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Abstract. This paper seeks to combine dictionary learning and hier-
archical image representation in a principled way. To make dictionary
atoms capturing additional information from extended receptive fields
and attain improved descriptive capacity, we present a two-pass multi-
resolution cascade framework for dictionary learning and sparse coding.
The cascade allows collaborative reconstructions at different resolutions
using the same dimensional dictionary atoms. Our jointly learned dic-
tionary comprises atoms that adapt to the information available at the
coarsest layer where the support of atoms reaches their maximum range
and the residual images where the supplementary details progressively
refine the reconstruction objective. The residual at a layer is computed by
the difference between the aggregated reconstructions of the previous lay-
ers and the downsampled original image at that layer. Our method gen-
erates more flexible and accurate representations using much less num-
ber of coefficients. Its computational efficiency stems from encoding at
the coarsest resolution, which is minuscule, and encoding the residuals,
which are relatively much sparse. Our extensive experiments on multiple
datasets demonstrate that this new method is powerful in image cod-
ing, denoising, inpainting and artifact removal tasks outperforming the
state-of-the-art techniques.

1 Introduction

Sparse representation promises noise resilience by assigning representation coeffi-
cients from dictionary atoms characterizing the clean data distribution, improved
classification performance by attaining discriminative features, robustness by
preventing the model from overfitting data, and semantic interpretation by allow-
ing atoms to associate with meaningful attributes. Computer vision applications
include image compression, regularization in reverse problems, feature extrac-
tion, recognition, interpolation for incomplete data, and more [1–6].

An overcomplete dictionary that leads to sparse representations can either be
chosen from a predetermined set of functions or designed by adapting its content
to fit a given set of samples. The performance of the predetermined dictionar-
ies, such as overcomplete Discrete Cosine Transform (DCT) [7], wavelets [8],
curvelets [9], contourlets [10], shearlets [11] and other analytic forms, depends
on how suitable they are to sparsely describe the samples in question. On the
other hand, the learned dictionaries are data driven and tailored for distinct
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applications. Noteworthy algorithms of this type include the Method of Opti-
mal Directions (MOD) [12], generalized PCA [13], KSVD [2], Online Dictionary
Learning (ODL) [4,14]. The learned dictionaries adapt better compared to ana-
lytic ones and provide improved performance.

In general, image based dictionary learning and sparse encoding tasks are
formulated as an optimization problem

arg min
D,X

‖Y − DX‖2F s.t. ‖xi‖0 ≤ T , (1)

or its equivalent form

arg min
X,D

∑

i

‖xi‖0 s.t. ‖Y − DX‖2F ≤ ε (2)

where Y ∈ R
n×k is k image patches with dimension n, X ∈ R

m×k denotes the
coefficients of corresponding images, D ∈ R

n×m is an overcomplete matrix, T is
the number of coefficient used to describe the images, and ε is the error tolerance
such that once the reconstruction error is smaller than the tolerance the pursuit
will be terminated. The sparsity is achieved because n � m and T � m. For an
extended discussion on the solutions of above objectives, see Sect. 2.

For mathematical convenience, dictionary learning methods often employ in
uniform spaces, e.g. in the vector space of 8×8 image patches. In other words,
same scale blocks are pulled from overlapping or non-overlapping image patches
on a dense grid and a single-scale dictionary is learned. However, dictionary
atoms learned in this fashion tend to be myopic and blind to global context since
such fixed-scale patches only contain local information within their small sup-
port. Simply increasing the patch size results in adverse outcomes, i.e. decreased
the flexibility of the dictionary to fit data and increased computational com-
plexity. Moreover, optimal patch size varies depending on the underlying texture
information. For example, finer partitioning by smaller blocks is preferable for
textured regions, yet larger blocks would suit better for smooth areas. Suppose
the image to be encoded is a 256×256 flat (e.g. all pixels have the same value)
image. Using the conventional 8×8 overlapping blocks would require more than
60 K coefficients, yet the same image can be represented using a small number
of coefficients of larger patches, even only a single coefficient in the ideal case of
the patch has the size of the image.

As an alternative, multi-scale methods aim to learn dictionaries at different
image resolutions for the same patch size using shearlets, wavelets, and Laplacian
pyramid [4,5,15–17]. A major drawback of these methods is that each layer in
the pyramid is either processed independently or in small frequency bands; thus
reconstruction errors of coarser layers are projected directly on the finest layer.
Such errors cannot be compensated by other layers. This implies, to attain a sat-
isfactory quality, all layers need to be constructed accurately. Instead of learning
in different image resolutions, [18] first builds separate dictionaries for quadtree
partitioned patches and then zero-pad smaller patches to the largest scale. How-
ever, the size of the dictionary learned in this fashion is proportional to the
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Fig. 1. (a) Original image. (b) Corrupt image where 93% the original pixels are
removed. (c) Reconstruction result of KSVD, PSNR is 11.80 dB. (d) Reconstruction of
our method, PSNR is 33.34 dB. (e) Reconstructed image quality vs. the rate of miss-
ing coefficients. Red: our method, blue: KSVD. As visible, our method is significantly
superior to KSVD. (Color figure online)

maximum patch size, which prohibits its applicability due to heavy computa-
tional load and inflated memory requirements.

Existing multi-scale dictionary learning methods overlook the redundancy
between the layers. As a consequence, larger dictionaries are required, and a
high number of coefficients are spent unnecessarily on smooth areas. To the best
of our knowledge, no method offers a systematic solution where encodings of the
coarser scales progressively enhance the reconstructions of the finer layers.

Our Contributions
Aiming to address the above shortcomings and allow dictionary atoms to access
larger context for improved descriptive capacity, here we present a computation-
ally efficient cascade framework that employs multi-resolution residual maps for
dictionary learning and sparse coding.
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To this end, we start with building an image pyramid using bicubic interpo-
lation. In the first-pass, we learn a dictionary from the coarsest resolution layer
and obtain the sparse representation. We upsample the reconstructed image and
compute the residual in the next layer. The residual at a level is computed by
the difference between the aggregated reconstructions from the coarser layers in
a cascade fashion and the downsampled original image at that layer. Dictionaries
are learned from the residual in every layer. We use the same patch size yet dif-
ferent resolution input images, which is instrumental in reducing computations
and capturing larger context through. The computational efficiency stems from
encoding at the coarsest resolution, which is tiny, and encoding the residuals,
which are relatively much sparse. This enables our cascade to go as deep as
needed without any compromise.

In the second-pass, we collect all patches from all cascade layers and learn
a single dictionary for a final encoding. This naturally solves the problem of
determining how many atoms to be assigned at a layer. Thus, the atoms in the
dictionary have the same dimension still their receptive fields vary depending on
the layer.

Compared to existing multi-scale approaches operating indiscriminately on
image pyramids or wavelets, our dictionary comprises atoms that adapt to the
information available at each layer. The supplementary details progressively
refine our reconstruction objective. This allows our method to generate a flexible
image representation using much less number of coefficients.

Our extensive experiments on large datasets demonstrate that this new
method is powerful in image coding, denoising, inpainting and artifact removal
tasks outperforming the state-of-the-art techniques. Figure 1 shows a sample
inpainting result from our method where 93% of pixels are missing. As visible,
by taking the take advantage of the multi-resolution cascade, we can recover
even the very large missing areas.

2 Related Work

The nature of dictionary learning objective makes it an NP-hard problem since
neither the dictionary nor the coefficients are known. To handle this, most dictio-
nary learning algorithms alternate between sparse coding and dictionary updat-
ing steps iteratively by fixing one while optimizing the other. For example, MOD
updates the dictionary by solving an analytic solution of the quadratic problem
using as Moore-Penrose pseudo-inverse; KSVD incorporates k-means clustering
and singular value decomposition by refining coefficients and dictionary atoms
recursively; ODL updates the dictionary by using the first-order stochastic gra-
dient descent in small batches. Adding to the complexity, sparse coding itself
is an NP-hard problem due to the �0 norm. It is often approximated by greedy
schemes such as Matching pursuit (MP) [19] and Orthogonal Matching Pur-
suit (OMP) [20]. Another popular solution is to replace the �0-norm with an
�p-norm with p <= 1. When p = 1, the solution can be approximated by Basis
Pursuit [21], FoCUSS [22], and Least Angle Regression (LARS) [23] to count a
few.
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Multi-scale methods for coding have been widely studied in the past. Wavelets
have become the premier multi-scale analysis tool in signal processing and many
wavelets alike methods such as bandlets [24], contourlets [10], curvelets [9] as
well as decomposition methods including wavelet pyramid [25], steerable pyra-
mid [26], and Laplacian pyramid [27] have emerged. These methods aim to
improve upon the pure spatial frequency analysis of Fourier transform by pro-
viding resolution in both spatial frequency and spatial location.

Nevertheless, there have been few attempts to learn multi-scale dictionaries.
In [18], use of a quadtree structure was proposed. Dictionaries with different atom
dimensions are learned for different levels of the quadtree, and then concatenated
together by zero-padding smaller atoms in a dyadic fashion. Unfortunately, the
number of scales and the maximum dimension of dictionary atoms are restricted
due to the heavy computational and memory requirements. Besides, this app-
roach does not take the advantage of the coarse-scale information that may be
more suitable to represent patches using atoms of the same size.

In order to overcome computational issues, Ophir et al. [5] learned sub-
dictionaries in the wavelet transform domain by exploiting the sparsity between
the wavelets coefficients. This work leverages frequency selectivity of the individ-
ual levels of a wavelet pyramid to remove redundancy in the learned representa-
tions. However, separate dictionaries are learned for the directional sub-bands,
which tends to generate inferior performance when compared to single-scale
KSVD in denosing task. Their following work [6] exploited multi-scale analy-
sis and single-scale dictionary learning, and merged both outputs by weighted
joint sparse coding. Since the fused dictionary is several times larger than the
single-scale version, the computational complexity is high. Besides, the denoising
performance is sensitive to the size and category of images. A similar work [4]
built multi-resolution dictionaries on wavelet pyramid by employing k-means
clustering before the ODL step. For each resolution, it clusters the patches of
three sub-bands, and concatenates all dictionary atoms. Even though denois-
ing performance improves due to non-local clustering on sub-bands, each layer
requires a large dictionary, which reflects on the computationally load.

Multi-resolution sparse representations are also employed for image fusion
and super-resolution. Liu et al. [16] fused two images by obtaining sparse coeffi-
cients for high-pass and low-pass frequency bands by OMP given the pre-trained
dictionary. The fused coefficient columns in each band are chosen by maximal �1
norm of corresponding coefficients. Towards the same goal, Yin et al. [17] merged
two coefficient vectors, however, the fused coefficient columns are selected by �2
norm. Instead of training sub-dictionaries independently, they learn 3S + 1 sub-
dictionaries jointly, which means the dimension of the matrix is (3S+1)n×k, thus
the learning stage is computationally expensive. In [15] proposed a multi-scale
approach to super-resolve diffusion weighted images where the low-resolution
dictionary is based on the shearlet transform and the high-resolution one is
based on intensity. In [28] sparse representation was used to build a model for
image interpolation. This model describes each patch as a linear combination
of similar non-local patch neighbors, and every patch is sparse represented with
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a specific dictionary. In order to decrease the coherence of the representation
basis, it clusters patches into multiple groups and learns multiple local PCA
dictionaries.

3 Sparse Coding on Cascade Layers

A flow diagram of our framework is shown in Fig. 2 for a sample 4-layer cascade.
Given an image Y, we first construct an image pyramid Y = {Y0,Y1, ...YN} by
bicubic downsampling. Here, Y0 is the finest (original) resolution and YN is the
coarsest resolution. Other options for the image pyramid are Gaussian pyramid,
Laplacian pyramid, bilinear interpolation, and subsampling. Images resampled
with bicubic interpolation are smoother and have fewer interpolation artifacts.
In contrast, bicubic interpolation considers larger support.

We employ a two-pass scheme wherein the first-pass we obtain residuals
from layer-wise dictionaries, and in the second-pass, we learn a single, global
dictionary that extracts and refines the atoms from the dictionaries generated
in the first-pass.

Fig. 2. First-pass of our method for a 4-layer cascade. Y0 is the original image,
{Y3, ...,Y0} denote each layer of the image Y3 pyramid, and {D3, ...,D0} are the
dictionaries. D3 is learned from the downsampled image, remainig dictionaries are
learned from the residuals {Y′

2,Y
′
1,Y

′
0}. αn are the coefficients used to reconstruct

each layer.

First-pass
We start at the coarsest layer N in the cascade. After learning the layer dictio-
nary and finding the sparse coefficients, we propagate consecutively the recon-
structed images to the finer layers. In the coarsest layer we process the down-
sampled image, in the consecutive layers we encode and decode the residuals. In
each layer, we use same size b × b patches. A patch in the layer n corresponds
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Algorithm 1. Cascade sparse coding
Input:
1: N (the highest pyramid layer), Y(image),
2: Tn (number of coefficient used in layer n)

Output: Y
′
, Ŷ, D̂global

3: Yn ← subsampling(Y, 2n)
4: for n = {N, N − 1, · · · , 0} do
5: if n = N then
6: Y

′
n ← Yn

7: else
8: Y

′
n ← Yn − upsample(Ŷn+1, 2)

9: Perform KSVD to learn dictionary D̂n and encode Y
′
n

10: ∀ij {x̂ij
n , D̂n} ← arg min

x
ij
n ,Dn

∑
ij ‖RijY

′
n − Dnx

ij
n ‖2

2 s.t ‖xij
n ‖0 ≤ Tn

11: if n = N then
12: Ŷn ← (

∑
ij R

T
ijRij)

−1(
∑

ij R
T
ijD̂nx̂

ij
n )

13: else
14: Ŷn ← (

∑
ij R

T
ijRij)

−1(
∑

ij R
T
ijD̂nx̂

ij
n ) + upsample(Ŷn+1, 2)

15: Y
′ ← {Y′

N ,Y
′
N−1 · · · ,Y

′
0}

16: ∀ij D̂global ← arg min
D

∑
ij ‖RijY

′ − Dxij‖2
2 s.t ‖xij‖0 ≤ T

17: Reconstruction:
18: Ŷ ← 0
19: for n = {N, N − 1, · · · , 0} do

20: Y
′
n = Yn − upsample(Ŷ, 2)

21: ∀ij {x̂ij
n } ← arg min

x
ij
n

∑
ij ‖RijY

′
n − D̂globalx

ij
n ‖2

2 s.t ‖xij
n ‖0 ≤ Tn

22: Ŷ ← (
∑

ij R
T
ijRij)

−1(
∑

ij R
T
ijD̂globalx̂

ij
n ) + upsample(Ŷ, 2)

23: return

to a (b × 2n) × (b × 2n) area in the original image. Algorithm 1 summarizes the
first-pass.

Dictionary learning: We learn a dictionary at the coarsest layer and use it to
reconstruct the downsampled image. This layer’s dictionary D̂N is produced by
minimizing the objective function using the coarsest resolution image patches

arg min
DN ,xij

N

∑

ij

‖RijYN − DNxij
N‖22 + λ‖xij

N‖0 (3)

where the operator Rij is a binary matrix that extracts a square patch of size
b × b at location (i, j) in the image then arranges the patch in a column vector
form. The parameter λ balances the data fidelity term and the regularization
term, and xij

N denotes the coefficients for the patch (i, j).
We initialize the dictionary DN with a DCT basis by extracting several atoms

from the DCT bases and applying Kronecker product. It is possible to choose
any dictionary update methods such as KSVD [2], approximate KSVD [29],
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MOD [12], and ODL [14]. Both ODL and approximate KSVD can achieve the
same PSNR with less coefficients. In order to reveal the strength of our method,
we choose the original KSVD to update the dictionaries. Therefore, we do a
sequence of rank-one approximations that update both the dictionary atoms
and the coefficients.

Iteratively, we first fix all coefficients x̂ij
N and select each dictionary atom one

by one dl
N , l = {1, 2, · · · , k}. For any atom dl

N , we extract the patches, which are
composed by the atom (i, j) ∈ dl

N , to compute its residual. The corresponding
coefficients are denoted as xij

N (l), which are the non-zero entries of the l-th row
of coefficient matrix

eijN (l) = RijYN − D̂Nxij
N + dl

Nxij
N (l). (4)

We arrange all eijN (l) as the columns of the overall representation error matrix
El

N . Then, we update the atom d̂l
N and the l-th row x̂N (l) by

{d̂l
N , x̂N (l)} = arg min

d,x
‖El

N − dx‖2F . (5)

Finally, we perform SVD decomposition on the error matrix, and update the
l-th dictionary atom d̂l

N by the first column of U, where El
N = UΣVT . The

coefficient vector x̂N (l) is the first column of matrix Σ(1, 1)V. In every iteration
all dictionary atoms and coefficients are updated simultaneously.

Sparse coding: After getting the updated dictionary, sparse coding is done
with the Orthogonal Matching Pursuit (OMP), a greedy algorithm that is com-
putationally efficient [30]. The sparse coding stops when the number of coeffi-
cient reaches the upper limit TN or the reconstruction error becomes less than
threshold

x̂ij
N = arg min

xij
N

∑

ij

‖RijY
′
N − D̂nxij

n ‖22 s.t. ‖xij
n ‖0 ≤ TN . (6)

Putting the updated coefficient matrix x̂ij
N back into Dictionary learning to

update the dictionary and coefficient until reaching the iteration times.

Residuals: In each layer, we use at most Tn active coefficients for each patch to
reconstruct the image and then compute the residual. The number of coefficients
governs how strong the residual to emerge. Larger values of Tn generates a more
accurate reconstructed image. Thus, the total energy of residuals will diminish.
Smaller values of Tn cause the residual to increase, not only due to sparse coding
but also resampling across layers. Since the dictionary is designed to represent a
wide spectrum of patterns to keep the encodings as sparse as possible, Tn should
be small. The reconstructed image is a weighted average of the patches that
contain the same pixel

ŶN = (
∑

ij

RT
ijRij)−1(

∑

ij

RT
ijD̂N x̂ij

N ). (7)
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After decoding based on the dictionary D̂N , we obtain the residual image Y
′
N−1

by subtracting the upsampled reconstruction U(ŶN ) from the next layer image
YN−1, e.g. Y

′
N−1 = YN−1−U(ŶN ). Here, U(·) denotes the bicubic upsampling

operator. As the procedure of dictionary learning ans sparse coding in the N -th
layer, we reconstruct residual Ŷ

′
N−1 by training a residual dictionary DN−1 from

the residual image itself. We keep encoding and decoding on residuals up to the
finest layer. The cascade residual dictionary learning and reconstruction can be
expressed as follows:

{x̂ij
n , D̂n} = arg min

xij
n ,Dn

∑

ij

‖RijY
′
n − Dnxij

n ‖22 s.t. ‖xij
n ‖0 ≤ Tn, (8)

where residual image is

Y
′
n =

{
Yn − U(Ŷn+1), 0 ≤ n < N
YN , n = N,

(9)

and the reconstructed residual is

Ŷn =

{
(
∑

ij R
T
ijRij)−1(

∑
ij R

T
ijD̂nx̂ij

n ) + U(Ŷn+1), 0 ≤ n < N

(
∑

ij R
T
ijRij)−1(

∑
ij R

T
ijD̂nx̂ij

n ) n = N.
(10)

The more coefficients used, which reduce the error caused by sparse represen-
tation. Since we are pursuing sparser representation, less number of coefficient
would be better.

Second-pass
In each layer the more atoms we use, the better quality can be achieved. How-
ever, this would not be the best use of the limited number of atoms. For instance,
image patches from the coarsest layer are limited both in quantity and variety.
The residual images are relatively sparse which imply they do not require many

Fig. 3. Left: Four dictionaries of the different levels learned in the first pass (clockwise
from the upper-left: the coarsest level, the second, the third, and the finest level). Right:
The unifying dictionary learned in the second pass.
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dictionary atoms. However, it is not straightforward to determine the optimal
number of atoms for each dictionary since finer level residuals depend on coarser
ones. Rather than keeping all dictionaries, we train a global dictionary D using
patches from Y

′
= {YN ,Y

′
N−1, · · · ,Y

′
0}. As illustrated in Fig. 3, the dictio-

naries learned from Y
′

in the first pass are redundant. The overall dictionary
is less repetitive and more general to reconstruct all four layers. This allows us
to select most useful atoms automatically without making sub-optimal layer-
wise decisions. Notice that, in this procedure the number of coefficient can be
arbitrarily chosen depending on the target quality of each layer.

4 Experimental Analysis

To demonstrate the flexibility of our method, we evaluate its performance on
three different and popular image processing tasks: image coding, image denois-
ing, and image inpainting. Our method is shown to generate the best image
inpainting results and provide the most compact set of coding coefficients.

4.1 Image Coding

We compare our method with five state-of-the-art dictionary learning algo-
rithms including both single and multi-scale methods: approximate KSVD (a-
KSVD) [29], ODL [14], KSVD [2] Multi-scale KSVD [18], Multi-scale KSVD
using wavelets (Multi-wavelets) [5].

For objectiveness, we use the same number of dictionary atoms for our and
all other methods. Notice that, a larger dictionary would generate a sparser
representations. We employ 4-times over-complete dictionaries, i.e. D ∈ R

64×256

except for the Multi-wavelets where the dictionary in each sub-band has as many
atoms as our dictionary (in favor of Multi-wavelets).

For a comprehensive evaluation, we build five different image datasets, each
contains 50 samples of a specific class of images: animals, landscape, texture,
face, and fingerprint.

Figure 4 depicts the number of coefficients per pixel vs. PSNR as the function
of number of coefficient per each pixel. Each point is the average score for the
corresponding method. As seen, our method is the best performing algorithm
among the state-of-the-art. In all five image datasets, it achieves higher PSNR
scores with significantly much less number of coefficients. In these experiments,
the patches are extracted by 1-pixel overlapping in all images. We use 8 × 8
blocks on each layer, and the cascade comprises 4 layers. Since the blocks in
every layer have the same size, the lower resolution blocks efficiently represent
larger receptive fields when they are upsampling onto a higher resolution.

From another perspective, when decoding on the coarsest resolution, our
method first employs 8 × 8 blocks, which corresponds to 8 ∗ 2n−1 × 8 ∗ 2n−1

region on the finest resolution using the same dictionary atoms. Since there is a
single global dictionary after the second pass, all layers share the same atoms.
This resembles the quadtree structure, however, our method is not limited by the
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Fig. 4. Reconstruction results on different 5 different image datasets. The horizontal
axis represents the number of coefficient per pixel and the vertical axis is the quality
in terms of PSNR (dB).

size of the dictionary (dimension of patches - atoms - and number of atoms) and
it is as fast as single-scale dictionary learning and sparse coding. For Multiscale
KSVD, the maximum dimension of dictionary atom can be 8 and only 2 scales
can be performed. Thus, we extracted 128 atoms at each scale.

Compared with other algorithms, our method can save an outstanding 55.6%,
42.23% and 49.95% coefficients for the face, animals, and landscape datasets,
respectively. For the image classes where spatial texture is dominant, our method
is also superior by decreasing the number of coefficient by 27.74% and 22.38% for
the texture and fingerprint datasets. Sample image coding results for qualitative
assessment are given in Fig. 5. As shown, a-KSVD image coding is inferior to
our even though a-KSVD uses more coefficients.

4.2 Image Denoising

We also analyze the image denoising performance of our method. We make
comparison with five dictionary learning algorithms. We note that the state-of-
the-art is collaborative and non-local techniques, such as BM3D [31], LSSC [1],
yet we do not engineer a collaborative scheme. Our goal here is to understand
how our method compares to other dictionary learning methods.

We minimize the cost function in Eq. (11) for denoising. We use the difference
between the downsampled input image and aggregated reconstructions at each
layer to terminate the OMP.
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(a) a-KSVD:28.68 db PSNR (b) Our method: 32.62 db PSNR

Fig. 5. Image coding results the comparison between a-KSVD and our method. Our
method uses 1309035 coefficients and achieves 32.62 dB PSNR score while a-KSVD
uses 1332286 coefficients to get 28.65 dB PSNR. our method is almost 4 dB better.
Enlarged red regions are shown on the top-right corner of each image. As visible, our
method produces more accurate reconstructions.

Fig. 6. Denoised face images. Additive zero-mean Gaussian noise with σ = 30.
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arg min
xi

∑

ij

‖xij
n ‖0

s.t.‖RijYn − Dnxij
n + RijU(Ŷn+1)‖22 ≤ Cσ

(11)

Above, the reconstructed residual Ŷn+1 is defined as in Eq. (10), and σ is chosen
according to the variance of the noise. As before, we choose the 4-layer cascade
and 8 × 8 patch size. The parameters of KSVD and multi-scale wavelets are
set as recommenced by original authors. We fixed all parameters for all test
images. As shown in Fig. 6, our method achieves higher PSNR scores than the
state-of-the-art. In addition, it can render finer details more accurately.

4.3 Image Inpainting

Image inpainting is often used for restoration of damaged photographs and
removal of specific artifacts such as missing pixels. Previous dictionary learn-
ing based algorithms work when the missing area is small and smaller than the
dimension of dictionary atoms.

(a) original image (b) corrupted image

PSNR 28.74

(c) KSVD

PSNR 34.88

(d) Ours

Fig. 7. The original image is corrupted with large artifacts. The sizes of the artifacts
range from 8 to 32 pixels. Our method efficiently removes the artifacts.



32 T. Zhang and F. Porikli

As demonstrated in Fig. 1 our method can restore the missing image regions
that are remarkably much larger than the dimension of dictionary atoms, out-
performing the state-of-the-art methods. By reconstructing the image starting
at the coarsest layer, we can fix completely missing regions. The larger the miss-
ing area, the smoother the restored image becomes. In comparison, single-scale
based methods fail completely.

Given the mask M of missing pixels, our formulation in each layer is

x̂ij
n = arg min

xn

∑

ij

‖RijM ⊗ (RijY
′
n − Dnxn)‖22

subject to ‖xij
n ‖0 ≤ Tn

(12)

where we denote ⊗ as the element-wise multiplication between two vectors.
Figure 7 shows that our algorithm can fix big holes and gaps but the KSVD

can not. In this experiments we only compare with KSVD algorithm, because
multiscale KSVD simply increases the dimension of atoms, which leads pro-
portionally more atoms to form an overcomplete dictionary. At the same time,
multiscale KSVD still fails to handle holes larger than the dimension of atoms.

5 Conclusion

We presented a dictionary learning and sparse coding method on cascaded resid-
uals. Our cascade allows capturing both local and global information. Its coarse-
to-fine structure prevent from reconstructing the regions that can be well rep-
resented by the coarser layers. Our sparse coding can be used to progressively
improve the quality of the decoded image.

Our method provides significant improvement over the state-of-the-art solu-
tions in terms of the quality of reconstructed image, reduction in the number
of coefficients, and computational complexity. It generates much higher quality
images using less number of coefficients. It produces superior results on image
inpainting, in particular, in handling of very large ratios of missing pixels and
large gaps.
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