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Abstract. We present a neural network model approach for multi-frame
blind deconvolution. The discriminative approach adopts and combines
two recent techniques for image deblurring into a single neural network
architecture. Our proposed hybrid-architecture combines the explicit pre-
diction of a deconvolution filter and non-trivial averaging of Fourier coef-
ficients in the frequency domain. In order to make full use of the informa-
tion contained in all images in one burst, the proposed network embeds
smaller networks, which explicitly allow the model to transfer informa-
tion between images in early layers. Our system is trained end-to-end
using standard backpropagation on a set of artificially generated train-
ing examples, enabling competitive performance in multi-frame blind
deconvolution, both with respect to quality and runtime.

1 Introduction

Nowadays, consumer cameras are able to capture an entire series of photographs
in rapid succession. Hand-held acquisition of a burst of images is likely to cause
blur due to unwanted camera shake during image capture. This is particularly
true along with longer exposure times needed in low-light environments.

Motion blurring due to camera shake is commonly modeled as a spatially
invariant convolution of a latent sharp image X with an unknown blur kernel k

Y = k ∗ X + ε, (1)

where ∗ denotes the convolution operator, Y the blurred observation and ε addi-
tive noise. Single image blind deconvolution (BD), i.e. recovering X from Y
without knowing k, is a highly ill-posed problem for a variety of reasons. In
contrast, multi-frame blind deconvolution or burst deblurring methods aim at
recovering a single sharp high-quality image from a sequence of blurry and noisy
observed images Y1, Y2, . . . , YN . Accumulating information from several observa-
tions can help to solve the reconstruction problem associated with Eq. (1) more
effectively.
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Traditionally, generative models are used for blind image deconvolution.
While they offer much flexibility they are often computationally demanding and
time-consuming.

Discriminative approaches on the other hand keep the promise of fast process-
ing times, and are particularly suited for situations where an exact modeling of
the image formation process is not possible. A popular choice in this context
are neural networks. They gained some momentum due to the great success of
deep learning in many supervised computer vision tasks, but also for a number
of low-level vision tasks state-of-the-art results have been reported [1,2]. Our
proposed method lines up with the latter approaches and comes along with the
following main contributions:

1. A robust state-of-the-art method for multi-image blind-deconvolution for both
invariant and spatially-varying blur.

2. A hybrid neural network architecture as a discriminative approach for image
deblurring supporting end-to-end learning in the fashion of deep learning.

3. A neural network layer version of Fourier-Burst-Accumulation [3] with learn-
able weights.

4. The proposed embedding of a small neural network allowing for information
sharing across the image burst early in the processing stage.

2 Related Work

Blind image deconvolution (BD) has seen considerable progress in the last
decade. A comprehensive review is provided in the recent overview article by
Wang and Tao [4].

Single image blind deconvolution. Approaches for single image BD that
report state-of-the-art results include the methods of Sun et al. [5], and Michaeli
and Irani [6] that use powerful patch-based priors for image prediction. Following
the success of deep learning methods in computer vision, also a number of neural
network based methods have been proposed for image restoration tasks including
non-blind deconvolution [2,7,8] which seeks to restore a blurred image when the
blur kernel is known, but also for the more challenging task of blind deconvolution
[9–14] where the blur kernel is not known a priori. Most relevant to our work
is the recent work of Chakrabarti [11] which proposes a neural network that
is trained to output the complex Fourier coefficients of a deconvolution filter.
When applied to an input patch in the frequency domain, the network returns
a prediction of the Fourier transform of the corresponding latent sharp image
patch. For whole image restoration, the input image is cut into overlapping
patches, each of which is independently processed by the network. The outputs
are recomposed to yield an initial estimate of the latent sharp image, which is
then used together with the blurry input image for the estimation of a single
invariant blur kernel. The final result is obtained using the state-of-the-art non-
blind deconvolution method of Zoran and Weiss [15].
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Multi-frame blind deconvolution. Splitting an exposure budget across many
photos can lead to a significant quality advantage [16]. Thus, it has been shown
that multiple captured images can help alleviating the illposedness of the BD
problem [17]. This has been exploited in several approaches [18–22] for multi-
frame BD, i.e. combining multiple, differently blurred images into a single latent
sharp image. Generative methods, that make explicit use of an image formation
model, mainly differ in the prior and/or the optimization procedure they use.
State-of-the-art methods use sparse priors with fast Bregman splitting techniques
for optimization [20], or within a variational inference framework [18], cross-blur
penalty functions between image pairs [21,22], also in combination with robust
cost functions [19].

More recently proposed methods [23–26] also model the inter-frame motion
and try to exploit the interrelation between camera motion, blur and image
mis-alignment. Camera motion, when integrated during the exposure time of a
single frame will produce intra-frame motion blur while leading to inter-frame
mis-alignment during readout time between consecutive image capture.

All of the above-mentioned methods employ generative models and try to
explicitly estimate one unknown blur kernel for each blurry input frame along
with predicting the latent sharp image. A common shortcoming is the large
computational burden with typical computation times in the order of tens of
minutes, which hinders their wide-spread use in practice.

Recently, Delbracio and Sapiro have presented a fast method that aggregates
a burst of images into a single image that is both sharper and less noisy than
all the images in the burst [3]. The approach is inspired by a recently proposed
Lucky Imaging method [27] targeted for astronomical imaging. Traditional Lucky
Imaging approaches would select only a few “lucky” frames from a stack of
hundreds to thousands recorded short-exposure images and combine them via
non-rigid shift-and-add techniques into a single sharp image. In contrast, the
authors of [27] propose to take all images into account (rather than a small subset
of carefully chosen frames) taking and combining what is less blurred of each
frame to form an improved image. It does so by computing a weighted average of
the Fourier coefficients of the registered images in the burst. In [3,28] it has been
demonstrated that this approach can be adapted successfully to remove camera
shake originated from hand tremor vibrations. Their Fourier Burst Accumulation
(FBA) approach allows for fast processing even for Megapixel images while at
the same time yielding high-quality results provided that a “lucky”, i.e. almost
sharp frame is amongst the captured image burst.

In our work, we not only present a learning-based variant of FBA but also
show how to alleviate the drawback of requiring a sharp frame amongst the input
sequence of images. To this end we combine the single image BD method of [11]
with FBA in a single network architecture which facilitates end-to-end learning.
To the best of our knowledge this is the first time that a fully discriminative
approach has been presented for the challenging problem of multi-frame BD.
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3 Method

Let’s assume we have given a burst of observed color images Y1, Y2, . . . , YN ∈ I
capturing the same scene X ∈ I. Assuming each image in the captured sequence
is blurred differently, our image formation model reads

Yt = kt ∗ X + εt, (2)

where ∗ denotes the convolution operator, kt the blur kernel for observation Yt

and εt additive zero-mean Gaussian noise.
We aim at predicting a latent single sharp image X̂ through a deep neural

network architecture, i.e.

π(θ) : IN
p → Ip, (y1, y2, . . . , yN ) �→ x̂ = π(θ)(y1, y2, . . . , yN ).

The network operates on a patch-by-patch basis, here yt ∈ Ip and x̂ ∈ Ip denote
a patch in Yt and X respectively. The patches are chosen to be overlapping.
Our network predicts a single sharp patch x̂ ∈ Ip from multiple input patches
yt ∈ Ip. All predicted patches are recomposed to form the final prediction X̂ by
averaging the predicted pixel values. During the training phase we optimize the
learning parameters θ by directly minimizing the objective

‖π(θ)(y1, y2, . . . , yN ) − x‖22. (3)

In the following we will describe the construction of π(θ)(·), the optimization of
network parameters θ during the training of the neural network and the restora-
tion of an entire sharp image.

3.1 Network Architecture

The architecture π(θ)(·) consists of several stages: (a) frequency band analysis
with Fourier coefficient prediction, (b) a deconvolution part and (c) image fusion.
Figure 1 illustrates the first two stages of our proposed system.

(a) Frequency band analysis. The frequency band analysis computes the dis-
crete Fourier transform of the observed patch yt according to the neural network
approach in [11] at three different sizes (17 × 17, 33 × 33, 65 × 65) using different
sample sizes, which we will refer to bands b1, b2, b3. In addition, band b4 repre-
sents a low-pass band containing all coefficients with max |z| ≤ 4 from band b3.
This is depicted in Fig. 1. To enable early information sharing within one burst
of patches, we allow the neural network to spread the per band information
extracted from one patch across all images of the burst using 1 × 1 convolution.

This essentially embeds a fully connected neural network for each Fourier
coefficient (fij)t with weight sharing. Since we use these operations in the image
fusion stage again, we elaborate on this idea in more detail.

The values of one Fourier coefficient (fij)t at frequency position (i, j) across
the entire burst t = 1, 2, . . . , N can be considered as a single vector (fij)t=1,2,...,N
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Fig. 1. Frequency band analysis and deconvolution for an image burst with 3 patches
y1, y2, y3. Following the work of Chakrabarti [11] we separate the Fourier spectrum in 4
different bands b1, . . . , b4. In addition, we allow each band separately to interact across
all images in one burst to support early information sharing. The predicted output of
the deconvolution step are smaller patches x̃1, x̃2, x̃3.

of dimension N (compare Fig. 2). Each of these vectors is fed through a small net-
work of fully connected layers, labeled by mlp 1 in Fig. 1. This allows the neural
network to adjust the extracted Fourier coefficients right before a dimensional-
ity reduction occurs. These modified values (f ′

ij)t=1,2,...,N give rise to adjusted
Fourier bands b′

1, b
′
2, b

′
3, b

′
4.

mlp1

v v′

Fig. 2. For arbitrary inputs (bands b1, b2, b3, b4 or later FBA weights) we interpret each
coefficient across one burst as a single vector. A transformed version of this excerpt
will be placed at the same location in the output patch again. To reduced the number
of learnable parameters, we employ weight sharing independent of the position.

(b) Deconvolution. Pairwise merging of the resulting bands b′
1, b

′
2, b

′
3, b

′
4 with

modified Fourier coefficients using fully connected layers with ReLU activa-
tion units entails a dimensionality reduction. The produced 4096 feature vec-
tor encoding is then fed through several fully connected layers producing a
4225 dimensional prediction of the filter coefficients of the deconvolution ker-
nel. Applying the deconvolution kernel predicts a sharp patch x̂ of size 33 × 33
from each input sequence of patches. This step is implemented as a multipli-
cation of the predicted Wiener Filter with the Fourier transform of the input
patch.
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(c) Image fusion. In the last part of our pipeline we fuse all available sharp
patches y1, y2, . . . , yN by adopting the FBA approach described in [3] as a neural
network component with learnable weights. The vanilla FBA algorithm applies
the following weighted sum to a Fourier transform α̂ of a patch α:

u(α̂) = F−1

(
N∑

i=1

wi(ζ)α̂i(ζ)

)
(x) (4)

wi(ζ) =
|α̂i(ζ)|p∑N

j=1 |α̂j(ζ)|p
, (5)

where wi denotes the contribution of frequency ζ of a patch αi. Note, that u(α̂)
is differentiable in α̂ allowing to pass gradient information to previous layers
through back-propagation. To incorporate this algorithm as a neural network
layer into our pipeline, we replace Eq. (4) by a parametrized version

u(α̂) = F−1

(
N∑

i=1

hφ(ζ)α̂(ζ)

)
(x). (6)

Hence, instead of a hard-coded weight-averaging (using wi) the network is able
to learn a data-dependent weighted-averaging scheme. Again, the function hφ(·)
represents two 1 × 1 convolutional layers with trainable parameters φ following
the same idea of considering the Fourier coefficient across one burst as a single
vector (compare Fig. 2).

3.2 Training

The network is trained on an artificially generated dataset obtained by applying
synthetic blur kernels to patches extracted from the MS COCO dataset [29].
This dataset consists of real-world photographs collected from the internet. To
increase the quality of ground-truth patches guiding the training process we
reject patches with too small image gradients. This process gives us 542217 sharp
patches. For a fair evaluation we use a splitting1 in training and validation set.
Optimizing the neural network parameters is done on the training set only. The
input bursts of 14 blurry images are generated on-the-fly by applying synthetic
blur kernels to the ground-truth patches. These synthetic blur kernels of sizes
17 × 17 and 7 × 7 pixels are generated using a Gaussian process with a Matérn
covariance function following [9], a random subset of which is shown in Fig. 3.
In addition, we apply standard data augmentation methods like rotating and
mirroring to the ground-truth data. Hence, this approach gives nearly an infinite
amount of training data. We also add zero-mean Gaussian noise with variance
0.1. The validation data is precomputed to ensure fair evaluation during training.

Unfortunately, sophisticated stepsize heuristics like Adam [30] or Adagrad
[31] failed to guarantee a stable training. We suspect the large range of values in

1 Provided by [29].
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Fig. 3. Some of the synthetically generated PSFs using a Gaussian process for gener-
ating training examples on-the-fly.

the Fourier space to mislead those heuristics. Instead, we use stochastic gradient
descent with momentum (β = 0.9), batchsize 32 and an initial learning rate of
η = 2 which decreases every 5000 steps by a factor of 0.8. Training the neural
network took 6 days using TensorFlow [32] on a NVIDIA Titan X.

The FBA approach [3] applies Gaussian smoothing to the weights wi to
account for the fact that small camera shakes are likely to vary the Fourier spec-
trum in a smooth way. While this removes strong artefacts in the restored recom-
posed image, it prevents the network to convergence during training. Following
this idea we tried a fixed Gaussian blur with parameters set to the reported
values of [3] as well as learning a blur kernel (initialized by a Gaussian) during
training. In both cases we observed no convergence during training. Therefore,
we apply this smoothing only for the final application of the neural network.

3.3 Deployment

During deployment we feed input patches of size 65×65 into our neural network
with stride 5. Using overlapping patches helps to average multiple predictions.
For recombination of overlapping patches we apply a 2-dimensional Hanning
window to each patch to favour pixel values in the patch center and devaluate
information at the border of the patch.

While the predicted images X̂ generated by our neural network contain well-
defined sharp edges we observed desaturation in color contrast. To correct the
color of the predicted image we replace its ab-channel in the Lab color space by
the ab-channel of the FBA results (compare Fig. 4).

Regarding runtime the most expensive step is the frequency band analysis.
Given a burst of 14 images of size 1000 × 700 pixels the entire reconstruction
process takes roughly 5 min per channel with our unoptimized implementation.

X X̃ X̂

Fig. 4. Deblurring a burst of degraded images from a groundtruth image (left) results
in a desaturated image (middle). Therefore we correct those colors (right image) using
color transfer. (Color figure online)
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4 Experiments

To evaluate and validate our approach we conduct several experiments includ-
ing a comprehensive comparison with state-of-the-art techniques on a real-world
dataset, and a performance evaluation on a synthetic dataset to test the robust-
ness of our approach with varying image quality of the input sequence.

4.1 Comparison on Real-World Dataset

We compare the restored images with other state-of-the-art multi-image blind
deconvolution algorithms. In particular, we compare with the multichannel blind
deconvolution method from Šroubek et al. [21], the sparse-prior method of [33]
and the FBA method proposed in [3]. We used the data provided by [3], which
contains typical photographs captured with hand-held cameras (iPad back cam-
era, Canon 400 D). As they are captured under various challenging lighting con-
ditions they exhibit both noise and saturated pixels. As shown in [3] the FBA

random shot align& average Šroubek et al. Zhang et al. Delbracio et al. our approach

Fig. 5. Comparison to state-of-the-art multi-frame blind deconvolution algorithms on
real-world data. See the supplementary material for high-resolution images. Note that
our approach produces the sharpest results except for the last scene, which could be
caused by the color transfer described in Sect. 3.3. (Color figure online)
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algorithms demonstrated superior performance compared to previous state-of-
the-art multi-image blind deconvolution algorithms [21,33] in both reconstruc-
tion quality and runtime. Figure 5 shows crops of the deblurred results on these
images. The high-resolution images are enclosed in the supplemental material.
Our trained neural network featuring the FBA-like averaging yields compara-
ble if not superior results compared to previous approaches [3,21,33]. In direct
comparison to the FBA results, our method is better removing blur due to our
additional prepended deconvolution module.

4.2 Deblurring Bursts with Varying Number of Frames and Quality

Here, we analyse the performance of our approach depending on the burst “qual-
ity”. Sorting all images provided by [3] within one burst according to their PSNR
beginning with images of strong blur and consequently adding sharper shots to
the burst gives a series of bursts starting with images of poor quality up to bursts
with at least one close-to-sharp shot. Since our architecture is trained for deblur-
ring bursts with exactly 14 input images, we duplicated images of bursts with
fewer frames. Figure 6 clearly indicates good performance of our neural network
even for a relative small number of input images with strong blur artifact.

4.3 Deblurring Image Bursts Without Reasonable Sharp Frames

To further challenge our neural network approach, we artificially sampled image
bursts from unseen images taken from the MS COCO validation set and blurred
them by applying synthetic blur kernels of size 14×14. The restored sharp images
from the input bursts of 14 artificially blurred images under absence of a close-
to-sharp frame (best shot) are depicted in Fig. 7. As the experiments indicate
the explicit deconvolution step in our approach is absolutely necessary to handle
these kind of snapshots and to remove blur artifacts. In contrast, while FBA [3]
stands out in small memory footprint and fast processing times it clearly failed
to recover sharp images for cases where no reasonably sharp frame is available
amongst the input sequence.

4.4 Comparing to a Baseline Version

One might ask, how our trained neural network compares to an approach that
applies the methods of Chakrabarti [11] and Delbracio and Sapiro [3] subse-
quently, each in a separate step. We fine-tuned the provided weights from [11]
in combination with our FBA-layer. Figure 8 shows the training progress for an
exemplar patch, where the improvement in sharpness is clearly visible.

In addition, we run the entire pipeline of Chakrabarti [11] including the
costly non-blind deconvolution EPLL step and afterwards FBA. The approach
is significantly slower and results in less sharp reconstructions (see Fig. 9).



44 P. Wieschollek et al.

2 images 3 images 4 images 5 images 6 images all images
F
B

A
ou

rs
F
B

A
ou

rs
F
B

A
ou

rs
F
B

A
ou

rs

Fig. 6. FBA and our algorithm are compared on bursts with a growing number of
images of increasing quality. The individual images are sorted according to their PSNR
starting with the most blurry images. The input images were taken from [3].

4.5 Spatially-Varying Blur

To test whether our network is also able to deal with spatially-varying blur
we generated a burst of images degraded by non-stationary blur. To this end,
we took one of the recorded camera trajectories of [34] that are provided on
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typical shot best shot FBA ours

Fig. 7. Comparing FBA (third column) and our trained neural network (fourth col-
umn) against best shot and a typical shot. These images are taken from the validation
set. For image bursts without a single sharp frame lucky imaging approaches fail due
to a missing explicit deconvolution step, while our approach gives reasonable results.

the project webpage2. The camera trajectory has been recorded with a Vicon
system at 500 fps and represents the camera motion during a slightly longer-
exposed shot (1/30 s). The trajectory comprises a 6-dimensional time series with
167 time samples. We divided this time series into 8 fragments of approximately
equal lengths.

With a Matlab script (see Supplemental material) 8 spatially-varying PSFs
are generated as shown at the bottom of Fig. 10.

The spatially varying kernels of size 17 × 17 pixels are applied using the
Efficient Filter Flow model of [35]. The results of our network along with results

2 http://webdav.is.mpg.de/pixel/benchmark4camerashake/

http://webdav.is.mpg.de/pixel/benchmark4camerashake/
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Fig. 8. The combination of the work of Chakrabarti [11] and Delbracio et al. [3] can
be considered as a baseline version of our neural network. We fine-tuned the published
weights from the work of Chakrabarti [11] in an end-to-end fashion in combination with
our FBA-layer. The left-most patch is the ground-truth patch. Note how the sharpness
continuously increases with training.

FBA our network

baseline network example shot

Fig. 9. Comparison to a baseline approach of simply stacking [3,11]. Without end-to-
end training ringing-artifacts are clearly visible on the blue roof. They are significantly
dampened after training. (Color figure online)
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of FBA for three example images are shown in Fig. 10. Our results are consis-
tently sharper and demonstrate that our approach is also able to correct for
spatially-varying blur.

sruoABF

Fig. 10. Comparison to FBA on image sequences with spatially-varying blur. Our
approach is able to reconstruct consistently sharper images.
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5 Conclusion, Limitations and Future Work

We presented a discriminative approach for multi-frame blind deconvolution
(BD) by posing it as a nonlinear regression problem. As a function approxima-
tor, we use a deep layered neural network, whose optimal parameters are learned
from artificially generated data. Our proposed network architecture draws inspi-
ration from two recent works as (a) a neural network approach to single image
blind deconvolution of Chakrabarti [11], and (b) the Fourier Burst Accumula-
tion (FBA) algorithm of Delbracio and Sapiro [3]. The latter takes a burst of
images as input and combines them through a weighted average in the frequency
domain to a single sharp image. We reformulated FBA as a learning method and
casted it into a deep layered neural network. Instead of resorting to heuristics
and hand-tuned parameters for weight computation, we learn optimal weights
as network parameters through end-to-end training.

By prepending parts of the network of Chakrabarti to our FBA network
we are able to extend its applicability by alleviating the necessity of a close-
to-sharp frame being amongst the image burst. Our system is trained end-to-
end on a set of artificially generated training examples, enabling competitive
performance in multi-frame BD, both with respect to quality and runtime. Due
to its novel information sharing in the frequency band analysis stage and its
explicit deconvolution step, our network outperforms state-of-the-art techniques
like FBA [3] especially for bursts with few severely degraded images.

Our contribution resides at the experimental level and despite competitive
results with state-of-the-art, our proposed approach is subject to a number of
limitations. However, at the same time it opens up several exciting directions
for future research:

– Our proposed approach doesn’t exploit the temporal structure of the input
image sequence, which encodes valuable information about intra-frame blur
and inter-frame image mis-alignment [24–26]. Embedding our described net-
work into a network architecture akin to the spatio-temporal auto-encoder of
Pătrăucean et al. [36] might enable such non-trivial inference.

– Our current model assumes a static scence and is not able to handle object
motion. Inserting a Spatial Transformer Network Layer [37] which also facil-
itates optical flow estimation [36] could be an interesting avenue to capture
and correct for object motion occurring between consecutive frames.

Acknowledgement. This work has been partially supported by the DFG Emmy
Noether fellowship Le 1341/1-1 and an NVIDIA hardware grant.
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