pair of vessel images
belong to the same vessel or not. This may be useful for a maritime surveillance
application, where a specific vessel is required to be tracked using an electro-optic
imaging system.

The task of vessel retrieval is similar to vessel classification, yet the user
might want to retrieve more images than a single one to obtain a bunch of similar
vessels from a database.

Fig. 2. Visual comparison of two very similar classes; oil products tanker and crude oil
tanker.
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Vessel recognition aims at finding the accurate identity of a vessel that a
test image belongs to within a group of vessels of same category such as vessel
type or photo category.

It is also notable that the attributes which exist for most of the images
in MARVEL (e.g. gross tonnage, length, etc.) can be utilized to increase the
recognition performance. Attribute-based computer vision tasks including object
recognition [12], detection [13] and identification [14] have proven to increase
the performance of the corresponding tasks. Moreover, we can learn hierarchical
object categories within the fine-grained object recognition problem such as in
[15] since MARVEL is constructed by merging relevant vessel types, and has
a multi-level relevance information. Thus, we aim to exploit our fine-labeled
dataset to further increase the performance of the particular tasks in the future.

3 Superclasses for Vessel Types

To generate superclasses from vessel types, first 50 vessel types containing largest
amount of examples are selected and sorted according to their quantity. The
vessel type with the largest amount of examples which is employed in our super-
class generation, is general cargo class with 324,561 examples. The class with
the smallest amount of examples is the timber carrier class with 1,837 examples.
To analyze the visual similarities of the vessel types, a pretrained convolutional
neural networks (CNN) architecture of VGG-F [16] is adopted to extract features
using MatConvNet Toolbox [17] by resizing the vessel images to 224 × 224, the
appropriate size of the network. The next to the last layer of VGG-F [16] activa-
tions are utilized as the visual representations of the images. Hence, each image
is represented by a 4096-dimensional feature vector. By utilizing these feature
vectors, we calculate a dissimilarity matrix for the selected 50 vessel classes. To
generate superclasses, 1/10 of the collected 50 classes are used (approximately
130,000 images) and this data is used for estimating individual class statistics.
Prior to calculating the dissimilarity matix, we first remove the outliers following
the preprocessing step below.

Outlier Removal: Although annotations of the images in most of the cate-
gories are reliable and correctly labelled, indoor images of the vessels are also
present in the dataset. Due to this reason and some other visual anomalies, we
prune the outliers from individual vessel types to prevent their use while cal-
culating the dissimilarity matrix. For this purpose, feature vector dimensions
are reduced to 10 by principal component analysis (PCA) using all examples of
the 50 classes, since Kullback-Leibler divergence is utilized in the dissimilarity
calculation between two classes and the determinant of a very high dimensional
matrix becomes unbounded. After the dimensionality reduction, each class is
processed independently where a Gaussian distribution is assumed. Mean and
covariance of each class are estimated. The feature vectors of the corresponding
classes are whitened to obtain unit variance within each class. Since our aim is
to prune the unlikely examples of the dataset to obtain a more clear dissimi-
larity matrix, the examples which are unlikely should be identified. Hence, we
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Fig. 3. Dissimilarity matrix for 50 classes. Lower values indicate more similarity.

utilize χ2 distribution since the dataset is already whitened. For each example
in individual classes, the sum of the square values of the 10-dimensional feature
vectors are used as samples drawn from the χ2 distribution with 10-degrees of
freedom. Cumulative distribution function (cdf) value for each sample is calcu-
lated and removed from the class set if the cdf value is greater than 0.95, which
corresponds to the samples drawn from the 5% tail of the χ2 distribution.

Dissimilarity Matrix and Superclass Generation: Once the outliers are
removed from each class by the above procedure, the remaining examples are
used to compute the dissimilarity matrix. We use the symmetrised divergence as
the dissimilarity index. Symmetrised divergence DS(P,Q) of two classes, namely
P and Q, is defined as DS(P,Q) = 1

2DKL(P ||Q)+ 1
2DKL(Q||P ), where DKL(.||.)

stands for Kullback-Liebler divergence of two multivariate Gaussian distribu-
tions. The dissimilarity matrix is depicted in Fig. 3.

By exploiting the computed dissimilarity matrix, we merge the similar classes
using a threshold. Prior to this thresholding, we apply spectral clustering meth-
ods with the help of the dissimilarity matrix. Nevertheless, the resulting groups
were not semantically meaningful. Hence, we opt to continue by increasing the
threshold for the similarities of the pairs of classes (i.e. this corresponds to each
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Fig. 4. Distribution of the vessel types. In total, 1,190,169 images are available for
vessel type superclass classification.

entry of the dissimilarity matrix). If the dissimilarity index of a pair of classes
is below a threshold, the pair is assigned to the same superclass. We increase
the threshold until a point where semantically irrelevant classes (human super-
vision is adopted here) start to merge, and we define it as the final threshold for
clustering. The majority of the resulting superclasses contain reasonable classes.
The superclasses with more than one vessel type are: (1) tankers (which con-
tains oil products tanker, oil/chemical tanker, tanker, chemical tanker, crude oil
tanker, lpg tanker, lng tanker, ore carrier), (2) carrier/floating (which contains
timber carrier, floating storage production, self discharging bulk carrier), (3) sup-
ply vessels (which contain offshore supply ship, supply vessel, tug/supply vessel,
anchor handling vessel, multi purpose offshore vessel) (4) fishing vessels (which
contains trawler, fishing vessel, factory trawler, fish carrier), (5) dredgers (which
contains suction dredger, hopper dredger). Finally, hand-crafted marginal adjust-
ments are done to make all superclasses as meaningful as possible. These adjust-
ments include merging the superclass containing only trailing suction hopper
dredger with the superclass consisting of Suction Dredger and Hopper Dredger.
In addition, seven vessel types are removed entirely from the set of superclasses.
The classes to be eliminated are decided according to the average dissimilarity
of the classes to the rest. The salient overall dissimilarity scores are detected
manually. The removed classes are namely; (1) general cargo (it is significantly
confusing with the container ship and ro-ro cargo), (2) cargo/containership, (3)
research/survey vessel, (4) cement carrier, (5) multi purpose offshore vessel, (6)
passenger/cargo ship and (7) cable layer. The removed classes both visually and
functionally contain more than at least two separate classes, i.e. passenger/cargo
ship involve both passenger vessels and general cargo vessels. The merged classes
with thresholding also contain visually very meaningful vessel types, i.e. all of
the fish related vessels are clustered within the same superclass. The distribution
of final 26 superclasses can be viewed in Fig. 4.

3.1 Superclass Classification

As demonstrated in Fig. 4, there exists an imbalance between superclasses. Nev-
ertheless, even the superclass with the least amount of examples has a significant
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quantity of examples. Therefore; to classify superclasses of the vessel types, we
train a deep CNN architecture AlexNet [2] implementation of the MatConvNet
Toolbox [17] by using the default and recommended parameters without batch
normalization. To avoid the imbalance between the superclasses, we select equal
numbers of samples per class for both training and testing as 8192 and 1024,
respectively. For the superclasses with examples less than the required quantity,
we generate more examples by data augmentation (using different croppings of
images). Hence, our training and test sets contain 212,992 and 26,624 examples,
respectively, though we have 140K unique examples. We should also note that,
no images of the same vessel are employed in both training and test sets. The
classification performance is measured by the help of the normalized confusion
matrix [7]. The practical performance metric for a fine-grained classification task
can be the class-normalized average classification accuracy, which is obtained as
the average of the diagonal elements of the normalized confusion matrix, C, and

Fig. 5. Normalized confusion matrix of the 26 superclasses representing vessel types.
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each of its entry is calculated as follows [6]:

Cpq =
|{i : ŷi = q ∧ yi = p}|

|{i : yi = p}| , (1)

where |.| denotes the cardinality of the set and ŷi indicates the estimated class
label and yi is the actual correct label for the ith training example. The final
performance measure is the mean of the diagonal elements of the matrix C.
This value for 26 superclasses is 73.14% for the normalized confusion matrix in
Fig. 5. To emphasize the validity and efficacy of the learned network, we also
compare it with another method utilizing multi-class Support Vector Machine
(SVM) with the Crammer and Singer multi-class SVM [18] implementation of
[19] in LIBLINEAR [20] library. The feature vectors for SVM are extracted
from the VGG-F network of [16], their dimensionality is reduced to 256, and
PCA whitening is applied. Since the memory requirements and computational
complexity complicate the optimization, we use half of the training set. We report
the class-normalized average classification accuracy as 53.89%. Compared to the
use of the prelearned VGG-F weights with an SVM classifier, AlexNet trained
from scratch has 35% improvement in accuracy.

4 Vessel Verification, Retrieval and Recognition

In this section, we make use of our dataset, MARVEL, for potential maritime
applications; vessel verification, retrieval, and recognition. In the following sub-
sections, these applications and necessary experimental settings are explained.

4.1 Vessel Verification

Akin to face verification [21], car model verification is applied in CompCars
dataset [10] to serve for conceivable purposes in transportation systems. That
kind of task is claimed to be more difficult compared to face verification, since the
unconstrained viewpoints make car model verification more challenging. Accord-
ingly, we perform maritime vessel verification where the attribute to be verified
is the vessel identity. Please note that our task is more challenging compared to
identifying other attributes such as photo category or vessel type. Furthermore,
this problem is more challenging than both car model and face verification tasks,
since it is desired to identify/verify pairs of individual vessels by looking only at
their appearances.

We follow training and testing strategies as in [10]. First, 8000 vessels with
unique IMO numbers are selected such that each vessel will have 50 examples,
resulting in a total of 400K examples. This data is divided into two splits as
training and testing. The training set consists of 4035 vessels (201,750 training
examples in total), and the test set contains 3965 vessels (198,250 test examples
in total). There exist 109 vessel types among 400K examples, and the training
and test sets are split such that the number of vessel types are identical in each
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set. In the rest of the paper, we will call the training split of this subset as IMO
training set, and the test split as IMO test set.

Prior to verification task, we learn a deep CNN representation from IMO
training set by making use of vessel type labels. We train the same architecture
of [2] as in vessel classification task except for the last layer since we have 109
classes rather than 26. Deep representations for each example are extracted as
the penultimate layer activations of the trained network (as in the superclass
generation part in Sect. 3) with 4096 dimensions. Since more discriminative fea-
tures are preferable, we extract the penultimate layer activations prior to the
rectified linear unit (ReLU) layer, which carry more information than the layer
after ReLU since the negative values are cast to zero after ReLU. This choice
makes our vessel verification performance better than the case with the deep
representations after ReLU case.

After acquiring the deep representations, 50K positive pairs (belonging to
same vessels) and 50K negative pairs (belonging to different vessels) are selected
randomly from both the training and test splits out of the 201,750 training
examples and 198,250 test examples, respectively2. For the total 400K train-
ing and testing examples, feature vector dimensionality is reduced to 100 by
PCA exploited with only the training examples. Moreover, all 100-dimensional
examples are PCA whitened since whitening increases the performance of SVM
classifier. Concatenation of two 100-dimensional vectors are utilized for describ-
ing pairs during the verification experiments. Finally, we train SVM with RBF
kernel on the training set by using LIBSVM library [22]. The precision recall
curve varying the classification threshold is plotted in Fig. 6. We also compare
the performance of SVM with nearest neighbour (NN) classification. The result-
ing precision and recall values of SVM and NN classifier are presented in Table 1.
Accuracies of both classifiers are above 85%, which is very promising and quite
satisfactory for a real world verification application.

Table 1. Vessel verification results on 50K positive pairs and 50K negative pairs of
vessels for nearest neighbour and SVM classifiers by utilizing the feature vectors learned
in IMO training set, which does not contain any images of the vessels in IMO test set.

TP TN FP FN ACC Precision Recall

NN 44,978 40,198 9,802 5,022 85.18% 82.11% 89.96%

SVM 45,503 45,422 4,578 4,497 90.93% 90.86% 91.01%

4.2 Vessel Retrieval

Compelling amount of research efforts [23–25] have been spent for content based
image retrieval (CBIR) as the image databases have been dramatically grow-
ing. Particularly, vessel retrieval is another promising application that may be
2 A negative pair indicates a pair of different vessel images, whereas a positive pair

corresponds to a pair of vessel images belonging to a unique vessel.



176 E. Gundogdu et al.

potentially required in a maritime security system, where the user would like to
query the system with a test vessel and retrieve similar results. It could also be
useful for annotation of vessels that are uploaded to a database with no meta-
data. Hence, the system should be responsible for retrieving the similar vessels
sharing the same content from a database. In our application, this content is not
chosen as either the superclasses of vessel types that we constructed as the coarse
attribute in Sect. 3.1, or the IMO number (aiming to identify the exact vessel),
which is so fine for a retrieval task and appropriate for vessel recognition (This
is studied as the recognition problem and is explained in the next subsection.).
Instead, we use 109 vessel types of the 8000 unique vessels with 50 different
examples, as the content of the retrieval task. Euclidean and χ2 distance of two
different representations are compared for the content based vessel retrieval.

The first representation is the 109-dimensional classifier output of the net-
work which is trained in the verification task (Sect. 4.1) on IMO training set.
On the other hand, we also would like to compare these learned deep represen-
tations (employing the content information) with another recent and effective
representation. Hence, we use the prelearned VGG-F weights to extract the 4096-
dimensional features (The dimension is also reduced to 20 similar to the vessel
verification task). We train a multi-class SVM to obtain the classifier for the 109
vessel types by again using the IMO training set. For each example, classifier
responses of dual combinations of 109 classes (generated during the multi-class

SVM phase) are utilized as
(

109
2

)
dimensional feature vectors. By utilizing these

two representations, the results are retrieved with both Euclidean as well as χ2

distance threshold. Mean average precision curves for both methods are shown
in Fig. 7. Here, the deep representation learned specifically on the maritime ves-
sels dataset significantly outperforms the generic deep representation learned
for general object classification with 1000 classes [2,16] for both of the distance
types. In addition, χ2 distance has a significant superiority over the Euclidean
distance for VGG-F features. For AlexNet features trained on our dataset, both
of the distance types perform comparably well.

4.3 Vessel Recognition

The recognition problem is one of the crucial topics of computer vision. Espe-
cially, face recognition has been studied extensively, and state-of-the-art meth-
ods [26,27], which perform effectively on the benchmark datasets [28–30], have
been proposed. Since encouraging performance results are obtained with the
recent methods, the final application that we perform utilizing MARVEL is ves-
sel recognition task, where ultimate goal is to find a vessel’s identity from its
visual appearance. It might be meaningless for object types other than vessels
or faces such as cars since same car models of same color have no discriminative
appearances and are not distinguishable. Nevertheless, individual vessels gener-
ally carry distinctive features, as the shapes of the vessels from the same vessel
types significantly vary due to their customized construction processes.
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Fig. 7. Vessel type based retrieval curves for both the
feature vectors of pre-trained VGG-F network and
AlexNet network trained on our 109 vessel classes.

For representing vessels, 100-dimensional feature vectors are utilized as in ves-
sel verification task. Vessel identification is performed among individual classes
separately, e.g. vessels belonging to the Passenger Ships class are trained and
tested within the Passenger Ships vessel type class, since there exist 3965 ves-
sels with 109 different vessel types and it would be computationally infeasible
to train all of these vessels with 3965 labels. Hence, we opt to perform vessel
recognition among individual vessel types.

Among the 3965 vessels in IMO test set, there exist 29 vessel types that have
at least 10 unique vessels, and each vessel has 50 examples. For recognition, we
first divide the examples of each vessel into 5 folds where each fold has 10 exam-
ples per vessel. The training and testing set contains 4 folds (40 examples) and
1 fold (10 examples) per vessel, respectively. We make five-fold cross-validation
for generating experimental results. For training, a multi-class SVM is employed
where the number of classes is the number of unique vessels of the particular
vessel type. In Table 2, the recognition performances are illustrated for each ves-
sel type. Among the vessel types, Supply Vessel is the most distinguishable one

Table 2. Average recognition accuracies computed within each of the 29 vessel types.

Vessel Types General Cargo Containership Oil/chemical Tanker Bulk Carrier Passengers Ship

Recognition Accuracy 34.2 27.88 47.8 39.34 42.5

# of unique vessels 965 851 295 196 179

Vessel Types Ro-ro/passenger Ship Tug Ro-ro Cargo Chemical Tanker Vehicles Carrier

Recognition Accuracy 64.65 52.00 58.80 55.23 46.61

# of unique vessels 178 176 132 127 101

Vessel Types Reefer Oil Products Tanker Tanker Cargo/containership Lpg Tanker

Recognition Accuracy 49.46 52.20 57.12 51.37 65.48

# of unique vessels 92 91 84 57 46

Vessel Types Self Discharging Bulk Carrier Crude Oil Tanker Research/survey Vessel Trawler Offshore Supply Ship

Recognition Accuracy 49.13 45.24 85.47 73.68 80.11

# of unique vessels 23 21 19 19 19

Vessel Types Yacht Hopper Dredger Suction Dredger Sailing Vessel Heavy Load Carrier

Recognition Accuracy 69.44 81.13 80.88 57.47 77.54

# of unique vessels 18 18 16 16 15

Vessel Types Lng Tanker Supply Vessel Tug/supply Vessel Fire Fighting Vessel —

Recognition Accuracy 64.77 88.33 73.09 62.88 —

# of unique vessels 13 12 11 10 —
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with a recognition accuracy of 88.33% for 12 different vessels whereas vessels
of Containership have subtle differences and a recognition accuracy of 27.88%
for 851 vessels. As the number of unique vessels increases within the dataset,
the recognition performance decreases as expected. Yet, recognition accuracies
over 50% can be obtained even though the number of unique vessels exceeds a
hundred, such as in Ro-ro Cargo and Chemical Tanker vessel types.

5 Discussions

In this work, we introduce a large-scale dataset, MARVEL, for maritime vessels.
With the help of this study, we aim to aid visual analysis tasks by adopting
effective learning methods, providing a massive number of examples as well as
the required labels to be used in corresponding tasks. Moreover, we merge the
vessel types by making use of deep features and obtain semantically consistent
superclasses. Upon this clustering, baseline classification results for the generated
superclasses are reported to form a basis for further comparisons. We obtained
promising results for vessel classification, 73% top-1 accuracy for 26 superclasses.
We further utilize MARVEL for the vessel verification, retrieval, and recognition
applications, and provide promising results. For vessel verification, we achieved
an accuracy of 91%. Finally, we show that learning over 109 vessel types improves
the performance over the representations learned for generic objects.

Acknowledgement. We would like to thank to Koray Akçay for his invaluable sup-
port and special consultancy for maritime vessels.
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Abstract. An examination of object recognition challenge leaderboards
(ILSVRC, PASCAL-VOC) reveals that the top-performing classifiers
typically exhibit small differences amongst themselves in terms of error
rate/mAP. To better differentiate the top performers, additional crite-
ria are required. Moreover, the (test) images, on which the performance
scores are based, predominantly contain fully visible objects. Therefore,
‘harder’ test images, mimicking the challenging conditions (e.g. occlu-
sion) in which humans routinely recognize objects, need to be utilized
for benchmarking. To address the concerns mentioned above, we make
two contributions. First, we systematically vary the level of local object-
part content, global detail and spatial context in images from PASCAL
VOC 2010 to create a new benchmarking dataset dubbed PPSS-12. Sec-
ond, we propose an object-part based benchmarking procedure which
quantifies classifiers’ robustness to a range of visibility and contextual
settings. The benchmarking procedure relies on a semantic similarity
measure that naturally addresses potential semantic granularity differ-
ences between the category labels in training and test datasets, thus
eliminating manual mapping. We use our procedure on the PPSS-12
dataset to benchmark top-performing classifiers trained on the ILSVRC-
2012 dataset. Our results show that the proposed benchmarking pro-
cedure enables additional differentiation among state-of-the-art object
classifiers in terms of their ability to handle missing content and insuf-
ficient object detail. Given this capability for additional differentiation,
our approach can potentially supplement existing benchmarking proce-
dures used in object recognition challenge leaderboards.

1 Introduction

The performance of an object recognition system is typically measured in terms
of error rate averaged over the object categories covered. In this respect, various
deep-learning based classifiers have shown state-of-the-art performance on large-
scale object recognition challenges in recent times. In fact, recognition challenge
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leaderboards [1,2] typically list classifiers which show minuscule differences in
the performance scores, particularly among the top-most performers. Moreover,
the scores typically correspond to test images sourced from the same master
image set used for training. Using such test images causes the well-documented
phenomenon of dataset-bias [3–5] to creep into performance scores, thereby pre-
senting a distorted picture of the classifiers’ generalization ability. In the face of
such observations, an important question arises: how else can these competing
systems be differentiated?

The Holy Grail is, of course, human-like level of performance [6,7]. But,
for a recognition system to claim it is within grasping distance of this Grail,
the performance criteria can no longer be error rates on mostly fully-visible
objects1 present in biased test images. Instead, we need to design additional and
alternative criteria. Also, if we wish to realistically benchmark state-of-the-art
classifiers, we require test images which mimic the challenging conditions (e.g.
local occlusion, insufficient global context) in which humans routinely recognize
objects. To address these concerns, we make the following contributions:

– We systematically vary the level of object-part content, global visibility and
spatial context in object images to create a PASCAL-based [8] benchmarking
dataset named PPSS-12 (Sect. 4).

– We propose a novel semantic similarity measure called Contextual Dissimi-
larity Score (CDS). This measure has been designed to reflect a classifier’s
ability to predict the target category in a semantically meaningful manner
across varying visibility and contextual settings (Sect. 5).

– We use our measure CDS and the PPSS-12 dataset to benchmark the top-
performing object recognition classifiers trained on the ILSVRC-2012 dataset.
The results (Sect. 6) show that our benchmarking procedure enables addi-
tional differentiation between the top-performers on the basis of their ability
to handle missing content and incomplete object detail.

2 Overview of Our Approach

Figure 1 provides an overview of our approach. In the text that follows, circled
numbers correspond to various data items and processing stages of our approach,
as marked in Fig. 1.

We benchmark the top-performing [9] object classifiers trained on the
1000-class ILSVRC-2012 dataset – Alexnet [10], VGG-19 [11], NiN [12],
GoogLeNet [13]. For benchmarking purposes, we first create ‘PASCAL Parts
Simplified (PPS)-12’ – a modified, 12-category image subset ( 2©) of PASCAL-
parts [14] which in turn is a database of object images with semantic-part anno-
tations (Sect. 3).

For each image I ( 1©) in PPS-12 containing a reference object, we systemat-
ically vary the object’s level of global visibility and its spatial context in terms

1 Anecdotally, this is the case in most object-recognition datasets.
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Fig. 1. A graphic overview of our approach (Sect. 2). For each image I ( 1©) in PPS-
12, we systematically vary the object’s global visibility/spatial context in terms of its
parts ( 3©) to create sequence SI of images ( 4©). The main processing block is shown
shaded in purple background above the black dash-dotted line. 5© refers to collection of
such blocks, each of which contains the image sequences that form our benchmarking
dataset PPSS−12. The ✕© in the lower half indicates that the various global visibility
schemes/spatial context schemes are applied to the base dataset PPS − 12 to create
the sequences which form PPSS−12. For each sequence image, the degree of semantic
similarity between its ground-truth label and that predicted by a classifier ( 6©) is
depicted as the proportion to which the corresponding circle underneath the image is
filled ( 7©). The similarity value of each sequence image is associated with a position-
in-sequence based weighing factor depicted by the relative size of the black filled circle
( 8©). The weighted similarities for the sequences in PPSS-12 are analyzed ( 9©) to
benchmark the classifiers (10©). Best viewed in color.
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of semantic object-parts ( 3©) to create an associated sequence SI of images ( 4©)
(Sect. 4). The collection of all such sequences comprise our benchmarking dataset
‘PASCAL Parts Simplified Sequences (PPSS)-12’ ( 5©).

Having obtained the sequences, we first fix a classifier ( 6©). For each image
in the sequence SI , we determine the normalized semantic similarity (Sect. 5)
between the classifier-predicted label and ground-truth label2. We associate the
similarity score of each image in the sequence with a normalized weight factor
such that the earlier the relative location of the image within the sequence, the
greater its weight3. We compute the weighted sum of similarity scores and nor-
malize them by the sequence length to obtain a similarity-measuring score s. To
obtain a measure similar in interpretation as error rate (i.e. lower the better),
we subtract s from 1 to arrive at the final classifier-specific dissimilarity score
which we term Contextual Dissimilarity Score CDSI for image I (Sect. 5). By
construction, early images of the sequence SI contain relatively smaller amount
of evidence for the reference object (see Figs. 2 and 3). Therefore, the larger
the semantic similarity between classifier predictions and ground-truth for the
initial images of sequence SI , the greater the ability of the classifier to predict
the target category in a semantically meaningful manner in challenging visibility
and contextual settings and demonstrate human-like performance. This ability
is numerically characterized by a low average CDS for the classifier. We gather
statistics on CDS in the image sequences ( 9©) on a per-image and per-classifier
basis, across object categories. These statistics enable us to benchmark the clas-
sifiers as desired (10©) (Sect. 6).

At this juncture, the reader might be inclined to question aspects of our
semantic part-based benchmarking approach. We discuss the reasons and con-
sequences of our choices in Sect. 7. For now, we move on to describe our pre-
processing of the PASCAL-parts dataset.

3 Data Preprocessing

For the purpose of benchmarking, we start with a subset of PASCAL-parts [14],
a 20-category object dataset containing named-part (semantic) annotations4.
From these, we shortlist 12 categories (aeroplane, bicycle, bus, car, cat,
cow, dog, horse, person, sheep, train) using the following criteria: (1)
presence of at least two annotated parts (2) ease of annotating additional parts
as required. We used object bounding box annotations from PASCAL-parts to
obtain the cropped object images.

The part labeling scheme in PASCAL-parts contains labels on the basis of
object orientation (left-facing, right-facing etc.) and intra-object location (leg-
top, leg-bottom etc.). We simplified this scheme by ignoring such factors (i.e.
orientation, location). In addition, certain crucial object parts have not been
2 The degree of similarity is depicted as the proportion to which the circle underneath

each sequence image is filled - see 7© in Fig. 1.
3 The weighing factor is depicted by the relative size of the black filled circle - see 8©.
4 In this paper, we refer to named parts interchangeably with semantic parts.
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annotated in PASCAL-parts dataset. Therefore, we modified the PASCAL-parts’
labeling scheme by adding such parts to the annotation scheme. We used an in-
house labeling tool to obtain annotations for these additional crucial parts.

In the end, we obtain an image set with 1850 object images across 12 object
categories. We refer to this subset of PASCAL-parts with simplified/modified
part annotations as PPS-12. Each object image in PPS-12 (See 1© in Fig. 1)
forms the basis for the construction of the image sequences in our benchmarking
dataset PPSS-125. Next, we describe how these image sequences are actually
constructed.

4 Image Sequence Construction

For each object image I in PPS-12, we construct a sequence ŜI of images (See
4© in Fig. 1). This sequence typically begins with only one semantic-part of the
object in the image. The remaining object parts are successively added using a
pre-defined ‘part ordering scheme’ (Sect. 4.1) to form the rest of the sequence.
For each image in the sequence ŜI , a pre-defined ‘content scheme’ is applied to
obtain the new sequence SI . The content scheme controls either the amount of
spatial context or level of object detail within the sequence (Sect. 4.2). Also, SI
is constructed such that the final image in the sequence always coincides with
the object image I which serves as the basis for the sequence construction in the
first place. The collection of all such sequences constitutes our benchmarking
dataset PPSS-12.

For the remainder of the section, we first describe the different object-part
ordering schemes used to create image sequences. We subsequently describe the
object content schemes (Sect. 4.2) activated during image sequence creation.

4.1 Part-Ordering Schemes

The part-ordering schemes essentially produce an ordered list of parts for each
object category based on the scheme’s criteria. During the image sequence cre-
ation (Sect. 4.2), this list forms the basis for incremental addition of object
content.

In a recent work, Li et al. [15] augmented 850 images from PASCAL 2010
dataset with eye-fixation information to create their dataset PASCAL-S. In this
dataset, each image is associated with a set of eye-fixation sequences. Each eye-
fixation sequence, in turn, corresponds to spatial locations fixated upon by a
human subject’s eyes when shown the image. The PASCAL-parts derivative
dataset we have created, PPS-12, is also derived from PASCAL 2010. We first
identify images common to PASCAL-S and PPS-12. For these images, we ana-
lyze the density of fixation locations (from PASCAL-S) with respect to object
part boundaries (from PPS-12). For each object category, we sort the parts
in the decreasing order of fixation density to obtain the part-ordering scheme.

5 Our dataset is available at http://val.serc.iisc.ernet.in/pbbm/.

http://val.serc.iisc.ernet.in/pbbm/


186 R.K. Sarvadevabhatla et al.

In doing so, we implicitly make the assumption that fixation density is correlated
with relative importance of image content, a phenomenon repeatedly observed
in eye-fixation based image saliency studies [16]. We explored four variations in
determining per-part fixation density resulting in four eye fixation-based part
ordering schemes. We describe these schemes next.

Let F I(k) = {fj(k) = (xj , yj)}, j = 1, 2, . . . Nk denote the k-th eye fixation
sequence (out of the N sequences from PASCAL-S) for an image I ∈ PPS-12
containing an object from category C. Here, (xj , yj) corresponds to the spatial
location of the eye-fixation. Let pj(k), 1 ≤ j ≤ Nk denote the part within whose
spatial boundary fixation fj(k) lies. Nk denotes the number of fixations in the
k-th fixation sequence. Let PC denote the set of parts associated with category C.

Unnormalized Sequence Position Scheme (EUS): Under this scheme, we
assign part importance based on the total number of fixations within a part
P ’s boundary. However, we also weigh each fixation by the relative position of
the fixation within its original sequence. The part scheme factor for part P (of
category C) in image I is computed as:

EUS(P ) =

N∑

k=1

Nk∑

j=1

rj(k)1(P = pj(k))

∑

Q∈PC

N∑

k=1

Nk∑

j=1

rj(k)1(Q = pj(k))

(1)

where rj(k) =
Nk − j + 1

Nk
(2)

Here, the factor rj(k) captures the intuition that the earlier a fixation’s loca-
tion within its fixation sequence, the greater the prominence of the part within
whose contour it falls. In the above equation and those that follow, 1 denotes
the indicator function.

Unnormalized Part Count Scheme (EU): This scheme is similar to EUS

except that all fixations are considered equally important, i.e. rj(k) = 1. Under
this scheme, we simply count the number of fixations that lie within a part P ’s
boundary as a measure of part importance.

Part Area Normalized Schemes (EA and EAS): In the EU scheme, a part
can have a large importance score merely because it covers a larger portion of
the image. Following Kiwon et al. [17], we normalize for part areas and construct
part-area normalized versions of EU and EUS as follows:

EA(P ) =
EU (P )
A(P )

(3)

where A(P ) =
Area of part P

Area of the object within I
(4)
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EAS(P ) =
EUS(P )
A(P )

(5)

In all the part schemes mentioned above, we sum the part-importance factor
(Eqs. 1, 3, 5) for each part across all images of the category and sum-normalize
to obtain the probability distribution of relative part importance. We obtain the
final part scheme by listing the parts in the order of decreasing probability.

4.2 Content (Global Object Visibility and Object Context) Schemes

Having described the part schemes, we next describe how systematic variations
in context and global object visibility are introduced into object images (See
3© in Fig. 1). We refer to the schemes which control image variations in these
aspects (global object visibility, object context) as ‘content schemes’. The content
schemes essentially control the level of detail and the manner in which this detail
is added as we progress across a part-image sequence. From a benchmarking
point of view, these schemes are designed to evaluate the extent to which lack of
content or the ability to exploit existing context affects a classifier’s performance.

Object Context Scheme: Two variations exist within the object context
scheme. In the first variation (‘Intra-object context’), the images of the part-
image sequence contain no contextual information other than that arising from
incremental addition of object’s parts. To ensure this, the object’s parts are
added to a completely black canvas. Figure 2 (top row) shows an example. In the
second variation (‘Intra-and-Neighborhood context’), the image content immedi-
ately surrounding the object is retained to provide neighborhood context. How-
ever, parts are incrementally added within a blacked-out bounding box enclosing
the object. Figure 2 (bottom row) shows an example.

Fig. 2. Part sequences corresponding to change in ‘object context’ of a bus image. The
top row corresponds to ‘intra-object’ context scheme while the bottom row corresponds
to ‘intra-and-neighborhood’ context. Notice the road-like surroundings providing the
context (surrounding the object) in the bottom row.

Global Object Visibility Scheme: Unlike the context-based schemes men-
tioned above, the visibility schemes additionally have access to global context
from the entire image in a gist-like manner, including that from parts not yet
added. Figure 3 shows example sequences for this content scheme. In this scheme,
the entire image’s data is present, albeit at a low level of detail to begin with.
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Fig. 3. Part sequences corresponding to change in global object visibility of a bicycle

image. We refer to the two variations of the visibility level as ‘low level of detail’ (top
row) and ‘higher level of detail’ (bottom row).

As each part of the object is added, the part comes into focus. The net effect is
a blurring of the image relative to already added parts. This scheme is inspired
by the manner in which level of detail falls relative to the location fixated upon
by a human eye. To achieve this fall-off effect, we utilize the visual-field simu-
lation of Perry and Geisler [18]. By varying the parameters of the visual-field
simulation, the level of detail in the immediate vicinity of each added part can
be changed. For the purposes of our evaluation, we utilize two parameter set-
tings which result in two variations of the global object visibility scheme which
we refer to ‘low level of detail’ (top row of Fig. 3) and ‘higher level of detail’
(bottom row).

In the next section, we describe how the PPSS-12 sequences created by apply-
ing the content schemes to images in PPS-12 help determine the ‘Contextual
Dissimilarity Score’ (CDS) for a fixed classifier. Later on (Sect. 6), we shall see
how the process of determining CDS lets us benchmark the classifiers.

5 Determining Contextual Dissimilarity Score (CDS)

For a given image I from our PPS-12 dataset ( 1©, Fig. 1), we first choose a
part-ordering scheme (Sect. 4.1) and generate a sequence of images SI according
to this scheme. We then choose an object content scheme (Sect. 4.2) and apply
it to each of the images in the sequence ( 3©, Fig. 1). With the content-scheme
applied sequence at hand ( 4©, Fig. 1), we are ready to determine the Contextual
Dissimilarity Score CDSI for image I.

Let SI = {S1, S2, . . . , SN} represent our aforementioned image sequence from
PPSS-12. Note that by construction, sequence image SN corresponds to given
image I. Since our analysis is on a per-classifier basis, let us fix the classifier
C ( 6©, Fig. 1). Each image in sequence Sj ∈ SI is input to the classifier to
obtain the corresponding class prediction label cj . Suppose the ground-truth
label for Sj is gj . In our case, cj and gj are drawn from two different label spaces
(Imagenet-based and PASCAL-based) with varying levels of semantic granularity
and therefore, an exact literal match may not be possible. Therefore, we utilize
a semantic similarity measure M which provides a [0, 1]-normalized score xj

reflecting the semantic similarity between cj and gj (i.e. xj = M(cj , gj)). Thus,
we obtain a sequence of normalized scores XI = {x1, x2, . . . , xN}6.
6 The colored rows containing the pie-like shapes in Fig. 1 correspond to such similarity

scores.
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Also note that by construction, early images of the sequences contain rela-
tively smaller amount of evidence for the reference object (see Figs. 2 and 3).
Therefore, the higher the similarity score in the initial parts of the sequence,
the greater the ability of the classifier to perform well in challenging conditions
and demonstrate human-like performance. To characterize this notion, each sim-
ilarity score xj in the sequence in associated with a weight factor wj = N−j+1

N
such that the earlier the location, the greater its weight ( 8©, Fig. 1)). We then
compute NWSS - the normalized weighted sum of similarity scores. To obtain a
measure similar in interpretation as error rate (i.e. lower the better), we subtract
NWSS from 1 to arrive at the final Contextual Dissimilarity Score for image I
(CDSI).

CDSI = 1 −

N∑

j=1

xjwj

N∑

j=1

wj

(6)

The resulting CDSI is an indicator of the part-level and contextual content
required by classifier C to recognize the object in image I. Therefore, obtaining a
relatively smaller ‘average CDS’ when CDSI are averaged across part-schemes,
context-schemes and object categories indicates the ability of a classifier to per-
form well in spite of missing or poorly detailed object information.

6 Experimental Analysis

As a preliminary experiment, we computed the median top-1 error-rate of each
classifier (ILSVRC-trained) on our PPS-12 (derived from PASCAL) images.
Given the inherent dataset bias commonly present in recognition challenge
datasets [3], the error-rates are higher unlike the low, barely distinguishable top-1
rates typically encountered on recognition challenge leaderboards (See Table 1).
This result should not be surprising. Instead, it merely serves to reinforce the
importance of cross-dataset validation in obtaining a fair assessment of classi-
fiers’ generalization capabilities [19].

Table 1. Cross-dataset error-rates: performance of the ILSVRC trained classifiers on
our PASCAL-based PPS-12 dataset using manual mappings across the two datasets.

Classifier GoogLeNet VGG-19 NiN Alexnet

Median error rate 0.24 0.25 0.32 0.35

As part of the main benchmarking process, we determine the CDS (Sect. 5)
for all possible combinations of classifiers, part-ordering schemes (Sect. 4.1) and
object content schemes (Sect. 4.2). This sets the stage for examining the effect of
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these schemes on the overall benchmarking process. For the similarity measure
M between the category labels (Sect. 5), we used Wu-Palmer similarity mea-
sure [20]. This measure calculates relatedness of two words using a graph-distance
based method applied to WordNet [21], a standard English lexical database con-
taining groupings of cognitively similar concepts and their interrelationships.

6.1 Benchmarking Classifiers Across Object Content Schemes

In the discussion that follows, it is important to remember that smaller the CDS,
better the classifier’s performance.

‘Intra-object’ Context: For the first set of experiments, we analyze CDS
for the ‘intra-object’ context scenario. This scenario consists of object images
without any of the surrounding context except that arising out of the object’s
parts themselves (see top row of Fig. 2) and is perhaps the most challenging
scenario for a classifier. On the other hand, it is also the most appropriate since
the image content is precisely confined only to the object.

Fixing the content scheme to ‘intra-object’, for each classifier and for each
category, we compute the median CDS. We do this initially for each part-ordering
scheme and subsequently average the median scores over the schemes to obtain
category-wise CDS. These category-wise scores are, in turn, averaged to obtain
the CDS for each classifier. The results on a per-classifier basis can be seen in
the first column (‘Intra-object’) of Table 2. As expected, the median scores are
relatively high regardless of classifier.

‘Intra-object and Neighborhood’ Context: We repeat the previous exper-
iment with the content-scheme now being ‘intra-object and neighborhood’.
In addition to object parts, contextual information from the immediate sur-
roundings is additionally available in this scheme (see bottom row of Fig. 2).

Table 2. Benchmarking classifiers: Average median CDS across categories for different
context schemes. The best CDS score for each content scheme is shown in bold. The
bracketed percentages in column 2 indicate the improvement in CDS over column 1
with addition of context. The ones in column 4 indicate the improvement over column
3 when level of detail is increased. The best percentage improvement is also shown in
bold. Note that smaller the CDS, better the performance.

Scheme Context based Global visibility based

Intra-object Intra-object and
neighborhood

Low level of
detail

Higher level of
detail

Alexnet 0.4499 0.4470 (0.6 %) 0.4450 0.3803 (14.54 %)

GoogLeNet 0.5264 0.4319 (17.95 %) 0.4544 0.3490 (30.20 %)

NiN 0.4788 0.4492 (6.18 %) 0.4689 0.3882 (17.20 %)

VGG-19 0.4136 0.4147 (−0.27 %) 0.3628 0.2880 (20.62 %)
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We hypothesized that such information would improve performance and that is
indeed the case (see second column (‘Intra-object and neighborhood’) of Table 2).

Global Object Visibility: Next, we examine the impact of visibility-based
content schemes (Sect. 4.2). As mentioned before, these schemes, unlike the intra-
object and/or neighborhood context ones, have additional access to global con-
text from the entire image in a gist-like manner, including that from parts not
yet brought into focus (See Fig. 3). Therefore, the performance of the classifier
for these schemes conveys the extent to which it utilizes the global context.

Keeping the classifier fixed and content-scheme as ‘low-detail’, for each cate-
gory, we compute the median CDS for each part scheme and average them across
part schemes to obtain category-wise CDS. These are averaged in turn to obtain
the CDS for the classifier. As the results in Table 2 (third column) suggest, the
presence of global information, even at a low level of detail and even with mini-
mal object-specific information, is still powerful enough to improve performance,
as evidenced by the lower CDS. Increase in the level of detail (i.e. lower level of
blurring) causes the results to be on predictable lines, with the overall average
median CDS trending downwards (See last column of Table 2).

6.2 Overall Performance and Additional Experiments

Examining the results in Table 2, it is evident that VGG-19 achieves the best
performance (lowest average CDS) in general. More importantly, Table 2 also
shows that our benchmarking procedure contrasts the performance of almost
equally well-performing classifiers (GoogLeNet, VGG-19) better than the
traditional accuracy-based counterparts—the CDS-based benchmarking values
are generally further apart compared to the accuracy scores (compare Tables 1
and 2).

To determine which classifier exploits addition of object neighborhood-based
context the most, we compute the percentage improvement in average CDS over
the ‘object only’ (i.e. no neighborhood context) setting (Table 2, first column).
As the bracketed numbers in second column of Table 2 show, GoogLeNet’s
performance improves the most. GoogLeNet also best exploits the increase in
level of detail (fourth column of Table 2). We believe these results stem from the
‘inception-style’ mechanism GoogLeNet [11] uses to capture context.

To obtain a category-level perspective on the benchmarking performance, we
determine the classifier that produces the lowest CDS most frequently across all
combinations of part schemes and content schemes. The entries in Table 3 (top
row) merely endorse the results seen earlier – VGG-19 is the best performer
in general. At the other end, NiN and surprisingly (for a couple of categories),
GoogLeNet have relatively higher CDS (bottom row of Table 3).

6.3 Relationship Between CDS and (Traditional) Error Measures

To verify that our CDS measure provides additional information beyond the
traditional top-1 error measure, we computed the correlation between CDS and
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Table 3. Category-wise best and worst performers (in terms of CDS) aggregated across
part and content schemes.

Classifier airplane bicycle bird bus car cat cow dog horse person sheep train

Lowest-

cds

Googlenet VGG-19 VGG-19 VGG-19 VGG-19 VGG-19 VGG-19 VGG-19 VGG-19 VGG-19 Alexnet VGG-19

Highest-

cds

NiN NiN NiN NiN NiN NiN NiN Googlenet NiN Googlenet Googlenet Googlenet

the top-1 error rates across all the classifiers. For this, we determined the median
error-rate and median CDS for each content scheme by averaging across the
respective measures across part schemes and classifiers. Thus, we obtain two
vectors, one for median error-rate and the other for median CDS. The correlation
between these two vectors was found to be close to 0 (Pearson ρ = 0.0227,
p = 0.98 and Spearman ρ = 0, p = 1). This result indicates that CDS measures
an aspect of classifier performance distinct from the traditional top-1 measure.

7 Discussion and Related Work

Having presented the experiments and analysis, we now examine some of the
design decisions and forces at play in our work.

Our benchmarking procedure relies crucially on semantic object part-based
image sequences. Using ‘named’ semantic-parts ensures that all images of a
category are treated consistently. This advantage is lost when we use purely
statistically generated, unnamed, region-based part models7 [22]. On a related
note, Taylor and Likova [23] suggest that humans tap into generic concepts of
objects, including linguistic propositions (e.g. named object-parts) while analyz-
ing a scene. Furthermore, studies by Palmer [24] have shown that when parts
correspond to a ‘good’ segmentation of a figure (e.g. object-part contours), the
speed and accuracy of responses related to queries on figure attributes improves
significantly. These observations further lend support for our use of semantic
named object-parts. The burdensome aspect of semantic-part annotation does
limit the number of categories benchmarked. However, recent trends seem to
suggest the possibility of large, richly detailed datasets [25] and multi-task recog-
nition frameworks [26] which can potentially offset this burden.

Our choice of part-importance order (Sect. 4.1) offers a future opportunity to
explore connections between eye-fixation based saliency properties of a partial
content image and its recognizability. We wish to point out that our part ordering
schemes are not exhaustive – any other principled part-ordering scheme may
also be utilized for additional hold-out style benchmarking. In this respect, it is
interesting to note that Taylor and Likova [23] suggest a list specifying a Bayesian
prior on possible object attributes (including semantic-parts) to characterize
objects and related concepts.

7 The lack of consistency also holds true for area-based approaches (e.g. systematically
decreasing the percentage of object area occluded by a fixed percent).
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The images from the sequences we used to compute the CDS are artificial
in construction and one might argue that they are too structured and there-
fore, an imperfect representation of the object occlusion scenarios typically
seen in real photos. An alternative could be to utilize realistic data wherein
the extent and the manner in which the target object is occluded can be pre-
cisely quantified. This, in itself, is an extremely challenging task although newer
datasets with depth ordering and occlusion level specified as part of annota-
tions [27] may compensate to some extent8. The advantage of our constructs is
that they let us quantify the global object visibility consistently – for a given
location in the part importance order, the same part is missing in all the image
sequences. Moreover, as the results indicate, state-of-the-art classifiers can still
utilize available information effectively in spite of the artificial nature of sequence
images.

Our benchmarking measure relies on a semantic measure of dissimilarity
between the predicted label and ground-truth label. The deeper implication of
our choice of similarity measure is that the median CDS for each classifier reflects
the general ability of the classifier to utilize the semantics of the image to pro-
duce semantically meaningful predictions. We initially considered an alternative
scheme: a more traditional ‘hard’ 0−1 binary prediction in place of ‘soft’ seman-
tic similarity. However, this approach requires a manual, subjectively grouped,
many-to-one mapping between predicted-label set (Imagenet) and ground-truth
label set (PASCAL).

On a deeper level, our overall approach reveals aspects of the object recogni-
tion task that each of the top-performers address better than the rest. As already
pointed out, while VGG-19 is the top-performer in general, GoogLeNet is
better (in percentage terms) at exploiting context from an object’s immediate
surroundings (Sect. 6.2). Therefore, while our benchmarking procedure is use-
ful to differentiate classifiers, it can also be used to characterize the extent to
which contextual and visibility factors are addressed by a classifier on a stand-
alone basis. Such characterization can help classifier designers tweak their archi-
tectures and help improve the classifier’s capabilities. In addition, as Table 2
shows, our benchmarking procedure contrasts the performance of almost equally
well-performing classifiers (GoogLeNet, VGG-19) reasonably better than the
traditional approach (Table 1). In addition, the moderately high CDS scores
(Table 2) suggests that top of the line classifiers of current day are yet to per-
form well on images which mimic the challenging conditions (e.g. occlusion) in
which humans routinely recognize objects. To confirm that humans recognize
the objects much more robustly than machine classifiers, we performed a rudi-
mentary user study in which we asked human subjects to recognize the PPSS-12
sequence images. We found that human CDS values were indeed disproportion-
ately low compared to the classifiers9. Finally, we also wish to point out that

8 The dataset was not publicly available at the time of our publication.
9 In fact, the humans were able to correctly recognize the category at extremely

early stages of the sequence – the highest median score across content schemes was
0.20(±0.06) while the lowest was 0.
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our benchmarking procedure is by no means complete - a gamut of additional
transformations (e.g. rotation) and their combinations can be applied to create
additional image sequences and benchmark them using the approach described
in our work.

Typically, the state-of-the-art results reported on recognition leaderboards
[1,2] and literature [6,28–30] correspond to ensemble models. However, the corre-
sponding pre-trained models were not always available. To keep the benchmark-
ing consistent, we utilized readily available, pre-trained, non-ensemble baseline
models [9].

Related Work: One class of quantitative approaches which supplement the
usual mAP/error-rate essentially use variations of the traditional measures or
tend to be derived from them [31,32]. These additional measures (e.g. Area-
Under-the-Curve(AUC), precision, recall) may provide additional differentiation
between classifiers but unlike our work, do not provide insight into semantic
aspects of data which affect classification. Somewhat similar to our approach,
Aghazadeh and Carlsson [33] propose measures which quantify properties of
training data (class bias, intra-class variation) and compare classifier perfor-
mance on the basis of such measures for an object detection problem. However,
their formulation involves comparison of features across image pairs whereas
our measure is based on per-image statistics aggregated over a category. Hoiem
et al. [34] characterize the effects of challenging extrinsic factors (e.g. occlu-
sion, viewpoint) and intrinsic factors (e.g. aspect ratio, part visibility) for the
object detection problem and suggest the factors most likely to impact perfor-
mance. Analyzing user study data for downsampled versions of 256×256 images,
Torralba [35] examine the effect of image resolution for scene and object recog-
nition. However, their study is focused on human subject performance.

8 Conclusion

In this paper, we have demonstrated a semantic part-based procedure for bench-
marking state-of-the-art classifiers. The benchmarking procedure relies on a
semantic similarity measure that naturally addresses potential granularity differ-
ences between the category names in training and test datasets, thus eliminating
laborious and subjective manual mapping. The measures we propose provide
additional insights into the classifiers’ ability to handle various degrees of object
detail and missing object information à la humans. In our particular case, the
benchmarking procedure enables performance evaluation of the ILSVRC-trained
classifiers for test images sourced from an different dataset (PASCAL). Given
this capability for additional differentiation, our benchmarking procedure can
supplement existing procedures used in object recognition leaderboards. In addi-
tion, our benchmarking procedure and dataset are potentially useful for classifier
designers on a standalone basis to analyze their classifier’s ability to handle miss-
ing content and incomplete object detail.

The top performers in our benchmarking study do not explicitly consider
object parts (semantic or otherwise) nor do they attempt to model occlusions.
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However, architectures which are “part-aware” [36] and explicitly contain com-
pensatory mechanisms for occlusion [37] hold great potential not only for our
benchmarking procedure, but for the broader area of object recognition as
well [7].

Please visit our project webpage http://val.serc.iisc.ernet.in/pbbm/ for addi-
tional and up-to-date information.
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Abstract. We present a method for training CNN-based object class
detectors directly using mean average precision (mAP) as the training
loss, in a truly end-to-end fashion that includes non-maximum suppre-
sion (NMS) at training time. This contrasts with the traditional approach
of training a CNN for a window classification loss, then applying NMS
only at test time, when mAP is used as the evaluation metric in place of
classification accuracy. However, mAP following NMS forms a piecewise-
constant structured loss over thousands of windows, with gradients that
do not convey useful information for gradient descent. Hence, we define
new, general gradient-like quantities for piecewise constant functions,
which have wide applicability. We describe how to calculate these effi-
ciently for mAP following NMS, enabling to train a detector based on
Fast R-CNN [1] directly for mAP. This model achieves equivalent per-
formance to the standard Fast R-CNN on the PASCAL VOC 2007 and
2012 datasets, while being conceptually more appealing as the very same
model and loss are used at both training and test time.

1 Introduction

Object class detection is the task of localising all instances of a given set of
object classes in an image. Modern techniques for object detection [1–4] use a
convolutional neural network (CNN) classifier [5,6], operating on object proposal
windows [7–9]. Given an image, they first generate a set of windows likely to
include all objects, then apply a CNN classifier to each window independently.
The CNN is trained to output one score for each possible object class on each
window, and an additional one for ‘background’ or ‘no object’. Such models
are trained for window classification accuracy: the loss attempts to maximise
the number of training windows for which the CNN gives the highest score to
the correct class. At test time, the CNN is applied to every window in a test
image, followed by a non-maximum suppression processing stage (NMS). This
eliminates windows that are not locally the highest-scored for a class, yielding the
output set of detections. Typically, the performance of the detector is evaluated
using mean average precision (mAP) over classes, which is based on the ranking
of detection scores for each class [10].

Thus, the traditional approach is to train object detectors with one mea-
sure, classification accuracy over all windows, but test with another, mAP over
c© Springer International Publishing AG 2017
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locally highest-scoring windows. While the training loss correlates somewhat
with the test-time evaluation metric, they are not really the same, and further-
more, training ignores the effects of NMS. As such, the traditional approach is
not true end-to-end training for the final detection task, but for the surrogate
task of window classification.

In this work, we present a method for training object detectors directly using
mAP computed after NMS as the loss. This is in accordance with the machine
learning dictum that the loss we minimise at training time should correspond
as closely as possible to the evaluation metric used at test time. It also fits
with the recent trend towards training models end-to-end for their ultimate
task, in vision [11–13] and other areas [14,15], rather than training individual
components for engineered sub-tasks, and combining them by hand.

Directly optimising for mAP following NMS is very challenging for two main
reasons: (i) mAP depends on the global ordering of class scores for all windows
across all images, and as such is piecewise constant with respect to the scores;
and, (ii) NMS has highly non-local effects within an image, as changing one
window score can have a cascading effect on the retention of many other windows.
In short, we have a structured loss over many thousands of windows, that is non-
convex, discontinuous, and piecewise constant with respect to its inputs. Our
main contribution is to overcome these difficulties by proposing new gradient-
like quantities for piecewise constant functions, and showing how these can be
computed efficiently for mAP following NMS. This allows us to train a detector
based on Fast R-CNN [1] in a truly end-to-end fashion using stochastic gradient
descent, but with NMS included at training time, and mAP as the loss.

Experiments on the PASCAL VOC 2007 and 2012 detection datasets [16]
show that end-to-end training directly for mAP with NMS reaches equivalent
performance to the traditional way of training for window classification accuracy
and without NMS. It achieves this while being conceptually simpler and more
appealing from a machine learning perspective, as exactly the same model and
loss are used at both training and test time. Furthermore, our method is widely
applicable on two levels: firstly, our loss is a simple drop-in layer that can be
directly used in existing frameworks and models; secondly, our approach to defin-
ing gradient-like quantities of piecewise-constant functions is general and can be
applied to other piecewise-constant losses and even internal layers. For exam-
ple, using our method can enable training directly for other rank-based metrics
used in information retrieval, such as discounted cumulative gain [17]. Moreover,
we do not require a potentially expensive max-oracle to find the most-violating
inputs with respect to the model and loss, as required by [2,18,19].

2 Background

We recap here how NMS is performed (Sect. 2.1) and mAP calculated (Sect. 2.2).
Then, we describe Fast R-CNN [1] in more detail (Sect. 2.3), as it forms the basis
for our proposed method.
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2.1 Non-maximum Suppression (NMS)

Given a set of windows in an image, with scores for some object class, NMS
removes those windows which are not locally the highest-scored, to yield a final
set of detections [20]. Specifically, all the windows are marked as retained or
suppressed by the following procedure: first, the highest-scored window is marked
as retained, and all those overlapping with it by more than some threshold (e.g.
30% in [1,4]) intersection-over-union (IoU) are marked as suppressed; then, the
highest-scored window neither retained nor suppressed is marked as retained, and
again all others sufficiently-overlapping are marked as suppressed. This process
is repeated until all windows are marked as either retained or suppressed. The
retained windows then constitute the final set of detections.

2.2 Mean Average Precision (mAP)

The mAP [10,16,21] for a set of detections is the mean over classes, of the
interpolated AP [22] for each class. This per-class AP is given by the area under
the precision/recall (PR) curve for the detections (Fig. 1).
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Fig. 1. Precision/recall curve (bottom) for a sequence of true-positive (TP) and false-
positive (FP) detections ordered by score (top) for some object class with six ground-
truth instances. Plotting the sequence of precision and recall values yields the black
curve. The pink area shows the result of replacing each precision with the maximum
at same or higher recall. AP is the total area of the pink and blue regions. The arrows
(a–e) show the effect of positive perturbations to scores of FP detections. Blue arrows
(a–c) show perturbations with no effect on AP: (a) the order of detections does not
change; (b) the detection swaps places with another FP; (c) the detection swaps places
with a TP, but a higher-recall TP (f) has higher precision so there is no change to area
under the filled-in curve (pink shading). Orange arrows (d–e) show perturbations that
do affect AP: (d) the same FP as (c) is moved beyond a TP that does appear on (hence
affect) the filled in curve; (e) the FP moves past a single TP, altering the filled-in curve
as far away as 0.5 recall. (Color figure online)
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The PR curve is constructed by first mapping each detection to its most-
overlapping ground-truth object instance, if any overlaps sufficiently—for PAS-
CAL VOC, this is defined as overlapping with >50% IoU [16]. Then, the highest-
scored detection mapped to each ground-truth instance is counted as a true-
positive, and all other detections as false-positives. Next, we compute recall and
precision values for increasingly large subsets of detections, starting with the
highest-scored detection and adding the remainder in decreasing order of their
score. Recall is defined as the ratio of true-positive detections to ground-truth
instances, and precision as the ratio of true-positive detections to all detections.
The PR curve is then given by plotting these recall-and-precision pairs as pro-
gressively lower-scored detections are included. Finally, dips in the curve are
filled in (interpolated) by replacing each precision with the maximum of itself
and all precisions occurring at higher recall levels (pink shading in Fig. 1) [10,22].

The area under the interpolated PR curve is the AP value for the class. For
the PASCAL VOC 2007 dataset, this area is calculated by a rough quadrature
approximation sampling at 11 uniformly spaced values of recall [10]; for the VOC
2012 dataset it is the true area under the curve [16].

2.3 Fast R-CNN

Model. Our model is based on Fast R-CNN [1] (Figs. 2a, b), without bounding-
box regression. This model operates by classifying proposal windows of an image,
as belonging to one of a set of object classes, or as ‘background’. Whole images
are processed by a sequence of convolutional layers; then, for each window,
convolutional features with spatial support corresponding to that window are
extracted and resampled to fixed dimension, before being passed through three
fully-connected layers, the last of which yields a score for each object class and
‘background’. The class scores for each window are then passed through a soft-
max function, to yield a distribution over classes.

Training. This network is trained with a window classification loss. If a window
overlaps a ground-truth object with IoU > 0.5, its true class is defined as being
that object class; otherwise, its true class is ‘background’. For each window,
the network outputs softmax probabilities for each class, and the negative log
likelihood (NLL) of the true class is used as the loss for that window; the total loss
over a minibatch is simply a sum of the losses over all windows in it. The network
is trained by stochastic gradient descent (SGD) with momentum, operating on
minibatches of two images at a time.

Testing. At test time, windows are scored by passing them forwards through
the network, and recording the final softmax probabilities for each class. Then,
for each class and image, NMS is applied to the scored windows (Sect. 2.1). Note
that this NMS stage is not present at training time. Finally, the detections are
evaluated using mAP over the full test set.
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(b) Fast R-CNN, testing: NMS applied, and detections evaluated with mAP
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(c) Our method, both training and testing: exactly the same operations occur at train and test
time , with identical model structure and the training loss matching the test-time evaluation
metric

Fig. 2. Fast R-CNN [1] architecture during training (a) and testing (b) phases, and
our architecture (c), which is the same in both phases.

3 Related Work

Nearly all works on object class detection train a window classifier, and ignore
NMS and mAP at training time. Earlier approaches [20,23–25] apply the classi-
fier to all windows in a dense regular grid, while more recently, object proposal
methods [7,9] have been used to greatly reduce the number of windows [4,8].
Below we review the few works that try to either train for AP or other structured
losses, or include NMS at training time.

Blaschko and Lampert [26] formulate object detection as a structured pre-
diction problem, outputing a binary indicator for object presence and a set
of bounding-box coordinates. This is trained using a structured SVM, with a
task loss that aims for correct classification and maximal IoU of predicted and
ground-truth boxes in images containing the target class. Like our method, this is
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a structured loss involving IoU of detections and ground-truth objects; however,
it does not correspond to maximising AP, and only a single detection is returned
in each image, so there is no NMS. More recently, [2] uses the same structured
SVM loss, but with a CNN in place of a kernelised linear model over SURF
features [26]. This work directly optimises the structured SVM loss via gradient
descent, allowing backpropagation to update the nonlinear CNN layers.

There exist works that train specifically for AP, but for classification prob-
lems, rather than for object detection with NMS. Yue et al. [18] optimizes AP
in the structured SVM framework—with a linear model, trained using a hinge
loss weighted according to AP. This requires solving a loss-augmented infer-
ence problem, i.e. finding the scores that maximise the sum of AP and the
output of the current model. They present a dynamic programming algorithm
to solve this, which has quadratic complexity in the number of training points.
Extending this work, [19] presents a more general technique for training nonlin-
ear structured models directly for non-differentiable losses, again assuming that
loss-augmented inference can be performed efficiently. Using the same dynamic-
programming approach as [18], they apply it to the case of single-class AP with a
model based on R-CNN [4], without NMS at training time. While their method
requires changes to the optimiser itself, ours does not. Instead, we simply define
a new loss layer that can be easily dropped into existing frameworks, and do not
require solving a loss-augmented inference problem. Furthermore, our approach
can incorporate NMS and train simultaneously for multiple classes. Thus, while
[19] trains for AP over binary window classification scores, ours trains directly
for mAP over object detections.

Taylor et al. [27] discuss a different formulation for gradient-descent optimi-
sation of certain losses based on ranking of scores (though not AP specifically).
They define a smooth proxy loss for a non-differentiable, piecewise constant
ranking loss. They treat the predicted score of each training point as a Gaussian
random variable centered on the actual value, and hence compute the distrib-
ution of ranks for each score, by pairwise comparisons to all other scores. This
distribution is used in place of the usual hard ranks when evaluating the loss,
and the resulting quantity is differentiable with respect to the original scores.
This method has cubic complexity in the number of training samples, making
it intractable when there are tens of classes and thousands of windows (e.g. in
PASCAL VOC).

Unlike most other approaches to object detection, [28] includes NMS at train-
ing time as well as test time. They use a deformable parts model over CNN
features, that outputs scored windows derived from a continuous response map
(in contrast to feeding fixed proposal windows through a CNN [1]). The windows
are passed through a non-standard variant of NMS. Instead of training for mAP
or window classification accuracy, the authors then introduce a new structured
loss. This includes terms for detections retained by NMS, but also for suppressed
windows, in a fashion requiring knowledge of which detection suppressed them.
As such, it is deeply tied to the NMS implementation at training time, rather
than being a generally-applicable loss such as mAP.
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4 Proposed Method

We now describe our proposed method (Fig. 2c). We discuss how our model
differs from Fast R-CNN (Sect. 4.1) and why it is challenging to train (Sect. 4.2).
Then we introduce our general method for defining gradients of piecewise-
constant functions (Sect. 4.3) and how we apply it to train our model (Sect. 4.4).

4.1 Detection Framework

Model. Our model is identical to Fast R-CNN as described above, up to the
softmax layer: windows are still scored by passing through a sequence of convo-
lutional and fully-connected layers. As in [1], we can use different convolutional
network architectures pretrained for ILSVRC 2012 [21] classification, such as
AlexNet [5] or VGG16 [6]. We omit the softmax layer, using the activations of
the last fully-connected layer directly as window scores. In our experiment we
found that the softmax has little effect on the final performance, but its tendency
to saturate causes problems with propagating the loss gradients back through it.
In contrast to Fast R-CNN, our model also includes an NMS layer immediately
after the last fully-connected layer, which performs the same operation as used
at test time for Fast R-CNN. We regard the NMS layer as part of the model
itself, present at both training and test time.

Training. During training, we add a loss layer that computes mAP over the
minibatch, after NMS. Thus, at training time, minibatches undergo exactly the
same sequence of operations as at test time, and the training loss matches the
test-time evaluation metric. The network is still trained using SGD with momen-
tum. Section 4.2 describes how to define derivatives of the mAP and NMS layers,
while Sect. 4.5 discusses some additional techniques used during training.

Testing. During testing, our method is identical to Fast R-CNN, except that
the softmax layer is omitted.

4.2 Gradients of mAP and NMS Layers

In order to minimise our loss by gradient descent, we need to propagate deriv-
atives back to the fully-convolutional layers of the CNN and beyond. However,
mAP is a piecewise constant function of the detection scores, as it depends only
on their ordering—each score can be perturbed slightly without changing the
loss. The partial derivatives of such a loss function do not convey useful infor-
mation for gradient descent (Fig. 3a) as they are almost everywhere zero (in the
constant regions), and otherwise undefined (at the steps). The subgradient is
also undefined, as the function is non-convex.

Furthermore, even if we could compute the derivatives of mAP with respect
to the class scores, they still need to be propagated back through the NMS layer.
This requires a definition of the Jacobian of NMS, which is again non-trivial.
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Fig. 3. A piecewise constant function f(x) with steps at two points, and various defini-
tions for gradients. (a) Conventional partial derivative (red dashed) at x, equal to zero,
does not convey useful information for gradient descent. (b) Gradients at x given by
positive-perturbing and negative-perturbing finite difference estimators. (c) Piecewise-
linear upper (green) and lower (brown) envelopes of f(x). (d) Gradients at x given
by slope of upper/lower envelopes. When applied to our model, f(x) is mAP, and the
horizontal axis corresponds to the score of a single window with respect to which the
partial derivative is being computed. (Color figure online)

Note that max-pooling layers are similarly non-differentiable, but good results
are achieved by simply propagating the gradient back to the maximal input
only. We could do similar for NMS: allow only the locally-maximal windows
propagate gradients back; however, this loses valuable information. For example,
if all detections overlapping some ground-truth object are suppressed, then there
should be a gradient signal favouring increasing the score of those windows (or
decreasing that of their suppressors). This does not occur if we näıvely copy
gradients back through to maximal windows. In contrast, we require a Jacobian-
like quantity for NMS that does capture this information.

We therefore develop general definitions for gradient-like quantities of
piecewise-constant functions in Sect. 4.3, and then describe how to apply them
efficiently to NMS and mAP in Sect. 4.4.

4.3 Pseudogradients of General Piecewise-Constant Functions

We consider how to define a general pseudo partial derivative (PPD) operation
for piecewise-constant functions, that can be used to define quantities analogous
to the gradient and the Jacobian. For any piecewise-constant function f(x) with
countably many discontinuities (steps), we denote the PPD with respect to xi

by ∂̃xi
f . When the PPD is non-zero we need to move some non-infinitesimal

distance before any change in the function occurs (unlike a conventional partial
derivative). However when there is a change, it will be in the direction indicated
by the PPD, and in magnitude corresponding to the PPD (this is made more
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precise below). We then use our PPD to define an analogue to the gradient by
∇̃f = (∂̃x1f, . . . , ∂̃xN

f). Intuitively, this tells us locally what direction to move
so that the function will decrease, if we move some non-infinitesimal distance in
this direction. Similarly, for the Jacobian of vector-valued f , we have J̃ij = ∂̃xj

fi.
We now discuss two possible definitions for the PPD; these and the regular

partial derivative are illustrated in Fig. 3 for a one-dimensional function, at a
point lying in a constant region between two steps.

Finite Difference Estimators. Most simply, we can apply a traditional single-
sided finite difference estimator, as used for computing numerical gradients of a
differentiable function. Here, a small, fixed perturbation δx is added to x, the
function evaluated at this point, and the resulting slope used to approximate the
gradient, by ∂̃xf = f(x+δx)−f(x)

δx . The piecewise-constant functions we are inter-
ested in have finitely many steps, and so the probability of f being undefined at
the perturbed point is zero. However, the constant regions of our function vary
in size by several orders of magnitude, and so it is impossible to pre-select a suit-
able value for δx. Instead, we use an adaptive approach: given x, set δx to the
smallest value such that f(x+ δx) �= f(x), then compute ∂̃xf as above (Fig. 3b).
Note that this method is single-sided: it only takes account of the change due
to perturbing x in one direction or the other. This is undesirable, as in general,
it delivers different results for each direction, perhaps yielding complementary
information. We address this issue by performing the same calculation indepen-
dently with positive then negative perturbations δx+ and δx−, and taking a
mean of the resulting pseudogradients. We refer to this mean pseudogradient as
SDE, for symmetric difference estimator. This approach has the disadvantage
that the magnitude of the gradient is sensitive to the exact location of x: if it is
nearer to a step, the gradient will be larger, yet a correspondingly larger change
to the network parameters may be undesirable.

Linear Envelope Estimators. An alternative approach to defining the PPD
is to fit a piecewise-linear upper or lower envelope to the steps of the piecewise-
constant function (Fig. 3c). The PPD ∂̃xf is then given by the slope of the
envelope segment at the point x (Fig. 3d). In practice, we take the average of the
gradients of the upper and lower envelopes. Unlike SDE, this estimator does not
become arbitrarily large as x approaches a step. If f has finitely many steps, then
for all points before the first step and after the last, both linear envelopes have
zero gradient; we find however that better results are achieved by using SDE in
these regions, but with an empirically-tuned lower-bound on δx. We refer to this
pseudogradient as MEE, for mean envelope estimator.

4.4 Application to mAP and NMS

To apply the above methods to mAP, we must compute the PPD of each class’
AP with respect to each window score independently, holding the other scores
constant. This raises two questions: (i) how to efficiently find the locations of
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the nearest step before and after a point, and (ii) how to efficiently evaluate the
loss around those locations. We solve these problems by noting that changes to
AP only occur when two scores change their relative ordering, and even then,
only in certain cases. Specifically, AP changes value only when a window counted
as a true-positive changes place with one counted as a false-positive. Also, the
effective precision at a given recall is the maximum precision at that or any
higher recall (Sect. 2.2 and Fig. 1). So we have further conditions, e.g. decreasing
the score of a false-positive only affects AP when it drops below that of a true-
positive at which precision is higher than any with even lower score. This effect
and other perturbations are illustrated in Fig. 1 (blue and orange arrows).

higher scores

TT F T F F T F

(b)

lower scores

TT F T F F T F

(a)

Fig. 4. Efficient calculation of smallest perturbations to detection scores to cause a
step in AP. In each case the circled FP is currently being considered. (a) Iterating
detections in decreasing order of score, finding the smallest increase to each score that
causes a change in AP (higher for TPs, lower for FPs). Detections already considered
have an arrow showing where they are perturbed to; a cross indicates no increase to
that score affects AP. When considering the circled FP, the last-seen TP is shown by
the orange asterisk; perturbing the score of the circled detection just beyond (left) of
this is the minimal change to affect AP. (b) Similar but iterating in increasing order
of score, and hence calculating minimal decreases in score to affect AP. (Color figure
online)

Thus, for each class, we can find the nearest step before and after each point
by making two linear passes over the detections, in descending then ascending
order of score (Fig. 4). Assuming we have computed AP as described in Sect. 2.2,
we know whether each detection is a true- or false-positive, and can keep track of
the last-seen detection of each kind. In the descending pass, for each detection,
we find the smallest increase to its score that would result in a change to AP, thus
giving the location of the nearest step on the positive side. This score increase
is that which moves it an infinitesimal amount higher than the score of the last-
seen window of the other kind (true-positive vs. false-positive), subject to the
additional conditions mentioned above. Similarly, in the ascending pass, we can
find the required decreases in scores that would cause a change in AP. Once the
step locations have been found, the new AP values resulting from perturbing the
scores accordingly can be calculated by updating the relevant part of the PR
curve, and then computing its area as normal. Given the step locations and AP
values, it is then straightforward to use the methods of Sect. 4.3 to compute the
SDE or MEE.
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(a) (b)

Fig. 5. Transitivity approximations for NMS. Dashed black box is a ground-truth
object; coloured boxes are scored windows, red > green > blue. (a) Red overlaps green
sufficiently for NMS inhibition, and green overlaps blue similarly, but red does not
overlap enough with blue. However, whether red is retained indirectly affects whether
blue is retained, as if red suppresses green, then green does not suppress blue. In our
approximation, this long-distance interaction between red and blue is ignored; however
the two local interactions (red-green and green-blue) are included. (b) Red and blue
overlap each other sufficiently for NMS inhibition; given that red suppresses blue, our
approximation assumes that blue overlaps the same ground-truth instance as red (if
any). (Color figure online)

Incorporating NMS. We must also account for NMS when propagating gra-
dients back. The PPDs of NMS can be used to define a Jacobian as described in
Sect. 4.3, which may then be composed with the pseudogradient of mAP to define
the gradient of mAP with respect to the pre-NMS scores. However, subject to a
small approximation, it is both easier and more efficient to consider NMS simul-
taneously with AP when determining step locations and the resultant changes
to the loss. Specifically, we introduce two transitivity approximations (Fig. 5):
(i) we do not attempt to model cascaded long-distance interactions between
windows through multiple steps of NMS; (ii) we assume in certain cases that
windows suppressed by some detection overlap exactly the same ground-truth
instances as the detection itself. Under these approximations, it is possible to
compute the PPDs with respect to pre-NMS scores in linear time in the num-
ber of windows. This is achieved by: (i) adding gradient contributions due to
windows suppressed by a true-positive or false-positive detection at the same
time as that detection, as these suppressed windows need to have their scores
perturbed to the same point as their suppressor did to cause a change in AP; (ii)
including a third pass that adds gradient contributions from suppressed windows
overlapping ground-truth instances that were missed entirely (i.e. no detection
covers them); (iii) also adding gradient contributions from the detections that
caused the suppressed-but-overlapping windows of (ii) to be suppressed.

4.5 Training Protocol

In order to train our model successfully, we make various changes to the training
protocol used for Fast R-CNN in [1]. The impact of each of these changes is
given in Sect. 5.
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Minibatch Composition. We use larger minibatches than [1], as (i) object
detection mAP has a much higher batch-to-batch variance than simple window
classification accuracy, and (ii) including more windows increases the density
of the gradient signal, as there are likely to be more false positives which score
higher than some true positive (and vice versa). We also find that performance is
improved by using proportionally fewer foreground windows (those overlapping
a ground-truth instance as opposed to background) in each training minibatch.
While Fast R-CNN uses 25% foreground windows, we use 5%, which roughly
corresponds to the distribution of windows seen at test time, when 5% of all
selective search proposals overlap a ground-truth instance.

Regularisation. Using our method, we found empirically that scores are prone
to grow very large after several hundred iterations of training. This is effectively
mitigated by introducing a regulariser on the window scores. We find that an
L4 regulariser with very small weight performs best, as it gives greater free-
dom to smaller-magnitude scores while imposing a relatively hard constraint on
magnitude, compared to the more common L1/L2 regularisation.

Log-Space. We find it is beneficial to follow gradients of log(mAP + ε) instead
of mAP itself, for some small, fixed constant ε. Early in training when mAP is
low, scores of true-positive windows are uniformly distributed amongst those of
false-positive windows, and so an increase in the score of a true-positive often
yields only a very small gain in mAP. Using log(mAP + ε) instead amplifies the
effect of these changes, so training quickly escapes from the initial very low mAP.

Gradient Clipping. We find that numerical behaviour is improved (partic-
ularly at high learning rates) by clipping elements of the gradient to a fixed
threshold.

5 Experiments

We now evaluate the performance of our approach on two datasets: PASCAL
VOC 2007 and 2012 [16]. Both datasets have 20 object classes; for VOC 2007,
we train on the trainval subset (5011 images) and test on the test subset (4952
images); for VOC 2012, we train on the train subset (5717 images) and test on
the validation subset (5823 images). We also give results training on the union
of VOC 2007 trainval and VOC 2012 trainval (total 16551 images), and testing
on VOC 2007 test.

We compare our method to two others: (i) Fast R-CNN trained with the
standard NLL loss for window classification, as described in [1] (bounding box
regression is disabled, to give a fair comparison with our method); and (ii) [19],
which also trains an R-CNN-like model for AP, but with a separate model for
each class, no NMS at training time, and with a different way to compute para-
meter gradients. This is the closest work in spirit to ours.
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Settings. We use Fast R-CNN as described in [1], built upon AlexNet [5] or
VGG16 [6], with weights initialised on ILSVRC 2012 classification [21]. We
then remove the softmax layers at both training and test time, as described
in Sect. 4.1, and replace the training loss layer with our NMS layer and mAP
loss.

Incorporating the techniques described in Sect. 4.5, the overall loss we min-
imise by SGD is L = − log {∑c AP(NMS(sc))/K} + λ

∑
c,b |sb

c|4, where sc are
the window scores for class c, K is the total number of classes, and b indexes
over windows.

The AP calculation during training is always matched to that used for evalu-
ation. When testing on VOC 2007, we train using the VOC 2007 approximation
to AP (Sect. 2.2); when testing on VOC 2012, we train using the true AP. In
order to compute pseudogradients for training, we try both SDE and MEE and
compare their performance (Sect. 4.3). As our method works best with large
minibatches, for the VGG16 experiments, we clamp the maximum image dimen-
sion to 600 pixels, to conserve GPU memory (this does not have a significant
impact on the baseline performance).

Table 1. Performance of our method measured by mAP on VOC 2007 test set, with
different pseudogradients (MEE vs SDE), network architectures (AlexNet vs VGG16),
and training sets (VOC 2007 trainval vs union of VOC 2007 trainval and VOC 2012
trainval). We also give results for Fast R-CNN trained using a traditional softmax loss,
without bounding box regression.

Trained on... 2007 only 2007 + 2012

AlexNet VGG16 AlexNet VGG16

Ours, MEE 51.6 58.9 54.9 62.5

Ours, SDE 51.3 60.7 54.8 62.3

Fast R-CNN 52.0 62.4 53.8 63.5

Main Results on VOC 2007. Table 1 shows how our methods compare with
Fast R-CNN, testing on the PASCAL VOC 2007 dataset. Overall, our method
achieves comparable performance to Fast R-CNN. The results also show that
using a larger training set (union of VOC 2007 and 2012 trainval subsets)
increases performance by up to 3.6% mAP, compared to training from VOC
2007 trainval alone. This effect is significantly stronger for our method than for
Fast R-CNN: for AlexNet, we gain 3.3% mAP compared with 1.8% for Fast
R-CNN; for VGG16, we gain 3.6% compared with 1.1% for Fast R-CNN. This
indicates that our approach particularly benefits from more training data, possi-
bly because optimising for mAP implies many comparisons between windows. Of
our two pseudo-gradient estimators, MEE slightly outperforms SDE, in all cases
apart from VGG16 training on VOC 2007 trainval only. This is likely because
MEE is insensitive to the distances from points to nearest steps, in contrast
to SDE (Sect. 4.3); hence, MEE is a more robust estimator of the impact of a
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score change, whereas SDE may introduce very large derivatives for a particular
window. In all cases, VGG16 significantly outperforms AlexNet, confirming pre-
vious studies [1,6].

Ablation Study. In Sect. 4.5, we noted that certain modifications to the
original training procedure of Fast R-CNN were necessary to achieve these
results. Ablating away these modifications reduces our mAP, as follows (all using
AlexNet on VOC 2007 with the MEE gradient estimator): (i) minibatch compo-
sition: increasing foreground fraction to 25% (as used in Fast-RCNN): −6.1 mAP
(ii) minibatch size: halving batch size but doubling iteration count (so the same
amount of data is seen): −0.8 mAP (iii) score regularisation: with L2 regulari-
sation instead of L4 and the constant adjusted appropriately: −1.0 mAP. With
no regularisation, training fails after <100 iterations as the magnitude of the
classification scores explode. (iv) gradient clipping: with this disabled, training
fails after <100 iterations due to numerical issues caused by large gradients.

Comparison to [19] on VOC 2012. The only previous work that attempts
to train a CNN-based object detector directly for AP is [19]. Table 2 compares
this method to ours; we use the PASCAL VOC 2012 dataset (testing on the
validation subset) as this is what [19] reports results on. Our method achieves
comparable performance to [19], with the MEE estimator again being slightly
better than SDE.

Unlike our method, [19] trains a separate model for each class; their dynamic-
programming solution to the loss-augmented inference problem is for single-class
AP only (not mAP over all classes). Moreover, their training procedure does not
take into account NMS.

Discussion. We hypothesise that our methods do not significantly outperform
Fast R-CNN overall for three reasons. (i) Our gradients are sparser than those
of a softmax loss: not every window propagates information back for every class,
as changing scores of certain windows has no effect on mAP (e.g. low-scored
background windows suppressed by NMS). For example, for VOC 2007, around
20% of scores have a non-zero gradient — compared with 100% when using a
softmax loss. (ii) mAP is a more rapidly changing function than the softmax
loss: an estimate over a minibatch is a much higher-variance estimator of loss
over the full set. (iii) It can be shown numerically that mAP over a minibatch of

Table 2. Performance of our method compared with [19] (which trains for single-class
AP, with a technique very different from ours). All models were trained on VOC 2012
train subset, tested on VOC 2012 validation subset, and use AlexNet. Bounding box
regression was not used in any of the models.

Ours, MEE Ours, SDE Song et al. [19]

48.2 48.0 48.5
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images is a biased estimator of mAP over the population of images from which
that minibatch was drawn.

The real advantage of our method over the standard training procedure of
Fast R-CNN is being more principled by respecting the theoretical need for
having the same evaluation during training and test.

6 Conclusions

We have presented two definitions of pseudo partial derivatives of piecewise-
constant functions. Using these, we have trained a Fast R-CNN detector directly
using mAP as the loss, with identical model structure at training and test time,
including NMS during training. This ensures that training is truly end-to-end
for the final detection task, as opposed to window classification. Our method
achieves equivalent performance to Fast R-CNN. It is easily integrated with
standard frameworks for SGD, such as Caffe [29], as our NMS and mAP loss
layers can be dropped in without affecting the minimisation algorithm or other
elements of the model. Our definitions of pseudogradients open up the possibil-
ity of training for other piecewise-constant losses. In particular, ranking-based
metrics are common in information retrieval, including simple AP on document
scores, and discounted cumulative gain [17]. Our method is very general as it does
not require definition of an efficient max-oracle, in contrast to [19] and structured
SVM methods. Indeed, our approach can also be applied to piecewise-constant
internal layers of a network, allowing back-propagation of gradients through such
layers.
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Abstract. Existing object detection literature focuses on detecting a
big object covering a large part of an image. The problem of detecting
a small object covering a small part of an image is largely ignored. As
a result, the state-of-the-art object detection algorithm renders unsat-
isfactory performance as applied to detect small objects in images. In
this paper, we dedicate an effort to bridge the gap. We first compose
a benchmark dataset tailored for the small object detection problem to
better evaluate the small object detection performance. We then aug-
ment the state-of-the-art R-CNN algorithm with a context model and
a small region proposal generator to improve the small object detection
performance. We conduct extensive experimental validations for study-
ing various design choices. Experiment results show that the augmented
R-CNN algorithm improves the mean average precision by 29.8% over
the original R-CNN algorithm on detecting small objects.

1 Introduction

We have witnessed several breakthroughs in the field of visual object detection in
the past decade, demonstrated by the ever-increasing performance improvement
on the PASCAL VOC [1]. However, the object detection problem still remains
largely unsolved as none of the state-of-the-art object detectors is close to perfect.
Moreover, the performance on the PASCAL VOC can be misleading due to the
dataset bias as pointed out by Torralba et al. [2]. It is expected that when the
application domain has a very different bias to the one in the PASCAL VOC,
the performance of the state-of-the-art detectors for the PASCAL VOC would
degrade significantly.

In this paper, we study the small object detection problem. By small objects,
we refer to objects with smaller physical sizes in the real world. We also limit
our interest to the small objects that each occupies a small part of an image.
This means that comparing to the PASCAL VOC where the majority of objects
are big in the real world and each occupies a large portion of an image, we are
considering an application domain with a selection bias toward small objects as
shown in Fig. 1.
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(a) Typical objects in PASCAL (b) Small objects in the real world

Fig. 1. Detecting small objects with low-resolution inputs.

It is true that one can always have a higher resolution image or take a closer
snapshot of a small object in order to detect it. But the low-resolution inputs
for small objects is deeply embedded in the nature of visual perception, and a
robust vision system should be able to deal with it. For example, the physical
size of a typical desk and monitor is many times bigger than a mouse. As a
human, when we see a desk with a monitor and a mouse, we recognize all of
them in one shot. We do not look particularly closer to the mouse to put a large
image at the center of our retina. It is desirable that a computer vision system
possesses a similar capability.

Moreover, detecting small objects is itself an intriguing problem due to sev-
eral unique challenges. First, there are much more possibilities for the locations
of small objects. The precision requirement for accurate localization is several
magnitudes higher than that for typical PASCAL VOC objects. Second, there
are much fewer pixels available for small objects, which means much weaker sig-
nal for the detector to utilize. Third, there are only limited prior knowledge and
experiences in this area since most of the prior works are tuned for the big object
detection problem. Practically, there is no benchmark dedicated to such a task1.
In fact, we do not have much understanding on how difficult the small object
detection task is or how well existing object detectors work. In order to better
assess the performance of an algorithm for the small object detection problem,
we establish a small object detection benchmark.

The R-CNN algorithm [3,4], which extracts discriminative features using
deep convolutional neural network from region proposals, has been established as
the state-of-the-art approach for object detection as supported by the achieved
impressive performance on the PASCAL VOC benchmark. In this paper, we
extend the R-CNN algorithm to deal with the small object detection problem.
Specifically, we propose a region proposal network tailored for capturing the
“objectness” for small objects in order to obtain a small set of proposals while
still keeping a high recall rate. We also propose a way to encode the context
information from the surrounding areas of an object proposal. We show that the

1 Although standard datasets such as the Microsoft COCO contains several “small”
object categories, many of the instances of the objects in the “small” object cate-
gories occupy a large part of an image.
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extended R-CNN algorithm achieves a mean Average Precision (mAP) of 23.5%
on the benchmark dataset, which significantly outperforms a mAP of 18.1%
achieved by the original R-CNN algorithm. We also present extensive experi-
mental evaluations on various design choices for understanding their impacts to
the small object detection performance.

1.1 Related Work

Earlier work on small object detection is mostly about detecting vehicles using
hand-crafted features and shallow classifiers in aerial images [5,6]. In this paper,
we cover a diverse set of small objects in the daily life and augment the state-
of-the-art R-CNN algorithm for detecting them. [7] analyzes the influences of
object characteristics on the performance of multiple detectors, with “object
size” among the characteristics being studied. The results reveal that the detec-
tion accuracy drops as the object size becomes smaller, which provides some
initial insight into the small object detection problem.

The PASCAL VOC [1] is the most widely used benchmark dataset for general
object detection. It contains 20 object categories including “cow”, “vehicle”,
and “dog”. The object instances in the PASCAL VOC are usually large. Many
of them occupy a major portion of the image. Our focus is on small objects
where the object instance should only occupy a small portion of the image. In
this sense, directly using the PASCAL VOC dataset is inappropriate. Microsoft
COCO dataset [8] is proposed to advance the object detection techniques by
placing it in the context of scene understanding, and the dataset contains many
categories of small objects. To better represent the problem, we compose our
small object detection dataset by using a subset of images from both the COCO
dataset and the Scene UNderstanding database (SUN) [9], which also contains
a large amount of small objects in various scenes.

[3,4] propose the R-CNN algorithm, which combines convolutional neural
networks with bottom-up region proposals [10] for object detection. R-CNN sig-
nificantly outperforms conventional approaches on the PASCAL VOC dataset
and establishes the new state-of-the-art in object detection research. Recently,
some work improves the region proposal generation part of R-CNN and obtain
faster computation speed and more accurate detection performance. [11] gen-
erates region proposals using edge cues. [12] computes “objectness” of region
proposals based on a convolutional neural network. The MultiBox method [13]
directly predicts a set of class-agnostic bounding boxes along with a single object-
ness score for each box, the method is not translation-invariant. [14] propose a
translation-invariant Region Proposal Network (RPN) that shares convolutional
layers with the detection network and achieve faster computation speed and bet-
ter performance. The above algorithms are designed for detecting large objects
in the PASCAL VOC. We focus on the small object detection problem and sys-
tematically study the applicability of the R-CNN style algorithms for detecting
small object in the image.

Generally, context is useful for improving the object detection performance
in natural scenes [15,16]. Based on R-CNN, [17] proposes a pipeline for action
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recognition using more than one regions. [18] proposes a multi-region object
detection system that can steering the ConvNet to focus on different regions of
the object. [19] use both segmentation and context to improve object detection
accuracy. [20] studies the role of context in existing object detection approaches
and further proposed a model that exploits both the local and global context. In
this work, we also leverage the context information to get better performance.

Many researches have been shown to improve the localization accuracy of
object detectors. [21] introduces a Bayesian optimization-based algorithm that
iteratively searches for better bounding boxes for object detection. [22] casts
object detection as an iterative classification problem and proposed Attention-
Net which achieves more accurate localization. [23,24] propose object detection
pipelines that completely eliminate region proposal generation stage by predict-
ing category scores and bounding box locations altogether from feature maps.
[25] shows the overall performance of object detection can also be improved by
using image renderings for data augmentation.

1.2 Contributions

This paper makes the following contributions:

1. We propose a dataset containing diverse small objects to facilitate the study
of the applicability of state-of-the-art deep learning-based object detectors
for detecting small objects in the image.

2. From systematic experiment design and performance comparison, we augment
the R-CNN algorithm, which boosts the small object detection performance
by 29.8% on the benchmark dataset.

2 Small Object Dataset

We compose our dataset for the small object detection problem by using a sub-
set of images from both the Microsoft COCO and SUN datasets. We call the
dataset the “small object dataset”. We manually select ten small object cate-
gories where the largest physical dimension of instances in the categories are
smaller than 30 cm. The selected object categories are “mouse”, “telephone”,
“switch”, “outlet”, “clock”, “toilet paper”, “tissue box”, “faucet”, “plate”, and
“jar”. A small object is not necessarily small in the image. For instance, the
“tissue box” may occupy a large portion of an image. We use the ground truth
bounding box locations in the COCO and SUN datasets to prune out big object
instances and compose a dataset containing purely small objects with small
bounding boxes.

The statistics of the small object dataset is shown in Table 1. It contains
about 8,393 object instances in 4,925 images. The “mouse” category has the
largest number of object instances: 2,137 instances in 1,739 images. The “tissue
box” category has the smallest number of instances: 103 instances in 100 images.
All the object instances in our dataset are small. Median of relative areas (the
ratio of the bounding box area over the image area) of all the object instances
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Table 1. Statistics of our small object dataset. Relative area (%) of each instance is
computed as the ratio of the bounding box area over the image area.

Category mouse telephone switch outlet clock toilet paper tissue box faucet plate jar 
Number of images 1739 345 425 916 746 157 100 1094 419 252
Number of instances 2137 363 487 1210 814 175 103 1388 1005 711
Median relative area 0.35 0.38 0.08 0.08 0.25 0.40 0.58 0.43 0.37 0.29
Median top-10% area 2.76 1.99 0.33 0.37 1.92 1.43 1.94 2.02 2.40 1.57

Table 2. Median relative area (%) of the object categories in the PASCAL VOC.

Category cat sofa train dog table mbike horse bus aero bicycle

Median
relative area

46.40 33.87 32.33 30.96 23.73 23.69 23.15 23.04 22.83 14.38

Category person bird cow chair tv boat sheep plant car bottle

Median
relative area

8.14 8.03 6.68 6.09 5.96 3.82 3.34 2.92 2.79 1.38

in the same category is between 0.08% to 0.58%. This corresponds to 16× 16 to
42× 42 pixel2 areas in a VGA image. As a comparison, median of relative areas
of object categories in the PASCAL VOC dataset is between 1.38% to 46.40%,
as shown in Table 2. Even the smallest object category is much larger than the
biggest object category in our dataset.

Our small object dataset is considered more challenging than the PASCAL
VOC in at least two ways: First, the appearance cue available for distinguishing a
small object from background clutters is much less due to the small size. Second,
the number of bounding box hypotheses for a small object in an image is much
larger than that for a big object in the PASCAL VOC.

During evaluation, the small object dataset is split into two subsets: one for
training and the other for testing. The number of object instances per category
in the training set is roughly two times the corresponding number in the testing
set. There are no common images between the two sets.

Performance Metric: We use the standard performance metric for comparing
various object detection algorithms. An object bounding box hypothesis is con-
sidered as a true detection if its overlap ratio with the ground truth bounding
box is greater than 0.5, where the overlapping ratio is measured using the Inter-
section over Union (IoU) measure. The detection algorithm returns a confidence
score for each object bounding box hypothesis. We vary the threshold and com-
pute the precision recall curve for each object. We then use the average precision
of the curve to report the performance of the detector for an object category.
The performance of the detector for the entire dataset is measured using the
mean Average Precision (mAP) score.
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3 R-CNN for Small Object Detection

The R-CNN algorithm [3] has been established as the de facto algorithm for
deep learning-based object detection. It significantly outperforms conventional
approaches in the PASCAL VOC by capitalizing the following two insights:
First, it uses object proposals rather than sliding windows. Before the R-CNN,
most object detectors such as DPM adopt a image pyramid plus sliding window
approach [26] to generate potential object locations and handle various scales.
In the R-CNN pipeline, a fixed number (e.g. 2000) of boxes are proposed per
image which most likely contain the target objects. The problem of various
scales is also handled automatically by the proposal generation. Fewer but better
proposals contribute a lot to the good performance of the R-CNN. Second, it
leverages ImageNet pre-trained deep neural network models, which is then fine-
tuned using the PASCAL VOC. The pre-training process is proven to be crucial
to the performance. Without the pre-training process, the R-CNN works poorly.

Given the region proposals, training an R-CNN object detector generally
composing two major steps: supervised pre-training and domain-specific fine-
tuning. During supervised pre-training, ImageNet data are used to train the
entire network from scratch. In the domain-specific fine-tuning, the weights of
the network are initialized by the pre-trained model and trained by the domain-
specific data (for example, PASCAL VOC). Training images for the ConvNet
are region proposal patches being resized and warped to the required resolution
(e.g. 227 × 227). Both the positive and negative patches are sampled from the
region proposals according to certain overlap thresholds.

In the following sections, we investigate into various necessary changes for
successfully extending the R-CNN algorithm for small object detection. We fol-
low the same procedure to train our small object detection networks, but based
on the nature of the problem, in the domain-specific fine-tuning stage, we only
sample the negative patches from the region proposals. The positive patches are
generated by randomly deviating from the ground truth box. We also try to bal-
ance the positive patches of each category by sampling complementary number
of positive patches per category per instance.

The Fast R-CNN algorithm [4] simplifies the R-CNN pipeline by propos-
ing a ROIPooling layer that crops the proposals from the feature map instead
of the input image. Although the Fast R-CNN reduces the time cost and fur-
ther improves the performance on PASCAL VOC, the core idea of R-CNN is
intact. Adding the ROIPooling leads to the primary difference between the two
methods: in R-CNN, all the proposal boxes (even small ones) are resized to a
canonical size, this means that full feature map is generated for each proposal
box at the last pooling layer. However, in Fast R-CNN, a small proposal box gets
mapped to only a small map (sometimes 1*1*n) at the last pooling layer. Such
a small feature map may lack necessary information for the classification step,
adding unnecessary uncertainty into the study. Thus, we feel that the R-CNN is
more suitable than the Fast R-CNN algorithm in this case. Moreover, as we do
not have much knowledge about how the deep learning-based method works on
small objects, the original R-CNN pipeline provides a more convenient way to
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better understand the problem. For example, it is more convenient to visualize
the neuron responses of the R-CNN than the Fast R-CNN. By working with
proposal patch input, analyzing the effects of up-sampling and context is also
easier. Thus in this paper, we choose to follow the original R-CNN pipeline.

Moreover, in our work, we do not implement bounding box regression.
Although bounding box regression is proven as an effective way to increase the
localization accuracy, it is not a major issue for small object detection. We believe
the challenges come from the region proposal generation and classification, while
bounding box regression will be less useful on poor proposal and classification
results. So in this paper, we will only focus on generating better region proposals
and searching for stronger classifiers.

For all the experiments, our training pipeline consists of two stages: in the first
stage, the weights of the ConvNets are initialized with corresponding ImageNet
pre-trained models. We then fix the convolutional layers and only update fully
connected layers for 8000 iterations with a learning rate of 0.0005. In the second
stage, all the layers are updated with a learning rate of 0.00005. We use stochastic
gradient descent with momentum of 0.9 for optimization, the batch size is 100.
The training is terminated after 80000 iterations.

3.1 Small Proposal Generation

Selective search and edge box are two popular choices for object proposal gen-
eration. They use mid-level image cues, such as segments and contours and are
object category-agnostic. While the selective search and edge box work well
for generating proposals for big objects in the PASCAL VOC. We empirically
find them rendering unsatisfactory results for generating small object proposals
even after an exhaustive search of the algorithm parameter space. With 2000
object proposals per image, the typical recall rate is lower than 60%, leading to
poor performance for detecting small objects using R-CNN. Further investiga-
tion shows that both of the algorithms favor salient objects with closed contours
and distinctive colors. Since the nature of the small objects are non-prominent,
they are non-ideal for small object proposal generation.

The Region Proposal Network (RPN) [14] is the current state-of-the-art
method for proposal generation. It attaches nine anchor boxes - derived from
three different aspect ratios at three different scales - to each spatial dimen-
sion of the feature map from the conv5 3 layer of the VGG16 network [27] for
region proposal classification and bounding box regression. The three aspect
ratios used are 0.5 (landscape), 1 (square), and 2 (portrait), and the areas of the
square shape bounding boxes at the three scales are 1282, 2562, and 5122 pixel2,
respectively. The RPN achieves good performance for big object proposal gener-
ation. But we find that directly applying the RPN to the small object proposal
generation results in poor performance. Several modifications are necessary as
described below.

We first notice that the RPN anchor boxes are too large. Even the smallest
anchor box is much bigger than most instances in our small object dataset.
Based on the statistics of the small object size in the dataset, we choose 162,
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Table 3. Recall rate (%) of the region proposal generation methods.

Method mouse tel. switch outlet clock t. paper t. box faucet plate jar Average

DPM, 300 prop. per category 70.9 58.0 70.5 80.9 79.1 86.6 76.2 69.3 58.0 63.4 71.3

RPN original, 300 prop 85.0 63.4 78.7 73.1 66.0 76.1 50.0 76.0 58.6 31.8 65.9

RPN modified, 300 prop 88.4 82.4 80.9 83.1 86.9 83.6 88.1 86.4 71.9 58.9 81.1

DPM, 500 prop. per category 73.2 61.8 74.3 82.2 82.5 86.6 78.6 73.9 62.2 72.9 74.8

RPN original, 500 prop 85.7 64.9 79.2 74.7 68.4 77.6 57.1 78.0 61.4 38.2 68.5

RPN modified, 500 prop 89.9 86.3 82.0 84.2 88.9 91.0 90.5 89.8 76.4 67.1 84.6

DPM, 1000 prop. per category 76.5 67.2 78.7 84.2 86.9 89.6 81.0 79.7 68.3 81.7 79.4

RPN original, 1000 prop 87.0 70.2 79.8 75.6 71.7 82.1 66.7 80.9 66.4 46.2 72.7

RPN modified, 1000 prop 92.4 93.1 83.6 86.0 90.2 97.0 92.9 93.3 82.5 76.4 88.7

DPM, 2000 prop. per category 80.2 72.5 82.0 86.2 89.9 92.5 83.3 83.3 73.9 87.8 83.2

RPN original, 2000 prop 87.7 75.6 80.3 76.0 75.1 89.6 76.2 84.0 69.4 54.6 76.9

RPN modified, 2000 prop 94.1 94.7 85.3 87.1 90.9 97.0 97.6 95.3 86.1 85.2 91.3

402, and 1002 pixel2 for the square shape anchor box sizes. For the aspect ratios,
we keep the original values used in the original paper. We further notice that the
stride length of the conv5 3 feature map, which is 16 pixels, is too large. It is
larger than most of the “switch” and “outlet” objects in our dataset. The other
candidate feature maps for attaching the anchor boxes are conv2 2, conv3 3 and
conv4 3. We empirically compare the performance and find that conv4 3 renders
the best performance for small object proposal generation. The conv4 3 feature
map has a theoretical receptive field of 92×92 pixel2, which appears to be more
appropriate than 196 × 196 pixel2 from the conv5 3 feature map.

For benchmarking the performance of deep learning for small object detec-
tion, we also apply the Deformable Part Model (DPM) [28] detector to detect the
small object. The DPM detector was the state-of-the-art algorithm on the PAS-
CAL VOC dataset before the R-CNN algorithm. The DPM detector is based on
the Histogram of Oriented Gradient (HOG) features and latent support vector
machine. To accommodate the small object size, we down-sample the root and
part template sizes of the DPM detector by half. The DPM is a category-specific
object detector. We train a DPM detector for each class.

Evaluation: In Table 3, we compare the recall rate of the proposal generation
methods for the small object detection problem. Specifically, we compare the
recall performance of using the DPM detector, the original RPN, and the pro-
posed modification of RPN. We vary the number of proposals per image and
show the recall numbers. The DPM is category-specific. We use the top scored
bounding boxes from all the classes for computing the recall rate. The effective
number of bounding boxes are 10 times the number of the RPN. As discussed,
the modified RPN renders the best recall performance. For 2000 proposals, the
recall rate for the “tissue box” is about 97.6%. The recall rate for the “jar” is the
worst. It is 85.2% with 2000 proposals. However, this is still much better than
54.6% achieved by the original RPN method. From the table, we also find that
the original RPN algorithm renders worse performance than the DPM algorithm.
The proposed modification of the RPN algorithm considers the nature of small
object and largely improve the performance. Overall, the proposed modification
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Table 4. Up-sampling effects. Both networks are trained and tested with DPM pro-
posals, 500 per image per category.

mouse tel. switch outlet clock t. paper t. box faucet plate jar Average

Partial AlexNet 29.8 3.1 5.3 18.0 19.6 15.5 1.9 6.7 5.4 2.0 10.7

Full AlexNet 42.9 7.7 9.4 22.7 28.2 26.7 15.7 18.6 5.4 3.4 18.1

Median size 32.4 54.0 25.5 25.8 38.5 73.1 90.0 50.8 39.2 29.4 45.9

Up-sampling ratio 7.0 4.2 8.9 8.8 5.9 3.1 2.5 4.5 5.8 7.7 5.8

achieves an average recall rate of 91.3%, which is relatively 19% better than the
original RPN method.

3.2 Up-Sampling

The first question encountered as extending the R-CNN algorithm to the small
object detection is whether to aggressively up-sample the image or not. Unlike
the objects in the PASCAL VOC, the bounding boxes of the small objects in
our dataset are very small. In Table 4, we show the median bounding box size
(square root of the box area) of the objects per category and the corresponding
up-sampling ratios required to match the input size (227 × 227 in this case) of
the deep convolutional neural networks. We find that, generally, 6 to 7 times
up-sampling is required, which will introduce a large amount of up-sampling
artifacts. One way to reduce the artifacts is to use low resolution small input
patches with a ConvNet deviated from the standard pre-trained models. For
example, we can exclude the pre-trained weights in the last few fully connected
layers and only use the convolution layers. However, using small patches as input
may create other disadvantages:

1. The receptive field over small patch is larger than the same receptive field
over large patch. This means given a small patch, the network can only look
at the object in a coarse scale, thus possibly loses useful information regarding
the parts of the object.

2. Small input patch produces lower dimensional feature vector, thus the size
of the vector may not be large enough to accommodate all the crucial
information.

3. Since all the fully connected layers need to be trained from scratch, we only
utilize the partial strength of the pre-trained models.

To answer this question. We design an experiment comparing the two solu-
tions using the following two networks:

1. Partial AlexNet [29]: Using conv1 to pool5 layers from the AlexNet. The
object proposals are re-scaled to 67×67. The pool5 layer produces a 1×1×256
feature vector, which is used to get the final classification scores.

2. Full AlexNet: Using the entire AlexNet structure. The object proposals are
up-sampled to 227 × 227 and contains a large amount of artifacts.
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The results are shown in Table 4. From the table, we found that although
with the up-sampling artifacts. The full AlexNet still renders much better per-
formance. So in our following experiments, we will only use the aggressively
up-sampled proposal patches as input.

3.3 Context

Context is an important cue for object detection. We expect that it will be
even more important for small object detection, since small objects are simple
in shape and usually only cover a small image region. The feature extracted
from the proposal region is less discriminative, so when only given the proposal
region, it can be very difficult to recognize, even for human beings.

We investigate into several methods for incorporating context information to
boost small object detection performance, and based on the R-CNN algorithm,
we propose a simple method that works quite well. When given an object pro-
posal in an image, in addition to cropping the proposal region, we crop the corre-
sponding context region enclosing the proposal region, with the center coinciding
with the center of the proposal region. The context region is set to be several
times larger than the proposal region. We then feed both regions into a neural
network. The neural network consists of three sub-networks where the first one
takes the proposal region as input, the second one takes the context region as
input, and the last one takes the concatenation of the outputs of the others as
input and computes the final classification score. We call this neural network
ContextNet, and the structure is shown in Fig. 2.

Proposal region

Context region

Convolutional 
layers

Fully connected 
layers Softmax

What category?

“mouse”

Convolutional 
layers

Concatenate

1*1*4096

1*1*4096

fc6

fc6

Fig. 2. ContextNet: the neural network for integrating context information. The two
front-end sub-networks take proposal region patches and context region patches as
input respectively, the back-end sub-network takes in the concatenation of the two
feature vectors and computes the final classification score.

The two front-end sub-networks have identical structure. Each consists of a
few convolutional layers followed by one fully connected layer, which are derived
from the first six layers of the AlexNet (or the equivalent layers of VGG16). Input
image regions to the two sub-networks are resized to 227 × 227 (224 × 224 for
VGG16) patches. Each of the front-end sub-networks outputs a 4096 dimensional
feature vector. The back-end sub-network consists of two fully connected layers
and outputs the predicted object category label. During training, the front-end
sub-networks are initialized using the ImageNet pre-trained model. However, the
weights of the two sub-networks evolve separately - the weights are not shared.
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Table 5. Results of ContextNet. All the networks are trained (2000 per image) and
tested (500 per image) with modified RPN proposals.

Method mouse tel. switch outlet clock t. paper t. box faucet plate jar mAP

Baseline
AlexNet

48.2 10.6 8.9 21.4 32.3 34.1 23.0 25.1 6.7 3.6 21.4

ContextNet
(AlexNet, 3x)

54.8 9.1 12.8 30.7 28.5 28.4 18.6 30.8 10.6 6.4 23.1

ContextNet
(AlexNet, 7x)

56.4 12.2 12.9 26.3 32.7 34.0 18.7 26.8 9.9 4.6 23.5

Evaluation: We evaluate the performance of the AlexNet-based ContextNet
with two variants: the 3x and 7x models. The context region of the 3x model is
three times larger than the proposal region in both height and width dimension.
The 7x model is defined in a similar way and it uses a very larger context region.
We also include the AlexNet R-CNN model as the baseline.

The performance is shown in Table 5. We find that the neural network with
context integration achieves better performance than the baseline model. The
improvement with the 7x model is slightly better than that with the 3x model.
Overall, the relative mAP improvement over the baseline are 7.9% and 9.8%
for the 3x and 7x models, respectively. We also investigate a ConvNet-based co-
occurrence model, which leverages the detection of big objects to better localize
the small objects. The spatial relation between the big and small objects are
posed as learnable parameter integrated into an end-to-end training framework.
However, we find this method is only effective when attached to the Baseline
AlexNet, it does not make any improvement when attached to both ContextNets.

3.4 Summary

In Table 6, we list the average precision of our R-CNN models on small object
dataset, we also list the DPM as a baseline. Not surprising at all, DPM is signifi-
cantly outperformed by all the deep learning-based models. And deeper network
(VGG16) has superior performance over shallow network (AlexNet).

To demonstrate the influence of region proposal quality on the final average
precision, we compare two AlexNet models: one using the DPM detection outputs
as proposals, and the other use the modified RPN proposals. From Table 3, we
know the modified RPN proposals have much higher recall rate than the DPM
proposals, and consequently, the AlexNet trained on modified RPN proposals
performs much better (Table 6).

Fewer Proposals: In Table 7, we show the average precision of the ContextNet
using 7x context region on different number of proposals per image. We find
it achieves higher average precision on a smaller number of proposals. Small
object detection is very vulnerable to false positives. Using a smaller number of
proposals eliminates a large amount of potential false positives and improves the
average precision. 300 proposals per image produces the best performance.
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Table 6. Results of DPM, AlexNet R-CNN, and VGG16 R-CNN. The AlexNet in row
2 is trained and tested with DPM proposals, 500 per image per category. The AlexNet
in row 3 and the VGG16 in row 4 are trained (2000 per image) and tested (500 per
image) with modified RPN proposals.

Method mouse tel. switch outlet clock t. paper t. box faucet plate jar mAP

DPM 18.9 0.3 1.9 23.0 9.1 18.3 2.0 5.7 2.4 0.4 8.2

DPM prop. +
AlexNet

42.9 7.7 9.4 22.7 28.2 26.7 15.7 18.6 5.4 3.4 18.1

RPN prop. +
AlexNet

48.2 10.6 8.9 21.4 32.3 34.1 23.0 25.1 6.7 3.6 21.4

RPN prop. +
VGG16

56.8 16.4 14.2 31.1 31.9 29.4 23.4 31.3 9.3 4.2 24.8

Table 7. Results of ContextNet. Both networks are trained (2000 per image) and
tested (various) with modified RPN proposals.

Method mouse tel. switch outlet clock t. paper t. box faucet plate jar mAP

AlexNet, 7x,
300 prop

56.9 12.4 13.6 28.0 32.4 35.6 17.9 27.2 9.8 5.1 23.9

AlexNet, 7x,
500 prop

56.4 12.2 12.9 26.3 32.7 34.0 18.7 26.8 9.9 4.6 23.5

AlexNet, 7x,
1000 prop

55.4 11.2 11.4 25.7 29.5 37.6 18.5 25.7 9.1 4.2 22.8

AlexNet, 7x,
2000 prop

54.9 10.9 10.9 24.6 29.8 35.0 19.5 24.8 8.4 3.9 22.3

VGG16, 7x,
300 prop

60.6 13.7 21.5 41.5 37.7 33.3 22.0 30.3 15.8 7.2 28.4

VGG16, 7x,
500 prop

60.2 14.0 20.0 40.7 36.4 35.7 20.4 31.4 16.0 7.7 28.3

VGG16, 7x,
1000 prop

59.6 14.6 18.9 39.9 36.2 34.9 18.7 30.9 15.3 7.4 27.6

VGG16, 7x,
2000 prop

58.4 13.7 18.1 38.2 33.6 33.0 18.5 30.1 14.0 7.1 26.5

Stronger Pre-trained Model: We also experiment with replacing the AlexNet
with the VGG16 net to verify if the performance boost in the big object detection
due to the stronger pre-trained model is also true for small object detection. The
results are shown in Table 7. From the table, we find that the stronger pre-trained
model leads to improved performance for all the proposal numbers.

In Fig. 3, we show the detection results of the ContextNet (AlexNet, 7x)
model on several images in the testing set. We use a fix threshold and show
the output bounding boxes after non-maximum suppression. Since the target
objects are too small for visualization, we put a zoom-in window to highlight
the output bounding boxes. From the figure, one can see that the small object
detector works well on many categories. It can detect object instances with very
low resolution.
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Fig. 3. Examples of the detection results on some testing images.
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Fig. 4. Comparison of methods on small objects and PASCAL. In both (a) and (b),
a marker represents the mAP of a detector on an object category. Specifically, red
represents Faster R-CNN on PASCAL objects, green represents our ContextNet on
our small objects, light and dark blue represent DPM on PASCAL objects and our
small objects, respectively. (Color figure online)

As one of the major purposes of this paper is to study the applicability
of the state-of-the-art object detection algorithms to the small object detec-
tion problem, by summarizing the findings, we now can answer this question.
Our answer is based on two observations: (1) before the R-CNN algorithm, the
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state-of-the-art object detector on PASCAL VOC was DPM. Since our work is
a preliminary stage of small object detection, we think it is comparable to DPM
on PASCAL. Shown in Fig. 4a, the average precision of our best model, e.g. Con-
textNet (VGG16, 7x), on small object categories is distributed in the same range
(indicated by the black dashed lines) as that of DPM on PASCAL. Numerically,
on the small object dataset, our deep learning-based algorithm (mAP 28.3) has
close performance to the DPM on PASCAL (mAP 33.7). (2) on PASCAL VOC,
the R-CNN style algorithm improves the mAP of DPM from 33.7 to 70.4. While
on the small object dataset, our best model improves the mAP of DPM from 8.2
to 28.3, which indicates the deep learning models are still very effective on small
objects. Thus, we think they are applicable to small object detection problem.

4 Visualization

We visualize the neurons in our ContextNet (AlexNet, 7x) model to better under-
stand what the network learns as learning to detect small objects. We plot the
training patches that excite each neuron in the f c6 layer most for both the
proposal and context front-end sub-networks.

In Fig. 5, we display the top 20 image patches with the highest response
to several neurons in the proposal sub-network. We find that the patches are
dominated by mouse and round shape objects (e.g. row 1 to row 5). This par-
tially explains why the network performs better for the “mouse” and “clock”
categories. We also find the neurons in row 2 fire when seeing Apple mouses or

Fig. 5. The proposal patches that have the largest excitation to the neurons in fc6 of
proposal sub-network. Please refer to the main text for further discussions.
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similar shapes, while those in row 9 response to oval pattern. In row 10, we can
see outlet patches are mixed with speaker and clock patches. The neurons in row
11 and row 12 correspond to a monitor detector and a toilet detector. This is
surprising since our dataset does not contain these two object category labels.
The figure also suggest that there is not much high-level features to distinguish
small objects. Hence, the network relies on basic shape patterns to detect small
objects (e.g. row 6 to row 8).

In Fig. 6, we display the top 8 image patches with the highest response to
several neurons in the context sub-network. Since the 7x context region covers a
large image area, the context patches fire for the same neuron have more diverse
patterns. As expected, strong scene-specific patterns exist on many neurons.
The neuron in row 1 looks at computers, and the neuron in row 2 evolves for
bedroom scene. The neurons in row 3, 4, and 5 respond to tables, toilets and
sinks, respectively. The neuron in row 6 activates on kitchen scene. These neurons
provide context information to resolve the ambiguity in the proposal patches.

Fig. 6. The context patches that have the largest excitation to the neurons in fc6 of
context sub-network. Please refer to the main text for further discussions

5 Conclusion

We extended the state-of-the-art R-CNN algorithm to deal with the small object
detection problem. We composed a small object dataset to facilitate the study.
Through detailed experimental validation and analysis, we found that, with
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a carefully designed region proposal network and context modeling, the deep
learning-based object detection algorithm achieves similar performance improve-
ment over the conventional approach for small object detection as it did for big
object detection.
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Abstract. We present a template-triplet-based embedding approach to
optimize the ensemble SoftMax similarity between templates (sets) for
improved image set classification. More specifically, a triplet is created
among “three” whole templates or subtemplates of images to incorporate
the (sub)template structure into metric learning. To further account for
intra-class variations of images, we introduce a factorization technique to
integrate image-specific context for learning sample-specific embedding.
We evaluate our approach on several benchmark datasets, and demon-
strate its effectiveness for image set classification.

1 Introduction

With the growth of video data and camera networks, image set classification
problem has attracted significant attention recently in computer vision and pat-
tern recognition. One representative application is set-based face recognition,
where a single training or testing “unit” is a set of face images or a video rather
than one image. Given multiple images to describe different aspects of a person
of interest, the face recognition accuracy can be improved with high potential.

There has been an increasing number of methods addressing the fundamental
component in image set classification; i.e., the set-to-set similarity. According
to how such a similarity is computed, existing methods can be divided into
two paradigms: (1) “Set fusion followed by set matching” [1–18], which first
constructs a single representation for each set and compares two sets according
to such representations. (2) “Set matching followed by set score fusion” [19,20],
which first computes matching scores between images of two sets and then pools
those scores by late fusion schemes such as the average or max fusion.

The methods in paradigm (1) usually assume a certain distribution on the
sets and/or require a large amount of samples in a set for the robust set modeling.
Unfortunately, it is often not the case in practice that a set may have few or even
a single image, or contain a mixture of images and video frames. This kind of
set is called template in the recently available IARPA Janus Benchmark (IJB-
A) dataset for unconstrained face recognition [21]. Because of the existence of
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multi-media in a template, the intra-class variation becomes much larger than
sets involving only a single media such as Labeled Face in the wild [22] (multiple
images as a set) and YouTube face dataset [23] (a video as a set). Thus, in this
paper we focus on paradigm (2) for its wide applicability. In the following, the
word “template” is used interchangeably with “set” in the paper because of their
common usage in literature.

leveLetalpmeTleveLegamI

(b) Contrastive embedding 

(c) Triplet embedding 

Template triplet 

Subtemplate triplet with size 3 
Subtemplate triplet with size 1 

(a) Example templates 

anchor 

negative 

positive 

Fig. 1. Example of templates and template triplet embedding: (a) shows an example
of anchor, positive, and negative templates. The goal is to enlarge similarity of posi-
tive pairs (solid-blue edges) while reducing that of negative ones (dashed-red edges).
Template triplet embedding, right hand side of (c), is compared to the conventional
contrastive embedding (b), and image triplet embedding, left hand side of (c); the circle
denotes an image sample of the template. Previous metric learning works for template-
based classification are usually based on the contrastive embedding or image-triplet
embedding. Our approach, on the other hand, introduces the (sub)template triplets to
take the template structure into account. Note that the image-triple embedding can be
seen as a special case when the subtemplate size equals 1. Better view in color. (Color
figure online)

To obtain more discriminative similarity among templates, a commonly used
technique is distance or similarity metric learning, with either contrastive embed-
ding [3,6,7,9,12,18,24] or triplet embedding [11,25,26] as illustrated in Fig. 1.
Triplet embedding, which simultaneously considers a positive and negative pair
of samples w.r.t. an anchor sample, has been demonstrated to outperform con-
trastive embedding [25–27]. Previous methods, however, either work on the image
level or generate a single representation for each template by average pooling
(i.e., paradigm (1)) before constructing triplets. The structure within templates,
which is likely to convey significant discriminative information, is thus ignored.
Besides, due to the large intra-class variations, it is hard to enforce all the image
samples in a template (of the same class) to be close in the embedding space by a
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W
Wi= f Wj= f

Context  features

(a) Global Embedding (b) Context-Aware Embedding

Fig. 2. Global and context-aware embedding: A global embedding is learned generally
in previous work. We propose integrating the context features to achieve sample-specific
embedding, where f(.) consists of three factorized matrices as described in Sect. 3.3.

global embedding (shared for all samples) or by the class-specific embedding [11]
(shared for samples of the same class). This work distinguishes itself with the
following two contributions to address the above problems.

First, we introduce a template-triplet-based embedding approach to optimize
template-to-template similarity computed by the ensemble SoftMax function [19,
20] — the ensemble SoftMax function fuses image-to-image scores at multiple
scales (i.e., paradigm (2)) and has been shown effective in [19,20] as well as
in our experiments. Different from image-triplet embedding [25,27], our triplet
can be created not only on the entire template, but also on the subtemplate
of samples with any reasonable size. Note that a template triplet becomes an
image triplet when the subtemplate size equals to 1. Therefore, the proposed
approach generalizes the triplet embedding to subtemplates of a predefined size.
To our best knowledge, we are the first to apply triplet based metric learning
on the “set matching followed by set score fusion” paradigm for the image set
classification. An illustration of this approach is presented in Fig. 1.

Second, inspired by the scene-specific image captioning task [28,29], we pro-
pose a “context-aware” metric learning approach by integrating image-specific
context into metric learning so as to achieve distinct embedding for every image,
as illustrated in Fig. 2. The image-specific context, in face recognition task, can
be defined as the capturing condition and the measurable attributes of a face
(e.g., poses and expressions). Both of them may be provided by metadata of
the dataset or by the existing face attribute detectors. The metadata, how-
ever, are usually inaccessible. Attributes could constitute useful context but the
state-of-art attribute detectors seem to be too noisy, which hinders the per-
formance improvements. Hence, we exploit the image features themselves as
context. Although these features are also used to generate matching scores, the
ways of using them on the context (via matrix factorization) and matching (with
ensemble softmax similarity) are quite different. Of course, all features, including,
attributes, derive from the image so are correlated to some extent. Furthermore,
a mechanism to alleviate the influence of noisy context is also introduced. Exper-
iments on four benchmark datasets for face template classification [21,23,30,31]
demonstrate the efficacy of the proposed approach.
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The rest of this paper is organized as follows. Related work is introduced
in Sect. 2, and Sect. 3 presents the proposed approach. The experimental results
and conclusion come in Sects. 4 and 5.

2 Related Work

The literature of image template classification and metric learning is quite exten-
sive, so our survey focuses on the work most relevant to the establishment of the
proposed method.

2.1 Image Template-to-Template Similarity Computation

Set Fusion Followed by Set Matching: In [12,25], the sample mean is used
to represent a template before matching by the inner product. It is risky to
take the average in the feature level because some discriminative information
maybe lost. Besides, averaging over different medias may destroy the intrinsic
structure within each media. [1–3] represent a template by the convex or affine
combination of samples in a template and [4,5] use the subspace representation
by applying PCA on the templates. The templates are then matched by Eulidean
distance or principle angles.

In [6,7,32], geometric structures such as Riemannian manifolds are exploited,
which assume a single or multivariate Gaussian distributions on templates [18];
this assumption could be easily violated in practice. To handle arbitrary distri-
bution in a template, [18] proposed to model the image template as probability
distribution functions using kernel density estimations and the Log-Euclidean
distance or K-L divergence are employed for matching. To capture the nonlinear
variations, nonlinear manifold modeling methods and the associated manifold-
to-manifold distance are introduced in [8,9,11]. In the above approaches, a large
amount of samples is usually needed to model a distribution or manifold well,
which hinders them to be applicable on the dataset with templates of extremely
small sizes. Instead of using a single statistics to model a set, [33] represents
an image set with the sample mean, sample covariance, and the Gaussian mix-
ture model (GMM) where they bridge the gap between the Euclidean space and
Riemannian manifold.

Set Matching Followed by Set Score Fusion: Different from the approaches
involving the template modeling before matching, image-to-image matching are
first performed among templates in [19,20], the ensemble softmax fusion (which
is the ensemble of average, max, and weighted average score fusions) is then
applied to obtain the template-to-template similarity. This method does not
assume any distributions for the template and can handle the template with
extreme size. Besides, it could be more robust to the noise due to the “soft”
average over the similarity scores on image level.
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2.2 Metric Learning for Template-to-Template Matching

There are several methods to handle image-to-image matching such as
LDML [24], ITML [34,35]. LDML exploits the linear logistic dicriminant model
to estimate the probability of the two images belonging to the same object,
while ITML and [35] impose prior knowledge on the metric so that the learned
one can be closed to the known prior and invariant to the rigid transformation
respectively. KISSME [36], on the other hand, models the genuine and imposter
as multivariate Gaussians and the distance is defined by the likelihood ratio test.

For template-to-template matching, the template-to-template distance (sim-
ilarity) is first defined by either of the above-mentioned strategies, and then
the image-to-image metric learning is employed to enhance the discriminative
power of the defined measures. There are two typical types of losses exploited
in metric learning: contrastive loss [3,6,7,9,12,18,24] or triplet loss [11,25,26].
The goal of contrastive loss is to minimize the intra-class distance but maxi-
mize the inter-class distance, while the triplet loss ensures the distance between
an anchor and a positive sample, both of which have the same class label, is
minimized and the one between the anchor and a negative sample of different
classes is maximized. Note the distance can be replaced by the similarity and
the minimization (maximization) becomes maximization (minimization).

The triplet loss was previously exploited in image level when a template is
represented as a single image or features [25]. Instead, we introduce a new type
of triplet, called template triplet, which directly works on the templates rather
than on images. Unlike [11] where the triplets are created only on k nearest
neighbors, the farthest positive template from the anchor template is selected to
be in the template triplet.

Our context-aware metric learning method is most related to [37,38]. They
learn a specific metric for a group of images, while ours achieves truly image-
specific metric with the help of context. The proposed method to incorporate
context into metric learning is based on the matrix factorization, which has been
shown effective in image captioning [28,29] and image modeling [39,40] especially
for the integration of the sample-specific clues.

3 Proposed Approach

In this section, we introduce a new triplet creation approach for similarity metric
learning by creating the triplets on the templates. We also propose to integrate
the context features to achieve a specific embedding for every image.

First, the similarity between templates is defined in Sect. 3.1. Then, we
describe in Sects. 3.2 and 3.3 how to learn discriminative embedding via the
template triplet loss and the context-aware metric learning respectively.

3.1 Template-to-Template Similarity

Given two input images with features xi and xj , a common similarity measure
is inner product, defined as sinn(xi,xj) = xT

i xj . In template based recognition
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tasks, it is often the case to compare two given templates instead of two images
since a subject or visual class usually contains more than one image, and the
images are grouped into templates (as in the Janus benchmark [21]). Therefore,
how to measure the similarity between two templates becomes very important.

Witnessing the success of the ensemble SoftMax fusion [19,20] for summa-
rizing the image-level matching scores among two templates in face recogni-
tion, we exploit it as the similarity measure in this paper. Given two templates
D1 = {x1, . . . ,xM} and D2 = {z1, . . . ,zN}, their ensemble SoftMax similarity
is defined as:

s(D1,D2) =
∑

α

sα(D1,D2), (1)

where

sα(D1,D2) =

∑
xi∈D1

∑
zj∈D2

exp(αsinn(xi,zj)) × sinn(xi,zj)
∑

xr∈D1

∑
zq∈D2

exp(αsinn(xr,zq))
. (2)

This similarity can be regarded as an ensemble of multiple fusion schemes includ-
ing the min fusion (α → −∞), average fusion (α → 0), max fusion (α → ∞),
and weighted average fusion (0 < α < ∞) of a set of image-to-image similar-
ity scores1. Thus, the ensemble SoftMax similarity can not only handle varying
template size (number of samples in a template), arbitrary template distribu-
tion, but also robust to the noise via the “soft” average. In the experiments (cf.
Table 1), we compare it to other common types of template-based similarities to
demonstrate its effectiveness.

3.2 Ensemble SoftMax Similarity Embedding via Template Triplets

Inspired by the effectiveness of the triplet based metric learning on the recogni-
tion tasks [25,27], we propose a new type of triplet for similarity metric learning,
called template triplets, based on the ensemble SoftMax similarity. A diagram for
our approach is shown in Fig. 1 where the triplets are generated among templates
instead of among image samples. The anchor template and positivie template
share the same class label, and the negative template is of the different class
label.

Our aim is to learn a discriminative embedding W , where the ensemble
SoftMax similarity of the anchor template A = {a1, . . . ,aM} to the positive
template P = {p1, . . . ,pQ} is larger than the one to the negative template
N = {n1, . . . ,nR} as described by:

sW (A,P ) > sW (A,N) (3)

1 In this work, we use totally 21 values of α in {0, 1, · · · , 20} to combine the advantages
of multiple fusion schemes, following [19,20].
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where

sW (A,X) =
∑

α

∑
ai∈A

∑
xj∈X exp(α(Wai)T (Wxj)) × (Wai)T (Wxj)

∑
ar∈A

∑
xq∈X exp(α(War)T (Wxq)))

(4)

and X ∈ P,N , x ∈ p,n
Given a set of labeled templates, the optimal embedding Ŵ can be solved

by the following optimization problem:

Ŵ = arg min
W

∑

A,P,N∈TA

max(sW (A,N) − sW (A,P ) + β, 0) (5)

Here, β is the margin of the hinge loss, and TA represents all possible template
triplets (A,P,N).

We apply the stochastic gradient descent (SGD) with early stopping tech-
nique for optimization. In each iteration of SGD, a template triplet is generated
for updating W w.r.t. the hinge loss in Eq. (5) (Please refer to the supplemen-
tary material for derivations of the gradients). Our template triplet based metric
learning approach is summarized in Algorithm 1, where an epoch means a process
going through all the labeled templates, and T determines how many times we
repeat this process. Besides, the two subscripts of W correspond to the current
epoch and template indices.

Template Triplet Creation: It is infeasible to consider the exponentially large
set of triplets in Eq. (5). Therefore, we attempt to find out the most violating
(A,P,N) w.r.t. Eqs. (5) and (3) such that the size of total triplets is linear in the
number of labeled templates. The creation of the template triplet is described
step be step:

1. An anchor template A is randomly selected first. (Actually, we go through
all the labeled templates in the training process in a random order, as can be
seen in Algorithm 1)

2. We then pick the most dissimilar positive template P to the currently con-
sidered anchor template A as described below:

P = arg min
P̂

sW (A, P̂ ) (6)

3. Finally, the negative template most close to A is picked:

N = arg max
N̂

sW (A, N̂) (7)

3.3 On Incorporation of Context for Sample-Specific Embedding

Learning a good embedding for template-to-template matching helps enlarge the
inter-class variations (better discrimination ability); the intra-class variations,
however, may still be hardly narrowed since only a single embedding is learned
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Algorithm 1: Ensemble SoftMax Similarity Embedding based on Template
Triplets
Input: J labeled templates {(Lj = {x1, ...xM}, xi ∈ RD, yj ∈ {1, · · · , C})}J

j=1

of C classes, the dimension d ≤ D of the output embedding, the number of
epochs T , the margin β, the step size η, and subtemplate size m. ;

Output: Learned similarity metric or embedding ŴT,J ∈ Rd×D;

Initialize: W0,J ← ID for d = D, where I denotes an identity matrix.
Otherwise, derive W0,J such that W T

0,JW0,J is a low rank approximation of ID;

for t ← 1, 2, . . . , T do
a. Wt,0 ← Wt−1,J .;
b. Order the templates {Lj}J

j=1 by a random permutation π : j → π(j).;
for � ← π(1), π(2), . . . , π(J) do

1. Let � be the anchor template A in eq. (5).;

2. Pick a template l̃, l̃ �= � and y(l̃) = y(�) as the positive template P via
eq. (6). ;

3. Pick a template l̃, y(l̃) �= y(�) as the negative template N via eq. (7).;

4. If m �= ∞, subsample A, P , N to be subtemplates of size at most m.;

5. Compute the stochastic gradient H w.r.t. W , according to eq. (5) on
the chosen (A, P, N ).;

Wt,� ← Wt,�−1 − η × H ;

c. Evaluate Wt,J on the held-out validation set. If the performance does not
improve for K epochs, we stop the iteration on t and return ŴT,J = Wt,J .
In our experiments, we set K = 5.

generally and shared by all the image samples in previous work. To better address
intra-class variations, we propose to learn a specific embedding for each image
by factorizing the metric to be learned with its own context, the same as image
features in this work.

Given the context ci of the i-th image, to inject ci ∈ Rdc and thus adapt the
template based metric learning to be image-specific, we factorize the embedding
Wi as follows:

Wi = F diag(Lci)G =
∑

k∈dc

(Lci)kF∗,kGk,∗ (8)

where diag(.) means the diagonal matrix, (Lci)k is the k-th element of the vector,
and F∗,k as well as Gk,∗ indicate the k-th column and row of the two (suitably
sized) matrices F and G, shared for all images, and L is another matrix that
linearly transforms the context vector.

Because of the potential human annotation error or the ambiguity in how the
context is defined, the context information may be noisy and would be harmful
for context-aware metric learning. To alleviate this problem, we concatenate ci

with a value 1 as a “pseudo” non-context feature for all images:

Wi = F diag(L[cT
i , 1]T )G (9)
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Note that when ci is a zero vector for all images or when the first dc columns of L
are all 0, Wi degenerates to a globally-shared W . With the above decomposition
in Eq. (9), the same algorithm as Algorithm 1 can be applied. The difference is
now we are to learn the three matrics F , L, and G rather than W .

Initialization of F , L, G: It is critical to initialize F , L, and G. If we start
from W = ID (D is the input feature dimension), F and G are both initialized
as ID, and L ∈ RD×(dc+1) is set by all zeros except for the last column as all 1’s.

On the other hand, if we have Ŵ learned from Algorithm1, then F , L, and
G can be initialized by the singular value decomposition of W . Given W =
UΣV T , F and G can be set as U and V T respectively, and the singular values
of Σ are placed in the last column of L with all other entries as 0’s.

4 Experimental Results

This section presents the experiments and results of our proposed methods, (1)
Template Triplet based Ensemble SoftMax Similarity Embedding (denoted as
TT-ESSE in the following) and (2) Context-Aware sample specific embedding
(denoted as TT-ESSE + context in the following) on four image set classification
datasets. We describe in turn the adopted datasets, features and context, and the
experimental protocols, commonly used evaluation measures along the results.

4.1 Datasets

To evaluate the performance of the proposed method, we conduct experiments
on four publicly available datasets, including YouTube Celebrity (YTC) [30],
YouTube Face (YTF) [23], and IARPA Janus Benchmark A (IJB-A) [21] for
face recognition, and UCSD Traffic dataset (Traffic) [31] for scene classification.

YouTube Celebrity (YTC) [30]: This dataset contains 1,910 video clips
of 47 subjects collected from YouTube. Each subject consists of ∼40 templates
in average and ∼170 images/frames are in each template.

YouTube Face (YTF) [23]: 3,425 videos of 1,595 different people are down-
loaded from YouTube. An average of 2 videos or templates are available for each
subject, and the average length of a video clip is 181 frames. We downsampled
every video about ten times because of the large redundancies.

IARPA Janus Benchmark A (IJB-A) [21]: IJB-A contains totally 5,712
images and 2,085 videos for 500 subjects. Each subject consists of ∼11 images
and ∼4 videos. A template can be of a mixture of images and video frames.

UCSD Traffic dataset (Traffic) [31]: The traffic video database is col-
lected over two days from the highway traffic in Seattle with a single stationary
traffic camera. It consists of 254 video sequences, and are manually labeled in
terms of the amount of traffic congestion: heavy, medium, and light traffics.

The distributions of number of images per template on the above datasets
are shown in Fig. 3.
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Fig. 3. The distribution of the number of image samples per template on four used
datasets: YTC and Traffic datasets have at least 167 frames and 50 images per tem-
plate respectively, while less than 10 images/ videos are in IJB-A and YTF datasets.
Furthermore, about 50.14% templates on IJB-A are of a single image.

4.2 Features and Context

For the YTC dataset, we follow [18] and describe each region with a histogram of
Local Binary Patterns (LBP). For the YTF and IJB-A datasets, we follow [20] to
use the very deep VGGNet [41] CNN with 19 layers, trained on the large scale
image recognition benchmark (ILSVRC) [42]; this CNN is then finetuned on
the CASIA WebFace dataset [43]. Different from [20] where synthesized images
of various poses, shapes and expressions are included for CNN finetuning, we
only exploit the real images and the images rendered to the closet poses for
the finetuning (Please refer to supplementary material for more details). For the
Traffic dataset, HoG features [44] are exploited to describe each frame. Note that
all the features are �2 normalized before metric learning in all the experiments.
In the contex-aware metric learning approach, we employ the input features
as context since they contain not only identity but also context information
the such as poses, shapes, expressions, illuminations. Experiments using more
sophisticated context or attribute detectors are remained for future work.

4.3 Protocols and Evaluation Measures

Following the standard practice [12], we split the YTC dataset into 5 folds,
each of which contains 3 and 6 randomly selected videos from each person as
the training/gallery templates and probe templates respectively. The average
recognition rate is reported for YTC. The experiments performed on the Traffic
dataset use the 4 splits provided with dataset [31], each of which contains 75%
training/gallery templates, and 25% probe templates. The average recognition
rate is also used for this dataset.

For the YTF dataset, 5,000 video pairs are randomly collected from the
database, where half of them are of the same person, and half are different people.
These pairs are divided into 10 splits and ensure the splits are subject-mutually
exclusive (Please refer to [23] for more details). We consider the Unrestricted
protocol and the average of true acceptance rates (TARs) at 10% and 1% false
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acceptance rates (FARs), verification accuracy (under a threshold selected on
the validation set), equal error rate (EER) over 10 splits are reported.

In IJB-A dataset, there are 10 random training and testing splits, where 333
subjects are randomly sampled and placed in the training split, and the other
167 are placed in the testing split. We follow the compare (verification) protocol
(for face verification) as defined in [21], and evaluate the verification performance
by the average of TARs at 1%, 0.1%, and 0.01% FARs over 10 splits.

Table 1. Face Recognition Accuracies (in terms of TARs (%) at different FARs)
on IARPA Janus Benchmark A (Verification Protocol) [21] with different kinds of
template-to-template similarity measures. Note Paradigm (1) is “set fusion followed by
set matching”, and Paradigm (2) is “set matching followed by set score fusion”.

Paradigm Similarity
measure

@10%FAR @1%FAR @0.1%FAR @0.01%FAR

(1) Avg pooling +
inner prod

94.49 76.28 50.31 19.76

Avg pooling +
cos sim

93.84 79.98 58.89 29.42

KDE [18] 92.68 81.32 61.93 23.42

(2) Min fusion 44.88 17.64 8.02 3.44

Average fusion 94.49 76.28 50.31 19.76

Max fusion 92.23 73.47 41.61 13.29

(2) Ensemble
SoftMax fusion

95.49 84.30 61.15 20.45

Table 2. Average recognition rate (ARR) (%) on the YTC dataset

Method inn+ESS [19] ITSE [25] TT-ESSE-3 TT-ESSE-5 TT-ESSE-whole

ARR 51.99 63.85 65.33 64.87 63.22

Method ITSE + context TT-ESSE-3
+ contexts

TT-ESSE-5
+ contexts

TT-ESSE-whole
+ contexts

ARR - 67.46 66.29 67.14 65.38

4.4 Experimental Settings

In Algorithm 1, the number of epochs T is set to 10. The margin β and the step
size η are selected in the range of {0.1, 0.2, · · · , 1} and 10{−3,−2,··· ,0} respectively
on the held-out validation set. Besides, we set d = D in all the experiments.

In addition to considering the entire template in the metric learning (denoted
as TT-ESSE-whole), we also set subtemplate size to be 3 and 5 in the experiments
and denote them as TT-ESSE-3 and TT-ESSE-5).
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4.5 Comparisons of Ensemble SoftMax Similarity to the Other
Template Based Similarity Measures

We compare the ensemble SoftMax similarity on IJB-A [21] to the other com-
monly used measures, Paradigm (1) and Paradigm (2), as introduced in Sect. 1.
The average feature pooling with inner product or cosine similarity are denoted
as Avg pooling + inner prod. and Avg pooling + cos sim. in Table 1. The kernel
density estimation method (KDE) [18] is also compared. Both of them belong to
Paradigm (1). Paradigm (2) contains several special cases of the ensemble Soft-
Max fusion with the cosine similarity for image-to-image matching. As can be
seen in Table 1, the ensemble SoftMax similarity (ESS) outperforms the others
in most cases.

4.6 Comparisons of the Proposed Approaches to the Existing
Image Template Classification Methods

We compare our method to the ensemble SoftMax similarity (ESS) [19,20] with
the inner product as image-to-image matching score computation (denoted as
inn+ESS in Tables 2, 3 and 4). We also compare to the image-triplet similarity
embedding [25] with ESS (denoted as ITSE in Tables 2, 3 and 4). In ITSE,
we consider the image triplets in metric learning but apply ESS in testing to
compute the similarity2. This method then is equivalent to TT-ESSE-1 of our
approach with a subtemplate size 1.

Table 3. Average verification performances (%) on the YTF dataset

Method TAR@10%FAR TAR@1%FAR Verification accuracy EER

inn+ESS [19] 85.64 55.96 68.18 12.12

ITSE [25] 86.92 61.04 72.10 11.60

TT-ESSE-3 86.96 64.40 72.22 11.56

TT-ESSE-5 88.28 65.00 71.82 10.92

TT-ESSE-whole 87.60 62.04 72.58 11.40

ITSE + context 88.80 65.36 79.78 10.64

TT-ESSE-3 +
context

88.04 65.04 72.44 11.04

TT-ESSE-5 +
contexts

87.84 64.16 77.42 11.24

TT-ESSE-whole
+ context

88.16 63.72 77.56 10.96

2 Note that [25] performs average pooling + inner product in testing. Here we apply
ESS becuase of its superior performance as shown in Table 1.
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Table 4. Average recognition rate (ARR) (%) on the Traffic dataset

Method inn+ESS [19] ITSE [25] TT-ESSE-3 TT-ESSE-5 TT-ESSE-whole

ARR 91.36 92.94 93.34 93.73 94.12

Method ITSE + context TT-ESSE-3
+ context

TT-ESSE-5
+ context

TT-ESSE-whole
+ context

ARR - 94.11 93.71 91.74 92.94

Tables 2 and 3 illustrate the performances of TT-ESSE with and without
context on YTC and YTF datasets. It can be seen that on the YTC dataset ITSE
significantly improves over inn+ESS, and creating template triplets can further
boost the performances (∼2% relative improvements) with the subtemplate size
3 (TT-ESSE-3). Adding context leads to further ∼5% relative improvements
when the subtemplate size is 1 or 5 (TT-ESSE-1 + context and TT-ESSE-5 +
context). As for the YTF dataset, TT-ESSE-5 outperforms ITSE by ∼6% in
terms of TAR@1%FAR, and the efficacy of context is shown with ∼9% relative
improvements based on the verification accuracy.

Table 5. Average verification performances (%) on the IJB-A dataset

Method TAR@1%FAR TAR@0.1%FAR TAR@0.01%FAR

GOTS [21] 40.6 19.8 -

OpenBR [45] 23.6 10.4 -

Wang et al. [46] 73.3 51.4 -

Deep Multi-Pose [47] 78.7 - -

VGG-FACE [48] 80.5 60.4 -

inn+ESS [19]† 84.3 61.2 20.5

Chen et al. [49] 78.7 - -

[7] 68.8 28.6 16.8

KISSME [36] 65.4 39.4 15.2

ITSE [25]† 84.5 65.1 35.2

TT-ESSE-3 84.8 65.4 35.6

TT-ESSE-5 84.8 66.3 36.5

TT-ESSE-whole 85.0 65.1 34.5

ITSE + context 85.5 65.9 36.2

TT-ESSE-3 + context 85.3 66.4 36.5

TT-ESSE-5 + context 85.3 66.2 36.4

TT-ESSE-whole + context 85.4 66.5 36.0
†Our reimplementation.
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The benefit of template triplets (TT-ESSE) is also demonstrated on the
Traffic dataset in Table 4. Note that the context integration works well for the
subtemplate size 1 (TT-ESSE-1 + context) but not for larger subtemplate sizes
(TT-ESSE-5 + context and TT-ESSE + whole). We believe that more elaborated
context rather than HoG features is required for further improvements.

The results on IJB-A dataset are shown in Table 5. The improvements of TT-
ESSE are limited since the average number of images per template is quite small
as can be seen in Fig. 3. In average, the templates are of less than 10 images,
and half of them are only of a single image, which makes the generation of good
template triplets hard. According to these observations, we hypothesize that our
approach would work better if the templates are of sufficient number of images
such as at least 10 images. Table 6 presents the performances on the template
pairs with at least 10 images. As can be seen, the improvements of TT-ESSE
over the baselines are much more significant (∼6% relative improvements) in
terms of TAR@0.1%FAR compared to the ones in Table 5.

Table 6. Average verification performances (%) of the templates with at least 10
samples on the IJB-A dataset

Method TAR@1%FAR TAR@0.1%FAR

ITSE [25] 92.97 76.09

TT-ESSE-3 93.67 79.82

TT-ESSE-5 95.16 81.38

TT-ESSE-whole 95.18 81.41

Finally, we compare our method to the widely used metric learning
approaches, [7,18], and KISSME [36]. The results on YTC, YTF, and Traffic
datasets are shown in Table 7 based on different evaluation measures (The most
significant one used in the literature), and the results on the IJB-A dataset is
in Table 5. All the hyper-parameters were selected following [7,18,36]. It can
be seen that our approach performs better than these methods where strong
assumptions are made for a template’s distribution.

Table 7. Average verification performances (%) of three baselines and the proposed
method on the three datasets with the evaluation measure shown in the bracket

Method YTC (ARR) YTF (EER) Traffic (ARR)

[7] 45.6 24.3 83.5

[18] 58.0 20.9 94.1

KISSME [36] 53.1 12.8 18.9

Ours 67.4 10.6 94.1
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In summary, “Template Triplet” and “Context-Aware” are orthogonal meth-
ods to improve the image-based metric learning (ITSE) [25]. In all cases, we
observe consistent gains from ITSE to TT-ESSE (by template triplet), and from
ITSE to ITSE+context (by context). We also see consistent gains from TT-ESSE
to TT-ESSE+context on YTC and YTF datasets, suggesting that the two meth-
ods can complement each other. Our best combination overall achieves ∼2.5%
gain (averaged over datasets and measures) over ITSE.

5 Conclusion

In this paper, we propose a template triplet embedding approach to address
image set classification, and further incorporate the image-specific context to
learn the sample-specific metrics. Experiments on four image set classification
datasets demonstrate the effectiveness of our approach.
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Abstract. Supervised (pre-)training currently yields state-of-the-art
performance for representation learning for visual recognition, yet it
comes at the cost of (1) intensive manual annotations and (2) an inher-
ent restriction in the scope of data relevant for learning. In this work, we
explore unsupervised feature learning from unlabeled video. We intro-
duce a novel object-centric approach to temporal coherence that encour-
ages similar representations to be learned for object-like regions seg-
mented from nearby frames. Our framework relies on a Siamese-triplet
network to train a deep convolutional neural network (CNN) representa-
tion. Compared to existing temporal coherence methods, our idea has the
advantage of lightweight preprocessing of the unlabeled video (no track-
ing required) while still being able to extract object-level regions from
which to learn invariances. Furthermore, as we show in results on several
standard datasets, our method typically achieves substantial accuracy
gains over competing unsupervised methods for image classification and
retrieval tasks.

1 Introduction

The emergence of large-scale datasets of millions of labeled examples such as
ImageNet has led to major successes for supervised visual representation learn-
ing. Indeed, visual feature learning with deep neural networks has swept the field
of computer vision in recent years [1–3]. If learned from labeled data with broad
enough coverage, these learnt features can even be transferred or repurposed
to other domains or new tasks via “pretraining” [4,5]. However, all such meth-
ods heavily rely on ample manually provided image labels. Despite advances in
crowdsourcing, massive labeled image datasets remain quite expensive to collect.
Furthermore, even putting cost aside, it is likely that restricting visual represen-
tation learning to a bag of unrelated images (like web photos) may prevent algo-
rithms from learning critical properties that simply are not observable in such
data—such as certain invariances, dynamics, or patterns rarely photographed in
web images.

Due to these restrictions, unsupervised visual feature learning from unla-
beled images or videos has therefore increasingly drawn researchers’ attention.
An unsupervised approach has several potential advantages. First, it is in prin-
ciple much more scalable, because unlabeled images and videos can be obtained
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 248–263, 2017.
DOI: 10.1007/978-3-319-54193-8 16
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essentially for free. Moreover, features learnt in an unsupervised way, particularly
from diverse videos, may prove even more effective as a generalizable base repre-
sentation by being unencumbered by the “closed world” restriction of categori-
cally labeled data. Recent years have seen a number of exciting ideas in unsuper-
vised visual feature learning, particularly using temporal coherence of unlabeled
video [6–10], self-supervision from image context [11,12] or ego-motion [13,14],
as well as earlier attempts based on autoencoders [15–18].

In this work, we focus on learning from unlabeled videos and build upon
the idea of temporal coherence as a form of “free” supervision to learn image
representations invariant to small transformations. Temporal coherence, a form
of slow feature analysis [19], is based on the observation that high-level sig-
nals cannot change too quickly from frame to frame; therefore, temporally close
frames should also be close in the learned feature space. Most prior work in
this space produces a holistic image embedding, and attempts to learn feature
representations for video frames as a whole [6,8–10,20]. Two temporally close
video frames, although similar, usually have multiple layers of changes across dif-
ferent regions of the frames. This may confuse the deep neural network, which
tries to learn good feature representations and embed these two frames in the
deep feature space as a whole. An alternative is to track local patches and learn
a localized representation based on the tracked patches [7,21,22]. In particu-
lar, a recent approach [7] uses sophisticated visual motion tracking to connect
“start” and “end” patches for training pairs. However, such tracking is biased
towards moving objects, which may limit the invariances that are possible to
learn. Furthermore, processing massive unlabeled video collections with track-
ing algorithms is computationally intensive, and errors in tracking may influence
the quality of the patches used for learning.

With these limitations in mind, we propose a new way to learn visual fea-
tures from unlabeled video. Similar to existing methods, we exploit the general
principle of temporal coherence. Unlike existing methods, however, we neither
learn from whole-frames of video nor rely on tracking fragments in the video.
Instead, we propose to focus temporal coherence on object-centric regions dis-
covered with object proposal regions. In particular, we first generate object-like
region proposals on temporally adjacent video frames using Selective Search [23].
Then we perform feature learning using a ranking-based objective that maps
spatio-temporally adjacent region proposals closer in the embedding space than
non-neighbors. The idea is that two spatio-temporally close region proposals
should be embedded close in the deep feature space since they likely belong to
the same object or object part, in spite of superficial differences in their pose,
lighting, or appearance. See Fig. 1.

Why might such an object-centric approach have an advantage? How might
it produce features better equipped for object recognition, image classification,
or related tasks? First, unlike patches found with tracking, patches generated
by region proposals can capture static objects as well as moving objects. Static
objects are also informative in the sense that, beyond object motion, there might
be other slight changes such as illumination changes or camera viewpoint changes
across video frames. Therefore, static objects should not be neglected in the
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Fig. 1. Video frames tend to change coherently across the video, as shown in the two
example videos above. These changes usually come from certain objects in the frames.
In our framework, we first generate region proposals independently on whole video
frames and find spatio-temporally close region proposal pairs. Instead of embedding
video frames directly, we embed these region proposals. Spatio-temporally close region
proposal pairs should be close in the deep embedding space, since they are likely to
belong to the same object or object part.

learning process. Secondly, our framework can also help capture the object-level
regions of interest in cases where there is motion only on a part of the object.
For example, in Fig. 1, the cat is moving its paw but otherwise staying similarly
posed. Visual motion tracking will have difficulty catching such subtle changes
(or will catch only the small moving paw), while region proposals used as we
propose can easily capture the entire object with its part-level change. Thirdly,
our method is much more efficient to generate training samples since no tracking
is needed.

In results on three challenging datasets, we show the impact of our app-
roach for unsupervised convolutional neural network (CNN) feature learning
from video. Compared to the alternative whole-frame and tracking-based par-
adigms discussed above, our idea shows consistent advantages. Furthermore,
it often outperforms an array of state-of-the-art unsupervised feature learning
methods [7,12,13] for image classification and retrieval tasks. In particular, we
observe relative gains of 10 to 30% in most cases compared to existing pre-trained
models. Overall, our simple but effective approach is an encouraging new path
to explore learning from unlabeled video.

2 Related Work

Unsupervised feature learning has a rich history and can be traced to sem-
inal work for learning visual representations which are sparse and reconstruc-
tive [24]. More recent advances include training a deep belief network by stacking
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layer-by-layer RBMs [18] and injecting autoencoders [16]. Building on this
concept, multi-layer autoencoders are scaled up to large-scale unlabeled
data [15], where it is shown that neurons in high layers of an unsupervised
network can have high responses on semantic objects or object parts. Recently,
some approaches explore the use of spatial context of images as a source of a
(self-)supervisory signal for learning visual representations [11,12]. In [11], the
learning is driven by position prediction of context patches, while in [12], the
algorithm is driven by context-based pixel prediction in images.

Most existing work for learning representations from unlabeled video exploits
the concept of temporal coherence. The underlying idea can be traced to the
concept of slow feature analysis (SFA) [19,25], which proposes to use temporal
coherence in a sequential signal as “free” supervision as discussed above. Some
methods attempt to learn feature representations of video frames as a whole
[6,9,10,20], while others track local patches to learn a localized representation
[7,21,22]. Our approach builds on the concept of temporal coherence, with the
new twist of learning from localized object-centric regions in video, and without
requiring tracking.

Another way to learn a feature embedding from video is by means of a
“proxy” task, solving which entails learning a good feature embedding. For exam-
ple, the reconstruction and prediction of a sequence of video frames can serve as
the proxy task [8,26]. The idea is that in order to reconstruct past video frames
or predict future frames, good feature representations must be learnt along the
way. Ego-motion [13,14] is another interesting proxy that is recently adopted to
learn feature embeddings. Learning the type of ego-motion that corresponds to
video frame transformations entails learning good visual features, and thus pro-
prioceptive motor signals can also act as a supervisory signal for feature learning.
We offer empirical comparisons to recent such methods, and show our method
surpasses them on three challenging datasets.

3 Our Framework

Given a large collection of unlabeled videos, our goal is to learn image repre-
sentations that are useful for generic recognition tasks. Specifically, we focus
on learning representations for object-like regions. Our key idea is to learn a
feature space where representations of object-like regions in video vary slowly
over time. Intuitively, this property induces invariances (such as to pose, lighting
etc.) in the feature space that are useful for high-level tasks. Towards this goal,
we start by generating object-like region proposals independently on each frame
of hundreds of thousands of unlabeled web videos (details below). We observe
that objects in images vary slowly over time, so that correct region proposals
in one frame tend to have corresponding proposals in adjacent frames (1 s apart
in our setting). Conversely, region proposals that are spatio-temporally adjacent
usually correspond to the same object or object part. For example, in Fig. 1,
semantically meaningful objects like the cartoon character minions and the cat
are proposed in the video frames by Selective Search. Based on this observation,
we train deep neural networks to learn feature spaces where spatio-temporally
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adjacent region proposals in video are embedded close to each other. Next, we
describe these two stages of our approach in detail: (1) region proposal pair
selection (Sect. 3.1), and (2) slow representation learning (Sect. 3.2).

3.1 Selecting Region Proposal Pairs from Videos

We start by downloading hundreds of thousands of YouTube videos (details in
Sect. 4). Among these, we are interested in mining region proposal pairs that (1)
correspond to the same object and (2) encode useful invariances.

Whole Frame Pair Selection. We start by selecting frame pairs likely to
yield useful region proposals, based on two factors:

Pixel Correlation. We extract video frames at a frame rate of fps = 1, and
every two adjacent frames form a candidate video frame pair. We compute pixel
space correlations for all frame pairs. Very low correlations usually correspond
to scene cuts, and very high correlations to near-static scenes, where the object-
like regions do not change in appearance, and are therefore trivially mapped to
the same feature representation. Thus, neither of these cases yields region pairs
useful for slow representation learning. Therefore, at this stage, we only select
frame pairs whose correlation score ∈ (0.3, 0.8).

Mean Intensity. Next, we discard video frame pairs where either one of the
frames has a mean intensity value lower than 50 or larger than 200. These are
often “junk” frames which do not contain meaningful region proposals, such as
the prologue or epilogue of a movie trailer.

IoU > 0.5

aspect ratio < 1.5
width, height > 227

Top N

Region Proposals

Region
Proposal

Pair

Video
Frame
Pair

Fig. 2. A large quantity of region proposals can be generated in each video frame. We
only keep the top-N scored region proposals (N = 100 in our experiments, N = 3 in
the figure above for demonstration). For one region proposal in the first frame, we find
the region proposal in the other frame with the largest IoU score. If the two spatio-
temporally adjacent region proposals satisfy the thresholds on IoU, width, height and
aspect ratio, two 227 × 227 regions are then cropped from them to form a region
proposal pair.

Proposal Pair Selection. We now generate region proposal pairs from these
selected video frame pairs using a standard object propsal generation method,
as illustrated in Fig. 2. We use Selective Search [23], which generates hundreds of
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region proposals from each frame. Starting from the large candidate pool of all
region proposal pairs from adjacent frames, we use the following filtering process
to guarantee the quality, congruity, and diversity of our region proposal pairs:

Quality. We only keep the top-100 scored region proposals from Selective Search
for each frame. These region proposals are of higher quality and tend to be more
object-like. Furthermore, we only keep region proposals of width and height both
larger than 227 and aspect-ratio smaller than 1.5. We then crop 227×227 regions
to get the final region proposal pairs.

Congruity. As mentioned above, regions corresponding to the same object are
likely to be spatially close in adjacent frames, and conversely, spatially close
high quality proposals in adjacent frames usually correspond to the same object.
With this in mind, at this stage, we only retain those region proposals from
neighboring frames that have a spatial overlap score (intersection over union)
exceeding 0.5. Where there are multiple candidate pairings for a single region
proposal, we only retain the pairing with the largest IoU score.

Diversity. To increase the diversity of our region proposal pairs and avoid
redundant pairs, we process each video sequentially, and compute the pixel-space
correlation of each candidate pair with the last selected pair from the same video.
We save the current pair only if this correlation with the last selected pair is
<0.7. For computational efficiency, we first downsample the region patches to
33 × 33 and then calculate the correlation. This step reduces redundancy and
ensures that each selected pair is more likely to be informative.

Region
Proposal

Pairs

Region
Proposal

Pairs

Moving 
Objects

Static 
Objects

Fig. 3. Examples of region proposal pairs extracted from unlabeled videos. Note that
both moving objects (e.g. dog, horse, cat, human, etc.) and static objects (e.g. flower,
tree, chair, sofa, etc.) can be captured by region proposals. Moving objects or object
parts (like moving animals and human beings) are informative. Changes like illumina-
tion variations and camera viewpoint changes across static objects (from both natural
scenes and indoor scenes) also form informative pairs from which to learn.

Our method of generating patch pairs is much more efficient than tracking
[7]. Our lightweight approach takes only a minute to generate hundreds of region
proposal pairs, which is more than 100 times faster than tracking (our implemen-
tation). Figure 3 shows some examples of the region proposal pairs selected by
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our approach. We can see that these regions tend to belong to objects or object
parts. Region pairs corresponding to both static and moving object regions are
selected. The difference between the two region proposals in a pair comes from
various sources: movements of the captured objects, partial movement of object-
level regions, illumination changes across frames, viewpoint changes, etc. A full
coverage of different types of changes among region proposal pairs can help to
guarantee useful invariances in features trained in the next stage.

3.2 Learning from Region Proposal Pairs

After generating millions of region proposal pairs from those unlabeled videos,
we then train a convolutional neural network based on these generated pairs. The
trained CNN is expected to map region proposal pairs from image space to the
feature space. Specifically, given a region proposal R as an input for the network,
we aim to learn a feature mapping f : R ⇒ f(R) in the final layer. Let (R1, R2)
denote a region proposal pair (spatio-temporally close region proposals) from
one video, and R− denote a randomly sampled region proposal from another
video1. In our target feature space, R1 and R2 should be closer to each other
compared to R−, i.e. D(R1, R

−) > D(R1, R2), where D(·) is the cosine distance
in the embedding space:

D(R1, R2) = 1 − f(R1) · f(R2)
‖ f(R1) ‖‖ f(R2) ‖ .

We use a “Siamese-triplet” network to learn our feature space (see Fig. 4). A
Siamese-triplet network consists of three base networks with shared parameters,
to process R1, R2 and R− in parallel. Based on the distance inequality we desire
(discussed above), we use the loss function for triplets to enforce that region
proposals that are not spatio-temporally close are further away than spatio-
temporally close ones in the feature space. The idea of using triplets for learning
embeddings has renewed interest lately [27–29] and can be traced to [30], which
uses triplets to learn an image-to-image distance function that satisfies the prop-
erty that the distance between images from the same category should be less than
the distance between images from different categories.

Specifically, given a triplet (R1, R2, R−), where R1 and R2 are two spatio-
temporally close region proposals and R− is a random region proposal from
another video, the loss function in the feature space is defined as follows:

L(R1, R2, R
−) = max{0,D(R1, R2) − D(R1, R

−) + M},

where D(R1, R2) is the cosine distance of region proposals R1 and R2 in the
feature space, and M represents the margin between the two distances. This
hinge loss forces the CNN to learn feature representations such that D(R1, R2) <

1 25,000 videos are used to generate training samples. The chance that the object
proposal from one video and a random proposal from another video are similar (or
of the exact same object instance) is negligible.
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Fig. 4. The Siamese-triplet network consists of three base networks with shared para-
meters. The five convolutional layers of the base network are the same as the archi-
tecture of AlexNet, and two fully connected layers are stacked on the pool5 outputs.
The final ranking loss is defined based on the last fully connected layers. The whole
Siamese-triplet network is trained from scratch, using only our region proposals as
input data.

D(R1, R
−)−M . In other words, the distance between the embeddings of spatio-

temporally adjacent region proposals should be smaller than that between a
query region proposal and a random region proposal, by a margin M . The overall
objective function for training is as follows:

min
W

λ

2
||W ||22 +

N∑

i=1

max{0,D(Ri1 , Ri2) − D(Ri1 , Ri−) + M},

where W contains the parameter weights of the network, N is the number of
triplet samples and, λ denotes the weight decay.

In our experiments, the convolutional layers of the base network follow the
AlexNet architecture [1], and two fully connected layers are stacked on the pool5
outputs, whose neuron numbers are 4096 and 1024 respectively. Mini-batch Sto-
chastic Gradient Descent (SGD) is used during training. Initially, for each region
proposal pair (R1, R2), K negative region proposal patches R− are randomly
sampled in the same batch to form K triplets. After training for several epochs,
hard negative mining is used to enhance training. More specifically, for each pair
(R1, R2), the ranking losses of all other negative region proposals in the same
batch are calculated, and the top K ones with highest losses are selected to form
K hard triplets of samples. The idea is analogous to the hard-negative mining
procedure in SVM. For details, please refer to [7].

3.3 Transferring Learnt Features for Supervised Tasks

Until this point, our CNN has been trained in a purely unsupervised man-
ner, using only unlabeled videos from YouTube. We evaluate how well fea-
tures directly extracted from our unsupervised pre-trained models can bene-
fit recognition tasks in Sect. 4.2. To evaluate whether these features are useful
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for generic supervised recognition tasks, we can optionally adapt and specialize
these purely unsupervised visual representations to tasks with labeled data. In
our experiments in Sect. 4.3, we fine-tune our pre-trained model on the PASCAL
VOC multi-label classification task (VOC 2007 and VOC 2012) and MIT Indoor
Scene single-label classification task.

We directly adapt our ranking model as a pre-trained network for the classi-
fication task. The adaptation method we use is similar to the approach applied
in RCNN [5]. However, RCNN uses the network pre-trained with ImageNet clas-
sification data (with semantic labels) as initialization of their supervised task. In
our case, the pre-trained network is the unsupervised CNN trained using unla-
beled videos. More specifically, we use the weights of the convolutional layers in
the base network of our Siamese-triplet architecture to initialize corresponding
layers for the classification task. For weights of the fully connected layers, we
initialize them randomly.

4 Experiments

We present results on three datasets, with comparisons to several existing unsu-
pervised methods [7,12,13] plus multiple informative baselines. We consider both
the purely unsupervised case where all learning stems from unlabeled videos
(Sects. 4.1 and 4.2) as well as the fine-tuning case where our method initializes
a network trained with relatively few labeled images (Sect. 4.3).

Implementation Details. We use 25,000 unlabeled videos from YouTube
downloaded from the first 25,000 URLs provided by Liang et al. [31], which
used thousands of keywords based on VOC to query YouTube. These unlabeled
videos are of various categories, including movie trailers, animal/human activi-
ties, etc. Most video clips are dedicated to several objects, while some can contain
hundreds of objects. We do not use any label information associated with each
video. We extract video frames at the frame rate of 1 fps. Using Selective Search
and our filtering process, we can easily obtain millions of region proposal pairs
from these unlabeled videos. For efficiency, evaluation is throughout based on
training our model with 1M region proposal pairs, which requires about 1 week
to train. We can expect even better results if more data is used, though for
greater computational expense.

We closely follow the Siamese-triplet network implementation from [7] to
learn our feature space. We set the margin parameter M = 0.5, weight decay
λ = 0.0005, number of triplets per region proposal pair K = 4, and the batch size
to be 100 in all experiments. The training is completed with Caffe [32] based on
1M region proposal pairs (2M region proposal patches). We first train our model
without hard negative mining at a constant learning rate ε = 0.001 for 150K
iterations. Then we apply hard negative mining with hard ratio 0.5 to continue
training with initial learning rate ε0 = 0.001. We reduce the learning rate by a
factor of 10 at every 100K iterations and train for another 300K iterations.

Baselines. We compare to several existing unsupervised feature learning meth-
ods [7,12–14]. In all cases, we use the authors’ publicly available pre-trained
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models. To most directly analyze the benefits of learning from region proposals,
we implement three other baselines: full-frame, square-region, and visual-
tracking. For fair comparison, we use 1M frame/patch pairs as training data
for each of these three baselines. Note that all compared methods use unlabeled
videos for pre-training, except for [12], which uses unlabeled images.

Full-Frame. In every video, we take every two temporally adjacent video frames
(1 s apart) to be a positive pair. Namely, for a full-frame triplet (R1, R2, R−), R1

and R2 are two temporally adjacent video frames and R− is a random full frame
from another video. We take 1M full-frame pairs (2M full frames) as training
data and follow the same procedures to train the baseline model.

Square-Region. Same as our proposed framework, we only generate square
regions on selected video frame pairs using the proposed initial filtering process.
For a selected temporally adjacent video frame pair (1 s apart), we generate a
random 227 × 227 patch in one frame and get the patch at the same position
in the other frame. These two patches form a positive pair. We repeat this
process 10 times and generate 10 square-region pairs for every video frame pair.
Namely, for a square-region triplet (R1, R2, R−), R1 and R2 are two 227 × 227
patches from two temporally adjacent video frames at the same position, and
R− is a random patch of the same size from another different video. We expect
these square-region patches to be less object-like compared to patches obtained
using our framework, because they are random regions from the frame. But note
that square-region pairs also benefit from the same well-defined pruning steps
we propose for our method. We take 1M square-region pairs (2M patches) as
training data and follow the same procedures to train the baseline model.

Visual-Tracking. In [7], Wang and Gupta extract patches with motion and
track these patches to create training instances. Specifically, they first obtain
SURF [33] interest points and use Improved Dense Trajectories (IDT) [34] to
obtain the motion of each SURF point. Then they find the best bounding box
such that it contains most of the moving SURF points. After obtaining the initial
bounding box (the first patch), they perform tracking using the KCF tracker [35]
and track along 30 frames in the video to obtain the second patch. These two
patches form a positive pair. We take 1M visual-tracking pairs (2M patches)
from their publicly available dataset of collected patches as our training data
and follow the same procedures to train the baseline model.

Random-Gaussian. As a sanity check, we also provide a random initializa-
tion baseline. Specifically, we construct a CNN using the AlexNet architecture,
and initialize all layers with weights drawn from a Gaussian distribution. This
randomly initialized AlexNet serves as a pre-trained model.

4.1 Qualitative Results of Unsupervised Feature Learning

Visualization of Filters. We first analyze our learnt features qualitatively.
We visualize the conv1 features learnt in our unsupervised CNN as well as the
first three baselines above. The visualization is shown in Fig. 5. We observe that
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(a) Ours (b) Full-Frame (c) Square-Region (d) Visual-Tracking

Fig. 5. Visualization of Conv1 features

(f) Unit 102

(a) Unit 33

(c) Unit 57

(b) Unit 51

(e) Unit 94

(d) Unit 93

Fig. 6. Top response images from PASCAL VOC 2012 for 6 of the conv5 neurons of our
unsupervised CNN. Each seems to correspond to one semantically meaningful category,
despite no labeled data during learning.

the conv1 features learnt using our framework are much more distinctive than
the three baselines, suggesting a more powerful basis.

To better understand the internal representations of the units learnt by our
unsupervised CNN, in Fig. 6, we get the top response images for units in the
conv5 layer. We use all images in PASCAL VOC 2012 as the database. Although
here we do not provide any semantic information during training, we can see that
units in conv5 layers nonetheless often fire on semantically meaningful categories.
For example, unit 33 fires on buses, unit 57 fires on cats, etc.

Neighbors in Unsupervised Learned Feature Space. Next we analyze the
learned features via a retrieval task. We perform Nearest Neighbors (NN) using
ground-truth (GT) windows in the PASCAL VOC 2012 val set as queries, and a
retrieval database consisting of all selective search windows (having more than
0.5 overlap with GT windows) in the PASCAL VOC 2012 train set.

Figure 7 shows example results. We can see that our unsupervised CNN is
far superior to AlexNet initialized with random weights. Furthermore, despite
having access to zero labeled data, our features (qualitatively) appear to pro-
duce neighbors comparable to AlexNet trained on ImageNet with over 1 million
semantic labels. For example, in the first row, given an image of a dog lying
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Query (a) Our Unsupervised CNN (b) Random AlexNet (c) ImageNet AlexNet

Fig. 7. Nearest neighbor results. We compare three models: (a) Our unsupervised
CNN pre-trained using 1M region proposal pairs; (b) AlexNet initialized with random
parameters; (3) AlexNet trained with labeled ImageNet. Our unsupervised CNN is
far superior to random AlexNet, and even learns some concepts similar to ImageNet
AlexNet trained with semantic labels.

down as a query, our method successfully retrieves images of dogs of differ-
ent postures. It even outperforms ImageNet AlexNet, which retrieves two cats
as nearest neighbors. In comparison, AlexNet initialized with random weights
mostly retrieves unrelated images. Note that there is no class supervision or
fine-tuning being used here in retrieval for our unsupervised CNN, and all the
gains for our pre-trained model come from unlabeled videos.

Quantitatively, we can measure the retrieval rate by counting the number of
correct retrievals in the top-20 neighbors. Given a query image, a retrieval is con-
sidered correct if the semantic class for the retrieved image and the query image
are the same. Using pool5 features extracted from our unsupervised CNN and
cosine distance, we obtain 32% retrieval rate, which outperforms 17% by ran-
dom AlexNet (our method’s initialization) by a large margin. ImageNet AlexNet
achieves 62% retrieval rate, but note that it is provided with substantial labeled
data from which to directly learn semantics.

4.2 Unsupervised Feature Learning Recognition Results

Next we evaluate how well our unsupervised approach can benefit recognition
tasks—without any network fine-tuning with labeled data. We test on three
datasets: MIT Indoor 67 [36], PASCAL VOC 2007 and 2012.

For MIT Indoor 67, the database contains 67 indoor categories, and a total of
15,620 images. We use the subset defined in [36]. The training set contains 5360
(67 × 80) images and the test set contains 1340 (67 × 20) images. For PASCAL
VOC 2007, we use all single-labeled images, namely 3103 single-labeled images
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from the trainval set as training data, and 3192 single-labeled images in the test
set as testing data. Similarly, for PASCAL VOC 2012, this amounts to 3730
single-labeled training images (train set) and 3837 test images (val set). For all
our baselines, we extract pool5 features from the network and train a linear
classifier using softmax loss.

Table 1 shows the results. The third row shows the results of four unsuper-
vised pre-trained models using other approaches (using their publicly available
models), and the fourth row shows the results of our four baselines. Overall, our
method obtains gains averaging 20% over the existing methods, and 30% over
the additional baselines.

Our unsupervised pre-trained model is much better than a randomly initial-
ized AlexNet. Note that we do not use any label information or fine-tuning here;
our results are obtained using our unsupervised CNN trained purely on unlabeled
videos. We also out-perform pre-trained models from Pathak et al. [12], Jayara-
man and Grauman [14] and Agrawal et al. [13] by quite a large margin (around
20%). The pre-trained model from Wang and Gupta [7] has better performance,
but their model is trained using substantially more data (4M visual-tracking
pairs compared to our 1M pairs).

For fair and efficient comparison with our method and baselines, we take
1M of the collected visual-tracking pairs from [7] and implement their method.
This is our “visual-tracking” baseline. Our approach outperforms all our base-
lines, including “visual tracking” on all three datasets. Surprisingly, our square-
region baseline also has impressive performance. We attribute its competitive
performance to our well-defined filtering process. Although the patches used for
square-region baseline may not correspond to a certain object or object part,
the two patches that form the square-region pair are guaranteed to be relevant.
Moreover, square-region patches are taken randomly from the whole frame, and
therefore it has no bias towards either objects or scenes.

Table 1. Quantitative comparisons for image classification on MIT Indoor 67, PAS-
CAL VOC 2007 and PASCAL VOC 2012. The third outlined row shows the results
of four unsupervised pre-trained models using other approaches. The fourth outlined
row shows the results of our four baselines. The visual-tracking baseline is the same
approach as Wang and Gupta [7], but uses the same amount of data as ours to train
the model for fairest comparison.

Method Supervision MIT Indoor 67 VOC 2007 VOC 2012

ImageNet 1.2M labeled images 54% 71% 72%

Wang and Gupta [7] 4M visual tracking pairs 38% 47% 48%

Jayaraman and Grauman [14] Egomotion 26% 40% 39%

Agrawal et al. [13] Egomotion 25% 38% 37%

Pathak et al. [12] Spatial context 23% 36% 36%

Full-frame 1M video frame pairs 27% 40% 40%

Square-region 1M square region pairs 32% 42% 42%

Visual-tracking [7] 1M visual tracking pairs 31% 42% 42%

Random Gaussian - 16% 30% 28%

Ours 1M region proposal pairs 34% 46% 47%
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4.3 Fine-Tuned Feature Learning Recognition Results

Finally, we evaluate our learnt features on image classification tasks after fine-
tuning on the three datasets. For PASCAL VOC 2007, we fine-tune using VOC
2007 trainval set (5011 images) and test on VOC 2007 test set (4952 images). For
PASCAL VOC 2012, we fine-tune using VOC 2012 train set (5717 images) and
test on VOC 2012 val set (5823 images). For MIT Indoor 67, we fine-tune using
the training set (5360 images) and test on the test set (1340 images). We use a
simple horizontal flip as data augmentation and fine-tune for the same number
of iterations for all methods. For PASCAL VOC multi-label classification tasks,
we use the standard mean Average Precision (mAP) to evaluate the predictions.
For MIT Indoor Scene single-label classification task, we report the classification
accuracy.

Table 2 shows the results. Note that for the fine-tuning task, most of the learn-
ing for the network comes from labeled images in the fine-tuning dataset. The
pre-trained models serve only as an initialization for fine-tuning. Our method
consistently outperforms all our baseline methods and the pre-trained models
from Pathak et al. [12], Jayaraman and Grauman [14] and Agrawal et al. [13].
The pre-trained model from [7] has better performance if using four times the
training data as our method. However, for the comparable setting with the same
amount of input video and identical fine-tuning procedures, our method is supe-
rior to the tracking-based approach (see Visual-Tracking [7] row). This compar-
ison is the most direct and speaks favorably for the core proposed idea.

Table 2. Classification results on MIT Indoor 67, PASCAL VOC 2007 and PASCAL
VOC 2012. Accuracy is used for MIT Indoor 67 and mean average precision (mAP)
is used for PASCAL VOC to compare the models. The third row shows the results of
four unsupervised pre-trained models using other approaches. The fourth row shows
the results of our four baselines.

Pretraining method Supervision MIT Indoor 67 VOC 2007 VOC 2012

ImageNet 1.2M labeled images 61.6% 75.1% 73.9%

Wang and Gupta [7] 4M visual tracking pairs 41.6% 47.8% 47.4%

Jayaraman and Grauman [14] Egomotion 31.9% 41.7% 40.7%

Agrawal et al. [13] Egomotion 32.7% 42.4% 40.2%

Pathak et al. [12] Spatial context 34.2% 42.7% 41.4%

Full-frame 1M video frame pairs 33.4% 41.9% 40.3%

Square-region 1M square region pairs 35.4% 43.2% 42.3%

Visual-tracking [7] 1M visual tracking pairs 36.6% 43.6% 42.1%

Random Gaussian - 28.9% 41.3% 39.1%

Ours 1M region proposal pairs 38.1% 45.6% 44.1%

5 Conclusion and Future Work

We proposed a framework to learn visual representations from unlabeled
videos. Our approach exploits object-like region proposals to generate associated
regions across video frames, yielding localized patches for training an invariant
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embedding without explicit tracking. Through various experiments on image
retrieval and image classification, we have shown that our method provides use-
ful feature representations despite the absence of strong supervision. Our method
outperforms multiple existing approaches for unsupervised pre-training, provid-
ing a new promising tool for the feature learning toolbox. In future work we
plan to consider how spatio-temporal video object segmentation methods could
enhance the proposals employed to create training data for our framework.
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Abstract. Convolutional neural networks have been shown to develop
internal representations, which correspond closely to semantically mean-
ingful objects and parts, although trained solely on class labels. Class
Activation Mapping (CAM) is a recent method that makes it possible to
easily highlight the image regions contributing to a network’s classifica-
tion decision. We build upon these two developments to enable a network
to re-examine informative image regions, which we term introspection.
We propose a weakly-supervised iterative scheme, which shifts its cen-
ter of attention to increasingly discriminative regions as it progresses,
by alternating stages of classification and introspection. We evaluate our
method and show its effectiveness over a range of several datasets, where
we obtain competitive or state-of-the-art results: on Stanford-40 Actions,
we set a new state-of the art of 81.74%. On FGVC-Aircraft and the Stan-
ford Dogs dataset, we show consistent improvements over baselines, some
of which include significantly more supervision.

1 Introduction

With the advent of deep convolutional neural networks as the leading method
in computer vision, several attempts have been made to understand their inner
workings. Examples of pioneering work in this direction include [1,2]; providing
glimpses into representations learned by intermediate layers. Specifically, the
recent work of Zhou et al. [3] provides an elegant mechanism to highlight the
discriminative image regions that served the CNN for a given task. This can be
seen as a form of introspection, highlighting the source of the network’s conclu-
sions. A useful trait we have observed in experiments is that even if the final
classification is incorrect, the highlighted image regions are still be informative
with respect to the correct target class. This is probably due to the similar
appearance of confused classes. See Figs. 1 and 4 for some examples. Motivated
by this observation, we propose an iterative mechanism of internal supervision,
termed introspection, which revisits discriminative regions to refine the classifi-
cation. As the process is repeated, each stage further highlights discriminative
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(a) brushing teeth (b) looking through a
telescope

(c) fishing

(d) phoning (e) taking photo (f) walking a dog

Fig. 1. (Top) Class Activation Maps [3] show the source of a network’s classification.
The network tends to focus on relevant image regions even if its final prediction is
wrong. An SVM trained on features extracted from VGG-GAP [3] misclassified all of
these images, while highlighting the discriminative regions. (a,b,c) the predicted classes
appears in red. (Bottom, zoomed in version of top) The proposed method effectively
removes many such errors by focusing attention on the highlighted regions. (d,e,f ) the
corrected prediction following the introspection stage appears in green. (Color figure
online)

sub-regions. Each stage uses its own classifier, as we found this to be beneficial
when compared to using the same classifier for all sub-windows.

We describe strategies for how to leverage the introspection scheme, and
demonstrate how these consistently improve results on several benchmark
datasets, while progressively refining the localization of discriminative regions.
As shown, our method is particularly beneficial for fine-grained tasks such as
species [4,5] or model [6] identification and to challenging cases in e.g., action
recognition [7], which requires attention to small and localized details.

In the following we will first review some related work. In Sect. 3 we describe
our method in detail. Section 4 contains experiments and analysis to evaluate
the proposed method, followed by concluding remarks in Sect. 5.

2 Related Work

Supervised methods consistently outperform unsupervised or semi-supervised
methods, as they allow for the incorporation of prior knowledge into the learn-
ing process. There is a trade-off between more accurate classification results and
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structured output on the one and, the cost of labor-intensive manual annotations,
on the other. Some examples are [8,9], where bounding boxes and part annota-
tions are given at train time. Aside from the resources required for large-scale
annotations, such methods elude the question of learning from weakly super-
vised data (and mostly unsupervised data), as is known to happen in human
infants, who can learn from limited examples [10]. Following are a few lines of
work related to the proposed method.

2.1 Neural Net Visualization and Inversion

Several methods have been proposed to visualize the output of a neural net
or explore its internal activations. Zeiler et al. [1] found patterns that activate
hidden units via deconvolutional neural networks. They also explore the local-
ization ability of a CNN by observing the change in classification as different
image regions are masked out. [2] Solves an optimization problem, aiming to
generate an image whose features are similar to a target image, regularized by a
natural image prior. Zhou et al. [11] aims to explicitly find what image patches
activate hidden network units, finding that indeed many of them correspond to
semantic concepts and object parts. These visualizations suggest that, despite
training solely with image labels, there is much to exploit within the internal
representations learned by the network and that the emergent representations
can be used for weakly supervised localization and other tasks of fine-grained
nature.

2.2 Semi-Supervised Class Localization

Some recent works attempt to obtain object localization through weak labels,
i.e., the net is trained on image-level class labels, but it also learns localization.
[12] Localizes image regions pertaining to the target class by masking out sub-
images and inspecting change in activations of the network. Oquab et al. [13] use
global max-pooling to obtain points on the target objects. Recently, Zhou et al.
[3] used global average pooling (GAP) to generate a Class-Activation Mapping
(CAM), visualizing discriminative image regions and enabling the localization
of detected concepts. Our introspection mechanism utilizes their CAMs to iter-
atively identify discriminative regions and uses them to improve classification
without additional supervision.

2.3 Attention Based Mechanisms

Recently, some attention based mechanisms have been proposed, which allow
focusing on relevant image regions, either for the task of better classification
[14] or efficient object localization [15]. Such methods benefit from the recent
fusion between the fields of deep learning and reinforcement learning [16].
Another method of interest is the spatial-transformer networks in [17]: they
designed a network that learns and applies spatial warping to the feature maps,
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effectively aligning inputs, which results in increased robustness to geometric
transformations. This enables fine-grained categorization on the CUB-200-2011
birds [4] dataset by transforming the image so that only discriminative parts are
considered (bird’s head, body). Additional works appear in [18], who discovers
discriminative patches and groups them to generate part detectors, whose detec-
tions are combined with the discovered patches for a final classification. In [19],
the outputs of two networks are combined via an outer-product, creating a strong
feature representation. [20] discovers and uses parts by using co-segmentation on
ground-truth bounding boxes followed by alignment.

Fig. 2. Overview of proposed method. At each iteration, an image window (top) is
classified using features from a GAP-network. Top scoring classes are used to generate
Class Activation Maps (bottom), which are then used to select sub-windows (green
rectangles). The process is repeated for a few iterations and features from all visited
image windows are aggregated and used in a final classifier. The correct class is “writing
on a book”. Attention shifts gradually and closes in on the discriminative image region,
i.e., the boy’s hand holding a pencil. (Color figure online)

3 Approach

Our approach is composed of alternating between two main steps: classification
and introspection. In the classification step, we apply a trained network to an
image region (possibly the entire image). In the introspection step, we use the
output of a hidden layer in the network, whose values were set during the classi-
fication step. This highlights image regions which are fed to the next iteration’s
classification step. This process is iterated a few times (typically 4, see Sect. 4,
Fig. 5), and finally the results of all stages are combined. Training proceeds by
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learning a specialized classifier for each iteration, as different iterations capture
different contexts and levels of detail (but without additional supervision).

Both classification/introspection steps utilize the recent Class-Activation
Mapping method of [3]. We briefly review the CAM method and then describe
how we build upon it. In [3], a deep neural network is modified so that post-
classification, it is possible to visualize the varying contribution of image regions,
via a so-called Class Activation Mapping (CAM). A global average pooling was
used as a penultimate feature representation. This results in a feature vector
which is a spatial averaging of each of the feature maps of the last convolutional
layer. Using the notation in [3]: let fk(x, y) be the k’th output of the last con-
volutional layer at grid location (x, y). The results of the global-average pooling
results in a vector F = (F1, F2, . . . , Fk), defined as:

Fk =
∑

x,y

fk(x, y) (1)

This is followed by a fully connected layer with C outputs (assuming C target
classes). Hence the score for class c before the soft-max will be:

Sc =
∑

k

wc
kFk (2)

=
∑

k

wc
k

∑

x,y

fk(x, y) (3)

=
∑

x,y

∑

k

wc
kfk(x, y) (4)

Now, define

Mc(x, y) =
∑

k

ωc
kfk(x, y) (5)

where ωc
k are class-specific weights. Hence we can express Sc as a summation

of terms over (x, y):
Sc =

∑

x,y

Mc(x, y) (6)

And the class probability scores are computed via soft-max, e.g., Pc = eSc
∑

t e
St

.
Equation 5 allows us to measure the contribution of each grid cell Mc(x, y) for
each specific class c. Indeed, [3] has shown this method to highlight informa-
tive image regions (with respect to the task at hand), while being on par with
the classification performance obtained by the unmodified network (GoogLeNet
[21] in their case). See Fig. 1 for some CAMs. Interestingly, we can use the
CAM method to highlight informative image regions for classes other than the
correct class, providing intuition on the features it has learned to recognize.
This is discussed in more detail in Sect. 4.2 and demonstrated in Fig. 4. We
name a network whose final convolutional layer is followed by a GAP layer as a
GAP-network, and the output of the GAP layer as the GAP features. We next
describe how this is used in our proposed method.
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3.1 Iterative Classification-Introspection

The proposed method alternates classification and introspection. Here we provide
the outline of the method, with specific details such as values of parameters
discussed in Sect. 4.6.

For a given image I and window w (initially the entire image), a learned
classifier is applied to the GAP features extracted from the window Iw, resulting
in C classification scores Sc, c ∈ [1 . . . C] and corresponding CAMs Mw

c (x, y).
The introspection phase employs a strategy to select a sub-window for the next
step by applying a beam-search to a set of putative sub-windows. The sequence
of windows visited by the method is a route on an exploration-tree, from the root
to one of the leaves. Each node represents an image window and the root is the
entire image. We next explain how the sub-windows are created, and how the
search is applied.

We order the current classification scores Sc by descending order and retain
the top k scoring classes. Let ĉ be one of these classes and Mw

ĉ (x, y) the corre-
sponding CAM. We extract a square sub-window w′ centered on the maximal
value of Mw

ĉ (x, y). Each such w′ (k in total) is added as a child of the cur-
rent node, which is represented by w. In this way, each iteration of the method
expands a selected node in the exploration-tree, corresponding to an image win-
dow, until a maximum depth is reached. The tree depth is the number of iter-
ations. We define iteration 0 as the iteration acting on the root. The size of a
sub-window w′ is of a constant fraction of the size of its parent w. We next
describe how the exploration-tree is used for classification.

3.2 Feature Aggregation

Let k be the number of windows generated at iteration t > 0. We denote the set
of windows by:

Wt = (wt
i)

k
i=1 (7)

And the entire set of windows as:

R = (Wt)Tt=0 (8)
where W0 is the entire image. For each window wt

i we extract features f t
w ∈

R
K , e.g., K = 1024, the dimension of the GAP features, as well as classification

scores Swt
i

∈ R
C . The set of windows R for an image I is arranged as nodes in

the exploration-tree. The final prediction is a result of aggregating evidence from
selected sub-windows along some path from the root to a tree-leaf. We evaluate
variants of both early fusion (combining features from different iterations) or
later fusion (combining predictions from different iterations).

3.3 Training

Training proceeds in two main stages. The first is to train a sequence of classifiers
that will produce an exploration-tree for each training/testing sample. The sec-
ond is training on feature aggregations along different routes in the exploration-
trees, to produce a final model.
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During training, we train a classifier for each iteration (for a predefined
number of iterations, 5 total) of the introspection/classification sequence. The
automatic training of multiple classifiers at different scales contributes directly
to the success of the method, as using the same classifier for all iterations yielded
no improvement over the baseline results (Sect. 4.1). For the first iteration, we
simply train on entire images with the ground-truth class-labels. For each itera-
tion t > 1, we set the training samples to sub-windows of the original images and
the targets to the ground-truth labels. The sub-windows selected for training are
always those corresponding to the strongest local maximum in Mc(x, y), where
Mĉ(x, y) is the CAM corresponding to the highest scoring class. Each classifier
is an SVM trained on the features the output of the GAP layer of the net-
work (as was done in [3]). We also checked the effect of fine-tuning the network
and using additional features. The Results are discussed in the experiments,
Sect. 4.

Routes on Exploration Trees. The image is explored by traversing routes
on a tree of nested sub-windows. The result of training is a set of classifiers,
E = (E)i=1...T . We produce an exploration tree by applying at each iteration

Fig. 3. Exploration routes on images: Each row shows the original image and 3 itera-
tions of the algorithm, including the resulting Class-Activation Maps [3] used to guide
the next iteration. The selected sub-window is shown with a green bounding box.
Despite being trained and tested without any bounding box annotations, the proposed
method closes in on the features relevant to the target class. The first 2 predictions
(columns 2,3 ) in each row are mistaken and the last one (rightmost column) is correct.
(Color figure online)
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j the classifier Ej on the features of the windows produced by the previous
iteration. The window of iteration 0 is the entire image. A route along the tree
will consist of a sequence of windows w1, w2, . . . wT where T is the number
of iterations. We found in experiments that more than 5 iterations (including
the first) brings negligible boosts in performance. The image score for a given
class is given by either (1) summing the scores of classifiers along a route (late
fusion), or (2) learning a classifier for the combined features of all visited windows
along the route (early fusion). Features are combined via averaging rather than
concatenation. This reduces the training time at no significant change to the final
performance; such an effect has also been noted by [22]. See Fig. 2 for an overview
of the proposed method. Figure 3 shows some examples of how progressively
zooming in on image regions helps correct early classification mistakes.

4 Experiments

4.1 Setup

In all our experiments, we start with a variant of the VGG-16 network [22]
which was fined tuned on ILSVRC by [3]. We chose it over GoogLeNet-GAP
as it obtained slightly higher classification results on the ILSVRC validation
set. In this network, all layers after conv5-3 have been removed, including the
subsequent pooling layer; hence the spatial-resolution of the resultant feature
maps/CAM is 14 × 14 for an input of size 224 × 224 (leaving the pooling layer
would reduce resolution to be 7 × 7). A convolutional layer of 1024 filters has
been added, followed by a fully-connected layer to predict classes. This is our
basic GAP-network, called VGG-GAP. Each image window, including the entire
original image, is resized so that its smaller dimension is 224 pixels, resulting
in a feature map 14 × n × 1024, for which we compute the average along the
first two dimensions, to get a feature representation. We resize the images using
bilinear interpolation. We train a separate classifier for each iteration of the
classification/introspection process; treating all visited image windows with the
same classifier yielded a negligible improvement (0.3% in precision) over the
baseline. All classifiers are trained with a linear SVM [26] on �2 normalized fea-
ture vectors. If the features are a concatenation of two feature vectors, they
are �2 normalized before concatenation. Our experiments were carried out using
the MatConvNet framework [27] and as well as [28,29]. We evaluated our app-
roach on several datasets, including Stanford-40 Actions [7], the Caltech-USCD
Birds-200-2011 [4] (a.k.a CUB-200-2011), the Stanford-Dogs dataset, [5] and the
FGVC-Aircraft dataset [6]. See Table 1 for a summary of our results compared to
recent work. In the following, we shall first show some analysis on the validity of
using the CAMs to guide the next step. We shall then describe interesting prop-
erties of our method, as well as the effects of different parameterizations of the
method.
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Table 1. Classification accuracy of our method vs. a baseline for several datasets.
VGG-GAP∗ is our improved baseline using the VGG-GAP network [3]. Ours-late-
fusion: we aggregate the scores of image windows along the visited path. Ours-early-
fusion: aggregate scores of classifiers trained on feature combination of windows along
the visited path. Ours-ft: same as ours-early fusion but fine-tuned. +D: concatenated
with fc6 features from VGG-16 at each stage. ∗Stanford Dogs is a subset of ILSVRC
dataset. For this dataset, we compare to work which also used a network pre-trained
on ILSVRC. †means fine tuning the network on all iterations.

Method 40-Actions Dogs∗ Birds Aircraft

GoogLeNet-GAP [3] 72.03 - 63.00 -

VGG-16-fc6 73.83 83.76 63.46 60.07

VGG-GAP∗ 75.31 81.83 65.72 62.95

ours-late-fusion 76.88 82.63 73.52 66.34

ours-early-fusion 77.08 83.55 71.64 68.26

ours-ft 80.37 82.62 78.74 79.15

ours-early-fusion+D 81.04 86.25 78.91 77.74

ours-ft+D 81.74 84.18 79.55 78.04

Previous work 72.03 [3],
81 [23]

79.92 [24] 77.9 [18], 81.01
[25], 82 [20],
84.1 [17]

84.1 [19]

4.2 Correlation of Class and Localization

In this section, we show some examples to verify our observation that CAMs
tend to highlight informative image locations w.r.t to the target class despite
the fact that the image may have been misclassified at the first iteration (i.e.,
before zooming in on sub-windows).

To do so, we have applied to the test-set of the Stanford-40 actions dataset
a classifier learned on the GAP features of VGG-GAP. For each category in
turn, we ranked all images in the test set according to the classifier’s score for
that category. We then picked the top 5 true positive images and top 5 false
positive images. See Fig. 4 for some representative images. We can see that the
CAMs for a target class tend to be consistent in both positive images and high-
ranking non-class images. Intuitively, this is because the classifier gives more
weight to patterns which are similar in appearance. For the “writing on a book”
category (top-left of Fig. 4) we can see how in positive images the books and
especially the hands are highlighted, as they are for non-class images, such as
“reading”, or “cutting vegetables”. For “texting message” (top-right) the hand
region is highlighted in all images, regardless of class. For “shooting an arrow”
class (bottom-right), elongated structures such as fishing rods are highlighted. A
nice confusion appears between an archer’s bow and a violinist’s bow (bottom-
right block, last row, first image), which are also referred to by the same word
in some human languages.
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(writing on a book) (taking photos)

(texting message) (shooting an arrow)

Fig. 4. Top ranking images (both true positives and false positives) for various action
categories along with Class-Activation Maps. Misclassified images still carry informa-
tion on where additional attention will disambiguate the classification. Each block of
images shows, from first to fourth row: high-ranking true-positives and their respective
CAMs, high ranking false-positive and their respective CAMs. The target class appears
below each block. We recommend viewing this figure online to zoom in on the details.

To check our claim quantitatively, we computed the extent of two square
sub-windows for each image in the test-set: one using the CAM of the true class
and one using the CAM of the highest scoring non-true class. For each pair
we computed the overlap (intersection over union) score. The mean score of all
images was 0.638; This is complementary evidence to [3], who shows that the
CAMs have good localization capabilities for the correct class.

4.3 Early and Late Fusion

In all our experiments, we found that using the features extracted from a window
at some iteration can bring worse results on its own compared to those extracted
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Fig. 5. Effect of learning at different iterations: using the same classifier trained on
entire images for all iterations tends to cause overall precision to drop (same-classifier).
Accumulating the scores of per-iteration learned classifiers along the explored path
improves this (late-fusion). Using all features along the observed exploration path
improves classification as the path length increases (early-fusion) and summing all
scores along the early-fusion path brings the best performance (early-fusion-accum).
Performance is shown on the Stanford-40 [7] dataset

from earlier iterations (which include this window). However, the performance
tends to improve as we combine results from several iterations, in a late-fusion
manner. Training on the combined (averaged) features of windows from multiple
iterations further improves the results (early-fusion). Summing the scores of
early-fused features for different route lengths further improves accuracy: if Si

is the score of the classifier trained on a route of length i. Then creating a final
score from S1 + St + . . . ST tends to improve as T grows, typically stabilizing at
T = 5. See Fig. 5 for an illustration of this effect. Importantly, we tried using the
classifier from the first iteration (i.e., trained on entire images) for all iterations.
This performed worse than learning a classifier per-iteration, especially in later
iterations.

4.4 Fine-Grained vs. General Categories

The Stanford-40 Action dataset [7] is a benchmark dataset made of 9532 images
of 40 different action classes, with 4000 images for training and the rest for
testing. It contains a diverse set of action classes including transitive ones with
small objects (smoking, drinking) and large objects (horses), as well as intran-
sitive actions (running, jumping). As a baseline, we used the GAP-network of
[3] as a feature extractor and trained a multi-class SVM [26] using the result-
ing features. It is particularly interesting to examine the classes for which our
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Fig. 6. Our approach improves mainly fine-grained tasks and categories where clas-
sification depends on small and specific image windows. The figure shows absolute
difference in terms of F-measure over the baseline approach on all categories of the
Stanford-40 Actions [7] dataset. It is recommended to view this figure online.

method is most beneficial. We have calculated the F-measure for each class using
the classification scores from the fourth and first iteration and compared them.
Figure 6 shows this; the largest absolute improvements are on relatively chal-
lenging classes such as texting a message (7.64%), drinking (4.32%), smoking
(4.3%), etc. For all of these, the discriminative objects are small objects and are
relatively hard to detect compared to most other classes. In some cases, per-
formance is harmed by zooming in on too-local parts of an image: for “riding
a bike” (−0.8%), a small part of the bicycle will not allow disambiguating the
image from e.g., “fixing a bike”. Another pair of categories exhibiting similar
behavior is “riding a horse” vs. “feeding a horse”.

4.5 Top-Down vs. Bottom-Up Attention

To further verify that our introspection mechanism highlights regions whose
exploration is worthwhile, we evaluated an alternative to the introspection stage
by using a generic saliency measure [30]. On the Stanford-40 dataset, instead of
using the CAM after the first classification step, we picked the most salient image
point as the center of the next sub-window. Then we proceeded with training
and testing as usual. This produced a sharp drop in results: on the first iteration
performance dropped from 74.47% when using the CAM to 62.31% when using
the saliency map. Corresponding drops in performance were measured in the
late-fusion and early fusion steps, which improve results in the proposed scheme
but made them worse when using saliency as a guide.
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Usage of Complementary Feature Representations. The network used for
drawing attention to discriminative image regions need not necessarily be the one
used for feature representation. We used the VGG-16 [22] network to extract fc6
features along the GAP features for all considered windows. On the Stanford-40
Actions dataset, when used to classify categories using features extracted from
entire images, these features we slightly weaker than the GAP features (73%
vs. 75%). However, training on a concatenated feature representation boosted
results significantly, reaching a precision of 80%. We observed a similar effect on
all datasets, showing that the two representations are complementary in nature.
Combined with our iterative method, we were able to achieve 81.74%, compared
to the previous best 81% of [23].

Effect of Aspect-Ratio Distortion. Interestingly, our baseline implementa-
tion (using only the VGG-GAP network as a feature extractor for the entire
image) got a precision score of 75.23% compared to 72.03% of [3]. We suspect
that it may be because in their implementation, they modified the aspect ratio
of the images to be square regardless of the original aspect ratio, whereas we
did not. Doing so indeed got a score more similar to theirs, which is interesting
from a practical viewpoint.

4.6 Various Parameters and Fine-Tuning

Our method includes several parameters, including the number of iterations,
the width of the beam-search used to explore routes of windows on the image
and the ratio between the size of the current window and the next. For the
number iterations, we have consistently observed that performance saturates,
and even deteriorates a bit, around iteration 4. An example can be seen in
Fig. 5 showing the performance vs. iteration number on the Stanford-40 dataset.
We observed a similar behavior in every dataset on which we’ve evaluated the
method. This is probably due to the increasingly small image regions considered
at each iteration. As for the number of windows to consider at each stage, we
tried choosing between 1 and 3 of the windows relating to the highest ranking
classes on a validation set. At best, this performed as well as the greedy strategy,
which chose only the highest scoring window at each iteration. The size of the
sub-window with respect to the current image window was set as

√
2m where

m is the geometric mean of the current window’s height and width (in effect,
all windows are square, except the entire image). We have experimented with
smaller and larger values on a validation set and found this parameter to give
a good trade-off between not zooming in too much (risking “missing” relevant
features) and too little (gaining too little information with respect to the previous
iteration).

We have also evaluated our results when fine-tuning the VGG-GAP network
before the first iteration. This improves the results for some of the datasets, i.e.,
Stanford-40 [7], CUB-200-2011 [4], but did not improve results significantly for
others (Dogs [5], Aircraft [6]). Finally, we evaluated the effect of fine-tuning the
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network for all iterations on the CUB-200-2011. This resulted in a competitive
results of 79.95%. Some of the best results to date added a massive amount of
external data mined from the web [31] (91.9%) and/or strong supervision [32]
(84.6%).

5 Conclusions

We have presented a method, which by repeatedly examining the source of the
current prediction, decides on informative image regions to consider for fur-
ther examination. The method is based on the observation that a trained CNN
can be used to highlight relevant image areas even when its final classification
is incorrect. This is a result of training on multiple visual categories using a
shared feature representation. We have built upon Class Activation Maps [3]
due to their simplicity and elegance, though other methods for identifying the
source of the classification decision (e.g., [1]) could probably be employed as
well. The proposed method integrates multiple features extracted at different
locations and scales. It makes consistent improvement over baselines on fine-
grained classification tasks and on tasks where classification depends on fine
localized details. It obtains competitive results on CUB-200-2011 [4], among
methods which avoid strong supervision such as bounding boxes or keypoint
annotations. The improvements are shown despite the method being trained
using only class labels, avoiding the need for supervision in the form of part
annotations or even bounding boxes. In future work, it would be interesting to
examine the use of recurrent nets (RNN, LSTM [33]) to automatically learn
sequential processes, which incrementally improve classification results, extend-
ing the approach described in the current work.
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Abstract. Scene text reading continues to be of interest for many
reasons including applications for the visually impaired and automatic
image indexing systems. Here we propose a novel end-to-end scene text
detection algorithm. First, for identifying text regions we design a novel
Convolutional Neural Network (CNN) architecture that aggregates local
surrounding information for cascaded, fast and accurate detection. The
local information serves as context and provides rich cues to distinguish
text from background noises. In addition, we designed a novel grouping
algorithm on top of detected character graph as well as a text line refine-
ment step. Text line refinement consists of a text line extension module,
together with a text line filtering and regression module. Jointly they
produce accurate oriented text line bounding box. Experiments show
that our method achieved state-of-the-art performance in several bench-
mark data sets: ICDAR 2003 (IC03), ICDAR 2013 (IC13) and Street
View Text (SVT).

1 Introduction

Scene text provides rich semantic cues about an image. Many useful applications,
such as image indexing system and autonomous driving system could be built
on top of a robust scene text reading algorithm. Thus detecting and recognizing
scene text has recently attracted great attention from both research community
and industry.

Even with the increasing attention in reading text in the wild, scene text
reading is still a challenging problem. Unusual font, distortion, reflection and
low contrast make the problem still unsolved. Algorithms for scene text detection
could be classified into three categories [1]: (1) sliding window based methods,
(2) region proposal based methods, and (3) hybrid methods. Sliding window
based approaches [2,3] try to determine whether a fixed-sized small image patch
is a text area or not. Such methods need to examine every locations in different
scales in an exhaustive manner, thus are very time consuming. Region-based
methods [4–9] propose a set of connected components as candidate text regions
with predefined rules. These approaches greatly reduce the number of image
c© Springer International Publishing AG 2017
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patches needed to be examined, however, they may miss some text areas or
generate regions with too many characters connected. Hybrid methods [10,11]
integrate the region based methods with the sliding window methods to combine
the advantages of both categories. One of the common components in these
methods is a classifier that determines whether a given image patch or a region
is text or not. Given the success of the convolutional neural networks (CNN) in
object detection and recognition [12], they have also been used as the text/non-
text classifier in scene text detection tasks [8,13,14]. The strong power of CNN
makes scene text detection more robust to outlier noises. A typical pipeline is to
first generate a set of region proposals and then apply a binary classifier trained
on text/non-text data. Although this method is efficient but even CNN trained
on millions of samples are not stable for robust scene text reading on complex
scenes. This is because context is often necessary for disambiguation. It is needed
to determine whether a vertical line is an “I”, a “1”, or part of background noise
like the space between bricks or the edge of a window. In Fig. 4(a), we show some
examples of text-like background noise which are confusing, even to people, when
appearing without their contexts.

Recently, Zhu et al. [15] proposed to use highly-semantic context, which tried
to explore the assumption that text are typically on specific background, such
as sign board, but seldom on the others, for e.g., sky in natural image. However,
modeling text which potentially exists in a wide variety of places is impossible
with an exhaustive manner, and whether a new class of semantic object which
does not appear in the training set will hurt results is in doubt. In addition, in
a lot images that are not purely natural, text could be placed in unusual places,
e.g. sky. In those cases, the model might hurt the performance. In this paper, we
define a region’s local context to be its horizontal surroundings. A text localiza-
tion algorithm is proposed which efficiently aggregates local context information
in detecting candidate text regions. The basic idea is that the surrounding infor-
mation of a candidate region usually contains strong cues about whether the
region is text or background noise similar to text, and thus helping our model
localize text more accurately. Some examples of these context images are shown
in Fig. 4(b). In addition, we also propose a grouping algorithm to form lines from
verified regions and a line refinement step to extend text lines by searching for
missing character components, as well as to regress text lines to obtain accurate
oriented bounding boxes.

To be more specific, our major contributions are the following aspects:

1. A method that efficiently aggregates local information for cascaded and accu-
rate classification of proposed regions. This step could be part of any other
region based framework.

2. An effective grouping algorithm as well as a novel text line refinement step.
Text line refinement includes a Gaussian Mixture Model (GMM) based text
line extension module to find new character components, and jointly, a slid-
ing window based oriented bounding box regression and filtering module.
They are efficient and robust for post processing, and give an accurate ori-
ented bounding box, instead of a mere horizontal bounding box.
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3. A cascaded end-to-end detection pipeline for accurate scene text detection
in unconstrained images. State-of-the-art performance is achieved in IC03,
IC13 and SVT data sets.

In the following sections, we first describe related works on scene text detec-
tion in Sect. 2. Our method will be described in detail in Sect. 3 and experimental
results are shown in Sect. 4. Several text detection results from images using the
proposed algorithm are shown in Fig. 1.

Fig. 1. Scene text that have been successfully detected by our proposed systems. Images
are from IC13 and SVT dataset

2 Related Work

Scene text detection is much more challenging than Optical Character Recogni-
tion (OCR). Early work in scene text detection focused on sliding window based
approaches. Chen and Yuille [3] proposed an end-to-end scene text reading sys-
tem which used Adaboost algorithm for aggregating weak classifiers trained on
several carefully designed, hand crafted features into a strong classifier. They
used sliding window to find candidate text regions. However, the scales of text
lines in scene images vary a lot so sliding window based methods are typically
very inefficient. Region based methods have recently received more attention.
Most works focused on two region based methods: (1) Stroke width transform
(SWT) [6] and its variants [7,16]; (2) Extreme Region (ER) detector [5,8] and
Maximally Extreme Region (MSER) detector [9]. SWT explicitly explores the
assumption that text consists of strokes with nearly constant width. It first
detects edges in the image and tries to group pixels into regions based on the
orientation of the edge. However, its performance is severely decreased when the
text are of low contrast or in unusual font style. ER based methods [5,8,9,17]
are now popular since they are computationally efficient and achieve high recall
as well. Neumann and Matas [5] proposed an ER based text detection algorithm
which utilized several carefully designed region features, such as hole area ratio,
Euler number, etc. However, the designed region features are not representative
enough to remove background noise that is similar to text. Several other works
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[17,18] follows a similar patterns in the classification step. These region features
are fast to compute, but they typically lack the ability of robust classification.

More recently, CNN based methods have been used with significant success
[8,13]. The ability to synthesize data for training, which was specifically explored
in [19], has greatly accelerated the research in scene text detection due to the
unlimited amount of training data. Several works [9,14], trained on synthetic
images, have achieved the state-of-the-art performance in real image as well.

However, even with the introduction of CNN models and synthetic image
generation for training, it is still hard for the CNN models to achieve good
performance in some complex scenarios. We observe that the main reason of this
incorrect classification lies on the fact that some characters have simple shapes
that are also contained in non-text objects and CNNs are often fooled into
classifying such objects as text. In this work, we explore ways to overcome these
challenges and propose a system for efficient and accurate scene text detection.

3 Methodology

Our proposed detection pipeline is as follows. First, an ER detector is conducted
on 5 channels of an input image. For each detected region, we first classify it to get
a coarse prediction and filter out most non-text regions. Then the local context is
aggregated to classify the remaining regions in order to obtain a final prediction.
Text lines will be formed on top of a character component graph by grouping
the verified regions with similar properties together. A text line refinement step
is also designed to further filter out false positive and obtain accurate oriented
bounding boxes. Several successive image examples of the proposed method can
be seen in Fig. 2.

Fig. 2. Images from the scene text detection pipeline. From left to right: (1) Region
proposals; (2) Coarse predictions; (3) Predictions after aggregating local context; (4)
Final detected text lines.
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3.1 Cascaded Classification and Local Context Aggregation

Context information is critical for object detection and recognition [20,21]. Pre-
vious region based methods often focus on classifying each region independently
and the image patch is cropped tightly from a generated region [8]. Here, we
consider the local context of a given region as its local surroundings and argue
that surrounding information should be incorporated in determining whether
a given region should be classified as text or not. We observe that characters,
which are often represented as simple shapes such as “I” or “l”, cannot be well
distinguished from background noises that are similar to them. However, text in
an image is often represented as lines of characters, and for a given region, its
local surroundings give rich information about whether it is text or not. There
have been works that explored relation between text regions before, such as
[17,18]. They proposed to use graphcut on top of MSER region graph to refine
the results. Instead, we try to aggregate more higher level information in classifi-
cation step of each region by the proposed network, and we show that this aggre-
gation provides rich information. Some background regions, which are difficult
to be distinguished from text when cropped from a tight bounding box, can be
accurately predicted by our model after we aggregate this context information.

Design Rationale: The architecture of the proposed framework is shown in
Fig. 3. We call this network a text local feature aggregation network (TLFAN).
This is a two-column CNN with joint feature prediction on the top. It is designed
for cascaded classification that will be explained in the next part. One CNN
branch with fully connected layers is for coarse prediction, and we refer to this
branch as standard CNN. The other branch takes an input with aggregated local
information to produce a context vector, and we refer it as context CNN. The
first column of the architecture is for learning features from the tight image
patch which we are focusing at, and the other is for learning features from its
surroundings. This CNN structure is specifically designed for scene text reading

Fig. 3. The proposed TLFAN architecture for scene text detection. Left: CNN structure
of the proposed network. The bottom 3 layers of convolution and pooling are shared,
and for context branch, another CNN layer and pooling layer is added to produce
deeper representation. Right: The whole architecture of the network. One column is
for the given patch that we are trying to classify. The other is for extracting context
information for this patch, and the generated feature vector will be further used to give
an accurate prediction of the region.
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and several design rationales are here: (1) Local context typically provides rich
information about whether a specific region is text or not. Some background noise
can not be well distinguished with text from a mere tight bounding box. In Fig. 4,
there are some example image patches cropped from IC13 where traditional
text/non-text binary classification will easily fail. But our model, by aggregating
local context, can robustly distinguish it from text. (2) Even though here we
consider text lines with arbitrary orientation, horizontal neighborhood already
provides rich clues of whether the given region is text or not. (3) Since the input
to the proposed TLFAN and its context have the same scale, we can use shared
CNN parameters for the two columns and thus reduce the number of parameters
that need to be learned. We also tried to use central surround network [22] which
will consider a larger surrounding region. However, by doing so, we will have to
learn more parameters either in CNN part or in fully connected part. In addition,
We found that this will not improve the performance as much as the proposed
manner, and it is likely to cause overfitting, since it considers information that
is mostly unrelated.

Fig. 4. Cropped image patches which demonstrate that local context helps in distin-
guishing between background noise and text. (a) The original image patches cropped
tightly from the generated regions. (b) The horizontal context images which corre-
spond to the region on the left, respectively. All the examples here are background
noises which easily cause false positive if we only consider a tight bounding box for
classification. Instead, our model can efficiently aggregate local context, so as to give
accurate prediction.

Region Proposal and Cascaded Classification: We use an ER detector
as our region proposal because of its efficiency and robustness. We extract ERs
from RGB, Gray scale and gradient of intensity channels. In order to achieve high
recall, approximately thousands of regions will be generated from the 5 channels
for each image. We preprocess each region as described in [8] and resize them
into 32× 32. We then run the standard CNN branch to remove false positives in
a similar manner as [8]. For regions with aspect ratios larger than 3.0 or smaller
than 1/3, we will do sliding window on top of it since each region might contain
blurred text with several characters connected, and in that case, we should not
simply resize and classify them. In our experiment, 91.5% of the regions will be
removed, and it achieves 92% recall on the IC13 testing set.

After this step, the retained regions will be passed into the context branch
to generate context vectors. To be more specific, we calculate the width and
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height of the region, and extend the patch in the horizontal direction so that
the resulting context input patch is with 3 times the width of the original image
patch. Mean value is padded when there is not enough space in the image for
the context input. Because of the strong ability of CNNs in extracting high level
information, this context vector provides rich cues in helping with the classifica-
tion of the given region. This step can further remove some false positives that
are similar to text and only regions with high confidence of text will be retained.
In IC13 testing set, 94.5% regions will be removed and it achieves 91% recall.

In the final prediction, we still consider the two column structure instead
of only the context branch for tow reasons: (1) The generated feature vector of
standard CNN already contains rich information and it actually produces the
feature of the region we are looking at. (2) It will be much easier to train since
the standard CNN already produce a really meaningful result. For the context
column, they only need to ‘figure out’ that in some certain cases, the input is
not a text even though the feature produced by standard CNN “says” that it is
close to text. Such cases include, but not limited to, repetitive patterns, corner
of objects and so on.

Training: The proposed model is more difficult to train than a simple text/non-
text classifier. We follow the same manner as described in [14,19] by synthesizing
image patches for training which provides unlimited number of training data.
Since our proposed architecture needs context information, our synthetic pos-
itive images need to cover different situations that will happen in real natural
images, such as characters with one or two near neighboring characters. Ran-
domly cropped images with their context from several image sources will be
considered as negative samples. Several example images for training are shown
in Fig. 5. In order to train a better classifier, a two-step training scheme is intro-
duced. First we train a character recognizer with negative samples. This is a 46
classes classification problem, and the positive 45 classes contain all 10 digits
and letters with both capitalized or lower cases. Here we merged several similar
shaped characters into one class. For example, ‘O’ and ‘o’, ‘0’ will be merged
into one class. We train with negative log likelihood as the loss function:

NLL(θ,D) = −
∑

i

log(Y = yi|xi, θ) (1)

and the 46 classes training makes the learned filters better than binary text/non-
text training.

Fig. 5. Several training samples. Left: positive training samples and their context input
patches. Right: negative training samples and their context input patches.
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The parameters of the trained convolutional layers are then used to initialize
the proposed TLFAN architecture and only the fully connected layers will be
tuned. After the loss become stable, we train the two parts jointly with smaller
learning rate for finetuning. In addition to this, it is necessary to collect harder
examples, and we will explain in Sect. 3.2.

Figure 6 shows several images demonstrating the effectiveness of the proposed
network. It can effectively use local context to determine whether a given region
is text or not, and thus make the prediction more robust. The generated saliency
image is the raw output by sliding the classifier on the whole image. We could
see that even a well-trained text/non-text classifier [13] has problem when back-
ground is noisy. However, by aggregating local context, our model gives much
more robust performance.

Fig. 6. The comparison of performance between a state-of-the-art text/non-text clas-
sifier proposed in [13], and our method in two challenging image in IC13 test set. From
left to right: (1) Original image; (2) The saliency image generated by [13]; (3) The
saliency image generated by our method; (4) Final detected text lines by our method.

3.2 Hard Example Mining

In this section, we are going to describe how we collect hard training samples.
This could also been seen as a way of bootstrapping. Mining hard examples is a
critical step for training accurate object detector, and here we focus on hard neg-
ative examples. One of the reasons is that most training examples cropped from
negative images have few geometric patterns. Training on these negative exam-
ples will make the model less robust to noisy backgrounds. So here we collect
more hard negative training data from two sources: (1) ImageNet: We specif-
ically collect images from several challenging topics, such as buildings, fences,
and trees, and windows. These are objects that typically cause troubles in text
detection, since their shapes are close to text. (2) Synthetic hard negative
samples: we also synthesized a large bunch of negative samples. These samples
are not texts but with similar structures as texts, such as stripes and clut-
tered rectangles. We follow a typical, iterative manner by training until the loss
becomes stable and testing on these data to collect hard examples.
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We found that this step improved the robustness of the text detector,
especially on some hard testing images. These hard examples are also used in
the later part for line refinement training.

3.3 Character Component Graph

Grouping text lines from regions is conducted after classification. This step differ-
entiates text detection and object detection. Previous methods [6] typically used
relatively heuristic rules to connect text components. This will cause troubles
when there are false positives regions. Here we treat it as an assignment prob-
lem on top of a character component graph, and the best assignment without
conflicts will be chosen based on scores calculated by several text line features as
well as several empirical and useful selection standards. In this section, we first
describe the ways of how we build the graph. Then we describe how we opti-
mize on the assignment of each character component. The proposed algorithm
is illustrated in Fig. 7.

Character Graph: We first build a connected graph on top of the extracted
regions, and each node represents a verified region, and each edge represents the
neighborhood relation of the text components. We define a function Sim which
calculates the similarity between two regions with several low level properties:

(1) Perceptual divergence p, which is calculated as the KL divergence between
the color histogram of two regions:

∑
i xp(i) ∗ log(xp(i)

yp(i)
) where x and y rep-

resent two regions and xp(i) represent the ith entry in its color histogram.
(2) Relative Aspect ratio: a = xAspectRatio

yAspectRatio
.

(3) Height ratio h = xHeight

yHeight
.

(4) Stroke width ratio s = xStrokeWidth

yStrokeWidth
, which is calculated by distance transform

on the original region.

We trained a logistic regression on these four region features extracted
from IC13 training set to determine whether two given regions are similar.
For each region, we further define its neighbor as: y ∈ N(x) if Dis(x, y) <
θ1 and Sim(x, y) > θ2,∀x, y ∈ R, where R represents all the regions that have
been verified by previous process, and N(x) represents neighbor of region x. Dis
means the distance between the center of the two regions. In our experiment, we
set threshold θ1 as 3 ∗ Max(xHeight, xWidth) where xHeight, xWidth means the
height and width of the region. We set θ2 as 0.5 to filter out regions with less
probability as being its neighbor.

Stable Pair: We first define stable pair as pair of regions x and y where they
belong to neighbor of each other, and they has a similarity score Sim(x, y) > 0.8.
In addition, their distance should be no more than twice the shortest distance
from all other neighbors to the region. This definition aims at obtaining more
“probable pairs”, since only pairs which “prefer” each other as their neighbors
will be considered as “stable”. After going through all the regions in O(n) time
complexity, we will obtain a set of stable pairs. Outliers are typically not able
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to form a stable pair with real characters, since real character will not prefer
an outlier as its neighbor. In the first row of image in Fig. 7, the defined stable
pair criterion successfully prevent generating vertical lines as possible candidate
lines. Note that 0.8 is selected empirically from SVT training set. The overall
performance is not too sensitive to it.

Optimization: In order to optimize on the assignment of each region to one
of lines, for each stable pair, we estimate its orientation based on their center
points, and then conduct a greedy search algorithm to find components that align
with the current line. Note that it is possible to find conflicting lines because two
lines might share the same region components. In order to resolve the conflict,
a score is calculated for each line based on the following properties: the aver-
age, standard deviation, max value, min value of the pairwise angle, perceptual
divergence, size ratio and distance of neighbor components along the line. We
will calculate these 16 features in total and a Random Forest [23] is trained to
give each line an alignment score. For conflict alignment, we will choose the the
best assignment. Here, several empirical but useful standards are also applied.
For example, assignment which creates more long lines will be preferred than
assignment which creates more short lines as shown in Fig. 7. This step aims at
resolving the different possible alignments and find true text lines.

Fig. 7. The proposed algorithm which could effectively resolve conflicted candidate
lines and find best line assignment of text regions. The final detected lines could be in
any orientation. From left to right: (a) The constructed character component graph.
(b) A set of generated stable pairs which will be used to create candidate lines. (c)
Candidate lines represented as different colored bounding boxes. (d) Detected text
lines. (Color figure online)

3.4 Line Extension and Refinement

After we generate lines of regions, a line refinement step is taken to finalize
the results. This step aims at two targets: (1) extend lines so as to find missing
components. (2) filtering out false positive and predict a tight oriented bounding
box. They aim at finding a better bounding box that cover the whole word and
it’s important for an end-to-end system which incorporates text recognition since
the performance of recognition highly relies on accurate bounding boxes.
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Gaussian Mixture Model Based Line Extension: Even with carefully
designed classifier and grouping algorithm, there still might be some letters in a
line that are not found in the previous steps. Here we propose a simple model
to recover the proposed lines.

The model is based on the assumption that lines of characters typically have
different color distribution with its direct background, and characters in one line
typically follow the same color distribution. The algorithm pipeline is shown in
Fig. 8. For each line that has been found by previous approaches with more than
2 regions, we crop the patch from the lines and estimate a GMM on the color
of the patch. The Gaussian component associated with foreground (text region)
is estimated by a voting mechanism: (1) we calculate the skeleton from the
region patch; (2) for all pixels in the skeleton patch, we obtain which Gaussian
component it belongs to by a simple voting mechanism conducted among these
pixels. The reason for only using skeleton pixels lies on the fact that pixels
that are close to the boundary are not accurate enough for color distribution
estimation. For each line, we consider an square image patch whose side length
is twice the height of the line, with its location on the two end of the lines. We
estimate the color distribution in the region and a MSER detector is conducted
on top of predicted color probability image. We filter out MSER regions whose
size is too large or too small when compared to the height of the line. We then
classify the retained region as being a text or not using the standard CNN
branch in TFLAN. If its probability is larger than 0.4, then we will group it
into the lines. If we find one additional character, the GMM is updated and
will try to find more characters until nothing is found. Previous methods [17,18]
used a graphcut algorithm on top of the extracted regions which serves as similar
purpose. However, if the graphcut is directly conducted on all the verified regions,
it is still in doubt that whether it will also create more false positives. Here we
use a more conservative method and only consider regions which could be easily
attached to the current line that we already found.

Fig. 8. Our proposed line extension pipeline: (a) The original image with the detected
lines; (b) Cropped line image patch we used for estimation of GMM; (c) The skeleton
of all the region components; (d) Cropped image patch whose color distribution needs
to be estimated; (e) Predicted color probability image. Each pixel of it is predicted
from the estimated GMM model; (f) MSER result on the estimation patch. Because
of the large contrast in the predicted image patch, there are only few bounding box
that we need to verify; (g) After running the standard CNN branch and non-maximum
suppression; (h) The final detected line. (Color figure online)
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Line Filtering and Sliding Window Regression: In this section, we propose
a novel joint line filtering and regression model. Our model is based on making
prediction in a sliding window manner on all the text lines that have been verified
in the previous steps. Existing methods [14] typically have two steps: (1) word-
level verification. (2) bounding box regression. A CNN model is used for filtering
and regression. Since fully connected layer only takes fixed sized input, the image
patch needs to be resized in order to fit into the network. However, the length of
text lines could vary according to the font, and number of characters. It is not
desirable to resize an image patch with a text line of 2 to 3 characters to the
same size as a text line with 10 characters. Instead, we consider joint regression
and filtering in a sliding window manner.

The proposed architecture is shown in Fig. 9(a). The CNN is taken directly
from the previous detection architecture. The proposed CNN model takes an
input of 48 × 64 color image patch, and gives 7 prediction. One prediction is
a simple part-of-word/non-word prediction which predicts whether the input
patch containing part of word, or several characters. It is trained with nega-
tive log likelihood loss. The rest of 6 values all represent vertical coordinates
because we are doing in a sliding window manner along the text line. Two of
them are the minimal and maximal vertical values of the text in the current
patch, and they are the same as the vertical coordinates that are predicted in
traditional bounding box regression. The other four values represents the min-
imal and maximal vertical values in left and right side of the patch which are
used to predict an oriented bounding box. Some training examples are shown in
Fig. 9(b). We train the regression model with standard mean square error loss:
MSE(x, y) = −∑

i(xi−yi)2. Where x, y represent the predicted coordinates, and
the ground truth coordinates, respectively. By predicting these four values, an
oriented bounding box could be estimated. Since there are only a few lines in an

Fig. 9. Our proposed line refinement illustration: (a) The proposed architecture which
used the CNN from detection part. Training is only on the fully connected layers for
classification and regression. (b) Several examples of training images. The red lines are
drawn from minimal and maximal vertical coordinates. The green dots are the vertical
coordinates for oriented bounding box. (c) Several testing result images. The oriented
bounding box is drawn with green lines instead of dots for better visualization of the
orientation. (Color figure online)
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image, even sliding window will not need much computation. Several predicted
results have been shown in Fig. 9(c) on images cropped from IC13 and SVT data
sets.

In order to refine the text lines based on the proposed architecture, we first
crop the text line patch from the image, and resize the height of the text line to
48. We slide a window of height 48 and width 64 on the cropped patch. Back-
ground noise lines will be filtered out by part-of-word/non-word classification. If
the patch is predicted as part-of-word by the classifier, we will perform the ori-
ented bounding box regression on it. A step by step example is shown in Fig. 10.
Here we only show lines with text on them.

Fig. 10. Our proposed line refinement pipeline. (a) For each cropped lines, we do sliding
window prediction and merge the results. (b) Several line regression results based on
the proposed framework. The red lines correspond to standard regression, and the green
lines represent oriented regression. (Color figure online)

4 Experiments and Evaluation

In this section, we present an evaluation of the proposed method on several
benchmark datasets. We report the precision, recall and F-measure scores on
our detection results.

Implementation Details: We implemented our algorithms in python and torch
7 [24] on a work station with 64 GB RAM and Nvidia GPU tesla k40 and 16
processors (3000 MHz). All the generation of region proposals and post process-
ing with different channels are parrallized.

ICDAR Robust Reading: We tested our algorithm on IC13 and IC03 testing
sets. IC13 and IC03 testing sets contain 233 and 251 testing images, respec-
tively. For IC13, it provides an online evaluation system where we evaluated our
proposed method. For IC03, we evaluate our result according to the metric in
[25]. The results are shown in Table 1. Evaluation shows that our algorithm gives
good performance in both data sets.

Street View Text: The SVT data set contains 249 testing images used for
evaluation. It was first introduced by Wang and Belongie [31]. One of the prob-
lems om the data set is that it is not fully annotated: some text in the image
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Table 1. Localization performances on: left: IC13 (%), right: IC03 (%) data sets. Bold
number outperforms previous methods. ‘Our model no post’ represents final results
without line extension and refinement steps [5,6,9,16–18,26–30].

method precision recall F-measure

Neumann[5] 73 65 69
Shi[18] 83 63 72
Bai et[26] 79 68 73
Zamberletti[9] 86 70 77
Tian[27] 85 76 80
Zhang[28] 88 74 80

Our model no post 89 73 80
Our model 90 75 81

method precision recall F-measure

Li[17] 79 64 71
Yao[16] 69 66 67
Kim[29] 78 65 71
Yi[30] 73 67 66
Epshtein[6] 73 60 66
Zamberletti[9] 71 74 70

Our model 84 70 76

are not included in the annotation. This problem has been mentioned in [14],
and we call this annotation as partial annotated. Our proposed algorithm could
efficiently detect most of the text in images and thus the unlabeled text will
decrease the precision of detection result and makes it hard to compare with
other methods. So we manually labeled all the text in the images following sim-
ple rules: (1) text is not too blurry to read by human; (2) it contains more than
2 characters. We call this version fully annotated dataset and we tested our algo-
rithm on both versions of the dataset for evaluation. The performance is shown
in Table 2. Figure 11 illustrates several examples of partial annotated dataset,
fully annotated dataset as well as our detection results. Experiments on the fully
annotated dataset shows that our detection algorithm have good performance in
SVT dataset as well.

Table 2. Text detection performance on SVT. The bold results outperforms the pre-
vious state-of-the-art results. (1) Partial annotated : detection recall measured with the
partial annotation. The accuracy here does not makes sense, so we only tested its recall.
(2) Fully annotated : detection precision, recall, F-measure with full annotation.

Partial annotated Fully annotated

Recall Precision Recall F-measure

Jaderberg et al. [14] 0.71 - - -

Our model 0.75 0.87 0.73 0.79

Limitation: Our proposed method achieved fairly good results in terms of pre-
cision, recall, and F-measure on standard datasets. However, it can still fail
on several extremely challenging cases: (1) Text lines that are too blurry will
cause problem in accurate region proposal generation as well as classification.
(2) Strong reflection, too low contrast will still cause troubles in the detection.
(3) Curved text lines might cause incomplete detection. Figure 12 shows several
failure cases that our algorithm cannot get good results. They are all challenging
images in terms of text reading, and some of them are even hard for human to
read.
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Fig. 11. For each pair of images, left: the original incomplete annotation, right: detec-
tion result of our model as well as the fully annotated ground truth. The fully annotated
dataset provides oriented bounding box annotation. Green boxes represent our detected
result which matches the ground truth. Yellow boxes represent the ground truth. (Color
figure online)

Fig. 12. Example images where we failed to detect all the lines or detected the wrong
lines. The green boxes are the text lines that are correctly detected. The blue boxes
are text lines that we fail to detect, and the red boxes are false positives, or incomplete
detection. (Color figure online)

5 Conclusions and Future Work

Here we proposed a novel scene text detection algorithm which efficiently aggre-
gates local context information into detection as well as a novel two step text
line refinement. Experiments show that our pipeline works well on several chal-
lenging images and achieved state-of-the-art performance on three benchmark
data sets. Our future work will focus on extending our work in order to combine
scene text recognition into an end-to-end scene text reading system. An image
indexing system using text information retrieval will be implemented to help
the visually impaired with shopping. Other applications for complex text such
as sign reading will also be explored.
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Abstract. High-dimensional descriptors have been widely used in
object recognition and image classification. How to quickly index high-
dimensional data into binary codes is a challenging task which has
attracted the attention of many researchers. Most existing hashing solu-
tions for high-dimensional dataests are based on unsupervised schemes.
On the other hand, existing supervised hashing methods cannot work
well on high-dimensional datasets, as they consume too much time
and memory to index high-dimensional data. In this paper, we propose
a supervised hashing method Bilinear Discriminant Analysis Hashing
(BDAH) to solve this problem. BDAH leverages supervised information
according to the idea of Linear Discriminant Analysis (LDA), but adopts
bilinear projection method. Bilinear projection needs two small matrices
rather than one big matrix to project data so that the coding time and
memory consumption are drastically reduced. We validate the proposed
method on three datasets, and compare it to several state-of-the-art hash-
ing schemes. The results show that our method can achieve compara-
ble accuracy to the state-of-the-art supervised hashing schemes, while,
however, cost much less time and memory. What’s more, our method
outperforms unsupervised hashing methods in accuracy while achieving
comparable time and memory consumption.

1 Introduction

Nearest Neighbor (NN) search is a basic and important step in image retrieval.
For a large scale dataset of size n, the complexity of NN search O(n) is too high
for big data processing. To solve this problem, approximate nearest neighbor
(ANN) methods have been proposed, in which hashing is a class of well-behaved
methods. The basic idea of hashing is to use binary code to represent high-
dimensional data, with similar data pairs having smaller Hamming distance of
binary codes. Then the task of finding the nearest neighbors of a data point
can be transformed into finding the most similar hash codes. With hashing,
we only need to apply XOR operations between binary hash codes, rather than
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 297–310, 2017.
DOI: 10.1007/978-3-319-54193-8 19
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calculating the Euclidean distances between data vectors which involves frequent
addition and multiplication operations.

To calculate proper hash codes, we should construct a mapping from
high-dimension Euclidean space to Hamming space and preserve the original
Euclidean distance of data in the Hamming space. There are already many
works on hash code learning. According to leveraging supervised information
or not, hashing methods can be classified into supervised hashing methods [1–7]
or unsupervised hashing methods [8–15]. Hashing methods can also be divided
into data-dependent [2,4–6,9,11,16,17] and data-independent [8,12,13] depend-
ing on whether to use training data to generate hash codes or not.

A large number of hashing methods are based on linear projection and 0–1
quantization. A simple and basic data-independent method is Locality Sensitive
Hashing (LSH) [8]. LSH is based on generating random linear projection vectors
in the Euclidean space. After projection on one vector, data are quantized into 0
or 1 by its sign, consequently generating one bit of hash code. This method
can also be comprehended as hyperplane partitioning the Euclidean space.
A hyperplane correspond to one projection vector and data points on one side
of the hyperplane are coded 0, while at the other side are coded 1. LSH is easy
to implement and successfully reduces the NN search to sublinear query time
with acceptable accuracy. However, because the hyperplanes are randomly set
and not depend on the dataset, we need longer codes to achieve accuracy. To
overcome this shortcoming, many data-dependent methods have been proposed,
such as SSH [2] and ITQ [11], which try to learn projection from the distribution
of the dataset. They achieved higher accuracy than LSH.

In projection based hashing schemes, dimension of projection vector is the
same as the dimension of the original data. Nowadays, features of thousands of
dimensions appear with high retrieval and classification accuracy, such as Fisher
Vectors (FV) [18], Vectors of Locally Aggregated Descriptors (VLAD) [19] and
Deep Neural Networks Features (DNN) [20]. Projection vectors for these data
are also high-dimensional. What’s more, hash codes of these high-dimensional
datasets are also longer to ensure accuracy. As a consequence, the projection
matrix is huge for high-dimensional dataset, and more time is needed to calculate
hash codes as well as train the projection matrix. Several works are concentrating
on learning hash codes for high-dimensional data [21–23]. However, they are all
unsupervised methods without utilizing supervised information, and supervised
hashing scheme for high-dimensional datasets has seldom be studied. Existing
supervised hashing schemes like Kernel-Based Supervised Hashing (KSH) [5] and
Supervised Discrete Hashing (SDH) [6] will cost too much time and memory to
calculate hash codes. They are unfit for high-dimensional datasets.

In this papaer, we propose a supervised hashing scheme specific for high-
dimensional datasets, and we name it Bilinear Discriminant Analysis Hashing
(BDAH). In the dimension reduction part, we utilize a bilinear projection model
from 2DLDA [24] to minimize within-class distance and maximize between-class
distance of projected data. According to 2DLDA, we resize long 1-D vectors
into 2-D matrices and use two projection matrices to project the 2-D matri-
ces. In this way, although the number of matrices increases, total elements in
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the projection matrices are drastically reduced, and meanwhile the time and
memory consumption for hash code calculation is reduced. Then we optimize
the two projection matrices iteratively. After projecting the data, we quantize
the projected vectors into binary codes. To minimize quantization loss, Iterative
Quantization [11] is adopted to calculate an optimal rotation matrix.

There are three contributions in this paper. Firstly, BDAH projects data in
2-D form, so it can better protect the inner structure of 2-D form descriptors such
as LLC [25] and VLAD [19]. Secondly, bilinear projection drastically reduces time
and memory cost for hash code generation, so it is suitable for hashing on high-
dimensional dataset. Finally, our BDAH is a supervised hashing scheme, and the
utilization of label information help to get better retrieval accuracy of the hash
codes than unsupervised hashing schemes. We validate the effectiveness of our
BDAH on 3 datasets: AwA [26], MNIST [27] and ILSVRC2010 [28], comparing
to CCA-ITQ [11], KSH [5], BPBC [21], CBE-opt [22] and PCA-ITQ [11]. The
experiments show that our method reduces time and memory consumption while
keeping comparable accuracy to other state-of-the-art hashing schemes.

The rest of this paper is organized as follows. Section 2 introduces related
work on high-dimensional data hashing. Section 3 describes the technical process
of BDAH. Section 4 introduces our experiments and the performances of our
proposed methods. Finally, conclusions are drawn in Sect. 5.

2 Related Work

2.1 Hashing Schemes for High-Dimensional Dataset

Recently, several works have been reported which aim at accelerating high-
dimensional projection process in different ways [21–23]. The essence of these
method is to reduce the actual number of variables in the projection matrix.
However they are all unsupervised hashing schemes and cannot leverage super-
vised information, so they can’t achieve particularly high performance.

Bilinear Projection based Binary Codes (BPBC) [21] reshapes the data
vectors into matrices, and learns the projection matrix (orthogonal projection
matrix) with the 2-D data form. Then BPBC can use two small projection matri-
ces instead of one big projection matrix. In this way, the size of rotation matrix
decreases from n2 to n2

1 + n2
2(n1 + n2 = n).

Circulant Binary Embedding (CBE) [22] assumes that the rotation matrix
has circulant inner structure and transforms the linear projection into form of
circulant convolution. The elements in the projection matrix of CBE is con-
structed by one of the row vectors in the matrix, so the storage of projection
matrix reduces to the size of a vector. Then it uses FFT to speed up the cod-
ing process. For code training, CBE adds a regularizer in the quantization loss
function to make the rotation matrix approximate orthogonal matrix. CBE is
quicker than BPBC in hash coding.

Sparse Projections approach (SP) [23] adds a sparse regularizer to the pro-
jection matrix in the quantization loss function. The sparse projection matrix
reduces the redundant information in the high-dimensional projection matrix, so
SP can achieve comparable accuracy to ITQ but has much less encoding time.
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2.2 Linear Discriminant Analysis

For a d-dimensional training set X = {x1,x2, . . . ,xn} belonging to c differ-
ent classes Π1,Π2, . . . ,Πc, LDA [29] tries to project the data points into a
b-dimensional space with a linear projection matrix W ∈ R

d×b, in which data
points in the same class become nearer while data points in different classes
becomes farther. Suppose there are ai different data points in class Πi, we get
our objective formulation

JL(W ) = max(Dw)−1Db, (1)

where

Dw =
c∑

i=1

∑

j∈Πi

‖WTxj − WTmi‖2F (2)

is the within-class distance, and

Db =
c∑

i=1

ai‖WT (mi − m0)‖2F (3)

is the between-class distance.
Equation (1) can be further derived into

JL(W ) = max trace((WT SwW )−1WT SbW ). (4)

This optimization problem is equivalent to the generalized eigenvalue prob-
lem Sbwi = λiSwwi, where λi denotes the ith largest eigenvalue and wi is its
corresponding eigenvector as well as the ith column of the projection matrix W .
We want the projected space to be b-dimensional, so we pick b eigenvectors.

3 Bilinear Discriminant Analysis Hashing

For a d-dimensional training set {x1,x2, . . . ,xn} having c classes Π1,Π2, . . . , Πc,
we want to map the data vectors into b-bit hash codes {b1, b2, . . . , bn}, where
data in the same class have smaller hamming distances while data in different
classes having larger hamming distances. It is too hard for us to compute the
projection directly. So we relax the problem into two steps. Firstly, we project the
data vectors into a lower b-dimensional vectors {y1,y2, . . . ,yn} to make within-
class distance smaller and between-class distance higher (Sect. 3.1). Secondly, we
quantize the b-dimensional data into binary codes (Sect. 3.2).

3.1 Learning 2DLDA Projection Matrices

When there is a need to project a data vector x ∈ R
d to a lower b-dimensional

space, people often use a matrix W ∈ R
d×b to multiply the data vector x, and

get the low-dimensional projected vector y ∈ R
b:

y = WTx. (5)
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If the dimension of the data d is very high, the projection matrix W will be very
large as well.

In our method, we adopt another projection form [24]. Firstly, we need to
express data vector x in a matrix form. Then the dataset changes from a vector
set into a matrix set {A1, A2, . . . , An} ∈ Rd1 × d2. The elements in matrix Ai

are the same as the elements in vector xi, so d = d1 × d2. And x = vec(A)
where vec(A) denotes converting the matrix A into a vector by concatenating
the columns of A.

For the matrix set {A1, A2, . . . , An}, the projection can change into the fol-
lowing form

y = vec(LT AR). (6)

In Eq. (6), L ∈ R
d1×b1 and R ∈ R

d2×b2 are the projection matrices, where
b = b1 × b2. We call it bilinear projection.

It is easy to prove that

vec(LT AR) = (RT ⊗ LT )vec(A) = ŴTx,

where ⊗ denotes the Kronecker product. So the bilinear projection with two
projection matrices is equivalent to common projection with one matrix.

In common projection method, the projection matrix W have d∗b = (d1d2)∗
(b1b2) = d1b1 ∗ d2b2 elements, the complexity of projection is O(d1d2). But
in bilinear projection method, two projection matrices L and R have d1b1 +
d2b2 elements in total, and the bilinear projection procedure has O(d21d2 + d22)
time complexity. We can see that both the time and memory complexity of the
projection procedure are drastically reduced.

With two bilinear projection matrices, the between-class distance Db and
within-class distance Dw in LDA turn into the following form

Db =
c∑

i=1

ai‖LT (Mi − M0)R‖2F , (7)

Dw =
c∑

i=1

∑

A∈Πi

‖LT (A − Mi)R‖2F , (8)

where

Mi =

∑
j∈Πi

Aj

n
(1 � i � c) (9)

and

M0 = frac
n∑

i=1

Ain. (10)

Db and Dw can be further derived into the following form

Db = trace(
c∑

i=1

aiL
T (Mi − M0)RRT (Mi − M0)T L), (11)
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Dw = trace(
c∑

i=1

∑

A∈Πi

LT (A − Mi)RRT (A − Mi)T L). (12)

We want to maximize the between-class distance Db while minimize the
within-class distance Dw. That is to maximize J(L,R) given below.

J(L,R) = max trace((Dw)−1Db) (13)

It is difficult to optimize L and R simultaneously. So we optimize L and R
iteratively.

Fix R and update L.
With fixed R, we can derive our object function J(L)

JL(L) = max trace((LT SR
wL)−1(LT SR

b L)) = max trace(SR
w )−1SR

b ), (14)

where

SR
b =

c∑

i=1

ai(Mi − M0)RRT (Mi − M0)T , (15)

SR
w =

c∑

i=1

∑

A∈Πi

(A − Mi)RRT (A − Mi)T . (16)

Then we get the optimized L by doing eigen decomposition on the matrix
(SR

w )−1SR
b .

Fix L and update R.
Analogously, with fixed L, we can derive our object function J(R)

J(R) = max trace((RT SL
wR)−1(RT SL

b R)), (17)

where

SL
b =

c∑

i=1

ai(Mi − M0)T LLT (Mi − M0), (18)

SL
w =

c∑

i=1

∑

A∈Πi

(A − Mi)T LLT (A − Mi). (19)

The iteration stops after convergence and we got the locally optimized L and R.

3.2 Quantization into Binary Codes

After the 2DLDA projection L and R are recovered, we can calculate the pro-
jected vectors yi = vec(LT AiR). The low-dimensional dataset is denoted by

Y = [y1,y2, . . . ,yn]T . (20)

Next, we try to quantize Y into binary codes B ∈ {1,−1}n×b. The most
direct method is just using the sign function. That is

B = sign(Y ). (21)
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Direct quantization may cause great loss as explained in [11]. So we try to
calculate an optimized rotation matrix U ∈ R

b×b to minimize the quantization
loss Q.

Q = ‖B − Y U‖F (22)

UUT = I

Algorithm 1. Training process of Bilinear Linear Discriminant Hashing
Data: training data X, code length b, resized matrix size d1,d2, column of L –

b1, column of R – b2, number of iteration iter
Result: projection matrices L and R, rotation matrix U , hash codes of training

set B
Resize the dataset X into matrix set {A1, A2, ..., An};
Calculate the mean of the dataset M0 and the mean of each class Mi;

R = (Ib2 ,0)T (Ib2 is a b2 × b2 identity matrix);
for j = 1, ..., iter do

Calculate SR
b , SR

w by Eqs. (15), (16);

Do eigen decomposition on (SR
w )−1SR

b and pick b1 eigenvectors
{l1, l2, ..., lb1} with the largest b1 eigenvalues ;

L = [l1, l2, ..., lb1 ];

Calculate SL
b , SL

w by Eqs. (18), (19);

Perform eigen decomposition on (SL
w)−1SL

b and pick b2 eigenvectors
{r1, r2, ..., rb1} with the largest b2 eigenvalues ;

R = [r1, r2, ..., rb1 ];

end
for j = 1, ..., n do

yj = vec(LTAiR);
end

Y = [y1,y2, ...,yn]T ;
Initialize U with a random orthogonal matrix;
for j=1,...,50 do

Update B by Eq. (24);
Update R by Eq. (25);

end

bi = RT vec(LTAiR) (i from 1 to n);

B = [b1, b2, ...bn]T ;

And the solution is like the iterative process in [11]. We do the iterations
between B and U for several times and get a locally optimal solution.

Fix U and update B.
For a fixed U , we can further derive Eq. (22) into

Q = ‖B‖2F + ‖Y ‖2F − 2tr(BUT Y T )

= −2tr(BUT Y T ) + const. (23)
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Because B and Y is fixed, Eq. (23) is equivalent to

max tr(BUT Y T ).

And we can derive the optimal B from

B = sign(Y U). (24)

Fix B and update U .
For a fixed B, Eq. (22) becomes the classical Orthogonal Procrustes Prob-

lem [30]. Compute SVD of the matrix BT Y = SΩŜT and we get the optimal
U by

U = ŜST (25)

After the Q converges, we get the locally optimal solution of Eq. (22).
Here 50 iterations of optimization are adopted, which is enough to achieve
convergence [11].

The above is the training process of our BLDH. Algorithm1 is the pseudo-
code on training of BLDH. Through training, we get the bilinear projection
matrice L, R and rotation matrix U . For a new query q, we can get its hash
code by first resize it to a d1 × d2 matrix Qq and then calculate by the equation

b = sign(UT vec(LT QqR)). (26)

3.3 Addition LDA Projection for Further Accuracy

To achieve further accuracy of our hash code, we can project the data once
more with LDA after the bilinear projection of 2DLDA [24]. For a d-dimensional
dataset {xi}(i = 1 . . . n), we want to get b-bit hash code. We can first project
the data into b1 ∗ b2-dimensional vectors {yi}(i = 1 . . . n) by bilinear projection
of 2DLDA (Sect. 2.2), where b1 ∗ b2 = b. Then we project {yi}(i = 1 . . . n) into
b-dimensional vector {zi}(i = 1 . . . n) by LDA (Sect. 2.2). Finally, we quantize
{zi}(i = 1 . . . n) into binary code (Sect. 3.2). In this paper, we denote this hash-
ing scheme with 2-step projection BDAH0. Experiments show that, combined
with LDA, BDAH0 can achieve much better retrieval accuracy.

4 Experiment

To test the effectiveness of our method, we conducted experiments on 3 datasets:
AwA [26], CIFAR-10 [31] and ILSVRC2010 [28]. Our BDAH and BDAH0

were compared against several state-of-the-art methods including two supervised
method CCA-ITQ [11] and KSH [5], and three unsupervised methods PCA-
ITQ [11], BPBC [21] and CBE-opt [22]. We used the publicly available codes of
these methods. All our experiments were run on a PC with a 3.5 GHz Intel Core
CPU and 32 GB RAM.
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4.1 MNIST: Retrieval with Raw Image

The MNIST [27] dataset has 60000 28*28 small greyscale images of handwritten
digits from ‘0’ to ‘9’. Each small image is represented by a 784-dimensional
vector and a single digit label. Each 784-dimensional vector is stretched from
a corresponding 28*28 greyscale image. We used 54000 random images as the
training set, and 6000 random images as the query samples.
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Fig. 1. Results on the MNIST dataset.

We set the hash code length to 16 bits, 36 bits, 64 bits and 100 bits in this
dataset. Figure 1 reports the results on this dataset. Table 2 shows the train-
ing time and coding time of each method. In supervised methods, our BDAH0

exceeds CCA-ITQ in mAP, but needs a little more time on binary coding.
BDAH0 has lower mAP than KSH, but consumes much less time than KSH.
For unsupervised methods, BDAH0 and BDAH achieve comparable time con-
sumption to them while having much higher mAP.

4.2 AwA: Retrieval with DNN Features

Animals with Attributes (AwA) [26] is a dataset with different kinds of animals.
It has 30475 animal images belonging to 50 animal classes. In the experiments, we
used a subset containing 9460 images. A seven-layer CaffeNet [20] was adopted
to extract 4096-dimensional feature from AwA. The 4096-dimensional output
of the fully-connected layer was used as our feature to calculate hash codes. In
our BDAH0 and BDAH methods and BPBC in [21], we resized every DNN-4096
feature into a 64*64 matrix and then used the matrices to generate hash codes
in our retrieval experiment.

We tested all methods on AwA with 16 bits, 36 bits, 64 bits, 100 bits and
256 bits codes. The memory consumption of indexing is reported on Table 1. For
BDAH0, BDAH and BPBC, memory consumption is bilinear projection matri-
ces, and for PCA-ITQ and CCA-ITQ, is the full projection matrix. KSH needs to



306 Y. Liu et al.

Table 1. Memory consumption (KB) to hash new data into binary codes on AwA
datset.

Methods 16 bits 36 bits 64 bits 100 bits 256 bits

BDAH0 16 29 46 67 152

BDAH 6 16 40 88 528

BPBC 4 6 8 10 16

KSH 9640 9687 9752 9837 10202

CBE-opt 64 64 64 64 64

PCA-ITQ 512 1152 2048 3200 8192

CCA-ITQ 512 1152 2048 3200 8192

Table 2. Time consumption (milliseconds) of different methods on the MNIST dataset.

Methods 16 bits 25 bits 64 bits 100 bits

BDAH0 Training 8254.40 9373.46 9930.19 11624.55

Test 4.18 4.95 5.03 6.31

BDAH0 Training 8541.15 9172.20 9463.68 10156.50

Test 3.93 5.95 5.28 6.70

BDAH Training 8026.10 8865.57 9219.09 10324.81

Test 3.42 3.88 4.47 5.34

KSH Training 38055.16 72090.40 128932.07 199796.28

Test 16.70 17.67 16.76 17.41

CCA-ITQ Training 625.52 1126.64 1901.62 3211.55

Test 1.74 2.10 3.86 4.98

PCA-ITQ Training 441.86 669.27 1077.90 1815.74

Test 1.02 1.26 2.08 3.34

store several anchor points and a kernel projection matrix, thus acquiring more
memory. CBE-opt has the least memory consumption because it only needs to
store a vector, rather than matrices in other methods. We can see clearly that,
our BDAH0 and BDAH require less memory than PCA-ITQ and CCA-ITQ.
The longer codes we needs, the more memory consumption BDAH0 and BDAH
save. Figure 2 shows the P-R curves and time vs. mAP for the above-mentioned
methods on AwA and Table 3 shows the training time and coding time of each
method. BDAH0 still shows good balance in accuracy and time consumption.
KSH is still best in mAP, but worst in indexing time than all the other methods.
CCA-ITQ has the minimum coding time while PCA-ITQ trains faster, but both
PCA-ITQ and CCA-ITQ cannot achieve as good accuracy as BDAH0.
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Fig. 2. P-R curves and mAP vs time for different methods with experiments on the
AwA dataset.

4.3 ILSVRC2010: Retrieval with VLAD Features

ILSVRC2010 is a subset of ImageNet [28]. ImageNet is a hierarchical image
dataset organized following the hierarchy of WordNet [32]. In our experiments,
we randomly chose 50 classes, and picked 100 images per class as the training set,
and 10 image per class as the test set. On the chosen data in ILSVRC2010, we
utilized the publicly available SIFT features, clustered them into 500 centers and
calculated 64000-dimensional VLAD features of each image. In our experiments,
we used 64000-dimensional VLAD feature vectors to calculate hash codes.
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Table 3. Total training time (milliseconds) of different methods on the AWA dataset.

Methods 16 bits 25 bits 64 bits 100 bits 256 bits

BDAH0 Training 46043.92 68347.63 69742.61 70820.15 79177.46

Coding 3.30 5.19 4.95 5.72 8.12

BDAH Training 43357.59 45544.10 46823.71 69739.86 75129.19

Coding 1.48 2.05 1.83 5.42 5.91

BPBC Training 19041.92 22239.26 23627.65 59662.54 65745.51

Coding 3.40 4.09 4.85 7.65 9.64

KSH Training 33409.12 73810.13 132546.38 20771.29 524378.30

Coding 21.91 21.48 22.25 21.43 22.39

CBE-opt Training 255049.87 255402.27 254791.00 258713.2595 253481.55

Coding 59.35 51.08 49.52 56.63 52.14

PCA-ITQ Training 3650.91 4479.65 5570.59 6892.80 16345.93

Coding 1.10 1.25 1.96 2.30 5.75

CCA-ITQ Training 20432.65 20912.83 21528.06 23202.85 32025.13

Coding 0.82 3.01 2.92 3.78 9.06
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Fig. 3. Results on the ILSVRC2010 dataset.

We set the hash code length to 16 bits, 64 bits and 256 bits and 1024 bits on
this dataset. CCA-ITQ and PCA-ITQ need to calculate the covariance matrix
of the dataset. The 64000 dimension of this dataset is too high that our storage
cannot contain the covariance matrix. So we did not compare with these two
methods in this experiment. The results of retrieval on ILSVRC2010 are reported
in Fig. 3. Compared to supervised methods, our BDAH0 indexes more quickly
than KSH. Compared to unsupervised methods, BDAH0 performs better than
BPBC in accuracy but consumes comparable time and memory as BPBC. Table 4
shows the specific training time and coding time of each method.
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Table 4. Time consumption (seconds) of different methods on the ILSVRC2010
dataset.

Methods BDAH0 BDAH BPBC KSH

bit Training Coding Training Coding Training Coding Training Coding

16 bits 488.74 0.32 482.98 0.31 151.18 0.35 39.65 0.87

64 bits 507.35 0.34 494.52 0.33 163.51 0.36 138.60 0.89

256 bits 543.44 0.41 514.64 0.36 182.84 0.39 553.51 0.90

1024 bits 611.91 0.48 579.24 0.40 237.09 0.43 2193.67 0.93

5 Conclusions

In this paper, we have introduced a supervised hashing scheme with bilinear
projection. With bilinear projection, our method can better deal with high-
dimensional dataset with less time and memory consumption than traditional
supervised hashing schemes. Furthermore, our method processes input data in
2D form, thus it is very convenient to index 2-D structure raw-images and
features. The experiments show that our method exceeds other unsupervised
hashing schemes for high-dimensional data in accuracy. Moreover, our hash-
ing method achieves comparable accuracy than other supervised methods while
occupying much less memory and time.

Acknowledgement. This work was supported by NSFC project No. 61370123 and
BNSF project No. 4162037.
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Abstract. Depth scans acquired from different views may contain nui-
sances such as noise, occlusion, and varying point density. We propose
a novel Signature of Geometric Centroids descriptor, supporting direct
shape matching on the scans, without requiring any preprocessing such
as scan denoising or converting into a mesh. First, we construct the
descriptor by voxelizing the local shape within a uniquely defined local
reference frame and concatenating geometric centroid and point density
features extracted from each voxel. Second, we compare two descriptors
by employing only corresponding voxels that are both non-empty, thus
supporting matching incomplete local shape such as those close to scan
boundary. Third, we propose a descriptor saliency measure and com-
pute it from a descriptor-graph to improve shape matching performance.
We demonstrate the descriptor’s robustness and effectiveness for shape
matching by comparing it with three state-of-the-art descriptors, and
applying it to object/scene reconstruction and 3D object recognition.

1 Introduction

The recent development in depth sensing devices offers a convenient and flexible
way to acquire depth scans of an object or a scene that represent their partial
shapes. In practice, we need to register these scans into a common coordinate
system to better understand the object’s or scene’s geometry [1] or compare
known object models with these scans for 3D object recognition [2]. All these
applications require solving the partial shape matching problem [3,4].

Depth scans (i.e., 3D point clouds) lack topology information of the shape
and usually contain noise, holes, and/or varying point density. To facilitate par-
tial shape matching, one common way is to convert the point cloud into a mesh
to remove the noise and fill the holes, and then perform shape matching on the
mesh instead [5–8]. Although this conversion simplifies the matching process, it
brings several drawbacks. First, original partial shape could be modified and/or
downsampled by the conversion, e.g., when smoothing the depth scan for denois-
ing. Second, the mesh topology generated by the conversion could be different
from the real one such as incorrectly filled holes, misleading the shape matching.

Therefore, other researchers seek to perform shape matching directly on the
point cloud data. This is generally achieved by representing and matching the
scans using local shape descriptors. Although existing descriptors [9–12] work
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 311–326, 2017.
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well on clean depth scans, they have difficulties dealing with original scans
acquired under various conditions such as occlusion, clutter, and varying light-
ing. This is because these descriptors are sensitive to noise and/or varying point
density due to their encoded shape features such as point density [9,10] and
surface normals [11], or are sensitive to scan boundary and holes due to their
descriptor comparison scheme that is based on the vector distance [11,12].

To address above limitations, we propose a Signature of Geometric Centroids
(SGC) descriptor for partial shape matching with three novel components:

– A Robust Descriptor. We construct the SGC descriptor by voxelizing the local
shape within a uniquely defined local reference frame (LRF) and concatenating
the geometric centroid and point density features extracted from each non-
empty voxel. Thanks to the extracted shape features, our descriptor is robust
against noise and varying point density.

– A Descriptor Comparison Scheme. Rather than simply computing the Euclid-
ean distance between two descriptors, we compute a similarity score between
two descriptors based on comparing the extracted features from correspond-
ing voxels that are both non-empty. By this, the comparison scheme supports
shape matching between local shape that are incomplete.

– Descriptor Saliency for Shape Matching. Different from keypoint detection [13]
that identifies distinct points locally on a single scan/model, we propose
descriptor saliency to measure distinctiveness of SGC descriptors across all
input scans and compute it from a descriptor-graph. Guided by the descriptor
saliency, we improve shape matching performance by intentionally selecting
distinct descriptors to find corresponding feature points.

We evaluate the robustness of SGC against various nuisances including scan
noise, varying point density, distance to scan boundary, occlusion, and the effec-
tiveness of using SGC and descriptor saliency for partial shape matching. Experi-
mental results show that SGC outperforms three start-of-the-art descriptors (i.e.,
spin image [9], 3D shape context [10], and signature of histograms of orienta-
tions (SHOT) [11]) on publicly available datasets. We further apply SGC to two
typical applications of partial shape matching, i.e., object/scene reconstruction
and 3D object recognition, to demonstrate its usefulness in practice.

2 Related Work

Shape Matching. Shape matching aims at finding correspondences between
complete or partial models by comparing their geometries. Many shape matching
approaches apply global shape descriptors to characterize the whole shape, for
example, using Reeb graphs [14] or skeleton graphs [15] for articulated objects
and shape distributions [16] for rigid objects. However, depth scans acquired from
each single view usually have significant missing data. Matching these partial
shapes is a difficult task because, before computing the correspondences of the
shapes, we first need to find the common portions among them [1]. This requires
a careful design of local shape descriptors [17] that are less sensitive to occlusion.
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Local Shape Descriptors. Local shape descriptors can be classified as low-
and high-dimensional, according to the richness of encoded local shape infor-
mation. Low-dimensional descriptors such as surface curvature [18] and surface
hashes [19], are easy to compute, store, and compare, yet have limited descrip-
tive ability. Compared with them, high-dimensional descriptors provide a fairly
detailed description of the local shape around a surface point. We classify high-
dimensional descriptors into three classes according to their attached LRF [20].

Descriptors without an LRF. Early local shape descriptors are generated by
directly accumulating some geometric attributes into a histogram, without build-
ing an LRF. Hetzel et al. [21] represented local shape patches by encoding three
local shape features (i.e., pixel depth, surface normals, and curvatures) into a
multi-dimensional histogram. Yamany et al. [22] described local shape around a
feature point by generating a signature image that captures surface curvatures
seen from that point. Kokkinos et al. [23] generated an intrinsic shape context
descriptor by shooting geodesic outwards from a keypoint to chart the local
surface and creating a 2D histogram of features defined on the chart.

Due to the missing of an LRF, the correspondence built by matching the
descriptors is limited to the point spatial position only. Thus, to match two scans
by estimating a rigid transform, at least three pairs of corresponding points need
to be found, making the space of searching corresponding points large.

Descriptors with a non-unique LRF. Researchers later attached an LRF for local
shape descriptors to enrich the correspondence with spatial orientation. By this,
two scans can be matched by finding a single pair of corresponding points using
the descriptors and estimating the transform based on aligning associated LRFs.
However, since the attached LRF is not unique, a further disambiguation process
is required for the generated transform.

Johnson and Hebert. [24] proposed a spin image descriptor by spinning a
2D image about the normal of a feature point and summing up the number of
points that fall into the bins of that image. Frome et al. [10] proposed a 3D shape
context (3DSC) descriptor by generating a 3D histogram of accumulated points
within a partitioned spherical volume centered at a feature point and aligned
with the feature normal. Mian et al. [5] proposed a 3D tensor descriptor by
constructing an LRF from a pair of oriented points and encoding the intersected
surface area into a multidimensional table. Zhong [25] proposed intrinsic shape
signatures by improving [10] based on a different partitioning of the 3D spherical
volume and a new definition of LRF with ambiguity.

Descriptors with a unique LRF. Recently, researchers constructed a unique LRF
from the local shape around a feature point and further describe the local shape
relative to the LRF. Thanks to the unique LRF, the transform to match two
scans can be uniquely defined based on aligning corresponding LRFs.

Tombari et al. [11] proposed a SHOT descriptor by concatenating local his-
tograms of surface normals defined on each bin of a partitioned spherical volume
aligned with a unique LRF. Guo et al. [7] constructed a RoPS descriptor by
rotationally projecting the neighboring points of a feature point onto 2D planes
and calculating a set of statistics within a unique LRF. Guo et al. [12] later
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generated three signatures representing the point distribution in three cylindrical
coordinate systems and concatenated and compressed these signatures into a Tri-
Spin-Image descriptor. Song and Chen [8] developed a local voxelizer descriptor
by voxelizing local shape within a unique LRF and concatenating an intersected
surface area feature in each voxel, and applied it to surface registration [26].

SGC is also constructed within a unique LRF. Compared with above descrip-
tors, the geometric centroid feature that we extract for constructing the descrip-
tor is more robust against noise and varying point density. Moreover, our descrip-
tor comparison scheme supports matching local shape that is close to the scan
boundary. By this, SGC is more robust for shape matching on point cloud data
than state-of-the-art descriptors [9–11], see Sect. 5 for the comparisons.

3 Signature of Geometric Centroids Descriptor

This section presents the method to construct an SGC descriptor for the local
shape (i.e., support) around a feature point p, a scheme to compare a pair of
SGC descriptors, and the parameters tuned for generating SGC descriptors.

3.1 LRF Construction

Given a feature point p on a scan and a radius r, a local support is defined
by intersecting the scan with a sphere centered at p with radius r. Taking this
support as input, we construct a unique LRF based on principal component
analysis (PCA) on the support by using the approach in [11], see Fig. 1(a).
When the normal of p is available, we further improve the disambiguation of
LRF axes by enforcing the principal axis associated with the smallest eigenvalue
(i.e., the blue axis in Fig. 1(a)) to be consistent with the normal [8].

3.2 SGC Construction

Given the unique LRF, a general way to construct a descriptor is to partition
a support into bins, extract shape features from each bin, and concatenate the
values representing the shape features into a descriptor vector (or a histogram).

Partition the Support. Given a support Sp around a feature point p, there
are three typical approaches to partition Sp into small local patches. The first
one is to partition the bounding spherical volume of Sp into girds evenly [11]
or logarithmically [10] along azimuth, elevation and radial dimensions. The sec-
ond one is to partition the angular space of the spherical volume into relatively
homogeneously distributed bins [25]. However, the bins generated by these two
approaches have varying sizes, which need to be compensated when construct-
ing a descriptor. In addition, the irregular shape of these bins complicates the
segmentation of local shape within each bin for extracting local shape features.

The third approach is to construct a bounding cubical volume of Sp that is
aligned with the LRF and partition the cubical volume into regular bins (i.e.,
voxels) [8]. These regular bins simplify the extraction of local shape features and
thus the descriptor construction. Therefore, we employ the third approach to
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Fig. 1. Constructing an SGC descriptor. (a) Construct a unique LRF from a spherical
support centered at a feature point (in pink); (b) segment a cubical support centered
at the feature point and aligned with the LRF; (c) voxelize the support and extract
centroid features from non-empty voxels; the centroid color indicates point density in
the voxel, where small and large densities are colored in blue and red respectively.
(Color figure online)

partition Sp for constructing the SGC descriptor, see Fig. 1(b and c). Note that
the edges of the cubical volume have a length of 2R, where R ≥ r.

Extract Bin Features. Due to the missing of topology information, point
clouds have limited types of shape features that can be extracted, e.g., sur-
face normal feature in SHOT [11] and point density feature in 3DSC [10]. This
paper proposes extracting a geometric centroid feature from each non-empty
voxel for constructing SGC due to following reasons. First, centroid is an inte-
gral feature [27], thus can be more robust against noise and varying point den-
sity. Second, centroid can be computed simply by averaging the positions of all
points staying within a voxel. Note that we do not realize any existing work that
employs centroid features for constructing a usable descriptor.

Construct the Descriptor. We divide the cubical volume evenly into K ×
K × K bins (i.e., voxels) with the same size, see Fig. 1(c). For each voxel Vi, we
identify all Ni points staying within the voxel and then calculate the centroid
(Xi, Yi, Zi) for the points. Note that, the position of the centroid is relative
to the minimum corner of Vi in the LRF. We save the extracted feature as
(Xi, Yi, Zi, Ni) for non-empty voxels, and (0,0,0,0) for empty ones. An SGC
descriptor is generated by concatenating all these values assigned for each voxel.
The dimension of an SGC descriptor saved in this way is 4 × K × K × K.

Thanks to the unique LRF, the three positional values of Vi’s centroid
(Xi, Yi, Zi) can be compressed into a single value using Ci = (Zi×L+Yi)×L+Xi,
where L = 2R denotes the edge length of Vi. By this, we compress the dimension
of the descriptor to 2 × K × K × K, saving 50% storage space.

3.3 Comparing SGC Descriptors

Ideally, SGC descriptors generated for two corresponding points in different scans
should be exactly the same. However, due to variance of sampling, noise and
occlusion, the two descriptors usually have a certain amount of difference. Unlike
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existing approaches that compare descriptors by computing their Euclidean
distance [7,8,11], we develop a new scheme for comparing two SGC descriptors.

When constructing an SGC descriptor, most of the voxels are likely to be
empty (see again Fig. 1(c)). We classify each pair of corresponding voxels into
three cases: (1) empty voxel vs empty voxel; (2) non-empty voxel vs empty
voxel; and (3) non-empty voxel vs non-empty voxel. In all three cases, only case
3 should contribute to computing a similarity score between two descriptors.
Thus, to compare two SGC descriptors quantitatively, we propose to accumulate
a similarity score for every pair of corresponding voxels that are both non-empty.

In detail, we denote two SGC descriptors as Dm and Dn. The similarity
between the i-th voxel of Dm, Vi

m, and the i-th voxel of Dn, Vi
n, is defined as:

s(Vi
m,Vi

n) =

{
ln Ni

mNi
n

‖Ci
m−Ci

n‖2+ε
, for N i

m > 0 and N i
n > 0

0 for N i
m = 0 or N i

n = 0
(1)

where N i
m and N i

n represent the number of points in Vi
m and Vi

n respectively,
while Ci

m and Ci
n represent the centroid of Vi

m and Vi
n respectively. Here we

directly employ the number of points in each voxel to represent its point den-
sity as all voxels have the same size. The formula can be explained as follows.
Whenever Vi

m and/or Vi
n are empty (i.e., N i

m = 0 or N i
n = 0), s(Vi

m,Vi
n) = 0.

Otherwise, when two corresponding voxels contain similar local shape, their cen-
troids should be close to each other, making s(Vi

m,Vi
n) large. When N i

m and/or
N i

n are large, s(Vi
m,Vi

n) is large also as the estimated centroid(s) are more accu-
rate. By this, the formula encourages to find matches based on denser parts of
input scans when the scans are irregularly sampled.

The overall similarity score between Dm and Dn can be obtained by accumu-
lating the similarity value for every pair of corresponding voxels:

S(Dm,Dn) =
K×K×K∑

i=1

s(Vi
m,Vi

n) (2)

3.4 SGC Generation Parameters

The SGC descriptor has two generation parameters: (i) the support radius R;
and (ii) the voxel grid resolution K. According to our experiments, we choose
R = 20 pr as a tradeoff between the descriptiveness and sensitivity to occlusion,
where pr denotes the point cloud resolution (i.e., average shortest distance among
neighboring points in the scan). And we choose K = 8 as a tradeoff between the
descriptiveness and efficiency since a larger K increases the descriptiveness and
computational cost simultaneously. Note that in these experiments, we let the
LRF and the descriptor have the same support radius, i.e., r = R.

4 Partial Shape Matching Using SGC

In this section, we describe the general pipeline to match two scans using
SGC descriptors and propose a descriptor saliency measure for improving shape
matching performance. We also highlight the advantage of using SGC descriptors
for matching supports that are close to scan boundary.
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4.1 General Shape Matching Pipeline

Given a data scan Sd and a reference scan Sr, the goal of shape matching between
Sd and Sr is to find a rigid transform on Sd to align it with Sr. By employing
the SGC descriptors, we can find such a transform with following steps:

(1) Represent Scans with SGC Descriptors. We first conduct a uniform sampling
on each of Sd and Sr to generate M feature points that cover the whole scan
surface. Next, for each feature point p, we construct the LRF and SGC descriptor
for the support around p. By this, we represent each of Sd and Sr with M
descriptor vectors and the corresponding LRFs, see Fig. 2(a and b).

(2) Generate Transform Candidates. When a point on Sd corresponds to another
point on Sr, their associated SGC descriptors should be similar to each other.
Hence, we compare each feature descriptor of Sd with each feature descriptor of
Sr by calculating a similarity score using Eq. 2. A feature point on Sd and its
closest feature point on Sr are considered as a match if the similarity score is
higher than a threshold. Each match generates a rigid transform candidate (i.e.,
a 4 × 4 transformation matrix) by aligning the associated LRFs.

(3) Select the Optimal Transform. By matching the descriptors of Sd and Sr, we
obtain a number of candidate transforms. We sort these transforms based on the
descriptor similarity score and then pick the top five candidates with the highest
scores. We apply each of the five selected transforms on Sd to align it with Sr.
We evaluate the transform by computing a scan overlap ratio. We first find all
point-to-point correspondences by checking if the distance between a point on
transformed Sd and a point on Sr is sufficiently small, and further compute the
overlap ratio as the number of corresponding points divided by the total number
of points in Sd or Sr (smaller one). We select the transform that ensures the
largest overlap ratio as the optimal one, see Fig. 2(c and d).

Fig. 2. Matching two scans using SGC descriptors: (a) sampled feature points (in
purple) on two input scans (only part of samples are shown for clarity); (b) calculated
LRFs and descriptors; (c) a pair of matched descriptors; (d) match the two scans based
on aligning the associated LRFs; and (e) refine the scan alignment using ICP. (Color
figure online)
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(4) Refine the Scan Alignment. Optionally, we can apply iterative closest point
(ICP) to refine the alignment generated by the selected optimal transform, see
Fig. 2(e). By comparing Fig. 2(d and e), we can see that the transform calculated
by aligning LRFs is very close to the one refined using ICP.

4.2 Improve Shape Matching Using Descriptor Saliency

To ensure corresponding points to be found on different scans, we need to sample
a large number of feature points on each scan, e.g., M = 1000 in our experiments.
However, among the M descriptors on a single scan, there could exist some
descriptors close to one another since their corresponding supports are similar,
see Fig. 3(a). Moreover, among descriptors from all input scans, there could exist
a larger number of descriptors with high similarities, see Fig. 3(a–c).

Our observation is that when there exist a large number of descriptors with
high similarities, it means their corresponding supports are less distinctive (e.g.,
flat or spherical shape), see the zooming views in Fig. 3(a). Thus, it has a lower
chance to match the scans correctly by using such supports and their descriptors.
On the other hand, when a descriptor is quite different from others, it means its
support is distinctive (see the top zooming views in Fig. 3(b and c)).

Inspired by this observation, we propose a measure of descriptor saliency to
improve the shape matching performance and compute it based on a descriptor-
graph. The key idea is to find descriptors (and the corresponding supports)
that are distinctive by measuring their saliency and apply these descriptors to
find corresponding feature points. We first describe our approach to build a
descriptor-graph, present our definition on the descriptor saliency, and then show
how we apply the descriptor saliency to enhance shape matching.

Build a Descriptor-Graph. For a given reference scan Sr, we build a descrip-
tor-graph for all the descriptors sampled from Sr based on their similarities
computed using Eq. 2. Formally, let G = (V,E) be a descriptor-graph, each node
u ∈ V represents an SGC descriptor on Sr. while each directed edge (u, v) ∈ E
represents that v is one of k-nearest neighbours (k-NN) of u in the descriptor
similarity space. Note that we do not require u also to be one of k-NN of v,
which means there may not exist a directed edge (v, u) in G.

Fig. 3. Supports on three different scans of a Chef model, where feature points are ren-
dered in pink. The correspondence between a scan support on the left and its zooming
view on the right is indicated by the same 2D box color. (Color figure online)
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To build such a graph, a straightforward way is to exhaustive search all
descriptors on Sr to retrieve k-NN for each descriptor in G. However, this app-
roach is time-consuming, especially when G is large. We speed up the creation
of the graph following [28], and the basic idea is to initially fill the nearest
neighbors by randomly sampling descriptors in G, and iteratively optimize the
nearest neighbors locally via similarity propagation and random search until
convergence.

Define Descriptor Saliency. We define descriptor saliency as the distinctive-
ness among a set of given descriptors. The larger difference between a descriptor
and others, the higher its saliency. Thus, we measure saliency of a descriptor Di

in a descriptor-graph G using sali(Di) = 1
1+e(Ii−Ī) , where Ii denotes the number

of nodes in G that considers Di as a k-NN and Ī is the mean value of all Ii that
is larger than zero. Note that although Di has k nearest neighbors in G, these
neighbors could be very different from Di. By fixing k, the value Ii can reveal
how many descriptors are close to Di (i.e., Di’s distinctiveness). Figure 4 shows
descriptor saliency in a simple descriptor-graph with k = 3.

Shape Matching with Descriptor Saliency. For a given reference scan Sr,
we first create a descriptor-graph Gr for it and compute a saliency value for every
descriptor Di

r in Gr using sali(Di). For a given descriptor on the data scan Sd,
say Dj

d, we enhance the similarity score between Dj
d and Di

r by using sali(Di
r),

i.e., S̄(Dj
d,D

i
r) = sali(Di

r)
α S(Dj

d,D
i
r), where α is a weight to control the impact

of saliency on the descriptor similarity. We set α = 0.2 in our experiments.
Intuitively, we can find the descriptor on Sr corresponding to Dj

d on Sd by
simply comparing every Di

r on Sr with Dj
d and selecting the one with the largest

S̄(Dj
d,D

i
r). We speed up the search of the corresponding descriptor by taking

advantage of Gr with the idea of leveraging existing matches to find better ones.
This is achieved by randomly selecting a set of nodes in Gr and updating the
nodes by a few iterations of similarity propagation and random search [29],
guided by the similarity score (using Eq. 2) between Dj

d and the nodes. After
obtaining a small set of descriptors on Sr that are similar to Dj

d, we conduct
re-ranking using S̄(Dj

d,D
i
r) to select the final correspondence.

We have illustrated applying descriptor saliency for shape matching between
a pair of scans. Descriptor saliency is more suitable for shape matching among a
number of scans, with following changes. First, we build a large descriptor-graph

Fig. 4. An example descriptor-graph (outdegree = 3 for every node).
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G for descriptors from all the scans. Second, we compare a descriptor on scan Sm

with nodes in G that are not from Sm. By this, the larger the number of scans,
the higher shape matching performance can be improved by descriptor saliency.

4.3 Matching Supports Close to Scan Boundary

Depth scans captured from a certain view are mostly incomplete due to a limited
viewing angle, sensor noise, and occlusion. This results in a surface boundary
for a scan. Matching supports close to the boundary is a challenging task. First,
the support is likely to be incomplete, see examples in Fig. 2(b). This affects
an LRF’s repeatability since support is the only input to construct the LRF.
Further, deviation of the LRF affects the construction of the descriptor since
support partitioning is performed within the LRF. Second, the incomplete sup-
port directly affects the construction of the descriptor since voxels locating at
the missing part(s) become empty, where no shape feature can be extracted.

Due to the above challenges, many existing descriptors are sensitive to the
boundary points according to the evaluation in [17]. Therefore, boundary points
are usually ignored when applying existing descriptors to partial shape match-
ing [7,30], assuming that there is sufficient non-boundary scan surface for the
matching. On the other hand, matching boundary points will improve the chance
to correctly align different scans, especially when the scan overlap is small.

Our SGC descriptor is especially suitable for handling boundary points for
shape matching. First, the centroid feature that SGC employs is robust against
noise and varying point density, which usually happen at scan boundary. Second,
our descriptor comparison scheme allows matching descriptors computed from
either a complete or an incomplete support, see Fig. 5. Third, we allow using
two different radii for constructing the LRF and the descriptor, i.e., r ≤ R, see
supports with varying sizes in Fig. 5(left). By this, a smaller yet complete sup-
port can be employed for constructing a repeatable LRF while a larger support
allows encoding more (complete or incomplete) local shape for constructing the
descriptor. Based on our experiments, we find that r = 0.5R achieves the best
performance for matching boundary points when setting R = 20 pr.

Fig. 5. (left) Match a support containing holes (in gray scan) with a support close to
boundary (in cyan scan) using SGC descriptors; (right) aligned scans and supports.
(Color figure online)
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5 Performance of the SGC Descriptor

This section evaluates the robustness of SGC with respect to various nuisances,
including noise, varying point density, distance to scan boundary, and occlusion.
We compare SGC with three state-of-the-art descriptors that work on point
cloud data: spin image (SI) [24], 3DSC [10] and SHOT [11]. Table 1 presents a
detailed description of the parameter settings.

Table 1. Parameter settings of the four descriptors.

Radius Bin feature Dimensionality Length

SGC 20pr Geometric centroid 8 × 8 × 8 × 2 1024

SHOT 20pr Histogram of normals 8 × 2 × 2 × 10 320

3DSC 20pr Point density 15 × 11 × 12 1980

SI 20pr Point density 15 × 15 225

We perform the experiments on three publicly available datasets: the Bologna
dataset [31], UWA dataset [30], and Queen’s dataset [32]. Unlike the Bologna
dataset that synthesizes complete object models to generate scenes, the scenes in
the UWA and Queen’s dataset contain partial shape of object models. We employ
the Bologna dataset to evaluate the descriptors’ performance with respect to
noise and varying point density (Subsects. 5.1 and 5.2), the UWA dataset to
evaluate the descriptors’ performance with respect to distance to scan bound-
ary and occlusion (Subsects. 5.3 and 5.4), and the Queen’s dataset to evaluate
improved performance by using descriptor saliency (Subsect. 5.5).

We compare the descriptors’ performance using RP curves [33]. In detail, we
randomly select 1000 feature points in each model and find their corresponding
points in the scenes via the physical nearest neighbouring search. By matching
the scene features against the model features using each of the four descriptors,
an RP curve of the descriptor is generated.

5.1 Robustness to Noise

To evaluate robustness of the descriptors against noise, we add four different
levels of Gaussian noise with standard deviations of 0.1, 0.3, 0.5, and 1.0 pr to
each scene. The RP curves of the four descriptors are presented in Fig. 6(a–d).
Thanks to the robust centroid feature, the RP curves show that SGC performs
the best under all levels of noise, followed by SHOT and 3DSC.

5.2 Robustness to Varying Point Density

To evaluate robustness of the descriptors with respect to varying point den-
sity, we downsample the noise free scenes to 1/2, 1/4 and 1/8 of their original
point density (pd). The RP curves in Fig. 6(e–g) show that SGC outperforms all
other descriptors under all levels of downsampling. Figure 6(h) shows that SGC
performs the best when the input scans are downsampled and contain noise.
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Fig. 6. RP curves of the four descriptors in the presence of (a–d) noise, (e–g) point
cloud downsampling, and (h) their combination.

5.3 Robustness to Distance to Scan Boundary

We perform experiments for feature points within different ranges of distance to
the boundary, i.e., (0, 0.25R], (0.25R, 0.5R], (0.5R, 0.75R], and (0.75R, R]. Note
that we set tuned r = 0.5R for SGC and r = R for all the other descriptors.
Thanks to the varying support radius and descriptor comparison scheme, Fig. 7
shows that SGC achieves the best performance for all the four cases.

Fig. 7. RP curves of feature points in different ranges of distance to the scan boundary.

5.4 Robustness to Occlusion

To evaluate performance of the descriptors under occlusion, we group sampled
feature points into two categories following [17], i.e., (60%, 70%] and (70%,80%]
occlusions. Figure 8(a and b) shows that SGC outperforms all the other descriptors
with a large margin since SGC allows handling feature points at scan boundary.

5.5 Effectiveness of Descriptor Saliency

To demonstrate effectiveness of descriptor saliency, we compare our shape match-
ing approach with an exhaustive search to find corresponding feature points.
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Fig. 8. (a and b) RP curves about occlusion. (c) CMC curves about descriptor saliency.

First, we build a descriptor-graph for descriptors sampled from all the five mod-
els in the Queen’s dataset [32] with k = 16. Next, we randomly select 1000
feature points on a scene and calculate their SGC descriptors. For each scene
descriptor, we retrieve its neighbours by searching the descriptor-graph with
saliency or exhaustive searching all the model descriptors. Here, we concern
how many neighbours we need to retrieve to ensure the corresponding descrip-
tor is included. Figure 8(c) shows standard Cumulated Matching Characteristics
(CMC) curves [34] by using the two approaches. The curves show that descriptor
saliency brings a certain amount of improvement in shape matching. In addition,
descriptor-graph speeds up the search of corresponding descriptors, where each
query process takes 0.5ms, much faster than the exhaustive search (62ms).

6 Applications

3D Object/Scene Reconstruction. To reconstruct a more complete model
from a set of scans, we build a descriptor-graph for all the scans. As the graph
has encoded k-NN for each descriptor (and the feature point), we search the
corresponding feature point (and its associated scan ID) locally within the k-
NN, and align the two scans based on the correspondence and merge them into a
larger point cloud. We keep aligning each of the remaining scans with the point
cloud and merging them until all scans are registered. Figure 9 shows two objects
and one scene reconstructed by our approach on different datasets [11,35].

Fig. 9. Our reconstruction results. (a) Super Mario; (b) Frog; and (c) Stage scene.
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3D Object Recognition. We conduct this experiment on the challenging
Queen’s dataset [32]. To represent the model library well with SGC, we remove
the noise in each model point cloud and build a descriptor-graph for descriptors
sampled from all the models. For a give scene scan, we also sample a num-
ber of SGC descriptors. By searching a corresponding descriptor in the graph
for a given scene descriptor, we know the correspondence between a model in
the library and a partial scene, thus recognizing the object in the scene scan.
Note that we recognize a single object at a time and segment the object once
recognized.

Figure 10(a and b) show the recognition result on an example scene.
Figure 10(c) shows that SGC based algorithm outperforms most existing meth-
ods including VD-LSD [32], 3DSC [10] and spin image [24] based algorithms.
RoPS based algorithm is the current best 3D object recognition approach and
it achieves slighter better performance than SGC with additional mesh informa-
tion of the scene scans. In particular, the performance of our algorithm without
using descriptor saliency decreases about 10%, indicating the usefulness of the
saliency.

Fig. 10. Recognition results on the Queen’s dataset. (a) An example scene; (b) our
recognition results; and (c) recognition rates of the five models (values in brackets are
the results on the whole dataset while others are the results on the subset as in [32]).

7 Conclusion

We have presented a novel SGC descriptor for matching partial shapes repre-
sented by 3D point clouds. SGC integrates three novel components: (1) a local
shape description that encodes robust geometric centroid features; (2) a descrip-
tor comparison scheme that allows comparing supports with missing parts; and
(3) a descriptor saliency measure that can identify distinct descriptors. By this,
SGC is robust against various nuisances in point cloud data when performing
partial shape matching. We have demonstrated SGC’s performance by compar-
isons with state-of-the-art descriptors and two partial matching applications.
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Abstract. Most crowd counting methods rely on training with labeled
data to learn a mapping between image features and the number of
people in the scene. However, the nature of this mapping may change
as a function of the scene, camera parameters, illumination etc., limiting
the ability of such supervised systems to generalize to novel conditions.
Here we propose an alternative, unsupervised strategy. The approach is
anchored on a 3D simulation that automatically learns how groups of
people appear in the image. Central to the simulation is an auto-scaling
step that uses the video data to infer the distribution of projected sizes of
individual people detected in the scene, allowing the simulation to adapt
to the signal processing parameters of the current viewing scenario. Since
the simulation need only run periodically, the method is efficient and
scalable to large crowds. We evaluate the method on two datasets and
show that it performs well relative to supervised methods.

1 Introduction

Systems for estimating the number of people in a visual scene have applications
in urban planning, transportation, event management, retail, security, emergency
response and disaster management. The problem can be challenging for a number
of reasons (Fig. 1): (1) the projected size of people in the scene varies over the
image, (2) inevitable errors in signal processing may lead to partial detection,
(3) people in the scene will often overlap on projection and thus be detected

Fig. 1. Example frames and background subtraction results from (a–b) York Indoor
Pedestrian dataset. (c–d) PETS 2009 dataset.
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as a single cluster rather than individuals, (4) due to variations in pose and
distance, detailed features of the human body may not be discriminable, making
it difficult to accurately parse these clusters, and (5) the computational budget
is typically limited by the need to run at frame rate.

Here we propose to meet these challenges by embracing two key principles:
(1) Reasoning in 3D and (2) Unsupervised adaptive processing.

2 Previous Work

It is important to be clear on the goal. Some prior work (e.g., [1,2]), aims only
to report some relative measure of crowd density. Here, we focus on the more
challenging problem of crowd counting, i.e., estimating the absolute number of
people in each frame of the scene. To place our paper in context, we focus on
the two key issues: reasoning in 3D and unsupervised adaptive processing.

2.1 Reasoning in 3D

The importance of accounting for the effects of perspective projection has long
been recognized, however mainly this has consisted of weighting pixels by ‘per-
spective maps’ that take into account distance scaling over the image [1,3–9].

Unfortunately, perspective scaling does not fully account for the complexities
of occlusion: clusters of people, especially when seen higher in the image, tend
to occlude each other (Fig. 1), and as a consequence the number of people in
an image cluster can vary in a complex way with the size of the image cluster.
Failing to account for this effect will lead to systematic bias.

Ryan et al. [10] addressed this problem by explicitly incorporating the angle
of the view vector with respect to the ground plane as a predictor of the size
of the crowd within a standard supervised regression framework. However, their
approach requires annotation of each individual within each frame of the training
dataset, and is subject to the limitations of supervised approaches (see below).

There are several studies that attempt to address the occlusion problem
through a more complete 3D modeling of the scene. Zhao [11] employed 3D
human models consisting of four ellipsoids, matching to detected foreground
regions. However, due to the combinatorial complexity of the method it is infea-
sible for real-time applications for large crowds.

Kilambi et al. [12,13] (also see Fehr et al. [14]) avoided this complexity by
modeling image segments as aggregates, back-projecting to head and ground
planes (Fig. 2b) to identify the ground plane footprint representing the 3D extent
of the group, and thus properly accounting for occlusion. However, the method
requires labelled training data and supervision and assumes all people to be of
exactly the same height and separated by a gap of exactly one foot when in the
same segment. Neither of these assumptions will be correct in practice.

One way to overcome these limitations is through direct simulation. Dong et
al. [15] used 3D motion capture data of walking humans and rendered the models
to the image to compute an average 2D human shape. They then simulated
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the image appearance of groups of people in the scene. However, there is no
mechanism to account for variations in the appearance of image segments due
to partial failures in background subtraction. Also, group size was limited to six
individuals: it is unclear whether the method could generalize to larger crowds.

2.2 Unsupervised Adaptive Processing

Most prior methods for crowd estimation are supervised [7–10,12,13,15–29].
As has been noted previously [10] this approach can be problematic, as the
system learned from the training dataset may not generalize to different cameras,
illumination, viewing geometries, etc.

Acknowledging this problem, a few groups have proposed methods that do
not involve explicit training [5,6,30]. The key problem here is clustering and
occlusion in densely crowded scenes. Without supervision, some general principle
must be identified that allows features in a connected cluster or blob in the image
to be mapped to an estimate of the number of people in the cluster.

Celik et al. [6] fit segments in the image with perspective-scaled rectangular
models of fixed size. However this approach is likely to lead to bias, as there is
no way to adjust the model based on biases in the segmentation (e.g., missing
heads or feet), and occlusions and clustering are not handled explicitly.

Rittscher et al. [5] attempted to improve individuation within clusters with
an adaptive mixture model over rectangular shapes approximating individuals
within a cluster. The height and width of the shapes are governed by a Gaussian
prior, allowing some adaptability. However, the parameters of the prior must still
be selected in advance, reducing generality. Moreover, while the proposed system
was never evaluated on (and likely was not intended for) crowd counting per se,
as for other individuation approaches [11,15,20,27,30], it is likely to break down
for larger and more dense crowds where occlusions obscure individual features.

2.3 Our Contributions

In this paper, we propose an efficient, fully unsupervised method for crowd count-
ing that handles issues of clustering and occlusion by reasoning in 3D. Following
Kilambi et al [12,13], we account for both perspective scaling and occlusions
by projecting to the ground plane. However, rather than using training data to
learn a fixed model of the appearance of an individual in the image and fixing
the spacing between individuals, we use an adaptive method to learn a distri-
bution over the appearance of individuals back-projected to the scene. As in
Dong et al [15], we use a 3D simulation approach to learn, in unsupervised fash-
ion, how to relate image observations to numbers of people. However, to factor
out the effects of perspective projection, we learn the mapping from detected
segments to numbers of people in ground plane coordinates, and use simpler fea-
tures of these segments that will generalize to dense crowds. Finally, our adaptive
unsupervised method for learning the distribution of individual appearance will
account for signal processing noise and errors, avoiding the bias that would oth-
erwise result from hardwiring the human model. The method is fast because the
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simulation need only be done periodically, while inference amounts to detection
of connected segments (background subtraction), back-projection of these to
form ground plane footprints and linear prediction of the number of people in
each group based on simple features of these footprints.

3 Geometry

The viewing geometry is shown in Fig. 2a. We assume a camera with known focal
length and principal point, square pixels and zero skew. To simplify notation, we
assume that the principal point has already been subtracted off from the image
coordinates (x, y). We also assume negligible camera roll, which is reasonable for
many installations.

Φ
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D

Z
z

(a)

Head plane

Ground plane

Footprint
Ground plane projec on

Head plane projec on

(b)

Fig. 2. (a) Viewing geometry. The X axis of the world coordinate frame and the x axis
of the image coordinate frame point out of the page. (b) Back-projection using head
and ground planes.

We assume a planar horizontal ground surface and adopt a right-hand world
coordinate system [X,Y,Z] with the Z-axis in the upward normal direction. We
assume the camera is tilted down and locate the origin of the world coordinate
system at the intersection of the optical axis of the camera with the ground
plane. We align the X axis of the world coordinate system with the x-axis of
the image coordinate system, so that the y-axis of the image is the projection
of the Y -axis of the world frame. Under these conditions, a point [X,Y ]T on
the ground plane projects to a point [x, y]T on the image plane according to
λ[x, y, 1]T = H[X,Y, 1]T where λ is a positive scaling factor and the homography
H is given by ([31], p. 328, Eq. 15.16):

H =

⎡

⎣
f 0 0
0 f cos φ 0
0 sin φ D

⎤

⎦ (1)
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Here f is the focal length, D is the distance of the camera from the ground plane
along the optic axis, and φ is the tilt angle of the camera.

Conversely, points in the image can be back-projected to the ground plane
using the inverse of this homography, λ[X,Y, 1]T = H−1[x, y, 1]T , where

H−1 =

⎡

⎣
1/f 0 0
0 (1/f) sec φ 0
0 (1/Df) tan φ (1/D) cos φ

⎤

⎦ (2)

We will use this back-projection to support 3D analysis of image segments.
First, we use it to roughly localize the person or group in the scene by identifying
the lowest point (xl, yl) in the image segment and back projecting it to a point
(Xl, Yl) on the ground plane. This allows us to refer the image height h and
width w of the segment to scene height H = (Dl/f) h and width W = (Dl/f) w
in a vertical plane intersecting the ground plane at (Xl, Yl), where Dl is the
distance from the optical centre to (Xl, Yl): Dl =

√
X2

l + Y 2
l + 2YlD sinφ + D2.

We use these back-projected segment dimensions (H,W ) to identify segment
fragments too small to correspond to a whole person, which are then reconnected
to form larger groups (Sect. 4.2). We also use these dimensions to identify the
subset of segments that appear to correspond to individual people (singletons),
and then use this subset to auto-scale our 3D simulation (Sect. 4.3).

We also use Eq. 2 to map image segments to polygonal footprints on the
scene ground plane. To perform this mapping, we back-project the top and
bottom of each column of pixels in the segment. To account for the fact that
people are typically standing vertically on the ground plane, the bottom of each
column is mapped to the ground plane, but the top is mapped to a head plane,
located at a nominal average human height of 1.7 m, and this head-plane point
is then projected vertically down to the ground plane. For short vertical segment
columns that back-project to less than human height, we map the centre of the
column to the normative mid-body plane (0.85 m), and represent each as a single
point specified by the vertical projection of this mid-body point to the ground
plane. The sequence of these back-projected points sweep out a closed polygonal
ground plane footprint for the segment (Fig. 7(b)).

4 Algorithm

4.1 Overview

Detection is based on background subtraction, as is common in crowd estima-
tion systems. Analysis of the resulting foreground segments then unfolds in two
stages: an unsupervised learning stage and an inference stage (Fig. 3). We assume
that internal and external camera parameters have been fully identified, as is the
norm [32]. In practice, many pan/tilt cameras do not provide motor encoder feed-
back, however there are auto-calibration methods for estimating tilt angle online
(e.g., [33–35]), which we consider in our evaluations (Sect. 7).
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Fig. 3. Overview of the proposed algorithm

4.2 Foreground Segment Detection

We employ the background subtraction algorithm of Elder et al. [36], which is
based on a pixel-wise two-component Gaussian mixture model estimated online
using an approximation of the EM algorithm. The algorithm operates in the 2D
colour subspace spanned by the second and third principal components of the
colour distribution, and thus achieves a degree of insensitivity to shadows. Pix-
els with foreground probability greater than 0.5 are labelled as foreground, and
segments are identified as eight-connected foreground regions. Figure 1 shows
example output. (As later stages of our pipeline are adaptive, alternative seg-
mentation methods could be substituted.)

Partial inactivity or colour similarities between foreground and background
can lead to fragmentation of single individuals into disconnected image segments
(Fig. 4(b)). To correct for this problem, we note that at least one part of a
fragmented body must be less than half body height, and so identify all small
segments that, when back-projected to the scene (Sect. 3), have vertical subtense
less than half a normative human height of 1.7 m. These small segments are
considered candidate fragments and are thus iteratively dilated until reaching

Fig. 4. Selective dilation to correct for fragmentation.
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half height, using a standard 3× 3 dilation kernel. If through dilation a segment
merges with other segments, these segments are assume to project from the
same individual/group and the new merged segment is retained (Fig. 4(c)). If no
merger occurs, the segment is restored to its original state.

4.3 Unsupervised Learning

The goal of the unsupervised learning stage of the algorithm is to learn, without
labelled training data, how to relate foreground segments in the image to the
number of people in the scene. In a deployed system running continuously, this
stage would only be invoked periodically to recalibrate the system. (We assess
the effects of delays between unsupervised learning and inference in Sect. 7.)
The unsupervised learning stage consists of three sequenced computations: auto-
scaling, 3D simulation and feature extraction.

Auto-Scaling. Assuming that individuals detected in the image can be mapped
directly to a single normative human height in the scene is risky for several rea-
sons. First, human height varies broadly, especially when children are considered.
Second, even the best background subtraction algorithm will miss some extremal
pixels, leading to segments smaller than predicted, and may include false positive
pixels projecting from shadows, leading to segments larger than predicted.

In prior work this problem is handled by supervised learning. Here we take
an unsupervised, adaptive approach based upon the image segments that have
been thus far observed. The strategy is to identify and use segments that are
likely to contain only one individual to fine-tune the scaling of the system. We
represent the scene scale S of each segment by the square root of the product of
back-projected height and width S =

√
HW (Sect. 3). The resulting distribution

of back-projected scales (Fig. 5(a)) will generally be composed of a mixture of
components from groups of different sizes, but the left part of the distribution
will be dominated by groups of size 1 (singletons). Our objective is to estimate
this component of the mixture, in order to scale the whole distribution.

Fig. 5. Example of auto-scaling on the York Indoor Pedestrian Dataset. (a) Histogram
of back-projected segment scales S. (b) Normalized Jarque-Bera test statistic. (c) Back-
projected segment heights H below the scale cutoff S1.
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To do this, we appeal to the central limit theorem and assume that this
component will be close to normal. We assess normality with the Jarque-Bera test
statistic [37] for subsets X (S′) of the distribution on a series of intervals [0, S′]
as the maximum scale S′ is varied from a lower bound S0 (we use S0 = 0.5 m
here) to the maximum scale observed Smax. The Jarque-Bera statistic J (X(S′))
is a weighted sum of skewness and kurtosis:

J (X(S′)) =
n

6

(
Skew (X(S′))2 +

1
4

(Kurt (X(S′)) − 3)2
)

(3)

where n = |X(S′)| is the sample size. J (X(S′)) tends to zero as the sam-
ple X(S′) approaches normality (Fig. 5(b)), and can thus be used to find
an appropriate upper cutoff point S1 for the singleton distribution: S1 =
arg minS′∈[S0...Smax]J (X(S′)) Selecting all segments below this cutoff allows us
to estimate the distribution p(H) of scene heights H for all singletons (Fig. 5(c)).

This method for identifying singleton segments will not always be correct:
there may be some group segments that are only partially detected and fall under
the threshold, while some singleton segments may cast long shadows and exceed
the threshold. However, here we rely only upon the approximate correctness of
the statistics of the singleton density, which will serve as a generative distribution
from which we sample in our simulation phase.

3D Simulation. Figure 6 illustrates the 3D simulation process. The fine-tuned
distribution of heights estimated by auto-scaling (Step 1) reflects the portion of
the human body that was successfully detected, which we model as a 3D prolate
spheroid (ellipsoid with circular symmetry about the major axis), with a 3:1
ratio of the vertical major axis to horizontal minor axes, reflecting the vertical
elongation of human bodies: (3X/H)2 + (3Y/H)2 + (Z/H)2 = 1.

Fig. 6. Simulation.

Sampling H from the estimated singleton height distribution thus yields a
distribution of ellipsoids of various sizes. To simulate crowds, we sample fairly
from this distribution, placing each ellipsoid randomly and uniformly over the
ground plane (Step 2). Sampled ellipsoids that intersect with existing ellipsoids
are discarded. Since we do not know which portion of the body was successfully
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detected, we place all ellipsoids taller than a normative height of 1.7 m on the
ground plane, and all ellipsoids less than this height centred at a mid-body
height of 0.85 m above the ground plane. For the experiments reported here we
simulated crowds from n = 1 . . . ns people, repeating the simulation 20 times. We
set ns = 200 in the experiments reported here, which generated roughly 400,000
ellipsoids in all. (Results are roughly independent of ns as long as it substantially
exceeds the maximum number of people observed at inference time.)

To map these ellipsoids to the image (Step 3), we project the midpoint
(Xm, Ym, Zm) of the ellipsoid to the image using the forward homography
(Eq. 1) and approximate the projection of the ellipsoid as an ellipse of height
h = (Dm/f)H and width w = (Dm/f) W , where (H,W ) are the height and
width of the ellipsoid and Dm is the distance from the camera to the midpoint
of the ellipsoid: Dm =

√
X2

m + Y 2
m + Z2

m + D2 − 2D (Ym sinφ + Zm cos φ).
This forward projection stage is crucial to modeling the occlusion process:

ellipsoids representing distinct individuals in the scene may project to intersect-
ing ellipses in the image, forming larger group segments (Step 4, Fig. 7(a)). Both
the shape and size of these image segments will vary with location in the scene.
To factor this variation out, in Step 5 we use Eq. 2 to back-project each of these
segments to a ground plane footprint, as described in Sect. 3 and illustrated in
Fig. 2b. These footprints are expected to be roughly invariant to the location of
the group within the scene, and thus variation in the size of the footprint can
be largely attributed to the number of individuals within the group.
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Fig. 7. (a) Image segments formed by occlusions of ellipsoidal models of human bodies
in the simulated scene. (b) Back-projected ground plane footprints.

Feature Extraction. We use this 3D simulation to learn a simple model relat-
ing a ground plane footprint polygon to the number of people generating it. We
use three size features: the width Wf of the footprint in the direction normal to
the ground plane projection of the view vector, the length Lf of the footprint
in the orthogonal direction, and the area Af of the footprint, calculated using
MATLAB function polyarea (Fig. 7b). The number of individuals in the segment
is then predicted as a linear regression on these three variables:
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n = b0 + bWWf + bLLf + bAAf (4)

Figure 8 shows the projection of the simulated data on the three variables.
The regression model provides an estimate of the error variance, which can be
used to provide a confidence interval on the estimated count (Sect. 7).
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Fig. 8. Example simulation, for the York Indoor Pedestrian Dataset, showing relation-
ship between number of simulated people in a segment and the footprint cues: (a)
Width Wf , (b) Length Lf and (c) Area Af .

4.4 Inference

Once unsupervised learning is complete, inference is relatively straightforward
and fast. Detected segments are back-projected to the ground plane as described
in Sect. 3 and illustrated in Fig. 2b, and width, length and area features of the
ground plane footprints are computed. These features are then entered into the
regression model (Eq. 4) to compute the estimated number of people n in the
segment. Summing over all segments in the image yields an estimate of the
number of people in the frame.

5 Datasets

We used two datasets to evaluate the proposed method (Fig. 1). We recorded
the York Indoor Pedestrian Dataset using a Canon EOS Rebel T3i camera with
a 40 mm lens at 30 fps. The frames were down-sampled to 320 × 182 pixels.
The camera/lens system was calibrated in the lab using a standard calibration
procedure [38]. A tripod level was used to zero the camera roll and a digital
inclinometer was used to accurately measure tilt angle at the scene: φ = 60.7 deg.
Camera height was measured to be 10.3 m. The number of people per frame in
this dataset ranges from n = 5−16. This dataset is available at elderlab.yorku.ca.

We also evaluated on the PETS 2009 dataset, commonly used to evaluate
crowd estimation algorithms. We evaluated on three different sequences: (1)
View 1, Region R0 of the S1.L1.13-57 sequence. (2) View 1, Region R0 of the
S1.L1.13-59 sequence. (3) View 1, Region R1 of the challenging S1.L2.14-06

www.elderlab.yorku.ca/
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sequence, which involves a very dense crowd with high occlusion levels. We used
the available camera calibration data. The number of people in these sequences
ranges from n = 0 − 38 per frame.

6 Run Time

Run time for inference, including backround subtraction, is O (m + k) per frame,
where m is the number of pixels and k is the number of segments in the frame.
The system was implemented in unoptimized MATLAB code, and all experi-
ments were conducted on a 4-core desktop computer (3.40 GHz CPU). We report
run time at inference for each dataset tested below. Autoscaling and 3D sim-
ulation phases of the unsupervised calibration stage take roughly 14 s and 65 s
respectively.

7 Evaluation

Figure 9 shows the estimated number of people in each frame over time, compared
to ground truth, for the three datasets. The method performs well: estimates
typically remain within a 95% confidence interval of ground truth, with a mean
absolute error (MAE) ranging from 1.04–2.47 people per frame (10.8–12.4%), and
a relatively low bias (mean signed error) of −1.2–1.9 people per frame (−7.9–
9.8%) (Table 1(a)). Average runtime for inference was 0.04 s per frame for the
York Indoor Pedestrian Dataset and 0.31 s per frame for the PETS datasets.

Table 1(b) evaluates the influence of key components of the algorithm on
performance (MAE). Error increases substantially without the segment dilation
stage due to interpretation of multiple fragments projecting from the same person
as separate people.

Fixing the height to a normative value of 1.7 m was found to increase the
MAE for all three datasets. We also tried using a normal height distribution
with a mean of 1.7 m and standard deviation of 0.1 m [41], but this increased the
error even further. We believe this is due to segmentation errors, which cause
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Fig. 9. Performance of the proposed algorithm over time. Blue shading indicates the
95% confidence interval for the estimate. (a) York Indoor Pedestrian Dataset. (b)
S1.L1.13-57 sequence. (c) PETS S1.L1.13-59 sequence. (d) PETS S1.L2.14-06 sequence
(Color figure online)
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Table 1. Evaluation results. (a) Summary performance of the proposed method over
all four sequences. n̄ denotes the mean ground truth count per frame, over frames con-
taining one or more person. (b) Contribution of algorithm components to performance.
Mean absolute error (MAE) per frame reported. See text for details. (c) MAE per frame
on York Indoor Pedestrian dataset for different combinations of ground plane footprint
features. (d) MAE per frame as a function of delay between unsupervised learning
and inference. See text for details. (e) Comparison (MAE per frame) with previous
algorithms on three PETS 2009 sequences.

(a)

Dataset n̄ MAE MAE (%) Bias Bias (%)

York Indoor Pedestrian 9.0 1.04 11.5 0.39 4.3
PETS S1.L1.13-57 22.4 2.47 10.8 -0.60 -2.7
PETS S1.L1.13-59 16.0 1.97 12.4 -1.20 -7.9
PETS S1.L2.14-06 17.5 2.13 12.2 1.86 9.8

(b)

Dataset Proposed No Dilation H = 1.7m H ∼ N (1.7, 0.1)m

York Indoor Pedestrian 1.04 2.13 1.33 1.16
PETS S1.L1.13-59 1.97 5.89 2.34 2.59
PETS S1.L2.14-06 2.13 – 2.48 2.7

(c)

Width Length Area Width + Length Area + Width Area + Length All

1.96 1.83 1.44 1.65 1.40 1.13 1.04

(d)

Dataset MAE (No Delay) Delay MAE (Delay) Change

York Indoor Pedestrian 1.04 5 sec 1.16 12%
PETS S1.L1.13-59 1.97 2 min 2.47 25%
PETS S1.L2.14-06 2.13 25 min 2.29 7%

(e)

Method S1.L2.13-57 S1.L2.13-59 S2.L1.14-06

Albiol [25] 2.80 3.86 5.14
Fradi [9] 1.78 3.16 2.89
Li [39] 1.91 2.02 2.87
Conte [7] 1.91 2.24 4.66
Subburaman [27] 5.95 2.08 2.40
Jeong [28] 2.10 1.88 –
Riachi [29] 2.28 1.81 –
Rao [40] 2.78 1.62 2.47
Conte [8] 1.14 1.59 1.99
Proposed method 2.47 1.97 2.13
Proposed method + temporal smoothing 1.93 1.70 1.90
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the back-projected height distribution to be considerably smaller than predicted
by the normative distribution. This underlines the importance of adapting to
these segmentation errors.

We also assessed the individual contributions of the three groundplane foot-
print features on performance (Table 1(c)). The area carries most weight, but
the length and width features also contribute, at least for this dataset.

To deploy our system, a schedule for running the periodic unsupervised learn-
ing stage must be established. To inform that decision, we assessed the impact
of delay between learning and inference on performance (Table 1(d)). For the
No Delay condition, the same frames used for learning were used for inference.
For the Delay condition, the delay varied from 5 s to 25 min depending upon
the dataset. The results suggest that a delay between learning and inference
does lower performance somewhat, but in these experiments there was no clear
systematic dependence on the length of the delay.

Most crowd counting algorithms, including ours, depend on intrinsic and
extrinsic camera parameters. Tilt angle will greatly affect results, and many
deployed pan/tilt cameras are not equipped with encoders that can provide
accurate online tilt angle readings. To address this, we analyzed the feasibility
of using our system in combination with an automatic algorithm for estimating
camera tilt [35]. The algorithm yielded a tilt estimate for the York Indoor Pedes-
trian Dataset of 59.2 deg, representing an error of 1.5 deg. Using this biased tilt
estimate increased the MAE from 1.04 to 1.29 people per frame, a fairly grace-
ful degradation. This suggests that the method may be deployed on common
pan/tilt systems in combination with such auto-calibration algorithms.

8 Comparison with Prior Algorithms

Table 1(e) compares the proposed method against state-of-the-art methods that
have reported accuracy on the PETS datasets. As a number of these methods
use temporal smoothing to improve their results, we also compared against our
method combined with a median temporal smoothing filter with a window size
of 36 frames.

For the first PETS sequence (S1.L2.13-57), the proposed unsupervised
method outperforms 3 of the 9 supervised methods without smoothing, and 5 of
the 9 with smoothing. For the second PETS sequence (S1.L2.13-59), our method
outperforms 4 of the 9 prior supervised methods tested without smoothing, and
6 of the 9 with smoothing. For the third sequence (S1.L2.14-06), it outperforms 6
of the 7 prior supervised methods tested without smoothing, and outperforms all
prior methods with smoothing. Importantly, given its unsupervised nature, we
expect that the proposed method will generalize more readily to a broad range
of conditions (different cameras, tilt angles, illumination etc.). This is already
suggested by its strong performance on both indoor and outdoor datasets.
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9 Implications, Limitations, Future Work

For accurate crowd understanding, the effects of perspective projection must be
accurately accounted for. Most prior work handles scaling but not the effects
of occlusion. Systems that attempt to model occlusion tend to break down for
larger, denser crowds, require extensive supervised training, and make unrea-
sonable assumptions about the people in the scene. Here we have shown that
through a periodic 3D recalibrating simulation of the scene, the effects of per-
spective projection and occlusion can be accurately accounted for. Central to
this is the identification of singletons in the image that allow the simulation to
be properly scaled. The result is a highly efficient inference method that does
not require training, has low bias and scales easily to denser crowds.

In the experiments reported here, auto-scaling was based on between 1–8 sin-
gleton individuals, observed over multiple frames. Thus a relatively small number
of singleton observations appears to be sufficient to calibrate the system. Since
singletons may not be apparent in very dense crowds, in extended surveillance
scenarios recalibration should be timed to coincide with sparser crowds. Opti-
mization of the unsupervised learning schedule is a topic for future study.

In the datasets tested here most people are standing or walking. Statistics
would clearly change if people were sitting; it is hoped that the unsupervised
learning stage would allow the system to adapt to these different statistics, but we
have not yet verified this. Note also that the background subtraction algorithm
will fail to detect people who remain stationary for long periods.

We see many opportunities to improve the method. In our 3D simulation
we centred all smaller ellipsoids at mid-body height. A more accurate regres-
sion model might be learned by randomizing the vertical offset of these smaller
ellipsoids uniformly between ground plane and normative head plane contact.
It would also make sense to sample both height and width from the singleton
distribution, rather than assuming a fixed 3:1 ratio.

Our system uses width, length and area features of the ground plane foot-
prints as predictors of the number of people in the segment. We have not sys-
tematically explored other features - there may be additional information in the
shape of the footprint that would improve performance.

Finally, tracking image segments over time would allow counts to be
smoothed independently for each segment and this might yield greater
accuracy.
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Abstract. Long-term activity forecasting deals with the problem of pre-
dicting how an agent will complete a full activity, defined as a continuous
trajectory and a discrete sequence of sub-actions. While previous data-
driven methods only dealt with forecasting 2D trajectories, we present a
method that leverages common sense prior knowledge and minimal data.
In order to forecast the trajectories, we learn a policy function that
maps from states to actions the agent should perform next. Through
the use of deep reinforcement learning, our method is able to learn a
highly non-linear mapping from agent states to actions. We develop the
first forecasting framework that uses ego-centric video input, which is
an optimal vantage point for understanding human activities over large
spaces. Given an annotated first person video sequence for the activity,
we construct a 3D point cloud of the environment and activity paths
through 3D space. Based on a limited number of examples, we use rein-
forcement learning to derive a policy for the entire environment, even for
areas that have never been visited during the demonstrated examples. We
explore the use of deep reinforcement learning to recover a direct map-
ping from environmental features to best action. Our approach makes
it possible to combine a high dimensional continuous state (namely the
local point could density surrounding the agent) with a discrete state
portion (action stage of an activity) into a single state for behavior fore-
casting. The result is a policy that generalizes very well from only a few
activity samples. We validate our approach on our First-Person Office
Behavior Dataset and show that our method of encoding more prior
knowledge leads to an increase in forecasting accuracy. We also demon-
strate that the deep reinforcement learning approach is able to achieve
higher forecasting accuracy than the traditional alternatives.

1 Introduction

There has been recent interest in computer vision algorithms that have the
capability to predict human activities into the future at various time scales. In
particular, there has been significant work concentrated on predicting very short
term actions, on the order of a few seconds [1–4]. In contrast, we focus on the
forecasting human activities over a longer time horizon (several minutes) while
retaining the ability to perform highly accurate trajectory forecasting at a fine
time resolution.
c© Springer International Publishing AG 2017
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Developing the technology needed to forecast human activity over a longer
time horizon is a critical feature necessary for advanced intelligent agents. The
ability to forecast human activity minutes in advance of execution will allow
automated homes and personal robotic systems to take pre-emptive actions to
better meet the needs of the user. Not only would such forecasting technology
allow robotic agents to veer around potential short-term collisions but could also
enable them to turn on the air conditioning or warm up the bath water minutes
in advance of our arrival. The ability to see things long before they happen is
an essential technology to enable higher levels of human-computer interaction.

How does one obtain such an ability to forecast human activities minutes in
advance of execution? One straightforward approach is to address this task com-
pletely in a data-driven fashion without any prior knowledge. This is performed
by observing a large number of activity sequences in an environment to build a
forecasting model over all possible activities in that scene. However, there is no
guarantee that the system will be able to observe every possible trajectory or
sub-action that can be performed at every location in the scene. Moreover, such
a data-driven approach may not make use of prior information about the scene.
When prior information about the scene is available, we would like to use it to
inform the forecasting model.

We would prefer an approach that can generalize from only a few samples
while also making use of common sense prior knowledge about human activities.
To this end, we make use of ideas from reinforcement learning to build a model
for accurate long-term activity forecasting from limited examples and common
sense prior knowledge. In particular, we implement the concept of temporal dif-
ference learning in the form of Q-learning, which allows the forecasting model to
generalize to new activity trajectories through the use of off-policy exploration.
The RL framework also allows us to encode prior information about the scene
in terms of the reward function. Common sense knowledge such as the fact that
people will avoid walls and obstacles in the scene can be encoded as part of
the reward function during the learning process. With the combination of a few
observed activities sequences and proper prior knowledge in the form of a reward
function, our proposed approach is able to accurately forecast long-term human
activities.

This paper proposes a reinforcement learning approach to learn a model for
long-term activity forecasting. Our method is able to encode prior knowledge
about the scene through the use of the reward function. Moreover, we are able
to learn from only a few examples through the use of off-policy reinforcement
learning. We validate our approach on real human activity data recorded with
a wearable camera using our First-Person Office Behaviour Dataset (see Fig. 1).
We show that our approach of encoding more prior knowledge in the problem for-
mulation leads to an increase in forecasting accuracy. Additionally, our proposed
approach can forecast plausible sub-action sequences along with their detailed
motion trajectories for common office activities such as making coffee or picking
up a package from the mail room.
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Fig. 1. Sample images from our First-Person Office Behaviour dataset. The dataset
contains twelve activity sequences with three main activities: getting coffee, printing
a page, and going to mail room. Each activity has a variety of sub actions such as
washing cup, using computer, posting letter etc.

2 Related Work

The problem of trajectory forecasting has been tackled several times before.
Kitani et al. introduced the problem of activity forecasting and proposed a solu-
tion based on semantic segmentation of the environment and inverse optimal
control [5]. Karasev et al. used a Markov Decision Process to predict the motion
of pedestrians on a street, in order to help the decision making of driverless
cars [6]. They also make use of a slightly higher dimensional state than [5] by
incorporating the orientation angle of the pedestrians. A simpler approach was
taken by Walker et al. where a goal probability is learned for each type of agent
in a specific scene [4]. This method’s use of standard tracking algorithms makes
it completely unsupervised, which permits the use of unlabeled data. Xie et al.
predicts trajectory as well as functional objects in the environment that draw
agents to approach them [7]. The problem is modelled as a physics problem,
where attractive objects in the scene emit energy that draws the agent towards
them. Interestingly Huang et al. approach forecasting from a different angle.
Instead of predicting trajectories, they instead attempt to forecast interactions
between two people by hallucinating the pose of one person given the pose of
the other person. Their approach used inverse optimal control, modified for high
dimensional situations [1,8]. Our approach not only predicts trajectory through
the environment, but also the actions that happen along the trajectory, with the
use of reinforcement learning.
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Reinforcement learning in general has been a very well explored field. One of
the earliest and most popular examples of practical reinforcement learning was
TD-Gammon [9], where a neural network was used as a function approximator in
the TD(λ) algorithm. The effects of function approximation on value iteration,
such as the propagation of the approximation error, are investigated in [10–
12]. It is useful to look at value iteration to learn how function approximation
affects standard reinforcement learning because value iteration is deterministic,
as opposed to Q-Learning which typically follows an ε-greedy policy. In the
realm of Q-Learning, Riedmiller et al. looked at an efficient way of training Q-
value functions approximated by multi-layer perceptrons [13], while Farahmand
et al. looked at applying L2 regularization to Q-Learning when using a function
approximator, in order to control the complexity of the learned models [14].

3 Preliminaries

Given several egocentric demonstrations of a specific activity from a dataset,
our goal is to learn the human activity model for performing the activity in
the environment. Reinforcement learning is one natural approach for inferring
this policy from a sequence of demonstrated states and actions. In our problem
setup, we make use of use of a rich vision-based state representation which
encodes local geometric features. As such, the state space is a large dimensional
space in which the state transition dynamics are non-trivial to derive. When
dealing with large state spaces it is common to use function approximators (in
place of traditional tabular functions). Furthermore, for situations in which the
state transition dynamics are unknown, it is typical to use Temporal Difference
(TD) methods, such as Q-learning, to learn a policy from demonstrations. In the
following we review the classic Q-learning algorithm and describe a Q-learning
framework using deep neural networks as the value function approximator, which
is used to learn egocentric activity policies.

3.1 Q-Learning

In reinforcement learning we have an environment referred to as the state space
S, as well as a set of actions A that can be performed in each state. The reward
function r(s, a, s′) describes the reward an agent receives when transitioning
from one state to another upon performing a certain action. Over the course
of an activity with N states, the agent receives various reward values for each
action it performs. Let Ri indicate the reward for the ith action performed by
the agent. The goal of an optimal control algorithm is to find an optimal policy
π∗(s) = a which describes the best action to perform in each state in order to
maximize the expected future reward.

Q-Learning is an off-policy TD method, meaning that the optimal policy
can be found and evaluated while exploring the environment based on another
policy. It does so by computing the action-value function of the form
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Q(sk, ak) = E

[
N∑

i=0

γiRk+i+1

∣
∣
∣sk, ak

]

(1)

where sk is the kth state the agent is in, ak is the action performed in that
state, Rk+i+1 is the reward for all subsequent actions that may be performed,
and 0 < γ ≤ 1 is the discount factor. Equation 1 defines the value of an action
as the discounted future reward the agent is expected to receive. Given the
optimal action-value function Q, the optimal greedy policy is simply π∗(s) =
argmaxaQ(s, a). The Q-Learning algorithm first initializes Q(s, a) to be some
constant value (such as 0). It then computes Q by allowing the agent to explore
the environment in multiple steps. With each step, an experience tuple of the
form (s, a,R, s′) is collected. We can then update Q with

Q(s, a) ← Q(s, a) + α
[
R + γ max

A
Q(s′, A) − Q(s, a)

]
(2)

as described in [15], where α is the learning rate. While this experience tuple
can be discarded now, it is common to reuse it through experience replay [16].

3.2 Deep Q-Network

Deep Q-Learning is an extension to classic Q-Learning that models the
Q-function using a deep network. This is an attractive approach as classic
Q-Learning is not well suited for high dimensional state spaces, whereas deep
networks are very good at dealing with high dimensional, low level features. This
way we can take full advantage of our 3D point cloud that represents the struc-
ture of the environment. A deep network is also needed as our policy is highly
non-linear, and deep networks have been shown to be effective means of learning
non-linear functions.

In deep Q-Learning, we replace the table used to keep track of the action-
values in the Q function with a deep network. This way, large inputs can be
dealt with and observed states can generalize to similar unseen states. Following
the same formulation used in [17], we define a Q-Network with parameters θ as
Q(s, a; θ) = v. Then given an experience tuple (s, a,R, s′), we can compute the
target value as

v∗ =

{
R if s′ is a terminal state
R + γ maxA Q(s′, A; θ−) if s′ is not a terminal state

(3)

θ− are the network parameters for the target network (the current parameters
or parameters from a previous iteration for delayed updates). Once the target
value v∗ is computed, gradient descent can be performed on the parameters with
respect to the squared loss (v∗ − Q(s, a; θ))2. Using this to change the update
step of the batch Q-learning algorithm, we get the deep Q-learning algorithm.
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4 Long-Term Activity Forecasting

In order to use deep Q-Learning to forecast the agent’s behaviour, we simulate
the exploration dynamics of an agent in the environment. This allows us to gather
experience that the deep Q-Learning algorithm will use to learn the policy. We
must thus model the agent’s sequential decision making process. Many previous
approaches model the agent’s behaviour as a Markov Decision Process (MDP),
and this is well suited for our problem as well. To define the MDP, we need to
define the state space S, action set A, and reward function r. It is in the definition
of these components that we are able to encode our prior knowledge of the
environment, which will be leveraged by the reinforcement learning algorithms.

4.1 State Space and Action Set

In order to forecast the agents decisions in the environment, the state space
needs to be able to express all of the locations in the environment, as well as
the agent’s behaviour state. This means that our state can be represented as a
tuple (x, w) where w ∈ W is the stage of the activity, and x ∈ X is the position
portion. X represents the set of all possible position states. It is possible for
x to simply be the position on the map, however we can also take advantage
of a more rich representation. This can also include the local structure of the
environment around the position, and distances to objects and obstacles. While
this is more information for the learning algorithm to take advantage of, this
also causes the size of the state space to increase. W represent all possible states
the activity alone can be in, regardless of location. For example, the first column
of Table 1 shows the possible stages in a simple coffee making activity. With
both X and W defined, the total state space can be expressed as the Cartesian
product S = X × W .

The action set can also be defined in a similar way, where each action either
affects the location portion or the activity portion of the state. The action set M
that affect the location portion can be considered movement actions, while the

Table 1. Coffee making activity.

Coffee making stages Activity sequence frame actions RL actions

No Cup Standing Move North

Has Dirty Cup Walking Move East

Has Clean Cup Pickup Cup Move South

Has Unstirred Coffee Wash Cup Move West

Has Coffee Put Down Cup Pickup Cup

Finished Make Coffee Wash Cup

Pickup Staw and Stir Make Coffee

Finish Stir Coffee

Finish
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action set E that affect the activity portion can be though of as environmental
interactions. In our coffee making example, M would be represented by the first
4 actions in the third column of Table 1, while E is represented by the rest. The
total action set in this case is A = M∪E. Since the action set comprises of actions
that either change the position portion or stage portion, it might seem like the
transition dynamics are simple. However this depends highly on the representa-
tion of x. If x is simply the 3D position in the environment, then the transition
function is trivial. However if we wish to encode the environment structure and
obstacle positions, then the transition function becomes non-trivial, and we must
make use of a deep Q-Learning.

4.2 Reward Function

The definition of the reward function determines which policies are encouraged
and which are not. This makes the reward function a good candidate for encoding
our prior knowledge of how humans typically navigate an environment. We know
that for most activities with an end goal, agents must move to certain positions
in the environment (around obstacles if need be) in order to complete a task. In
our coffee making example, the cup may only be washed at a sink, and coffee
can only be made at a coffee machine. In order to encourage a policy that
mimics human behaviour, we need to encode these three aspects into the reward
function: the end goal (controlled by the Rend term), locations where actions may
be performed (controlled by the Ract term), and obstacles in the environment
(controlled by the Rwall term).

r(s, a, s′) = Rend · isTerm(s′)

+ Ract ·
N∑

i=0

1(a = ai)min
j

dist(s, xj
i )

+ Rwall · wallScore(s′)

(4)

In order to encourage a policy that tries to mimic the activity training
sequences, we put a large positive reward Rend at the end of all example
sequences. This gives the Q-Learner a large reward for terminating the activity
in a similar state as one of the example sequences. This provides the algorithm
motivation for completing the activity.

However only including the goal reward will encourage a policy that transi-
tions through the activity stages at any location (such as making coffee far away
from the coffee machine). It will take any actions needed to arrive at a termi-
nal state, regardless of environment. In order to prevent this from happening,
we have a punishment (negative reward) Ract for performing the stage change
actions far away from the demonstrated locations in the training data. This pun-
ishment constant is multiplied by the distance from the nearest example location
order to encourage being closer to the correct locations for performing actions.
Since we are not giving our exploration agent access to the true environment, this
penalty is needed to enforce the common sense notion that not all actions (such
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as Wash Cup and Make Coffee) can be successfully performed anywhere. This
will encourage the agent to learn a policy that only performs the stage change
actions near the locations where it is actually possible, and demonstrated in the
training data.

Desirable policies must also avoid obstacles in the environment. We do not
want policies that try to move through walls and tables. To prevent this, we
introduce a penalty term Rwall for the movement actions. This way, we can
punish the agent for trying to move through a space that seems to contain a
wall or other obstacle, since a human in the environment is unlikely to try and
move through that same space. The penalty is a constant multiplied by the point
density around the location x in the environment point cloud.

Equation 4 shows the final form of the reward function. In the equation:

– isTerm(s′) is an indicator function that has the value 1 if s′ is the terminal
state of one of the training examples, and 0 otherwise

– wallScore(s′) is the point density at the location of the state s′

– ai ∈ A is all of the actions that can be performed and aj
i are all of the locations

in the training data that action was observed. The third term penalized actions
that are performed at a distance from where they were demonstrated in the
training data

The end sequence reward, action penalty, and density penalty are the main
reward types needed for this problem. Then encode our intuition of how a person
will generally navigate any environment, avoiding obstacles and moving towards
their final goal. These, along with the state space and transition function are
enough to encourage a simple environment specific policy for a given activity
(such as making coffee).

5 Experiments/Results

In this section, we seek to evaluate the effectiveness of encoding intuition and
prior knowledge into the reward function. We also seek to validate the use of deep
reinforcement learning as an effective and flexible means of activity forecasting.
As no other papers have done activity forecasting with 3D point cloud data
generated from ego-centric video, there are no pre-exsisting baselines to compare
against. Instead we validate our approach on our First-Person Office Behaviour
dataset. We demonstrate that encoding more prior knowledge into the reward
function results in a lower forecasting error. We also show that the deep Q-
Learning approach, with its access to low level state information produces the
lowest forecasting error in our tests.

5.1 First-Person Office Behavior Dataset

Since we seek to do trajectory and action forecasting with egocentric video, a
dataset with long egocentric video demonstrations of multi-step activities was
needed. As no existing dataset meets these needs, we collected a our own First-
Person Office Behavior Dataset.
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The data consists of two types of first-person videos. The first type of video
is a mapping sequence, which simply contains a detailed view of all corners and
viewpoints of the environment. The second type of video is the activity sequences.
Twelve activity sequence videos were collected for three types of activities: get-
ting a mug and making coffee, printing a page from an office computer then
picking up the printout, and picking up a package from the mail room. The
mapping sequence is 24 min long and the activity sequences are each around
13 min long. The printing activity contains 8 sub-actions, the coffee making
activity contains 8 sub-actions, and the package collecting activity contains 7
sub-actions. All videos were recorded at 60fps. We only report our results on
the coffee making activity. All of these activity sequences take place in the same
large environment, and are annotated in with the action being performed in each
video frame. The first column of Table 1 shows the dataset video frame actions
for the coffee making activity.

With the mapping sequence we can use any structure from motion algorithm
to build a dense point cloud of the environment. For our experiments, we used
VisualSFM [18–20] to construct the dense point cloud and activity paths. Then
the activity sequences can be registered against the environment model images,
and the 3D trajectory for each of the actions sequences can be reconstructed. We
first use VisualSFM on the mapping sequence videos to construct the environ-
ment features and point cloud. Then to register the activity sequences, we reuse
the environment features and register each activity frame one by one, allowing us
to recover the camera positions for each frame. This gives us the full trajectory
of the agent through the environment over the course of the activity. Since the
video is labeled with actions on each frame, the reconstructed data will indicate
where in the environment the agent was when performing each action.

While the mapping sequences is not explicitly needed, they do provide a more
detailed and noise free trajectory through the environment than if the activity
sequences were used alone in the structure from motion. This provides the basic
dataset that will be used in both the classic and deep Q-Learning algorithms.

5.2 Including Prior Knowledge in the Reward Function

In order to validate our approach of including prior knowledge of activity dynam-
ics in the formulation of the reward function, we conduct an ablative analysis
across various settings of the reward function. We show that as more common
sense prior knowledge is included in the reward function, the forecasting error
is reduced. In all experiments, we decide only to deal with 3 activity stages
(before washing cup, before making coffee, after making coffee). This allows for
simple comparison between the tabular method and deep network method of
Q-learning and for simplicity of visualization. The state representation used for
the deep Q-Network approach consisted of a 13 × 13 patch of the point cloud
density centered at the location corresponding to the state. This representation
is a powerful and low level way to represent the obstacles in the environment
near the state. However since this state representation cannot be used with the
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tabular reinforcement learning methods, we must simply use the 2D position as
the state for those methods.

Tables 2, 3, and 4 show generated policies using various settings for the reward
function, and the resulting mean Modified Hausdorff Distance (MHD). The num-
ber reported is the mean MHD over 5000 random paths sampled from each
learned policy. The sampling is done by specifying the start as the start of the
test path, and then randomly selecting an action based on the softmax prob-
ability of all actions for the current state. Once an entire sequence has been
formed, the minimum distance from a point on the sampled path to a point on
the true path is computed. This is done for all points on the generated path,
and the MHD is computed by taking the sum. Thus a lower MHD indicates a
better conformance to the true path. The MHD can also be thought of as the
forecasting error, with a larger distance indicating a trajectory very different
from the data sample.

Value Iteration Results. In using value iteration, we update all states with
respect to the best action that can be performed. To ensure that the evaluation
metric is giving sensible results, we also computed the Modified Hausdorff Dis-
tance with respect to simpler reward functions that we know are likely to give
incorrect policies. Table 2 show that as we introduce more useful prior knowl-
edge in the form of a more complex reward function, our forecasting accuracy
increases (the MHD decreases).

Table 2. Value iteration method with different goal parameters

Goal reward Map penalty Action distance penalty MHD

30 0 0 3.2187

30 0 −100 1.7937

30 −1 0 4.3866

30 −1 −100 4.6255

100 −1 −100 1.6816

Q-Learning and Q-Network Results. In using Q-Learning we simulate the
exploration behavior of the agent to collect experience. This involves building a
state-action trajectory piece by piece. For the tabular Q-Learning method, we
are required to use a simple state representation. We used (x, y, w) where x and y
were the integer positions in the environment grid. In simulating the exploration,
actions that change the position increment and decrement the x and y values.
Table 3 shows the results for using tabular Q-Learning to learn the prediction
model. As expected, the more complex reward function performed better. We
also see that an extreme setting for the goal reward is not good.

The policies computed with deep Q-Learning used the exact same exploration
dynamics as the tabular Q-Learning method. In our implementation, we tested
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Table 3. Discrete Q-Learning with different goal parameters

Goal reward Map penalty Action distance penalty MHD

30 0 0 6.0381

30 0 −100 3.8177

30 −1 0 5.5639

30 −1 −100 2.1859

100 −1 −100 2.8341

the Q-Network with the local state (p,w) where p is a patch of the voxel density
grid centered at the position (x, y) of the agent during the simulation. Since
most motion of the agent is in a 2D plane, we found it better to flatten the voxel
density grid into a 2D density map, and use a 2D density image centered at the
agent position instead of the 3D density volume. p is then represented as 13×13
grayscale image, with lighter pixels indicating higher point density, and thus a
likely obstacle for the agent. This gives the deep Q-Network access to more low
level data thus making it easier to fit a good model.

Table 4. Deep Q-Learning with different goal parameters

Goal reward Map penalty Transition reward MHD

50 0 0 3.1183

50 −0.5 −20 1.5229

5.3 Cross Model Comparison

Comparing the best models from above in Table 5, it seems like value iteration
does the best because it takes far fewer iterations. However in each iteration
of value iteration, every single state is updated once, whereas in the other two
methods using batch q-learning, only the states appearing in the randomly sam-
ples batch are updated. For both, we used a batch size of 100. This shows that
the Q-network was able to learn a sensible policy with much fewer steps of
explorations than the tabular Q-Learning method.

Table 5. Method comparison

Method Iterations HD

Action value table 1000000 2.1859

Q-Network MLP 50000 1.5229

Value iteration 200 1.6816
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5.4 RL Policy Visualizations

Another simple way to validate the policies learned from the three methods is
to visually inspect their value functions. The value function is defined as V (s) =
maxa Q(s, a). This is often easier to look at than the action value function, for
which there are more plots. What we expect to see is a large value at the end
of the demonstrated sequence. In addition, we should also see a policy that
follows along the gradient of the value, constantly seeking out adjacent states
with higher values. Ideally, we want a policy that respects the properties of the
environment, and does not try to move through walls or other obstacles. The
second image in Fig. 2 shows the portions of the point cloud that are considered
obstacles in the environment. As we can see from Fig. 3, the value iteration policy
looks much cleaner, while many of the details are lost in the Q-Network policy.

Fig. 2. Left: Mapping sequence shot of the kitchen. Middle: 3D point cloud recon-
struction of the kitchen. Right: Birds-eye view of kitchen point cloud with objects and
obstacles highlighted.

Fig. 3. Left: Location of obstacles and items in the environment. Right: Value function
visualizations for the tabular value iteration approach and the deep Q-Network app-
roach. Notice how for each stage of the activity, there is a high value associated with
the location where the next action must be performed.
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Also notice that the Q-network policy has more noisy artifacts. We also see that
in both cases having a very high reward seems to be overpowering the penalty
for moving through walls close by the goals.

Figure 4 shows the path generated directly from the policy distribution. Each
row represents a point in time. The first column represents the Has Dirty Cup
stage, the second is the Has Clean Cup stage, and the third is the Has Coffee
stage. As we can see, the policy sensibly moves around the table in the center
of the kitchen, first to the sink to wash the cup, then to the coffee machine, and
finally finishes at the chair.

Fig. 4. Path generated by Q-Network. Each column shows the possible states (location
and activity stage) at a single timestep, and the light blue represents the probability of
being in that state. We can see that at the first timestep, the probability is concentrated
at where the agent starts, in the Has Dirty Cup stage. The path then makes its way
around the table over to the sink, and then we have a probability of being in Has
Clean Cup stage. (Color figure online)

6 Conclusion

Reinforcement learning is an effective strategy for long term activity forecast-
ing, as it permits us to encode common sense prior knowledge in the reward
function definition. By encoding common sense terms into the reward function,
we can leverage minimal example sequence data in the training algorithm. We
demonstrate the effectiveness of this method on our First-Person Office Behav-
iour Dataset, and show that using deep Q-Learning to take advantage of low
level environmental features gives the forecasting algorithm greater accuracy.

One issue with our approach is our manual search for an optimal reward
function. Instead of doing this manually, the next logical step would be to use
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inverse optimal control (IOC). This would make it possible to learn the reward
function constants (Rend, Rwall, and Ract). Currently, there are many parameters
that need to be tuned manually, and this would only increase if the reward
function were to become more complex. There has also been recent research into
deep IOC. This is better suited for our problem setting for the same reasons
as deep reinforcement learning. This would allow the IOC algorithm to discover
which features in the environment are higher value by leveraging the point cloud
structure.

Acknowledgement. This research was funded in part by a grant from the Pennsylva-
nia Department of Healths Commonwealth Universal Research Enhancement Program
and CREST, JST.

Appendix

Employing deep Q-Learning introduces several complications, such as divergence
and convergence speed. As mentioned in [17], employing delayed updates and
memory replay (batch q-learning) helps to control divergence quite significantly.

When using a table to record the action-value function it is possible to update
the value for any specific state-action pair without modifying any other values.
This is not possible with a neural network, as all the hidden units are connected,
and gradient descent will update all parameters in some small way. This raises
the issue when updating the q-network, that previous iterations’ updates may
be modified to incorrect values. One technique we employed to provide more
stability to the learning process was to sample terminal states and non-terminal
states separately during the batch updates. Since the target value for the ter-
minal states do not depend on a network output, they provide stability to the
learning process. However since the terminal states are far fewer than the regu-
lar states, they do not get selected as often during the batch updates. Sampling
them separately ensures that some terminal states are always used to train the
q-network on each iteration, lessening the effect other updates have on the values
for the terminal states.
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Abstract. This paper presents a video summarization technique for an
Internet video to provide a quick way to overview its content. This is a
challenging problem because finding important or informative parts of
the original video requires to understand its content. Furthermore the
content of Internet videos is very diverse, ranging from home videos to
documentaries, which makes video summarization much more tough as
prior knowledge is almost not available. To tackle this problem, we pro-
pose to use deep video features that can encode various levels of content
semantics, including objects, actions, and scenes, improving the efficiency
of standard video summarization techniques. For this, we design a deep
neural network that maps videos as well as descriptions to a common
semantic space and jointly trained it with associated pairs of videos and
descriptions. To generate a video summary, we extract the deep features
from each segment of the original video and apply a clustering-based sum-
marization technique to them. We evaluate our video summaries using
the SumMe dataset as well as baseline approaches. The results demon-
strated the advantages of incorporating our deep semantic features in a
video summarization technique.

1 Introduction

With the proliferation of devices for capturing and watching videos, video hosting
services have gained an enormous number of users. According to [1] for example,
almost one third of the people online use YouTube to upload or review videos.
This increasing popularity of Internet videos has accelerated the demand for
efficient video retrieval. Current video retrieval engines usually rely on various
types of metadata, including title, user tags, descriptions, and thumbnails, to find
videos, which is usually given by video owners. However, such metadata may not
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be very descriptive to represent the entire content of a video. Moreover, titles
and tags are completely up to video owners and so their semantic granularity
can vary video by video, or such metadata can even be irrelevant to the content.
Consequently users need to review retrieved videos, at least partially, to get
rough ideas on their content.

One potential remedy for this comprehensibility problem in video retrieval
results is to adopt video summarization, which generates a compact represen-
tation of a given video. By providing such summaries as video retrieval results,
the users can easily and quickly find desired videos. Video summarization has
been one of the major areas in the computer vision and multimedia fields, and
a wide range of techniques have been proposed for various goals. Among them,
ideal video summarization tailored for the comprehensibility problem should
include video content that is essential to tell the story in the entire video. At
the same time, it also needs to avoid inclusion of semantically unimportant or
redundant content.

To this end, many existing approaches for video summarization extract short
video segments based on a variety of criteria that are designed to find essential
parts with small redundancy. Examples of such approaches include sampling
some exemplars from a set of video segments based on visual features [2,3] and
detecting occurrences of unseen content [4]. These approaches mostly rely on
low-level visual features, e.g., color histogram, SIFT [5], and HOG [6], which are
usually deemed far from the semantics. Some recent approaches utilize higher-
level features including objects and identities of people. Their results are promis-
ing, but they cannot handle various concepts except a predefined set of concepts,
while an Internet video consists of various levels of semantic concepts, such as
objects, actions, and scenes. Enumerating all possible concepts as well as design-
ing concept detectors are almost infeasible, which makes video summarization
challenging.

This paper presents a novel approach for video summarization. Our approach
enjoys recent advent of deep neural networks (DNNs). Our approach segments
the original videos into short video segments, for each of which we calculate
deep features in a high-dimensional, continuous semantic space using a DNN.
We then sample a subset of video segments such that the sampled segments
are semantically representative of the entire video content and are not redun-
dant. For sampling such segments, we define an objective function that evaluates
representativeness and redundancy of sampled segments. After sampling video
segments, we simply concatenate them in the temporal order to generate a video
summary (Fig. 1).

To capture various levels of semantics in the original video, deep features
play the most important role. Several types of deep features have been proposed
recently using convlutional neural networks (CNNs) [7,8]. These deep features
are basically trained for a certain classification task, which predicts class labels
of a certain domain, such as objects and actions. Being different from these deep
features, our deep features need to encode a diversity of concepts to handle a wide
range of Internet video contents. To obtain such deep features, we design a DNN
to map videos and descriptions to the semantic space and train it with a dataset
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Fig. 1. An example of an input video and a generated video summary. The same
content (i.e., the dog) repeatedly appears in the input video in different appearances
or background, which may be semantically redundant. Our video summary successfully
reduces such redundant video segments, thanks to our deep features encoding higher-
level semantics.

consisting of videos and their associated descriptions. Such a dataset contains
descriptions like “a man is playing the guitar on stage,” which includes various
levels of semantic concepts, such as objects (“man”, “guitar”), actions (“play”),
and a scene (“on stage”). Our DNN is jointly trained using such a dataset so that
a pair of a video and its associated sentence gives a smaller Euclidean distance
in the semantic space. We use this DNN to obtain our deep features; therefore,
our deep features well capture various levels of semantic concepts.

The contribution of this work can be summarized as follows:

– We develop deep features for representing an original input video. In order to
obtain features that capture higher level semantics and are well generalized
to various concepts, our approach learns video features using their associ-
ated descriptions. By jointly training the DNN using videos and descriptions
in recently released large-scale video-description dataset [9], we obtain deep
features capable of encoding sentence-level semantics.

– We leverage the deep features for generating a video summary. To the best of
our knowledge, this is the first attempt to use jointly trained deep features for
the video summarization task.

– We represent a video using deep features in a semantic space, which can be
a powerful tool for various tasks like video description generation and video
retrieval.

– We quantitatively demonstrate that our deep features benefit the video sum-
marization task, comparing ours to deep features extracted using VGG [10].

2 Related Work

Video Summarization. The difficulty in video summarization lies in the
definition of “important” video segments to be included in a summary and their
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extraction. At the early stage of video summarization research, most approaches
focus on a certain genre of videos. For example, the importance of a video seg-
ment in broadcasting sports program may be easily defined based on the event
happening in that segment according to the rules of the sports [11]. Furthermore,
a game of some sports (e.g., baseball and American football) has a specific struc-
ture that can facilitate important segment extraction. Similarly, characters that
appear in movies are also used as domain knowledge [12]. For these domains,
various types of metadata (e.g., a textual record of scoring in a game, movie
scripts, and closed captions) help to generate video summaries [11–13]. Egocen-
tric videos are another interesting example of video domains, for which a video
summarization approach using a certain set of predefined objects as a type of
domain knowledge has been proposed [14]. More recent approaches in this direc-
tion adopt supervised learning techniques to embody domain knowledge. For
example, Potapov et al. [15] proposed to summarize a video focusing on a spe-
cific event and used an event classifier’s confidence score as the importance of
a video segment. Such approaches, however, are almost impossible to generalize
to other genres because they heavily depend on domain knowledge.

In the last few years, video summarization has been addressed in an unsuper-
vised fashion or without using any domain knowledge. Such approaches intro-
duce the importance of video segment by using various types of criteria and
cast video summarization into an optimization problem involving these criteria.
Yang et al. [16] proposed to utilize an auto-encoder, in which its encoder con-
verts an input video’s features into a more compact one, and the decoder then
reconstructs the input. The auto-encoder is trained with Internet videos in the
same topic. According to the intuition that the decoder can well reconstruct
features from videos with frequently appearing content, they assess the segment
importance based on the reconstruction errors. Another innovative approach was
presented by Zhao et al., which finds a video summary that well reconstructs
the rest of the original video. The diversity of segments included in a video sum-
mary is an important criterion and many approaches use various definitions of
the diversity [3,17,18].

These approaches used various criteria in the objective function, but their
contributions have been determined heuristically. Gygli et al. added some super-
vised flavor to these approaches for learning each criterion’s weight [19,20]. One
major problem of these approaches is that such datasets do not scale because
manually creating good video summaries is cumbersome for people.

Canonical views of visual concepts can be an indicator of important video
segments, and several existing work uses this intuition for generating a video
summary [21–23]. These approaches basically find canonical views in a given
video, assuming that results of image or video retrieval using the video’s title
or keywords as query contain canonical views. Although a group of images or
videos retrieved for the given video can effectively predict the importance of
video segments, retrieving these images/videos for every input video is expensive
and can be difficult because there are only a few relevant images/videos for
rare concepts.
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For the goal of summarizing Internet videos, we employ a simple algorithm
for segment extraction. This is very different from the above approaches that use
a sophisticated segment extraction method relying on low-level visual features
with manually created video summaries or topic specific data. Due to the depen-
dency of low-level visual features, they do not distinguish semantically identical
concepts with different appearances caused by different viewpoints or lighting
conditions, and consequently result in semantically redundant video summaries.
Instead of designing such a sophisticated algorithm, we focus on designing good
features to represent the original video with richer semantics, which can be
viewed as the counterpart of sentences’ semantics.

Representation Learning. Recent research efforts on CNNs have revealed
that the activations of a higher layer of a CNN can be powerful visual features
[8,24], and CNN-based image/video representations have been explored for var-
ious tasks including classification [8], image/video retrieval [17,25], and video
summarization [16,20]. Some approaches learn deep features or metrics between
a pair of inputs, possibly in different modalities, using a Siamese network [26,27].
Kiros et al. [28] proposed to retrieve image using sentence queries and vice versa
by mapping images and sentences into a common semantic space. For doing
this, they jointly trained the mappings using video-description pairs and the
contrastive loss such that positive pairs (i.e., an image and a relevant sentence)
and negative pairs (i.e., an image and a randomly selected irrelevant sentence)
give smaller and larger Euclidean distances in the semantic space, respectively.

Inspired by Kiros et al.’s work, we develop a common semantic space, which
is also jointly trained with pairs of videos and associated sentences (or descrip-
tions). With this joint training, our deep features are expected to encode sentence
level semantics, rather than word-or object-level ones. Such deep semantic fea-
tures can boost the performance of a standard algorithm for important video
segment extraction, i.e., clustering-based one, empowering them to cope with
higher-level semantics.

3 Approach

Figure 2 shows an overview of our approach for video summarization. We first
extract uniform length video segments from the input video in a temporal slid-
ing window manner and compute their deep semantic features using a trained
DNN. Inspired by [30], we represent the input video as a sequence of deep fea-
tures in the semantic space, each of which corresponds to a video segment, as
shown in Fig. 3. This representation can encode the semantic transition of the
video and thus can be useful for various tasks including video retrieval, video
description generation, etc. In Fig. 3, some clusters can be observed, each of
which are expected to contain semantically similar video segments. Based on
this assumption, our approach picks out a subset of video segments by optimiz-
ing an objective function involving the representativeness of the subset.
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CNN for Video SegmentsVideo Segments Semantic Features Summary

Feature extractionInput Segment extraction

Fig. 2. Our approach for video summarization using deep semantic features. We extract
uniform length video segments from an input video. The segments are fed to a CNN
for feature extraction and mapped to points in a semantic space. We generate a video
summary by sampling video segments that correspond to cluster centers in the semantic
space.

Fig. 3. A two-dimensional plot of our deep features calculated from a video, where
we reduce the deep features’ dimensionality with t-SNE [29]. Some deep features are
represented by the corresponding video segments’ keyframes, and the edges connect-
ing deep features represent temporal adjacency of video segments. The colors of deep
features indicate clusters obtained by k-means, i.e., points with the same color belong
to the same cluster. (Color figure online)

The efficiency of the deep features is crucial in our approach. To obtain good
deep features that can capture higher-level semantics, we use the DNN shown
in Fig. 4, consisting of two sub-networks to map a video and a description to
a common semantic space and jointly train them using a large-scale dataset of
videos and their associated descriptions (a sentence). The video sub-network
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Fig. 4. The network architecture. Video segments and descriptions are encoded into
vectors in the same size. Both sub-network for videos and descriptions are trained
jointly by minimizing the contrastive loss.

basically is a CNN, and the sentence sub-network is a recurrent neural network
(RNN) with some additional layers. We use the contrastive loss function [26] for
training, which tries to bring a video and its associated description (a positive
pair) closer (i.e., a small Euclidean distance in the semantic space) while a video
and a randomly sampled irrelevant description (a negative pair) farther. Being
different from other visual features using a CNN trained to predict labels of a
certain domain [7,8], our deep features are trained with sentences. Consequently,
they are expected to contain sentence-level semantics, including objects, actions,
and scenes.

3.1 Learning Deep Features

To cope with higher-level semantics, we jointly train the DNN shown in Fig. 4
with pairs of videos and sentences, and we use its video sub-network for extract-
ing deep features. The video sub-network is a modified version of VGG [10], which
is renowned for a good classification performance. In our video sub-network,
VGG’s classification (“fc8”) layer is replaced with two fully-connected layers
with hyperbolic tangent (tanh) nonlinearity, which is followed by a mean pool-
ing layer to fuse different frames in a video segment. Let V = {vi|i = 1, . . . , M}
be a video segment, where vi represents frame i. We feed the frames to the video
sub-network and compute a video representation X ∈ R

d.
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For the sentence sub-network, we use skip-thought vector by Kiros et al. [28],
which encodes a sentence into 4800-dimensional vectors with an RNN. Similarly
to the video sub-network, we introduce two fully-connected layers with tanh non-
linearity (but without a mean pooling layer) as in Fig. 4 to calculate a sentence
representation Y ∈ R

d from a sentence S.
For training these sub-networks jointly, we use a video-description dataset

(e.g., [9]). We sample positive and negative pairs, where a positive pair consists
of a video segment and its associated description, and a negative pair consists
of a video and a randomly sampled irrelevant description. Our DNN is trained
with the contrastive loss [26], which is defined using extracted features (Xn, Yn)
for the n-th video and description pair as:

loss(Xn, Yn) = tnd(Xn, Yn) + (1 − tn)max(0, α − d(Xn, Yn)), (1)

where d(Xn, Yn) is the squared Euclidean distance between Xn and Yn in the
semantic space, and tn = 1 if pair (Xn, Yn) is positive, and tn = 0, other-
wise. This loss encourages associated video segment and description to have
smaller Euclidean distance in the semantic space, and irrelevant ones to have
larger distance. α is a hyperparameter to penalizes irrelevant video segment and
description pairs whose Euclidean distance is smaller than α. In our approach,
we compute Euclidean distance of positive pairs with initial DNNs before train-
ing and employ the largest distance among them as α. This enable most pairs to

Fig. 5. Two-dimensional deep feature embedding with keyframes of corresponding
videos, where the feature dimensionality is reduced with t-SNE. The videos located on
each colored ellipsis show similar content, e.g., cars and driving people (blue), sports
(green), talking people (orange), and cooking (pink). (Color figure online)
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be used to update the parameters at the begining of the training. Our DNNs for
videos and descriptions can be optimized using the backpropagation technique.

Figure 5 shows a 2D plot of learned deep features, in which the dimensionality
of the semantic space is reduced using t-SNE [29] and a keyframe of each video
segment is placed at the corresponding position. This plot demonstrates that our
deep neural net successfully locates semantically relevant videos at closer points.
For example, the group of videos around the upper left area (pink) contains
cooking videos, and another group on the lower left (green) shows various sports
videos. For video summarization, we use the deep features to represent a video
segment.

3.2 Generating Video Summary

Figure 3 shows a two-dimensional plot of deep features from a video, whose
dimensionality is reduced again using t-SNE. This example illustrates that a
standard method for video summarization, e.g., based on clustering, works well
because, thanks to our deep features, video segments with a similar content are
concentrated in the semantic space. From this observation, we generate a video
summary given an input video by solving the k-medoids problem [20].

In the k-medoids problem, we find a subset S = {Sk|k = 1, . . . , K} of video
segments, which are cluster centers that minimize the sum of the Euclidean
distance of all video segments to their nearest cluster centers Sk ∈ S and K is
a given parameter to determine the length of the video summary. Letting X =
{Xj |j = 1, . . . , L} be a set of deep features extracted from all video segments in
the input video, k-medoids finds a subset S ⊂ X , that minimizes the objective
function defined as:

F (S) =
∑

X∈X
min
S∈S

‖X − S‖22. (2)

The optimal subset
S∗ = argmin

S
F (S) (3)

includes the most representative segments in clusters. As shown in Fig. 5, our
video sub-network maps segments with similar semantics to closer points in the
semantic space; therefore we can expect that the segments in a cluster have
semantically similar content and subset S∗ consequently includes most repre-
sentative and diverse video segments. The segments in S∗ are concatenated in
the temporal order to generate a video summary.

3.3 Implementation Detail

Deep Feature Computation. We uniformly extracted 5-second video seg-
ments in a temporal sliding window manner, where the window was shifted by
1 second. Each segment V was re-sampled at 1 frame per second, so V has five
frames (i.e., M = 5). The activations of VGG’s “fc7” layer consists of 4,096
units. We set the unit size of the two fully connected layers to 1,000 and 300
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respectively, which means our deep feature is a 300-dimensional vector. For the
description sub-network, the fully-connected layers on top of the RNN have the
same sizes as the video sub-network’s. During the training, we fixed the network
parameters of VGG and skip-thought, but those of the top two fully-connected
layers for both video and description sub-networks were updated. We sampled
20 negative pairs for each positive pair to compute the contrastive loss. Our
DNN was trained over the MSR-VTT dataset [9], which consists of 1 M video
clips annotated with 20 descriptions for each. We used Adam [31] to optimize
the network parameters with the learning rate of 2−4 and trained for 4 epochs.

Video Summarization Generation. Given an input video, we sampled 5-
second video segments in the same way as the training of our DNN, and extracted
a deep feature from each segment. We then minimize the objective function in
Eq. (2) with cost-effective lazy forward selection [19,32]. We set the summary
length K to be roughly 15% of the input video’s length following [19].

4 Experiment

To demonstrate the advantages of incorporating our deep features in video sum-
marization, we evaluated and compared our approach with some baselines. We
used the SumMe dataset [19] consisting of 25 videos for evaluation. As the videos
in this dataset are either unedited or slightly edited, unimportant or redundant
parts are left in the videos. The dataset includes videos with various contents. It
also provides manually created video summaries for each video, with which we
compare our summaries. We compute the f-measure that evaluates agreement to
reference video summaries using the code provided in [19].

4.1 Baselines

We compared our video summaries with following several baselines as well
as recent video summarization approaches: (i) Manually-created video sum-
maries are a powerful baseline that may be viewed as the upper bound for auto-
matic approaches. The SumMe dataset provides at least 15 manually-created
video summaries whose length is 15% of the original video. We computed the
average f-measure of each manually-created video summary with letting each of
the rest manually-created video summaries as ground truth (i.e., if there are 20
manually-created video summaries, we compute 19 f-measures for each summary
in a pairwise manner and calculate their average). We denote the summary with
the highest f-measure among all manually-created video summaries by the best-
human video summary. (ii) Uniform sampling (Uni.) is widely used baseline
for video summarization evaluation. (iii) We also compare to video summaries
generated in the same approach as ours except that VGG’s “fc7” activations
were used instead of our deep features, which is referred to as VGG-based video
summary. (iv) Attention-based video summary (Attn.) is a recently proposed
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video summarization approach using visual attention [33]. (v) Interestingness-
based video summary (Intr.) refers to a supervised approach [19], where the
weights of multiple objectives are optimized using the SumMe dataset.

4.2 Results

Several examples of video summaries generated with our approach are shown in
Fig. 6, along with ratio of annotators who agreed to include each video segments
in their manually-created video summary. The peaks of the blue lines indicate
that the corresponding video segments were frequently selected to create a video
summary. These blue lines demonstrate that human annotators were consistent
in some extent. Also we observe that the video segments selected by our approach
(green areas) are correlated to the blue lines. This suggests that our approach
is consistent with the human annotators.

The results of the quantitative evaluation are shown in the Table 1. In this
table, we report the minimum, average, and maximum f-measure scores of
manually-created video summaries. Compared to VGG-based summary, ours
significantly improved the scores. Our video summaries achieved 58.8% of the

Paluma Jump

Valparaiso Downhill

Fig. 6. Segments selected by our approach. Keyframes of selected segments are shown.
The green areas in the graphs indicate selected segments. The blue lines represents
the ratio of annotators who selected the segment for their manually-created summary.
(Color figure online)
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Table 1. F-measures of manually-created video summaries and computational
approaches (our approach and baselines, higher is better). Since there are multiple
manually-created video summaries for each original video and thus multiple f-measures,
we show their minimum, mean, and maximum. The best score among the computa-
tional approaches are highlighted.

Video Manually created Computational approaches

Min. Avg. Max. Uni. VGG Attn. Intr. Ours

Air Force One 0.185 0.332 0.457 0.060 0.239 0.215 0.318 0.316

Base Jumping 0.113 0.257 0.396 0.247 0.062 0.194 0.121 0.077

Bearpark Climbing 0.129 0.208 0.267 0.225 0.134 0.227 0.118 0.178

Bike Polo 0.190 0.322 0.436 0.190 0.069 0.076 0.356 0.235

Bus in Rock Tunnel 0.126 0.198 0.270 0.114 0.120 0.112 0.135 0.151

Car Railcrossing 0.245 0.357 0.454 0.185 0.139 0.064 0.362 0.328

Cockpit Landing 0.110 0.279 0.366 0.103 0.190 0.116 0.172 0.165

Cooking 0.273 0.379 0.496 0.076 0.285 0.118 0.321 0.329

Eiffel Tower 0.233 0.312 0.426 0.142 0.008 0.136 0.295 0.174

Excavators River Crossing 0.108 0.303 0.397 0.107 0.030 0.041 0.189 0.134

Fire Domino 0.170 0.394 0.517 0.103 0.124 0.252 0.130 0.022

Jumps 0.214 0.483 0.569 0.054 0.000 0.243 0.427 0.015

Kids Playing in Leaves 0.141 0.289 0.416 0.051 0.243 0.084 0.089 0.278

Notre Dame 0.179 0.231 0.287 0.156 0.136 0.138 0.235 0.093

Paintball 0.145 0.399 0.503 0.071 0.270 0.281 0.320 0.274

Playing on Water Slide 0.139 0.195 0.284 0.075 0.092 0.124 0.200 0.183

Saving Dolphines 0.095 0.188 0.242 0.146 0.103 0.154 0.145 0.121

Scuba 0.109 0.217 0.302 0.070 0.160 0.200 0.184 0.154

St Maarten Landing 0.365 0.496 0.606 0.152 0.153 0.419 0.313 0.015

Statue of Liberty 0.096 0.184 0.280 0.184 0.098 0.083 0.192 0.143

Uncut Evening Flight 0.206 0.350 0.421 0.074 0.168 0.299 0.271 0.168

Valparaiso Downhill 0.148 0.272 0.400 0.083 0.110 0.231 0.242 0.258

Car over Camera 0.214 0.346 0.418 0.245 0.048 0.201 0.372 0.132

Paluma Jump 0.346 0.509 0.642 0.058 0.056 0.028 0.181 0.428

Playing Ball 0.190 0.271 0.364 0.123 0.127 0.140 0.174 0.194

Mean f-measure 0.179 0.311 0.409 0.124 0.127 0.167 0.234 0.183

Relative to human avg. 0.576 1.000 1.315 0.398 0.408 0.537 0.752 0.588

Relative to human max. 0.438 0.760 1.000 0.303 0.310 0.408 0.572 0.447

average score of manually-created video summaries, while VGG-based got 40.8%.
This result demonstrates the advantage of our deep features for creating video
summaries.
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Fig. 7. Uniformly sampled frames of summaries by different approaches. “Human”
means the best-human video summary. The full results of “Bear Climbing” and “Car
over Camera” are shown in the supplementary material.

One of the recent video summarization approaches, i.e., interestingness-based
one [19], got the highest score in this experiment. Note that the interestingness-
based approach [19] uses a supervised technique, in which the mixture weights
of various criteria in their objective function are optimized over the SumMe
dataset. Our video summaries were generated using a relatively simple algo-
rithm to extract a subset of segments; nevertheless, ours outperformed the
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interestingness-based for some videos, and even got a better mean f-measure
score than attention-based.

Our approach got low scores, especially for short videos, such as “Jumps”
and “Fire Domino.” Since we extract uniform length segments (5 second), in the
case of short videos, our approach only extracts a few segments. This may result
in a lower f-measure score. This limitation can be solved by extracting shorter
video segments or using more sophisticated video segmentation like [12,19].

We also observed that our approach got lower scores than others on the
“St Maarten Landing” and “Notre Dame,” which are challenging because of
long unimportant parts and diversity of content, respectively. For “St Maarten
Landing,” as our approach is unsupervised, it failed to exclude unimportant
segments. For “Notre Dame,” generating a summary is difficult because there
are too many possible segments to be included in a summary. While our summary
shares small parts with manually created summaries, it is a challenging example
even for human annotators, which is shown in the low scores of manually-created
video summaries.

Figure 7 shows examples of video summaries created with our approach and
baselines. The video “Cooking” shows a person cooking some vegetables while
doing a performance. Ours and the best-human video summary include the same
scene of the performance with fire, while others do not. On the other hand, ours
extracts unimportant segments from the video “Car over Camera.” The original
video is highly redundant with static scenes just showing the ground or the sky,
and such scenes make up large clusters in the semantic space even if they are
unimportant. As our approach extracts representatives from each cluster, a video
with lengthy unimportant parts resulted in a poor video summaries. We believe
that this problem can be avoided by using visual cues such as interestingness
[34] and objectiveness [35].

5 Conclusion

In this work, we proposed to learn semantic deep features for video summa-
rization and a video summarization approach that extracts a video summary
based on the representativeness in the semantic feature space. For deep feature
learning, we designed a DNN with two sub-networks for videos and descriptions,
which are jointly trained using the contrastive loss. We observed that learned
features extracted from videos with similar content make clusters in the semantic
space. In our approach, the input video is represented by deep features in the
semantic space, and segments corresponding to cluster centers are extracted to
generate a video summary. By comparing our summaries to manually created
summaries, we shown that the advantage of incorporating our deep features in a
video summarization technique. Furthermore, our results even outperformed the
worst human created summaries. We expect that the quality of video summaries
will be improved by incorporating video segmentation methods. Moreover, our
objective function can be extended by considering other criteria used in the area
of video summarization, such as interestingness and temporal uniformity.
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Abstract. Are we ready to segment consumer stereo videos? The
amount of this data type is rapidly increasing and encompasses rich
information of appearance, motion and depth cues. However, the seg-
mentation of such data is still largely unexplored. First, we propose
therefore a new benchmark: videos, annotations and metrics to measure
progress on this emerging challenge. Second, we evaluate several state
of the art segmentation methods and propose a novel ensemble method
based on recent spectral theory. This combines existing image and video
segmentation techniques in an efficient scheme. Finally, we propose and
integrate into this model a novel regressor, learnt to optimize the stereo
segmentation performance directly via a differentiable proxy. The regres-
sor makes our segmentation ensemble adaptive to each stereo video and
outperforms the segmentations of the ensemble as well as a most recent
RGB-D segmentation technique.

1 Introduction

We witness a fast growing number of stereo streams on the web, due to the advent
of consumer stereo video cameras. Are we ready to expoit the rich cues which
stereo videos deliver? Our work focuses on segmentation of such data sources,
as it is a common pre-processing step for further analysis such as action [1–3] or
scene classification [4].

We propose a new consumer stereo video challenge, to understand the oppor-
tunities and foster the research in this new area. The new type of data combines
the availability of appearance and motion with the possibility of extracting depth
information. Considering consumer videos means addressing a most abundant
web data, which is however also very heterogeneous, due to a variety of consumer
cameras.

The new consumer stereo video challenge explicitly concerns the semantics
of the video. A number of existing benchmarks have offered ground truth depth

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-54193-8 24) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 378–395, 2017.
DOI: 10.1007/978-3-319-54193-8 24

http://dx.doi.org/10.1007/978-3-319-54193-8_24
http://dx.doi.org/10.1007/978-3-319-54193-8_24


Towards Segmenting Consumer Stereo Videos 379

and motion, recurring to controlled recordings [5] or computer graphics simula-
tions [6]. By contrast, here we address stereo videos in the wild and specifically
consider the semantics of the data. While this might partly harm analysis (no
true depth available), it addresses directly what we are most interested in, the
actors and objects in the videos.

We warm-start the challenge with a number of baselines, extending best
available image and video segmentations to the consumer stereo videos and their
available features, e.g. color, motion and depth. Most baselines perform well on
some videos, however none performs well on all. As an example, motion segmen-
tation techniques [7] perform well while the object moves, but encounter difficulty
with static video shots. On the other hand, camouflaged (but moving) objects
impinge appearance-based image [8] and video [9] segmentation techniques.

Thus motivated, we introduce in Sect. 5 a new efficient segmentation ensem-
ble model, which leverages existing results where they perform best. Further-
more, we introduce in Sect. 6 the framework to learn a regressor which adapts
the ensemble model to each particular stereo video. The proposed technique
is overviewed in Sect. 4 and demonstrated in Sect. 7. Although only combining
optimally existing results, our new algorithm outperforms a most recent RGB-D
segmentation technique [10].

…pool of
segmentations

adaptive segmentation ensemble

sequence of
stereo pairs

depthcolor motion

prediction of
latent parameters

differentiable
performance proxy

Ξ

Ξ∗ = arg max
Ξ

P̂

training

P̂

α, β

Fig. 1. Overview of the proposed efficient adaptive stereo segmentation technique.
Our proposed segmentation ensemble model leverages the best available image and
video segmentation results efficiently. A regressor makes the ensemble model adaptive
to each stereo video, based on color, depth and motion features. In our novel learning
framework, the segmentation performance is optimized via a differentiable proxy. (Color
figure online)
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2 Related Work

Video Segmentation. Video segmentation has recently received much atten-
tion. It strikes how diversely the segmentation problem is defined. [11] looks at
the problem of motion segmentation by using optical-flow long term trajectories.
[12] also uses trajectories (defined densely with superpixel-regions) and looks at
motion but focuses on people motion. [13] considers appearance to generate sev-
eral image proposals and tracks the most temporally consistent ones with motion.
[9] addresses general unsupervised video segmentation based on appearance and
motion. [14] introduces an unsupervised, geodesic distance based, salient video
object segmentation method. [15] proposes a non-local consensus voting scheme
defined over a graph of similar regions in the video sequence. We note that:
1. the strong diversity of existing algorithms hardly allows combining their
results; 2. none of those techniques may seamlessly generalize to stereo videos.
This work proposes a solution to both aspects.

Depth/Stereo Segmentation. There is a long tradition of work on 3D recon-
struction which estimates 3D coordinates, thus depth, from pair or multiple
views [16,17]. These efforts have been recently combined with reasoning on the
object appearance and the physical constraints of the 3D scene in the work of
[18], whereby segmentation proposals are produced for semantic objects. The
underlying assumption of a static scene for these methods does not allow their
extension to stereo video sequences which we consider here. Additionally, the
use of consumer cameras contrasts the high quality images which they generally
require.

Scene Flow and Stereo Videos. Recent work addresses scene flow, the joint
estimation of optical flow and depth, assuming calibrated [19,20] or uncalibrated
cameras [21]. Those do not address segmentation. Elsewhere, video segmenta-
tion is addressed by considering RGB-D information [10,22–24], Kinect colour
images with depth. The stereo videos which we consider are not assumed cal-
ibrated nor from the same camera. Since we consider consumer cameras, the
videos are further unconstrained in terms of spatio-temporal resolution, zoom-
ing, sensitivity and dynamical range, and present challenging motion blur effects
and image latency.

Image/Video Co-Segmentation. Recent researches on image and video co-
segmentation [25–28] tasks provide a way to jointly extract common objects
across multiple images or videos. The general assumption of co-segmentation
problem on commonality of objects in a video set makes it a plausible fit to
stereo video segmentation task when we consider left and right videos of stereo
pairs as two separate sequences in the same set. However, from this perspective
the depth cue in the stereo videos is not explicitly explored which can provide
rich information to outline objects while other features are with ambiguities.

Algorithm Selection and Combination. There has been previous work
which attempted to select the best algorithm from a candidate pool depend-
ing on the specific task e.g. for recognition on a budget [29,30] or active learning
[31]. For optical flow, [32] presented a supervised learning approach to predict
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the most suitable algorithm, based on the confidence measures of the optical
flow estimates. By contrast, Bai et al. [33] shows an object cutout system where
the segmentation is done by a set of local classifiers, each adaptively combin-
ing multiple local features. Our proposed technique not only combines different
feature cues but also the available segmentation algorithms, weighting their con-
tributions rather than selecting one. We show experimentally that combination
provides better results. Our proposed approach relates closely to [8] which effi-
ciently combines image segmentation algorithms within the spectral clustering
framework outperforming the original results in the pool. Our extension of [8] is
twofold: 1. we generalize from image to stereo video segmentation; 2. we design
and learn discriminatively an adaptive scheme which allows to combine opti-
mally the pool of video and segmentation algorithms at each superpixel, based
on the appearance and motion features of the local pixels. Experimentally, the
adaptive scheme further improves on the static combination.

3 Consumer Stereo Video Segmentation Challenge
(CSVSC)

We launch a Consumer Stereo Video Segmentation Challenge (CSVSC). The
new dataset consists of 30 video sequences which we have selected from Youtube
based on their heterogeneity. In fact, the footage differs in the number of objects
(2–15), the kind of portrayed actors (animals or people), the type of motion
(a few challenging stop-and-move scenes and objects entering or exiting the
scene), the appearance visual complexity (also in relation to the background,
a few objects may be harder to discern) and the distance of the objects from
the camera (varying disparity and thus depth). Not less importantly, we have
selected videos acquired by different consumer stereo cameras, which implies
diverse camera intrinsic parameters, zooms and (as a further challenge) noise
degradations such as motion blurs and camera shake. We illustrate a few sample
sequences in Fig. 2.

Fig. 2. Sample frames from the Consumer Stereo Video Segmentation Challenge
(CSVSC) dataset (left-right views) with the corresponding annotations. The stereo
videos differ in content (appearance, motion, number and type of subjects) and in
camera characteristics (intrinsic parameters, zoom, noise).
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Benchmark Annotation and Metrics. We have gathered human annotations
and defined metrics to quantify progress on the new benchmark. In particular,
we equidistantly sample 5 frames from the left view of all 30 videos to be labelled
(150 frames are labelled in whole benchmark, while stereo videos altogether total
to 1738 left-right-pair frames).

As for the metrics, we have considered state-of-the-art image [34] and video
segmentation [35] metrics:

Boundary Precision-Recall (BPR). This reflects the per-frame boundary
alignment between a video segmentation solution and the human annotations.
In particular, BPR indicates the F-measure between recall and precision [34].

Volume Precision-Recall (VPR). This measures the video segmentation
property of temporal consistency. As for BPR, VPR also indicates the F-measure
between recall and precision [35].

It is of research interest to determine which of the metrics is best for learning.
We answer this question in Sect. 7, where we consider BPR and VPR alone
or combined by their: arithmetic mean (AM-BVPR) or harmonic mean
(HM-BVPR), formulated respectively as BPR+VPR

2 and 2·BPR·VPR
BPR+VPR .

Preparation of Stereo Videos. Not having a ground truth depth may impinge
comparison among techniques applied to the dataset. We define therefore an ini-
tial set of comparisons among depth-estimation algorithms and make the results
available.

We have considered the per-frame rectification of [38] and the stereo match-
ing algorithm of [36], filling-in the missing correspondences with [39]. Further-
more, we have estimated depth by the optical flow algorithm of [37] between the
right and left views. We illustrate samples in Fig. 3. Our initial findings are that
estimating depth by optical flow leads to best downstream stereo segmentation
outputs, which we use therefore in the rest of the paper.

Fig. 3. Sample disparity estimation. The first two columns are the original stereo pair
and their rectified images. The top-right picture is the disparity map computed by [36],
the bottom-right is the depth map obtained by optical flow [37] between the left and
right view.
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4 Efficient Adaptive Segmentation of Stereo Videos

We warm start the CSVSC challenge with a basic segmentation ensemble model.
To this purpose we first pre-process the stereo videos with a pool of state-of-
the-art image and video segmentation algorithms. Then we combine the segmen-
tation outputs with a new efficient segmentation ensemble model (cf. Sect. 5).
Finally, we propose the learning framework to adapt the combination parameters
of each stereo video (cf. Sect. 6).

Figure 1 gives an overview of our ensemble model:

Pool of Image and Video Segmentations. We select most recent algorithms
which are available online. These are used to segment the single frames (image
segmentations) and the left views of the stereo videos (video segmentations). This
results in a pool of segments which are respectively superpixels and supervoxels.

Efficient Segmentation Ensemble Model. We bring together the pool of seg-
ments and connect them to the stereo video voxels. The segmentation ensemble
model is represented by a graph and parameterized by α and β’s, which weight
the contribution of each segmentation method. The model is accurate (voxel-
based) but costly. We propose therefore an efficient graph reduction which is
exact, i.e. it provides the same solutions as the voxel-based at a lower computa-
tional complexity.

Performance-Driven Adaptive Combination. We compute stereo video fea-
tures from the stereo videos based on color, flow and depth. From these features,
we regress the combination parameters α and β’s, i.e. we combine optimally the
pooled segmentation outputs. To this purpose, we propose a novel regressor Ξ
and an inference procedure, to learn the optimal regression parameters ξ from
data. For the first time in literature, the regressor parameters ξ are directly opti-
mized according to the final performance measure P (resulting from the graph
partitioning and the metric evaluation, cf. Sect. 6.2). We achieve this with a novel
differentiable performance proxy P̂ .

None of the state-of-the-art segmentation algorithms performs well with all
of the challenging consumer stereo videos (cf. experiments in Sect. 7). Both the
contributions on the ensemble model (Sect. 5) and the performance-driven adap-
tive combination (Sect. 6) turn out important for better results.

5 Efficient Segmentation Ensemble Model

We propose a graph for bringing together the available video segmentation out-
puts. Additionally, we propose the use of recent spectral techniques to reduce
the voxel graph to one based on tailored superpixels/supervoxels, to improve
efficiency without any (proven) compromise on performance. The graph parti-
tioning with spectral clustering provides the segmentation output.
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Fig. 4. Proposed video segmentation model. A number of K pooled image and video
segmentation outputs are brought together as hypotheses of grouping for the considered
video sequence (cf. Sect. 5 for details). We propose to replace the model of [8] (left)
with a new one (right) based on minimally overlapping superpixels, which is provably
equivalent but yields better efficiency (cf. Sect. 5.1)

5.1 Unifying Graph

Given a number of video segmentation outputs, we propose to bring all of them
together by defining a unifying graph.

Let us consider Fig. 4 left. Each video segmentation algorithm provides group-
ings of the video sequence voxels. In the unifying graph, each pixel is therefore
linked to the groupings to which it belongs. For example, one algorithm may com-
pute spatio-temporal tubes (supervoxels) [9], another one may compute image-
based superpixels [34]. The video sequence voxels would then be linked to the
tube to which they belong (temporally) and to their superpixels (spatially). Alto-
gether, the outputs from the pool of video segmentations provide hypotheses of
grouping for the video voxels.

More formally, we define a graph G = (V, E) to jointly represent the video
and the segmentation outputs. Nodes from the vertex set V are of two kinds:

Voxels are the video sequence elements which we aim to segment;
Pooled segmentation outputs are the computed spatial- and/or temporal-
groupings, providing voxel grouping hypotheses.

Further to being connected to the voxels, the pooled groupings from the same
output are also connected to their neighbors, which defines the video volume
structure. Edges are therefore of two types:

β-edges are between the groupings of each pooled segmentation k; we assume
C features (appearance, motion, etc. cf. Sect. 4) and distances based on βc-

weighted features: wk
I,J = e−(β1d

k1
I,J+···+βCd

kC
I,J ), where dkc

I,J is the distance
between superpixels I and J from the k-th pooled output based on c-th
feature.
α-edges are between the voxels and the grouping that it belongs to. The
αk’s encode the trust towards the respective K segmentation algorithm, ide-
ally proportional to its accuracy. In other words, the weights of alpha edges
correspond to the importance of individual segmentations, thus a higher αk

can be interpreted as a larger contribution to the overall performance, and
shows the importance of individual segmentations.
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Partitioning graph G with spectral clustering is computationally demanding
as the number of nodes (and edges) depends linearly on the video voxels. The
theory of [8] reduces the complexity of a first stage of spectral clustering (the
eigendecomposition) but not of the second one (k-means), still of linear com-
plexity in the number of voxels (and thus bottleneck of [8]). We address both
with graph reduction in the following Section.

5.2 Improved Efficiency with Graph Reduction

Let us consider again Fig. 4. A huge number of voxels are similar both in appear-
ance and in motion and are therefore grouped in all segmentation outputs. When
partitioning the original graph G, these voxels are always segmented together.
(The trivial proof leverages their equal edges and therefore eigenvectors).

Rather than considering all voxels, we propose to reduce the original graph G
to one of smaller size GQ which is equivalent (provides exactly the same clustering
solutions). In GQ, we basically group all those voxels with equal connections into
super-nodes (reweighting their edges equivalently). This reduces the algorithmic
complexity, as the spectral clustering (both the eigendecomposition and the k-
means) now depends only on the number of super-nodes (which is determined
for most pooled segmentation algorithms by the number of objects, rather than
voxels).

We identify the voxels with equal connections by intersecting the available
segmentation outputs. The result of the intersection is an oversegmentation into
superpixels, which can generate all pooled segmentation outputs by merging. We
name these minimally overlapping superpixels.

More formally, the reduced graph GQ = (VQ, EQ) takes the minimally over-
lapping superpixels as nodes VQ and the following edge weights

wQ
IJ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i∈I

∑

j∈J

wij if I �= J

1
|I|

∑

i∈I

∑

j∈J

wij − (|I| − 1)
|I|

∑

i∈I

∑

j∈V\I

wij if I = J
(1)

where |·| indicates the number of pixels within the superpixel, I, J are two min-
imally overlapping superpixels, and wij stands for a generic edge of the original
graph. According to (1), two pixels i and j are reduced if belonging to the
same superpixel, i.e. if I = J . These self-edges are of great importance, because
spectral clustering normalizes clusters by their accumulated volumes of merged
pixels, i.e. summations of merged α’s. (Since the superpixel connections are equal
for the pixels within the same superpixel by construction, the reduction is exact,
cf. [40].)

5.3 Implementation Details

The output segmentation is obtained by graph partitioning GQ with spectral
clustering [41–43]. In particular, the labels of the minimally overlapping super-
pixels provide the voxel labels and thus the video segmentation solution.
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In this work, we use K = 6 image and video segmentation algorithms: (1)
The hierarchical image segmentation of [34]. We choose one layer from hierarchy
based on best performance on a validation set. We take three segmentation out-
puts by applying the Simple Linear Iterative Clustering (SLIC) [44] respectively
on (2) depth, (3) optical-flow [37] and the (4) LAB-color coded cues, bilaterally
filtered for noise removal and edge preservation [45]. (5) Hierarchical graph-based
video segmentation (GBH) [9]. We choose one layer from the hierarchy on the
validation set. (6) The motion segmentation technique (moseg) of [7].

While the features are computed on the stereo video. The graph is con-
structed on one of the two views (the left one) of the stereo videos, which is then
evaluated for the segmentation quality. The contribution of segmentation out-
puts is weighted by α. β defines the affinities between superpixels/supervoxels
from the same pooled segmentation output, weighting C = 3 feature cues based
on mean Lab-color, depth and motion.

Note the importance of α’s and β’s in the graph G and therefore GQ. These
parameters define how much each pooled segmentation output is trusted and
how to compute the similarity among superpixels/supervoxels in these outputs.
Such parameters can be defined statically (cf. [8]) or adjusted dynamically in a
data-dependent fashion, as we propose in the next Section.

6 Performance-Driven Adaptive Combination

We propose a regressor Ξ to estimate the optimal segmentation ensemble para-
meters α and β from the appearance-, motion- and depth-based features of the
stereo videos. (Cf. Fig. 1 where the regressor is given by the red arrows). Further-
more, we propose a novel inference framework to learn the regressor parameters
ξ from the training stereo videos. (Cf. Fig. 1 where the training is represented
with blue arrows). A new differentiable performance proxy P̂ enables optimiza-
tion driven by the stereo video segmentation performance measure P .

6.1 Adaptive Combination by Regression

Let us define a regressor Ξ, with parameters ξ. Ξ takes as input a set of features
F computed from the stereo video and outputs the parameters α and β for the
ensemble segmentation model (i.e. the coefficients to optimally combine K seg-
mentation outputs from the pool based on C features, cf. Sect. 5.1). Intuitively,
the regressor should select the best segmentation outputs from the pool, based
on the stereo video content. This would imply, for example, a larger trust towards
image- rather than motion-segmentation outputs, for those stereo videos where
no motion is present.

While any type of regressor could be adopted, here in our approach we employ
a second order regressor Ξ which we parameterize by a matrix B. Overall, α and
β are computed as:

(α1, . . . , αK , β1, . . . , βC) = Ξ(F ; ξ) = FTBF (2)
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where B is learnt with least squares and the input-output pairs of F and (α, β),
and ξ are the regression coefficients contained in B . We consider in F features
based on appearance, motion and depth. A large feature set is important to
allow the regressor to understand the type of stereo video (dynamic, static, tex-
tured etc.) For each feature, we compute therefore histograms, means, medians,
variances and entropies. We would leave the learning framework to choose from
the right feature, i.e. training the best regressor Ξ. This should ideally consider
the system performance P for optimization or the tractable differentiable proxy
which we discuss next.

6.2 Performance-Driven Regressor Learning by Differentiable
Proxies

Let us consider Fig. 1. The α and β, regressed by Ξ according to features F ,
correspond to a stereo video segmentation performance P . During training, we
seek to optimize Ξ for the maximum segmentation performance P :

Ξ̂ = max
Ξ

P (Ξ(F)) (3)

There are two main obstacles to our goal. First, typical video segmentation
performance metrics are not differentiable and therefore do not lend themselves
to directly optimizing an overall performance. To address this, we propose a
differentiable performance proxy P̂ in Sect. 6.2.

Second, α and β are not part of the objective (3) and have to be considered
latent. In Sect. 6.2, we define therefore an EM-based strategy to jointly learn
the regressor Ξ, α and β. An overview of our training procedure is given in
Algorithm 1.

Algorithm 1. Joint learning of the regressor Ξ and latent combination weights
α, β

Require: ∀ training videos with initial set of parameters (α, β) and stereo video fea-
tures F

1: repeat
2: Given the current estimates of (α, β), train the Ξ which regresses them from

F
3: for all training video do
4: predict (α′′, β′′) = Ξ(F);
5: use (α′′, β′′) as initialization for (α̂, β̂) = arg maxα,β P̂ (α, β);
6: update (α, β) for the training video by (α̂, β̂);
7: end for
8: until Convergence or max. iterations exceeded

Metric Specific Performance Proxy. In image segmentation, performance
is generally measured by boundary precision recall (BPR) and its associated
best F-measure [34]. In video segmentation, benchmarks additionally include
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volume precision recall (VPR) metrics [35]. Both these performance measures are
plausible P , but neither of them is differentiable, which complicates optimization.
(We experiment on various performance measures in Sect. 7.)

We propose to estimate a differentiable performance proxy P̂ which approx-
imates the true performance P . We do so by a second order approximation
parameterized by the matrix Y . Taking χ a vector of features which are suffi-
cient to represent the stereo video (at least as far as the estimation of (α, β) is
concerned, will be described in the next paragraph) we have:

(α̂, β̂) = arg max
α,β

P̂ (α, β) = arg max
α,β

χ�Y χ (4)

We perform training by sampling α and β, computing then input-output pairs
of vector χ and the real performance values P , and finally fitting the parameter
matrix Y .

Stereo Video Representation by Spectral Properties. We are motivated by prior
work on supervised learning in spectral clustering [46–48] to represent the stereo
videos by their spectral properties. In particular, we draw on [46] and consider
the normalized-cut cost NCut (of the similarity graph, based on the training set
groundtruth labelling) and its lower bound TraceR. Our representation vector is
therefore χ = [α, β,NCut,TraceR]�.

In more details, given the indicator matrix E = {er}r=1···R where er ∈ R
Nm

,
er(i) = 1 if superpixel i belongs to r-th cluster otherwise = 0, and Nm is the
number of superpixels, we have:

NCut(α, β,E) =
R∑

r=1

e�
r (D − W )er

e�
r Der

TraceR(α, β) = R −
R∑

r=1

λr(L)

(5)

where D = diag(W1) is the degree matrix of W and λr(L) is the r-th eigenvalues
of the generalized Laplacian matrix L = D−1 · W of the similarity matrix W .

Derivatives of Performance Proxy. Our performance proxy P̂ is now differen-
tiable. For gradient descent optimization, we use its derivatives w.r.t. parameters
θ ∈ {

αk, βc
}
:

∂χ�Y χ

∂θ
=

∂χ�

∂θ
(Y + Y �)χ ∀θ ∈ {

αk, βc
}

(6)

The derivatives of NCut and TraceR ∈ χ are:

∂(NCut)
∂θ

=
R∑

r=1

−e�
r

∂W
∂θ ere

�
r Der + e�

r Were
�
r

∂D
∂θ er

(e�
r Der)2

∂(TraceR)
∂θ

= trace(V � ∂L(θ)
∂θ

V )

(7)
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where V denotes the subspace spanned by the first R eigenvectors of L. Note that
W , D and L are all parameterized by α and β. By plain chain rule differentiation,
we compute the gradients of the differentiable proxy P̂ in closed form. (Cf. All
gradients are presented in the supplementary material.)

Joint Learning of Regressor and Latent Parameter Combinations. As
stated in Eq. 3, we are interested in optimizing the performance P w.r.t. the
regressor Ξ and therefore the ensemble combination parameters α and β have
to be treated as latent variables. As described in Algorithm1, we solve this by an
EM-type optimization scheme in which we iterate finding optimal parameters α
and β and predicting new α and β parameters based on the re-fitted regressor Ξ.

Intuitively, this scheme strikes a balance between the generalization capa-
bilities of the regressor and optimal parameters α and β. We found this to be
particular important, as in many cases a wide range of parameters leads to good
results. Fixing the best parameters as a learning target, leads to a more difficult
regression and overall worse performance. The metric specific performance proxy
is continuously updated by using the samples in a small neighborhood in order
to improve the local approximation of the desired metric P .

6.3 Implementation Details

As already noted, the computation of NCut at training involves the ground truth
annotations. In particular, the NCut for the entire video requires all frames
labeled, while ours and most segmentation datasets [35,49] only offer sparse
labeling. Aggregating dense optical flow over time allows to connect the sparsely
annotated frames. The spatial and temporal connections of these labeled frames
are then used for the NCut computation.

Our representation vector χ in (4) consists of [α, β,NCut,TraceR]. We have
empirically found that this combination improves of the individual parts and
subsets by 5% and therefore we use the full vector in the following experiments.

In order to increase the number of examples for our training procedure, we
divide each video into subsequences so that each of them contains two frames
with groundtruth.

7 Experimental Results

We evaluate our proposed efficient and adaptive stereo video segmen-
tation algorithm (EASVS) on the CSVSC benchmark. In particular, first we
test the pooled segmentation outputs, then we compare EASVS against relevant
state-of-the-art on stereo video sequences, finally we present an in-depth analysis
of EASVS.



390 W.-C. Chiu et al.

Fig. 5. Results of the considered video segmentation algorithms (GBH [9], moseg [7],
SAS [8]) and our proposed EASVS on the CSVSC stereo video sequences using BPR
and VPR. No considered method performs consistently well on all videos. moseg may
achieve high performance of stereo videos with large and distinctive motion such as
“elephants3” and “hens” but underperforms when motion is not strong, e.g. “marine1”.
Complementary features are given by GBH. SAS combines statically (cf. segmentation
ensemble model of Sect. 5.1) the two video segmentation techniques as well as the
pooled image segments but also underperforms, because a static combination cannot
address the variety of the stereo videos.

7.1 Video Segmentations and Their (Static) Ensemble

Among the pooled segmentations (details in Sect. 5.3), we have included two
state-of-the-art video segmentation techniques: the motion segmentation algo-
rithm of [7] (moseg) and the graph-based hierarchical video segmentation method
of [9] (GBH).

In Fig. 5, we illustrate performance of each of moseg and GBH on all stereo
video sequences. (Cf. detailed comments in the figure caption.) As expected, none
of the two performs satisfactorily on all sequences. Rather, they have in most
cases complementary performance, e.g. moseg aiming for motion segmentation
takes the lead on sequences with evident motion and good optical flow estimates;
while GBH overtakes when spatio-temporal appearance cues are more peculiar
in the visual objects.

A third technique illustrated in Fig. 5 is the segmentation by aggregating
superpixel method of [8] (SAS). This is an interesting baseline for our proposed
algorithm. SAS is based on a static combination of pooled segmentation outputs.
We extend its original image-based formulation to stereo videos by including
into its pool the GBH and moseg video segmentation methods, as we illustrate
in Sect. 5.1.

Figure 5 clearly states that a static combination does not suffice to address the
segmentation of stereo videos. By contrast, quite surprisingly, trying to always
pool all video and image segmentation output with the same contributing weights
turns out to harm performance.

7.2 EASVS and the State-of-the-art

Our adaptive combination of pooled segmentation outputs poses the question
of which measure to use for learning. As mentioned in Sect. 3, the BPR and
VPR measures may push for adaptive algorithms with better boundaries or
temporally-consistent volumes. Averaging BPR and VPR may balance the two
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Table 1. Results on the CSVSC benchmark. The proposed EASVS outperforms the
baselines from video segmentation, static ensemble, RGB-D video segmentation, and
video co-segmentation for all metrics. See detailed discussion in Sect. 7.2.

Stereo video segmentation BPR VPR AM-BVPR HM-BVPR

GBH [9] 0.187 0.208 0.198 0.198

moseg [7] 0.247 0.285 0.266 0.264

SAS [8] 0.184 0.087 0.135 0.118

4D-seg [10] 0.128 0.146 0.137 0.120

VideoCoSeg [28] 0.238 0.140 0.189 0.169

Proposed EASVS 0.301 0.296 0.295 0.288

Oracle 0.371 0.505 0.423 0.428

aspects, which we may achieve by arithmetic (AM-BVPR) or harmonic mean
(HM-BVPR).

In Table 1, we illustrate performance of EASVS against moseg, GBH and
SAS, measured according to the four available metrics (BPR, VPR, AM-BVPR,
HM-BVPR). For EASVS, the measured performance statistic has also been
respectively used for learning the adaptive ensemble segmentation model. (Since
our approach involves learning, we address train/test splits with three-fold cross
validation and the results are averaged on three folds). The results in the table
match the intuition that only an adaptive combination can successfully address
all videos. Furthermore, our proposed EASVS outperforms a recent depth video
segmentation method [10] (4D-seg) by more than 50% on all measures, as well as
a recent video co-segmentation algorithm [28] that we run on each video stereo
pair by 65%. This is confirmed by the qualitative examples shown in Table 3.

We delve further into the understanding of the potential result improvements
within the EASVS framework with an oracle. In more details, we allow our
algorithm to estimate the optimal segmentation-pool combination-parameters
(α and β) by accessing the ground truth performance measure P for each stereo
video sequence. The higher oracle performance by up to 70% (with the current
representation and quadratic regressors) anticipate future improvements with
richer models and more data.

7.3 Deeper Analysis of EASVS

In Table 2, we provide additional insights into EASVS. First, we experiment with
(1) no depth and (2) fixed depth contribution. The performance drops by 11.5%

Table 2. Analysis of the proposed EASVS, which shows the importance of the depth
cue as well as the proposed adaptive strategy. See Sect. 7.3 for detailed discussion.

No depth Fixed depth Fixed α Fixed β Fixed both α, β Proposed EASVS

HM-BVPR 0.254 0.276 0.270 0.276 0.272 0.288
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Table 3. Examples of the proposed EASVS optimized for different metrics compared
to the state-of-the-art algorithms. Note how GBH outlines the object boundaries but
tends to over-segment, while moseg produces under-segmentations and fails to extract
objects without significant motion. The static combination scheme SAS cannot strike
good compromised parameters across all videos, which results in degraded results. 4D-
seg [10] is a clear leap forward but suffers from some of the drawbacks of GBH. Our
EASVS benefits the learning framework and the adaptive nature for a better output.

video
frames

ground
truth

GBH
[9]

moseg
[7]

SAS
[8]

4D-seg
[10]

proposed EASVS
(BPR) (VPR) (AM-BVPR) (HM-BVPR)

for (1) and 4.2% for (2) in HM-BVPR. This shows the importance of the depth
cue within the full system, which benefits for videos with motion or appearance
ambiguities. Additionally, this speaks in favor a the adaptive strategy. (Cf. 4D-
seg [10] also leverages depth but cannot reach the same performance as the
adaptive depth combination.)

Second, we fix the combination parameters (3) α, (4) β, and (5) both α, β
to the single best values determined on the training set, therefore limiting the
system adaptivity. The performance drops by 6.3%, 4.2%, and 5.6% respectively.
(Please note that although conceptually fixing both α and β is the same as the
SAS baseline, but for SAS we use default parameters in the code of [8].) Once
again, we find that adaptivity is therefore crucial for the performance of our
system and that both adaptive aspects are strictly needed: weighting the pooled
segmentation (α) and measuring similarity of the resulting superpixels (β).

8 Conclusions

We have considered the emerging topic of consumer stereo cameras and proposed
a benchmark to evaluate progress for the task of segmentation with this inter-
esting type of data. The dataset is challenging and it includes diverse visual cues
and camera setups. None of the existing segmentation algorithms can perform
well in all conditions.

Furthermore, we have introduced a novel efficient and adaptive stereo video
segmentation algorithm. Our method is capable of combining optimally a pool
of segmentation outputs from a number of “expert” algorithms. The quality of
results highlights that combining single algorithms is promising and that research
on such a framework is perfectly orthogonal to pushing performance in the single
niches, e.g. motion segmentation, image segmentation, supervoxelization etc.
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Abstract. Video shakiness is a common problem for videos captured by
hand-hold devices. How to evaluate the influence of video shakiness on
human perception and design an objective quality assessment model is
a challenging problem. In this work, we first conduct subjective experi-
ments and construct a data-set with human scores. Then we extract a set
of motion features related to video shakiness based on frequency analy-
sis. Feature selection is applied on the extracted features and an objec-
tive model is learned based on the data-set. The experimental results
show that the proposed model predicts video shakiness consistently with
human perception and it can be applied to evaluating the existing video
stabilization methods.

1 Introduction

With the development of digital video capture devices, such as smart phones
or wearable devices, more and more people are able to take videos in daily life
and upload these videos to the social media. Compared to traditional broadcast
videos, these handy videos usually are not perfect because most of them are taken
by amateurs. For example, due to the lack of tripods, many videos encounter
the problem of shakiness. If the shakiness is severe, it will influence the video
quality perceived by people. Therefore, understanding the subjective perception
of human to video shakiness is important for many video applications, e.g., video
editing, bootleg detection. Furthermore, how to design an objective assessment
model for video shakiness which is consistent with subjective perception is a
challenging problem. That is, given an input video, it is expected to output a
shakiness score which is consistent with human perception.

Video shakiness has been extensively studied by many researchers from dif-
ferent perspectives. Some works [1–4] take the amount of camera motion into
account. The underlying assumption is that the larger the camera motion is,
the more shaky the video is. However, this assumption is not always true. For
example, if the camera moves constantly, even if the motion is large, it would
not affect the video quality that much. On the other hand, if the camera moves
up and down frequently, even if the motion is small, it will be annoying for the
audience. Therefore, there are several methods proposed based on the frequency
c© Springer International Publishing AG 2017
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analysis [5–8]. They apply different filters on the motion signals and design
frequency-based models.

In this paper, we first conduct subjective experiments and construct a data-
set which can provide ground truth for the design of object assessment models.
Second, based on this subjective data-set, we propose a frequency-based model in
order to objectively evaluate the video quality with respect to shakiness. Specif-
ically, we extract motion signals (including translation, rotation and scaling)
from videos and then apply frequency band decomposition on each signal. Later
these frequency-related features from videos are selected by a genetic algorithm
and an objective video shakiness assessment model is learned by support vec-
tor regression method (SVR). The experimental results show that our objective
assessment model can predict the video shakiness score more consistently with
subjective scores than previous work.

Besides the above subjective experiments and objective model design,
another contribution of our work is that we apply the proposed video shaki-
ness assessment model on evaluating video stabilization methods. By comparing
the shakiness scores given by the proposed model before and after the video
stabilization, we can objectively compare the improvements of different stabi-
lization methods, while this comparison was usually performed by human eyes
subjectively before. This demonstrates one application of our method.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 explains the subjective experiments and Sect. 4 shows the feature
extraction for video shakiness. The objective model learning and experimental
results are shown in Sect. 5. Section 6 demonstrates its application of evaluat-
ing performance of video stabilization algorithms. Finally conclusion is given in
Sect. 7.

2 Related Work

2.1 Video Quality Assessment

According to the availability of reference videos, video quality assessment (VQA)
can be classified as three kinds: full-reference (FR) VQA, reduced-reference(RR)
VQA and no-reference(NR) VQA. Among these works, NR-VQA is most chal-
lenging because no reference video information can be used. To solve this prob-
lem, many methods have been proposed. For example, Bovik et al. [9,10] extract
video features and apply machine learning methods in order to design a general-
purpose VQA model. Our work also belongs to NR-VQA, but we are specifically
interested in video quality regarding shakiness.

2.2 Video Shakiness Analysis

Most previous work on video shakiness analysis can be classified as two categories
in general: one is based on camera motion without filtering and the other is based
on frequency analysis.
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As for the former category, the underlying assumption is that the degree of
video shakiness depends on the amount of camera motion only. For home video
editing, Girgensohn et al. [1] compute a numerical “unsuitability score” based on
a weighted average of horizontal and vertical pan. According to the unsuitability
score, videos can be classified as four categories. Besides pan, Mei et al.[2] rep-
resent the camera motion as three independent components(pan, tilt and zoom)
and proposes a “jerkiness factor” for each frame as follows:

Si = max{(ωpP + ωTT )/(ωp + ωT ), Z} (1)

where Si denotes the jerkiness factor for i-th frame, P is pan, T is tilt, Z
is zoom. P, T, Z are all normalized to [0, 1], ωp and ωq are weighting factors.
A video’s jerkiness is defined as the average of frame-level factors. These two
works are cited by Xia et al. [3] and used as a component as a general
video quality assessment system for web videos with weighting parameters as
ωp = 1, ωq = 0.75. Similarly, Hoshen et al. [4] defines the shakiness of t-th
frame Qstab(t), as the average square displacement of all feature points between
adjacent frames, i.e.,

Qstab(t) =
√

(dx(t))2 + (dy(t))2 (2)

where dx(t) and dy(t) denote the horizontal and vertical movement of this frame.
The above methods all take the amount of camera motion between frames as
the indicator of video shakiness, but ignore that different frequency components
contained by the camera motion have different influences on human perception.

To address this issue, the latter category of previous work applies frequency
analysis on motion signals from videos. For example, Shrestha et al. [5] and
Campanella et al. [6] apply a FIR filter on the translation of video frames
and then take the difference between the filtered signal and original signal,
which corresponds to the high-frequency component, as the amount of shakiness.
Alam et al. [7] and Saini et al. [8] take similar approaches but median filter is
used. Although these works realize the importance of frequency decomposition,
they only exploit the high-frequency component and discard other frequency
components. In addition, the influence of frame rates on the filtering is ignored.

Besides these two categories, there are some previous work using other meth-
ods. For example, Yan et al. [11] compare the movement vectors between adjacent
frames. If the angle between the two vectors is larger than π/2, they think this
frame contains shakiness. In order to detect bootleg automatically, Visentini-
Scarzanella et al. [12] retrieve the inter-frame motion trajectories with feature
tracking techniques and then compute a normalized cross-correlation matrix
based on the similarities between the high-frequency components of the tracked
features’ trajectories. Bootleg classification is based on the comparison between
the correlation distribution and the trained models. However, these two works
do not give quantitative metrics for video shakiness evaluation.

It is worth noting that all the above works do not consider video watching
conditions, such as the screen size and watching distance. And these models are
not verified by subjective experiments devoted to video shakiness.
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3 Subjective VQA Experiment

3.1 Test Sequences

We selected 4 queries, “scenery”, “animal”, “vehicle” and “sport”, designed to
retrieve the top ranked, high-definition real-world videos in four respective cat-
egories from youku.com. In November 2015, we issued the four queries to video
search engine, soku.com, and collected all retrieved videos. All original videos
we collected are encoded by H264/AVC codec, with target bit-rate 1600 kbps,
all in .flv format. For the sake of compatibility with our test platform, we con-
verted the videos into .webm format encoded by VP8 codec. We used FFmpeg
libvpx library for trans-coding, and set the quality parameters of output videos
good enough (crf = 4, targetbitrate = 2Mbps) to guarantee the fidelity. Then
we cropped the videos into 512 sequences as our data-set. Each sequence lasts
10 s, and most (>99%) of the sequences are cropped within one shot to avoid
the influence of scene switching between shots. Sequences with other severe dis-
tortions, like blurring and color distortion, were eliminated to avoid the masking
effects. Numbers of the sequences in each categories are listed below (Table 1):

Table 1. Size of our data-set

Category Number of sequences

Scenery 35

Animal 134

Vehicle 297

Sport 46

Total 512

As recommended in ITU-T Recommendation P.910 [13], we calculated the
Spatial Information (SI) and Temporal Information (TI) of video sequences. SI
and TI metrics quantify spatial and temporal perceptual information content
of a given sequence. As shown in Fig. 1, the sequences span a large portion of
spatial-temporal information plane, which implied a good variety of our data-set.

Among 512 video sequences in the data-set, 2 sequences falling at the
extremes of the shakiness quality scale (one for the best quality, the other for
the worst) were chosen for anchoring. Anchoring sequences were displayed with
shakiness quality labeled to indicate the range boundaries of shakiness inten-
sity. For the purpose of training, another 10 sequences were randomly selected
as dummy (or stabilizing) presentations. Dummy presentations were adopted to
familiarize the participants with the experiment process and to stabilize their
opinion. The remaining 500 sequences were used as real presentations.

For the session division, the real presentations were divided into 4 parts (125
for each part). The session division, display orders of the dummy presentations,
and display orders of the real presentations, were randomized for each observer
to avoid the influence by the order of presentations.
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Fig. 1. Spatial-temporal plot for our test data-set: red circles for 2 anchoring sequences;
green circles for 10 dummy presentations; blue dots for 500 real presentations (Color
figure online).

3.2 Test Protocol

Test Environment. The test sequences were displayed on a Dell UltraSharp
U2414H 23.8-inch light-emitting diode liquid crystal display (LED-LCD) moni-
tor (1920 × 1080 at 60 Hz). At default factory settings, the U2414H was set to
75% brightness, which we measured at 254 cd/m2. The contrast ratio was 853:1
and the viewing angle reached 178-degree. Other room illumination was low.
A mini-DisplayPort video signal output from a HP folio 9470 m laptop com-
puter was adopted as signal source. The distance between the observer and the
monitor was held at about 85 cm which is about three times the height of the
monitor.

Observers. Twenty adults, including 9 female and 11 male, aged between 19
and 22, took part in the experiment. All of them were undergraduate college
students, 13 majored in Computer Science, 5 in Electronics Engineering, 1 in
Physics and 1 in Maths. 4 observers were practitioners in related fields (Com-
puter Vision, Computer Graphics, or Image Processing), and the remaining 16
observers had no related expertise. No observers had experience with video qual-
ity assessment study, and no observers were, or had been, directly involved in
this study. All observers reported normal visual acuity and normal color vision.

Voting Method. The Single Stimulus (SS) non-categorical judgement method,
with numerical scaling, was adopted for this experiment. In our SS method, an
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Fig. 2. The voting panel

observer is presented with a video sequence, and then asked to evaluate the
shakiness of the sequence by drawing a slider on a numerical scale from 0 to 100.
0 means “bad” in quality, or shaking violently, and 100 represents “excellent”
in quality, or shaking unnoticeably. We labeled 5 ITU-R semantics of quality
[14] with respective scores at two ends of scale and three intermediate points
(“Bad” at 0, “Poor” at 25, “Fair” at 50, “Good” at 75 and “Excellent” at 100)
for reference of more specific quality levels (see Fig. 2).

3.3 Experiment Procedure

An experiment contains 4 sessions in total. At the beginning of each session,
anchoring sequences were presented first, followed by dummy presentations,
then real presentations. Breaks were allowed between three phases. Although
assessment trials in real and dummy presentations are just the same, subjec-
tive assessment data (voting scores) issued from real presentations were saved
and collected after experiment, but results for dummy presentations were not
processed (Figs. 3 and 4).

In an assessment trial, a 10-second sequence faded in, presented and faded
out. After that, voting panel faded in, the observer was asked to evaluate the
video. Then voting panel faded out when evaluation submitted. The rating time
was given at least 5 s, assuring that the observer voted carefully and adjacent
stimuli were well isolated. The duration of a fade-in or a fade-out was set to
500 ms, which provided comfortable transitions between tasks.

Observers were carefully introduced to the voting method, the grading scale,
the sequence and timing at the beginning of experiment. A session lasted about

Anchoring
Videos

Dummy
Presentations

Real
Presentations

Fig. 3. A session

A Fade
(500ms)

A Fade
(500ms)

Rating 
PanelVideo Sequence

Fig. 4. A trial
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half an hour, which meets the requirement prescribed by [14]. Observers were
allowed to rest for a while between sessions. Usually an observer completed all
4 sessions at one time as suggested. Observers who didn’t complete at one time
were introduced again before their next session.

3.4 Results

A total number of 10,000 (500 sequences by 20 observers) voting scores were
processed. As recommended in [14], the outlier detection for observers were
imposed, but no outlier was detected.

The Mean Opinion Score (MOS) value of i-th sequence is defined as

MOSi =
1
K

∑

k

Ski, (3)

where Ski is score of sequence i voted by observer k, K is the number of observers.
A higher MOS indicates better subjective shakiness quality of a sequence.

4 Feature Extraction

In this section, we design a no-reference video quality metric to predict per-
ceived shakiness quality of web videos. Firstly, the global motion, namely the
motion between adjacent frames, is extracted from the video sequence. Next,
we transform the translation into the deflection angle, directly relating to the
signal perceived by human visual system (HVS). Thereafter, the motion signals
are decomposed into sub-bands, which contain frequency components of differ-
ent levels. In the end, the statistics of each sub-band of the motion signals are
calculated, as the features we designed for the video shakiness quality.

4.1 Global Motion Estimation

Global motion is defined as the geometrical transformation between adjacent
video frames. It also indicates the motion of camera. Here we describe the
global motion with a similarity transformation model, with four parameters
[dx, dy, θ, ρ], corresponding to pan, tilt, rotation and isotropic scaling. Assuming
(x1, y1) is the coordinates (with respect to the center of the frame) of a point in
current frame Ft, and (x2, y2) is the coordinates of the corresponding point in
next frame Ft+1, global motion can be illustrated by

[
x2

y2

]
= ρ

[
cos θ − sin θ
sin θ cos θ

] [
x1

y1

]
+

[
dx
dy

]
. (4)

Generally, there are two types of global motion estimation (GME)
approaches: feature-based methods and featureless methods. Feature-based
methods (e.g. [15–18]) utilize geometric features extracted in frames, such
as Harris corners (see [19]), and then estimate the motion by matching the
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corresponding features between adjacent frames. Featureless approaches directly
estimate the global motion from all pixels on each frame. Usually, feature-based
approaches are fast and accurate, however fragile. On the contrary, though time-
consuming, featureless approaches are usually robust. In our task, web videos
contained complex and intensive motion. So robustness is necessary. We adopted
an FFT-based featureless approach in [20–22], measuring translation (dx, dy),
rotation θ and scaling ρ directly from the spectrum correlation between frames.
During our test on web videos, this FFT-based approach reaches a satisfying
robustness and accuracy, with an acceptable time cost.

4.2 Perceptual Modeling

To properly measure the influence of global motion perceived by the viewer, we
need to model the global motion signal in a physical meaning, and consider its
impact on human visual system (HVS).

In previous section, the translation signals (dx, dy) between adjacent frames
are estimated, in pixel unit. However, we need physics quantities directly related
to the stimulus received by HVS. Considering the viewing condition, including
viewing distance and display size, translation (dx, dy) shall be transformed into
deflection angle (αx, αy), i.e.,

αx,y(t) = arctan
(

Lddx,y(t)
Zs

)
≈ Lddx,y(t)

Zs
(5)

where dx,y(t) is translation at frame t in pixel unit, Ld is the diagonal length of
the display monitor, Z is the viewing distance, and s =

√
h2 + w2, where h,w is

the height and the width of the video frame in pixel unit, respectively. Deflection
angle indicates the shift of viewing angle caused by the translation between the
two frames (see Fig. 5).

It is noticed in [23] that the subjective sensation of motion is proportional to
the logarithm of the stimulus intensity, i.e., velocity (Weber-Fechner law [24]).
So we take the logarithm of αx,y(t), called logarithm of deflection angle, as

lx,y(t) = log αx,y(t). (6)

Rotation signal θ(t) and scaling signal ρ(t) are used directly. This is because
HVS perception of the rotation and scaling signals are not directly influenced
by viewing condition.

4.3 Sub-band Decomposition

There is evidence that different frequency compositions have different impact on
HVS perception [25], more specifically on shakiness perception. So we decompose
the signals into three different frequency sub-bands: low band for (0, 3 Hz), mid
band for (3 Hz, 6 Hz) and high band for (6 Hz, 9 Hz). Decomposition is done by
filtering the original signal by three respective filters, i.e.,

Sl,m,h(t) = S(t) ∗ hl,m,h(t) (7)
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Fig. 5. Illustration of the deflection angle αx.

where S(t) is the original signal, Sl,m,h(t) are filtered low-, mid- and high-band
signals, and hl,m,h(t) represent the corresponding impulse response functions of
the three filters, and ∗ denotes the convolution operation. An illustration of the
band decomposition is shown in Fig. 6.

Ideal filters are adopted in this decomposition work. The ideal filters keep
frequency components only in an interval of frequency. The frequency response
H(f) of ideal filters are

H(f) =

{
1 ft < f ≤ fh

0 else
(8)

where H(f) is the Fourier transform of impulse response h(t).

Fig. 6. Band decomposition result of αx(t) signal of a video sequence.
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Table 2. Sub-bands of motion signals

Original αx(t) αy(t) lx(t) ly(t) θ(t) ρ(t)

Low band αx,l(t) αy,l(t) lx,l(t) ly,l(t) θl(t) ρl(t)

Mid band αx,m(t) αy,m(t) lx,m(t) ly,m(t) θm(t) ρm(t)

High band αx,h(t) αy,h(t) lx,h(t) ly,h(t) θh(t) ρh(t)

The six motion signals αx(t), αy(t), lx(t), ly(t), θ(t), ρ(t) are extracted from
every video sequence. Decompositions are done for each of them. As a result,
the six signals are decomposed into 18 sub-bands (see Table 2).

4.4 Statistics

Finally, statistical features that capture the impact of motion signals on HVS
are extracted from each sub-band. Suppose that si(t) is one of the sub-band
signals, and T is the total number of frames of the video sequence, we estimate
the first to the fourth central or standardized moments of si(t), i.e.,

Mean s1i =
∑

t s(t)/T
Variance s2i =

∑
t [s(t) − s1i ]

2/T

Skewness s3i =
∑

t [s(t) − s1i ]
3
/[T (s2i )

3/2
]

Flatness s4i =
∑

t [s(t) − s1i ]
4
/[T (s2i )

2
]

In summary, for each video sequence, six motion signals are extracted, and
decomposed into 18 sub-bands. In the next step, four statistics are estimated
from each sub-band. In total, 72 (6 × 3 × 4) feature values are calculated from
each video sequence.

5 Objective Experiment

In this section, we validate the performance of the extracted features, and obtain
an objective no-reference video shakiness metric. We run the cross-validation test
on the features, and validate the performance of the features by SROCC [26].
This cross-validation process is used for feature selection, and an optimal subset
of features is obtained. We also compare our approach with other related works.

5.1 Cross Validation

We use a hold-out cross validation to evaluate the performance of the features. In
each iteration, the data-set is randomly split into two parts, training set (90%)
and validation set (10%). On the training set, a SVR model is trained, and then
tested by the validation set. Then the performance of features is validated by
calculating SROCC between the subjective MOS and the output of the SVR
model on the validation set.
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LIBSVM [27] is used for SVR training. We adopt a ν-SVR with RBF kernel
to get the optimal result of training. Given a set of features, this train-test
process is repeated on the data-set 1000 times randomly. The median SROCC
is calculated as the final performance of the set of features.

5.2 Feature Selection

In the previous section, 72 feature values are calculated from one video sequence.
To get the best performance, an optimal subset of features must be chosen where
SVR performs the best.

We resort to a wrapper model feature selection using a genetic algorithm
(GA) [28]. Each subset of features is regarded as a genome, represented by a
72-bit number x. x(i) = 1 denotes the feature i is chosen and x(i) = 0 denotes
the feature is not chosen. The fitness of genome x is determined by the median-
SROCC of a 1000-times cross validation with the corresponding feature subset:

fitness(x) =

{
SROCC1000 − P SROCC1000 ≥ P
0 SROCC1000 < P

(9)

where P denotes the pressure of the evolution. During each generation, genomes
with larger fitness are more likely to be selected to breed a new generation. More
specifically, genomes with 0 fitness would never be chosen. So P determines the
minimum fitness allowed in the evolution. The population of the next generation
is generated by both crossover and mutation of the selected genomes (see [28]).

We adopt a two-step solution to find the optimal feature subset. In the first
step, initialize the genomes by randomly choosing x(i) for each i, setting P = 0.8,
and run the genetic algorithm for 100 generations. In the second step, initialize
the genomes by the genomes of the last generation in the first step, setting
P = 0.85, and run the genetic algorithm again. The first run picks out a group
of genomes with high fitness (SROCC). The second run imposes a more strict
restriction, and purifies the genomes to be optimal. Finally the genome with the
highest fitness in the last 5 generations during the second GA run is selected to
be the optimal subset of the features. From the feature selection result, we find
the translation is more important than rotation and zooming, and the low-rank
moments of middle- and high-bands are more significant.

5.3 Results

The GA finally chooses an optimal set of 32 features from the 72 features. This
optimal feature set performs a good result in cross-validation, with median-
SROCC reaching 0.8767 (90% data for training, 10% for testing). Fig. 7 shows
the scatter plot of MOS versus objective scores.

By adjusting the portion of training data, the relationship between the algo-
rithm’s performance and the amount of training data can be investigated. Start-
ing with 1%, we gradually increased the portion of training data, and got a curve
as shown in Fig. 8. With training portion exceeding 20% (train with only 100
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Fig. 7. MOS and objective scores (OMOS)

video sequences), median-SROCC reaches 0.8. When training portion exceeds
40%, the SROCC will become stable. It shows that our approach can reach a
good performance with small amount of training data. The generalization ability
of our algorithm is excellent.

We compare our approach with related works [3,4,6], as well as only SI and
TI features (trained with SVR). See Table 3. Note that the authors of the related
works have not yet shared the source code, so we implement their works and test
on our data-set by ourselves. The result shows that, our approach outperformed
all the state-of-the-art methods.

Fig. 8. The relationship between the
performance and the training portion.

Table 3. Results

Method SROCC

SI + TI (SVR) 0.4945

[4] 0.6506

[3] 0.6534

[6] 0.7669

Our approach 0.8767
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6 Benchmark for Stabilization Algorithms

Stabilization algorithms are designed to eliminate shakiness artifacts in videos.
However, objective benchmark to test the performance of stabilization algo-
rithms do not exist. As an application of our shakiness VQA approach, we pro-
pose a method to evaluate stabilization algorithms, by means of the NR-VQA
model we learned.

Suppose Vi to be i-th video with shakiness artifact, O(Vi) to be the original
score given by our shakiness NR-VQA model, and suppose V k

i to be the video
stabilized by k-th stabilization algorithm, O(V k

i ) to be the shakiness score of
the stabilized video. Then O(V k

i ) − O(Vi) is called the enhancement Ek
i of the

stabilization algorithm k on the video Vi.
It is supposed that, the shakiness score will increase after stabilization, i.e.,

Ek
i > 0. Unfortunately, Ek

i may also decrease after stabilization. For instance,
if a video without shakiness artifact is stabilized, it is possible that stabilization
algorithm unwillingly introduces a motion artifact to the video. In such cases,
Ek

i will be less than zero, and we call the video quality is degenerated.
To evaluate the performance of a certain stabilization algorithm k, we define

the following two indexes:

1. Average Enhancement Ek: the enhancement of stabilization algorithm k on
the given data-set.

Ek =
1
N

∑

i

(
O(V k

i ) − O(Vi)
)
. (10)

2. Degeneration Frequency P k
d : the frequency of degeneration in videos stabilized

by algorithm k on the given data-set.

P k
d =

1
N

∑

i

I(O(V k
i ) < O(Vi)). (11)

N is the amount of videos in the data-set. I is the indicator function: I(A) = 1
when A is true, otherwise I(A) = 0.

We stabilize all videos in our data-set, by three popular stabilization tools:
Microsoft Project Oxford Video API [29], proDAD Mercalli 2.0 [30] and Adobe
After Effect CC 2015 (VX deformation stabilizer) [31]. Then, we score original
videos and stabilization videos by our NR-VQA model. We plot the scores of
stabilization videos of three algorithms, in reference of the original scores, see
Fig. 9. As shown in the figure, after stabilization the scores of videos increase
generally. This shows the effect of stabilization algorithms. It is also observed
that the enhancement of low-quality videos is more significant than that of high-
quality videos. Moreover, indeed some videos degenerate after stabilization, and
high-quality videos degenerate more frequently, exactly as expected.

Therefore, we calculate Ek and P k
d for each algorithm separately in videos

of three different quality levels: high-quality level (videos with the highest
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Fig. 9. Objective scores of stabilized and original videos. Dash lines indicate the
boundary of video quality levels.

Table 4. Pd and E indexes of three stabilization algorithms

Stabilization
algorithm

Microsoft project
oxford video API

proDAD
Mercalli

Adobe after
effects CC 2015

Quality level Pd E Pd E Pd E

Low 0.060 18.997 0.010 19.607 0.140 14.075

Mid 0.160 6.151 0.170 6.857 0.367 2.246

High 0.530 −0.137 0.440 0.860 0.450 −0.166

Overall 0.214 7.459 0.192 8.208 0.338 4.129

100 O(Vi)), low-quality level (videos with the lowest 100 O(Vi)), and mid-quality
level (the other 300 videos). From the following table, it can be seen that proDAD
Mercalli 2.0 performs best (Table 4).

7 Conclusion

We propose a new method for video shakiness quality assessment. First, we
construct a data-set based on subjective experiments. Second, based on this
data-set we extract video features and learn an objective model to predict video
quality in terms of shakiness. The proposed model has been validated on the
constructed data-set and used to evaluate the performance of existing video
stabilization methods.
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Abstract. This paper shows how to extract dense optical flow from
videos with a convolutional neural network (CNN). The proposed model
constitutes a potential building block for deeper architectures to allow
using motion without resorting to an external algorithm, e.g. for recog-
nition in videos. We derive our network architecture from signal process-
ing principles to provide desired invariances to image contrast, phase
and texture. We constrain weights within the network to enforce strict
rotation invariance and substantially reduce the number of parameters
to learn. We demonstrate end-to-end training on only 8 sequences of
the Middlebury dataset, orders of magnitude less than competing CNN-
based motion estimation methods, and obtain comparable performance
to classical methods on the Middlebury benchmark. Importantly, our
method outputs a distributed representation of motion that allows rep-
resenting multiple, transparent motions, and dynamic textures. Our con-
tributions on network design and rotation invariance offer insights non-
specific to motion estimation.

1 Introduction

The success of convolutional neural networks (CNNs) on image-based tasks,
from object recognition to semantic segmentation or geometry prediction, has
inspired similar developments with videos. Example applications include activ-
ity recognition [1–3], scene classification [4], or semantic segmentation of scenes
with dynamic textures [5]. The appeal of CNNs is to be trainable end-to-end,
i.e. taking raw pixel values as input, and learning their mapping to the out-
put of choice, identifying appropriate intermediate representations in the layers
of the network. The natural application of this paradigm to videos involves a
3D volume of pixels as input, made of stacked consecutive frames. The direct
application of existing architectures on such inputs has shown mixed results. An
alternative is to first extract optical flow or dense trajectories with an exter-
nal algorithm [1–3] and feed the CNN with this information in addition to the
pixel values. The success of this approach can be explained by the intrinsically
different nature of spatial and temporal components, now separated during a
preprocessing. The extraction of motion regardless of image contents is not triv-
ial, and has been addressed by the long-standing line of successful optical flow
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part V, LNCS 10115, pp. 412–428, 2017.
DOI: 10.1007/978-3-319-54193-8 26
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Fig. 1. The proposed CNN takes raw pixels as input and produces features representing
evidence for motion at various speeds and orientations. These can be projected as a
traditional optical flow map. First-layer kernels (pictured) typically identify translating
patterns in the image.

algorithms. Conversely, the end-to-end training of CNNs on videos for high-level
tasks has shown limited capability for identifying intermediate representations
of motion. In this paper, we show that specifically training a CNN to extract
optical flow can be achieved once some key principles are taken into account
(Fig. 1).

We leverage signal processing principles and how motion manifests itself in
the frequency domain of a spatiotemporal signal (Sect. 3) to derive convolutions,
pooling and non-linear operations able to map input pixels to a representa-
tion of motion (Sect. 4). The resulting network is designed as a building block
for deeper architectures addressing higher-level tasks. The current practice of
extracting optical flow as an independent preprocessing might be suboptimal,
as the assumptions of an optical flow algorithm may not hold for a particular
end application. The proposed approach would potentially allow to fine-tune the
motion representation with the whole model in a deep learning setting.

The proposed network outputs a distributed representation of motion. The
penultimate layer comprises, for each pixel, a population of neurons selective to
various orientations and speeds. These can represent a multimodal distribution
of activity at a single spatial location, and represent non-rigid, overlapping, and
transparent motions that traditional optical flow usually cannot. The distrib-
uted representation can be used as a high-dimensional feature by subsequent
applications, or decoded into a traditional map of the dominant flow. The latter
allows training and evaluation with existing optical flow datasets.

The motivation for the proposed approach is not direct competition with
existing optical flow algorithms. The aim is to enable using CNNs with videos
in a more principled way, using pixel input for both spatial and temporal com-
ponents. Instead of considering the flow of a complete scene as the end-goal, we
rather wish to identify local motion cues without committing to an early scene
interpretation. This contrasts with modern optical flow approaches, which often
perform implicit or explicit tracking and/or segmentation. In particular, we avoid
motion smoothness and rigidness priors, and spatial scene-level reasoning. This
makes the features produced by the network suitable to characterize situations
that break such assumptions, e.g. with transparent phenomena and dynamic



414 D. Teney and M. Hebert

textures [5,6]. As a downside, our evaluation on the Sintel benchmark shows
inferior performance to state-of-the-art techniques. This confirms that a scene-
level interpretation of motion requires such priors and higher-level reasoning. In
particular, we do not perform explicit feature tracking and long-range matching,
which are the highlights of the best performers on this dataset (e.g. [7,8]).

The contributions of this paper are fourfold. (1) We derive, from signal
processing principles, a CNN able to learn mapping pixels to optical flow.
(2) We train this CNN end-to-end on videos with ground truth flow, then
demonstrate performance on the Middlebury benchmarks comparable to clas-
sical methods. (3) We show how to enforce strict rotation invariance within a
CNN through weight-sharing, and demonstrate significant benefit for training on
a small dataset with no need for data augmentation. (4) We show that the dis-
tributed representation of motion produced within our network is more versatile
than traditional flow maps, able to represent phenomena such as dynamic tex-
tures and multiple, overlapping motions. Our pretrained network is available as a
building block for deeper architectures addressing higher-level tasks. Its training
is significantly less complex than competing methods [9] while providing similar
or superior accuracy on the Middlebury benchmark.

2 Related Work

Learning Spatiotemporal Features. Several recent works have used CNNs
for classification and recognition in videos. Karpathy et al. [10] consider the large-
scale classification of videos, but obtain only a modest improvement over single-
frame input. Simonyan and Zisserman [1] propose a CNN for activity recognition
in which appearance and motion are processed in two separate streams. The
temporal stream is fed with optical flow computed by a separate algorithm. The
advantage of using separate processing of spatial and temporal information was
further examined in [2,3]. We propose to integrate the identification of motion
into such networks, eliminating the need for a separate algorithm, and poten-
tially allowing to fine-tune the representation of motion. Tran et al. [4] proposed
an architecture to extract general-purpose features from videos, which can be
used for classification and recognition. Their deep network captures high-level
concepts that integrate both motion and appearance. In comparison, our work
focuses on the extraction of motion alone, i.e. independently of appearance,
as motivated by the two-stream approach [1]. Learning spatiotemporal features
outside of CNN architectures was considered earlier. Le et al. [11] used inde-
pendent subspace analysis to identify filter-based features. Konda and Memi-
sevic [12] learned motion filters together with depth from videos. Their model
is based on the classical energy-based motion model, similarly to ours. Taylor
et al. [13] used restricted Boltzmann machines to learn unsupervised motion
features. Their representation can be used to derive the latent optical flow, but
was shown to capture richer information, useful e.g. for activity recognition. The
high-dimensional features produced by our network bear similar benefits. Earlier
work by Olshausen [14] learned sparse decompositions of video signals, identify-
ing features resembling the filters learned in our approach. In comparison to all
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works mentioned above, we focus on the extraction of motion independently of
spatial appearance, whereas decompositions such as in [14] result in representa-
tions that confound appearance and temporal information.

Extraction of Optical Flow. The estimation of optical flow has been stud-
ied for several decades. The basis for many of today’s methods dates back to
the seminal work of Horn and Schunk [15]. The flow is computed as the mini-
mizer of data and smoothness terms. The former relies on the conservation of a
measurable image feature (typically corresponding to the assumption of bright-
ness constancy) and the latter models priors such as motion smoothness. Many
works proposed improvements to these two terms (see [16] for a recent survey).
Heeger [17] proposed a completely different approach, applying spatiotemporal
filters to the input frames to sample their frequency contents. This method nat-
urally applies to sequences of more than two frames, and relies on a bank of
hand-designed filters (typically, Gaussian derivatives or spatiotemporal Gabor
filters [18]). Subsequent improvements [19–21] focused on the design of those
filters. They must balance the sampling of narrow regions of the frequency spec-
trum, i.e., to accurately estimate motion speed and orientation, while retaining
the ability to precisely locate the stimuli in image. A practical consequence of
this tradeoff is the typically blurry flow maps produced by the method. This
historically played in favor of the more popular approach of Horn and Schunk.
Another downside of the filter-based approach was the computational expense of
convolutions. Our work revisits Heeger’s approach, motivated by two key points.
On the one hand, applying spatiotemporal filters naturally falls in the para-
digm of convolutional neural networks, which are currently of particular interest
for analyzing videos. On the other hand, modern advances can overcome the
two initial burdens of the filter-based approach by (1) learning the filters using
backpropagation, and (2) leveraging GPU implementations of convolutions.

Recently, Fisher et al. proposed another CNN-based method named Flownet
[9]. They obtain very good results on optical flow benchmarks. In comparison
to our work, they train a much deeper network that requires tens of thousands
of training images. Our architecture is derived from signal processing principles,
which contains fewer weights by several orders of magnitude. This allows training
on much smaller datasets. The final results in [9] also include a variational refine-
ment, essentially using the CNN to initialize a traditional flow estimation. Our
procedure is entirely formulated as a CNN. This potentially allows fine-tuning
when integrated into a deeper architecture.

A number of recent works [5,6,22,23] studied the use of spatiotemporal fil-
ters to characterize motion in e.g. transparent and semi-transparent phenomena,
and dynamic textures such as a swirling cloud of smoke, reflections on water,
or swaying vegetation. These works highlighted the potential of filter-based fea-
tures, and the need for motion representations – such as those produced by our
approach – that go beyond displacement (flow) maps.

Invariances in CNNs. One of our technical contributions is to enforce rota-
tion invariance by tying groups of weights together. In contrast to weight sharing
which involves weights at different layers, this applies to weights of a same layer.
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Encouraging or enforcing invariances in neural networks has been approached
in several ways. The convolutional paradigm ensure translation invariance by
reusing weights between spatial locations. Other schemes of weight sharing were
proposed in a simple model in [24], and later in [25] with a method to learn which
weights to share. No published work discussed the implementation of strict rota-
tion invariance in CNN to our knowledge. In [26,27], schemes akin to ensemble
methods were proposed for invariance to geometric transformations. In [28] and
more recently in [29], a network first predicts a parametric transformation, used
to rotate or warp the image to a canonical state before further processing. Our
approach, in addition to the actual invariance, has the benefit of reducing the
number of weights to learn and facilitates the training. Soft invariances, e.g. to
contrast can be encouraged by specific operations, such as local response normal-
ization (LRN, e.g. in [30]). We also use a number of such operations. Note that
this paper abuses of the term “invariance” for cases more accurately involving
equivariance or covariance [31].

3 Filter-Based Motion Estimation

Our rationale for estimating motion with a convolutional architecture is based on
the motion energy model [18]. Classical implementations [17,21,32] are based on
convolutions with hardcoded spatiotemporal filters (e.g. 3D Gabors or Gaussian
derivatives). The convolution of a signal with a kernel in the spatiotemporal
domain corresponds to a multiplication of their spectra in the frequency domain.
Convolutions with a bank of bandpass filters produce measurements of energy in
these bands, which are then suitable for frequency analysis of the signal. A pat-
tern moving in a video with a constant speed and orientation manifests itself as a
plane in the frequency domain [18,33], and the signal energy entirely lies within
this plane. It passes through the origin, and its tilt corresponds to the motion
orientation and speed in the image domain. Classical implementations have used
various schemes to identify the best-fitting plane to the energy measurements. In
our model, we learn the spatiotemporal filters together with additional layers to
decode their responses into the optical flow. Importantly, transparent patterns
in an image moving with different directions or speeds correspond to distinct
planes in the frequency domain. The same principle can thus identify multiple,
overlapping motions.

4 Proposed Network Architecture

Our network is fully convolutional, i.e., it does not contain any fully connected
layers. Each location in the output flow map is linked to a spatially-limited
receptive field in the input, and each pixel of a training sequence can thus be
seen as a unique training point. We describe below each layers of our network in
their feedforward order. We use x�

ijk to refer to the scalar value at coordinates
(i, j, k) in the 3D tensor obtained by evaluating the �th layer. Indices i and j
refer to spatial dimensions, k to feature channels. We use a colon (:) to refer to all
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elements along a dimension. We denote with ∗2D
and ∗ convolutions in two and

three dimensions, respectively. In contrast to CNNs used for image recognition,
the desired output here is dense, i.e. a 2D flow vector for every pixel. To achieve
this, all convolutions use a 1 px stride and the pooling (Eq. 5) a 2 px stride, all
with appropriate padding. The output is thus at half the resolution of the input.
Our experiments use bilinear upsampling (except otherwise noted) to obtain flow
fields at the original resolution.

Fig. 2. The proposed neural network takes raw pixels of F video frames as input, and
outputs a dense optical flow at half its resolution. The network comprises 2 convolu-
tional layers, 1 pooling layer, and 2 pixelwise weights (1×1 convolutions). Dimensions
of receptive fields and feature maps are shown, with numbers chosen in our implemen-
tation in gray. Normalizations and non-linearities are not shown.

4.1 Network Input

The input to the network is the H×W ×F volume of pixels made by stacking
F successive grayscale frames of a video (typically, F = 3). The desired network
output is the flow between frames �F/2� and �F/2�+1.

x1
::k = kth frame of the video ∀ k=1 . . . F. (1)

4.2 Invariance to Brightness and Contrast

The estimated motion should be insensitive to additive changes of brightness of
the input. Since the subsequent processing will be local, instead of subtracting
the average brightness over the whole image, we subtract the local low-frequency
component:

x�+1
::k = x�

::k − (x�
::k ∗2D

H0) ∀ k, (2)

where H0 denotes a fixed, 2D Gaussian kernel of standard deviation w/3. Note
that this operation could also be written as a convolution with a center-surround
filter. We then ensure invariance to local contrast changes with a normalization
using the standard deviation in local neighbourhoods:

x�+1
ijk = x�

ijk/ std
i′,j′∈Ω(i,j)

(
x�

i′j′k
) ∀ i, j, k, (3)

where Ω(i, j) refers to the square region of length w centered on (i, j).
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The two above operations proved essential to learn subsequent filters with
little training data. They can be seen as a local equivalent to a typical image-
wide whitening [34]. This formulation is better suited to the subsequent local
processing of a fully convolutional network.

4.3 Motion Detection

This key operation convolves the volume of pixels with learned 3D kernels. They
can be interpreted as spatiotemporal filters that respond to various patterns
moving at different speeds.

x�+1
::k = x�

::: ∗ H1
k + b1k ∀ k=1 . . . MO, (4)

where H1
k are MO learned convolution kernels of size w × w × F , and b1k the

associated biases. The constants M and O respectively fix the number of inde-
pendent kernels and the number of orientations explicitly represented within the
network (Sect. 4.7).

4.4 Invariance to Local Image Phase

The learned kernels used as motion detectors above typically respond to lines
and edges in the image. The estimated motion should however be independent
of such image structure. Classical models [17,20] account for this using pairs of
quadrature filters, though this is not trivial to enforce with our learned filters.
Instead, we approximate a phase-invariant response as follows. (1) The response
of the convolution is rectified by pointwise squaring. Responses out of phase by
180◦ (e.g. dark-bright and bright-dark transitions) then give a same response.
(2) We apply a spatial max-pooling. The wavenumber of the pattern captured
by our kernels of size w is at least 2/w cycles/px. The worst-case phase shift of
90◦ then corresponds to a spatial shift of w/4 px. We maxpool responses over
windows of size w/4 with a fixed stride of 2, and thus approximate a phase-
invariant response at the price of a lowered resolution.

x�+1
ijk = max

i′,j′∈Ω′(2i,2j)

(
x�

i′j′k
2) ∀ i, j, k, (5)

where Ω′(2i, 2j) refers to the square region of length �w/4� centered on (2i, 2j).

4.5 Invariance to Local Image Structure

The estimated motion should be independent from the amount and type of
texture in the image. To account for intensity differences of patterns at different
orientations at any particular location (e.g. a grid pattern of horizontal lines
crossing fainter vertical ones), we normalize the responses by their sum over all
orientations [17]:

x�+1
ijk = x�

ijk

/( ∑
k′ x�

ijk′ + ε
) ∀ i, j, k, (6)
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where ε is a small constant to avoid divisions by a small value in low-texture areas
of the image. The sum is performed over feature channels k′ that correspond to
the O variants of k at all orientations (see Sect. 4.7).

To account for the aperture problem, we allow local interaction by intro-
ducing an additional convolutional layer with MO learned kernels H2 of size
w×w × MO.

x�+1
::k = x�

::: ∗ H2
k + b2k ∀ k=1 . . . MO, (7)

x�+1
ijk = max(x�

ijk, 0). (8)

The classical hardcoded models typically use here 2D convolutions with Gaussian
kernels. Our experiments showed that supervised training lead to similar kernels,
although slightly non-isotropic, and modeling some cross-channel and center-
surround interactions.

4.6 Decoding into Flow Vectors

The features maps at this point represent evidence for different types of motion
at every pixel. This evidence is now decoded with a hidden layer, a softmax
nonlinearity and a linear output layer:

x�+1
::k = x�

::: ∗ H3
k + b3k ∀ k=1 . . . TO (9)

x�+1
ijk = ex�

ijk
/∑

k′ ex�
ijk′ ∀ i, j, k=1 . . . TO (10)

x�+1
::k = x�

::: ∗ H4
k + b4k ∀ k={1, 2}, (11)

where T is a constant that fixes the number of hidden units. The decoding
is performed pixelwise, i.e. H3

k and H3
k are 1×1. Intuitively, the activations

of the hidden layer (Eq. 9) represent scores for motions at S and O discrete
speeds and orientations, of which the softmax picks out the highest. Assuming
a unimodal distribution of scores (i.e. a single motion at any pixel), the output
layer interpolates these scores and maps them to a 2D flow vector for every pixel
(see Sect. 6).

4.7 Invariance to In-Plane Rotations

In our context, rotation invariance implies that a rotated input must produce a
correspondingly rotated output. Note the contrast with image recognition where
rotated inputs should give a same output. All of our learned weights (Eqs. 4–
9) are split into groups corresponding to discrete orientations. The key is to
enforce these groups of weights to be equivalent, i.e. so that they make the
same use of features from the preceding layer at the same relative orientations.
In addition, convolutional kernels need to be 2D rotations of each other. These
strict requirements allow us to maintain only a single version of the weights at a
canonical orientation, and generate the others when evaluating the network (see
Fig. 4). During training with backpropagation, the gradients are aligned with this
canonical orientation and averaged to update the single version of the weights.
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Formally, let us consider a convolutional layer1 �+1. The feature maps x�

(respectively x�+1) are split into O (P ) groups of M (N) channels. For example,
in Eq. 7, O = P and M = N . The groups of channels correspond to regular
orientations θ�

i (θ�+1
j ) in [0, 2π[. Considering the convolution weights H and their

slice himjn the 2D kernel acting on the input (respectively output) channel of
orientation θ�

i (θ�+1
j ), we constrain the weights as follows:

himjn = rotate2D
θ�+1

j −θ�+1
j′

(
hi′mj′n

)
(12)

∀ i, i′, j, j′,m, n s.t. cos(θ�+1
j′ − θ�

i′) = cos(θ�+1
j − θ�

i ) (13)

Equation 12 ensures that convolution kernels are rotated versions of each other
(implemented with bilinear interpolation) and Eq. 13 ensures that the same
weights are applied to input channels representing a same relative orientation
with respect to a given output channel of the layer. In other words, the weights
are shifted between each group so as to act similarly on channels representing
the same relative orientations (see Fig. 4). In Eqs. 7 and 9, N = N ′. In Eq. 4,
N =1. In Eq. 11, N =2 with θ�+1 = {0, π/2}.

It follows that the number of convolution kernels to explicitly maintain is
reduced from OPMN to �O/2�MN . In Eq. 7 for example, in our implementation
with O = P = 12 orientations, this amounts to a decrease by a factor 24. It allows
training on small amounts of data with lower risk of overfitting. This also negates
the need to artificially augment the dataset with rotations and flips.

5 Multiscale Processing

Equations 1–11 form a complete network that maps pixels to a dense flow field.
However, the detection of large motion speeds is limited by the small effective
receptive field of the output units, due to the limited number of convolutional
layers. We remedy this in two ways (Fig. 3) without increasing the number of
weights to train. First, we apply the network (Eqs. 1–7) on multiple downsized

Fig. 3. We bring two modifications to the basic network (Fig. 2) for multiscale process-
ing. First, we apply the network on several downsampled versions of the input, con-
catenating the feature maps before the decoding stage. Second, we add a recurrent
connection to warp the input frames according to the estimated flow, iterating its eval-
uation for a fixed number of steps. This is inspired by the classical “coarse-to-fine”
strategy for optical flow, and designed to estimate motions larger than the receptive
field of the network output units.

1 The general formulation applies to convolutional layers as well as to our pixelwise
weights (Eqs. 9, 11), in which case the 2D rotation of the kernel has no effect.
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versions of the input frames. The feature maps are brought back to a common
resolution by bilinear upsampling and concatenated before the decoding stage
(Eqs. 9–11).

Second, we add a recurrent connection to the network that warps the input
frames according to the current estimate of the flow. The evaluation runs through
the recurrent connection for a fixed number of steps. This is inspired by the
classical coarse-to-fine warping strategy [35]. It allows the model to approximate
the flow iteratively. Note that the recurrent connection to the warping layer is not
a strictly linear operation contrary to typical recurrent neural networks. Training
is performed by backpropagation through the unfolded recurrent iterations, but
not through the recurrent connection itself. Since the result of each iteration is
summed to give the final output, we can append and sum the same loss (Sect. 6)
at the end of each unfolded iteration.

6 Implementation and Training

We train the weights (H1, . . . ,H4) and biases (b1, . . . , b4) end-to-end with back-
propagation. Even though the network ultimately performs a regression to flow
vectors, we found more effective to train it first for classification. First, we pick
a number TO of flow vectors uniformly in the distribution of training flows. We
train the network for nearest-neighbour classification over these possible out-
puts, with a logarithmic loss over Eq. 10. Second, we add the linear output layer
(Eq. 11) and initialize the rows of H4

k with the vectors used for classification. Sec-
ond, the network is fine-tuned with a Euclidean (“end-point error”) loss over the
decoded vectors. That fine-tuning has a marginal effect in practice. The softmax
values are practically unimodal and sum to one by construction, hence they can
directly interpolate the vectors used for classification with a linear operation.
We believe the 2-step training is helpful because the Euclidean loss alone does
not reflect well the quality (e.g. smoothness) of the flow. The classification loss
guides the optimization towards a better optimum.

Considering the above, the softmax values (Eq. 10) constitute a distributed
representation of motion, where each dimension corresponds to a different orien-
tation and speed. Feature maps at this layer can encode multimodal distributions
over this representation and represent patterns that optical flow cannot.

Fig. 4. Convolutional kernels H1, H2, and pixelwise weights H3 learned on the Middle-
bury dataset (selection). The obvious structure is enforced by constraints that ensure
rotation invariance of the overall network.
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7 Experimental Evaluation

We present three sets of experiments. (1) We evaluate the non-standard design
choices of the proposed architecture through ablative analysis. (2) We com-
pare our performance versus existing methods on the Middlebury and Sintel
benchmarks. (3) We demonstrate applicability to dynamic textures and mul-
tiple transparent motions that goes beyond traditional optical flow. Code and
trained models are available on the author’s website [36].

7.1 Ablative Analysis

Our ablative analysis uses the public Middlebury dataset, with the sequences
split into halves for training (Grove2, RubberWhale, Urban3) and testing
(Grove3, Dimetrodon, Hydrangea). For each run, we modify the network in one
particular way, retrain it from scratch, and report its performance on the test set
(Table 1). We observe that all preprocessing and normalization steps (2–3) have
a positive impact, and some are even necessary for the training to converge at all
(at least with the small dataset used in these experiments). Operations inspired
by the classical implementations of the motion energy model, i.e., (8) rectifica-
tion by squaring of filter responses and (6) normalization across orientations,
proved beneficial as well. This shows the benefit for our principled approach
to network design. We perform a comparison to the classical, hardcoded filter-
approach approach [17] by setting the first filters to Gaussian derivatives (4).
Although learned filters are visually somewhat similar (Fig. 4), learned kernels
clearly perform better. This confirms the general benefit of a data-driven app-
roach to motion estimation.

Table 1. We evaluate every non-standard design choice by retraining a modified net-
work. N.C. denotes networks for which the training did not converge within a reasonable
number of iterations. See discussion in Sect. 7.1.

EPE (px ) AAE (◦)
Full model, F=3, O=12, 10 scales, 1 rec.iter. 0.66 6.9

(1) Number of input frames F=2/5 0.67 0.90 6.8 8.7

(2) No center-surround filter N.C. N.C.
(3) No local normalization 0.67 6.9

(4) Hard-coded H1
k: Gauss. deriv. 0.78 8.4

(5) No L1-normalization over orientations N.C. N.C.
(6) No pooling for phase invariance 0.93 11.2

(7) ReLU after conv1 (default: squaring) N.C. N.C.

(8) No constraints for rotation invariance N.C. N.C.

(9) Number of orientations O=6/8/16 1.65 0.72 0.65 26.6 8.1 6.6

(10) Loss: classification/regression 0.66/0.83 7.0 8.7
(default: 2-step, classification (logarithmic) then regression (Euclidean))

(11) Number of scales: 4/8/16 0.69 0.66 0.67 6.9 6.8 6.9

(12) Recurrent iterations: 2/3/4/5 0.57 0.55 0.56 0.57 6.5 6.4 6.7 6.8
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7.2 Performance on Optical Flow Benchmarks

We use the Middlebury and Sintel benchmarks for evaluation of networks trained
from scratch on their respective training sets. A network trained on the smaller
Middlebury dataset performs decently on Sintel sequences with small motions.
However, most include much faster motions that had to be retrained for.

Middlebury. Flow maps estimated by our method on the Middlebury dataset
[37] are generally smooth and accurate (see Fig. 5). Most errors occur near
boundaries of objects that become, or cause occlusions. Although our flow maps
remain generally more blurry than those of state-of-the-art methods, some fine
details are remarquably well preserved (e.g. Fig. 5, second row). This blurriness,
or imprecision in the spatial localization of motions, is a well-known drawback
of filter-based motion estimation. Convolutional kernels of smaller extent would
be desirable to provide better localization, but the extent of its response in the
frequency domain (Sect. 3) would correspondingly increase, which would imply
a coarser sampling of the signal spectrum and lesser accuracy in motion direc-
tion and speed. Comparisons with existing methods show performance on the
level of classical methods. We obtain much better performance than the recent
implementation of Solari et al. [20] of a filter-based method with no learning.

Sintel. The MPI Sintel dataset [38] contains computer-generated scenes of a
movie provided in “clean” and “final” versions, the latter including atmospheric
effects, reflections, and defocus/motion blur. Flow maps estimated by our
method (Fig. 5) are often smooth. Flows in scenes with small motions are usu-
ally accurate, but they lack details at the objects’ borders and near small image
details. Although this is partly alleviated by our recurrent iterative processing
within the network, large errors remain in scenes with fast motions. This is
reflected by a poor quantitative performance (Table 2). Additional insights can

Input Ground truth As proposed Flownet [9] Input Ground truth As proposed Flownet [9]

Input Ground truth As proposed Occlusions Input Ground truth As proposed Occlusions

Fig. 5. Estimated flow on sequences from the Middlebury (top two rows) and Sintel
(others) datasets. Most failure cases (e.g. bottom row) occur near (dis)occlusions, which
are common on the Sintel dataset due to large motions of small objects and the small
relative camera field-of-view. (Color figure online)
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Table 2. Comparison with existing algorithms on the Middlebury and Sintel bench-
marks. We report average end-point errors (EPE, in pixels) average angular errors
(AAE, in gray, in degrees), and execution times per frame on Sintel. Numbers in paren-
theses correspond to the sets used for training the model.

Method Middlebury Sintel private

Public Private Clean Final

FlowNetS [9] 1.09 13.28 – 4.44 7.76

FlowNetS + refinement [9] 0.33 3.87 0.47 4.58 4.07 7.22

DeepFlow [7] 0.21 3.24 0.42 4.22 4.56 7.21

LDOF [8] 0.45 4.97 0.56 4.55 6.42 9.12

Classic++ [39] 0.28 – 0.41 3.92 8.72 9.96

FFV1MT [20] 0.95 9.96 1.24 11.66 – –

Proposed (0.45) (5.47) 0.70 6.41 9.36 10.04

Proposed + refinement as [9] (0.35) (4.10) 0.58 5.22 9.47 10.14

be gained by examining the flow maps (Fig. 5). Errors arise not on the esti-
mates of large motions, but on their localization, in particular near zones of
(dis)occlusions. This is obvious e.g. in Fig. 5, last row, with a thin wing flapping
over a blank sky. Although the actual motion (in yellow) is detected, it spills
on both sides of the thin wing structure. Since such occlusons are caused by
large motions, they result in a large penalty in EPE. As argued before [38], good
overall performance in such situations clearly require reasoning over larger spa-
tial and/or temporal extent than the local motions cues that our method was
designed around.

Interesting comparisons can be made with the competing approach Flownet
[9]. It uses a more standard deep architecture with numerous convolutional and
pooling layers. It also includes a variational refinement to improve the precision
of motion estimates from the CNN. As discussed in [9], this refinement cannot
correct large errors of correspondingly large motions. For comparison, we applied
this same post-processing to our own results. Our results right off the CNN on
Middlebury are already accurate, and the post-processing brings only marginal
improvement (Table 2). The refinement on Flownet has a stronger effect: the
output of their CNN is less precise, and it benefits more from this refinement.
Looking at the Sintel dataset, the situation is very different. The main metric
(the average EPE) is dominated by large motions, which are the weak point
of the filter-based principles (Sect. 3) that we rely on. Flownet is particularly
good at long-range matching thanks to its deep architecture, and this results in
vastly superior performance. As stated above, the refinement is of little use with
large motions, and brings minimal improvement to either method on Sintel.
In conclusion, the different design choices in Flownet and our approach seem
complimentary in different regimes. It would be interesting to investigate how
to combine their strengths.
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7.3 Applicability to Transparent Motions and Dynamic Textures

We tested the applicability of our method on scenes that are challenging
(dynamic textures) or impossible (transparencies) to handle with traditional
optical flow methods. There are no established benchmarks related to motion
estimation and dynamic textures. Recent works [5,6,22,23] that highlighted the
potential of filter-based motion features in such situation focused on applica-
tions such as segmentation [5,23] or scene recognition [6,22]. In Fig. 7, we show
scenes containing dynamic textures (water, steam) from which we identified the
dominant motion. The flow estimated by a typical method [40] is typically noisy
and/or inaccurate, as the usual assumption of brightness constancy does not hold
(e.g. flickering effect on the water surface, changes of brightness/transparency of
the steam, etc.). Although no ground truth is available for these scenes, the flow
estimated by our methods is more reliable in comparison. We then demonstrate

Input
frame

Flow as
proposed

Flow
using [41]

Fig. 6. The extraction of optical flow on dynamic textures is challenging for traditional
methods, as transparencies (e.g. with steam, left) or flicker (e.g. on water ripples, middle
right) violate the typical assumption of brightness constancy. The core of our approach
relies on the analysis of the frequency contents of the video, and produces more stable
and reliable motion estimates.

Input Traditionnal As proposed
frame optical flow [41] Dominant flow / Motion features

Fig. 7. In scenes with multiple, transparent motions, traditional optical flow methods
fail and typically produce incoherent results. Our method identifies a more stable dom-
inant motion. More importantly, our higher-dimensional motion descriptor can capture
multiple motions at single locations (red squares; white arrows indicate approximate
ground truth direction of motion; see text for details). (Color figure online)
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the ability of our distributed representation to capture multiple motions at a
single location (transparencies and semi-transparencies), thus going beyond the
optical flow representation of pixelwise displacements. We show features in Fig. 7
from three sequences. The first depicts two alpha-blended (in equal proportions)
textures moving in opposite directions, thus simulating transparency. The other
two depict persons moving behind a fence in directions different than the fence
itself [22]. Feature vectors from different locations in the image are visualized
as radial bins (orientations) of concentric rings (speeds). Larger values (brighter
bins) indicate motion evidence. As expected, areas with simple translations pro-
duce one major peak, whereas areas with transparencies produce correspond-
ingly more complex, multimodal distributions. These experiments used a model
trained on the Middlebury dataset (Fig. 6).

8 Conclusions

We showed how to identify optical flow entirely within a convolutional neural
network. By reasoning about required invariances and by using signal processing
principles, we designed a simple architecture that can be trained end-to-end,
from pixels to dense flow fields. We also showed how to enforce strict rotation
invariance by constraining the weights, thus reducing the number of parameters
and enabling training on small datasets. The resulting network performs on the
Middlebury benchmark with performance comparable to classical methods, but
inferior to the best engineered methods.

We believe the approach presented here bears two major advantages over
existing optical flow algorithms. First, building upon the classical motion energy
model, our approach is able to produce high-dimensional features that can cap-
ture non-rigid, transparent, or superimposed motions, which traditional optical
flow cannot represent. Second, it constitutes a method for motion estimation
formulated entirely as a shallow, easily-trainable CNN, without requiring any
post-processing. Its potential is to be used as a building block in deeper archi-
tectures (e.g. for activity or object recognition in videos) offering the possibility
for fine-tuning the representation of motion. The potential of these two aspects
will deserve further exploration and should be addressed in future work.
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