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Abstract. We propose a novel algorithm for the joint refinement of
structure and motion parameters from image data directly without rely-
ing on fixed and known correspondences. In contrast to traditional bun-
dle adjustment (BA) where the optimal parameters are determined by
minimizing the reprojection error using tracked features, the proposed
algorithm relies on maximizing the photometric consistency and esti-
mates the correspondences implicitly. Since the proposed algorithm does
not require correspondences, its application is not limited to corner-like
structure; any pixel with nonvanishing gradient could be used in the esti-
mation process. Furthermore, we demonstrate the feasibility of refining
the motion and structure parameters simultaneously using the photo-
metric error in unconstrained scenes and without requiring restrictive
assumptions such as planarity. The proposed algorithm is evaluated on
range of challenging outdoor datasets, and it is shown to improve upon
the accuracy of the state-of-the-art VSLAM methods obtained using the
minimization of the reprojection error using traditional BA as well as
loop closure.

1 Introduction

Photometric, or image-based, minimization is a fundamental tool in a myriad of
applications such as: optical flow [1], scene flow [2], and stereo [3,4]. Its use in
vision-based 6DOF motion estimation has recently been explored demonstrating
good results [5–8]. Minimizing the photometric error, however, has been limited
to frame–frame estimation (visual odometry), or as a tool for depth refinement
independent of the parameters of motion [9]. Consequently, in unstructured
scenes, frame–frame minimization of the photometric error cannot reduce the
accumulated drift. When loop closure and prior knowledge about the motion
and structure are not available, one must resort to the Gold Standard: minimiz-
ing the reprojection error using bundle adjustment.

Bundle adjustment (BA) is the problem of jointly refining the parameters
of motion and structure to improve a visual reconstruction [10]. Although BA
is a versatile framework, it has become a synonym to minimizing the repro-
jection error across multiple views [11,12]. The advantages of minimizing the
reprojection error are abundant and have been discussed at length in the
literature [11,12]. In practice, however, there are sources of systematic errors
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in feature localization that are hard to detect and the value of modeling their
uncertainty remains unclear [13,14]. For example, slight inaccuracies in calibra-
tion exaggerate errors [15], sensor noise and degraded frequency content of the
image affect feature localization accuracy [16]. Even interpolation artifacts play
a non-negligible role [17]. Although minimizing the reprojection is backed by
sound theoretical properties [11], its use in practice must also take into account
the challenges and nuances of precisely localizing keypoints [10].

In this work, we propose a novel method that further improves upon the
accuracy of minimizing the reprojection error and even state-of-the-art loop clo-
sure [18]. The proposed algorithm brings back the image in the loop, and jointly
refines the motion and structure parameters to maximize the photometric con-
sistency across multiple views. In addition to improved accuracy, the algorithm
does not require correspondences. In fact, correspondences are estimated auto-
matically as a byproduct of the proposed formulation. The ability to perform BA
without the need for precise correspondences is attractive because it can enable
VSLAM applications where corner extraction is unreliable [19], as well as addi-
tional modeling capabilities that extend beyond geometric primitives [20,21].

1.1 Preliminaries and Notation

The Reprojection Error. Given an initial estimate of the scene structure
{ξj}N

j=1, the viewing parameters per camera {θi}M
i=1, and xij the projection of

the jth point onto the ith camera, the reprojection error is given by

εij(xij ;θi, ξj) = ‖xij − π
(
T(θi),X(ξj)

) ‖, (1)

where π(·, ·) is the image projection function. The function T(·) maps the vec-
torial representation of motion to a rigid body transformation matrix. Similarly,
X(·) maps the parameterization of the point to coordinates in the scene.

In this work, we assume known camera calibration parameters as is often
the case in VSLAM and parameterize the scene structure using the usual 3D
Euclidean coordinates, where X(ξ) := ξ, and

ξ
�
j =

(
xj yj zj

) ∈ R
3. (2)

The pose parameters are represented using twists [22], where the rigid body pose
is obtained using the exponential map [23], i.e.:

θ
�
i ∈ R

6 and T(θ) := exp(θ̂) ∈ SE(3). (3)

Our algorithm, similar to minimizing the reprojection error using BA, does not
depend on the parameterization. Other representations for motion and structure
have been studied in the literature and could be used as well [24–26].
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Geometric Bundle Adjustment. Given an initialization of the scene points
and motion parameters, we may obtain a refined estimate by minimizing the
squared reprojection error in Eq. (1) across tracked features, i.e.:

{Δθ∗
i ,Δξ∗

j} = argmin
θi,ξj

M∑

i=1

N∑

j=1

1
2
δijε

2
ij(xij ,Δθi,Δξj), (4)

where δij = 1 if the jth point is visible, or tracked, in the ith camera. We call
this formulation geometric BA.

Minimizing the reprojection error in Eq. (4) is a large nonlinear optimization
problem. Particular to BA is the sparsity pattern of its linearized form, which
can be exploited beneficially for both large– and medium–scale problems [11].

1.2 The Photometric Error

The use of photometric information in Computer Vision has a long and rich
history dating back to the seminal works of Lucas and Kanade [27] and Horn
and Schunk [28]. The problem is usually formulated as a pairwise alignment of
two images. One is the reference I0, while the other is the input I1. The goal is to
estimate the parameters of motion p such that the sum of the squared intensity
error is minimized

p∗ = argmin
p

∑

u∈Ω0

1
2
‖I0(u) − I1(w(u;p))‖2, (5)

where u ∈ Ω0 denotes a subset of pixel coordinates in the reference image frame,
and w (·, ·) denotes the warping function [29]. Minimizing the photometric error
has recently resurfaced as a robust solution to visual odometry (VO) [6,7,30].
Notwithstanding, minimizing the photometric error has not yet been explored
for the joint optimization of the motion and structure parameters for VSLAM
in unstructured scenes. The proposed approach fills in the gap by providing a
photometric formulation for BA, which we call BA without correspondences.

2 Bundle Adjustment Without Correspondences

BA is not limited to minimizing the reprojection error [10]. We reformulate the
problem as follows. First, we assume an initial estimate of the camera poses θi

as required by geometric BA. However, we do not require tracking information
for the 3D points. Instead, for every scene point ξj , we assign a reference frame
denoted by r(j). The reference frame is used to extract a fixed square patch
denoted by φj ∈ R

D over a neighborhood denoted by N . In addition, we compute
an initial visibility list indicating the frames where the point may be in view.
The visibility list for the jth point excludes the reference frame and is denoted
by:

Vj = {k : k �= r(j) and ξj is visible in frame k}, for k ∈ [1, . . . , M ]. (6)
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Given this information and the input images {Ii}M
i=1, we seek to estimate an

optimal update to the motion Δθi
∗ and structure parameters Δξj

∗ that satisfy

{Δθ∗
i ,Δξ∗

j} = argmin
Δθi,Δξj

N∑

j=1

∑

k∈V (j)

E(φj , Ik;Δθk,Δξj), where (7)

E(φ, I′;θ, ξ) =
∑

u∈N

1
2
‖φ(u) − I′(π(θ, ξ) + u)‖2. (8)

The notation I′(π(·, ·)+u) indicates sampling the image intensities in a neighbor-
hood about the current projection of the point using an appropriate interpolation
scheme (bilinear in this work). The objective is illustrated in Fig. 1.

Fig. 1. Schematic of the proposed approach. We seek to optimize the parameters of
motion θi and structure ξj such that the photometric error with respect to a fixed
patch at the reference frame is minimized; correspondences are estimated implicitly

Linearization and Sparsity. The optimization problem in Eq. (7) is nonlinear
and its solution proceeds with standard techniques. Let θ and ξ denote the
current estimate of the camera and the scene point, and let the current projected
pixel coordinate in the image plane be given by

u′ = π(T(θ),X(ξ)), (9)

then taking the partial derivatives of the 1st-order expansion of the photometric
error in Eq. (8) with respect to the motion and structure parameters we obtain:

∂E
∂θ

=
∑

u∈N
J�(θ) |φ(u) − I′(u′ + u) − J(θ)Δθ| (10)

∂E
∂ξ

=
∑

u∈N
J�(ξ) |φ(u) − I′(u′ + u) − J(ξ)Δξ| , (11)
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where J(θ) = ∇I(u′ +u)∂u′
∂θ , and J(ξ) = ∇I(u′ +u)∂u′

∂ξ . The partial derivatives
of the projected pixel location with respect to the parameters are identical to
those obtained when minimizing the reprojection error in Eq. (1), and ∇I ∈ R

1×2

denotes the image gradient. By equating the partial derivatives in Eqs. (10) and
(11) to zero we arrive at the normal equations which can be solved efficiently
using standard methods [31].

We note that the Jacobian involved in solving the photometric error has
a higher dimensionality than its counterpart in geometric BA. This is because
the dimensionality of intensity patches (D ≥ 3 × 3) is usually higher than the
dimensionality of feature projections (typically 2 for a monocular reconstruction
problem). Nonetheless, the Hessian remains identical to minimizing the repro-
jection error and the linear system remains sparse and is efficient to decompose.
The sparsity pattern of the photometric BA problem is illustrated in Fig. 2.

Since the parameters of motion and structure are refined jointly, the location
of the patch at the reference frame φ(u) in Eq. (8) will additionally depend on the
pose parameters of the reference frame. Allowing the reference patch to “move”
during the optimization adds inter-pose dependencies in the linear system and
might cause the location of the reference patch to drift. For instance, the solution
may be biased towards image regions with brighter absolute intensity values in
an attempt to obtain the minimum energy in low-texture areas.

To address this problem, we fix the patch appearance at the reference frame
by storing the patch values as soon as the reference frame is selected. This is
equivalent to assuming a known patch appearance from an independent source.
Under this assumption, the optimization problem now becomes: given a known
and fixed patch appearance of a 3D point in the world, refine the parameters of
the structure and motion such that photometric error between the fixed patch
and its projection onto the other frames is minimized. This assumption has two
advantages: (1) the Hessian sparsity pattern remains identical to the familiar
form when minimizing the reprojection error using traditional BA, and (2) we
can refine the three coordinates (or the full four projective coordinates [10]) of
the scene points as opposed to only refining depth along a fixed ray in space.

In addition to improving the accuracy of VSLAM, the algorithm does not
require extensive parameter tuning. This is possible by allowing the algorithm
to determine the correct correspondences, hence eliminating the many steps
required to ensure outlier-free correspondences with traditional BA. The current
implementation of the proposed algorithms is controlled by the three parameters
summarized in Table 1 and explained next.

Table 1. Configuration parameters for the proposed algorithm shown in Algorithm 1.

Parameter Value

Patch radius 1 or 2

Non maxima suppression radius 1

Max distance to update Vj 2



Photometric Bundle Adjustment for Vision-Based SLAM 329

Fig. 2. Shown on the left is the form of the Jacobian for a photometric bundle adjust-
ment problem consisting of 3 cameras, 4 points, and using a 9-dimensional descriptor,
with Nc = 6 parameters per camera, and Np = 3 parameters per point. The form of
the normal equations is shown on the right. The illustration is not up to scale across
the two figures.

Selecting Pixels. While it is possible to select pixel locations at every frame
using a standard feature detector, such as Harris [32] or FAST [33], we opt to
use a simpler and more efficient strategy based on the gradient magnitude of the
image. This is performed by selecting pixels with a local maxima in a 3×3 neigh-
borhood of the absolute gradient magnitude of the image. The rationale is that
pixels with vanishing intensity gradients do not contribute to the linear system
in Eqs. (10) and (11). Other strategies for pixel selection could used [34,35], but
we found that the current scheme works well as it ensures an even distribution
of coordinates across the field-of-view of the camera [36]. The proposed pixel
selection strategy is also beneficial as it is not restricted to corner-like structure
and allows us to use pixels from low-texture areas. We note that this pixel selec-
tion step selects pixels at integer locations; there is no need to compute accurate
subpixel positions of the selected points at this stage.

In image-based (photometric) optimization there is always a distinguished
reference frame providing fixed measurements [9,37,38]. Selecting a single ref-
erence in photometric VSLAM is unnecessary and may be inadvisable. It is
unnecessary as the density of reconstruction is not our main goal. It is inadvis-
able because we need the scene points to serve as tie points [39] and to form
a strong network of constraints [10]. Given the nature of camera motion in
VSLAM, selecting points from every frame ensures the strong network of connec-
tions between the tie points. For instance, typical hand-held and ground robots
motions are mostly forward with points leaving the field-of-view rapidly.
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Nonetheless, selecting new scene points at every frame using the aforemen-
tioned non maxima suppression procedure has one caveat. If we always select
pixels with strong gradients between consecutive frames, then we are likely to
track previous scene points rather than finding new ones. This is because pixels
with locally maximum gradient magnitude at the consecutive frame are most
likely images of previously selected points. Treating projections of previously
initialized scene points as new observations is problematic because it introduces
unwanted dependencies in the normal equations and superficially increases the
number of independent measurements in the linearized system of equations.

To address this issue, we assume that the structure and motion initial esti-
mates are accurate enough to predict the location of the current scene points
in the new frame. Prior to initializing new scene points, we use the provided
pose initialization to warp all previously detected scene points that are active
in the optimization sliding window onto the new frame. After that, we mark
a 3 × 3 square area at the projection location of the previous scene points as
an invalid location for initializing new points. Finally, The number of selected
points per frame varies depending on the image resolution and image content.
In our experiments, this number ranges between ≈4000–10000 points per image.

Determining Visibility. Ideally, we would like to assume that newly initialized
scene points are visible in all frames and to rely on the algorithm to reliably
determine if this is the case. However, automatically determining the visibility
information along with structure and motion parameters is challenging, as many
scene points quickly go out of view, or become occluded.

An efficient and reliable measure to detect occlusions and points that cannot
be matched reliably is the normalized correlation. For all scene points that are
close to the current frame i, we use the pose initialization Ti to extract a 5 × 5
intensity patch. The patch is obtained by projecting the scene points to the new
frame and its visibility list is updated if the zero-mean normalized correlation
score (ZNCC) is greater than 0.6. We allow ±2 frames for a point to be considered
close, i.e.|i − r(j)| ≤ 2. This procedure is similar to determining visibility in
multi-view stereo algorithms [4] and is best summarized in Algorithm1.

Optimization Details. We use the Ceres optimization library [40] to optimize
the objective in Eq. (7). We use the Levenberg-Marquardt algorithm [41,42] to
minimize a Huber loss function instead of squared loss to improve robustness.
Termination tolerances are set to 1×10−6, and automatic differentiation facilities
are used. The image gradients used in the linearized system in Eqs. (10) and (11)
are computed using central-differences. Finally, we also make use of the Schur
complement for a more efficient solution.

Since scene points do not remain in view for an extended period in most
VSLAM datasets, the photometric refinement step is performed using a sliding
window of five frames [43]. The motion parameters of the first frame in the sliding
window is held constant to fixate the Gauge freedom [10]. The 3D parameters
of the scene points in the first frame, however, are included in the optimization.
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Algorithm 1. Summary of image processing in our algorithm
1: procedure ProcessFrame(Ii,Ti)
2: Step 1: establish connections to the new frame
3: mask = all valid(rows(I), cols(I))
4: for all scene points Xj in sliding window do
5: if reference frame r(j) is too far from i then
6: continue

7: x := projection of Xj onto image Ii using pose Ti

8: φ′ := patch at x and φ := reference patch for Xj

9: if zncc(φ, φ′) > threshold then
10: add frame i to visibility list Vj

11: mask(u) = invalid

12: Step 2: add new scene points
13: G := gradient magnitude of Ii
14: for all pixels u in Ii do
15: if u is a local maxima in G then
16: if location u is valid in mask then
17: initialize a new point X with reference patch at I(u)

3 Experiments

In this section, we evaluate the performance of the proposed algorithm on two
commonly used VSLAM benchmarks to facilitate comparisons with the state-of-
the-art. The first is the KITTI benchmark [44], which contains imagery from
an outdoor stereo camera mounted on a vehicle. The second is the Malaga
dataset [45], which is particularly challenging for VSLAM because the baseline
of the camera (12 cm) is small relative to the scene structure.

3.1 The KITTI Benchmark

Initializing with Geometric BA. Torr and Zisserman [12] convincingly argue
that the estimation of structure and motion should proceed by feature extrac-
tion and matching to provide a good initialization for BA-based refinement tech-
niques. Here, we use the output of ORB-SLAM [18], a recently proposed state-
of-the-art VSLAM algorithm, to initialize our method. ORB-SLAM not only
performs geometric BA, but also implements loop closure to reduce drift.

We only use the pose initialization from ORB-SLAM. We do not make use
of the refined 3D points as they are available at selected keyframes only. This is
because images in the KITTI benchmark are collected at 10 Hz, while the vehicle
speed exceeds 80 km/h in some sections. Subsequently, the views are separated
by a large baseline, which violates the small displacement assumption required
for the validity of linearization in Eqs. (10) and (11).

Hence, to initialize 3D points we use the standard block matching stereo
algorithm implemented in OpenCV. This is a winner-takes-all brute force search
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strategy based on the sum of absolute intensity differences (SAD). The algorithm
is configured to search for 128 disparities using a 7 × 7 aggregation window.

The choice of initializing the algorithm with ORB-SLAM is intentional to
assess the accuracy of the algorithm in comparison to the Gold Standard solution
from traditional BA. We note, however, that a correspondence-free system is
possible by initializing the pose parameters with a direct method [5], or possibly
a low-quality GPS.

Performance of the algorithm is shown in Fig. 3 and not only does it out-
perform the accuracy of (bundle adjusted and loop-closed) ORB-SLAM, but it
also outperforms other top performing algorithms, especially in the accuracy
of estimating rotations. Compared algorithms include: ORB-SLAM [18], LSD-
SLAM [5,30], VoBA [46], and MFI [47].

We note that sources of error in our algorithm are correlated with faster
vehicle speeds. This is to be expected as the linearization of the photometric error
holds only in a small neighborhood. This could be mitigated by implementing
the algorithm in scale-space [48], or improving the initialization quality of the
scene structure (either by better stereo, or better scene points obtained from
a geometric BA refinement step). Interestingly, however, the rotation error is
reduced at high speeds which can be explained by lack of large rotations. The
same behavior can be observed with LSD-SLAM’s performance as both methods
rely on the photometric error, but our rate of error reduction is higher due to
the joint refinement of pose and structure parameters.

Initializing with Frame–Frame VO. Surprisingly, and contrary to other
image-based optimization schemes [15,50], our algorithm does not require an
accurate initialization. Figure 5 demonstrates a significant improvement in accu-
racy when the algorithm is initialized using frame–frame VO estimates with
unbounded drift. Here, we used a direct method to initialize the camera pose
without using any feature correspondences [49].

Interestingly, however, when starting from a poor initialization our algorithm
does not attain the same accuracy as when initialized using a better quality start-
ing point as shown in Fig. 3. This leads us to conclude the algorithm is sensitive
to the initialization conditions more so than traditional BA. Importantly, how-
ever, the algorithm is able to significantly improve upon a poor initialization.

Convergence Characteristics and Runtime. As shown in Fig. 6, most of the
photometric error is eliminated during the first five iterations of the optimization.
While this is by no means a metric of quality, it is reassuring as it indicates a well-
behaved optimization procedure. The number of iterations and the cumulative
runtime per sliding window of 5 frames is shown in Fig. 7. The median number
of iterations is 34 with a standard deviation of ≈6. Statistics are computed on
the KITTI dataset frames. The runtime is ≈2 s per sliding window (400 ms per
frame) using a laptop with a dual core processor clocked at 2.8 GHz and 8 GB of
RAM, which limits parallelism. We note that it is possible to improve the runtime
of the proposed method significantly using the CPU, or the GPU. The bottleneck
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Fig. 3. Comparison to state-of-the-art algorithms on the KITTI benchmark. Our app-
roach performs the best. Error in our approach correspond to segments of the data
when the vehicle is driving at a high speed, which increases the magnitude of motion
between frames and affects the linearization assumptions. No loop closure, or keyfram-
ing is performed using our algorithm. Improvement is shown qualitatively in Fig. 4
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Fig. 4. Improvement starting from a poor initialization shown on the first sequence of
the KITTI benchmark. Quantitative evaluation is shown in Fig. 3. We used a direct
(correspondence-free) frame–frame VO method to initialize the pose parameters [49].
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frame direct VO method with unbounded drift.
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Fig. 6. Rate of error reduction at every iteration shown for the first 10 sliding windows,
each with 5 frames. The thicker line shows the first bundle, which has the highest error.
Most of the error is eliminated with the first 5 iterations.

of the proposed algorithm is image interpolation (which can be done efficiently
with SIMD instructions) and the reliance on automatic differentiation (which
limits any code optimization as the code must remain simple for automatic
differentiation to work).

3.2 The Málaga Stereo Dataset

The Málaga dataset [47] is a particularly challenging dataset for VSLAM. The
dataset features driving in urban areas using a small baseline stereo camera at
resolution 800 × 600. The stereo baseline is 12 cm which provides little parallax
for resolving distal observations. We use extracts 1, 3, and 6 in our evaluation.

Our experimental setup is similar to the KITTI dataset. However, we esti-
mate the stereo using the SGM algorithm [51], as implemented in the OpenCV
library. The stereo is used to estimate 16 disparities with a SAD block size of
5 × 5. We did not observe a significant difference in performance when using
block matching instead of SGM.

The Malaga dataset provides GPS measurements, but they are not accu-
rate enough for quantitative evaluation. The GPS path, however, is sufficient to
qualitatively demonstrate precision. Results are shown in Fig. 8 in comparison
with ORB-SLAM [18], which we used its pose output to initialize our algorithm.
We note that in extract 3 of the Malaga dataset (shown on the left in Fig. 8),
ORB-SLAM loses tracking during the turn and our algorithm continues without
initialization.
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Fig. 7. Histogram of the number of iterations (on the left) and runtime (on the right).
The median number of iterations is 34, with a standard deviation of 6.02. The median
run time is 1.89, mean 1.98 and standard deviation of 0.69. The runtime is reported
for sliding window of 5 frames on the KITTI benchmark.

Fig. 8. Our algorithm (magenta) compared with ORB-SLAM (dashed) against GPS
(yellow) on extracts 3 and 6 of the Malaga dataset. For extract 3 ORB-SLAM loses
tracking during the roundabout, where our algorithm continues without an initializa-
tion. Results for extract 6 are shown up to frame 3000 as ORB-SLAM loses tracking.
The figure is best viewed in color. (Maps courtesy of Google Maps.) (Color figure
online)

To assess the quality of pose estimates, we demonstrate results on a dense
reconstruction procedure shown in Fig. 9. Using the estimated camera trajectory,
we chain the first 6 m of the disparity estimates to generate a dense map. As
shown in Fig. 9, the quality of pose estimates appears to be good.

4 Related Work

Geometric BA. BA has a long and rich history in computer vision, photogram-
metry and robotics [10]. BA is a large geometric minimization problem with the
important property that variable interactions result in a sparse system of lin-
ear equations. This sparsity is key to enabling large–scale applications [52,53].
Exploiting this sparsity is also key to obtaining precise results efficiently [54,55].
The efficiency of BA has been an important research topic especially when han-
dling large datasets [56,57] and in robotics applications [58–60]. Optimality and
convergence properties of BA have been studied at length [11,61,62] and remain
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Fig. 9. Dense map from Malaga dataset extract 1. The map is computed by stitching
together SGM disparity with the refined camera pose.

of interest to date [63]. All the aforementioned research in geometric BA could
be integrated into the proposed photometric BA framework.

Direct Multi-frame Alignment. By direct alignment we mean algorithms
that estimate the parameters of interest from the image data directly and with-
out relying on sparse features as an intermediate representation of the image [64].
The fundamental differences between direct methods (like the one proposed
herein) and the commonly used feature-based pipeline is how the correspon-
dence problem is tackled and is not related to the density of the reconstruction.
In the feature-based pipeline [12], structure and motion parameters are estimated
from known and fixed correspondence. In contrast, the direct pipeline to motion
estimation does not use fixed correspondences. Instead, the correspondences are
estimated as a byproduct of directly estimating the parameters of interest.

The use of direct algorithms for SFM applications was studied for small–scale
problems [38,65–67], but feature-based alignment has proven more successful
in handling wide baseline matching problems [12] as small pixel displacements
is an integral assumption for direct methods. Nonetheless, with the increasing
availability of high frame-rate cameras and the increasing computational power,
direct methods are demonstrating great promise [5,6,9].

To date, however, the use of direct methods in VSLAM has been limited to
frame–frame motion estimation. Approaches that make use of multiple frames
are designed for dense depth estimation only and multi-view stereo [4,9], which
assume a correct camera pose and only refine the scene structure. Other algo-
rithms can include measurements from multiple frames, but rely on the presence
of structures with strong planarity in the environment [37,68] (or equivalently
restricting the motion of the camera to rotation only [69]).

In this work, in contrast to previous research in direct image-based align-
ment [9,38], we show that provided good initialization, it is possible to jointly
refine the structure and motion parameters by minimizing the photometric error
and without restricting the camera motion or the scene structure.1

The LSD-SLAM algorithm [5] is a recently proposed direct VSLAM algo-
rithm. The fundamental difference in comparison to our work is that we refine
1 While this work was under review, Engel et al. proposed a similar photometric

(direct) formulation for VSLAM [70].
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the parameters of motion and structure jointly in one large optimization problem.
The joint optimization of motion and structure proposed herein is important in
future work concerning the optimality and convergence properties of photometric
structure-from-motion (SFM) and photometric, or direct, VSLAM.

Dense Multi-view Stereo (MVS). MVS algorithms aim at recovering a dense
depth estimate of objects or scenes using many images with known pose [4]. To
date, however, research on simultaneous refinement of motion and depth from
multiple frames remains sparse. Furukawa and Ponce [15] were among the first
to demonstrate that relying on minimizing the reprojection error is not always
accurate enough. Recently, Delaunoy and Pollefeys [50] proposed a photometric
BA approach for dense MVS. Starting from a precise initial reconstruction and
a mesh model of the object, the algorithm is demonstrated to enhance MVS
accuracy. The imaging conditions, however, are ideal and brightness constancy is
assumed [50]. In our work, we do not require a very precise initialization and can
address challenging illumination conditions. More importantly, the formulation
proposed by Delaunoy and Pollefeys requires the availability of an accurate dense
mesh, which is not possible to obtain in VSLAM scenarios.

5 Conclusions

In this work, we show how to improve on the accuracy of the state-of-art VSLAM
methods by minimizing the photometric error across multiple views. In partic-
ular, we show that it is possible to improve results obtained by minimizing the
reprojection error in a bundle adjustment (BA) framework. We also show, con-
trary to previous image-based minimization work [5,7,9,30,38], that the joint
refinement of motion and structure is possible in unconstrained scenes without
the need for alternation or disjoint optimization.

The accuracy of minimizing the reprojection using traditional BA is limited
by the precision and accuracy of feature localization and matching. In contrast,
our approach — BA without correspondences — determines the correspondences
implicitly such that the photometric consistency is maximized as a function of
the scene structure and camera motion parameters.

Finally, we show that accurate solutions to geometric problems in vision are
not restricted to geometric primitives such as corners and edges, or even planes.
We look forward to more sophisticated modeling of the geometry and photometry
of the scene beyond the intensity patches used in our work.
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